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Abstract

We examine the question of quasidiagonality for C*-algebras of discrete amenable groups from a variety
of angles. We give a quantitative version of Rosenberg’s theorem via paradoxical decompositions and a
characterization of quasidiagonality for group C*-algebras in terms of embeddability of the groups. We
consider several notable examples of groups, such as topological full groups associated with Cantor minimal
systems and Abels’ celebrated example of a finitely presented solvable group that is not residually finite,
and show that they have quasidiagonal C*-algebras. Finally, we study strong quasidiagonality for group
C*-algebras, exhibiting classes of amenable groups with and without strongly quasidiagonal C*-algebras.
© 2013 Elsevier Inc. All rights reserved.
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1. Introduction

In [23] Lance provided a C*-algebraic characterization of amenability for discrete groups by
proving that a discrete group Γ is amenable if and only if its reduced C*-algebra, C∗

r (Γ ) is
nuclear. Later Rosenberg showed [18] that if C∗

r (Γ ) is quasidiagonal (see Definition 1.4), then
Γ is amenable, a result which has absolutely no analog for general C*-algebras (see [12]). The
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converse to Rosenberg’s theorem remains open, namely: if Γ is a discrete, amenable group, is
C∗

r (Γ ) quasidiagonal [31]?
The question of quasidiagonality for amenable groups is tantalizing for a number of rea-

sons. First, quasidiagonality displays certain “topological” properties, such as homotopy invari-
ance [30]. On the other hand, one might describe amenability as a “measure theoretic” property,
as one can detect amenability of Γ in the von Neumann algebras it generates. Hence an affirma-
tive answer would provide a nice topological characterization of amenability to complement its
measure theoretic description. Second, this question is a critical test case for a number of other
open questions. Indeed, it is not known if every separable, nuclear and stably finite C*-algebra is
quasidiagonal (a question with important implications for the classification program) and, much
more generally, if every stably finite C*-algebra is an MF algebra. Thus an answer to the above
question concerning groups will either provide a chain of counterexamples or some evidence to
the validity of the more general conjectures.

There are some known converses to Rosenberg’s theorem. Recall that a group Γ is maxi-
mally almost periodic (MAP) if it embeds into a compact group. Because the C*-algebra of
an amenable MAP group is residually finite dimensional [3], it follows that the C*-algebra of an
amenable group that is the union of residually finite groups must be quasidiagonal. We generalize
this result in Section 2.6.

Our main results are the following. First, if Γ is not amenable, then the modulus of quasidi-
agonality of C∗

r (Γ ) is controlled by the number of pieces in a paradoxical decomposition of Γ

(Theorem 2.4). Second, if Γ is amenable, then C∗(Γ ) is quasidiagonal if and only if Γ em-
beds in the unitary group of

∏∞
n=1 Mn(C)/

∑∞
n=1 Mn(C) (Theorem 2.8). We expand this class

of groups beyond the class of LEF groups of [29]. Third, if Γ and Λ are amenable groups such
that Γ is non-torsion and Λ has a finite dimensional representation other than the trivial one,
then C∗(Λ � Γ ) has a non-finite quotient and therefore cannot be strongly quasidiagonal (Theo-
rem 3.4).

1.1. Organization of the paper

In Section 2.1 we revisit Rosenberg’s previously mentioned result. His result implies that the
modulus of quasidiagonality [28] does not vanish for some finite subset of a non-amenable group.
The modulus of quasidiagonality measures how badly a C*-algebra violates quasidiagonality. We
estimate this number and a closely related one using paradoxical decompositions, and give some
calculations for free groups.

In Section 2.6 we consider an approximate version of MAP for groups that characterizes
quasidiagonality for discrete amenable groups. We call groups with this property MF due to their
connection with Blackadar and Kirchberg’s MF algebras [5]. We then show that the groups that
are locally embeddable into finite groups in the sense of Vershik and Gordon [29] (so-called LEF
groups) are MF groups. Kerr had already proved that the C*-algebra of an amenable LEF group
is quasidiagonal [21].

In Section 2.14, we use our characterization of quasidiagonality for amenable groups to give
examples of solvable groups that are not LEF but have quasidiagonal C*-algebras. These groups
are well-known examples due to Abels of finitely presented solvable groups that are not residu-
ally finite.

Finally, in Section 3 we discuss groups and strong quasidiagonality (see Definition 1.4). The-
orem 3.4 provides examples of group C*-algebras that are not strongly quasidiagonal, such as
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the C*-algebra of the lamplighter group. Section 3.8 exhibits some classes of nilpotent groups
that have strongly quasidiagonal C*-algebras.

1.2. Some consequences

Let X be the Cantor set and T a minimal homeomorphism of X. The topological full group
�T � is the group of all homeomorphisms of X that are locally equal to an integer power of T .
These groups are of interest for several reasons. For example, they are complete invariants for
flip conjugacy [16] and studying their properties as abstract groups led to the first examples of
infinite, simple, amenable groups that are finitely generated [17,20,26]. It follows from the results
of Section 2.6 that the C*-algebra of �T � must be quasidiagonal, since �T � is LEF by [17] and
amenable by [20]. Since the previously mentioned examples of infinite, simple, amenable and
finitely generated groups arise as commutator subgroups of topological full groups associated to
certain Cantor minimal systems, their C*-algebras are quasidiagonal as well.

On the other hand, an example of Abels provides an amenable group that is not LEF. We
observe that if a group is not LEF, then it cannot be a union of residually finite groups and one
cannot obtain quasidiagonality based on the result of Bekka mentioned above. However, we will
see in Section 2.14 that the C∗-algebra of Abels’ example has a quasidiagonal C*-algebra.

1.3. Definitions and notation

For completeness we record the definition of quasidiagonality. We refer the reader to the
survey article [8] for more information on quasidiagonality.

Definition 1.4. Let H be a separable Hilbert space. A (separable) set Ω ⊂ B(H) is quasidiago-
nal if there is an increasing sequence of (self-adjoint) projections (Pn) ⊂ K(H) with Pn → 1H

strongly and such that ‖[Pn,T ]‖ → 0 for every T ∈ Ω . (We write [S,T ] for the commutator
ST − T S.)

A separable C∗-algebra A is quasidiagonal if it has a faithful representation as a set of quasidi-
agonal operators. We say A is strongly quasidiagonal if σ(A) is a quasidiagonal set of operators
for every representation σ of A.

Theorem 1.5 (Voiculescu [30]). A separable C∗-algebra is quasidiagonal if and only if
there exists a sequence of contractive completely positive maps φn :A → Mkn(C) such that
‖φn(a)‖ → ‖a‖ and ‖φ(ab) − φ(a)φ(b)‖ → 0 for every a, b ∈ A.

In this paper we only consider discrete countable groups. The left regular representation of
a group Γ on B(�2Γ ) maps s ∈ Γ to the operator λs ∈ B(�2Γ ) which is left-translation by s.
For t ∈ Γ we write δt ∈ �2Γ for the characteristic function of the set {t}, so that λsδt = δst . The
reduced C*-algebra of Γ is the sub-C*-algebra C∗

r (Γ ) of B(�2Γ ) generated by λ(Γ ). We will
usually use e for the neutral element of a group Γ and Z(Γ ) for its center. We also write Z(A)

for the center of a C*-algebra A.
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2. Quasidiagonality and groups

2.1. A quantitative version of Rosenberg’s theorem

In [18] Rosenberg proved that if a group Γ is not amenable, then C∗
r (Γ ) is not quasidiagonal.

First we reformulate his result.

Definition 2.2. Let P be the set of non-zero finite-rank projections on �2Γ . Given a finite subset
F ⊂ Γ , set

CF := inf
P∈P

sup
x∈F

∥∥[λx,P ]∥∥.
It is clear that if C∗

r (Γ ) is quasidiagonal, then CF = 0 for every finite subset of Γ . Further-
more, if Γ is amenable, then λ has an approximately fixed vector, so CF = 0 for all finite subsets
as well. Rosenberg [18] has proved that if Γ is not amenable, then there is a finite subset F ⊆ Γ

such that CF > 0. In this section we give a quantitative version of this statement by estimating
(and in some cases calculating) CF using paradoxical decompositions of Γ .

We point out a very similar concept due to Pimsner, Popa and Voiculescu [28]. Recall that the
modulus of quasidiagonality of a set Ω ⊂ B(�2Γ ) is

qd(Ω) := lim inf
P∈P

sup
T ∈Ω

∥∥[T ,P ]∥∥,
where the order on projections is given by P � Q if PQ = P . Clearly CF � qd(λ(F )).

Recall that a group Γ is not amenable if and only if it admits a paradoxical decomposition:
that is, there exist pairwise disjoint subsets X1, . . . ,Xn,Y1, . . . , Ym ⊆ Γ and g1, . . . , gn,h1, . . . ,

hm ∈ Γ with g1 = h1 = e such that

Γ =
n⊔

i=1

giXi =
m⊔

j=1

hjYj =
(

n⊔
i=1

Xi

)


(

m⊔
j=1

Yj

)
. (1)

In this case we say that the paradoxical decomposition has n + m pieces. A non-amenable group
always has a paradoxical decomposition with at least four pieces. It is well known that a group
contains a copy of the free group on two generators if and only if one can find a paradoxical
decomposition with exactly 4 pieces. (We refer the reader to [32] for more information on para-
doxical decompositions.)

We will require an elementary lemma.

Lemma 2.3. Let H be a Hilbert space and let Tr denote the usual trace on B(H). Let X = X∗ ∈
B(H) be finite rank with Tr(X) = 0. Then for any Q ∈ B(H) with 0 � Q � 1 we have

∣∣Tr(QX)
∣∣� 1

2
rank(X)‖X‖.

Proof. If Y is a finite-rank operator, then Tr(Y ) � rank(Y )‖Y‖. Indeed, if E is a projection onto
the range of Y , then Tr(Y ) = Tr(EY) � Tr(E)‖Y‖ = rank(Y )‖Y‖.
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Write X = X+ − X− with X± � 0 and X+X− = 0. Then Tr(X±) � rank(X±)‖X±‖ �
rank(X±)‖X‖. Since rank(X) = rank(X+) + rank(X−) and Tr(X+) = Tr(X−) we obtain

Tr(X±) � 1

2
rank(X)‖X‖.

Now, since

Tr(QX) = Tr
(
Q1/2X+Q1/2)− Tr

(
Q1/2X−Q1/2)

and Tr(Q1/2X±Q1/2) � ‖Q‖Tr(X±) � Tr(X±), it follows that

−1

2
rank(X)‖X‖ � −Tr(X−) � Tr(QX) � Tr(X+) � 1

2
rank(X)‖X‖. �

Theorem 2.4. Suppose Γ is a non-amenable group with a paradoxical decomposition as in (1).
If F = {g1, . . . , gn,h1, . . . , hm}, then

CF � 1

n + m − 2
.

In particular, if Γ contains F2, then CF � 1/2 by choosing a minimal decomposition with four
pieces.

Since qd(λ(F )) � CF we have the same statement for the modulus of quasidiagonality of
λ(F ) instead of CF .

Proof. For each subset A ⊆ Γ , let PA be the projection onto span{δa : a ∈ A}. Let Tr denote the
usual semi-finite trace on B(�2Γ ) and let P ∈ B(�2Γ ) be a finite-rank projection of rank k � 1.
Suppose that ‖[λx,P ]‖ � ε for all x ∈ F . We prove ε � 1

n+m−2 .
Let 1 � i � n. By Lemma 2.3,

∣∣Tr
(
PgiXi

(P − λgi
Pλ

g−1
i

)
)∣∣� kε. (2)

Because λgi
PXi

λ
g−1
i

= PgiXi
, we have

Tr(PgiXi
P ) = Tr(PXi

P ) + Tr
(
PgiXi

(P − λgi
Pλ

g−1
i

)
)
.

From this and the estimate (2) it follows that for each 2 � i � n

Tr(PgiXi
P ) � Tr(PXi

P ) + kε. (3)

Let X =⋃Xi and Y =⋃Yj . By (3) and the fact that g1 = e we obtain
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k = Tr(P ) = Tr(PX1P) +
n∑

i=2

Tr(PgiXi
P )

� Tr(PX1P) +
n∑

i=2

Tr(PXi
P ) + (n − 1)kε

= Tr(PXP ) + (n − 1)kε. (4)

From a similar calculation involving the hi ’s and Yi ’s we see that

k � Tr(PY P ) + (m − 1)kε. (5)

Finally, add up (4) and (5) to obtain the conclusion. �
Now we calculate CF when Γ = F2. Let us fix some notation first. Let a, b be generators of

F2 and for each word w ∈ F2 let |w| denote the word length of w with respect to the generating
set {a, b, a−1, b−1}. For each n � 0 let Sn denote the sphere of radius n, that is,

Sn = {w ∈ F2: |w| = n
}
.

Note that S0 = {e}. For each x ∈ {a, b, a−1, b−1}, let Sx
n denote those elements of Sn whose first

letter is x. It is easy to see that

|Sn| = 4 · 3n−1 and
∣∣Sx

n

∣∣= 3n−1 for n � 1. (6)

It is well known that (see [32, Theorem 4.2]) there is a paradoxical decomposition of F2 as

F2 = X1 
 aX2 = Y1 
 bY2 = X1 
 X2 
 Y1 
 Y2. (7)

Theorem 2.5. For any ε > 0 and any n � 1 there is a projection P ∈ B(�2F2) of rank n such
that ‖[λa,P ]‖ < 1/2 + ε and ‖[λb,P ]‖ < 1/2 + ε. In particular,

C{a,b} = 1/2.

Proof. By Voiculescu’s Weyl–von Neumann type theorem, λ : F2 → B(�2F2) is approximately
unitarily equivalent to λ ⊗ 1n : F2 → B(�2F2 ⊗ Cn). On the other hand ‖[λx ⊗ 1n,P ⊗ 1n]‖ =
‖[λx,P ]‖ for P ∈ B(�2F2). It follows that it suffices to prove the first part of the statement for
n = 1.

Let P ∈ B(�2F2) be any projection and U ∈ B(�2F2) a unitary. Since in a C*-algebra
‖x∗x‖ = ‖x‖2, using the identity [U,P ] = (1 − P)UP − PU(1 − P) we see that ‖[U,P ]‖ =
max{‖PU(1 − P)‖,‖(1 − P)UP ‖}. Moreover, if P is rank 1 and ξ is a norm one vector in its
range, then

∥∥(1 − P)UP
∥∥2 = ∥∥(1 − P)UPξ

∥∥2 = ∥∥(1 − P)Uξ
∥∥2

= ‖Uξ‖2 − ‖PUξ‖2 = 1 − ∣∣〈U(ξ), ξ
〉∣∣2.
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From the above observations it now suffices to find, for each ε > 0, a norm 1 vector ξ ∈ �2F2
such that

∣∣〈λx(ξ), ξ
〉∣∣>

√
3

2
− ε for x ∈ {a, a−1, b, b−1}. (8)

Let n >
√

3/2ε. Define αi = (|Si |n)−1/2 and

ξ =
n∑

i=1

αi

(∑
x∈Si

δx

)
.

It is clear that ‖ξ‖ = 1. We then have

〈
λa(ξ), ξ

〉= n∑
i=1

n∑
j=1

〈∑
x∈Si

αiδax,
∑
y∈Sj

αj δy

〉

=
n∑

i=1

n∑
j=1

〈 ∑
x∈(Si−1\Sa

i−1)∪Sa
i+1

αiδx,
∑
y∈Sj

αj δy

〉

=
n∑

i=1

〈 ∑
x∈(Si−1\Sa

i−1)∪Sa
i+1

αiδx,
∑

y∈Si−1

αi−1δy +
∑

z∈Si+1

αi+1δz

〉

=
n∑

i=1

(
αiαi−1

∣∣Si−1 \ Sa
i−1

∣∣+ αiαi+1
∣∣Sa

i+1

∣∣)

�
n∑

i=2

(
1

4n
√

3i−1
√

3i−2
(3)
(
3i−2)+ 1

4n
√

3i
√

3i−1
3i

) (
by (6)

)

=
√

3

2
−

√
3

2n
>

√
3

2
− ε.

The corresponding inequality for λb follows by symmetry. Since |〈λx(ξ), ξ 〉| = |〈λx−1(ξ), ξ 〉|,
this proves (8). We complete the proof by applying Theorem 2.4 to the paradoxical decomposi-
tion of F2 given in (7). �
2.6. A characterization of quasidiagonality for amenable groups

For each increasing sequence �n = (nk) of positive integers, we consider the C*-algebra

Q�n =
∏
k

Mnk
(C)/

∑
k

Mnk
(C).

Here the C*-algebra
∏

k Mnk
(C) consists of all sequences (ak) of matrices ak ∈ Mnk

(C) such
that supk ‖ak‖ < ∞ and

∑
k Mnk

(C) is the two-sided closed ideal consisting of those sequences
with the property that limk→∞ ‖ak‖ = 0.
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Recall that a separable C*-algebra is MF if it embeds as a sub-C*-algebra of Q�n for some �n,
see [5]. In analogy with the class of MF algebras, we make the following definition.

Definition 2.7. A countable group Γ is MF if it embeds in the unitary group of Q�n for some �n.

It is readily seen that Γ is MF if and only if it embeds in U(Q�n) where �n = (1,2,3, . . .).
Recall that a group Γ is called maximally almost periodic (abbreviated MAP) if it embeds in

a compact group. Equivalently, Γ embeds in

U

( ∞∏
k=1

Mk(C)

)
=

∞∏
k=1

U(k).

A discrete residually finite group is MAP.
Bekka [3] proved that if Γ is a discrete countable amenable group, then Γ is maximally

almost periodic if and only if C∗(Γ ) is residually finite dimensional. That is,

Γ ↪→ U

( ∞∏
k=1

Mk(C)

)
⇔ C∗(Γ ) ↪→

∞∏
k=1

Mk(C).

The following theorem says that a discrete countable amenable group Γ embeds in U(Q�n) for
some sequence �n if and only if C∗(Γ ) embeds in Q �m for some �m.

Theorem 2.8. Let Γ be a discrete countable amenable group. Then Γ is MF if and only if the
C*-algebra C∗(Γ ) is quasidiagonal.

For the proof we will need the following result from [14].

Proposition 2.9. (See Proposition 2.1 of [14].) Let Γ be a discrete amenable group. Suppose
there exist a sequence (Bk)

∞
k=1 of unital C*-algebras and a sequence (ωk)

∞
k=1 of group homo-

morphisms ωk :Γ → U(Bk) that separate the points of Γ , and that each ωk appears infinitely
many times in the sequence. Then C∗(Γ ) embeds unitally into the product C*-algebra

∏∞
n=1 Cn,

where Cn =⊗n
k=1 M2(C) ⊗ Bk ⊗ Bk (minimal tensor product).

Proof of Theorem 2.8. By the Choi–Effros lifting theorem [11] and the local characterization of
quasidiagonality given by Voiculescu, Theorem 1.5, it follows that a separable and nuclear C*-
algebra A is quasidiagonal if and only if A is an MF algebra. Suppose that Γ is MF. Then there is
an injective homomorphism θ :Γ → U(Q�n) for some �n. Let B be the sub-C*-algebra of Q�n gen-
erated by θ(Γ ). Since Γ is amenable, B is nuclear and hence quasidiagonal. By Proposition 2.9
C∗(Γ ) embeds the product

∏
n Cn, where Cn = M2n(C) ⊗ B⊗2n. Since B is quasidiagonal, so

is each Cn. It follows that C∗(Γ ) is quasidiagonal.
Conversely, if C∗(Γ ) is quasidiagonal, then C∗(Γ ) ⊂ Q�n for some �n and hence Γ is MF. �

Definition 2.10. A group Γ is locally embeddable into the class of finite groups (or simply LEF)
if for any finite subset F ⊂ Γ there is a finite group H and a map φ :Γ → H that is both injective
and multiplicative when restricted to F .
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Remark 2.11. Vershik and Gordon introduced LEF groups in [29]. Theorems 1 and 2 of [29]
illustrate the relationship between LEF groups and residually finite groups. Specifically, if every
finitely generated subgroup of a group Γ is residually finite, then Γ is LEF. On the other hand,
every finitely presented LEF group is residually finite. There are finitely presented solvable non-
LEF groups, see [1].

We will show that an LEF group is MF. The following lemma will be used.

Lemma 2.12. Let Γ be a discrete countable group. Then Γ is LEF if and only if there is a
sequence of finite groups (Hk)

∞
k=1 and an injective homomorphism Φ :Γ →∏

k Hk/
∑

k Hk .

The proof is straightforward.

Proposition 2.13. Let Γ be a countable discrete group. If Γ is LEF, then Γ is MF.

Proof. Let Hk and Φ be as in Lemma 2.12 and let φ = (φk)k :Γ →∏
k Hk be a set-theoretic

lifting of Φ . Let λk :Hk → B(�2(Hk)) be the left regular representation of Hk . If s, t ∈ Fk , s �= t ,
then φk(s) �= φk(t) and hence ‖λk(φk(s)) − λk(φk(t))‖ �

√
2. Let nk = |Hk| and set �n = (nk) as

above. Consider the maps πk = λk ◦ φk :Γ → U(nk). Then the sequence of maps (πk) induces a
group homomorphism π :Γ → U(Q�n) which is injective since ‖π(s) − π(t)‖ �

√
2 whenever

s, t are distinct elements of Γ . �
2.14. An MF group that is not LEF

Let p be a prime number. We recall the following group from [1]:

Γ =

⎧⎪⎨
⎪⎩
⎛
⎜⎝

1 x12 x13 x14
0 pk x23 x24
0 0 pn x34
0 0 0 1

⎞
⎟⎠ : xij ∈ Z

[
1

p

]
, k, n ∈ Z

⎫⎪⎬
⎪⎭ .

One sees that

Z(Γ ) =

⎧⎪⎨
⎪⎩
⎛
⎜⎝

1 0 0 x

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ : x ∈ Z

[
1

p

]⎫⎪⎬
⎪⎭ .

We define

N =

⎧⎪⎨
⎪⎩
⎛
⎜⎝

1 0 0 k

0 1 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎠ : k ∈ Z

⎫⎪⎬
⎪⎭ .

Abels showed in [1] that Γ and Γ/N are a finitely presented groups. Moreover, as observed by
Abels, ideas similar to those in [19, p. 349], show that Γ/N does not have the Hopf property. It
is well known that any finitely generated residually finite group has the Hopf property (see [25]);
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hence Γ/N is not residually finite. In particular Γ/N is not LEF (see Remark 2.11). As ob-
served in [1], the group Γ/N is a solvable—hence amenable—group. Finally, we observe that G

is residually finite. This follows from Mal’cev’s theorem [25] (stating that a finitely generated
subgroup of GL(N,F ) is residually finite for any field F ).

The proof of the following lemma basically consists of writing down the definitions of induced
representations, which we do for the convenience of the reader.

Lemma 2.15. Let F be a finite group and H � Z(F). Let γ :H → L(E) be a finite dimensional
unitary representation of H , and IndF

H γ be the induced unitary representation of F . Then

(i) ‖ IndF
H γ (g) − 1‖ �

√
2 for all g ∈ F \ H and

(ii) IndF
H γ |H is unitary equivalent to [F : H ]γ .

Proof. Recall that (see e.g. [4, Appendix E]) IndF
H γ is defined on the Hilbert space

A= {ξ :F → E: ξ(xh) = γ
(
h−1)ξ(x) for all x ∈ F, h ∈ H

}
,

with inner product defined by

〈ξ, η〉 =
∑

xH∈F/H

〈
ξ(x), η(x)

〉
.

(Note that if xH = yH , then 〈ξ(x), η(x)〉 = 〈ξ(y), η(y)〉 so the above inner product is well
defined.) One then defines the induced representation on the finite dimensional Hilbert space A
by the equations

IndF
H χ(g)ξ(x) = ξ

(
g−1x

)
for all g, x ∈ F.

Suppose now that g /∈ H . Define η ∈A by

η(x) =
{

γ (x−1)ξ0 if x ∈ H,

0 if x /∈ H,

where ξ0 ∈ E is a unit vector. Then ‖η‖ = 1 and

〈
IndF

H γ (g)η, η
〉= 〈η(g−1), η(e)

〉= 0.

This proves (i).
Let h ∈ H . Then

(
IndF

H γ (h)ξ
)
(x) = ξ

(
h−1x

)= ξ
(
xh−1)= γ (h)ξ(x).

This proves (ii). �
Remark 2.16. For a group G we denote by λG its left regular representation. Let Γ be a discrete
countable residually finite group. It follows that there is a decreasing sequence of finite index
normal subgroups (Ln)n�1 of Γ such that

⋂∞
n=1 Ln = {e}. We denote by πn the corresponding



Author's personal copy

J.R. Carrión et al. / Journal of Functional Analysis 265 (2013) 135–152 145

surjective homomorphisms πn :Γ → Γn := Γ/Ln. It is known (and not hard to verify) that λΓ is
weakly contained in the direct sum of the representations λΓn ◦ πn. If in addition Γ is amenable,
then it follows that the set of irreducible subrepresentations of all of λΓn ◦ πn is dense in the
primitive spectrum of Γ .

Theorem 2.17. Let Γ be a countable discrete residually finite group and let N be a central
subgroup of Γ . Then Γ/N is MF and hence if in addition Γ is amenable, then C∗(Γ/N) is
quasidiagonal.

Proof. We will construct a sequence of finite dimensional unitary representations σn of Γ , such
that

lim
n→∞

∥∥σn(x) − 1
∥∥= 0 if and only if x ∈ N. (9)

In particular, this will prove that Γ/N is MF. Indeed, writing σn :Γ → U(k(n)), one sees that
the map of G/N to U(

∏
n Mk(n)/

∑
n Mk(n)) given by x �→ (σn(x)) is an embedding.

Let Ln, and πn :Γ → Γn := Γ/Ln be as in Remark 2.16. Let Z be the center of Γ and set
Zn = πn(Z) ∼= Z/Z ∩ Ln. The restriction of πn to Z is denoted again by πn :Z → Zn. Let
π̂n : Ẑn → Ẑ be the dual map of the restriction of πn to Z. It follows that the union of π̂n(Ẑn)

is dense in Ẑ as noted in Remark 2.16 applied to Z and its finite index subgroups Z ∩ Ln. Let
(ωi)i�1 be a dense sequence in the Pontriagin dual (Z/N)̂ . We will regard ωi as characters on
Z that are trivial on N . Set ηn = ω1 ⊕ · · · ⊕ ωn :Z → U(n). Let us observe that

lim
n→∞

∥∥ηn(x) − 1
∥∥= 0, if and only if x ∈ N. (10)

Write Z as an increasing union of finite subsets Fn. Since the union of π̂n(Ẑn) is dense in Ẑ, we
can replace Γn by Γ1 ⊕Γ2 ⊕· · ·⊕Γm(n), πn by π1 ⊕π2 ⊕· · ·⊕πm(n) and Zn by Z1 ⊕Z2 ⊕· · ·⊕
Zm(n) so that in the new setup πn(Z) ⊂ Zn, Zn is a central subgroup of Γn and the following
properties will hold.

(i) For each n � 1 there is a unitary representation γn :Zn → U(n) such that

∥∥ηn(x) − γn ◦ πn(x)
∥∥< 1/n, for all x ∈ Fn. (11)

(ii) For any x ∈ Γ \ Z there is m such that πn(x) /∈ Zn for all n � m.

Concerning (ii) let us note that if x ∈ Γ and πn(x) ∈ Zn for all n � m then πn(xgx−1g−1) = 1
for all g ∈ Γ and n � m and that implies that x ∈ Z since the sequence (πn)n�m separates the
points of Γ .

Define the finite dimensional unitary representation of Γ

σn = (IndΓn

Zn
γn

) ◦ πn.

Let x ∈ Z. By Lemma 2.15(2) we have

∥∥σn(x) − 1
∥∥= ∥∥γn ◦ πn(x) − 1

∥∥
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and hence in conjunction with (11)

lim
n→∞

∥∥σn(x) − 1
∥∥= 0 ⇔ lim

n→∞
∥∥γn ◦ πn(x) − 1

∥∥= 0 ⇔ lim
n→∞

∥∥ηn(x) − 1
∥∥= 0.

By (11), it follows that ‖σn(x) − 1‖ → 0 if and only if x ∈ N .
Now let x ∈ Γ \ Z(Γ ). By (ii) there is an m large enough so πn(x) /∈ Zn for all n � m. By

Lemma 2.15(1), we have ‖σn(x) − 1‖ �
√

2 for all n � m.
This proves that (9) holds and therefore that Γ/N is MF. �

Corollary 2.18. Let Γ and N be as in 2.14. Then Γ/N is MF but not LEF. Since Γ/N is
amenable it also follows that C∗(Γ/N) is quasidiagonal.

Proof. This follows from Theorem 2.17. We have already noted that Γ/N cannot be LEF since
it is finitely presented but not residually finite. �
3. Strong quasidiagonality and groups

We exhibit some classes of amenable groups that have non-strongly quasidiagonal C*-
algebras. See Theorem 3.4. All of these groups arise as wreath products. We do not know if
these C*-algebras are quasidiagonal, except for a certain subclass. See Proposition 3.6.

Let us establish some notation related to crossed product C*-algebras. (We refer the reader
to [9, Section 4.1] for details.) Let A be a unital C*-algebra, Γ a discrete countable group, and
α :Γ → Aut(A) a homomorphism. A ∗-representation (π,H) of A induces ∗-representation
π × λ of A �α Γ on B(H ⊗ �2Γ ) defined by

(π × λ)(a)(ξ ⊗ δt ) = π
(
αt−1(a)

)
(ξ) ⊗ δt ,

(π × λ)(s)(ξ ⊗ δt ) = ξ ⊗ δst (12)

for a ∈ A, s, t ∈ Γ , ξ ∈ H , and where {δs}s∈Γ is the usual orthonormal basis of �2Γ .
We denote by A⊗Γ the Γ -fold maximal tensor product of A with itself. This infinite tensor

product is defined as an inductive limit indexed by finite subsets of Γ . The Bernoulli action β of
Γ on A⊗Γ may be described formally by

βs(at1 ⊗ · · · ⊗ atn) = ast1 ⊗ · · · ⊗ astn .

The proof of the next proposition was inspired by [18, Theorem 25].

Proposition 3.1. Let A be a unital C*-algebra which is generated by two proper two-sided closed
ideals. Let Γ be a discrete countable non-torsion group. Then A⊗Γ �β Γ has a non-finite quo-
tient. In particular, it is not strongly quasidiagonal.

Proof. Write A = I1 + I2 where Ii are proper two-sided closed ideals of A and write 1A = y +x

where y ∈ I1 and x ∈ I2. Let πi be a unital representations of A with kernel Ii , i = 1,2. Then
π1(x) = 1 and π2(x) = 0.
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Let u ∈ Γ be an element of infinite order. It generates a subgroup Z � Γ . Choose a subset
F ⊆ Γ of left coset representatives, that is,

Γ =
⊔
s∈F

gZ.

Set

Γ1 = {sun: n < 0 and s ∈ F
}
, Γ2 = {sun: n � 0 and s ∈ F

}
and observe that uΓ −1

1 is a proper subset of Γ −1
1 . Define the representation (π,H) of A⊗Γ by

π :=
(⊗

s∈Γ1

π1

)
⊗
(⊗

s∈Γ2

π2

)
.

For t ∈ Γ , let xt ∈ A⊗Γ be the elementary tensor with x in the “t”-position and 1 elsewhere,
in particular βg(xt ) = xgt . It follows from the properties of π1, π2 and x that

π(xt ) = 1H if t ∈ Γ1, and π(xt ) = 0 if t ∈ Γ2. (13)

For a set S ⊂ Γ we denote by χS the characteristic function of S as well as the corresponding
multiplication operator by χS on �2Γ . Using (12) and (13) one verifies immediately that

(π × λ)(xe) = 1H ⊗ χ
Γ −1

1
.

Define the partial isometry

V := (π × λ)(u) · (π × λ)(xe) = 1H ⊗ λ(u)χ
Γ −1

1
.

Then V ∗V = 1H ⊗ χ
Γ −1

1
and V V ∗ = 1H ⊗ χ

uΓ −1
1

. It follows that V ∗V − V V ∗ = 1 ⊗
χ

Γ −1
1 \uΓ −1

1
> 0. �

Corollary 3.2. Let A be a unital C*-algebra which admits a quotient with nontrivial center. Let
Γ be a discrete countable non-torsion group. Then A⊗Γ � Γ has a non-finite quotient.

Proof. If B is a quotient of A, then B⊗Γ � Γ is a quotient of A⊗Γ � Γ . Thus we may assume
that the center Z(A) is nontrivial. Write Z(A) as the sum of two maximal ideals Z(A) = J1 +J2.
We conclude the proof by applying Proposition 3.1 for the ideals I1 = J1A and I2 = J2A. �
Remark 3.3. The condition on A in Proposition 3.1 is equivalent to the requirement that the
primitive spectrum of A contains two non-empty disjoint closed subsets. It is not hard to see that
the primitive spectrum of a separable A contains two distinct closed points if and only if A has
two distinct maximal ideals. Moreover, in this case A admits a quotient with nontrivial center.

Although we state the next result in greater generality, perhaps the most interesting case is
when the groups are amenable.
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Theorem 3.4. Let Γ be a discrete countable non-torsion group and let Λ be any discrete count-
able group such that either

(i) Λ admits a finite dimensional representation other than the trivial representation, or
(ii) Λ has a finite conjugacy class other than {e}.
Then, C∗(Λ � Γ ) has a non-finite quotient.

Proof. We first notice that C∗(Λ � Γ ) ∼= C∗(Λ)⊗Γ �β Γ . We first assume (i). By assumption,
there are two inequivalent finite dimensional irreducible representations π1 and π2 of C∗(Λ).
Setting Ii = ker(πi), i = 1,2, we see that I1 and I2 are distinct maximal ideals that satisfy the
hypothesis of Proposition 3.1.

Now assume (ii). It is well known that if Λ has a finite conjugacy class, then C∗(Λ) has a non-
trivial center (simply add up the elements of the conjugacy class to produce a central element).
The conclusion follows from Corollary 3.2. �

We observe that if Γ is as in Theorem 3.4 and Λ is not amenable, then the same conclusion
follows. Indeed, in this case the C*-algebra C∗

r (Λ) cannot have a character. Thus ker(λ) is not
contained in the kernel I1 � C∗(Λ) of the trivial representation, but in some other maximal
ideal I2 of C∗(Λ). Hence I1 and I2 are distinct maximal ideals of C∗(Λ) and we can apply
Proposition 3.1.

As a special case of Theorem 3.4 we obtain the simplest example we know of an amenable
group with a non-strongly quasidiagonal C*-algebra.

Corollary 3.5. The C*-algebra of the group Z/2Z � Z is not strongly quasidiagonal.

Since Z/2Z � Z is residually finite (one may find a separating family of homomorphisms
πn : Z/2Z � Z → Z/2Z � Z/nZ), its C*-algebra is quasidiagonal (it is actually residually finite di-
mensional and in particular inner quasidiagonal, see [6] for relevant definitions). More generally,
we have the following:

Proposition 3.6. Let Λ be an amenable group that is a union of residually finite groups. Then
the C*-algebra of the group Λ � Zk is quasidiagonal.

Proof. Write Λ as an increasing union of residually finite groups Λi . Then Λ � Zk is the union
of Λi � Zk . Therefore, we may assume that Λ itself is residually finite. By [13], C∗(Λ) embeds
in the UHF algebra of type 2∞, denoted here by D. Then

C∗(Λ � Zk
)∼= (⊗

Zk

C∗(Λ)

)
� Zk ⊂

(⊗
Zk

D

)
� Zk

and (
⊗

Zk D)�Zk ∼= D�Zk embeds in a simple unital AF algebra by a result of N. Brown [7]. �
If C∗(Λ) has two distinct maximal ideals we do not need to assume (1) or (2) in Theorem 3.4

to obtain its conclusion. This raises an interesting question.

Question 3.7. Are there any nontrivial groups Λ such that C∗(Λ) has a unique maximal ideal?
(Such a group would have to be amenable.)
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3.8. Groups with strongly quasidiagonal C*-algebras

Now we exhibit some classes of (amenable) groups Γ with strongly quasidiagonal C∗-
algebras. These will arise as extensions

1 → Δ → Γ → Λ → 1

where Δ is a central subgroup of Γ , with some additional hypotheses on Λ and Δ. For example,
we have the following proposition.

Proposition 3.9. Suppose Γ has a central subgroup Δ such that both Δ and Γ/Δ are finitely
generated abelian groups. Then C∗(Γ ) is strongly quasidiagonal.

Proof. Theorem 2.2 of [10] shows that such groups have finite decomposition rank. A C*-
algebra with finite decomposition rank must be strongly quasidiagonal, as proved in [22, Theo-
rem 5.3]. �

The use of decomposition rank only serves to simplify the exposition, although it is perhaps
of interest in itself. Proving strong quasidiagonality in all the cases obtained here could be done
using analogous permanence properties of strong quasidiagonality.

Lemma 3.10. Let A be a separable continuous field C*-algebra over a locally compact and
metrizable space X. Write Ax for the fiber at x ∈ X. If A is nuclear, then the set

XQD := {x ∈ X: Ax is quasidiagonal}

is closed.

Proof. Let y ∈ XQD. Fix a finite subset F of Ay and ε > 0. For x ∈ X write πx :A → Ax for
the quotient map. Because Ay is nuclear, the Choi–Effros lifting theorem affords us a contractive
completely positive lift ψ :Ay → A of πy . Using the fact that x �→ ‖πx(ã)‖ is continuous for
every ã ∈ A we see that the sets

U =
⋂
a∈F

{
x ∈ X:

∥∥πx

(
ψ(a)

)∥∥> ‖a‖ − ε
}

and

V =
⋂

(a,b)∈F×F

{
x ∈ X:

∥∥πx

(
ψ(ab) − ψ(a)ψ(b)

)∥∥< ε
}

are finite intersections of open sets containing y ∈ XQD. Then there exists z ∈ XQD ∩ U ∩ V .
Let φ = πz ◦ ψ :Ay → Az. This is a completely positive contraction satisfying ‖φ(a)‖ >

‖a‖ − ε and ‖φ(ab) − φ(a)φ(b)‖ < ε for all a, b ∈ F . It follows from Theorem 1.5 that Ay is
quasidiagonal. �
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The integer Heisenberg group H3 has a central subgroup isomorphic to Z such that the cor-
responding quotient of H3 is Z2. Therefore H3 satisfies the conditions of Proposition 3.9. One
could also consider the case when Γ has a central subgroup Δ such that Γ/Δ ∼= H3.

Proposition 3.11. Suppose Γ has a finitely generated central subgroup Δ such that Γ/Δ is a
finitely generated, torsion-free, two-step nilpotent group with rank one center. Then C∗(Γ ) is
strongly quasidiagonal.

Proof. As noted in Section 2 of [24], the analysis of [2, Corollary 3.4] shows that every discrete,
finitely generated, torsion-free, two-step nilpotent group with rank one center is isomorphic to a
“generalized discrete Heisenberg group” H(d1, . . . , dn). If n is a positive integer and d1, . . . , dn

are positive integers with d1| . . . |dn, then H(d1, . . . , dn) is defined as the set Z × Zn × Zn with
multiplication

(r, s, t) · (r ′, s′, t ′
)= (r + r ′ +

∑
ditis

′
i , s + s′, t + t ′

)
.

Write Γ/Δ ∼= H(d1, . . . , dn).
Case n > 1. It follows from Theorem 3.4 of [24] that every twisted group algebra C∗(Γ/Δ,σ)

of Γ/Δ is isomorphic to the section algebra of a continuous field of C*-algebras over a one-
dimensional space with each fiber stably isomorphic to a noncommutative torus of dimension at
most 2n. Every noncommutative torus of dimension at most 2n has decomposition rank at most
4n + 1 (by [10, Lemma 4.4]) and decomposition rank is invariant under stable isomorphism, so
Lemma 4.1 of [10] implies that C∗(Γ/Δ,σ) has finite decomposition rank. Now, by Theorem 1.2
of [27] we have that C∗(Γ ) is itself a continuous field C*-algebra over the finite dimensional
space Δ̂ with every fiber isomorphic to some twisted group C*-algebra of Γ/Δ. By Lemma 4.1 of
[10] we obtain that C∗(Γ ) has finite decomposition rank and is therefore strongly quasidiagonal.

Case n = 1. Write H for H(d1). There is an isomorphism H 2(H,T) ∼= T2 such that whenever
a multiplier σ corresponds to (λ,μ) ∈ T2 with both of λ and μ torsion elements, then the twisted
group C*-algebra C∗(H,σ ) is stably isomorphic to a noncommutative torus [24, Theorem 3.9].
When at least one of λ or μ is non-torsion, we have that C∗(H,σ ) is simple and has a unique
trace [24, Theorem 3.7]. Now, there is a continuous field of C*-algebras over H 2(H,T) where
the fiber over (the class of) a given multiplier σ is C∗(H,σ ) [27, Corollary 1.3]. Since the fibers
are quasidiagonal over a dense set of points, every fiber must be quasidiagonal (by Lemma 3.10).
In fact, every fiber must be strongly quasidiagonal, owing either to simplicity or to having finite
decomposition rank.

By Theorem 1.2 of [27] we have that C∗(Γ ) is the section algebra of a continuous field of
C*-algebras with strongly quasidiagonal fibers (the fibers are of the form C∗(H,σ )). Therefore,
every primitive quotient of C∗(Γ ) is quasidiagonal, since it is a primitive quotient of some fiber
of the field [15, Theorem 10.4.3]. It follows from Proposition 5 of [18] that C∗(Γ ) is strongly
quasidiagonal. �
Conjecture. If Γ is a finitely generated countable discrete nilpotent group, then C∗(Γ ) is
strongly quasidiagonal.

A group is supramenable if it contains no paradoxical subsets. (A subset is paradoxical if it
admits a paradoxical decomposition as in 2.1.) For solvable groups, this is the same as saying it
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has a nilpotent subgroup of finite index. Does every countable discrete supramenable group have
a (strongly) quasidiagonal C*-algebra?

4. Note added in proof

The third author has announced a proof of the above conjecture (in an even stronger form).
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