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Quasi-representations of surface groups

José R. Carrión and Marius Dadarlat

Abstract

By a quasi-representation of a group G, we mean an approximately multiplicative map of G to
the unitary group of a unital C∗-algebra. A quasi-representation induces a partially defined map
at the level K-theory.

In the early 1990s, Exel and Loring associated two invariants with almost-commuting pairs of
unitary matrices u and v: one a K-theoretic invariant, which may be regarded as the image of
the Bott element in K0(C(T2)) under a map induced by quasi-representation of Z2 in U(n); the
other is the winding number in C \ {0} of the closed path t �→ det(tvu + (1 − t)uv). The so-called
Exel–Loring formula states that these two invariants coincide if ‖uv − vu‖ is sufficiently small.

A generalization of the Exel–Loring formula for quasi-representations of a surface group taking
values in U(n) was given by the second-named author. Here, we further extend this formula for
quasi-representations of a surface group taking values in the unitary group of a tracial unital
C∗-algebra.

1. Introduction

Let G be a discrete countable group. In [3, 4], the second-named author studied the question
of how deformations of the group G (or of the group C∗-algebra C∗(G)) into the unitary
group of a (unital) C∗-algebra A act on the K-theory of the algebras �1(G) and C∗(G).
By a deformation, we mean an almost-multiplicative map, a quasi-representation, which we
will define precisely in a moment. Often, matrix-valued multiplicative maps are inadequate
for detecting the K-theory of the aforementioned group algebras. In fact, if a countable,
discrete, torsion-free group G satisfies the Baum–Connes conjecture, then a unital finite-
dimensional representation π : C∗(G) →Mr(C) induces the map r · ι∗ onK0(C∗(G)), where ι is
the trivial representation of G (see [4, Proposition 3.2]). It turns out that almost-multiplicative
maps detect K-theory quite well for large classes of groups: one can implement any group
homomorphism of K0(C∗(G)) to Z on large swaths of K0(C∗(G)) using quasi-representations
(see [4, Theorem 3.3]).

Knowing that quasi-representations may be used to detect K-theory, we turn to how it is
that they act. An index theorem of Connes, Gromov and Moscovici [2] is very relevant to this
topic, in the following context. Let M be a closed Riemannian manifold with fundamental
group G and let D be an elliptic pseudo-differential operator on M . The equivariant index of
D is an element of K0(�1(G)). Connes, Gromov and Moscovici showed that the push-forward
of the equivariant index of D under a quasi-representation of G coming from parallel transport
in an almost-flat bundle E over M is equal to the index of D twisted by E.

At around the same time, Exel and Loring studied two invariants associated to pairs of
almost-commuting scalar unitary matrices u, v ∈ U(r). One is a K-theory invariant, which
may be regarded as the push-forward of the Bott element β in the K0-group of C(T2) ∼=
C∗(Z2) by a quasi-representation of Z2 into the unitary group U(r). The Exel–Loring formula
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proved in [6] states that this invariant equals the winding number in C \ {0} of the path
t �→ det((1 − t)uv + tvu). An extension of this formula for almost-commuting unitaries in a
C∗-algebra of tracial rank 1 is due to Lin and plays an important role in the classification theory
of amenable C∗-algebras. In a different direction, the Exel–Loring formula was generalized
in [3] to finite-dimensional quasi-representations of a surface group using a variant of the index
theorem of [2]. Remark 2.4 discusses the Exel–Loring formula in more detail.

In [3], the second-named author used the Mishchenko–Fomenko index theorem to give a
new proof and a generalization of the index theorem of Connes, Gromov and Moscovici that
allows C∗-algebra coefficients. In this paper, we use this generalization to address the question
of how a quasi-representation π of a surface group in the unitary group of a tracial C∗-algebra
acts at the level of K-theory. We extend the Exel–Loring formula to a surface group Γg (with
canonical generators αi, βi) and coefficients in a unital C∗-algebra A with a trace τ . Briefly,
writing K0(�1(Γg)) ∼= Z[1] ⊕ Zμ[Σg] we have

τ(π�(μ[Σg])) =
1

2πi
τ

(
log

(
g∏

i=1

[π(αi), π(βi)]

))
,

where [1] is the K0 class of the unit 1 ∈ �1(Γg), [Σg] is the fundamental class in K-homology of
the genus g surface Σg and μ : K0(Σg) → K0(�1(G)) is the �1-version of the assembly map of
Lafforgue. For a complete statement, see Theorem 2.3. In the proof, we make use of Chern–Weil
theory for connections on Hilbert A-module bundles as developed by Schick [15] and the de
la Harpe–Skandalis determinant [7] to calculate the first Chern class of an almost-flat Hilbert
module C∗-bundle associated to a quasi-representation (Theorem 5.2).

The paper is organized as follows. In Section 2, we define quasi-representations and the
invariants we are interested in, and state our main result, Theorem 2.3. The invariants make use
of the Mishchenko line bundle, which we discuss in Section 3. The push-forward of this bundle
by a quasi-representation is considered in Section 4. Section 5 contains our main technical result,
Theorem 5.2, which computes one of our invariants in terms of the de la Harpe–Skandalis
determinant [7]. To obtain the formula given in Theorem 2.3, we must work with concrete
triangulations of oriented surfaces; this is contained in Section 6. Assembling these results in
Section 7 yields a proof of Theorem 2.3.

2. The main result

In this section, we state our main result. It depends on a result in [3] that we revisit. Let us
provide some notation and definitions first.

Let G be a discrete countable group and A be a unital C∗-algebra.

Definition 2.1. Let ε > 0 and let F be a finite subset of G. An (F , ε)-representation of
G in U(A) is a function π : G→ U(A) such that for all s, t ∈ F we have

π(1) = 1,
‖π(s−1) − π(s)∗‖ < ε and
‖π(st) − π(s)π(t)‖ < ε.

We refer to the third condition by saying that π is (F , ε)-multiplicative. Let us note that
the second condition follows from the other two if we assume that F is symmetric, that is,
F = F−1. A quasi-representation is an (F , ε)-representation, where F and ε are not necessarily
specified.
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A quasi-representation π : G→ U(A) induces a map (also denoted by π) of the Banach
algebra �1(G) to A by

∑
λss �→

∑
λsπ(s). This map is a unital linear contraction. We also

write π for the extension of π to matrix algebras over �1(G).

2.1. Pushing-forward via quasi-representations

A group homomorphism π : G→ U(A) induces a map π∗ : K0(�1(G)) → K0(A) (via its Banach
algebra extension). We think of a quasi-representation π as inducing a partially defined map
π� at the level of K-theory, in the following sense. If e is an idempotent in some matrix algebra
over �1(G) such that ‖π(e) − π(e)2‖ < 1

4 , then the spectrum of π(e) is disjoint from the line
{Re z = 1

2}. Writing χ for the characteristic function of {Re z > 1
2}, it follows that χ(π(e)) is

an idempotent and we set

π�(e) = [χ(π(e))] ∈ K0(A).

For an element x in K0(�1(G)), we make a choice of idempotents e0 and e1 in some matrix
algebra over �1(G) such that x = [e0] − [e1]. If ‖π(ei) − π(ei)2‖ < 1

4 for i ∈ {0, 1}, then write
π�(x) = π�(e0) − π�(e1). The choice of idempotents is largely inconsequential: given two choices
of representatives one finds that if π is multiplicative enough, then both choices yield the same
element of K0(A).

Of course, the more multiplicative π is, the more elements of K0(�1(G)) we can push-forward
into K0(A).

2.2. An index theorem

Fix a closed oriented Riemannian surface M and let G be its fundamental group. Fix also
a unital C∗-algebra A with a tracial state τ . Write K0(M) for KK(C(M),C). Because the
assembly map μ : K0(M) → K0(�1(G)) is known to be an isomorphism in this case (see [10]),
we have

K0(�1(G)) ∼= Z[1] ⊕ Zμ[M ],

where [M ] is the fundamental class of M in K0(M) (see [1, Lemma 7.9]) and [1] is the class of
the unit of �1(G). Since we are interested in how a quasi-representation of G acts on K0(�1(G)),
we would like to study the push-forward of the generator μ[M ] by a quasi-representation.

2.2.1. Consider the universal cover M̃ →M and the diagonal action of G on M̃ × �1(G)
giving rise to the so-called Mishchenko line bundle �, M̃ ×G �1(G) →M . We will discuss it
in more detail in Section 3, where we will give a description of it as the class of a specific
idempotent e in some matrix algebra over C(M) ⊗ �1(G).

If π is a quasi-representation of G in U(A), then idC(M) ⊗π is an almost-multiplicative unital
linear contraction on C(M) ⊗ �1(G) with values in C(M) ⊗A. Assuming that π is sufficiently
multiplicative, we may define the push-forward of the idempotent e by idC(M) ⊗π, just as in
Subsection 2.1. We set

�π := (idC(M) ⊗π)�(�) := (idC(M) ⊗π)�(e) ∈ K0(C(M) ⊗A).

Let D be an elliptic operator on Mn and let μ[D] ∈ K0(�1(G)) be its image under the assembly
map. Let q0 and q1 be idempotents in some matrix algebra over �1(G) such that μ[D] = [q0] −
[q1] and write π�(μ[D]) := π�(q0) − π�(q1). By [3, Corollary 3.8], if π : G→ A is sufficiently
multiplicative, then

τ(π�(μ[D])) = (−1)n(n+1)/2〈p! ch(σ(D)) ∪ Td(TM ⊗ C) ∪ chτ (�π), [M ]〉, (2.1)
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where p : TM →M is the canonical projection, ch(σ(D)) is the Chern character of the symbol
ofD, Td(TCM) is the Todd class of the complexified tangent bundle and [M ] is the fundamental
homology class of M . Set α = (−1)n(n+1)/2p!ch(σ(D)) ∪ Td(TM ⊗ C). Then (2.1) becomes

τ(π�(μ[D])) = 〈α ∪ chτ (�π), [M ]〉 = 〈chτ (�π), α ∩ [M ]〉.
On the other hand, it follows from the Atiyah–Singer index theorem that the Chern character
in homology ch: K0(M) → H∗(M ; Q) is given by

ch[D] = ((−1)n(n+1)/2p! ch(σ(D)) ∪ Td(TCM)) ∩ [M ] = α ∩ [M ].

It follows that

τ(π�(μ[D])) = 〈chτ (�π), ch[D]〉. (2.2)

In the case of surfaces, this formula specializes to the following statement.

Theorem 2.2 (cf. [3, Corollary 3.8]). Let M be a closed oriented Riemannian surface of
genus g with fundamental group G. Let q0 and q1 be idempotents in some matrix algebra over
�1(G) such that μ[M ] = [q0] − [q1]. Then there exist a finite subset G of G and ω > 0 satisfying
the following.

Let A be a unital C∗-algebra with a tracial state τ and let π : G→ U(A) be a (G, ω)-
representation. Write π�(μ[M ]) := π�(q0) − π�(q1). Then

τ(π�(μ[M ])) = 〈chτ (�π), [M ]〉.

Here chτ : K0(C(M) ⊗A) → H2(M,R) is a Chern character associated to τ (see Section 5),
and [M ] ∈ H2(M,R) is the fundamental class of M .

Proof. Given another pair of idempotents q′0, q
′
1 in some matrix algebra over �1(G) such that

μ[M ] = [q′0] − [q′1], there is an ω0 > 0 such that if 0 < ω < ω0, then for any (G, ω)-representation
π we have π�(q0) − π�(q1) = π�(q′0) − π�(q′1). We are therefore free to prove the theorem for a
convenient choice of idempotents.

It is known that the fundamental class of M in K0(M) coincides with [∂̄g] + (g − 1)[ι], where
∂̄g is the Dolbeault operator on M and ι : C(M) → C is a character (see [1, Lemma 7.9]). Let
e0, e1, f0, f1 be idempotents in some matrix algebra over �1(G) such that

μ[∂̄g] = [e0] − [e1] and μ[ι] = [f0] − [f1].

(This gives an obvious choice of idempotents q′0 and q′1 in some matrix algebra over �1(G) so
that μ[M ] = [q′0] − [q′1].) We want to prove

τ(π�(μ(z))) = 〈chτ (�π), ch(z)〉,
for z = [M ] ∈ K0(M). Because of the additivity of this last equation, the fact that [M ] =
[∂̄g] + (g − 1)[ι], and equation (2.2), it is enough to prove

τ(π�(μ[ι])) = 〈chτ (�π), ch[ι]〉. (2.3)

By [3, Corollary 3.5],

τ(π�(μ[ι])) = τ(〈�π, [ι] ⊗ 1A〉).
We can represent �π by a projection f in matrices over C(M,A). The definition of the Kasparov
product implies

〈[�π], [ι] ⊗ 1A〉 = ι∗[f ] = [f(x0)] ∈ K0(A).
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On the other hand, the definition of chτ (see [15, Definition 4.1]) implies chτ (f) = τ(f(x0))
+ a term in H2(M,R). Since ch[ι] = 1 ∈ H0(M,R), we get

〈chτ (f), ch[ι]〉 = τ(f(x0)). (2.4)

2.3. Statement of the main result

We will often write Σg for the closed oriented surface of genus g and Γg for its fundamental
group. It is well known that Γg has a standard presentation

Γg =

〈
α1, β1, . . . , αg, βg

∣∣∣∣∣
g∏

i=1

[αi, βi]

〉
,

where we write [α, β] for the multiplicative commutator αβα−1β−1.
Our main result is the following.

Theorem 2.3. Let g � 1 be an integer and let q0 and q1 be idempotents in some matrix
algebra over �1(Γg) such that μ[Σg] = [q0] − [q1] ∈ K0(�1(Γg)). There exists ε0 > 0 and a finite
subset F0 of Γg such that for every 0 < ε < ε0 and every finite subset F ⊇ F0 of Γg the
following holds.

If A is a unital C∗-algebra with a trace τ and π : Γg → U(A) is an (F , ε)-representation, then

τ(π�(μ[Σg])) =
1

2πi
τ

(
log

(
g∏

i=1

[π(αi), π(βi)]

))
, (2.5)

where π�(μ[Σg]) := π�(q0) − π�(q1).

The rest of the paper is devoted to the proof.

Remark 2.4. The case when g = 1 andA = Mn(C) recovers the Exel–Loring formula of [6].
As mentioned in Section 1, this formula states that two integer-valued invariants κ(u, v) and
ω(u, v) associated to a pair of unitary matrices u, v ∈ U(n) coincide as long as ‖[u, v] − 1n‖ < c,
where c is a small constant that is independent of n. Exel observed (in [5, Lemma 3.1]) that
the ‘winding-number’ invariant ω(u, v) equals

1
2πi

tr(log([u, v])).

This corresponds to the right-hand side of (2.5).
The ‘K-theory invariant’ κ(u, v) is an element in the K0-group of Mn(C) and is regarded

as an integer after identifying this group with Z (the isomorphism given by the usual trace on
Mn(C)). This invariant was first introduced by Loring [12]. We briefly recall its definition.

Recall that K0(C(T2)) ∼= Z[1] ⊕ Z[β], where [1] is the class of the unit of C(T2) and β is
the Bott element. Given unitaries U and V in a unital C∗-algebra B, one defines a self-adjoint
matrix

e(U, V ) =
(

f(V ) g(V ) + h(V )U∗

g(V ) + Uh(V ) 1 − f(V )

)
,

where f , g and h are certain continuous functions on the circle. These are chosen in such a way
that when U = e2πix, V = e2πiy ∈ C(T2) we have that e(U, V ) is idempotent and has K0-class
[1] + β (cf. [12, 14]).

We assume that ‖[u, v] − 1n‖ is small enough so that the corresponding matrix e(u, v)
is nearly idempotent; in particular, its spectrum does not contain 1

2 . Writing χ for the
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characteristic function of {Re z > 1
2}, we have that χ(e(u, v)) is a projection in Mn(C). Define

κ(u, v) = tr(χ(e(u, v))) − n.

Subtracting n means cancelling out the K-theoretic contribution of [1], leaving only the
contribution of the push-forward of β under a quasi-representation determined by u and v.
(Proposition 2.5 makes this statement precise.) This corresponds to the left-hand side of (2.5).

Formula (2.5) also recovers its extension by Lin [11] for C∗-algebras of tracial rank 1. Lin’s
strategy was a reduction to the finite-dimensional case of [6] using approximation techniques.

The following proposition says that we may associate quasi-representations with unitaries
that nearly satisfy the group relation in the standard presentation of Γg mentioned above. The
proof is in Section 7.

Proposition 2.5. For every ε > 0 and every finite subset F of Γg, there is a δ > 0 such
that if A is a unital C∗-algebra with a trace τ and u1, v1, . . . , ug, vg are unitaries in A satisfying∥∥∥∥∥

g∏
i=1

[ui, vi] − 1

∥∥∥∥∥ < δ,

then there exists an (F , ε)-representation π : Γg → U(A) with π(αi) = ui and π(βi) = vi, for
all i ∈ {1, . . . , g}.

Example 2.6. To revisit a classic example, consider the noncommutative 2-torus Aθ,
regarded as the universal C∗-algebra generated by unitaries u and v with [v, u] = e2πiθ · 1.
This is a tracial unital C∗-algebra. If θ is small enough, then we may apply Proposition 2.5
and Theorem 2.3 to obtain

τ(π�(β)) =
1

2πi
τ(log e−2πiθ) = −θ,

where β ∈ K0(C(T2)) is the Bott element, τ is a unital trace of Aθ and π : Z2 → U(Aθ) is a
quasi-representation obtained from Proposition 2.5.

3. The Mishchenko line bundle

Recall our setup: M is a closed oriented surface with fundamental group G and universal cover
p : M̃ →M . In this section, we give a picture of the Mishchenko line bundle that will enable
us to explicitly describe its push-forward by a quasi-representation.

The Mishchenko line bundle is the bundle M̃ ×G �1(G) →M , obtained from M̃ × �1(G) by
passing to the quotient with respect to the diagonal action of G. We write � for its class in
K0(C(M) ⊗ �1(G)).

3.1. Triangulations and the edge-path group

We adapt a construction found in the appendix of [13]. It is convenient to work with a
triangulation Λ of M . Let Λ(0) = {x0, . . . , xN−1} be the 0-skeleton of Λ and let Λ(1) be the
1-skeleton. To each edge, we assign an element of G as follows. Fix a root vertex x0 and a
maximal (spanning) tree T in Λ. Let γi be the unique path along T from x0 to xi, and for two
adjacent vertices xi and xj let xixj be the (directed) edge from xi to xj . For two such adjacent
vertices, write sij ∈ G for the class of the loop γi ∗ xixj ∗ γ−1

j .
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(a) (b)

Figure 1. (a) Dual cell blocks in a simplex σ = 〈vi0 , vi1 , vi2〉. (b) A triangulation of T2 with the
dual cell structure highlighted.

Let F be the (finite) set {sij}. For example, if M = T2 so that G = Z2 = 〈α, β : [α, β] = 1〉,
then we have F = {1, α±1, β±1, (αβ)±1} for the triangulation and tree pictured in Figure 3.

Definition 3.1. For a vertex xik
in a 2-simplex σ = 〈xi0 , xi1 , xi2〉 of Λ, define the dual

cell block to xik
,

Uσ
ik

:=

{
2∑

l=0

tlxil
: tl � 0,

2∑
l=0

tl = 1 and tik
� tl for all l

}
.

Define the dual cell to the vertex xi ∈ Λ(0) by

Ui =
⋃

{Uσ
i : xi ∈ σ}.

Let Uσ
ij = Uσ

i ∩ Uσ
j etc. (see Figure 1).

Since p : M̃ →M is a covering space of M , we may fix an open cover of M such that for
every element V of this cover, p−1(V ) is a disjoint union of open subsets of M̃ , each of which is
mapped homeomorphically onto V by p. We require that Λ be fine enough so that every dual
cell Ui is contained in some element of this cover.

Lemma 3.2. The Mishchenko line bundle M̃ ×G �1(G) →M is isomorphic to the bundle
E obtained from the disjoint union

⊔
Ui × �1(G) by identifying (x, a) with (x, sija) whenever

x ∈ Ui ∩ Uj .

Proof. Lift x0 to a vertex x̃0 in M̃ . By the unique-path-lifting property, every path γi lifts
(uniquely) to a path γ̃i from x̃0 to a lift x̃i of xi. In this way, lift T to a tree T̃ in M̃ . Each Ui

also lifts to a dual cell to x̃i, denoted by Ũi, which p maps homeomorphically onto Ui.
We first describe the cocycle (transition functions) for the Mishchenko line bundle. Identify

the fundamental group G of M with the group of deck transformations of M̃ ; see, for
example, [8, Proposition 1.39]. Use this to write p−1(Ui) as the disjoint union

⊔{sŨi : s ∈ G}.
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Consider the isomorphism Φi : p−1(Ui) ×G �1(G) → Ui × �1(G) described by the following
diagram:

If Uij := Ui ∩ Uj �= ∅, then we obtain the cocycle φij : Uij → Aut(�1(G)):

Uij × �1(G)
Φ−1

j−→ p−1(Uij) ×G �1(G) Φi−→ Uij × �1(G),
(x, a) �−→ (x, φij(x)a).

Observe that M̃ ×G �1(G) is isomorphic to the bundle obtained from the disjoint union
⊔
Ui ×

�1(G) by identifying (x, a) with (x, φij(x)a) whenever x ∈ Uij . We only need to prove that φij

is constantly equal to sij .
Let x ∈ Uij and let x̃ ∈ Ũj be a lift of x. Then Φj([x̃, a]) = (x, a). Because p(x̃) ∈ Uij there

is a (unique) s ∈ G such that x̃ ∈ sŨi ∩ Ũj �= ∅. Thus, Φi([x̃, a]) = (x, s−1a). Now, the path
sγ̃i ∗ sx̃i x̃j ∗ γ̃−1

j starts at sx̃0 and ends at x̃0. Its projection in M is the loop defining sij , so
s−1 = sij . Thus, φij(x) = sij .

3.2. The push-forward of the line bundle

We will need an open cover of M , so we dilate the dual cells Ui to obtain one. Let 0 < δ < 1
2

and define V σ
i to be the δ-neighborhood of Uσ

i intersected with σ. As before, set Vi =
⋃

σ V
σ
i .

Let {χi} be a partition of unity subordinate to {Vi}.
By Lemma 3.2, the class of the Mishchenko line bundle inK0(C(M) ⊗ �1(G)), denoted earlier

by �, corresponds to the class of the projection

e :=
∑
i,j

eij ⊗ χ
1/2
i χ

1/2
j ⊗ sij ∈MN (C) ⊗ C(M) ⊗ �1(G),

where {eij} are the canonical matrix units of MN (C) and N is the number of vertices in Λ.
We may fix a pair of idempotents q0 and q1 in some matrix algebra over �1(G) satisfying

[q0] − [q1] = μ[M ] ∈ K0(�1(G)). Let ω > 0 be given by Theorem 2.2. (We may assume ω < 1
4 .)

Fix 0 < ε < ω and an (F , ε)-representation π : G→ U(A). We recall the following notation
from Section 1.

Notation 3.3. For an (F , ε)-representation π : G→ U(A) as above, let

�π := (idC(M) ⊗π)�(e).

4. Hilbert-module bundles and quasi-representations

As mentioned in Section 1, in [2] a quasi-representation (with scalar values) of the fundamental
group of a manifold is associated to an ‘almost-flat’ bundle over the manifold. In this section,
we instead define a canonical bundle Eπ over M associated with quasi-representation π. Its
class in K0(C(M) ⊗A) will be the class �π of the push-forward of the Mishchenko line bundle
by π. Our construction will be explicit enough so that we can use Chern–Weil theory for such
bundles to analyze chτ (�π); see [15].

Recall that A is a C∗-algebra with trace τ .
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Definition 4.1. Let X be a locally compact Hausdorff space. A Hilbert A-module bundle
W over X is a topological space W with a projection W → X such that the fiber over each
point has the structure of a Hilbert A-module V , and with local trivializations W |U ∼−→ U × V
which are fiberwise Hilbert A-module isomorphisms.

We should point out that the K0-group of the C∗-algebra C(M) ⊗A is isomorphic to the
Grothendieck group of isomorphism classes of finitely generated projective Hilbert A-module
bundles over M . We identify the two groups.

4.1. Constructing bundles

We adapt a construction found in [13].
First we define a family of maps {uij : Uij → GL(A)} satisfying

uji(x) = u−1
ij (x), x ∈ Uij ,

uik(x) = uij(x)ujk(x), x ∈ Uijk.

These maps will be then extended to a cocycle defined on the collection {Vij}.
Following [13], we will find it convenient to fix a partial order o on the vertices of Λ such

that the vertices of each simplex form a totally ordered subset. We then call Λ a locally ordered
simplicial complex. One may always assume that such an order exists by passing to the first
barycentric subdivision of Λ: if σ̂1 and σ̂2 are the barycenters of simplices σ1 and σ2 of Λ, then
define σ̂1 < σ̂2 if σ1 is a face of σ2.

Consider a simplex σ = 〈xi0 , xi1 , xi2〉 (with vertices written in increasing o-order). Observe
that in this case Uσ

i0
∩ Uσ

i2
= Uσ

i0i2
may be described using a single parameter t1:

Uσ
i0i2 =

{
2∑

l=0

tlxil
: t0 = t2 =

1 − t1
2

: 0 � t1 � 1
3

}
.

Define

uσ
i0i1 = the constant function on Uσ

i0i1 equal to π(si0i1),
uσ

i1i2 = the constant function on Uσ
i1i2 equal to π(si1i2),

uσ
i0i2(t1) = (1 − 3t1)π(si0i2) + 3t1π(si0i1)π(si1i2), 0 � t1 � 1

3 .

Define uσ
i2i0

etc. to be the pointwise inverse of uσ
i0i2

. For fixed i and j, the maps uσ
ij : Uσ

ij →
GL(A) define a map uij : Uij → GL(A). Indeed, if xixj is a common edge of two simplices σ
and σ′, then Uσ

ij ∩ Uσ′
ij is the barycenter of 〈xi, xj〉, where by definition both uσ

ij and uσ′
ij take

the value π(sij). By construction, the family {uij} has the desired properties.

4.1.1. Recall the sets Vi etc. from Subsection 3.2. To define the smooth transition function
vσ

i0i2
: V σ

i0i2
→ GL(A) that will replace uσ

i0i2
, let us assume for simplicity that the simplex σ is

the triangle with vertices vi0 = (− 1
2 , 0), vi1 = (0, 1) and vi2 = (1

2 , 0). (It may be helpful to
consider Figure 1(a).)

Define vσ
i0i2

as follows:

vσ
i0i2(x, y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

π(si0i1)π(si1i2),
1
3
− δ � y � 1

3
+ δ,(

1 − y

1/3 − δ

)
π(si0i2)

+
y

1/3 − δ
π(si0i1)π(si1i2), 0 � y � 1

3
− δ
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(so vσ
i0i2

is constant along the horizontal segments in Vi0i2). The remaining two transition
functions remain constant:

vσ
i0i1 = π(si0i1),
vσ

i1i2 = π(si1i2).

Again, for fixed i and j the maps vσ
ij : V σ

ij → GL(A) define a map vij : Vij → GL(A). Since vσ
i0i2

is constant and equal to π(si0i1)π(si1i2) in Vi0 ∩ Vi2 ∩ Vi2 , we indeed obtain a family {vij} of
transition functions.

Definition 4.2. The Hilbert A-module bundle Eπ is constructed from the disjoint union⊔
Vi ×A by identifying (x, a) with (x, vij(x)a) for x in Vij .

Proposition 4.3. The class of Eπ in K0(C(M) ⊗A) coincides with �π, the class of the
push-forward of e by idC(M) ⊗π (see Subsection 3.2).

Proof. The bundle Eπ is a quotient of
⊔
Vi ×A and from its definition it is clear that for

each i the quotient map is injective on Vi ×A. The restriction of the quotient map to Vi ×A
has an inverse, call it ψi, and ψi is a trivialization of Eπ|Vi

. Recalling that N is the number of
vertices in Λ (which is the same as the number of sets Vi in the cover), we define an isometric
embedding

θ : Eπ →M ×AN ,

[x, a] �→ (χ1/2
i (x)ψi([x, a]))N−1

i=0 .

Let eπ : M →MN (A) be the function

x �→
∑
i,j

eij ⊗ χ
1/2
i (x)χ1/2

j (x)vij(x).

Because ψiψ
−1
j (x, a) = (x, vij(x)a) for x ∈ Vij , it is easy to check that eπ(x) is the matrix

representing the orthogonal projection of AN onto θ(Eπ|x). In this way, we see that [Eπ] =
[eπ] ∈ K0(C(M) ⊗A).

Since F = {sij} and π is an (F , ε)-representation, it follows immediately that the transition
functions vij satisfy ‖vij(x) − π(sij)‖ < ε for all x ∈ Vij . Thus,

‖eπ − (1 ⊗ π)(e)‖ =

∥∥∥∥∥∥eπ −
∑
i,j

eij ⊗ χ
1/2
i χ

1/2
j π(sij)

∥∥∥∥∥∥ < ε,

as well. Recall that �π is obtained by perturbing (1 ⊗ π)(e) to a projection using functional
calculus and then taking its K0-class (see Subsection 2.1). The previous estimate shows that
this class must be [eπ].

Remark 4.4. The previous proposition shows that the class [Eπ] is independent of the
order o on the vertices of Λ0.

4.2. Connections arising from transition functions

We now define a canonical connection on Eπ associated with the family {vij} of transition
functions. This connection will be used in the proof of Theorem 5.2.
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4.2.1. The smooth sections Γ(Eπ) of Eπ may be identified with{
(si) ∈

⊕
i

Ω0(Vi, Eπ) : sj = vjisi on Vij

}
.

Let ∇i : Ω0(Vi, A) → Ω1(Vi, A) be given by

∇i(s) = ds+ ωis ∀s ∈ Ω0(Vi, A),

where

ωi =
∑

k

χkv
−1
ki dvki.

Note that vki ∈ Ω0(Vik,GL(A)) and so ωi may be regarded as an A-valued 1-form on Vi, which
can be multiplied fiberwise by the values of the section s.

We define a connection ∇ on Eπ by

∇(si) = (∇isi).

That ∇ takes values in Ω1(M,Eπ) follows from a straightforward computation verifying

∇jsj = vji∇isi.

It is just as straightforward to verify that ∇ is A-linear and satisfies the Leibniz rule.

4.2.2. Define Ωi = dωi + ωi ∧ ωi ∈ Ω2(Vi, A). One checks that Ωi = v−1
ji Ωjvji and so (Ωi)

defines an element Ω of Ω2(M,EndA(Eπ)). This is nothing but the curvature of ∇ (see [15,
Proposition 3.8]).

5. The Chern character

In this section, we prove our main technical result, Theorem 2.3. It computes the trace of the
push-forward of μ[M ] in terms of the de la Harpe–Skandalis determinant by using that the
cocycle conditions almost hold for the elements π(sij).

5.1. The de la Harpe–Skandalis determinant

The de la Harpe–Skandalis determinant [7] appears in our formula below. Let us recall the
definition. Write GL∞(A) for the (algebraic) inductive limit of (GLn(A))n�1 with standard
inclusions. For a piecewise smooth path ξ : [t1, t2] → GL∞(A), define

Δ̃τ (ξ) =
1

2πi
τ

(∫ t2

t1

ξ′(t)ξ(t)−1 dt

)
=

1
2πi

∫ t2

t1

τ(ξ′(t)ξ(t)−1) dt.

We will make use of some of the properties of Δ̃τ stated below.

Lemma 5.1 (cf. [7, Lemme 1]). (i) Let ξ1, ξ2 : [t1, t2] → GL0
∞(A) be two paths and ξ be

their pointwise product. Then Δ̃τ (ξ) = Δ̃τ (ξ1) + Δ̃τ (ξ2).

(ii) Let ξ : [t1, t2] → GL0
∞(A) be a path with ‖ξ(t) − 1‖ < 1 for all t. Then

2πi · Δ̃τ (ξ) = τ(log ξ(t2)) − τ(log ξ(t1)).

(iii) The integral Δ̃τ (ξ) is left invariant under a fixed-endpoint homotopy of ξ.
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5.2. The Chern character on K0(C(M) ⊗A)

Assume that τ is a trace on A. Then τ induces a map on Ω2(Vi,EndA(Eπ|Vi
)) and, by the trace

property, τ(Ωi) = τ(Ωj) on Vij . We obtain in this way a globally defined form τ(Ω) ∈ Ω2(M,C).
Since the fibers of our bundle are all equal to A, and our manifold is two-dimensional, the

definition of the Chern character associated with τ (from [15, Definition 4.1], but we have
included a normalization coefficient) reduces to

chτ (�π) = τ

(
exp

(
iΩ
2π

))
= τ

( ∞∑
k=0

iΩ/2π ∧ · · · ∧ iΩ/2π
k!

)

= τ

(
iΩ
2π

)
∈ Ω2(M,C). (5.1)

This is a closed form whose cohomology class does not depend on the choice of the connection
∇ (see [15, Lemma 4.2]).

A few remarks are in order before stating the next result.
Because Λ is a locally ordered simplicial complex (recall the partial order o from

Subsection 4.1), every 2-simplex σ may be written uniquely as 〈xi, xj , xk〉 with the vertices
written in increasing o-order. Whenever we write a simplex in this way, it is implicit that the
vertices are written in increasing o-order. We may write σ for σ along with this order.

The orientation [M ] induces an orientation of the boundary of the dual cell Ui and in
particular of the segment Uσ

ik. Let s(σ) = 0 if the initial endpoint of Uσ
ik under this orientation

is the barycenter of σ, and let s(σ) = 1 otherwise.

Theorem 5.2. For a simplex σ = 〈xi, xj , xk〉 of Λ, let ξσ be the linear path

ξσ(t) = (1 − t)π(sik) + tπ(sij)π(sjk), t ∈ [0, 1]

in GL(A). Then

τ(π�(μ[M ])) =
∑

σ

(−1)s(σ)Δ̃τ (ξσ),

where the sum ranges over all 2-simplices σ of Λ.

Proof. The path ξσ lies entirely in GL(A) because ‖π(sik) − π(sij)π(sjk)‖ < ε. It follows
from Theorem 2.2 and equation (5.1) that

τ(π�(μ[M ])) = 〈chτ (�π), [M ]〉 = − 1
2πi

∫
M

τ(Ω).

We compute this integral.
First observe that by the trace property of τ, we have τ(ωl ∧ ωl) = 0 for every l. Thus,∫

M

τ(Ω) =
∑

l

∫
Ul

τ(Ωl) =
∑

l

∫
Ul

τ(dωl + ωl ∧ ωl)

=
∑

l

∫
Ul

τ(dωl) =
∑

l

∫
Ul

dτ(ωl) =
∑

l

∫
∂Ul

τ(ωl),

where we used Green’s theorem for the last equality and ∂Ul has the orientation induced from
[M ]. Recall that Ul is the dual cell to vl. Write this as a sum over the 2-simplices of Λ:∑

l

∫
∂Ul

τ(ωl) =
∑

l

∑
σ

∫
(∂Ul)∩σ

τ(ωl) =
∑

σ

∑
l

∫
(∂Ul)∩σ

τ(ωl).

Exactly three dual cells meet a 2-simplex σ = 〈xi, xj , xk〉: Ui, Uj ; and Uk, so for each simplex
there are three integrals we need to account for. Let us treat each of these in turn.
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The definition of the connection forms (see Paragraph 4.2.1) implies that ωi restricted to σ
equals

ωi = χkv
−1
ki dvki + χjv

−1
ji dvji = χkv

−1
ki dvki,

where the last equality follows from the fact that vji is constant. Now, (∂Ui) ∩ σ is the union
of the two segments Uσ

ij and Uσ
ik. Observe that vik is constantly equal to π(sij)π(sjk) on

Vi ∩ Vj ∩ Vk (see Paragraph 4.1.1). Since Uσ
ij ∩ Vk ⊆ Vi ∩ Vj ∩ Vk and χk vanishes outside Vk,

we get ∫
(∂Ui)∩σ

τ(ωi) =
∫
Uσ

ij

τ(χkv
−1
ki dvki) +

∫
Uσ

ik

τ(χkv
−1
ki dvki) =

∫
Uσ

ik

τ(χkv
−1
ki dvki).

The second integral,
∫
(∂Uj)∩σ

τ(ωj), vanishes. This is because vij and vjk are constant and
so

ωj = χiv
−1
ij dvij + χkv

−1
kj dvkj = 0.

The third integral may be calculated just as the first, with the roles of i and k reversed. We
obtain ∫

(∂Uk)∩σ

τ(ωk) =
∫
Uσ

ki

τ(χiv
−1
ik dvik).

Combining the three integrals, we get

∑
σ

∑
l

∫
(∂Ul)∩σ

τ(ωl) =
∑

σ

(∫
Uσ

ik

τ(χkv
−1
ki dvki) +

∫
Uσ

ki

τ(χiv
−1
ik dvik)

)

=
∑

σ

∫
Uσ

ik

τ(χkv
−1
ki dvki − χiv

−1
ik dvik),

where the last equality is due to the opposite orientations of the segment Uσ
ik in the preceding

two integrals.
It follows from vikvki = 1 that dvikv

−1
ik + v−1

ki dvki = 0. Therefore, the last line in the equation
above is equal to∑

σ

∫
Uσ

ik

τ(χkv
−1
ki dvki + χiv

−1
ki dvki) =

∑
σ

∫
Uσ

ik

τ(v−1
ki dvki) = −

∑
σ

∫
Uσ

ik

τ(v−1
ik dvik).

To arrive at the conclusion of the theorem, consider the restriction of vik to the segment Uσ
ik.

This is the segment between the barycenter of σ, where vik takes the value π(sij)π(sjk), and
the barycenter of 〈xi, xk〉, where vik takes the value π(sik) (see Paragraph 4.1.1). Then∫

Uσ
ik

τ(v−1
ki dvki) = (−1)s(σ)2πi · Δ̃τ (ξσ).

This concludes the proof.

6. Oriented surfaces

For the proof of Theorem 2.3, we will use a convenient triangulation Λg of the orientable genus
g surface Σg that we proceed to describe. The covering space of Σg is the open disk and we
may take as a fundamental domain a regular 4g-gon, call it Σ̃g, drawn in the hyperbolic plane.

Figure 2 depicts a procedure to obtain Σ̃2 by gluing together two copies of Σ̃1. (We will give
a more explicit description of Σ̃g in a moment.) It also illustrates the labeling we use for the
(oriented) sides of Σ̃1 and Σ̃2. To obtain Σ1, for example, we identify the side a with ∗a and
the side b with ∗b. To obtain the double torus Σ2, we identify ak with ∗ak and bk with ∗bk for
k ∈ {1, 2}.
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Figure 2. (a) The fundamental domain Σ̃1 (with a hole). (b) The fundamental domain Σ̃2.

6.1. Triangulations

Let us first define a triangulation Λ̃g of the fundamental domain Σ̃g. We do this by
gluing g triangulated copies of Σ̃1 together. Figure 4 shows the triangulation for the kth
copy of Σ̃1 (with a hole); call it Λ̃k

1 . Ignore the labels on the edges and the highlighted
edges for now. The vertex labeling also indicates how to glue Λ̃k

1 to Λ̃k−1
1 and Λ̃k+1

1 , with
addition modulo g. Figure 4(b) illustrates the result of this gluing, the end result being Λ̃g

by definition.
The underlying space of Λ̃g is Σ̃g. Identifying all the vertices vk

i , as well as identifying
ak

i with ∗ak
i and bki with ∗bki , for each i ∈ {1, 2} and k ∈ {1, . . . , n}, yields a triangulation

Λg of Σg.

6.2. Surface groups

We identify the fundamental group Γg of Σg with the group of deck transformations of the
universal covering space of Σg. We give a more concrete description of this group now.

The fundamental domain Σ̃g is a regular 4g-gon. We write ak, bk, ∗ak and ∗bk, k ∈ {1, . . . , n}
for its (oriented) sides. The triangulation Λ̃g gives a subdivision of the side ak into the three
edges in the path (vk

0 , a
k
1 , a

k
2 , v

k
1 ) (with orientation given by the directed edge (ak

1 , a
k
2)). The

subdivision of the sides bk, ∗ak and ∗bk is similar; see Figure 4(a).
The group of deck transformations Γg is generated by the hyperbolic isometries αk and

βk, k ∈ {1, . . . , g} defined as follows: αk maps ∗ak to ak in such a way that, locally, the half-
plane bounded by ∗ak containing Σ̃g is mapped to the half-plane bounded by ak but opposite
Σ̃g. The transformation βk is defined analogously, mapping ∗bk to bk. We refer the reader to
[9, Chapter VII] for more details. When g = 1, for example, the transformations α1 and β1 are
just translations. See Figure 3, where we have omitted the sub- and superscripts corresponding
to k = 1, since g = 1.

For k ∈ {1, . . . , g}, let

κk =
k∏

j=1

[αk, βk],

and let κ0 = 1. We have that κg = 1.

6.3. Local orders and trees

We need Λg to be locally ordered, so we proceed to fix a partial order on the vertices of Λg

such that the vertices of every simplex form a totally ordered set. Let us define an order on the
vertices of Λ̃g that drops down to the order we need. On the kth copy Λ̃k

1 , the corresponding



QUASI-REPRESENTATIONS OF SURFACE GROUPS 515

Figure 3. The triangulation Λ̃1 of Σ̃1. Edges are labeled with the group element associated with
the loop they induce. The spanning tree T1 of Λ1 (heavier edges) is ‘rooted’ at v0.

order is indicated in Figure 4(a) by arrows on the edges, always pointing from a smaller vertex
to a larger one. It is defined as follows.

(1) For the ‘inner’ vertices, we go ‘counterclockwise’: for fixed k ∈ {1, . . . , g}, wk
i < wk

j if
i < j, except when k = g and j = 4 (in which case wg

4 = w1
0 and we already have w1

0 < wi
k).

(2) The ‘inner’ vertices are larger than the ‘outer’ ones: wk
i > vl

j , a
l
j , b

l
j , ∗al

j , ∗blj for all i, j,
k and l.

(3) For the ‘outer’ vertices, vk
i < al

j , b
l
j , ∗al

j , ∗blj for all i, j, k and l; for every k, ak
1 < ak

2 ,
∗ak

1 < ∗ak
2 , and similarly for the bkj .

Finally, we will need a spanning tree Tg of Λg, and a lift T̃g to the triangulation Λ̃g of the
fundamental domain Σ̃g. Again, we define T̃g first. It is obtained as the union of the edge
between w1

0 and v1
0 (including those two vertices) and trees in each copy Σk

1 . The tree in Σk
1

is depicted in Figure 4(a) by highlighted (heavier) edges. This drops to a spanning tree Tg of
Σg. We regard Tg as ‘rooted’ at the vertex v1

0 . (In the notation of Subsection 3.1, where the
vertices were labeled consecutively as x0, . . . , xN , we have that v1

0 = x0.)

7. Proof of the main result

This section contains the proof of Theorem 2.3. The proof is split into a number of lemmas.
To apply Theorem 5.2, we will first compute the group element sij corresponding to each

edge xixj of Λg, in the sense discussed in Subsection 3.1. Equivalently, we compute group
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Figure 4. (a) The triangulation we use for Σ̃k
1 , the kth copy of Σ̃1 (with a hole). Every edge

is labeled with the element of Γg corresponding to the loop it induces. (b) How the simplicial
complex Σ̃g is defined. The kth ‘wedge’ is pictured in (a).

elements corresponding to edges in the cover Λ̃g, keeping in mind that the lifts of any edge of
Λg will all correspond to the same group element.

A concise way of stating the result of these computations is to label each edge in Figure 4(a)
with the corresponding group element.

Lemma 7.1. The labels in Figure 4(a) are correct.

Proof. We carry out the computations in three separate claims.

Claim 1. An edge of the form ak
iw

k
j corresponds to α−1

k ∈ Γg. Similarly, an edge of the
form bkiw

k
j corresponds to β−1

k ∈ Γg.
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Consider ak
iw

k
j first. When we add this edge to the forest that is the union of all the lifts of

Tg (that is, translates of T̃g), we obtain a unique path P between v1
0 , our root vertex and some

translate sv1
0 , where s ∈ Γg. We regard P as directed in the direction of the edge ak

iw
k
j that we

started with, so it is a path from sv1
0 to v1

0 . It therefore drops down to a loop in Σg whose class
is s−1, the group element we want to compute (see [8, Proposition 1.39], for example). Now
note that because ∗ak

i belongs to T̃g, its translate αk(∗ak
i ) = ak

i belongs to the translate αkT̃g

of T̃g. Thus, P is a path between vk
0 and αkv

k
0 . The corresponding group element is therefore

α−1
k . An entirely similar argument applies to the edge bkiw

k
j .

Claim 2. Any edge between inner vertices (vertices of the form wk
i ) corresponds to 1 ∈ Γg.

The edges ak
1a

k
2 , bk1b

k
2 , ∗ak

1∗ak
2 and ∗bk1∗bk2 all correspond to 1 ∈ Γg.

We proceed as in the previous claim. Any edge between inner vertices is either in T̃g or
between two vertices that are in T̃g. The associated path we get is therefore from vk

0 to itself.
The same is true of the edges bk1b

k
2 and ∗ak

1∗ak
2 . It follows that the corresponding group element

is 1. Since ak
1a

k
2 and ∗ak

1∗ak
2 are both lifts of the same edge, they correspond to the same element.

Similarly, ∗bk1∗bk2 corresponds to 1.

Claim 3. An edge that is incident to vk
i and to a vertex z in the tree T̃g corresponds to

the element s ∈ Γg such that v1
0 = svk

i . (The edge is given the orientation induced by the order
on the vertices, as usual.) For k ∈ {1, . . . , g},

v1
0 = κk−1 · vk

0 ,

v1
0 = κk−1αkβkα

−1
k · vk

1 ,

v1
0 = κk−1αkβk · vk

2 ,

v1
0 = κk−1αk · vk

3 .

(Recall that κk is the product of commutators [α1, β1][α2, β2] · · · [αk, βk] for k ∈ {1, . . . , g}, and
that κ0 = 1.)

Observe that, because of how the order was defined, vk
i < z always holds. When we add the

edge vk
i z to the tree T̃g, we obtain a path from vk

i to v1
0 . (See Figure 4, but keep in mind that

in the case k = 1 the edge v1
0w

1
0 belongs to the tree.) It follows that the corresponding element

is the s ∈ Γg such that v1
0 = svk

i .
To compute these elements s, we argue by induction on k. Assume k = 1. We observe that

v1
4

β−1
1�−→ v1

1

α−1
1�−→ v1

2
β1�−→ v1

3
α1�−→ v1

0 .

Indeed, from the definition (see Subsection 6.2) we see that the transformation α1 takes v1
3

to v1
0 ; think of the side ∗a1 = (v1

3 , ∗a1
1, ∗a1

2, v
1
2) being mapped to the side a1 = (v1

0 , a
1
1, a

1
2, v

1
1):

the vertex ∗a1
1 is mapped to a1

1 and so v1
3 is mapped to v1

0 . We also see from Subsection 6.2
and Figure 4(a) that β1 maps v1

2 to v1
3 , and so v1

0 = α1β1 · v1
2 . A similar argument shows

v1
0 = α1β1α

−1
1 · v1

1 and that

v1
0 = α1β1α

−1
1 β−1

1 · v1
4 = κ1 · v1

4 .

Assuming that the computations hold for k − 1, we prove them for k. In fact, most of the
work is already done. The same argument we used for the case k = 1 shows

vk
4

β−1
k�−→ vk

1

α−1
k�−→ vk

2
βk�−→ vk

3
αk�−→ vk

0 .
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The inductive hypothesis implies

κk−1v
k
0 = κk−1v

k−1
4 = v1

0 .

This ends the proof of the claim.
These three claims prove that the labels in Figure 4(a) are correct.
(The labels in Figure 3 also follow from these calculations, but may be obtained by more

straightforward arguments because the generators of Γ1
∼= Z2 may be regarded as shifts in the

plane.)

Notation 7.2. For k ∈ {1, . . . , g}, let

Fk = {α−1
k , β−1

k , κk−1, κk−1αk, κk−1αkβk, κk−1αkβkα
−1
k }.

Note that the set F = {sij} considered in Subsection 3.1 is equal to the union F1 ∪ F−1
1 ∪

· · · ∪ Fg ∪ F−1
g by Lemma 7.1.

7.1. Choosing quasi-representations

We want to apply Theorem 5.2 using the labels obtained in Lemma 7.1 and some convenient
choice of a quasi-representation of Γg in U(A). We begin by proving a slightly stronger version
of Proposition 2.5, which guarantees the existence of quasi-representations (under certain
conditions). Let us set up some notation first.

For certain unitaries u1, v1, . . . , ug, vg in A, we will need to produce a quasi-representation
π satisfying

π(αk) = uk and π(βk) = vk ∀k ∈ {1, . . . , g}. (7.1)

Write F2g = 〈α̂1, β̂1, . . . , α̂g, β̂g〉 for the free group on 2g generators. Let q : F2g → Γg and
π̂ : F2g → U(A) be the homomorphisms given by

q(α̂k) = αk, q(β̂k) = βk

and
π̂(α̂k) = uk, π̂(β̂k) = vk,

for all k ∈ {1, . . . , g}. Note that the kernel of q is the normal subgroup generated by

κ̂g :=
g∏

k=1

[α̂k, β̂k],

and therefore consists of products of elements of the form γ̂κ̂±1
g γ̂−1, where γ̂ ∈ F2g.

Choose a set-theoretic section s : Γg → F2g of q such that s(1) = 1,

s(αk) = α̂k and s(βk) = β̂k ∀k ∈ {1, . . . , g}.

Lemma 7.3. For all ε > 0, there exists δ(ε) > 0 such that if A is a unital C∗-algebra and
u1, v1, . . . , ug, vg ∈ U(A) satisfy ∥∥∥∥∥

g∏
i=1

[ui, vi] − 1

∥∥∥∥∥ < δ(ε), (7.2)

then π = π̂ ◦ s (with s as constructed above) is an (F , ε)-representation satisfying
equation (7.1).

This lemma obviously implies Proposition 2.5.
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Proof. We only need to check that π is (F , ε)-multiplicative. Assume that equation (7.2)
holds for some δ in place of δ(ε).

Because π̂ is a homomorphism, for all γ, γ′ ∈ Γg we have

‖π(γ)π(γ′) − π(γγ′)‖ = ‖π(γ)π(γ′)π(γγ′)∗ − 1‖ = ‖π̂(s(γ)s(γ′)s(γγ′)−1) − 1‖.
Now, s(γ)s(γ′)s(γγ′)−1 is in the kernel of q and is therefore a product of the form

m∏
i=1

γ̂iκ̂
εi
g γ̂

−1
i ,

where m depends on γ and γ′ and εi ∈ {1,−1}. Thus,

‖π(γ)π(γ′) − π(γγ′)‖ =

∥∥∥∥∥π̂
(

m∏
i=1

γ̂iκ̂
εi
g γ̂

−1
i

)
− 1

∥∥∥∥∥
�

m∑
i=1

‖π̂(γ̂i)π̂(κ̂g)εi π̂(γ̂i)∗ − 1‖

� m

∥∥∥∥∥
g∏

i=1

[ui, vi] − 1

∥∥∥∥∥ < mδ.

Since F is a finite set, there is a positive integer M such that if γ, γ′ ∈ F , then
s(γ)s(γ′)s(γγ′)−1 is a product of at most M elements of the form γ̂iκ̂

εi
g γ̂

−1
i as above. It follows

that π is an (F ,Mδ)-representation. Choose δ(ε) = ε/M .

Notation 7.4. Recall the set Fk defined in Notation 7.2. Let s0 : Γg → F2g be a
set-theoretic section of q such that

s0(α±1
k ) = α̂±1

k , s0(β±1
k ) = β̂±1

k , s0(κk−1) = κ̂k−1,

s0(κk−1αk) = κ̂k−1α̂k, s0(κk−1αkβk) = κ̂k−1α̂kβ̂k,

for all k ∈ {1, . . . , g}, and

s0(κk−1αkβkα
−1
k ) = κ̂k−1α̂kβ̂kα̂

−1
k

for all k ∈ {1, . . . , g − 1}. That such a section exists follows from the fact that all the words in
the list F1 ∪ · · · ∪ Fg ∪ {α1, β1, . . . , αg, βg} are distinct, with two exceptions: α1 = κ0α1 ∈ F1

appears twice, as does βg = κg−1αgβgα
−1
g ∈ Fg.

Define π0 = π̂ ◦ s0 : Γg → U(A).

Lemma 7.5. If 〈xi, xj , xk〉 is any 2-simplex in Λg different from 〈vg
1 , a

g
2, w

g
1〉, then π0(sik) =

π0(sij)π0(sjk).
If 〈xi, xj , xk〉 = 〈vg

1 , a
g
2, w

g
1〉, then π0(sik) = vg and

π0(sij)π0(sjk) =

(
g∏

i=1

[ui, vi]

)
vg.

Proof. The definition of s0 implies that the image under s0 of any ‘word’ in the list Fk is
the word obtained by replacing α±1

k by α̂±1
k and β±1

k by β̂±1
k , with one exception: the image of

κg−1αgβgα
−1
g = βg under s0 is β̂g.
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This observation along with inspection of Figure 4(a) shows s0(sik) = s0(sij)s0(sjk) for every
2-simplex in Λg different from 〈vg

1 , a
g
2, w

g
1〉. For instance, let l ∈ {1, . . . , g} and consider the

simplex
〈vl

0, a
l
1, w

l
0〉 = 〈xi, xj , xk〉.

The corresponding group elements are

sij = κl−1αl,

sjk = α−1
l and

sik = κl−1.

Then
s0(sik) = κ̂l−1 = κ̂l−1α̂l · α̂−1

l = s0(κl−1αl) · s0(α−1
l ) = s0(sij) · s0(sjk).

The computations in all other 2-simplices apart from 〈vg
1 , a

g
2, w

g
1〉 are very similar. For this

exceptional simplex, we get

s0(sik) = s0(κg−1αgβgα
−1
g ) = s0(βg) = β̂g,

but
s0(sij)s0(sjk) = s0(κg−1αgβg)s0(α−1

g ) = κ̂g−1α̂gβ̂gα̂
−1
g = κ̂gβ̂g.

Since π0 = π̂ ◦ s0 and π̂ is a homomorphism, the lemma follows.

Recall that we used Theorem 2.2 to define ω > 0 in Subsection 3.2.

Lemma 7.6. If 0 < ε < ω and equation (7.2) holds (so that π0 is an (F , ε)-representation),
then

τ (π0�(μ[Σg])) =
1

2πi
τ

(
log

(
g∏

i=1

[ui, vi]

))
.

Proof. We apply Theorem 5.2. For each simplex 〈xi, xj , xk〉, we compute Δ̃τ (ξ) where ξσ
is the path

ξσ(t) = (1 − t)π(sik) + tπ(sij)π(sjk), t ∈ [0, 1].

Observe that the value of Δ̃τ on a constant path is 0. Lemma 7.5 implies that there is only
one 2-simplex σ such that ξσ is not constant: σ0 = 〈vg

1 , a
g
2, w

g
1〉. By Lemma 7.5, it yields the

linear path ξσ0 from vg to (
g∏

i=1

[ui, vi]

)
vg.

Using Lemma 5.1, we obtain

Δ̃τ (ξσ0) =
1

2πi
τ

(
log

(
g∏

i=1

[ui, vi]

))
.

Finally, Theorem 5.2 implies

τ(π0�(μ[Σg])) = (−1)s(σ0)
1

2πi
τ

(
log

(
g∏

i=1

[ui, vi]

))
,

where the sign (−1)s(σ0) depends on the orientation [Σg]. The standard orientation on Σg gives
s(σ0) = 1.



QUASI-REPRESENTATIONS OF SURFACE GROUPS 521

By putting these lemmas together, we can prove Theorem 2.3.

Proof of Theorem 2.3. Recall that the statement of the theorem fixes a positive integer g
and idempotents q0 and q1 in some matrix algebra over �1(Γg) such that μ[Σg] = [q0] − [q1] ∈
K0(�1(Γg)).

Let F0 be the finite set {sij} defined in Subsection 3.1 and described explicitly in
Notation 7.2. Theorem 2.2 provides an ω > 0 so small that if π : Γg → U(A) is an (F0, ω)-
representation, then π�(μ[Σg]) := π�(q0) − π�(q1) is defined and

τ(π�(μ[Σg])) = 〈chτ (�π), [Σg]〉.
By setting ui := π(αi) and vi := π(βi) for all i ∈ {1, . . . , g}, we see that such a quasi-

representation π may be used to define a quasi-representation π0 as in Subsection 7.4. The
more multiplicative π is on F0, the smaller is the quantity∥∥∥∥∥

g∏
i=1

[ui, vi] − 1

∥∥∥∥∥ .
Lemma 7.3 shows that by making this quantity smaller we can make π0 more multiplicative on
F0. Therefore, because π and π0 agree on the generators of Γg, there exists an 0 < ε0 < ω so
small that if π is an (F0, ε0)-representation, then π� and π0 � agree on {q0, q1} ⊂ K0(�1(Γg)).

Finally,

τ(π�(μ[Σg])) = τ(π0�(μ[Σg])) =
1

2πi
τ

(
log

(
g∏

i=1

[ui, vi]

))
,

by Lemma 7.6.
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