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Abstract. We introduce a new class of operator algebras – tracially
complete C∗-algebras – as a vehicle for transferring ideas and results
between C∗-algebras and their tracial von Neumann algebra comple-
tions. We obtain structure and classification results for amenable tra-
cially complete C∗-algebras satisfying an appropriate version of Murray
and von Neumann’s property Γ for II1 factors. In a precise sense, these
results fit between Connes’ celebrated theorems for injective II1 factors
and the unital classification theorem for separable simple nuclear C∗-
algebras. The theory also underpins arguments for the known parts of
the Toms–Winter conjecture.

Overview of results

There are two major classes of self-adjoint operator algebras: C∗-algebras
and von Neumann algebras. Despite significant differences in their theory
and their stages of development, techniques for transferring structure be-
tween these two classes are important on both sides. Examples of this are
found in the deep connections between nuclearity of a C∗-algebra A and in-
jectivity of its enveloping von Neumann algebra A∗∗ ([29, 24, 25, 34]), which
are obtained through Connes’ celebrated work on injectivity and hyperfinite-
ness of von Neumann algebras. Other prominent examples of structural
transfer between operator algebras include [13, 56, 75, 76, 85, 87].

The focus of this paper is on operator algebras with a trace, by which we
will always mean a tracial state. One of Murray and von Neumann’s very
early results is that a finite factor has a unique tracial state ([81, 82]). In con-
trast, a simple unital stably finite C∗-algebra can have many tracial states.
Indeed, by results of Blackadar ([6]) and Goodearl ([54]), any Choquet sim-
plex may arise as the trace simplex T (A) of a simple unital approximately
finite dimensional (AF) C∗-algebra A. While a finite von Neumann algebra
M always has sufficiently many traces, in that for any non-zero positive
element x ∈ M, there is a trace τ with τ(x) ̸= 0, the existence of traces
is much more subtle in the C∗-setting. A deep theorem of Haagerup ([58]),
together with [8, 9] is needed to obtain the corresponding result for a unital
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stably finite exact C∗-algebras, and without exactness, it is open whether
traces necessarily exist.

Associated to every trace τ on a operator algebra A are a 2-seminorm
∥ · ∥2,τ , a GNS representation πτ : A → B(Hτ ), and a finite von Neumann
algebra πτ (A)

′′. These objects are closely related. Indeed, the unit ball of
πτ (A)

′′ is the ∥ · ∥2,τ -completion of the unit ball of A. In [86], motivated by
developments on the Toms–Winter conjecture ([68, 110, 97]), Ozawa con-
siders the C∗-algebra A

u
obtained by completing the unit ball of A with

respect to the uniform 2-seminorm

∥a∥2,T (A) := sup
τ∈T (A)

∥a∥2,τ .

When A has a unique trace τ , the uniform tracial completion A
u
coincides

with the von Neumann algebra πτ (A)
′′.

When T (A) has infinitely many extreme points, the uniform tracial com-

pletion A
u
is no longer a von Neumann algebra. Ozawa’s theory of W ∗-

bundles (see Section 3.6 below) axiomatises the structure of A
u
in the special

case that the extreme points of T (A) are weak∗-closed. The techniques de-
veloped in this paper allow us to generalise Ozawa’s theory to arbitrary trace
simplices. In Theorem A, the condition of tensorially absorbing the Jiang–Su
algebra (from [60]) is one of the two major hypotheses in the unital classifica-
tion theorem for separable simple nuclear C∗-algebras ([52, 53, 39, 107, 16];
see [16, Section 1.1] for a discussion of this property and examples). In par-
ticular the theorem applies to all C∗-algebras covered by this classification.

Theorem A. Let A and B be unital separable nuclear C∗-algebras that
absorb the Jiang–Su algebra tensorially. Then A

u ∼= B
u
if and only if A and

B have affinely homeomorphic spaces of tracial states.1

Note that, by contrast, if A is a separable, nuclear C∗-algebra with no
finite dimensional quotients, then the finite part of the bidual A∗∗

fin only
remembers the number of extreme traces in T (A) by results that go back
to Connes and Elliott ([29, 37]). Indeed, A∗∗

fin is type II1 as A has no finite
dimensional representations, and the minimal direct summands of A∗∗

fin are
in bijection with the extremal traces of A, so the result follows from [37,
Theorem 4.3].

Over the last decade, major advances in the Elliott classification pro-
gramme for simple nuclear C∗-algebras with traces2 have culminated in two
major themes.

Classification: The finite case of the unital classification theorem ([23,
Corollary D], using [39, 52, 53, 107]; an abstract proof is given in [16]),
which correspond to the uniqueness of the injective II1 factor (combin-
ing Connes’ equivalence of injectivity and hyperfiniteness from [29] with
Murray and von Neumann’s uniqueness of the hyperfinite II1 factor).

1The isomorphism is to be interpreted as (A
u
, T (A)) ∼= (B

u
, T (B)) in the category of

tracially complete C∗-algebras as defined in Section 3.1. In this case, this amounts to a
uniform 2-norm continuous C∗-isomorphism with a uniform 2-norm continuous inverse.

2Purely infinite C∗-algebras, and type III factors, are out of the scope of this paper.
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Structure: Structural theorems ([117, 118, 106, 75, 76, 98, 10, 23, 19]),
which combine to prove most of the Toms–Winter conjecture ([119, Con-
jecture 9.3], cf. [112, 41]) for C∗-algebras. These results mirror aspects of
Connes’ equivalence of injectivity and hyperfiniteness for von Neumann
II1 factors ([29]).

With the benefit of hindsight, the advances above have been heavily driven
by a subtle interplay between nuclear C∗-algebras A and their uniform tra-
cial completions A

u
. This goes back to Matui and Sato’s breakthrough

work on the Toms–Winter regularity conjecture ([75, 76]). In a nutshell,
these ‘von Neumann techniques’ allow for direct access to Connes’ work in
C∗-arguments. This is true both conceptually and technically.

In this paper, we provide an abstract framework for studying uniform
tracial completions: tracially complete C∗-algebras, consisting of a unital
C∗-algebra together with a distinguished set of tracial states such that the
operator norm unit ball is complete in the resulting uniform 2-norm. The
motivating example is the pair

(
A

u
, T (A)

)
, consisting of the uniform tracial

completion of a C∗-algebra A together with the set of traces arising from
traces on A. We regard tracially complete C∗-algebras as a bridge between
tracial von Neumann algebras and tracial C∗-algebras, allowing one to solve
problems about tracial C∗-algebras in three stages.

(i) Apply von Neumann algebra theory in each tracial GNS represen-
tation.

(ii) Obtain results for uniform tracial completions via local-to-global
arguments.

(iii) Pull results back from the tracial completion to the C∗-level.

The main objective of the paper is to obtain structure and classification
theorems for tracially complete C∗-algebras – i.e. results that fit into step
(ii) of the programme above. These theorems fit between Connes’ Theorem
(together with Murray and von Neumann’s uniqueness of the hyperfinite II1
factor) and the structure and classification theorems in the setting of simple
nuclear C∗-algebras. Our work is organised into the following topics.

Amenability: We will show that the two natural definitions of amenability,
one in terms of amenability of all tracial von Neumann algebra comple-
tions, and the other defined by a uniform 2-norm version of the completely
positive approximation property, agree.

Factoriality: We identify a subclass of algebras – the (type II1) factorial
tracially complete C∗algebras – in which each GNS representation coming
from an extreme point of the distinguished traces is a factor. Uniform
tracial completions of C∗-algebras are always factorial, and Ozawa’s W ∗-
bundles are examples of type II1 factorial tracially complete C∗-algebras
precisely when its fibres are factors.

Regularity: We introduce the McDuff property and property Γ for tracially
complete C∗-algebras. This is simultaneously motivated by the following
implications due to Connes for a II1 factor ([29]):

injective
injective with
property Γ

injective
and McDuff

hyperfinite,
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as well as by work on regularity properties (Jiang–Su stability, uniform
property Γ) for C∗-algebras ([23, 22, 94, 75]).

Hyperfiniteness: We consider inductive limits of finite dimensional tra-
cially complete C∗-algebras, in the spirit of Murray and von Neumann’s
hyperfinite von Neumann algebras and Bratteli’s AF C∗-algebras.

Concrete models: For each metrisable Choquet simplex X, we construct
a hyperfinite II1 tracially complete C∗-algebra (RX , X) in the same spirit
as Blackadar’s and Goodearl’s constructions of a simple unital AF C∗-
algebra with trace simplex affinely homeomorphic to X. Unlike the case
of AF C∗-algebras, the resulting tracially complete C∗-algebra is indepen-
dent of all choices made in the construction. When X is an n-dimensional
simplex, (RX , X) is isomorphic to the direct sum of n + 1 copies of the
hyperfinite II1 factor with its entire trace simplex. When X is a metris-
able Bauer simplex (i.e. the extreme boundary ∂eX is compact), (RX , X)
can be identified with the trivial W ∗-bundle over ∂eX whose fibres are
the hyperfinite II1 factor R.

With this setup, our structure and classification theorems for amenable tra-
cially complete C∗-algebras are as follows.

Theorem B (Structure theorem). For an amenable type II1 factorial tra-
cially complete C∗-algebra, property Γ, the McDuff property, and hyperfinite-
ness are equivalent.

Theorem C (Classification theorem). Any amenable factorial tracially com-
plete C∗-algebra which is separable (in the uniform 2-norm) and has prop-
erty Γ is isomorphic to the hyperfinite model (RX , X) with the corresponding
Choquet simplex X of traces.

The equivalence of property Γ and the McDuff property in Theorem B was
established in [22] for the uniform tracial completions of separable nuclear
C∗-algebras with no finite dimensional representations.

As with the classification programme for C∗-algebras and Murray and von
Neumann’s uniqueness of the hyperfinite II1 factor before that, our classi-
fication theorem is powered by classification results for ∗-homomorphisms
satisfying a suitable notion of amenability together with an Elliott-style
intertwining argument. In the setting of tracially complete C∗-algebras
amenability is given in terms of the completely positive approximation prop-
erty in the uniform 2-norm, or equivalently using uniformly amenable traces
– we call such maps tracially nuclear.3

Theorem D (Classification of tracially nuclear ∗-homomorphisms). Con-
sider tracially complete C∗-algebras (M, X) and (N,Y ) with (M, X) being
∥ · ∥2,X-separable and (N , Y ) being factorial with property Γ. Then a map
ϕ : (M, X) → (N , Y ) is tracially nuclear if and only if the induced map
ϕ∗ : Y → X takes values in the uniformly amenable traces on M. Any
continuous affine γ : Y → X taking values in the uniformly amenable traces

3We state Theorem D for tracially complete C∗-algebras satisfying the regularity hy-
pothesis of property Γ. In the main body, we will work with a more general hypothesis
– complemented partitions of unity (discussed in Section 1.4 below) – so that that the
classification of tracially nuclear ∗-homomorphisms generalises the classification of weakly
nuclear ∗-homomorphisms from C∗-algebras into finite von Neumann algebras.
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on M is induced by a tracially nuclear map ϕ : (M, X)→ (N , Y ), which is
unique up to approximate unitary equivalence in the uniform 2-norm given
by (N , Y ).

An important special case of the previous theorem is given by taking
(M, X) :=

(
C2, T (C2)

)
, giving a classification of projections. In this case

we can do better: unitary equivalence and Murray–von Neumann subequiva-
lence of projections in factorial tracially complete C∗-algebras with property
Γ are determined by the designated set of traces (see Theorem 7.18).4 We
highlight the following special case of this in the language of von Neumann
algebras, showing that Murray and von Neumann’s foundational classifica-
tion of projections can be performed continuously in II1 factors with prop-
erty Γ. It is obtained by applying our classification of projections to the
trivial W ∗-bundle over X with fibreM.

Theorem E. Let K be a compact Hausdorff space and letM be a II1 factor
with property Γ. Suppose that p, q : K →M are projection-valued functions
which are continuous with respect to ∥ · ∥2.

(i) There is a ∥ · ∥2-continuous v : K →M with v(x)∗v(x) = p(x) and
v(x)v(x)∗ ≤ q(x) for all x ∈ K if and only if τ(p(x)) ≤ τ(q(x)) for
all x ∈ K.

(ii) There is a ∥ · ∥2-continuous u : K →M taking values in the unitary
group of M with u(x)p(x)u(x)∗ = q(x) for all x ∈ K if and only if
τ(p(x)) = τ(q(x)) for all x ∈ K.

The existence theorem corresponding to Theorem E is immediate. Given
a continuous f : K → [0, 1], fix a copy of L∞[0, 1] ⊆M. Then the projection-
valued function p(x) = χ[0,f(x)] is ∥ · ∥2-continuous and has τ(p(x)) = f(x)
for all x ∈ K.
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1. Introduction

1.1. Tracially complete C∗-algebras. Abstractly, we define a tracially
complete C∗-algebra to be a pair (M, X) where M is a C∗-algebra and
X is a (weak∗) compact and convex subset of T (M) such that the unit
ball of M is complete in the uniform 2-norm ∥ · ∥2,X induced by X. This
definition is designed to encompass both tracial von Neumann algebras and
Ozawa’s uniform tracial completions. While in the overview above we only
considered the uniform tracial completion of a C∗-algebra A with respect
to all its traces, Ozawa’s work considers uniform tracial completions with

respect to any closed convex subset X ⊂ T (A). We write A
X
for the uniform

tracial completion with respect to X (and, in particular, use the notation

A
T (A)

rather than A
u
in the rest of the paper). Every trace τ ∈ X will

extend uniquely to a ∥ · ∥2,X -continuous trace on A
X
; these extensions are

the designated set of traces on A
X

in the definition of a tracially complete
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C∗-algebra. With a minor abuse of notation, the extension of τ ∈ X to A
X

is still denoted τ , and the set of such extensions is still denoted X.
Given a tracial von Neumann algebra (M, τ),5 it is typically necessary in

classification results to consider all (normal) traces onM instead of only τ
itself. For example, the specified trace τ will classify projections inM only
when it is the unique trace onM – i.e. whenM is a factor. By analogy, we
would like to work with a subclass of tracially complete C∗-algebras (M, X),
where the traces in X provide enough information for classification. In the
case when X is a face in T (M), the set X is precisely the set of ∥ · ∥2,X -
continuous traces on M (and conversely) – see Proposition 3.15. We call
such tracially complete C∗-algebras factorial. The name is further justified
by the fact that a W ∗-bundle is factorial as a tracially complete C∗-algebra
if and only if each fibre is a factor (Proposition 3.6) and, more generally, a
tracially complete C∗-algebra is factorial if and only if every extreme point
of X gives rise to a factor representation ofM (Proposition 3.14).

The examples of greatest interest – uniform tracial completions of a C∗-
algebras – are automatically factorial. Further, as well as being necessary to
classify projections by the distinguished traces, we have found factoriality
to be an important technical condition when applying local-to-global argu-
ments. Accordingly, we have come to regard factorial tracially complete
C∗-algebras as the fundamental objects in the class of tracially complete
C∗-algebras.

When working with factorial tracially complete C∗-algebras (M, X) (such
as uniform tracial completions of C∗-algebras), difficulties increase with the
complexity of X. The space X is always always a Choquet simplex as it is
a closed face in the Choquet simplex T (M). When X is finite dimensional,
or more generally a Bauer simplex, a factorial tracially complete C∗-algebra
over X has extra structure and is easier to analyse. This is illustrated
schematically as follows.

(1.1)

Metrisable Choquet simplices:

Tracially complete C∗-algebras

Finite dimensional simplices:

M1 ⊕ · · · ⊕Mn

Metrisable Bauer simplices:

W ∗-bundles

Firstly, when X is a finite dimensional simplex,M is just a finite direct
sumM1⊕· · ·⊕Mn of factors. In this case, Theorems B and C are Connes’
Theorem6 ([29]) and the regularity hypothesis (property Γ) is automatic
from amenability.

5A tracial von Neumann algebra (M, τ) is von Neumann algebra M equipped with a
faithful normal trace τ .

6Theorem D also follows directly from Connes’ Theorem (see Proposition 9.2), though
this is most often stated in the literature when A is nuclear.
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The next threshold of complexity occurs when X is a Bauer simplex :
that is, when the extreme boundary ∂eX is compact. Ozawa paid particular
attention to this situation in [86], introducing the abstract notion of (the
section algebra of) a continuous W ∗-bundle over a compact Hausdorff space
K (see Section 3.6 for the precise definition). The most basic examples of
W ∗-bundles are trivial bundles. The trivial W ∗-bundle over K with fibre a
tracial von Neumann algebra (M, τ) is given by

(1.2) Cσ(K,M) :={f :K →M : f is ∥·∥-bounded and ∥·∥2,τ -continuous},

together with the conditional expectation E : Cσ(K,M) → C(K) given by
composing with τ .

Ozawa showed that if A is a C∗-algebra whose tracial state space T (A)

is a Bauer simplex, then the uniform tracial completion A
T (A)

naturally
has the structure of a continuous W ∗-bundle over ∂eT (A) whose fibre at
τ ∈ ∂eT (A) is the von Neumann factor πτ (A)

′′. Moreover, he proved a
‘trivialisation theorem’ ([86, Theorem 15]), characterising whenW ∗-bundles
whose fibres are the hyperfinite II1 factor are trivial – this amounts to asking
when Connes’ theorem can be established in a continuous fashion over K.
Theorem A follows from Ozawa’s trivialisation theorem whenever the C∗-
algebras involved have Bauer trace simplices. Using Ozawa’s methods, we
show in Section 3.6 that factorial tracially complete C∗-algebras (M, X)
whose traces X form a Bauer simplex have a natural structure of a W ∗-
bundle over ∂eX, whose fibre at τ ∈ ∂eX is the factor πτ (M).7 In this
way, Theorems B and C also follow from Ozawa’s trivialisation theorem in
the case of factorial tracially complete C∗-algebras with a Bauer simplex of
traces.

The trace simplex of a C∗-algebras can be very far from Bauer and can
have highly complex affine structure. In fact, any metrisable Choquet sim-
plex can arise as the trace space of a separable C∗-algebras, including, for ex-
ample, the Poulsen simplex characterised as the unique (non-trivial) metris-
able Choquet simplex where the extreme points form a dense subset.

We think of factorial tracially complete C∗-algebras (M, X) as providing
a formalism for (the section algebra of) a bundle over a Choquet simplex X,
with ‘fibres’ coming from the GNS representations of M at points τ ∈ X,
which takes into account the affine relations between the fibres (see the
discussion in Section 3). Outside the Bauer simplex setting, the subtle
interaction between the affine structure of X and the operator algebraic
structure of M is quite challenging and leads to very different behaviour
compared to W ∗-bundles. To give one example, suppose that (M, X) is a
factorial tracially complete C∗-algebra; if X is a Bauer simplex then the
centre of M can be identified with the continuous affine functions on X,
whereas in the general case, the centre ofM can be trivial.

1.2. The trace problem. We take a brief interlude to discuss why we
keep track of the designated collection of traces in our definition of a tra-
cially complete C∗-algebra. Every II1 factorM has a unique trace τ , so in

7In this case, by Ozawa’s work πτ (M) = πτ (M)′′.
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particular all traces on M are normal. We do not know if the analogous
statement holds for factorial tracially complete C∗-algebras.

When (M, X) is a tracially complete C∗-algebra, all the traces in X are
evidently ∥ · ∥2,X -continuous – the appropriate notion of continuity in this
setting. Moreover all ∥ · ∥2,X -continuous traces on M belong to the closed
face in T (M) generated by X (see Proposition 3.15). Accordingly, when
(M, X) is factorial, X consists precisely of the ∥ · ∥2,X continuous traces on
M. Are there any other traces? We regard this as a foundational problem
in the theory of tracially complete C∗-algebras.

Question 1.1 (Trace Problem). Let (M, X) be a factorial tracially com-
plete C∗-algebra. Are all traces on M automatically ∥ · ∥2,X -continuous?
Equivalently, is the inclusion X ⊆ T (M) an equality?

When X is a finite dimensional simplex,M is a finite direct sum of fac-
tors, and hence the trace problem has a positive solution since all traces on
M are normal. In this paper we resolve the trace problem for ultrapowers
(and reduced products) of tracially complete C∗-algebras with property Γ
(Theorem 7.5); property Γ is discussed in Section 1.4 and Section 5.3. This
is in the spirit of various ‘no silly trace’ results asserting that, under ap-
propriate regularity conditions, traces on ultrapowers are generated by the
limit traces (such as [86, Theorem 8], [84, Theorem 1.2], [10, Theorem 3.22];
see [4, Theorem A] for a very general C∗-algebra result).

The trace problem is particularly pertinent when we take tracial com-

pletions. Given a C∗-algebra A, Ozawa’s uniform tracial completion A
T (A)

gives rise to a factorial tracially complete C∗-algebra
(
A
T (A)

, T (A)
)
, but is

A
T (A)

uniformly tracially complete with respect to all its traces? If there are

additional traces on A
T (A)

which are not ∥ · ∥2,T (A)-continuous, then there
seems to be no reason why this should be the case. A positive answer to
the trace problem would ensure that the uniform tracial completion process
stabilises.8

1.3. Local-to-global: amenability. Our main approach to understand-
ing the structure of tracially complete C∗-algebras is to pass from local
properties at each trace, i.e. properties of the fibres πτ (M)′′, to global prop-
erties that hold uniformly over all traces. Identifying the appropriate class
of amenable tracially complete C∗-algebras through completely positive ap-
proximations gives a first example of this idea.

Recall that nuclearity of a C∗-algebra A is characterised through the
completely positive approximation property ([64]): there is a net (Fi, ϕi, ψi)i
consisting of finite dimensional C∗-algebras Fi and completely positive and
contractive (c.p.c.) maps

(1.3) A Fi A
ψi ϕi

8During the long gestation period of this paper, the trace problem was resolved posi-
tively by the third-named author for tracially complete C∗-algebras with property Γ. In

particular, this means that for a Z-stable C∗-algebra A, Ozawa’s A
T (A)

has a complete
unit ball in its uniform 2-norm.
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such that ∥ϕi(ψi(a))−a∥ → 0 for all a ∈ A. The directly analogous concept
for a von Neumann algebra M is semidiscreteness, which asks for c.p.c.
maps

(1.4) M Fi Mψi ϕi

which approximate the identity on M in the point-weak∗-topology (rather
than the point-norm topology). When (M, τ) is a tracial von Neumann
algebra, (i.e. τ is a specified faithful normal trace onM), a standard Hahn–
Banach argument shows that this is equivalent to the completely positive
approximation property in the ∥ · ∥2,τ -norm. A large body of deep work,
including Connes’ theorem, gives a plethora of other conditions equivalent
to the completely positive approximation property for C∗-algebras and to
semidiscreteness for a von Neumann algebras.

If we look for analogous conditions on a tracially complete C∗-algebra
(M, X), one option is to work locally and ask for all the von Neumann
fibres πτ (M)′′ for τ ∈ X to be semidiscrete. Our local-to-global result for
amenability allows us to go from such a local condition to a single system of
completely positive approximations which works uniformly over all traces.

Theorem 1.2. Let (M, X) be a tracially complete C∗-algebra. The follow-
ing are equivalent:

(i) (M, X) is amenable, in the sense that the completely positive ap-
proximation property holds in the point-∥ · ∥2,X-norm;

(ii) for all τ ∈ X, πτ (M)′′ is semidiscrete, in the sense that the com-
pletely positive approximation property holds for πτ (X)′′ in the point-
weak∗-topology;

(iii) every τ ∈ X is uniformly amenable in the sense of [12, Defini-
tion 3.2.1].

In particular, via Connes’ theorem the uniform tracial completion of a
nuclear C∗-algebra is amenable as a tracially complete C∗-algebra.9

Theorem 1.2 generalises to ∗-homomorphisms between C∗-algebras and
tracially complete C∗-algebras (Theorem 4.9, which proves the first state-
ment in Theorem D) characterising the completely positive approximation
property (with respect to the uniform 2-norm) in terms of pointwise amenabil-
ity conditions. We call such maps tracially nuclear, and this is the appro-
priate amenability condition on ∗-homomorphisms for classification; see the
discussion in Section 1.5.

Theorem 1.2, and its generalisation to morphisms in Theorem 4.9, are
both proved by means of a Hahn–Banach trick which we learnt from [69, 48].
The key point – used by Ozawa in [86] – is that the weak topology on the
space Aff(X) of continuous affine functions on a Choquet simplex is given by
pointwise convergence. Since the set of c.p.c. maps which factorise through
finite dimensional C∗-algebras is closed under convex combinations, it is then

9A naive argument for this fails in the same way that a direct proof that the bidual of
a nuclear C∗-algebra is semidiscrete as a von Neumann algebra fails – an extension of the
approximations witnessing nuclearity of A will not a priori approximate the identity map
on the tracial completion in the point-∥ · ∥2,X -norm.
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possible to take convex combinations of a finite set of local approximations
(obtained through compactness) to build a global approximation.

1.4. Local-to-global: CPoU and property Γ. The use of the Hahn–
Banach Theorem with Aff(X) described in the previous section provides a
general local-to-global tool in the setting of tracially complete C∗-algebras
for conditions witnessed by elements of a convex set (see Lemma 4.7). How-
ever, the Hahn–Banach strategy is unlikely to apply to conditions which are
not affine in nature. To discuss this, let us consider the problem (which
is open in general) of whether a factorial II1 tracially complete C∗-algebra
(M, X) admits approximate projections which are approximately of trace
1/2; i.e. given ϵ > 0, does there exist a positive contraction p ∈ M with
∥p− p2∥2,X < ϵ and |τ(p)− 1/2| < ϵ for all τ ∈ X?

As we think of tracially complete C∗-algebras as a kind of affine bundle,
it is natural to approach local-to-global problems via partition of unity tech-
niques. For a W ∗-bundleM with II1 factor fibres over a compact Hausdorff
space K, the algebra C(K) embeds centrally intoM, and so it is straight-
forward to combine elements in M with a partition of unity in C(K) –
however such a direct approach does not preserve algebraic conditions such
as (in our sample problem) being a projection. To see where it fails, for each
fibre τ ∈ K fix a positive contraction pτ ∈ M such that πτ (pτ ) is a projec-
tion of trace 1/2 in the fibre πτ (M) (which is automatically a II1 factor).
Fixing ϵ > 0, compactness gives an open cover U1, . . . , Un of K and positive
contractions p1, . . . , pn ∈M such that

(1.5) ∥p2i − pi∥2,τ < ϵ and τ(pi) ≈ϵ 1/2, τ ∈ Ui.

Taking a partition of unity f1, . . . , fn ∈ C(K) subordinate to U1, . . . , Un,
one can form p :=

∑n
i=1 fipi. While this will have τ(p) ≈ϵ 1/2 for all τ ∈ K,

there is no reason for it to be an approximate projection in uniform 2-norm.
Partitions of unity from C(K) do not interact well with multiplication due
to the lack of orthogonality of the fi.

The solution is to ask that the fi are approximate projections (giving rise
to approximate orthogonality). However, unless K is zero dimensional, this
requires that they come fromM instead of C(K), and we must weaken cen-
trality to approximate centrality. If such fi can be found, then p :=

∑n
i=1 fipi

will give the required approximate projection in M.10 In general, such
partitions of unity need not exist (see Example 6.6), but when they do,
they can be used for local-to-global results. Ozawa’s trivialisation theorem
is an example par excellence: the passage from the existence of approxi-
mately central approximate projections of trace 1/2 in a W ∗-bundle with
hyperfinite II1 factor fibres to global triviality of the bundle ([86, Theo-
rem 15(ii)⇒(iii)⇒(i)]) is underpinned by such partition of unity arguments.
Subsequently, this strategy was made explicit and systematically used in [10]
for local-to-global transfer in trivial W ∗-bundles whose fibre is a McDuff II1
factors.

10The reason this works is that τ(fipi) ≈ τ(fi)τ(pi) uniformly over τ ∈ K. For subtle
reasons, it is essential for this approximation that K is compact, i.e. that as a tracially
complete C∗-algebra, the underlying simplex is Bauer.
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Beyond the W ∗-bundle setting, one needs even more control on the ap-
proximately central projections fi forming a partition of unity. It is nec-
essary to be able to uniformly control τ(fia) for certain a, whereas in the
W ∗-bundle setting, this control comes for free from knowing that τ(fi) van-
ishes outside of Ui (see Footnote 10). A solution was identified in [23] in
the form of complemented partitions of unity (CPoU) for a C∗-algebra. The
technical definition is designed to give the required control with respect to
a given family of positive elements, which should be thought of as com-
plementary to the tracial support of the fi. See the second part of the
introduction to [23] for a further discussion of this and the challenges that
must be overcome outside the Bauer simplex setting.

In [23], the concept of complemented partitions of unity was set out using
the uniform tracial ultraproduct of a C∗-algebra but, as we describe in
Section 6, this definition naturally lives at the level of tracially complete
C∗-algebras. When complemented partitions of unity can be found, they
give rise to a very general local-to-global transfer process. We give a number
of examples in Section 7 (some of which are based on applications of CPoU
for uniform tracial closures of nuclear C∗-algebras in [22, 21]).

As with the example described above of approximate projections, the
local-to-global transfer process produces approximate properties in facto-
rial tracially complete C∗-algebras with CPoU, i.e. properties holding up
to a small error in uniform 2-norm. In order to cleanly encode such ap-
proximate conditions, we develop the theory of reduced products (including
ultraproducts) of tracially complete C∗-algebras in Section 5. The effect
of the local-to-global argument is that the ultrapower of factorial tracially
complete C∗-algebras with CPoU enjoys several of the fundamental prop-
erties of a finite von Neumann algebra: real rank zero, stable rank one, all
unitaries are exponentials, and Murray–von Neumann comparison of pro-
jections is determined by traces. Our solution to the trace problem for such
reduced products (Theorem 7.5) is obtained as a consequence of these re-
sults, avoiding the use of sums of commutators found in precursor results
such as [10, Section 3.4] (see Remark 7.6).

Since CPoU arguments inevitably produce approximate conclusions, there
is a more work to be done to achieve the exact classification of projections
needed for Theorem E. This is achieved by means of an intertwining ar-
gument, based on explicit estimates showing that projections of the same
trace which are close in 2-norm are approximately conjugate by a unitary
close to the unit. This is in the spirit of similar perturbation results for
finite von Neumann algebras and leads to the following result (proved as
Theorems 7.18 and 7.19).

Theorem 1.3. Let (M, X) be a factorial type II1 tracially complete C∗-
algebra with CPoU.

(i) If p, q ∈ M are projections and τ(p) = τ(q) for all τ ∈ X, then p
and q are unitarily equivalent.

(ii) For any continuous affine f : X → [0, 1] there is a projection p ∈M
with τ(p) = f(τ) for all τ ∈ X.

The fundamental challenge is to determine when complemented partitions
of unity can be found, i.e. when a factorial tracially complete C∗-algebra has



TRACIALLY COMPLETE C∗-ALGEBRAS 13

CPoU. In [23], a subset of the authors and Winter introduced the concept of
uniform property Γ for a C∗-algebra as a uniform 2-norm version of Murray
and von Neumann’s property Γ for II1 factors. This too is most naturally
a property of tracially complete C∗-algebras, and we say that (M, X) has
property Γ when there exist uniform 2-norm approximately central approx-
imate projections, which approximately divide the trace of elements of M
in half (Definition 5.19 and Proposition 5.23). The main technical result of
[23] is that unital nuclear C∗-algebras with uniform property Γ have comple-
mented partitions of unity. We strengthen the main result of [23] by remov-
ing the condition of nuclearity, allowing CPoU to be obtained from property
Γ in general. As set out in Section 1.6, this forms a major ingredient in the
forthcoming general framework for the classification of ∗-homomorphisms
([17]).

Theorem 1.4. Let (M, X) be a factorial tracially complete C∗-algebra with
property Γ. Then (M, X) has CPoU. In particular, unital C∗-algebras with
uniform property Γ (e.g. unital Z-stable C∗-algebras) have CPoU.

For a factorial tracially complete C∗-algebra (M, X), all of whose fibres
πτ (M)′′ have property Γ as tracial von Neumann algebras, obtaining prop-
erty Γ for (M, X) is itself a local-to-global transfer problem. Theorem 1.4,
together with the local-to-global technology, shows that transferring prop-
erty Γ from fibres to a global result is to some extent a universal local-to-
global problem.

The strategy to prove Theorem 1.4 follows the overall framework used in
[23], which, in the language of this paper, proves Theorem 1.4 for the uniform
tracial completion of a separable nuclear C∗-algebra. The argument splits
into two steps:

• Obtain a weak form of CPoU in which all the approximate projec-
tions making up the partition of unity are replaced by contractions
(Theorem 6.15) and are not orthogonal.
• Use property Γ to convert the weak form of CPoU to CPoU by
means of orthogonalisation, projectionisation, and a maximality ar-
gument (see the discussion in the last section of the introduction to
[23] for an outline).

The second step works generally as was foreshadowed in [23, Lemma 3.7].
However, in [23], nuclearity was instrumental in performing the first step
([23, Lemma 3.6]) through a refined form of the completely positive approx-
imation property from [14]. In particular, Connes’ theorem on the equiva-
lence of injectivity and hyperfiniteness underpins these approximations. Our
proof of Theorem 1.4 establishes this weak form of CPoU in general (Theo-
rem 6.15), a result which is already of independent interest (see [102, 120]).
We do this by means of a Hahn–Banach-driven local-to-global transfer of
the form described in Section 1.3. The point is that all finite von Neu-
mann algebras (viewed as tracially complete C∗-algebras with respect to
all their traces) satisfy CPoU. Taking suitable convex combinations of the
elements witnessing CPoU in finitely many fibres gives rise to the required
weak form of CPoU, and we do not need to rely on anything as deep as
Connes’ work. Specialising to the uniform tracial completion of a nuclear



14 J. CARRIÓN ET AL.

Z-stable C∗-algebra, this approach gives a much simpler overall argument
for CPoU as compared with [23].

1.5. Structure and classification. Our structure and classification results
(Theorems A–D) are proved by a combination of local-to-global transfer in
the same spirit as [23, 22, 21] and Elliott-style intertwining arguments.

For a separable nuclear C∗-algebra A, a local-to-global argument was
given in [22, Theorem 4.6] to pass from uniform property Γ to the uniform
McDuff property via CPoU. The key point is that as A is nuclear, all tracial
von Neumann algebras πτ (A)

′′ associated to traces on A are McDuff, and
this can then be transformed into a global statement via CPoU. This proves
the equivalence of property Γ and the McDuff property in Theorem B for

the uniform tracial closures
(
A
T (A)

, T (A)
)
of such C∗-algebras. An identical

argument can be used to obtain this equivalence for amenable factorial II1
tracially complete C∗-algebras, the only difference being the use of Theo-
rem 1.4 in place of the main result of [23]. For the additional equivalence
of hyperfiniteness in Theorem B, we go through classification. Our local
characterisations of amenability ensure that hyperfinite tracially complete
C∗-algebras are amenable (Theorem 8.2), so once we show hyperfinite facto-
rial tracially complete C∗-algebras have CPoU (Theorem 8.3), the rest of the
structure theorem (Theorem B) will follow from the classification theorem.

As factorial finite dimensional tracially complete C∗-algebras have CPoU,
and CPoU is preserved under inductive limits, it is easy to obtain CPoU for
limits of factorial finite dimensional C∗-algebras. It is similarly straightfor-
ward to show CPoU holds for a tracially complete C∗-algebra that is locally
approximated by embedded factorial finite dimensional tracially complete
subalgebras. The problem comes when a factorial tracially complete C∗-
algebra (M, X) has approximations by finite dimensional C∗-subalgebras in
which not all traces extend to elements of X – and so they don’t embed
as tracially complete subalgebras. This is reminiscent of Murray and von
Neumann’s work ([83]) on the uniqueness of hyperfinite II1 factors, where
they have to be concerned with approximating finite dimensional subalge-
bras which are not factors. Our solution, found in Section 8, is the same
as Murray and von Neumann’s: reduce to the case that the building blocks
can always be taken to be factorial. This proceeds by showing that for sep-
arable tracially complete C∗-algebras, local and inductive limit definitions
of hyperfiniteness agree, which allows us to realise the given algebra as a
tracial completion of an AF C∗-algebra.

Turning to classification, the primary objective is the classification of
tracially nuclear maps in Theorem D (proved as Theorem 9.12(ii)). As is
standard for classification results for maps, this consists of two components:
existence (of tracially nuclear ∗-homomorphisms with specified behaviour at
the level of traces) and uniqueness (of such maps up to approximate uni-
tary equivalence). The uniqueness aspect of Theorem D (Theorem 9.3) is a
direct application of the corresponding uniqueness result for weakly nuclear
∗-homomorphisms into finite von Neumann algebras by traces (a folklore
consequence of Connes’ theorem), and a CPoU-powered local-to-global ar-
gument. This works in essentially the same fashion as the uniqueness result
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found in [21, Theorem 2.2], and the only difference is the increased generality
of the statement.

As with the corresponding theorems in the C∗-classification programme,
the existence aspect of Theorem D is obtained in two stages. At the first
pass, one only aims for an ‘approximate’ result – for a C∗-algebra A, and
factorial tracially complete C∗-algebra (M, X) we want uniform 2-norm ap-
proximately multiplicative maps A→M which approximately implement a
given continuous affine map γ : X → T (A). For this to hold generally, it will
be necessary for the traces γ(X) ⊆ T (A) to satisfy suitable approximation
properties – in particular, we require the range of γ to consist of hyperlin-
ear traces on A (i.e. those factoring through the tracial ultrapower Rω of
R).11 The approximate existence result uses another CPoU-powered local-
to-global argument to patch together approximate morphisms into the fibres
πτ (M)′′, τ ∈ X, which arise from composing approximate embeddings into
R with a unital embedding R → πτ (M)′′. Under the stronger hypothesis
that the range of γ : X → T (A) consists of uniformly amenable traces, the
approximate morphisms A → M approximately realising γ can be further
arranged to be tracially nuclear.

While it would be possible (though technically somewhat awkward) to
prove Theorem 9.8 in a similar fashion to that of [21, Theorem 2.6], we
instead take advantage of our classification of projections (Theorems 7.18
and 7.19), and hence maps from finite dimensional algebras,12 to give a dif-
ferent and arguably more conceptual approach to these results. The point is
that as (M, X) is factorial, X is a Choquet simplex, and so we can approxi-
mate γ by affine maps X → Z → T (A) factoring through finite dimensional
simplices Z using a result of Lazar and Lindenstrauss from the early 1970s
([70]). Then one uses hyperlinearity to produce approximately multiplicative
maps from A into finite dimensional algebras which approximately realise
the maps Z → T (A), and use the the classification of projections to embed
these finite dimensional algebras intoM compatibly with the map X → Z.

At the second pass one aims for exact existence results by means of a one-
sided Elliott intertwining argument. This is by now a standard technique,
and there are no additional difficulties caused by working with tracially com-
plete C∗-algebras and uniform 2-norms.13 As ever, it is important that the
uniqueness theorem is strong enough to cover approximately multiplicative
maps. This gives rise to the exact existence result in Theorem 9.12, and
completes the proof of Theorem D.

Classification results for uniformly tracially complete C∗-algebras are then
obtained from Theorem D using a two-sided Elliott intertwining argument.
This classifies the family of amenable tracially complete C∗-algebras (M, X)

11When (M, X) is the hyperfinite II1 factor with its unique trace τR, this approximate
existence result is equivalent to hyperlinearity of the relevant trace on A.

12The existence result for maps out of finite-dimensional C∗-algebras is Lemma 9.5.
Uniqueness does appear explicitly but is implicitly contained in the proof of Proposition 9.2
– in particular, see Footnote 57.

13The one subtle point is that the intertwining by reparameterisation technique for
constructing genuine morphisms from approximate morphisms (Theorem 5.11) requires
stability of unitaries in the uniform 2-norm. We prove that this follows from CPoU in
Corollary 7.11.
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satisfying both the domain and codomain hypotheses of Theorem D. The
amenability hypothesis is needed so that the relevant identity maps are tra-
cially nuclear (and so fall within the scope of Theorem D), as the intertwining
argument will use uniqueness to compare the identity maps with the compo-
sitions of the maps obtained from the existence portion of Theorem D. This
process (which is an instance of Elliott’s abstract classification framework
from [38]) yields Theorem C, which contains Theorem A as a special case.
See [115, Section 6] for a general description of the passage from approxi-
mate existence and uniqueness, to the classification of operator algebras via
one-sided intertwining and then a symmetrisation of hypotheses.

Just as we often prefer to describe the outcomes of the local-to-global
transfer procedure at the level of ultraproducts or sequence algebras in or-
der to suppress explicit error tolerances, we do the same for approximately
multiplicative maps. So, in the main body our approximate existence re-
sult and the corresponding uniqueness theorem are given in terms of exact
classification results into reduced products, as was done with the precursor
results in [21].

1.6. Classification and the Toms–Winter conjecture. We end the in-
troduction by discussing the role tracially complete C∗-algebras play in the
structure and classification of simple stably finite amenable C∗-algebras.
These are some instances of step (iii), ‘pulling results back from the tracial
completion to the C∗-level’, of the scheme on page 3.

Given a simple unital C∗-algebra B, with T (B) ̸= ∅, writeM := B
T (B)

,
B∞ := ℓ∞(B)/c0(B) for the norm approximate sequence algebra of B, and
M∞ for the uniform 2-norm approximate sequence algebra ofM, i.e. ℓ∞(M)
modulo the ∥ · ∥2,T (B)-null sequences. By construction, there is a Kaplansky
density type theorem – the unit ball of B is ∥·∥2,T (B)-dense in the unit ball of
M – and this ensures that the canonical inclusion B →M gives a surjection
B∞ →M∞. The trace kernel extension is the short exact sequence induced
by this surjection:14

(1.6) 0→ JB → B∞ →M∞ → 0.

The ideal JB is known as the trace-kernel ideal, and it inherits regularity
properties (such as separable Z-stability and strict comparison) from corre-
sponding properties of B.

The main objective in the abstract approach to the unital classification
theorem for simple nuclear C∗-algebras in [16] is a classification of full unital
∗-homomorphisms A→ B∞ where A is a unital separable nuclear C∗-algebra
satisfying the UCT, and B is a unital simple separable nuclear Z-stable finite
C∗-algebra ([16, Theorem 1.1]). Once this is in place, the classification of
C∗-algebras follows from intertwining arguments as discussed in Section 1.5.
As set out in [16, Section 1.3],15 at a very high level, the strategy for the

14In some cases in the literature, an ultrapower version of the trace-kernel extension is
used; accordingly, in this paper, we develop the theory in terms of reduced powers with
respect to a free filter, simultaneously covering both cases.

15There the argument is given using the uniform tracial sequence algebra B∞; this is
canonically isomorphic to M∞ by a Kaplansky density argument.
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classification of full approximate ∗-homomorphisms falls into the three step
plan from page 3.

(i) Classify maps from A into a finite von Neumann algebra by traces;
this is a consequence of Connes’ theorem.

(ii) Classify maps from A intoM∞ by traces; this is the classification of
approximate ∗-homomorphisms from A intoM described in Section
1.5, and the instance used here is the case covered in the combina-
tion of [23, 21] (asM is the uniform tracial completion of a nuclear
Z-stable C∗-algebra).

(iii) Classify lifts of a full map θ : A→M∞ back to B∞ in terms of K-
theoretic data. This is the main task of [16], and a detailed outline
of the strategy for this step is given there.

In particular, none of the results in this paper are necessary for the ab-
stract proof of the unital classification paper, though we do contend that,
in hindsight, the classification results for maps A→M given here make the
three-step plan above more transparent.

To take stably finite classification beyond the setting of nuclear codomains,
our Theorem 1.4 will be crucial to step (ii). One objective is a stably finite
version of Kirchberg’s very general classification results for full morphisms
A→ B∞, where A is a separable exact C∗-algebras satisfying the UCT and
B is an O∞-stable C∗-algebra (see [93, Theorem 8.3.3], [45, Theorems A
and B], [63]). In the forthcoming work [17], a subset of us will extend the
stably finite classification of morphisms to a level of generality correspond-
ing to Kirchberg’s framework. Sticking to the unital case, this will classify
unital full nuclear ∗-homomorphisms A → B∞ for domains A in analogy
with Kirchberg’s theorem, and where B is unital, finite, Z-stable, and has
comparison of positive elements by bounded traces.16 Via intertwining, this
entails a classification of unital ∗-homomorphisms from A to B which map
traces on B to faithful traces on A. Outside the nuclear setting, one cannot
obtain CPoU for B (or equivalently, for its uniform tracial completion) from
[23].

Looking to the future, we hope that the breakthrough results in [47] on
the classification of stronger outer actions of countable discrete amenable
groups17 on Kirchberg algebras will, over time, have powerful stably finite
counterparts. Here, we expect that developing a suitable classification of
group actions on classifiable tracially complete C∗-algebras (step (ii)) will
help break up the overall task in to more manageable parts, particularly in
the case where the underlying action on the trace space is complex. Even
more generally one can imagine more general notions of quantum symme-
tries acting on uniform tracially complete C∗-algebras, as a bridge towards
studying such actions on classifiable C∗-algebras whose tracial state space
is large.

On the structure side, the remaining open part of the Toms–Winter con-
jecture is intimately linked with tracially complete C∗-algebras. By now,

16This will be discussed further in [17], but it forces all quasitraces on B to be traces.
17The results of [47] are much more general than this, encompassing amenable isomet-

rically shift absorbing actions of locally compact groups
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for a simple separable non-elementary nuclear C∗-algebra B, the condi-
tions of Z-stability and finite nuclear dimension are known to coincide
([118, 117, 106], and [23, 19], building on the line of work [10, 98, 76]).
Back in 2004, Rørdam showed that if B is Z-stable, then B has strict com-
parison ([94]) and the remaining piece of the Toms–Winter conjecture is the
converse.18

The trace-kernel extension, as we view it today, has its origins in Matui
and Sato’s breakthrough work on the implication from strict comparison to
Z-stability ([75]). A key fact is that it induces a short exact sequence at the
level of central sequence algebras (see [68, Theorem 3.3])

(1.7) 0→ JB ∩B′ → B∞ ∩B′ →M∞ ∩M′ → 0,

and tensorial absorption results for B andM can be written in terms of the
central sequence algebras B∞ ∩B′ andM∞ ∩M′. Let us split the problem
of whether strict comparison implies Z-stability of B into the three steps.

(i) Injective II1 von Neumann algebras are McDuff as a consequence of
Connes’ theorem.19

(ii) Attempt to lift the McDuff property back from von Neumann alge-
bras toM. This is an immediate consequence of the local-to-global
argument, provided one has CPoU. For the uniform tracial comple-
tion of a nuclear C∗-algebra with no finite dimensional representa-
tions, CPoU is equivalent to property Γ.

(iii) Lift an embeddingMn →M∞∩M′ to an order zero map ϕ : Mn →
B∞ ∩ B′. Such lifts always exist by projectivity of order zero
maps from matrix algebras ([71, Theorem 4.9]), and in fact, any
∗-homomorphism from a separable C∗-algebra into M∞ ∩M′ has
an order zero lift by [68, Propositions 4.5 and 4.6]. Matui and Sato’s
notion of property (SI) – a kind of large-to-small comparison con-
dition in B∞ ∩ B′, which they obtain from strict comparison and
nuclearity of B – is designed to ensure that ϕ gives rise to a copy
of Z in B∞ ∩B′ and hence to Z-stability of B.

Steps (i) and (iii) work generally; the challenge is at step (ii). This abstrac-
tion of Matui and Sato’s strategy led to [22, Theorem 5.6], showing that for
unital C∗-algebras as in the Toms–Winter conjecture, Z-stability is equiv-
alent to the combination of strict comparison and uniform property Γ (i.e.
property Γ for the tracial completion).20

Thus the following question is fundamental; by [22, Theorem 5.6] a pos-
itive answer would resolve the unital case of the Toms–Winter conjecture.

18A weaker conjecture, of the form that pure simple separable non-elementary nuclear
C∗-algebras are Z-stable, is discussed by Winter in [116, Section 5.4]. Here, pureness is
the combination of strict comparison with a (tracial) divisibility condition on the Cuntz
semigroup and can be thought of as a combination of a weak uniqueness theorem and an
existence theorem for positive elements in terms of their rank functions.

19For II1 factors this was a step along the road to Connes’ theorem (this follows from
7⇒2 of [29, Theorem 5.1], defining ϕ in 7 as the composition of conditional expectation
and the trace), and it is folklore that it holds generally; a proof from hyperfiniteness to the
McDuff property can be found as [22, Proposition 1.6]. See also [101], which obtains the
equivariant McDuff property, extending results from Ocneanu beyond the factor setting.

20See [20, Theorem A] for a non-unital statement.
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The analogous result in the von Neumann setting is the first component of
Connes’ theorem: injective II1 factors have property Γ (which goes through
the passage from failure of property Γ to a spectral gap condition; see also
the two new proofs [74, 73]).

Question 1.5. Does every amenable type II1 factorial tracially complete
C∗-algebra satisfy property Γ?

When the designated set of traces X is reasonably small, Question 1.5
has a positive answer; indeed in the unique trace case this is due to Connes
as mentioned above. We give a positive answer for ∂eX compact and zero
dimensional as Proposition 5.28. More generally, it will be shown in forth-
coming work by the third- and fifth-named authors that the same holds for
∂eX compact and finite-dimensional. It remains mysterious whether one
should expect a positive answer in general, or whether strict comparison for
a C∗-algebra A would imply property Γ for its uniform tracial completion
– which if true would establish the Toms–Winter conjecture. If neither of
these situations hold, then it is reasonable to ask whether amenable tra-
cially complete C∗-algebras with a suitable tracial divisibility property sat-
isfy property Γ. In other words, if a version of Winter’s tracial divisibility
holds for a amenable tracially complete C∗-algebra, must it have property
Γ? A positive answer to this question would resolve the modified conjecture
mentioned in Footnote 18.

We end with a comparison of the hypotheses in the classification of
amenable algebras that we have discussed.

Type of algebra Regularity

Finite amenable von Neumann algebra Automatic
Amenable factorial II1 tracially complete C∗-algebra Open
Simple separable non-elementary nuclear C∗-algebra Not automatic

With the hypotheses listed in the table, ‘regularity’ for von Neumann
algebras simply means the McDuff property; for tracially complete alge-
bras it means either McDuff or property Γ (equivalent in this setting). For
C∗-algebras as in the table, regularity can be interpreted as Z-stability,
and non-Z-stable examples are known to exist. The other key hypothesis
to C∗-classification is the universal coefficient theorem, which is inherently
topological, and therefore doesn’t have von Neumann algebra or tracially
complete counterparts; whether it holds automatically remains open.
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2. Traces and Choquet simplices

Choquet theory will play an important role throughout this paper, and
we begin this preliminary section by recalling some definitions and theorems
about Choquet simplices in Section 2.1. The main examples of a Choquet
simplices in this paper are the spaces T (A) of tracial states on a unital
C∗-algebra A with its weak∗ topology, along with the closed faces of T (A).
We will discuss traces in more depth in Section 2.2 and recall some results
related to their GNS representations and induced von Neumann algebras for
later use.

2.1. Choquet theory. We refer the reader to [3] and [55] for general refer-
ences on Choquet theory. We collect some basic definitions here along with
the results needed in the main body of the paper.

Let X be a compact convex set in a locally convex space and write Aff(X)
for the Banach space of all continuous affine functions X → R equipped with
the supremum norm. Then Aff(X) is an Archimedean order unit space in
the sense of [3, Section II.1] with the pointwise order and the order unit
1Aff(X), the constant function 1.21 Conversely, if V is a Archimedean order
unit space, then the state space of V ,

(2.1) S(V ) := {f ∈ V ∗ : ∥f∥ = f(1V ) = 1},
is a weak∗-compact convex subset of V ∗. By a result of Kadison [61] (see
also [55, Chapter 7]), the natural maps

(2.2) X → S(Aff(X)) and V → Aff(S(V ))

are isomorphisms. This gives an anti-equivalence between the categories
of compact convex sets and Archimedean order unit spaces. We refer to
this result as Kadison duality. One important consequence is that the weak
topology on Aff(X) is the topology of pointwise convergence. This is stan-
dard and used, for example, in [86] and [48].

Proposition 2.1. Let X be a compact convex set.

(i) All states on Aff(X) are given by point evaluations.
(ii) If (fλ) ⊆ Aff(X) is a net and f ∈ Aff(X), then fλ → f weakly if

and only if fλ(τ)→ f(τ) for all τ ∈ X.

Proof. (i). This is a consequence of Kadison’s duality.
(ii). Note that bounded linear functionals on Aff(X) extend to bounded

linear functionals on C(X) by the Hahn–Banach theorem. Since the dual
of C(X) is spanned by states on C(X) and all states on C(X) restrict to
states on Aff(X), it follows that S(Aff(X)) spans Aff(X)∗. The result now
follows from (i).

□

21Briefly, an Archimedean order unit space is a triple V = (V, V+, 1V ) where V is a
real vector space, V+ ⊆ V is a spanning cone, and 1V ∈ V+ is a distinguished element
1V ∈ V+, called the order unit, such that

∥v∥ := inf{r > 0 : −r1V ≤ v ≤ r1V }, v ∈ V,

is a complete norm on V . (Note: in the literature, completeness is not always assumed as
part of the definition, but for us it is.)
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For a compact convex set X, write Prob(X) for the set of Radon proba-
bility measures on X. Given µ ∈ Prob(X), the barycentre of µ is the unique
point x ∈ X such that

(2.3)

∫
X
f dµ = f(x), f ∈ Aff(X).

Let ∂eX ⊆ X denote the set of extreme points of X. We say a complex
Radon measure µ is supported on ∂eX if for every Baire measurable set
E ⊆ X with ∂eX ⊆ E, we have |µ|(X \E) = 0.22 By the Choquet–Bishop–
de Leeuw theorem (see [3, Theorem I.4.8 and Corollary 1.4.12]), for every
x ∈ X, there exists µ ∈ Prob(X) supported on ∂eX with barycentre x. A
compact convex set X is called a Choquet simplex if this measure µ is unique
for every x ∈ X.

In the finite dimensional setting, there is a unique Choquet simplex of
every dimension. Specifically, if n ≥ 0 is an integer, then the n-dimensional
Choquet simplex is given as the convex hull of an orthonormal set of n+ 1
vectors in a Hilbert space.

A Choquet simplex X is called a Bauer simplex if ∂eX is compact. In
this case, we view Prob(∂eX) as a compact convex set in the locally convex
space C(∂eX)∗. Note that there is an affine homeomorphism

(2.4) Prob(∂eX)→ X

given by sending a measure to the barycentre of its canonical extension to
X (given by declaring that X \ ∂eX has measure zero). Indeed, this map is
bijective by the definition of a Choquet simplex, and it is easily seen to be
a homeomorphism.

When X is a metrisable Choquet simplex, a result of Lazar and Lind-
enstrauss in [70, Corollary of Theorem 5.2] (see also [55, Theorem 11.6])
shows X can be written as a projective limit of finite dimensional Choquet
simplices. As noted in [40, Lemma 2.8], this implies X satisfies the finite
dimensional approximation property in Theorem 2.2 below. As we set out
in Appendix A.2, this result holds generally, i.e. without a metrisability
assumption on X. Naturally, for results which only concern the separable
situation (C∗-algebras which are separable in norm and tracially complete
C∗-algebras which are separable in their uniform 2-norm), the metrisable
version of Theorem 2.2 will suffice.

Theorem 2.2. If X is a Choquet simplex, then there are nets of finite
dimensional Choquet simplices Zλ and continuous affine maps

(2.5) X
βλ−→ Zλ

αλ−→ X

such that limλ ∥f ◦ αλ ◦ βλ − f∥ = 0 for all f ∈ Aff(X).

We end this subsection with some results about closed faces in a Choquet
simplex. A face in a compact convex set X is a convex set F ⊆ X with the
following property: for all x1, x2 ∈ X, if a non-trivial convex combination
of x1 and x2 is in F , then both x1 and x2 are in F .

22When X is metrisable, the set ∂eX is a Gδ-set, so µ ∈ Prob(X) is supported on ∂eX
if and only if µ(∂eX) = 1. In general, ∂eX is not Baire measurable (and hence not Borel
measurable) – see [5, Section VII] (and [5, Lemma 4.1] to identify ∂eX with M(B)).
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The next two results can be viewed in analogy with the Hahn–Banach
theorem. The first is an extension result, and the second is a separation
result.

Theorem 2.3 ([3, Theorem II.5.19]). Let F be a closed face of a Choquet

simplex X. For every f ∈ Aff(F ), there exists f̂ ∈ Aff(X) with f̂ |F = f and

∥f̂∥ = ∥f∥.

The following is an easy consequence of [3, Corollary II.5.20]. The first
part follows the proof of [3, Proposition II.5.16].

Theorem 2.4. Let F be a closed face in a Choquet simplex X.

(i) If S ⊆ X is an Fσ-set with S ∩ F = ∅, then there is a continuous
affine function f : X → [0, 1] such that f(x) = 0 for all x ∈ F and
f(x) > 0 for all x ∈ S.

(ii) If x ∈ X and f(x) = 0 for all f ∈ Aff(X)+ with f |F = 0, then
x ∈ F .

Proof. By [3, Corollary II.5.20], closed faces in Choquet simplices are rela-
tively exposed, which means that (i) holds when S is a point. From here,
(ii) is immediate.

In (i), suppose first that S is closed (and hence compact as X is compact).
For s ∈ S, let fs : X → [0, 1] be a continuous affine function such that
fs(x) = 0 for x ∈ F and fs(s) > 0. As S is compact and each fs is
continuous, there are s1, . . . , sn ∈ S such that

(2.6) inf
s∈S

max
1≤i≤n

fsi(s) > 0.

Set f := 1
n

∑n
i=1 fsi . To see the general case, consider an Fσ-set S and write

S as the union of closed sets (Sn)
∞
n=1. For each n ≥ 1, let fn : X → [0, 1] be

a continuous affine function such that fn(x) = 0 for all x ∈ F and fn(x) > 0
for all x ∈ Sn. Then set f :=

∑∞
n=1 2

−nfn. □

The final result of this subsection concerns detecting closed faces. In
general, if X is a Choquet simplex and S ⊆ ∂eX, then the convex hull of S,
written co(S), is a face in X. However, the closed convex hull of S, written
co(S), need not be a face (see [2, Theorem 1]). The following result of Roy
gives a replacement.

Theorem 2.5 (cf. [95, Proposition 4.4]). If X is a Choquet simplex and
F ⊆ X is a closed convex set, then F is a face in X if and only if ∂eF ⊆ ∂eX.

Proof. The forward direction is clear. Conversely, if ∂eF ⊆ ∂eX, then F0 :=
co(∂eF ) is a face in X, and by the Krein–Milman Theorem, F is the closure
of F0. Using again that ∂eF ⊆ ∂eX, we have that F is a face in X by [95,
Proposition 4.4]. □

2.2. Traces and the GNS construction. By a trace on a C∗-algebra, we
will always mean a tracial state. For a C∗-algebra A, let T (A) denote the set
of traces on A equipped with the weak∗ topology. Then T (A) is convex. We
will typically be interested in C∗-algebras where T (A) is compact – this is
the case for unital C∗-algebras, for example. The following result is folklore.
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Theorem 2.6. If A is a C∗-algebra, then every compact face in T (A) is a
Choquet simplex.

Proof. When A is unital, T (A) is a Choquet simplex by [96, Theorem 3.1.18].
By [55, Proposition 10.9], every closed face in a Choquet simplex is a Cho-
quet simplex.

When A is non-unital with unitisation A†, traces on A can be extended to
traces on A†, and τ ∈ T (A†) induces a trace on A if and only if ∥τ |A∥ = 1.
In this way T (A) can be viewed as a face in T (A†), and the result follows
from the unital case.

□

We turn to the structure of continuous affine functions T (A)→ R, which
will be used repeatedly in this paper. The result is well-known and is often
attributed to Cuntz and Pedersen in [30], but the result does not explicitly
appear in their paper. A proof of the first part of the result can be found in
[68, Lemma 6.2] or [16, Proposition 2.1], for example.

Proposition 2.7 (cf. [30, Proposition 2.7]). Let A be a unital C∗-algebra
and let f : T (A) → R be a continuous affine function. Then for any ϵ > 0,
there is a self-adjoint element a ∈ A such that

(2.7) ∥a∥ ≤ ∥f∥∞ + ϵ and τ(a) = f(τ), τ ∈ T (A).

Moreover, if f is strictly positive, we may assume a ≥ 0.

Proof. We only prove the last sentence. Assume that f is strictly positive.
Since T (A) is compact, there is a δ ∈ (0, 2ϵ) such that f(τ) > δ for all
τ ∈ T (A). Apply the first part of the proof to f − 1

2(∥f∥∞ + δ), which has

norm at most 1
2(∥f∥∞ − δ), to obtain a self-adjoint b ∈ A such that

(2.8) ∥b∥ ≤ 1

2
∥f∥∞ and τ(b) = f(τ)− 1

2
(∥f∥∞ + δ)

for all τ ∈ T (A). Then set a := b+ 1
2(∥f∥∞ + δ)1A. □

The essential starting point for all of our classification results is the clas-
sification of projections in finite von Neumann algebras by traces (parts (iii)
and (iv) in the proposition below), which goes back to Murray and von
Neumann. We review these results below; while these are well-known to
experts, they are most often stated for factors – particularly the existence
of projections realising arbitrary continuous affine functions – and in this
paper we need to work with arbitrary finite von Neumann algebras.

Proposition 2.8. LetM be a finite von Neumann algebra.

(i) Every trace onM factors uniquely through the centre-valued trace.23

(ii) The normal traces onM are dense in the traces onM.
(iii) Projections p, q ∈ M are unitarily equivalent if and only if τ(p) =

τ(q) for all τ ∈ T (M); p is Murray–von Neumann subequivalent to
q if and only if τ(p) ≤ τ(q) for all τ ∈ T (M).

23See [104, Theorem V.2.6] or [62, Theorem 8.2.8] for properties of the centre-valued
trace.
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(iv) IfM is type II1 and f : T (M)→ [0, 1] is a continuous affine func-
tion, then there is a projection p ∈M such that τ(p) = f(τ) for all
τ ∈ T (M).

Proof. (i). This is a consequence of Dixmier’s approximation theorem (see
[62, Proposition 8.3.10] or [7, Theorem III.2.5.7(iv)]).

(ii). As the centre-valued trace on M is normal (see [103, Theorem
V.2.34]), the result follows from (i) and the density of the normal states
in the states on the centre ofM.

(iii). The second part of the statement follows from Murray and von
Neumann’s comparison theorem for projections in von Neumann algebras,
the properties of the centre-valued trace, and (i); see [104, Corollary V.2.8],
for example. The first part follows from applying the second part both to p
and q and to 1M − p and 1M − q.

(iv). This proceeds in a very similar way to the proof that II1 factors
contain projections of arbitrary traces in [0, 1] (see [7, Theorem III.1.7.9
and Paragraph III.1.7.10], for example). As we have been unable to find a
reference, we give the details for completeness.

Let P be the set of projections p ∈ M such that τ(p) ≤ f(τ) for all
τ ∈ T (M). Then P ̸= ∅ as 0 ∈ P . Also, if (pλ) is an increasing chain of
projections inM with supremum p ∈M, then for any normal trace τ ∈M
we have

(2.9) τ(p) = lim
λ
τ(pλ) ≤ f(τ).

As f is weak∗-continuous, part (ii) gives p ∈ P . By Zorn’s Lemma, there is
a maximal p ∈ P . We will show f(τ) = τ(p) for all τ ∈ T (M).

Suppose this is not the case. By the Krein–Milman theorem, there exists
τ0 ∈ ∂eT (M) with τ0(p) < f(τ0). Set ϵ :=

1
2(f(τ0)− τ0(p)). By (i), there is

an isomorphism

(2.10) Z(M)
∼=−→ C(∂eT (M)) : a 7→

(
τ 7→ τ(a)

)
.

In particular, ∂eT (M) is totally disconnected. Let U ⊆ ∂eT (M) be a clopen
neighbourhood of τ0 so that

(2.11) τ(p) < f(τ)− ϵ

for all τ ∈ U , and let z ∈ Z(M) be the projection corresponding to the
characteristic function of U under the isomorphism in (2.10). Since τ(1M−
p) ≥ ϵ for all τ ∈ U , it follows that

(2.12) τ(z(1− p)) ≥ ϵ

for all τ ∈ ∂eT (zM), and hence for all τ ∈ T (zM).
Fix d ≥ 1 with 1/d < ϵ. Since M is type II1, so is the corner zM. By

the proof of [104, Theorem V.1.35] (which handles the case d = 2), there
is a unital embedding Md → zM, and in particular, there is a projection
e ∈ zM so that τ(e) = 1/d for all τ ∈ T (zM). By comparison of projections
in the von Neumann algebra zM, it follows that e is Murray–von Neumann
subequivalent to z(1−p). Hence after conjugating e by a unitary in zM, we
may assume e is orthogonal to zp. Since e is also orthogonal to the central
projection z⊥, it follows that e is orthogonal to p.
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Set p′ := p+e. Since e is orthogonal to p, it follows that p′ is a projection.
For τ ∈ ∂eX\U , we have τ(p′) = τ(p) ≤ f(τ), and for τ ∈ U , we have τ(p′) =
τ(p)+ 1

d < f(τ). By the Krein–Milman theorem, it follows that τ(p′) ≤ f(τ)
for all τ ∈ T (M), and so p′ ∈ P . This contradicts the maximality of p. □

Given a C∗-algebra A and τ ∈ T (A), let πτ : A → B(Hτ ) be the GNS
representation associated to τ . The induced von Neumann algebra πτ (A)

′′

has a faithful normal trace induced by τ and hence is finite. Therefore,
πτ (A)

′′ is the direct sum of a finite von Neumann algebra of type I and a
von Neumann algebra of type II1. Under the assumption that A has no
finite dimensional quotients, πτ (A)

′′ is of type II1 – this will be a common
hypothesis throughout the paper.

The following well-known characterisation of the extreme points of T (A)
will be used frequently in the paper. A version of the result for not neces-
sarily bounded tracial weights is given in [33, Theorem 6.7.3] – the result
below is a special case.24

Proposition 2.9 (cf. [33, Theorem 6.7.3]). If A is a unital C∗-algebra and
τ ∈ T (A), then τ is an extreme point of T (A) if and only if πτ (A)

′′ is a
factor.

The following lemma relates traces on the von Neumann algebra πτ (A)
′′

to traces on A. For a C∗-algebra A and a set of traces X ⊆ T (A), we define

(2.13) πX :=
⊕
τ∈X

πτ : A→ B
(⊕
τ∈X
Hτ

)
to be the direct sum of the GNS representations associated with the traces
in X.

Lemma 2.10. Suppose A is a unital C∗-algebra and X ⊆ T (A). If τ ∈
T (πX(A)

′′), then τ ◦ πX is in the closed face generated by X.

Proof. Let F ⊆ T (A) be the weak∗-closed face generated by X. By the
density of the normal traces on πX(A)

′′ in the traces on πX(A)
′′ (Proposition

2.8(ii)), we may assume τ is normal. By Theorem 2.4(ii), it suffices to show
that if f : T (A)→ [0, 1] is a continuous affine function vanishing on X, then
f(τ ◦πX) = 0. Fix such an affine function f . By applying Proposition 2.7 to
the strictly positive affine functions f + 1

n for each n ∈ N, we get a bounded
sequence (an)

∞
n=1 ⊆ A+ such that

(2.14) lim
n→∞

sup
σ∈T (A)

|σ(an)− f(σ)| = 0.

It follows that σ(an) → 0 for all σ ∈ X. Since an ≥ 0 and the sequence
(an)

∞
n=1 is bounded, this implies πX(an)→ 0 strongly in πX(A)

′′.25 Since τ
is normal, we have τ(πX(an))→ 0, and hence using (2.14) with σ = τ ◦ πX
implies that f(τ ◦ πX) = 0. □

24Note that an extreme point of T (A) is precisely a character of norm 1 in the sense
of [33, Definition 6.7.1].

25Indeed, the topology on πX(A)′′ induced by the seminorms

∥a∥2,σ := σ(a∗a)1/2, a ∈ πX(A)′′, σ ∈ X,

agrees with the strong topology on bounded sets – see [7, Proposition III.2.2.19], for
example.
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3. Tracially complete C∗-algebras

In this section, we introduce tracially complete C∗-algebras, which are
the central objects of study in this paper. We discuss the motivating exam-
ples, including the tracial completion of a C∗-algebra, and prove some basic
approximation and extension lemmas. We then construct inductive limits in
the category of tracially complete C∗-algebras. In the final subsection, we
examine the relationship between Ozawa’s W ∗-bundles ([86]) and tracially
complete C∗-algebras.

3.1. Definitions and basic properties. The definition of tracially com-
plete C∗-algebras is based on uniform 2-norms.

Definition 3.1 (cf. [68, 97, 110, 86], for example). For a C∗-algebra A and
a set X ⊆ T (A), define the uniform 2-seminorm on A by

(3.1) ∥a∥2,X := sup
τ∈X

√
τ(a∗a), a ∈ A.

The uniform 2-seminorm is indeed a seminorm, and the following inequal-
ity is easily verified:

(3.2) ∥ab∥2,X ≤ min{∥a∥∥b∥2,X , ∥a∥2,X∥b∥}, a, b ∈ A.

It is easily seen that ∥·∥2,X is a norm if and only if for every non-zero a ∈ A+

there exists τ ∈ X with τ(a) > 0. In this case, X is said to be a faithful set
of traces, and we refer to ∥ · ∥2,X as the uniform 2-norm with respect to X.

The following properties of the uniform 2-norm are standard in the unique
trace setting (i.e. when X is a singleton).

Proposition 3.2. Suppose A is a C∗-algebra and X ⊆ T (A) is a faithful
set of traces.

(i) ∥ · ∥ is lower semi-continuous with respect to ∥ · ∥2,X ;
(ii) The unit ball of A is ∥ · ∥2,X-closed;
(iii) A+ is ∥ · ∥2,X-closed.

Proof. Fix (an)
∞
n=1 ⊆ A and a ∈ A with ∥an − a∥2,X → 0. For τ ∈ X, let

πτ : A → B(Hτ ) denote the GNS representation of τ with associated cyclic
vector ξτ ∈ Hτ . If b ∈ A, then

∥(πτ (an)− πτ (a))πτ (b)ξτ∥ = ∥(an − a)b∥2,τ
≤ ∥an − a∥2,X∥b∥.

(3.3)

So πτ (an)η converges to π(a)η for all η ∈ πτ (A)ξτ . As πτ (A)ξτ is dense in
Hτ ,

(3.4) ∥πτ (a)∥ ≤ lim inf
n→∞

∥πτ (an)∥ ≤ lim inf
n→∞

∥an∥.

The product of the πτ over τ ∈ X is faithful, and hence isometric, since
∥ · ∥2,X is a norm on A. Therefore,

(3.5) ∥a∥ = sup
τ∈X
∥πτ (a)∥ ≤ lim inf

n→∞
∥an∥.

This proves (i), and (ii) is an easy consequence of (i).
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For (iii), suppose now that an ≥ 0 for all n ∈ N. Fix τ ∈ X. By (3.3), we
have

(3.6) ⟨πτ (a)πτ (b)ξτ , πτ (b)ξτ ⟩ = lim
n→∞

⟨πτ (an)πτ (b)ξτ , πτ (b)ξτ ⟩ ≥ 0,

since πτ (an) ≥ 0 for all n ∈ N. The density of πτ (A)ξτ in Hτ implies
⟨πτ (a)η, η⟩ ≥ 0 for all η ∈ Hτ , so πτ (a) ≥ 0. As X is a faithful set of traces,
the product of the πτ over τ ∈ X is faithful. Since πτ (a) ≥ 0 for all τ ∈ X,
it follows that a ≥ 0. □

We will restrict to the case when X ⊆ T (A) is weak∗-compact since the
weak∗-closure of X defines the same uniform 2-norm as X. The following
observation will allow us to further restrict to the case when X is convex.
For a set X ⊆ T (A), let co(X) denote the closed convex hull of X in A∗.

Proposition 3.3. If A is a C∗-algebra and X ⊆ T (A) is compact, then
co(X) ⊆ T (A) and ∥a∥2,X = ∥a∥2,co(X) for all a ∈ A.

Proof. Every τ ∈ co(X) is a positive tracial functional with ∥τ∥ ≤ 1. To see
the first claim, it remains to show that ∥τ∥ ≥ 1.

Let (eλ) ⊆ A be an approximate unit for A. Then (τ(eλ)) increases to 1
for all τ ∈ X. By Dini’s Theorem,26 this convergence is uniform over τ . Fix
ϵ > 0 and let λ be such that τ(eλ) > 1− ϵ for all τ ∈ X. Then τ(eλ) ≥ 1− ϵ
for all τ ∈ co(X). Therefore, each τ ∈ co(X) has norm 1.

Let a ∈ A. The set of all traces τ ∈ T (A) with τ(a∗a) ≤ ∥a∥22,X is weak∗-

closed, convex, and contains X. Therefore, ∥a∥2,co(X) ≤ ∥a∥2,X . The reserve
inequality is trivial as X ⊆ co(X). □

A tracial von Neumann algebra (i.e. a von Neumann algebra with a dis-
tinguished faithful normal trace) can be characterised abstractly as a pair
(M, τ) where M is a C∗-algebra and τ is a faithful trace on M such that
the unit ball ofM is ∥ ·∥2,τ -complete (this follows from [100, Lemma A.3.3],
for example). A morphism from a tracial von Neumann algebra (M, τM)
to another tracial von Neumann algebra (N , τN ) is a (necessarily normal)
∗-homomorphism ϕ : M → N such that τN ◦ ϕ = τM. Our definition of
tracially complete C∗-algebras and their morphisms are modelled on these
definitions.

Definition 3.4. A tracially complete C∗-algebra is a pair (M, X) whereM
is a C∗-algebra and X ⊆ T (M) is a compact convex set such that

(i) X is a faithful set of traces onM, and
(ii) the unit ball ofM is ∥ · ∥2,X -complete.

Given two tracially complete C∗-algebras (M, X) and (N , Y ), a morphism
ϕ : (M, X) → (N , Y ) between tracially complete C∗-algebras is a ∗-homo-
morphism ϕ : M → N such that ϕ∗(Y ) ⊆ X; i.e. τ ◦ ϕ ∈ X whenever
τ ∈ Y .

Strictly speaking, X can be the empty set, which forcesM to be the zero
C∗-algebra (which is unital). Needless to say, this degenerate case is not of
interest. Implicitly we always imagine X to be non-empty.

26Dini’s Theorem is often stated for increasing sequences of continuous functions, but
the standard proof is equally valid for increasing nets of continuous functions.
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A major source of examples of tracially complete C∗-algebras are obtained
by completing a C∗-algebra with respect to a compact convex set of traces.
In a special case, if A is a C∗-algebra and τ is a trace on A, then the GNS-
completion (πτ (A)

′′, τ) is a tracial von Neumann algebra which coincides
with the tracial completion of A with respect to {τ}. Tracial completions
will be discussed further in Section 3.3 below.

Another significant source of examples are W ∗-bundles, due to Ozawa
([86]).

Definition 3.5 ([86, Section 5]). Let K be a compact Hausdorff space.27

A W ∗-bundle over K is a unital C∗-algebra M together with a unital em-
bedding C(K) ⊆ Z(M) and a conditional expectation E :M→ C(X) such
that

(i) E is tracial in the sense that E(ab) = E(ba) for all a, b ∈M, and
(ii) the unit ball of M is complete with respect to the norm ∥ · ∥2,E ,

defined by ∥a∥2,E := ∥E(a∗a)∥1/2 for all a ∈M.

The fibre of M at a point x ∈ K is πτx(M), where τx = evx ◦ E; this is
equal to πτx(M)′′ by [86, Theorem 11].

Every W ∗-bundle gives rise to a tracially complete C∗-algebra.

Proposition 3.6. LetM be a W ∗-bundle over K with conditional expecta-
tion E :M→ C(K). Let X be the set of traces onM of the form

(3.7) τ(a) =

∫
K
E(a) dµ, a ∈M,

for µ ∈ Prob(K), the space of Radon probability measures on K. Then
(M, X) is a tracially complete C∗-algebra and X is a Bauer simplex with
extreme boundary ∂eX ∼= K.

Proof. There is a continuous affine embedding

(3.8) Prob(K)→ T (M) : µ 7→
∫
K
E( · ) dµ.

If X ⊆ T (M) denotes the image of this map, then X is compact and convex,
and the map above restricts to a homeomorphism K → ∂eX. Since X is the
closed convex hull of its extreme points, we have

(3.9) ∥a∥2,X = ∥a∥2,∂eX = ∥E(a∗a)∥1/2 = ∥a∥2,E
for all a ∈ M. Since M is a W ∗-bundle, it follows that ∥ · ∥2,X is a norm
and the unit ball ofM is ∥ · ∥2,X -complete. □

We will give a partial converse of the previous result (also essentially due
to Ozawa) in Section 3.6. The most straightforward examples ofW ∗-bundles
are the trivial bundles.

Example 3.7. (cf. [86, Theorem 13 and the preceding paragraph]) Let K
be a compact Hausdorff space and let (N , τN ) be a tracial von Neumann
algebra. Define Cσ(K,N ) to be the set of ∥ · ∥-bounded, ∥ · ∥2,τN -continuous
functions K → N . This is a unital C∗-algebra.

27In [86], it is assumed K is metrisable, but this is not needed here. The non-metrisable
case was also considered in [10] where ultraproducts of W ∗-bundles were developed.
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Let Prob(K) be the set of Radon probability measures on K, and for
µ ∈ Prob(K), define τµ ∈ T

(
Cσ(K,N )

)
by

(3.10) τµ(f) :=

∫
K
τN (f(x)) dµ(x), f ∈ Cσ(K,N ).

Defining X := {τµ : µ ∈ Prob(K)}, one finds that

(3.11) ∥f∥2,X = max
x∈K
∥f(x)∥2,τN , f ∈ Cσ(K,N ).

Then
(
Cσ(K,N ), X

)
is a tracially complete C∗-algebra called the trivial

W ∗-bundle over K with fibre (N , τN ).

For any compact space K, we note thatM := C(K) together with X :=
T (M) ∼= Prob(X) is a tracially complete C∗-algebra where ∥ · ∥ and ∥ · ∥2,X
agree. More generally, if Mn denotes the C∗-algebra of n × n matrices
over C, then Mn = C(K,Mn), together with X = T (M) ∼= Prob(X) is a
tracially complete C∗-algebra where ∥ · ∥ and ∥ · ∥2,X are equivalent norms.
These examples show that we cannot expect tracially complete C∗-algebras
to behave like von Neumann algebras in general.

An important tool for investigating the structure of a tracially complete
C∗-algebra (M, X) is the GNS representation πτ :M→ B(Hτ ) for τ ∈ X.
Each τ ∈ X induces a faithful trace on the von Neumann algebra πτ (M)′′.
We view these GNS representations as giving rise to ‘fibres’ on tracially
complete C∗-algebras. We are intentially somewhat vague as to the formal
definition of the fibre at τ : should it be πτ (M) or πτ (M)′′ and should we
use all traces in X or restrict to ∂eX (as in the W ∗-bundle case)? For non-
extreme traces, πτ (M) and πτ (M)′′ can differ, even whenM is aW ∗-bundle
(i.e. X is Bauer). We return to this discussion with Question 3.16.

For many of our latter results in this paper, we will want to restrict to
the case that the von Neumann algebras πτ (M)′′ are all type II1.

Definition 3.8. A tracially complete C∗-algebra (M, X) is said to be type
II1 if πτ (M)′′ is a type II1 von Neumann algebra for every τ ∈ X.

We now turn to proving some basic properties of tracially complete C∗-
algebras. The following two results are both standard in the setting of tracial
von Neumann algebras.

Proposition 3.9. Every tracially complete C∗-algebra is unital.

Proof. Suppose (M, X) is a tracially complete C∗-algebra and let (eλ) be
an approximate unit for M. Then (τ(eλ)) ⊆ R is an increasing net con-
verging to 1 for all τ ∈ X, and since X is compact, Dini’s Theorem implies
this convergence is uniform in τ . As (eλ) is an increasing net of positive
contractions,

(3.12) ∥eλ − eµ∥22,X = sup
τ∈X

τ
(
(eλ − eµ)2

)
≤ sup

τ∈X
τ(eλ − eµ),

whenever λ ≥ µ. Hence, (eλ) is a ∥ · ∥2,X -Cauchy net in the unit ball ofM.
SinceM is tracially complete, (eλ) ∥·∥2,X -converges to a positive contraction
e ∈ M by Proposition 3.2(iii). For all a ∈ M, working in the unitisation
M† ofM and extending each τ ∈ X toM†,

(3.13) ∥(1M† − e)a∥22,X ≤ sup
τ∈X

τ(1M† − e)∥a∥2 = 0,
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and hence e is a unit forM. □

Proposition 3.10. Every morphism of tracially complete C∗-algebras is
unital and contractive with respect to the uniform 2-norms.

Proof. Suppose ϕ : (M, X)→ (N , Y ) is a morphism between tracially com-
plete C∗-algebras. To see ϕ is contractive, fix τ ∈ T (Y ) and a ∈ M. Then
τ ◦ ϕ ∈ X by the definition of a morphism, so

(3.14) τ
(
ϕ(a)∗ϕ(a)

)
= (τ ◦ ϕ)(a∗a) ≤ sup ∥a∥22,X .

Taking the supremum over τ yields ∥ϕ(a)∥2,Y ≤ ∥a∥2,X for all a ∈M.
To see ϕ is unital, first note that ϕ(1M) ≤ 1N . If τ ∈ Y , then τ ◦ ϕ ∈ X,

so τ(ϕ(1M)) = 1. Therefore,
∥∥1N − ϕ(1M)

∥∥
2,Y

= 0, and hence ϕ(1M) =

1N . □

Note that if (M, X) is a tracially complete C∗-algebra and N ⊆ M is
a ∥ · ∥2,X -closed unital C∗-subalgebra,28 we may form a tracially complete
C∗-algebra (N , Y ) where

(3.15) Y := {τ |N : τ ∈ X} ⊆ T (N ).

We call (N , Y ) a tracially complete C∗-subalgebra of (M, X). This suggests
the following notion of an embedding of tracially complete C∗-algebras.

Definition 3.11. Let (M, X) and (N , Y ) be tracially complete C∗-algebras.
A morphism ϕ : (M, X)→ (N , Y ) is called an embedding if ϕ∗(Y ) = X.

The next proposition justifies the terminology.

Proposition 3.12. A morphism ϕ : (M, X) → (N , Y ) is an embedding if
and only if ∥ϕ(a)∥2,Y = ∥a∥2,X for all a ∈M. Further, if ϕ is an embedding,
then ϕ is isometric in the operator norm.

Proof. If ϕ is an embedding, then for a ∈M, we have

(3.16) ∥ϕ(a)∥2,Y = sup
τ∈Y

τ(ϕ(a∗)ϕ(a))1/2 = sup
σ∈X

σ(a∗a)1/2 = ∥a∥2,X .

To show the converse, suppose ϕ∗(Y ) ̸= X and fix τ0 ∈ X \ ϕ∗(Y ). As
ϕ∗(Y ) is weak∗-closed and convex, there exists a self-adjoint a ∈ M such
that τ0(a) > supσ∈ϕ∗(Y ) σ(a) by the Hahn–Banach theorem. Replacing a by

a+ ∥a∥1M, we may assume a ∈M+. We then have

(3.17) ∥a1/2∥2,X ≥ τ0(a) > ∥ϕ(a1/2)∥2,Y ,

so ϕ is not isometric in the uniform 2-norm.
When ϕ is an embedding, it is injective since ∥ · ∥2,X is a norm, and

therefore, it is isometric in the operator norm. □

28Note that a C∗-subalgebra N ⊆ M is ∥ · ∥2,X -closed if and only if the unit ball of
N is ∥ · ∥2,X -closed in the unit ball of M. The forward direction is immediate, and the
backward direction follows from Lemma 3.27 below.



TRACIALLY COMPLETE C∗-ALGEBRAS 31

3.2. Factoriality. The following class of tracially complete C∗-algebras will
be of greatest interest to us. This class includes the tracial completion of a
unital C∗-algebras A with respect to the trace simplex T (A), which is the
main example of interest (see Proposition 3.23(iv)).

Definition 3.13. A tracially complete C∗-algebra (M, X) is said to be
factorial if X is a closed face of T (M).

When X is a singleton, a tracially complete C∗-algebra is a tracial von
Neumann algebra (M, τ), and in this case, {τ} is a face of T (M) if and
only if M is a factor.29 Further, the trivial W ∗-bundle Cσ(K,N ) from
Example 3.7 is factorial as a tracially complete C∗-algebra if and only if the
fibre N is a factor. An analogous result holds for non-trivial W ∗-bundles
(see Proposition 3.6). More generally, we have the following result.

Proposition 3.14. A tracially complete C∗-algebra (M, X) is factorial if
and only if πτ (M)′′ is a factor for every extreme point τ of X.

Proof. By Theorem 2.5, (M, X) is factorial if and only if ∂eX ⊆ ∂eT (M).
Also, by Proposition 2.9, ∂eX ⊆ ∂eT (M) if and only if πτ (M)′′ is a factor
for all τ ∈ ∂eX. □

The following result shows the equivalence of the two versions of the ques-
tion stated as the trace problem (Question 1.1). The proof of this propo-
sition illustrates the utility of factoriality: it allows for powerful separation
arguments coming from the classical result that closed faces in Choquet sim-
plices are relatively exposed. The exposedness appears in the proof via an
application of Theorem 2.4(ii).

Proposition 3.15. If (M, X) is a tracially complete C∗-algebra, then every
∥ · ∥2,X-continuous trace onM belongs to the closed face of T (M) generated
by X. In particular, if (M, X) is factorial, then X is precisely the set of all
∥ · ∥2,X-continuous traces onM.

Proof. Since M is a unital C∗-algebra, T (M) is a Choquet simplex (The-
orem 2.6). By Theorem 2.4, it suffices to show that if τ0 ∈ T (M) is
∥ · ∥2,X -continuous and f : T (M) → [0, 1) is a continuous affine function
with f |X = 0, then f(τ0) = 0. Fix such a trace τ0 and function f . By
Proposition 2.7, applied to f + 1

n , there is a sequence of positive contrac-
tions (an)

∞
n=1 ⊆M such that

(3.18) sup
τ∈T (M)

|τ(an)− f(τ)| → 0.

Since f(τ) = 0 for all τ ∈ X, we have ∥a1/2n ∥2,X → 0. As each an is
contractive, it follows from (3.2) that ∥an∥2,X → 0. Now, since τ0 is ∥ · ∥2,X -
continuous, we have τ0(an)→ 0, and hence (3.18) implies f(τ0) = 0. □

Returning to our viewpoint that the GNS representations of tracially
complete C∗-algebras should be viewed as giving rise to their fibres in some
kind of affine bundle structure, the following question is natural. Ozawa’s

29If M is a factor, then T (M) = {τ}, and in particular, {τ} is a face of T (M).
Conversely, if {τ} is a face of T (M), then M ∼= πτ (M)′′ is a factor since τ is extremal
(see Proposition 2.9).
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[86, Theorem 11] gives a positive answer for all W ∗-bundles (factorial or
not).

Question 3.16. Let (M, X) be a factorial tracially complete C∗-algebra.
Is it the case that πτ (M)′′ = πτ (M) for all τ ∈ ∂eX?

We end the subsection with a some examples. Given a finite von Neumann
algebra M, instead of specifying a faithful trace τ (which will exist when
M has a separable predual) and viewing M as a (generally non-factorial)
tracially complete C∗-algebra over a singleton set, one can work with all
the traces. By [42, Proposition 3.1.6], ∥ · ∥2,T (M) is a complete norm on the

unit ball ofM, so that
(
M, T (M)

)
is a tracially complete C∗-algebra which

is evidently factorial. This example will play a technical role in obtaining
CPoU from property Γ in Section 6.4.

Proposition 3.17. LetM be a finite von Neumann algebra. Then the pair(
M, T (M)

)
is a factorial tracially complete C∗-algebra.

It is worth noting that when (M, τ) is a tracial von Neumann algebra,
the tracially complete C∗-algebras

(
M, {τ}

)
and (M, T (M)) can behave

very differently, despite having the same underlying C∗-algebra. See Propo-
sition 4.11, for example.

For later use, we note that matrix algebras over tracially complete C∗-
algebras are also tracially complete C∗-algebras in a natural way. Let trd
denote the unique trace on the C∗-algebra Md of d× d matrices over C. For
a C∗-algebra A and a set X ⊆ T (A), define

(3.19) X ⊗ {trd} := {τ ⊗ trd : τ ∈ X} ⊆ T (A⊗Md).

Proposition 3.18. If (M, X) is a tracially complete C∗-algebra and d ∈
N, then (M⊗Md, X ⊗ {trd}) is a tracially complete C∗-algebra. Further,
(M, X) is factorial if and only if (M⊗Md, X ⊗ {trd}) is factorial.

Proof. Since the map T (M) → T (M⊗ Md) given by τ 7→ τ ⊗ trd is an
affine homeomorphism, we have that X ⊗ {trd} is a compact convex subset
of T (M⊗Md) and is a face if and only if X is a face in T (M). Thus it
suffices to show that X ⊗ {trd} is a faithful set of traces on M⊗Md and
the unit ball ofM⊗Md is ∥ · ∥2,X⊗{trd}-complete.

Given a ∈ M⊗Md, write a =
∑d

i,j=1 ai,j ⊗ ei,j for some ai, j ∈ M. For
τ ∈ X,

(3.20) (τ ⊗ trd)(a
∗a) =

1

d
τ
( d∑
i,j=1

a∗i,jaj,i

)
.

If a ̸= 0, then there exist i and j with a∗i,jai,j ̸= 0. As X is a faithful set of

traces, there exists τ ∈ X such that τ(a∗i,jai,j) ̸= 0. Therefore,

(3.21) (τ ⊗ trd)(a
∗a) ≥ τ(a∗i,jai,j) > 0,

as required.
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Since X × {trd} is a faithful set of traces on M⊗Md, the unit ball of
M⊗Md is ∥ · ∥2,X⊗{trd}-closed by Proposition 3.2(ii). Furthermore,

1

d
max

1≤i,j≤d
∥ai,j∥22,X ≤ ∥a∥22,X⊗{trd} ≤

1

d

d∑
i,j=1

∥ai,j∥22,X(3.22)

as an immediate consequence of (3.20). The ∥ · ∥2,X⊗{trd}-completeness of
the unit ball of M⊗Md now follows from the ∥ · ∥2,X -completeness of the
unit ball ofM. □

3.3. Tracial completions. In this section, we recall Ozawa’s tracial com-
pletion construction from [86] and its important features. This is both the
motivation for our study of tracially complete C∗-algebras and an important
tool in the theory that we develop.

Definition 3.19 (cf. [86]). Let A be a C∗-algebra. For a compact convex set
X ⊆ T (A), the tracial completion of A with respect to X is the C∗-algebra30

(3.23) A
X

:=
{(an)∞n=1 ∈ ℓ∞(A) : (an)

∞
n=1 is ∥ · ∥2,X -Cauchy}

{(an)∞n=1 ∈ ℓ∞(A) : (an)∞n=1 is ∥ · ∥2,X -null}
.

Remark 3.20. In Ozawa’s work, the notation A
u
is used for the tracial

completion with X being understood from the context. Ozawa also notes
that A

u
can be viewed as the strict closure of the range of a certain represen-

tation of A on a Hilbert module. This leads to the alternative terminology
strict closure for the uniform tracial completion and the alternative notation

A
st
used in [86, 10]. Since it is important for us to keep track of the set X,

we include it in the notation for tracial completions in this paper.

We define αX : A → A
X

to be the map given by sending a ∈ A to the
image of the constant sequence (a, a, . . . ). We also define a second norm
on the tracial completion by (an)

∞
n=1 7→ limn→∞ ∥an∥2,X . It is immediate

that this limit exists for any ∥ · ∥2,X -Cauchy sequence (an)
∞
n=1 ∈ ℓ∞(A) and

induces a well-defined norm on the quotient. Abusing notation slightly,
we also write ∥ · ∥2,X for this second norm, the justification being that
∥αX(a)∥2,X = ∥a∥2,X for all a ∈ A.31

Tracial completions with respect to a single trace are nothing but the von
Neumann algebra generated by the associated GNS representation.

Proposition 3.21. Let A be a C∗-algebra and τ ∈ T (A). Then, for X :=

{τ}, the tracial completion A
X

can be canonically identified with the von
Neumann algebra πτ (A)

′′, where πτ is the GNS representation associated to

τ ; i.e. there is an isomorphism θ : A
X → πτ (A)

′′ such that θ ◦ αX = πτ .

30It is not hard to see – using (3.2) – that the ∥ · ∥-bounded, ∥ · ∥2,X -Cauchy sequences
in A form a C∗-subalgebra of ℓ∞(A) and that the ∥ · ∥-bounded, ∥ · ∥2,X -null sequences
form an ideal of this subalgebra.

31When ∥ · ∥2,X is a norm on A, αX is an embedding and it is natural to identify A
with αX(A). If one desires, one can quotient A by the ideal of ∥ · ∥2,X -null elements first
before performing the tracial completion (replacing X with the set of induced traces on
the quotient). In this way, one can reduce to the case that αX is an embedding.
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Proof. As the unit ball of πτ (A)
′′ is ∥·∥2,τ -complete (see [100, Lemma A.3.3],

for example), there is a well-defined ∗-homomorphism

(3.24) θ̃ : {(an)∞n=1 ∈ ℓ∞(A) : (an)
∞
n=1 is ∥ · ∥2,X -Cauchy} → πτ (A)

′′

given θ̃((an)) = limπτ (an), where the limit is taken in the norm ∥ · ∥2,τ .
The kernel of this map consists of the ∥ · ∥2,X -null sequences, so the first
isomorphism theorem gives an injective ∗-homomorphism θ with θ◦αX = πτ .

As the unit ball of A
X

is complete in the 2-norm and θ is isometric with
respect to the 2-norms, the image of the unit ball of θ is ∥ · ∥2,τ -closed and
contains the unit ball of πτ (A). By Kaplansky’s density theorem, the unit
ball of πτ (A) is ∥ · ∥2,τ -dense in the unit ball of πτ (A)

′′, and hence θ is
surjective, proving that θ is an isomorphism. □

Very similarly, tracial completions with respect to finite dimensional sim-
plices also come from GNS representations.

Example 3.22. When X is a finite dimensional simplex, the tracial com-
pletion is πτ (A)

′′, where τ is the average of the traces in ∂eX, and so this
tracial completion is again a von Neumann algebra.

For each trace τ ∈ X, we define an induced trace τ̃ on A
X

by set-
ting τ̃(a) := limn→∞ τ(an) for any representative ∥ · ∥2,X -Cauchy sequence
(an)

∞
n=1 ∈ ℓ∞(A). The inequality |τ(a)| ≤ ∥a∥2,X , which holds for all a ∈ A,

ensures that this limit exists and that τ̃ is well-defined on the tracial com-
pletion. The induced trace satisfies τ̃(αX(a)) = τ(a) for all a ∈ A and
is the unique ∥ · ∥2,X -continuous trace with this property since αX(A) is
∥ · ∥2,X -dense in the tracial completion.32

The following proposition establishes the basic properties of tracial com-
pletions.

Proposition 3.23. Let A be a C∗-algebra and let X be a compact convex

subset of T (A). Let X̃ ⊆ T (AX) denote the set of all traces on A
X

that are
induced by traces in X.

(i) With the notation in the paragraph preceding the proposition, the

seminorm ∥ · ∥
2,X̃

coincides with the norm ∥ · ∥2,X on A
X
.

(ii) The map X → X̃ sending a trace to its induced trace is an affine

homeomorphism, where X and X̃ are equipped with their respective
weak∗ topologies.

(iii) The pair (A
X
, X̃) is a tracially complete C∗-algebra.

(iv) The completion (A
X
, X̃) is factorial if and only if X is a face in

T (A).

(v) Let Y ⊂ X be a compact convex set and let Ỹ denote the image

of Y in X̃. Then (A
Y
, Y ) and (A

X
Ỹ

, Ỹ ) are isomorphic via an

32By construction, τ̃ is ∥ · ∥2,X -continuous on ∥ · ∥-bounded subsets of A
X
; continuity

on all of A
X

follows from Proposition 3.23(i) (or from (3.27) in the proof).
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isomorphism θ such that

(3.25)

A A
Y

A
X

A
X
Ỹ

αY

αX θ

αỸ

commutes.
(vi) Given τ ∈ X with extension τ̃ to A

X
, write πτ : A → πτ (A)

′′ and

πτ̃ : A
X → πτ̃ (A

X
)′′ for the respective GNS representations. Then

αX : A → A
X

induces an isomorphism θ : πτ (A)
′′ → πτ̃ (A

X
)′′ such

that

(3.26)

A πτ (A)
′′

A
X

πτ̃ (A
X
)′′

πτ

αX θ

πτ̃

commutes.

Proof. (i): Let a ∈ AX be represented by a ∥·∥2,X -Cauchy sequence (an)
∞
n=1 ∈

ℓ∞(A). Let τ ∈ X. Then

(3.27) ∥a∥22,τ̃ = lim
n→∞

τ(a∗nan) ≤ lim
n→∞

∥an∥22,X = ∥a∥22,X .

Hence ∥a∥
2,X̃
≤ ∥a∥2,X for all a ∈ AX , and this implies ∥ · ∥

2,X̃
is ∥ · ∥2,X -

continuous. Since ∥αX(a)∥2,X = ∥a∥2,X = ∥αX(a)∥2,X̃ for all a ∈ A and

αX(A) is ∥ · ∥2,X -dense in A
X
, we deduce ∥a∥2,X = ∥a∥

2,X̃
for all a ∈ AX .

(ii): It is clear that the map τ 7→ τ̃ is affine and bijective. As X is

compact and X̃ is Hausdorff, it suffices to show continuity of this map. Let

(τλ)λ be a net in X that converges to τ ∈ X and let τ̃λ, τ̃ ∈ X̃ denote the
∥ · ∥2,X -continuous traces induced by τλ and τ , respectively. We must show
that τ̃λ → τ̃ .

Let a ∈ AX and let ϵ > 0. Pick b ∈ A such that ∥a − αX(b)∥2,X < ϵ/3.
Pick λ0 such that for λ ≥ λ0, we have τλ(b) ≈ϵ/3 τ(b). Then for λ ≥ λ0,

(3.28) τ̃(a) ≈ϵ/3 τ̃(αX(b)) = τ(b) ≈ϵ/3 τλ(b) = τ̃λ(αX(b)) ≈ϵ/3 τ̃λ(a),

showing continuity of the extension map.

(iii): It follows from (ii) that X̃ is a compact convex subset of T (A
X
). By

the construction of A
X
, the seminorm ∥ · ∥2,X is a norm and the unit ball of

A
X

is ∥·∥2,X -complete, so by (i), the unit ball of A
X

is also ∥·∥
2,X̃

-complete.

(iv): Suppose thatX is a face in T (A). To show that X̃ is a face of T (A
X
),

suppose we can write τ ∈ X̃ as τ = 1
2(τ1+τ2) for some τ1, τ2 ∈ T (A

X
). Since

(αX(eλ)) converges to the unit of A
X

for any approximate unit (eλ) of A, it
follows that τ◦αX is a trace on A. AsX is a face of T (A), τ1◦αX , τ2◦αX ∈ X.
Also, since τ1, τ2 ≤ 2τ and τ is ∥ · ∥

2,X̃
-continuous, it follows that τ1 and
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τ2 are also ∥ · ∥2,X -continuous. Thus τ1 and τ2 are the ∥ · ∥
2,X̃

-continuous

extensions of τ1 ◦ αX , τ2 ◦ αX respectively, so τ1, τ2 ∈ X̃.

Conversely, suppose (A
X
, X̃) is factorial and τ1, τ2 ∈ T (A) satisfy τ :=

1
2(τ1 + τ2) ∈ X̃. Then τ is ∥ · ∥2,X -continuous, and hence so are τ1 and τ2 as
they are dominated by 2τ . Now, τ , τ1, and τ2 extend to ∥ · ∥2,X -continuous
traces τ̃ , τ̃1, and τ̃2 on A

X
, respectively, using that the unit ball of αX(A) is

∥ · ∥
2,X̃

-dense in the unit ball of A
X
. Then τ̃ ∈ X̃ and τ̃ = 1

2(τ̃1 + τ̃2). Since

(A
X
, X̃) is factorial, we have τ̃1 and τ̃2 are in X̃, so τ1 and τ2 are in X.

(v): The map αX : A→ A
X
is ∥·∥2,Y -∥·∥2,Ỹ -isometric. Therefore, it sends

∥·∥2,Y -Cauchy and ∥·∥2,Y -null sequences in A to ∥·∥2,Ỹ -Cauchy and ∥·∥2,Ỹ -
null sequences in A

Y
(respectively). Accordingly, it induces θ making (3.25)

commute. By commutativity of this diagram and the inequality ∥ · ∥2,Ỹ ≤
∥ · ∥2,X on A

X
, the image of the unit ball of A

Y
under θ is dense in the unit

ball of A
X
Ỹ

. Since θ is isometric with respect to the uniform 2-norms and

the unit ball of A
Y

is ∥ · ∥2,Y -complete, θ is surjective.
(vi): This follows from (v) using Proposition 3.21 to identify uniform

tracial completions at τ and τ̃ with the von Neumann algebras generated
by the associated GNS representations.

□

Notation 3.24. With Proposition 3.23 now established, we will typically

identify X with X̃ henceforth. Furthermore, for a trace τ ∈ X, we will write

τ in place of τ̃ for the induced trace on A
X
.

Not surprisingly, tracial completions satisfy a universal property allow-
ing for trace-preserving u.c.p. maps to be extended by continuity to tracial
completions.

Proposition 3.25. Let A be a C∗-algebra and let X be a compact convex
subset of T (A). If (N , Y ) is a tracially complete C∗-algebra and θ : A→ N
is a u.c.p. map such that τ ◦θ ∈ X for all τ ∈ Y , then there is a unique u.c.p.

map θ : A
X → N of tracially complete C∗-algebras such that θ ◦αX = θ and

τ ◦ θ ∈ X for all τ ∈ Y . Further, if θ is a ∗-homomorphism, then so is θ.

Proof. For uniqueness, consider a u.c.p. map ϕ : A
X → N with τ ◦ ϕ ∈ X

for all τ ∈ Y . Then for τ ∈ Y and a ∈ AX ,
(3.29) τ(ϕ(a)∗ϕ(a)) ≤ τ(ϕ(a∗a)) ≤ ∥a∥22,X ,
where the first inequality follows from the Schwarz inequality for u.c.p. maps
(cf. [88, Proposition 3.3]) and the second inequality is a consequence of the
hypothesis on traces. Accordingly, ϕ is ∥ · ∥2,X -∥ · ∥2,Y -continuous. By the

∥ · ∥2,X -density of αA(A) in A
X
, it follows that any extension of θ as in the

proposition must be unique.
We turn to the proof of existence. Since θ∗(Y ) ⊆ X, the same com-

putation used above shows ∥θ(a)∥2,Y ≤ ∥a∥2,X for all a ∈ A. Hence if
(an)

∞
n=1 ⊆ A is a ∥·∥-bounded, ∥·∥2,X -Cauchy sequence in A, then (θ(an))

∞
n=1

is a ∥ · ∥-bounded, ∥ · ∥2,Y -Cauchy sequence in N . Therefore, we obtain a
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well-defined map θ : A
X → N by θ(a) := limn→∞ θ(an), where (an)

∞
n=1 ⊆ A

is a ∥ · ∥-bounded, ∥ · ∥2,X -Cauchy sequence representing a ∈ AX and where

the limit is taken in the norm ∥ · ∥2,Y . By construction, θ ◦ αX = θ. Using

Propositions 3.2(iii) and 3.18, a density argument gives that θ is a u.c.p.
map. Likewise when θ is a ∗-homomorphism, a density argument, this time
using continuity of multiplication in the uniform 2-norm on norm-bounded
sets, shows that so too is θ̄.

It remains to check that τ ◦ θ ∈ X for all τ ∈ Y . Note that ∥θ(a)∥2,Y ≤
∥a∥2,X for all a ∈ AX . Therefore, if τ ∈ Y , then τ ◦ θ is ∥ · ∥2,X -continuous.
Now since τ ◦ θ ◦ αX = τ ◦ θ ∈ X, we have τ ◦ θ ∈ X. □

3.4. Dense subalgebras of tracially complete C∗-algebras. We will
frequently need a version of Kaplansky’s density theorem for tracially com-
plete C∗-algebras (Lemma 3.27 and Proposition 3.28 below). This is ob-
tained using the well-known matrix amplification trick to reduce to the self-
adjoint case. At the core is the following estimate.

Lemma 3.26. Let A be a commutative C∗-algebra and τ ∈ T (A). Suppose
f : R → R is Lipschitz continuous with constant M > 0. If a, b ∈ A are
self-adjoint, then ∥f(a)− f(b)∥2,τ ≤M∥a− b∥2,τ .
Proof. View A ∼= C0(K) and a, b ∈ C0(K) for a locally compact Hausdorff
space K. Since f is M -Lipschitz continuous, we have

|f(a(t))− f(b(t))| ≤M |a(t)− b(t)|(3.30)

for all t ∈ K. It follows that

|f(a)− f(b)|2 ≤M2|a− b|2(3.31)

in A, and the claim follows by applying τ . □

We isolate the following quantitative version of Kaplansky’s density the-
orem for later use.

Lemma 3.27. Let (M, X) be a tracially complete C∗-algebra and let A ⊆M
be a C∗-subalgebra. If b ∈M is a contraction, ϵ > 0, and there is an a ∈ A
with ∥a− b∥2,X < ϵ, then there is a contraction a′ ∈ A with ∥a′− b∥2,X < 3ϵ.

Proof. We first prove the result in the case where b is self-adjoint. By replac-
ing a with its real part, we may assume a is self-adjoint as well. Consider
the function f : R→ R given by

(3.32) f(t) :=


−1 t < −1;
t, t ∈ [−1, 1];
1, t > 1.

We will show ∥f(a) − b∥2,X < 3ϵ, so that the result (in this case) holds by
setting a′ := f(a).

Fix τ ∈ X and let E : πτ (M)′′ → {πτ (a)}′′ be the τ -preserving conditional
expectation, which is contractive with respect to each of the norms ∥ · ∥
and ∥ · ∥2,τ .33 Set a1 := πτ (a), and note that E(a1) = a1. Therefore, for

33The expectation is given explicitly by E(πτ (c))ξτ = Pπτ (c)ξτ for c ∈ M, where
ξτ ∈ Hτ is the canonical cyclic vector and P is the projection of Hτ onto the closure of
πτ (a)Hτ – see [15, Lemma 1.5.11], for example, for more details.
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b1 := E(πτ (b)),

∥a1 − b1∥2,τ ≤ ∥πτ (a)− πτ (b)∥2,τ < ϵ,(3.33)

and Lemma 3.26 applied to {πτ (a)}′′ implies

∥f(a1)− f(b1)∥2,τ ≤ ∥a1 − b1∥2,τ < ϵ.(3.34)

Since b1 is a self-adjoint contraction, f(b1) = b1.
Hence, in the norm ∥ · ∥2,τ , we have strict approximations

(3.35) πτ (f(a)) = f(a1) ≈ϵ f(b1) = b1 ≈ϵ a1 = πτ (a) ≈ϵ πτ (b).
Therefore, ∥πτ (f(a))−πτ (b)∥2,τ < 3ϵ. This completes the proof for the case
when b is self-adjoint.

In the general case, view M⊗M2 as a tracially complete C∗-algebra as
in Proposition 3.18. By the first part of the proof, there is a self-adjoint
contraction a′′ = (a′′ij) ∈ A⊗M2 such that

(3.36)
∥∥∥a′′ − (

0 b
b∗ 0

)∥∥∥
2,X⊗{tr2}

< 3ϵ.

Since a′′ is self-adjoint, a′′21 = a′′∗12. For any τ ∈ X, we compute that

∥a′′12 − b∥22,τ ≤
1

2
τ
(
|a′′11|2 + 2|a′′12 − b|2 + |a′′22|2

)
=

∥∥∥a′′ − (
0 b
b∗ 0

)∥∥∥2
2,τ⊗{tr2}

< (3ϵ)2.

(3.37)

Hence, taking a′ := a′′12, we have ∥a′ − b∥2,X < 3ϵ. □

The following version of Kaplansky’s density theorem follows immediately
from the previous lemma.

Proposition 3.28 (cf. [80, Theorem 4.3.3]). Let (M, X) be a tracially com-
plete C∗-algebra and let A ⊆M be a ∥ · ∥2,X-dense C∗-subalgebra. Then the
unit ball of A is ∥ · ∥2,X-dense in the unit ball ofM.

As an application, a tracially complete C∗-algebra is the tracial comple-
tion of any of its ∥ · ∥2,X -dense subalgebras.

Corollary 3.29. Suppose (M, X) is a tracially complete C∗-algebra and let
A ⊆M be a ∥ · ∥2,X-dense C∗-subalgebra.

(i) XA := {τ |A : τ ∈ X} ⊆ T (A) is a compact convex set and the

inclusion A ↪→M induces an isomorphism (A
XA , XA)→ (M, X).

(ii) If (M, X) is factorial, then XA is a closed face in T (A).
(iii) If (N , Y ) is another tracially complete C∗-algebra and ϕ : A→ N is

a ∗-homomorphism with ϕ∗(Y ) ⊆ XA, then ϕ has a unique extension

to ϕ̃ : (M, X)→ (N , Y ).

Proof. (i): Proposition 3.28 implies the unit ball of A is ∥ · ∥2,X -dense in
the unit ball of M. Therefore, if τ ∈ X, then τ |A has norm 1, and hence
XA ⊆ T (A). AsX is compact and convex so too isXA. By Proposition 3.25,

the inclusion A ↪→ M extends to a morphism θ : (A
XA , XA) → (M, X) of

tracially complete C∗-algebras.
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Note that θ is an embedding in the sense of Definition 3.11, and hence is
isometric by Proposition 3.12. Further, the range of θ contains the ∥ · ∥2,X -
dense subalgebra A ⊆ M. Since the unit ball of A

XA is ∥ · ∥2,XA
-complete,

Kaplansky’s density theorem (Proposition 3.28) implies θ maps the unit ball

of A
XA onto the unit ball ofM, and in particular θ is surjective. Finally, for

τ ∈ X, τ ◦θ−1 is a ∥·∥2,X -continuous trace on A
XA extending τ |A, so τ ∈ XA.

This shows θ−1 is also a morphism of tracially complete C∗-algebras.
(ii): In light of (i), this follows from Proposition 3.23(iv).
(iii): This follows from (i) and Proposition 3.25. □

3.5. Constructions. There is a recipe for producing constructions on tra-
cially complete C∗-algebras.

(i) Perform the corresponding (spatial) C∗-construction on the under-
lying C∗-algebras.

(ii) Identify the suitable collection of traces on the newly constructed
C∗-algebra

(iii) Take the tracial completion with respect to these traces.

We illustrate this process here with direct sums, tensor products, and
sequential inductive limits. Products and reduced products (including ul-
traproducts) are constructed in Section 5.1. In the case of direct sums, step
(iii) above is redundant as the C∗-direct sum is already tracially complete.

Definition 3.30. Let (M, X) and (N , Y ) be tracially complete C∗-algebras.
Let X ⊕ Y denote the set of traces of the form λτX +(1−λ)τY for τX ∈ X,
τY ∈ Y and 0 ≤ λ ≤ 1. The direct sum of (M, X) and (N , Y ) is the tracially
complete C∗-algebra (M⊕N , X ⊕ Y ).

Note that the tracially complete direct sum of two finite von Neumann
algebras (M, T (M) and (N , T (N )) is the finite von Neumann algebra (M⊕
N , T (M⊕ N)). As the extreme traces on X ⊕ Y are precisely the union
of the extreme traces on X and the extreme traces on Y , the direct sum
(M, X) ⊕ (N , Y ) is factorial if and only if both (M, X) and (N , Y ) are
factorial.

Next up are tensor products.

Definition 3.31. Let (M, X) and (N , Y ) be tracially complete C∗-algebras.
Let M⊗ N denote the minimal C∗-tensor product of M and N and let
X ⊗Y ⊆ T (M⊗N ) be the closed convex hull of the traces σ⊗ ρ for σ ∈ X
and ρ ∈ Y . DefineM⊗̄N to be the tracial completion ofM⊗N with respect
to X ⊗Y . The tensor product (M, X)⊗̄(N , Y ) is the pair (M⊗̄N , X ⊗Y ).

Proposition 3.32. If (M, X) and (N , Y ) are factorial tracially complete
C∗-algebras, then (M, X)⊗̄(N , Y ) is also factorial.

Proof. Let F ⊆ T (M⊗ N ) be the closed face generated by X ⊗ Y . By
Proposition 3.23(iv), it is enough to show that F = X ⊗ Y . In fact, by
the Krein–Milman theorem, it is enough to show ∂eF ⊆ X ⊗ Y . To this
end, let τ0 ∈ ∂eF be given. Since F is a closed face in T (M⊗N ), we have
τ0 ∈ ∂eT (M⊗N ). By [10, Proposition 3.5], there are traces σ0 ∈ T (M) and
ρ0 ∈ T (N ) such that τ0 = σ0 ⊗ ρ0. Now, it is enough to show σ0 ∈ X and
ρ0 ∈ Y – we will only show the former as the latter follows by symmetry.
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By Theorem 2.4(ii), to show σ0 ∈ X, it is enough to show f(σ0) = 0 for
every continuous affine function f : T (M) → [0, 1] with f |X = 0. Let f be
such a function and apply Proposition 2.7 to produce a self-adjoint a ∈ M
with σ(a) = f(σ) for all σ ∈ T (M). Define

(3.38) G := {τ ∈ T (M⊗N ) : τ(a⊗ 1N ) = 0}.

For any σ ∈ T (M) and ρ ∈ T (N ), we have (σ⊗ ρ)(a⊗ 1N ) = f(σ) ≥ 0. By
[10, Proposition 3.5] and the Krein–Milman theorem,

(3.39) T (M⊗N ) = co
{
σ ⊗ ρ : σ ∈ T (M), ρ ∈ T (N )

}
.

Hence τ(a ⊗ 1N ) ≥ 0 for all τ ∈ T (M⊗N ). It follows that G is a closed
face in T (M⊗N ). For all σ ∈ X and ρ ∈ Y ,

(3.40) (σ ⊗ ρ)(a⊗ 1N ) = σ(a) = f(σ) = 0,

and hence X ⊗ Y ⊆ G. Then, as G is a closed face containing X ⊗ Y ,
we have F ⊆ G, and so τ0 ∈ G. Since τ0 = σ0 ⊗ ρ0, this shows that
f(σ0) = σ0(a) = 0. □

Finally, we construct sequential inductive limits in the category of tra-
cially complete C∗-algebras.

Definition 3.33. Let

(3.41) · · · → (Mn, Xn)
ϕn+1
n−−−→ (Mn+1, Xn+1)

ϕn+2
n+1−−−→ (Mn+2, Xn+2)→ · · ·

be a sequential inductive system of tracially complete C∗-algebras. Form
the C∗-inductive limit A := lim−→(Mn, ϕ

n+1
n ) and let ϕ̂∞n :Mn → A be the

canonical unital ∗-homomorphism. The inductive system (3.41) induces a
projective system

(3.42) · · · ←− Xn
(ϕn+1

n )∗←−−−−− Xn+1

(ϕn+2
n+1)

∗

←−−−−− Xn+2 ←− · · ·

of compact convex sets. Set

(3.43) X := {τ ∈ T (A) : τ ◦ ϕ̂∞n ∈ Xn for all n ≥ 1} ⊆ T (A)

and note that X is a compact convex subset of T (A). Further, the maps

(ϕ̂∞n )∗ : X → Xn induce an affine homeomorphism

(3.44) X
∼=−→ lim←−

(
Xn, (ϕ

n+1
n )∗

)
(and in particular, X is non-empty whenever all of the Xn are non-empty;

see [35, Theorem VIII.3.5], for example). DefineM := A
X

and

(3.45) lim−→
(
(Mn, Xn), ϕ

n+1
n

)
:= (M, X)

Finally, write ϕ∞n :Mn → M for the unital ∗-homomorphism obtained by

composing ϕ̂∞n with the canonical map αX : A→M.

We now show the definition of inductive limit in Definition 3.33 satis-
fies the required universal property and hence is an inductive limit in the
category of tracially complete C∗-algebras.
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Proposition 3.34. Let
(
(Mn, Xn)

)∞
n=1

be a sequence of tracially complete

C∗-algebras and
(
ϕn+1
n : (Mn, Xn) → (Mn+1, Xn+1)

)∞
n=1

be a sequence of
morphisms. Set

(3.46) (M, X) := lim−→
(
(Mn, Xn), ϕ

n+1
n

)
as in Definition 3.33 and write ϕ∞n :Mn → M for the canonical ∗-homo-
morphisms as above. Then (M, X) is a tracially complete C∗-algebra, ϕ∞n
is a morphism for n ≥ 1, and together, they define the inductive limit of(
(Mn, Xn), ϕ

n+1
n

)∞
n=1

in the category of tracially complete C∗-algebras. If
each Xn is metrisable, then so is X. Further, if each (Mn, Xn) is factorial,
then so is (M, X).

Proof. DefineA,X, and ϕ̂∞n as in Definition 3.33, so that (M, X) = (A
X
, X).

By Proposition 3.23(iii), (M, X) is a tracially complete C∗-algebra. By con-

struction, (ϕ̂∞n )∗(X) ⊆ Xn, so (ϕ∞n )∗(X) ⊆ Xn and each ϕ∞n is a morphism.
As sequential projective limits of metrisable spaces are metrisable, X is
metrisable if each Xn is metrisable. If each (Mn, Xn) is factorial, then Xn

is a face in T (Mn) for all n ≥ 1. It follows from (3.43) that X is a face in
T (A). Proposition 3.23(iv) then implies that (M, X) is factorial.

To show that (M, X) is the inductive limit of
(
(Mn, Xn), ϕ

n+1
n

)
, suppose

we have a tracially complete C∗-algebra (N , Y ) and morphisms

(3.47) ψn : (Mn, Xn)→ (N , Y ), n ∈ N,
such that ψn+1 ◦ ϕn+1

n = ψn. Then, working in the category of unital C∗-

algebras, we obtain a unique unital ∗-homomorphism ψ̂ : A → N such that
ψn = ψ̂ ◦ ϕ̂∞n for each n ∈ N. For τ ∈ Y , we have

(3.48) τ ◦ ψ̂ ◦ ϕ̂∞n = τ ◦ ψn ∈ Xn

for all n ≥ 1, so by (3.43), τ ◦ ψ̂ ∈ X. This shows ψ̂∗(Y ) ⊆ X. Accordingly,

there is a unique morphism ψ : (M, X) → (N , Y ) with ψ̂ = ψ ◦ αX by
Proposition 3.25. Moreover

(3.49) ψn = ψ̂ ◦ ϕ̂∞n = ψ ◦ αX ◦ ϕ̂∞n = ψ ◦ ϕ∞n ,
as required. Uniqueness of ψ follows from uniqueness in Proposition 3.25
as any morphism ψ : (M, X) → (N , Y ) with ψ ◦ ϕn = ψn for all n satisfies

ψ ◦ αX = ψ̂. □

For each metrisable Choquet simplex X, we now use an inductive limit
construction to produce the concrete model (RX , X) of a tracially complete
C∗-algebra covered by Theorem C as discussed in the overview of results.
This is achieved by mimicking construction of a simple AF algebra A for
which T (A) = X, found in [6, 54], and can be deduced from these results
by considering the tracial completion of such an AF algebras. The details
are slightly easier in the tracially complete setting since K0(R) ∼= R and one
need not worry about simplicity.

Example 3.35. Let X be a metrisable Choquet simplex. By [55, Theo-
rem 11.6], we can write X as the inverse limit of a system of finite dimen-
sional simplices

(3.50) X1
α1
2←− X2

α2
3←− · · · ,
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where the connecting maps are continuous and affine. We will construct an
inductive system of tracially complete C∗-algebras realising this data.

Set Mn := R⊕ ∂eXn , where R is the hyperfinite II1 factor. Note that
T (Mn) can be canonically identified with Xn and

(
Mn, T (Mn)

)
is tra-

cially complete and factorial. Next, we can choose a ∗-homomorphism
ϕn+1
n :Mn →Mn+1 that induces the map αnn+1. To do this explicitly, write
∂eXn+1 = {x1, . . . , xk} and ∂eXn = {y1, . . . , yl}. For each i = 1, . . . , k, write

αnn+1(xi) as the convex combination
∑l

j=1 λi,jyj . Fixing i, find a partition

of unity pi,1, . . . , pi,l ∈ R of projections such that τ(pi,j) = λi,j for each j.
For each i and j, choose any unital ∗-homomorphism ψi,j : R → pi,jRpi,j
(which exists since R has full fundamental group, a result which goes back
to Murray and von Neumann in [83]). Then define ϕn+1

n : R⊕l → R⊕k by

(3.51) ϕn+1
n (a1 ⊕ · · · ⊕ al) :=

( l∑
j=1

ψ1,j(aj), . . . ,

l∑
j=1

ψk,j(aj)
)
,

and note that (ϕn+1
n )∗ = αnn+1.

Define (RX , X ′) := lim−→
(
(Mn, Xn), ϕ

n+1
n

)
. As (ϕn+1

n )∗ = αnn+1, (3.44)

provides an isomorphism X → X ′, so after identifying X with X ′ via this
isomorphism, (RX , X) is the desired factorial tracially complete C∗-algebra.

A priori, the construction outlined above depends not only on the Choquet
simplex X but also on the choice of inverse limit and the choices made when
defining connecting maps. However, it will follow from Theorem 9.13 that
the tracially complete C∗-algebra (RX , X) depends only on X. Moreover,
as X varies over all metrisable Choquet simplices, these will provide models
for the classifiable tracially complete C∗-algebras (see Theorem 9.15, which
contains Theorem C).

Remark 3.36. The infinite tensor product
⊗∞

n=1(Mn, Xn) of a countable
family (Mn, Xn) of tracially complete C∗-algebras can now be constructed
as the inductive limit of the finite tensor products

⊗n
i=1(Mi, Xi) with the

obvious connecting maps.

3.6. W ∗-bundles. In Proposition 3.6, we showed Ozawa’s W ∗-bundles can
be viewed as tracially complete C∗-algebras. We show here that by a re-
formulation of a theorem due to Ozawa, any factorial tracially complete
C∗-algebra (M, X) with X a Bauer simplex can be given the structure of
a W ∗-bundle whose fibres are factors. This is essentially due to Ozawa in
[86]. Recall from Section 2.1 that if X is a Bauer simplex, then there is an
affine homeomorphism

(3.52) X
∼=−→ Prob(∂eX) : τ 7→ µτ ,

where µτ is the measure with barycentre τ .

Theorem 3.37 (cf. [86, Theorem 3]). If (M, X) is a factorial tracially
complete C∗-algebra such that X is a Bauer simplex with K := ∂eX, then
there is a unique embedding C(K) ⊆ Z(M) such that

(3.53) τ(fa) =

∫
K
f(σ)σ(a) dµτ (σ), f ∈ C(K), a ∈M, τ ∈ X.
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Further, the map E :M→ C(K) given by E(a)(τ) := τ(a) is a conditional
expectation endowingM with the structure of a W ∗-bundle.

Proof. We first show the embedding of C(K) is unique, assuming it exists.
Let ϕ, ψ : C(K) → Z(M) be two embeddings satisfying (3.53). Fix f ∈
C(K). If τ ∈ K, then µτ is the point mass at τ , so (3.53) gives

(3.54) τ(ϕ(f)ψ(f)) = f(τ)τ(ψ(f)) = f(τ)2.

Similarly, τ(ϕ(f)2) = τ(ψ(f)2) = f(τ)2. Now, if f ∈ C(K) is self-adjoint,
we have

(3.55) ∥ϕ(f)− ψ(f)∥22,τ = τ
(
(ϕ(f)− ψ(f))2

)
= 0

for all τ ∈ ∂eX, and hence for all τ ∈ X. Therefore, ϕ(f) = ψ(f) for all
self-adjoint f ∈ C(K), and hence for all f ∈ C(K).

Note that once we know the embedding of C(K) exists, then E is neces-
sarily a tracial conditional expectation onto C(K) such that ∥·∥2,X = ∥·∥2,E .
In particular, the unit ball ofM is ∥ · ∥2,E-complete.

The hardest portion of the proof is the existence of the embedding of
C(K). This is constructed in [86, Theorem 3]. Note that there is a standing
assumption of metrisability in [86]. The metrisability in this result is only
needed so that ∂eX is Borel, but in our case, this is clear since ∂eX is
closed. □

The use of factoriality in Theorem 3.37 is subtle – it enters in the proof
implicitly through the computation of the centre of πτ (M)′′ for τ ∈ X in
[86, Lemma 10]. In more detail, if τ ∈ X, and z ∈ Z(πτ (M)′′), then we
may define zτ ∈ M∗ by (zτ)(a) := ⟨πτ (a)zξτ , ξτ ⟩. Then zτ is a tracial
linear functional with |zτ | ≤ ∥z∥τ . The assumption that X is a face implies
zτ belongs to the span of X – this is necessary to define the representing
measure µzτ on ∂eX as needed in the proof of [86, Lemma 10]. As the
following example demonstrates, Theorem 3.37 can fail without factoriality
even for the one-dimensional simplex. The salient point is that in a W ∗-
bundle the fibres are fairly independent of each other, whereas in a non-
factorial tracially complete algebra (M, X), the GNS representation πτ with
respect to the extreme traces τ ∈ ∂eX may not be.

Example 3.38. Let M := R ⊕ R ⊕ R, and let τi ∈ T (M) be given by
τi(a1, a2, a3) := τR(ai) for i = 1, 2, 3. Define σ1, σ2 ∈ T (M) by

(3.56) σ1 :=
1

2
(τ1 + τ2) and σ2 :=

1

2
(τ1 + τ3)

Let Y := co{σ1, σ2} ⊆ T (M). Then (M, Y ) is a tracially complete C∗-
algebra and Y is a Bauer simplex. Note that (M, Y ) is not factorial –
in fact, neither extreme point of Y is an extreme point of T (M). Let
K := ∂eY = {σ1, σ2}.

We will show there is no embedding of C(K) ∼= C2 into Z(M) ∼= C3

satisfying (3.53). Note that any embedding satisfying (3.53) is unital. Let
f1, f2 ∈ C(K) be given by f1(σ1) := 1 and f1(σ2) := 0, and f2 := 1C(K)−f1.
Exploiting the symmetry of τ2 and τ3, it suffices to show that the three
unital embeddings j1, j2, j3 : C(K)→ Z(M) determined by

(3.57) j1(f1) = (1R, 0, 0), j2(f1) = (1R, 1R, 0), and j3(f1) = (0, 1R, 0)
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fail (3.53).
In the first case, for a := (0, 1R, 0), σ1(j1(f1)a) = 0, but

(3.58)

∫
K
f1(σ)σ(a) dµσ1 = f1(σ1)σ1(a) =

1

2
.

In the second case, for a := (1R, 0, 0), σ2(j2(f2)a) = 0, but

(3.59)

∫
K
f2(σ)σ(a) dµσ2 = f2(σ2)σ2(a) =

1

2
.

In the third case, for a := (1R, 0, 0), σ1(j3(f1)a) = 0, but

(3.60)

∫
K
f1(σ)σ(a) dµσ1 = f1(σ1)σ1(a) =

1

2
.

So (3.53) fails in all three cases.

4. Amenability for tracially complete C∗-algebras

In this section, we show how to combine fibrewise amenability to obtain
a global uniform 2-norm completely positive approximation property. The
main result is Theorem 4.9, characterising morphisms into tracially com-
plete C∗-algebras which are tracially nuclear – the appropriate notion of
amenability which feeds into classification. Theorem 1.2 will follow as a
special case of Theorem 4.9.

4.1. Definition and basic properties. Our notion of amenability for tra-
cially complete C∗-algebras is given by the following version of the com-
pletely positive approximation property.

Definition 4.1. Let A be a C∗-algebra and let (N , Y ) be a tracially com-
plete C∗-algebra. We say that a c.p. map θ : A → N is tracially nuclear if
there are nets of finite dimensional C∗-algebras Fλ and c.p. maps

(4.1) A
ψλ−−→ Fλ

ϕλ−→ N

such that for all a ∈ A,

(4.2) lim
λ
∥ϕλ(ψλ(a))− θ(a)∥2,Y = 0.

Further, we say (N , Y ) is amenable if idN is tracially nuclear.

As usual, we may restrict to sequences in Definition 4.1 when A is sepa-
rable.34

Using the canonical inclusion and projection maps, it immediate that
amenability passes to direct sums.

Proposition 4.2. For tracially complete C∗-algebras (M, X) and (N , Y )
the direct sum (M⊕N , X ⊕Y ) is amenable if and only if both (M, X) and
(N , Y ) are amenable.

34This requires having a uniform bound on the norms of ϕλ and ψλ, which is always
possible by Proposition 4.4.
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Recall that if N is a von Neumann algebra, then a c.p. map θ : A →
N is weakly nuclear if there are c.p. maps as in (4.1) such that for all
a ∈ N , ϕλ(ψλ(a)) → a in the weak∗-topology on N . When τ is a faithful
normal trace, (N , {τ}) is a tracially complete C∗-algebra, tracial nuclearity
and weak nuclearity agree (and likewise, semidiscreteness of N agrees with
amenability of (N , {τ}). We defer the proof to Proposition 4.5 as we first
need some prerequisite results.

The following standard lemma allows us to reduce problems about tracial
nuclearity to the unital case. We use A† for the forced unitisation of A; i.e.
when A is unital, we add a new unit to form A† ∼= A⊕ C.

Lemma 4.3. Suppose A is a C∗-algebra, (N , Y ) is a tracially complete C∗-
algebra, and θ : A → N is a c.p.c. map. Then θ is tracially nuclear if and
only if the unitisation θ† : A† → N is also tracially nuclear.

Proof. First note that θ factorises as the inclusion A → A† followed by θ†,
so that tracial nuclearity of θ† implies that of θ.

Conversely, suppose that θ is tracially nuclear. Let (eλ) be an approximate
unit for A consisting of positive contractions and define θλ : A

† → N by

(4.3) θλ(a+ α1A†) := θ(eλaeλ) + α1N .

Then θλ is unital. Further, θλ is tracially nuclear as it is the sum of the
tracially nuclear maps

a+ α1A† 7→ θ(eλ(a+ α1A†)eλ)(4.4)

and

a+ α1A† 7→ α(1N − θ(e2λ))(4.5)

Further, since each θλ is unital and ∥θλ(a) − θ(a)∥ → 0 for all a ∈ A, we
have ∥θλ(a) − θ†(a)∥ → 0 for all a ∈ A†. As each θλ is tracially nuclear, so
is θ. □

As with the analogous versions of the completely positive approximation
property for both C∗-algebras and von Neumann algebras, we can arrange
for a uniform bound on the norms of the ϕλ and ψλ in Definition 4.1. The
proof here follows the proof of the von Neumann algebraic version in [15,
Proposition 3.8.2] taking care to avoid the use of Borel functional calculus,
which, in general, does not exist in tracially complete C∗-algebras.

Proposition 4.4. Suppose that A is a C∗-algebra, (N , Y ) is a tracially
complete C∗-algebra, and θ : A→ N is a tracially nuclear map. Then there
are nets

(4.6) A
ψλ−−→ Fλ

ϕλ−→ N

as in Definition 4.1 with ∥ψλ∥ ≤ ∥θ∥ and ϕλ(1Fλ
) = 1N . Further, if A and

θ are unital, we may arrange each ψλ to be unital.

Proof. Rescaling θ, we may assume that ∥θ∥ ≤ 1. Then by adding a unit
to A and using Lemma 4.3, we may assume A and θ are unital. We will
construct u.c.p. maps ϕλ and ψλ as in (4.6) approximately factorising θ.
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Since θ is assumed to be tracially nuclear, there are nets of finite dimen-
sional C∗-algebras Fλ and c.p. maps

(4.7) A
ψ′′
λ−−→ Fλ

ϕ′′′λ−−→ N
such that for all a ∈ A,
(4.8) lim

λ
∥ϕ′′′λ (ψ′′

λ(a))− θ(a)∥2,Y = 0.

By [15, Lemma 2.2.5], there is a u.c.p. map ψ′
λ : A→ Fλ such that

(4.9) ψ′′
λ(a) = ψ′′

λ(1A)
1/2ψ′

λ(a)ψ
′′
λ(1A)

1/2, a ∈ A.
Define ϕ′′λ : Fλ → N by

(4.10) ϕ′′λ(x) := ϕ′′′λ
(
ψ′′
λ(1A)

1/2xψ′′
λ(1A)

1/2
)
, x ∈ Fλ,

and note that ϕ′′λ ◦ ψ′
λ = ϕ′′′λ ◦ ψ′′

λ. Therefore, we have

(4.11) lim
λ
∥ϕ′′λ(ψ′

λ(a))− θ(a)∥2,Y = 0, a ∈ A.

Define a continuous function f : R→ [0, 1] by

(4.12) f(t) :=


1, t ≤ 1;

2− t, 1 < t < 2;

0, t ≥ 2.

Let bλ := f(ϕ′′λ(1Fλ
)) and define ϕ′λ : Fλ → N by

(4.13) ϕ′λ(x) := bλϕ
′′
λ(x)bλ, x ∈ Fλ.

By elementary calculus, 0 ≤ tf(t)2 ≤ 1 for all t ∈ [0,∞). Therefore,
∥ϕ′λ(1Fλ

)∥ ≤ 1, and ϕ′λ is a c.p.c. map. Also, for all t ∈ R, we have
0 ≤ 1− f(t) ≤ |t− 1|, and so

(4.14) 0 ≤ 1N − bλ ≤ |ϕ′′λ(1Fλ
)− 1N |.

Since θ and ψ′
λ are unital, (4.11) and (4.14) imply

(4.15) lim
λ
∥1N − bλ∥2,Y = 0.

Fix a ∈ A. Since the elements bλ are contractions, we have

(4.16) ∥ϕ′λ(ψ′
λ(a))− bλθ(a)bλ∥2,Y ≤ ∥ϕ′′λ(ψ′

λ(a))− θ(a)∥2,Y ,
so limλ ∥ϕ′λ(ψ′

λ(a))−bλθ(a)bλ∥2,Y = 0 by (4.11). Moreover, as multiplication
in N is ∥ · ∥2,Y -continuous on ∥ · ∥-bounded sets, we have

(4.17) lim
λ
∥bλθ(a)bλ − θ(a)∥2,Y = 0, a ∈ A,

by (4.15). Therefore,

(4.18) lim
λ
∥ϕ′λ(ψ′

λ(a))− θ(a)∥2,Y = 0, a ∈ A.

While ψ′
λ was arranged to be unital, the map ϕ′λ need not be. We modify

the maps once more to correct this. Let ρ be a state on A and define
ψλ : A → Fλ ⊕ C by ψλ(a) := (ψ′

λ(a), ρ(a)). Then ψλ is u.c.p. as both ψ′
λ

and ρ are. Also, define ϕλ : Fλ ⊕ C→ N by

(4.19) ϕλ(x, α) := ϕ′λ(x) + α(1N − ϕ′λ(1Fλ
))
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Then ϕλ is u.c.p. as ϕ′λ is c.p.c. By (4.18), to see that

(4.20) lim
λ
∥ϕλ(ψλ(a))− θ(a)∥2,Y = 0, a ∈ A,

it suffices to show that limλ ∥1N − ϕλ(1Fλ
)∥2,Y = 0. However, this follows

immediately from taking a := 1A in (4.18) using that the maps ψ′
λ and θ are

both unital. □

We now return to the promised connection between tracial and weak
nuclearity.

Proposition 4.5. Let A be a C∗-algebra and (N , τ) be a tracial von Neu-
mann algebra. A c.p. map θ : A→ (N , {τ}) is tracially nuclear if and only
if it is weakly nuclear. In particular, (N , τ) is semidiscrete as a tracial von
Neumann algebra if and only if (N , {τ}) is amenable as a tracially complete
C∗-algebra.

Proof. The key observation is that the strong operator topology on the op-
erator norm unit ball of N coincides with the topology induced by ∥ · ∥2,τ
(see [7, Proposition III.2.2.17], for example). From here, assume that θ is
weakly nuclear. By scaling θ, we may assume ∥θ∥ ≤ 1. Then, as in the
proof of Lemma 4.3, the unitisation θ† : A† → N is weakly nuclear. Hence
we may assume that A and θ are unital. By [15, Proposition 3.8.2], there
are nets of finite dimensional C∗-algebras and c.p.c. maps

(4.21) A
ψλ−−→ Fλ

ϕλ−→ N

such that ϕλ(ψλ(a)) → a weak∗, and in particular in the weak operator
topology for all a ∈ A. Since the set of c.p.c. maps A → N which admit
c.p.c. factorisations through a finite dimensional C∗-algebra form a convex
set ([15, Lemma 2.3.6 and Remark 2.3.7]), the Hahn–Banach theorem, in
the form of [15, Lemma 3.8.1], shows that there is a net of c.p.c. maps
θλ : A → N such that θλ(a) → θ(a) in the strong-operator topology for all
a ∈ A, and each θλ admits a c.p.c. factorisation through a finite dimensional
C∗-algebra. As each θλ is contractive, this implies ∥θ(a)− θλ(a)∥2,τ → 0 for
all a ∈ A, and hence θ is tracially nuclear.

Conversely, suppose that θ is tracially nuclear. Again, after scaling θ, we
may assume that θ is contractive. By Proposition 4.4, there are nets of finite
dimensional C∗-algebras and c.p.c. maps

(4.22) A
ψλ−−→ Fλ

ϕλ−→ N

such that ∥θ(a)− ϕλ(ψλ(a))∥2,τ → 0 for all a ∈ A. Then ϕλ(ψλ(a)) → a in
the strong operator topology, and hence in the weak operator topology. As
the weak operator topology and weak∗ topology onN agree on bounded sets,
the convergence holds weak∗, and this implies that θ is weakly nuclear. □

It is known that if A is an exact C∗-algebra and N is a von Neumann alge-
bra, then any weakly nuclear map A→ N is nuclear – see [59, Remark 3.4]
(as observed there, this characterises exactness of A). This suggests the
following question, which we have been unable to answer even with the ad-
ditional assumptions that (N , Y ) is factorial and has CPoU. The difficulty
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is that the passage from weak nuclearity to nuclearity involves taking point-
weak∗-limit points.35 We do not have the required compactness for this in
the setting of tracially complete C∗-algebras.

Question 4.6. Suppose A is an exact C∗-algebra and (N , Y ) is a tracially
complete C∗-algebra. Is every tracially nuclear map A→ N nuclear?

4.2. Fibrewise amenability. We work towards showing that amenability
of tracially complete C∗-algebras can be detected in its tracial von Neumann
algebra completions. The basic strategy is to use a convexity argument
similar to the one in the fundamental result from [34, 24, 25] stating that if
A is a C∗-algebra such that A∗∗ is semidiscrete, then A is nuclear (see [15,
Proposition 2.3.8], for example).

We set up the convexity argument in a somewhat general setting for later
use in Section 6.4. Both the statement and proof are abstracted from an
argument in the proof of Ozawa’s [86, Theorem 3] computing the centre
of tracial completions of C∗-algebras. A similar Hahn–Banach argument
appears in the proof of (8)⇒(1) in [48, Theorem 2.5].

Lemma 4.7. Let C be a convex subset of a real vector space and let (M, X)
be a tracially complete C∗-algebra. Suppose we are given m ∈ N and a finite
collection f1, . . . , fm : C → M of affine functions such that for all τ ∈ X
and ϵ > 0, there is cτ ∈ C such that

max
1≤i≤m

∥fi(cτ )∥2,τ < ϵ.(4.23)

Then for all ϵ > 0, there is c ∈ C such that

max
1≤i≤m

∥fi(c)∥2,X < ϵ.(4.24)

Proof. Let Λ be the directed set of pairs (T , ϵ) where T ⊆ X is a non-empty
finite set and ϵ > 0, equipped with the ordering (T1, ϵ1) ≤ (T2, ϵ2) if and
only if T1 ⊆ T2 and ϵ1 ≥ ϵ2.

Fix λ := (Tλ, ϵλ) ∈ Λ and let σλ := |Tλ|−1
∑

τ∈Tλ τ ∈ X denote the average
of the traces in Tλ. By assumption, there is cλ ∈ C such that

|Tλ|1/2 max
1≤i≤m

∥fi(cλ)∥2,σλ < ϵλ.(4.25)

It follows from the definition of σλ that

max
τ∈Tλ

max
1≤i≤m

∥fi(cλ)∥2,τ < ϵλ.(4.26)

For λ ∈ Λ and i = 1, . . . ,m, define hi,λ : X → R by

(4.27) hi,λ(τ) := ∥fi(cλ)∥22,τ
and note that hi,λ ∈ Aff(X). For all i = 1, . . . ,m, hi,λ → 0 pointwise
on X by (4.26), and hence Proposition 2.1 implies hi,λ → 0 weakly. View

35The proof in [59, Remark 3.4] uses Kirchberg’s O2-embedding theorem, but this can
be avoided using the following slight variation of their proof. Let θ : A → N be weakly
nuclear. Fix nets of finite dimensional C∗-algebras Fλ and c.p.c. maps ψλ : A → Fλ

and ϕλ : Fλ → N such that ϕλ ◦ ψλ converges to θ point-weak∗. Let π : A → B(H) be
a faithful representation of A and use Arveson’s extension theorem to find c.p.c. maps
ψ̃λ : B(H) → Fλ with ψ̃λ ◦ π = ψλ. Let ρ : B(H) → N be a point-weak∗ limit point of

ϕ ◦ ψ̃λ and note that θ = ρ ◦ π. As A is exact, π is nuclear, and hence so is θ.
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hλ := (hi,λ, . . . , hm,λ) as a net in the Banach space Aff(X)⊕m, and note that
hλ → 0 weakly.

Fix ϵ > 0. By the Hahn–Banach theorem, there are l ∈ N, λ1, . . . , λl ∈ Λ,

and real numbers α1, . . . , αl ≥ 0 such that
∑l

k=1 αk = 1 and

(4.28) max
1≤i≤m

∥∥∥ l∑
k=1

αkhi,λk

∥∥∥
∞
< ϵ2.

Define c :=
∑l

k=1 αkcλk ∈ C. For i = 1, . . . ,m, using the triangle inequality
and the Cauchy–Schwarz inequality, we have

∥fi(c)∥2,X =
∥∥∥ l∑
k=1

αkfi(cλk)
∥∥∥
2,X

≤
l∑

k=1

αk∥fi(cλk)∥2,X

=

l∑
k=1

(
α
1/2
k )

(
α
1/2
k ∥fi(cλk)∥2,X

)
≤

( l∑
k=1

αk

)1/2( l∑
k=1

αk∥fi(cλk)∥
2
2,X

)1/2

=
( l∑
k=1

αk∥fi(cλk)∥
2
2,X

)1/2

(4.29)

Then for i = 1, . . . ,m and τ ∈ X, we have

(4.30) ∥fi(c)∥22,τ
(4.27),(4.29)

≤
l∑

k=1

αkhi,λk(τ)
(4.28)
< ϵ2.

Hence ∥fi(c)∥2,X < ϵ for all i = 1, . . . ,m. □

The following lemma is standard. For example, it follows from the proof
of [59, Lemma 1.1] by quoting the Choi–Effros lifting theorem in place of
the projectivity of order zero maps in the last paragraph.

Lemma 4.8. If F and B are C∗-algebras with F finite dimensional, π : B →
B(H) is a ∗-homomorphism, and ϕ : F → π(B)′′ is a c.p. map, then there is
a net of c.p. maps ϕλ : F → B such that ∥ϕλ∥ ≤ ∥ϕ∥ for all λ and

(4.31) ϕ(b) = strong∗- lim
λ
π(ϕi(b)), b ∈ B.

Further, if ϕ is unital, we may arrange for each ϕλ to be unital.

We are now in a position to give the ‘fibrewise’ characterisation of tracially
nuclear ∗-homomorphisms (Theorem 4.9) from which Theorem 1.2 follows
immediately (by taking A := M and θ := idM). Note that the following
theorem also implies the first part of Theorem D from the overview.

The equivalence of (ii) and (iii) in Theorem 4.9 is essentially obtained by
Brown in [12, Theorem 3.2.2] (which is a variation on Connes’ theorem), so
the main implication we need to show is (ii) implies (i). This will follow
from the Hahn–Banach argument of Lemma 4.7.
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Theorem 4.9. Let A be a C∗-algebra, let (M, X) be a tracially complete
C∗-algebra, and let θ : A→M be a c.p. map. The following are equivalent:

(i) θ is tracially nuclear;
(ii) for all τ ∈ X, πτ ◦ θ : A→ πτ (M)′′ is weakly nuclear.

If θ is a ∗-homomorphism then these are also equivalent to:

(iii) for every τ ∈ X with τ ◦ θ ̸= 0, the trace ∥τ ◦ θ∥−1 · τ ◦ θ ∈ T (A) is
uniformly amenable in the sense of [12, Definition 3.2.1].36

Proof. To see (i) implies (ii), note that if θ is tracially nuclear, then for all
τ ∈ X, πτ ◦ θ is tracially nuclear as a map into the tracial von Neumann
algebra (πτ (M)′′, τ). As noted in the remarks following Definition 4.1, for
maps into tracial von Neumann algebras, weak and tracial nuclearity are
equivalent, so (ii) follows.

When θ is a ∗-homomorphism, the equivalence of (ii) and (iii) can be
reduced to the case that A and θ are unital by adding a unit to A and using
Lemma 4.3. For τ ∈ X, since there is a normal trace-preserving conditional
expectation πτ (M)′′ → πτ (θ(A))

′′ (see [15, Lemma 1.5.10], for example),
πτ◦θ = πτ ◦ θ is weakly nuclear when viewed as a map into πτ (M)′′ if and
only if it is weakly nuclear when viewed as a map into πτ◦θ(A)

′′ = πτ (θ(A))
′′.

The equivalence of (ii) and (iii) then follows from the equivalence of (1) and
(6) in [12, Theorem 3.2.2].

It remains to show that (ii) implies (i). Assume that θ is contractive. Fix
a finite set F ⊆ A and ϵ > 0. Let C denote the set of all c.p. maps A→M
which factor by c.p. maps through a finite dimensional C∗-algebra and note
that C is convex (cf. [15, Lemma 2.3.6]). We will apply Lemma 4.7 to the
affine functions

(4.32) fa : C →M : η 7→ η(a)− θ(a), a ∈ F .

For τ ∈ X, πτ ◦θ is weakly nuclear by (ii), so there are a finite dimensional
C∗-algebra Fτ and c.p.c. maps

(4.33) A
ψτ−→ Fτ

ϕ̄τ−→ πτ (M)′′

such that

(4.34) ∥ϕ̄τ (ψτ (a))− πτ (θ(a))∥2,τ < ϵ, a ∈ F .

By Lemma 4.8, there is then a c.p.c. map ϕτ : Fτ →M such that

(4.35) ∥ϕτ (ψτ (a))− θ(a)∥2,τ < ϵ, a ∈ F .

Then ητ := ϕτ ◦ ψτ ∈ C and ∥fa(ητ )∥2,τ < ϵ for all a ∈ F . By Lemma 4.7,
there is η ∈ C such that ∥fa(η)∥2,X < ϵ for all a ∈ F . Unpacking notation,
η is a c.p. map factoring through a finite dimensional C∗-algebra, and

(4.36) ∥η(a)− θ(a)∥2,X < ϵ, a ∈ F ,

so θ is tracially nuclear. □

36Brown implicitly only defines uniformly amenable for traces on unital C∗-algebras
in [15] (the definition there requires u.c.p. maps out of A). We extend this definition to
the non-unital case, by saying that τ ∈ T (A) is uniformly amenable if its unitisation,
τ† ∈ T (A†), is uniformly amenable.
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Combining the previous result with Connes’ theorem gives a tracially
complete analogue of the fact that a von Neumann algebra completion of
a nuclear C∗-algebra is semidiscrete. Let Tam(A) ⊆ T (A) denote the set of
amenable traces on A.

Corollary 4.10. If A is an exact C∗-algebra with Tam(A) compact,37 then
the tracial completion of A with respect to Tam(A) is an amenable factorial
tracially complete C∗-algebra. In particular, if A is a nuclear C∗-algebra
with T (A) compact, then the tracial completion of A with respect to T (A) is
an amenable factorial tracially complete C∗-algebra.

Proof. By [66, Lemma 3.4], Tam(A) is a closed face in T (A). Therefore,
the tracial completion of A with respect to Tam(A) is a factorial tracially
complete C∗-algebra by Proposition 3.23(iv).

As A is exact, A is locally reflexive by [65, Remark (11)], and hence by
[12, Theorem 4.3.3], all amenable traces on A are uniformly amenable. By
the equivalence of (1) and (5) in [12, Theorem 3.2.2], it follows that πτ (A)

′′

is semidiscrete for τ ∈ Tam(A). Using Proposition 3.23(vi), we also have

that πτ (A
Tam(A)

)′′ is semidiscrete for all τ ∈ Tam(A). By Theorem 4.9, this

implies that
(
A
Tam(A)

, Tam(A)
)
is amenable. This proves the first sentence

of the theorem. The second sentence follows since T (A) = Tam(A) when A
is nuclear (see [12, Theorem 4.2.1], for example). □

Without exactness, it need not be the case that all amenable traces are
uniformly amenable. Indeed, given a sequence (kn) of natural numbers
converging to ∞, let A :=

∏
Mkn . For a free ultrafilter ω on N, the trace

τω((xn)) := limn→ω trkn(xn) is an amenable trace which is not uniformly
amenable.38 This observation leads to the following characterisation of those
finite von Neumann algebras which are amenable as tracially complete C∗-
algebras over their trace space.

Proposition 4.11. Let M be a semidiscrete finite von Neumann algebra.
Then

(
M, T (M)

)
is amenable as a tracially complete C∗-algebra if and only

if its type II1 summand has only finitely many extremal traces and it has no
type In summand for sufficiently large n.

Proof. SupposeM satisfies the stated condition. Then the type I partMI

of M is a finite direct sum of matrices over abelian C∗-algebras (see [104,
Theorem V.1.27], for example) and hence nuclear so has the completely
positive approximation property in norm. Hence

(
MI, T (MI)

)
is amenable

as a tracially complete C∗-algebra. Let e1, . . . , em denote the minimal central
projections of the type II1 part MII of M so that each Mei = MIIei
is a semidiscrete factor, whence

(
Mei, T (Mei)

)
is an amenable tracially

complete C∗-algebra (by Proposition 4.5). Since the finite direct sum of
amenable tracially complete C∗-algebras is amenable (Proposition 4.2), it
follows that

(
M, T (M)

)
is amenable.

37Note that Tam(A) is closed in T (A) by [12, Proposition 3.5.1], so the compactness is
automatic if A is unital.

38This is because the tracial von Neumann ultraproduct
∏ωMnk is not amenable, as

it contains a copy of L(F2)..
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Conversely, supposing the condition does not hold, we can find a sequence
(nk) converging to ∞ and orthogonal central projections (ek) in M such
that there is a unital embedding Mnk

→ Mek.
39 In this way, we have an

embedding of the infinite product C∗-algebra
∏
Mnk

inM. For each k, let
τk be a trace onM with τk(ek) = 1 and for a free ultrafilter ω on N, let τω :=
limk→ω τk, which exists by compactness of the trace space of

∏
Mnk

. Then
τω restricts to the trace (xn) 7→ limn→ω trnk

(xn) on
∏
Mnk

. This restricted
trace is not uniformly amenable (see Footnote 38). As uniform amenability
of traces passes to subalgebras (this is immediate from the approximation
form of the definition in [12, Definition 3.2.1]), τω is not uniformly amenable,
and hence

(
M, T (M)

)
is not amenable.

□

In particular, the tracially complete C∗-algebra
(
ℓ∞(R), T (ℓ∞(R))

)
is not

amenable even though ℓ∞(R) is semidiscrete as a von Neumann algebra.
We end this section by applying the characterisation of tracial nuclearity,

to show that it can be tested on C∗-subalgebras which are dense in the
uniform 2-norm. A naive argument (showing that the witnesses of tracial
nuclearity for ϕ|A extend to witnesses of tracial nuclearity for ϕ) is not
possible, as one cannot a priori assume uniform ∥ · ∥2,X -boundedness of the
c.p.c. approximations in the definition of tracial nuclearity.

Lemma 4.12. Suppose (M, X) and (N , Y ) are tracially complete C∗-alge-
bras and ϕ : (M, X) → (N , Y ) is a morphism. If A ⊆ M is a ∥ · ∥2,X-
dense C∗-subalgebra, then ϕ is tracially nuclear if and only if ϕ|A is tracially
nuclear.

Proof. For all τ ∈ X, the inclusion A ↪→ M induces an isomorphism
πτ (A)

′′ → πτ (M)′′ (by combining Corollary 3.29(i) and Proposition 3.23(vi),
for example). Since a trace on a C∗-algebra is uniformly amenable if and
only if it generates a semidiscrete von Neumann algebra (see [12, Theo-
rem 3.2.2(2)⇔(3)]), we have that for each τ ∈ Y , τ ◦ϕ is uniformly amenable
if and only if τ ◦ ϕ|A is uniformly amenable. The result follows from Theo-
rem 4.9. □

5. Reduced products and central sequences

In this section, we define the reduced product
∏ω(Mn, Xn) associated

with a sequence of tracially complete C∗-algebras
(
(Mn, Xn)

)∞
n=1

and a free
filter ω on N.

Aided by the language of reduced products and motivated by the analo-
gous conditions in von Neumann algebra theory, we introduce two proper-
ties of (factorial) tracially complete C∗-algebras: the McDuff property and
property Γ. Both of these properties have been studied in the setting of C∗-
algebras with their uniform 2-norm in [22, 23], where they are referred to
as the uniform McDuff property and uniform property Γ, respectively. We
view tracially complete C∗-algebras as the natural framework to develop
these properties, and the definitions given here extend the definitions from

39This uses the fact that for any II1 von Neumann algebra N , and any n ∈ N, one can
find a unital embedding Mn → N . This goes back to Murray and von Neumann. The
proof for n = 2 from [104, Proposition V.1.35] can be readily modified to cover general n.
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[22, 23] when restricted to tracial completions of C∗-algebras with respect to
the full trace simplex. Moreover, in the unique trace case, these properties
reduce to the homonymous properties for II1 factors.

5.1. Reduced products. Reduced products provide an algebraic setting
for manipulating properties involving approximations. The most common
constructions are ultrapowers with respect to a free ultrafilter on the natu-
ral numbers N and sequence algebras consisting of the algebra of bounded
sequences modulo the ideal of c0-sequences.

For many basic applications, ultrapowers and sequence algebras can be
used interchangeably, but each has its technical advantages. In settings
where traces are considered, ultrapowers are often more natural, as the re-
sulting set of limit traces is already convex; on the other hand, working
with sequence algebras allows the reparameterisation argument of [46, The-
orem 4.3] (see Theorem 5.11), which will be used in our classification result
in Section 9. In order to allow for both constructions simultaneously, we
will work with reduced products defined with respect to a free filter.

For the remainder of the paper, ω will denote a free filter on the natural
numbers N. We recall that a filter ω on the natural numbers is free if and
only if it contains all cofinite sets (see [15, Appendix A], for example, for a
general discussion of filters). The following selection theorem of Kirchberg
will be used frequently. It is most often stated for ultrafilters, but the result
(and proof) is equally valid for general filters. For the readers convenience,
we include the details.

Lemma 5.1 (Kirchberg’s ϵ-test, cf. [67, Lemma A.1]). Let ω be a free filter
on N. Let (Xn)

∞
n=1 be a sequence of non-empty sets and for k, n ∈ N, let

f
(k)
n : Xn → [0,∞] be a function. Define functions f (k) : X1 × X2 × · · · →
[0,∞] by

(5.1) f (k)(x1, x2, . . . ) := lim sup
n→ω

f (k)n (xn).

If for every ϵ > 0 and k0 ∈ N, there exists x ∈ X1 × X2 × · · · such that
f (k)(x) < ϵ for k = 1, . . . , k0, then there exists y ∈ X1 ×X2 × · · · such that

f (k)(y) = 0 for all k ∈ N.

Proof. For each r ∈ N, there exists x(r) = (x
(r)
1 , x

(r)
2 , . . . ) ∈ X1 × X2 × · · ·

such that f (k)(x(r)) < 1
r for k = 1, . . . , r. By (5.1), there exists Ir ∈ ω such

that f
(k)
n (x

(r)
n ) < 1

r for all n ∈ Ir and k = 1, . . . , r. As ω is a free filter we
may assume that Ir ⊆ {r, r + 1, . . . }.

For each n ∈ N, if n lies in
⋃∞
r=1 Ir, then let rn ∈ N be maximal such that

n ∈ Irn (noting that n /∈ Ir for r > n) and set yn := x
(rn)
n . Otherwise, define

yn ∈ Xn arbitrarily. Fix k, r ∈ N with k ≤ r. Then for all n ∈ Ir, it follows
that rn ≥ r, and hence

(5.2) f (k)n (yn) <
1

rn
≤ 1

r
.

Thus

(5.3) f (k)(y) = lim sup
n→ω

fn(yn) ≤ sup
n∈Ir

fn(yn) ≤
1

r
.
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Since this holds for all r ≥ k, we obtain f (k)(y) = 0, as required. □

We now formally define reduced products.

Definition 5.2. For a sequence
(
(Mn, Xn)

)∞
n=1

of tracially complete C∗-

algebras, define a C∗-algebra40

(5.4)
ω∏
Mn :=

∞∏
n=1

Mn

/{
(an)

∞
n=1 : limn→ω

∥an∥2,Xn = 0
}
.

For every sequence of traces (τn)
∞
n=1 ∈

∏∞
n=1Xn and every ultrafilter ω′

containing ω, there is a trace defined on
∏ωMn by a 7→ limn→ω′ τn(an),

where (an)
∞
n=1 ∈

∏∞
n=1Mn is any sequence representing a – such traces are

called limit traces. Let
∑ωXn be the closed convex hull of the set of limit

traces on
∏ωMn.

Then the pair

(5.5)

ω∏
(Mn, Xn) :=

( ω∏
Mn,

ω∑
Xn

)
is called the reduced product of the sequence

(
(Mn, Xn)

)∞
n=1

with respect to
ω (and the ultraproduct when ω is an ultrafilter). In the case when ω is the
Fréchet filter, we write the reduced product as

(5.6)

∞∏
(Mn, Xn) :=

( ∞∏
Mn,

∞∑
Xn

)
.

Our first goal is to prove that the reduced product of a sequence of tra-
cially complete C∗-algebras (with respect to a given free filter ω) is itself a
tracially complete C∗-algebra. Before doing that, we isolate a useful lemma
that will be used frequently in our analysis of reduced products.

Lemma 5.3. Let
(
(Mn, Xn)

)∞
n=1

be a sequence of tracially complete C∗-

algebras. If a ∈
∏ω(Mn, Xn) be represented by the sequence (an)

∞
n=1 ∈∏∞

n=1Mn, then

(5.7) ∥a∥2,∑ω Xn
= lim sup

n→ω
∥an∥2,Xn .

Proof. Given a sequence of traces (τn)
∞
n=1 and an ultrafilter ω′ ⊇ ω, let τ be

the associated limit trace. Since ∥an∥2,τn ≤ ∥an∥2,Xn for all n ∈ N, we have

(5.8) ∥a∥2,τ = lim
n→ω′

∥an∥2,τn ≤ lim
n→ω′

∥an∥2,Xn ≤ lim sup
n→ω

∥an∥2,Xn .

Hence ∥a∥2,∑ω Xn
≤ lim supn→ω ∥an∥2,Xn .

Conversely, let ω′ ⊇ ω be an ultrafilter with

(5.9) lim
n→ω′

∥an∥2,Xn = lim sup
n→ω

∥an∥2,Xn .

40Here,
∏∞

n=1 Mn denotes the ℓ∞-product. Using (3.2), it is easy to see that{
(an)

∞
n=1 : lim

n→ω
∥an∥2,Xn = 0

}
is an ideal of

∏∞
n=1 Mn, so this quotient is a C∗-algebra.
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For every n ∈ N, there exists τn ∈ Xn with ∥an∥2,τn > ∥an∥2,Xn−2−n. Let τ
be the limit trace corresponding to the sequence (τn)

∞
n=1 and the ultrafilter

ω′. Then

□(5.10) ∥a∥2,∑ω Xn
≥ ∥a∥2,τ = lim

n→ω′
∥an∥2,τn ≥ lim sup

n→ω
∥an∥2,Xn .

We now prove that a reduced product of a sequence of tracially complete
C∗-algebras is a tracially complete C∗-algebra.

Proposition 5.4 (cf. [23, Lemma 1.6]). Let
(
(Mn, Xn)

)∞
n=1

be a sequence

of tracially complete C∗-algebras. Then
∏ω(Mn, Xn) is a tracially complete

C∗-algebra.

Proof. By Lemma 5.3 and the definition of
∏ωMn, it is clear that ∥·∥2,∑ω Xn

is a norm. It remains to show that the ∥ · ∥-closed unit ball is ∥ · ∥2,∑ω Xn
-

complete.
Let (a(k))∞k=1 be a ∥·∥2,∑ω Xn

-Cauchy sequence in the unit ball of
∏ωMn,

and for each k ∈ N, fix a sequence (a
(k)
n )∞n=1 of contractions which represents

a(k). Set

(5.11) ϵ(k) := sup
{
∥a(l) − a(l′)∥2,∑ω Xn

: l, l′ ≥ k
}
,

noting that ϵ(k) → 0 as k →∞ since (a(k))∞k=1 is ∥ · ∥2,∑ω Xn
-Cauchy. Define

functions f
(k)
n : {b ∈M : ∥b∥ ≤ 1} → [0, 2] by

(5.12) f (k)n (b) := max
{
∥b− a(k)n ∥2,Xn − ϵ(k), 0

}
.

For k0 ∈ N and k = 1, . . . , k0, since ∥a(k0) − a(k)∥2,∑ω Xn
≤ ϵ(k), we have

lim supn→ω f
(k)
n (a

(k0)
n ) = 0 by Lemma 5.3. Therefore, Kirchberg’s ϵ-test

(Lemma 5.1) gives a sequence (an)
∞
n=1 of contractions representing an ele-

ment a in the unit ball of
∏ωMn such that lim supn→ω f

(k)
n (an) = 0 for all

k ∈ N. By Lemma 5.3 and (5.12), this means that

(5.13) ∥a− a(k)∥2,∑ω Xn
≤ ϵ(k) → 0

as k →∞. Hence the unit ball of
∏ωMn is ∥ · ∥2,∑ω Xn

-complete. □

A particularly relevant case of a reduced product is when
(
(Mn, Xn)

)∞
n=1

is a constant sequence; i.e. for some tracially complete C∗-algebra (M, X),
we have (Mn, Xn) = (M, X) for all n ∈ N. In this case, we write

(5.14) (Mω, Xω) :=

ω∏
(Mn, Xn)

and call (Mω, Xω) the reduced power of (M, X) with respect to the free
filter ω, or the ultrapower if ω is an ultrafilter. Again, when ω is the Fréchet
filter, we write (M∞, X∞) in place of (Mω, Xω).

Note that there is a natural embedding ι(M,X) : (M, X) → (Mω, Xω)
of tracially complete C∗-algebras given by identifyingM with constant se-
quences in Mω. Typically, the map ι(M,X) will be suppressed and we will
viewM as a subalgebra ofMω – this is the case for example when consid-
ering the central sequence algebraMω ∩M′.

For a C∗-algebra A with T (A) compact, we write Aω for the reduced
power of A in the norm ∥ · ∥2,T (A), which is defined in a way analogous to
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Definition 5.2, and we write Tω(A) for the limit traces on Aω induced by
T (A). These uniform tracial reduced powers of C∗-algebras appear explic-
itly in connection with the Toms–Winter conjecture in [23] (working with
ultrafilters ω) and in the abstract approach to classification [16] (working
with the Fréchet filter).41 In our formalism, the pair

(
Aω, co(Tω(A))

)
is a

tracially complete C∗-algebra and, in fact, if (M, X) is the tracial comple-
tion of A with respect to T (A), then the canonical map αX : A→M induces
an isomorphism

(5.15)
(
Aω, co(Tω(A))

)
→ (Mω, Xω),

defined on representative sequences by (an)
∞
n=1 7→ (αX(an))

∞
n=1. This fol-

lows from a more general result on the compatibility of tracial completions:
Proposition 5.6) below. We first introduce some more notation.

Definition 5.5. Let (An)
∞
n=1 be a sequence of C∗-algebras and let Xn ⊆

T (An) be a compact convex set for each n ≥ 1. We write

(5.16)

ω∏
An :=

∞∏
n=1

An
/{

(an)
∞
n=1 : limn→ω

∥an∥2,Xn = 0
}
.

Let
∑ωXn be the closed convex hull of the limit traces on

∏ω An defined
by sequences (τn)

∞
n=1 ∈

∏∞
n=1Xn. In the case of a constant sequence, say

An = A and Xn = X, we write Aω =
∏ω An and Xω =

∑ωXn.

Proposition 5.6. Let (An)
∞
n=1 be a sequence of C∗-algebras, let Xn ⊆

T (An) be a compact convex set for each n ≥ 1, let (Mn, Xn) be the tra-
cial completion of An with respect to Xn as in Definition 3.19, and let
αn : An → Mn be the canonical map for n ≥ 1. Then

(∏ω An,
∑ωXn

)
is a tracially complete C∗-algebra and there is an isomorphism of tracially
complete C∗-algebras

(5.17)
ω∏
αn :

( ω∏
An,

ω∑
Xn

) ∼=−→
( ω∏

Mn,
ω∑
Xn

)
defined at the level of representative sequences by (an)

∞
n=1 7→ (αn(an))

∞
n=1.

Proof. It is easy to see that α :=
∏ω αn is a ∗-homomorphism and is iso-

metric with respect to the uniform 2-norms, so it suffices to show that α is
surjective. Fix b ∈

∏ωMn and represent b by a bounded sequence (bn)
∞
n=1.

By the construction of the tracial completion (Mn, Xn), there is, for each
n ≥ 1, an ∈ An such that ∥αn(an) − bn∥2,Xn <

1
n and ∥an∥ ≤ ∥bn∥. Then

the sequence (an)
∞
n=1 defines an element a ∈

∏ω An such that α(a) = b. □

In the case of reduced powers, an important additional observation is that
the isomorphism defined in Proposition 5.6 is well behaved on the central
sequences.

Proposition 5.7. Let A be a C∗-algebra, let X ⊆ T (A) be compact and
convex, let (Aω, Xω) be the uniform tracial reduced power, let ι : A→ Aω be
given by constant sequences, let (M, X) be the tracial completion of A with

41Various related constructions appeared earlier. A suitable quotient of the norm
ultrapower, which is isomorphic to the tracial ultrapower, appeared in [68, 110], and all
these ideas have their spiritual origins in Matui and Sato’s work [75, 76]. Uniform tracial
ultrapowers of W ∗-bundles also were used in [10].
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respect to X, and let αX : A→M be the canonical map. The isomorphism
αω : (Aω, Xω) → (Mω, Xω) defined at the level of representative sequences
by (an)

∞
n=1 7→ (αX(an))

∞
n=1 satisfies

(5.18) αω(Aω ∩ ι(A)′) =Mω ∩M′.

More generally, for any ∥ · ∥2,X-separable subset S ⊆ M, there is a ∥ · ∥-
separable subset S0 ⊆ A such that α(Aω ∩ ι(S0)′) ⊆Mω ∩ S′.

Proof. By Proposition 5.6, αω is an isomorphism. Since

(5.19) αω(ι(A)) = αX(A) ⊆Mω,

we have

(5.20) αω(Aω ∩ ι(A)′) =Mω ∩ αX(A)′.
By Lemma 5.3, ι(M,X) is an isometry for the respective uniform 2-norms.

Hence αX(A) is ∥·∥2,Xω -dense inM. In a tracially complete C∗-algebra, left
and right multiplication by a fixed element are continuous with respect to
the uniform 2-norm by (3.2). Therefore, any element ofMω that commutes
with αX(A) must also commute withM. HenceMω ∩αX(A)′ =Mω ∩M′.

Let S ⊆ M be ∥ · ∥2,X -separable. Since αX(A) is ∥ · ∥2,Xω -dense in M,

there is a countable subset S0 ⊆ A such that αX(S0)
∥·∥2,X ⊇ S. Then

(5.21) αω(Aω∩ι(S0)′) =Mω∩αX(S0)′ =Mω∩(αX(S0)
∥·∥2,X

)′ ⊆Mω∩S′,

as claimed. □

As with C∗-norm reduced products (see [15, Lemma 3.9.5]), matrix am-
plifications commute with reduced products in the sense of the following
theorem. The proof is essentially the same as in the C∗-algebra setting.

Proposition 5.8. For any sequence
(
(Mn, Xn)

)∞
n=1

of tracially complete
C∗-algebras with reduced product (M, X) and d ∈ N, there is a natural
isomorphism

(5.22)
(
M⊗Md, X ⊗ {trd}

) ∼=−→
ω∏(
Mn ⊗Md, Xn ⊗ {trd}

)
.

defined on representing sequences by (an)
∞
n=1 ⊗ b 7→ (an ⊗ b)∞n=1.

Proof. The natural map

(5.23) ϕ :
( ∞∏
n=1

Mn

)
⊗Md →

∞∏
n=1

(Mn ⊗Md)

is an isomorphism of C∗-algebras (see the proof of [15, Lemma 3.9.4], for
example). Now, suppose (τn)

∞
n=1 ∈

∏∞
n=1 T (Mn) and ω′ is an ultrafilter

containing ω, and let τ denote the trace on
∏∞
n=1Mn given by

(5.24) τ(a) := lim
n→ω′

τn(an), a = (an)
∞
n=1 ∈

∏∞

n=1
Mn.

Then for a = (an)
∞
n=1 ∈

∏∞
n=1(Mn ⊗Md), we have

(5.25) lim
n→ω′

(τn ⊗ trd)(an) = (τ ⊗ trd)(ϕ
−1(a)).

Therefore, ϕ descends to an isomorphism as in (5.22). □
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We now turn to the question of traces on reduced products. It is well
known that the tracial ultrapower of II1 factor is also a II1 factor. We
have been unable to answer the general question for tracially complete C∗-
algebras. Under the additional hypothesis of CPoU (see Section 6), a positive
answer to the following question is given in Theorem 7.5. In particular, the
answer is affirmative in the presence of property Γ (see Section 5.3) by
Theorem 1.4.

Question 5.9. If
(
(Mn, Xn)

)∞
n=1

is a sequence of type II1 factorial tra-

cially complete C∗-algebras, is the reduced power
(∏ωMn,

∑ωXn

)
also

factorial?

Remark 5.10. In an earlier draft of this paper, we asked this question
without the type II1 assumption. A counterexample in the type I setting was
given by Vaccaro in [113]. It is based on a family of C∗-algebras introduced in
[89]: Mn is the continuous sections of a bundle over the complex projective
space CPn with fibre M2, and Xn = T (Mn).

We end this subsection with a reparameterisation theorem which will al-
low us to prove existence results for morphisms given both existence and
uniqueness results for approximate morphisms. This should be regarded as
an abstract version of the standard intertwining arguments commonly used
in C∗-algebra theory. An operator norm version of this result appears in
[46, Theorem 4.3], which, in turn, is a sequential version of [90, Proposi-
tion 1.3.7], attributed to Kirchberg.

If (N , Y ) is a tracially complete C∗-algebra and r : N → N is a function
such that limn→∞ r(n) = ∞, then there is an induced endomorphism r∗ of
(N∞, Y∞) given on representing sequences by

(5.26) r∗
(
(bn)

∞
n=1) := (br(n))

∞
n=1, (bn)

∞
n=1 ∈ ℓ∞(N ).

Equivalently, viewing ℓ∞(N ) as bounded functions N → N , r∗ is the map
induced by

(5.27) ℓ∞(N )→ ℓ∞(N ) : f 7→ f ◦ r.
Note that the map r∗ would typically not be well-defined if (N∞, Y∞) were
replaced with an ultrapower – this is the main reason for working with
general reduced products of tracially complete C∗-algebras.

In applications of the following theorem, the metric space S will typi-
cally be either a separable C∗-algebra with the operator norm or a tracially
complete C∗-algebra which is separable in its uniform 2-norm.

Theorem 5.11 (Intertwining via reparameterisation). Let (N , Y ) be a tra-
cially complete C∗-algebra, let S be a separable metric space, and let ϕ : S →
N∞ be a ∥ · ∥2,Y∞-continuous function. Suppose also that every unitary in
N∞ lifts to a unitary in ℓ∞(N ). If for every function r : N → N with
limn→∞ r(n) = ∞, we have r∗ ◦ ϕ is approximately unitarily equivalent to
ϕ, then there is a ∥ · ∥2,Y∞-continuous function ψ : S → (N , Y ) such that
ι(N ,Y ) ◦ ψ is unitarily equivalent to ϕ.

The proof is a minor modification of the C∗-algebra version obtained in
[46, Theorem 4.3], where the reduced power is taken in the C∗-norm. In
the C∗-norm setting, the condition on unitaries is automatic since every
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approximate unitary is close to a genuine unitary. We do not know if the
condition on unitaries in (N∞, Y∞) is necessary. In all of our applications
of Theorem 5.11, (N , Y ) will satisfy CPoU (see Section 6), and hence the
condition on unitaries will follow from Corollary 7.11.

Proof of Theorem 5.11. Define a sequence of functions ϕn : S → Y by choos-
ing a ∥ · ∥-preserving lift (ϕn(b))

∞
n=1 ∈ ℓ∞(N ) of ϕ(b) ∈ N∞ for every b ∈ S.

We claim that for every finite subset F ⊆ S, every ϵ > 0, and every m ∈ N,
there exists k ≥ m such that for every n ≥ k, there exists a unitary u ∈ N
such that

(5.28) max
a∈F
∥u∗ϕn(a)u− ϕk(a)∥2,Y < ϵ, a ∈ F .

Suppose for a contradiction that the claim is false. Then there exist a
finite set F0 ⊆ S, ϵ0 > 0, m0 ∈ N, and a sequence of natural numbers
(nk)

∞
k=m0

with nk ≥ k such that

(5.29) max
a∈F0

∥u∗ϕnk
(a)u− ϕk(a)∥2,Y ≥ ϵ0

for all unitaries u ∈ N and all k ≥ m0. Let r : N→ N be given by r(k) := nk
for k ≥ m0 and define r(k) arbitrarily for k < m0. Then limk→∞ r(k) =∞.
By our hypothesis, ϕ and r∗ ◦ ϕ are approximately unitarily equivalent.
Therefore, there exists a unitary u ∈ N∞ such that

(5.30) ∥u∗(r∗ ◦ ϕ)(a)u− ϕ(a)∥2,Y∞ < ϵ0

for all a ∈ F0. By our hypothesis, we may lift u to a sequence of unitaries
(uk)

∞
k=1 in N . By Lemma 5.3, we have

lim sup
k→∞

∥u∗kϕnk
(a)uk − ϕk(a)∥2,Y < ϵ0(5.31)

for all a ∈ F0. Then (5.31) contradicts (5.29) for some sufficiently large
k ∈ N. This proves the claim. We now use this to construct ψ.

Let (Fi)∞i=1 be an increasing sequence of finite subsets whose union is dense
in S. Applying the claim recursively, we obtain an increasing sequence of
natural numbers (kn)

∞
n=1 and a sequence of unitaries (un)

∞
n=1 in N such that

(5.32) ∥u∗nϕkn(a)un − ϕkn−1(a)∥2,Y < 2−n

for all a ∈ Fn. Set vn := unun−1 · · ·u1 (and put v0 := 1N ). Then, since
vn = unvn−1 and ∥vn−1∥ ≤ 1, we have

∥v∗nϕkn(a)vn − v∗n−1ϕkn−1(a)vn−1∥2,Y < 2−n(5.33)

for all n ∈ N and a ∈ Fn.
By construction, for every a ∈

⋃∞
i=1Fi, the sequence (v∗nϕkn(a)vn)

∞
n=1 is

∥ · ∥2,Y -Cauchy. Indeed, if a ∈ Fi0 , then for n > m > i0, we have

(5.34) ∥v∗mϕkm(a)vm − v∗nϕkn(a)vn∥2,Y <

m∑
i=n+1

2−i < 2−n.

Let b ∈ S and ϵ > 0. Since
⋃∞
i=1Fi is dense in S and ϕ : S → (N∞, Y∞)

is ∥ · ∥2,Y∞-continuous, there exists i0 ∈ N and some a ∈ Fi0 with ∥ϕ(b) −
ϕ(a)∥2,Y∞ < ϵ. Hence, by Lemma 5.3, we have

(5.35) lim sup
k→∞

∥ϕk(b)− ϕk(a)∥2,Y < ϵ.
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Choose N1 ∈ N with ∥ϕk(b) − ϕk(a)∥2,Y < ϵ for all k > N1, and choose
N2 ∈ N with ∥v∗mϕkm(a)vm − v∗nϕkn(a)vn∥2,Y < ϵ for all n,m > N2. Then a
simple 3ϵ-argument gives that

(5.36) ∥v∗mϕkm(b)vm − v∗nϕkn(b)vn∥2,Y < 3ϵ

whenever n,m > max(N1, N2). Hence (v
∗
nϕkn(b)vn)

∞
n=1 is ∥ ·∥2,Y -Cauchy for

all b ∈ S. Moreover, we have ∥v∗nϕkn(b)vn∥ ≤ ∥ϕn(b)∥ ≤ ∥ϕ(b)∥ for all n ∈ N .
Since (N , Y ) is a tracially complete C∗-algebra, (v∗nϕkn(b)vn)

∞
n=1 converges

in the uniform 2-norm for all b ∈ S. Hence we may define ψ : S → (N , Y )
by ψ(b) := limn→∞ v∗nϕkn(b)vn.

By construction, ι(N ,Y )◦ψ is unitarily equivalent to r∗◦ϕ, where r : N→ N
is given by r(n) := kn, via the unitary represented by the sequence (vkn)

∞
n=1.

Since r∗ ◦ ϕ is unitarily equivalent to ϕ by hypothesis (using Kirchberg’s ϵ-
test to replace approximate unitary equivalence with unitary equivalence),
we conclude that ι(N ,Y ) ◦ ψ is unitarily equivalent to ϕ. □

5.2. The McDuff property. Central sequences in II1 factors have been
studied beginning with the foundational work of Murray and von Neumann
([83]) when they used them to distinguish the hyperfinite II1 factor from
any free group factor. The systematic study of central sequences was later
instigated by two breakthrough results of McDuff: the existence of infinitely
many (and in fact, uncountably many) non-isomorphic II1 factors ([77, 78])
and, of particular relevance to us, her characterisation those II1 factorsM
with separable predual which tensorially absorb the hyperfinite II1 factor
(i.e. M ∼=M⊗̄R) as those M with non-abelian central sequence algebras.
Motivated by this last result, a II1 factor M is said to have the McDuff
property if there are approximately central unital embeddings of matrix
algebras intoM.42

The McDuff property of II1 factors has been of considerable interest to C∗-
algebraists working in the classification programme because of its relation
to Z-stability at both conceptual and technical levels ([111, 75, 68, 110, 97,
22, 16]).

In this section, we generalise the McDuff property to the setting of tra-
cially complete C∗-algebras and show that the McDuff property is equivalent
to R-stability in the separable case (Theorem 5.18). We begin with a formal
definition of the McDuff property before establishing some useful technical
reformulations and permanence properties.

Definition 5.12 (cf. [22, Definition 4.2]). Let (M, X) be a tracially com-
plete C∗-algebra. We say that (M, X) is McDuff if for any ∥·∥2,X -separable
set S ⊆M and k ≥ 1, there is a unital embedding Mk →Mω ∩ S′.43

42From a ultrapower viewpoint, McDuff’s work shows that the central sequence algebra
Mω∩M′ is non-abelian if and only if it is type II1 (and so admits unital embeddings of all
matrix algebras). For II1 factors with non-separable predual, the equivalence of tensorial
absorption of R and the McDuff property no longer holds ([44, Theorem 1.5]). Experience
has shown that the formulation in terms of approximately central matrix embeddings is
the correct way to extend the McDuff property to the non-separable predual situation
(where one should of course work with ultrapowers over uncountable sets). Indeed, the
ultrapower Mω of a McDuff II1 factor M with separable predual has the McDuff property
but is not stable under tensoring by R – see [16, Footnote 65], which uses [50].

43Of course, when M is ∥ · ∥2,X -separable, we can just take S = M.
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The uniform McDuff property was defined for a separable C∗-algebra A
with T (A) compact in [22, Definition 4.2] as the existence of unital embed-
dings Mk → Aω ∩ A′ for all k ≥ 1. By Proposition 5.7, this is consistent
with our definition.

Proposition 5.13. Let A be a separable C∗-algebra with T (A) compact.
Then A is uniformly McDuff in the sense of [22] if and only if its tracial
completion with respect to T (A) is McDuff in the sense of Definition 5.12.

We now establish some equivalent reformulations of the McDuff property.
Note that the equivalence of (i) and (ii) in the following theorem shows that
the McDuff property is independent of choice of free filter ω. The result is
standard in the setting of II1 factors, and the same techniques work in this
context.

Proposition 5.14 (cf. [10, Proposition 3.11]). Let (M, X) be a tracially
complete C∗-algebra. The following are equivalent:

(i) (M, X) is McDuff.
(ii) Given a finite set F ⊆M and ϵ > 0, there is a contraction v ∈M such
that

(5.37) max
a∈F
∥[v, a]∥2,X < ϵ, ∥v∗v + vv∗ − 1M∥2,X < ϵ, and ∥v2∥2,X < ϵ.

(iii) For each ∥ · ∥2,X-separable subset S ⊆ Mω, there is a contraction v ∈
Mω ∩ S′ such v2 = 0 and vv∗ + vv∗ = 1Mω .
(iv) For each ∥ · ∥2,X-separable subset S ⊆Mω, there is k ≥ 2 and a unital
embedding Mk →Mω ∩ S′.
(v) For each ∥ · ∥2,X-separable subset S ⊆ Mω, there is a unital embedding
R →Mω ∩ S′.

Proof. (i)⇒(ii): Given a finite set F ⊆M, fix a unital embedding ϕ : M2 →
Mω ∩ F ′. Let (vk)

∞
k=1 ⊆ M be a sequence of contractions representing

ϕ(e1,2) and set v := vk for some suitable index k.

(ii)⇒(iii): Let {s(i) : i ∈ N} be a countable dense set in S. For each

i ∈ N, let (s
(i)
n )∞n=1 be a sequence representing s(i). For each n ∈ N, set

ϵn := 2−n and Fn := {s(i)n : i ≤ n}. Let vn ∈ M be given as in (ii) with
(Fn, ϵn) in place of (F , ϵ). Then the sequence (vn)

∞
n=1 induces a contraction

v ∈Mω ∩ S′ with v2 = 0 and v∗v + vv∗ = 1Mω .
(iii)⇒(iv): Let v ∈ Mω ∩ S′ be as in (iii). Since v is a contraction

and v2 = 0, we have v∗v and vv∗ are orthogonal positive contractions. As
v∗v+vv∗ = 1M, v∗v and vv∗ are projections, and in particular, v is a partial
isometry. It follows that the C∗-subalgebra generated by v is spanned by 1M,
v, v∗, and v∗v. As this subalgebra is non-commutative and has dimension
at most four, it is isomorphic to M2. This verifies (iv) with k = 2.

(iv)⇒(v): Fix the subset S from (v). Using (iv), let k1 ≥ 2 and let
ϕ1 : Mk1 → Mω ∩ S′ be a unital embedding. Let S1 := C∗(ϕ1(Mk1) ∪ S)
and use (iv) again to produce an integer k2 ≥ 2 and a unital embedding
ϕ2 : Mk2 →Mω ∩ S′

1. Continuing inductively, there are integers kn ≥ 2 and
unital embeddings ϕn : Mkn → Mω ∩ S′ with commuting ranges. The ϕn
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induce a unital embedding

(5.38) R ∼=
⊗∞

n=1
(Mkn , trkn)→Mω ∩ S′.

(v)⇒(i): This follows as there is a unital embedding Mk → R for all
k ≥ 1. □

Remark 5.15. Other equivalent properties to McDuffness can be given by
strengthening Definition 5.12 to allow S to be any ∥ · ∥2,Xω -separable subset
of Mω or weakening any of (iii), (iv) or (v) to only have S ⊆ M. In all
cases the argument (for the non-trivial direction) is by reindexing.

For example, to go from the weakening of (iv) to (iv), given a ∥ · ∥2,X -
separable subset S ⊆ M, let T ⊆ M be a countable set consisting of the
sequence entries of lifts of a countable dense subset of S. Then, given a
unital embedding ϕ : Mk →Mω ∩ T ′, we may lift ϕ to a sequence of c.p.c.
maps ϕn : Mk → M which are asymptotically multiplicative, unital, and
commute with T . An appropriate reindexing (ϕmn) will provide a unital
embedding ϕ :Mk →Mω ∩ S′.

As a corollary of the equivalence between (i) and (ii) above, we obtain
the following permanence properties.

Corollary 5.16. Inductive limits and reduced products of McDuff tracially
complete C∗-algebras are McDuff.

The following result gives a large supply of examples of McDuff tracially
complete C∗-algebras. The result extends [23, Proposition 2.3], and the
proof is very similar.

Proposition 5.17 (cf. [23, Proposition 2.3]). If A is a separable Z-stable
C∗-algebra and X ⊆ T (A) is a compact convex set, then (A

X
, X) is a McDuff

tracially complete C∗-algebra.

Proof. Let ω be a free ultrafilter on N, let Aω := ℓ∞(A)/cω(A) be the oper-

ator norm ultrapower of A, and letM := A
X
. By [67, Proposition 4.4(4)],

there is a unital embedding ϕ : Z → (Aω ∩A′)/A⊥, where

(5.39) A⊥ := {a ∈ Aω : ab = ba = 0 for all b ∈ A}.
The natural map αX : A → M induces a ∗-homomorphism q : Aω → Mω.
Since αX maps the unit ball of A onto a ∥ · ∥2,X -dense subset of the unit
ball ofM, we have q is surjective and q(Aω ∩A′) ⊆Mω ∩M′.

Following the proof of [23, Lemma 1.10], we show q(A⊥) = 0. Assume
b ∈ A⊥ with 0 ≤ b ≤ 1. Let τ ∈ Xω ⊆ T (Mω) be given and note that

(5.40) τ ◦ q|A = τ |M ◦ αX .
Combining Corollary 3.29(i) with (5.40) shows that τ ◦ q|A has norm 1. Fix
ϵ > 0 and a positive contraction e ∈ A with τ(q(e)) ≥ 1 − ϵ. Since b ∈ A⊥

and e ∈ A are orthogonal positive contractions, their sum is also a positive
contraction. Therefore,

(5.41) 0 ≤ τ(q(b)) = τ(q(b+ e))− τ(q(e)) ≤ 1− (1− ϵ) = ϵ.

Since ϵ > 0 was arbitrary, τ(q(b)) = 0 for all τ ∈ Xω, and since q(b) ≥ 0,
this implies q(b) = 0. Hence q(A⊥) = 0.
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Let q̄ : (Aω∩A′)/A⊥ →Mω∩M′ be the ∗-homomorphism determined by
q. Then q̄ ◦ϕ : Z →Mω ∩M′ is a unital ∗-homomorphism. AsMω ∩M′ is
a ∥ · ∥2,Xω -closed, unital C∗-subalgebra ofMω, we may viewMω ∩M′ as a
tracially complete C∗-algebra as in the comments preceding Definition 3.11.
Since Z has a unique trace τ and πτ (Z)′′ ∼= R, Proposition 3.25 allows us
to extend q̄ ◦ ϕ to a unital embedding R → Mω ∩M′. Since Mk embeds
unitally in R for all k ∈ N, we see thatM has the McDuff property. □

The following result gives a tensor product characterisation of McDuff tra-
cially complete C∗-algebras in the separable setting, analogous to McDuff’s
original result for II1 factors from [79]. Our proof is an adaptation of the ar-
gument found in [10, Proposition 3.11] in the setting of W ∗-bundles. These
follow the framework of the analogous results for absorption of a strongly
self-absorbing C∗-algebra (see [111, Theorem 2.2] or [93, Theorem 7.2.2]),
which are powered by an Elliott intertwining argument.

Theorem 5.18. Suppose (M, X) is a tracially complete C∗-algebra such
thatM is ∥ · ∥2,X-separable. Then (M, X) is uniformly McDuff if and only
if (M, X)⊗̄(R, trR) ∼= (M, X).

Proof. Since M is ∥ · ∥2,X -separable and McDuff, there exists a unital em-
bedding ϕ : R → Mω ∩M′. Take a set-theoretic lift of ϕ to a sequence
(ϕn : R →M)∞n=1 of maps. We define commuting unital embeddings

(5.42) α, β : R → (M⊗̄R)ω ∩ (M⊗ 1R)
′

at the level of representative sequences by

(5.43) α(x) := (1M ⊗ x)∞n=1 and β(x) := (ϕn(x)⊗ 1R)
∞
n=1,

respectively.
Let M2∞ be the UHF algebra with supernatural number 2∞, which we

view as a ∥ · ∥2,trR-dense subalgebra of R. As M2∞ is nuclear, there exists
an embedding

(5.44) γ :M⊗M2∞ ⊗M2∞ → (M⊗̄R)ω

such that

(5.45) γ(a⊗ b⊗ c) = (a⊗ 1R)α(b)β(c) = (a⊗ b)β(c)
for all a ∈ M and b, c ∈ M2∞ . Since M2∞ has a unique trace, it follows
that γ is trace-preserving44 and, accordingly, extends to an embedding of
the tracial completion

(5.46) γ̄ :M⊗̄R⊗̄R → (M⊗̄R)ω

with

(5.47) γ̄(a⊗ b⊗ c) = (a⊗ 1R)α(b)β(c) = (a⊗ b)β(c)
for all a ∈M and b, c ∈ R.

44To ease notation, set A := M⊗M2∞ and (N , Y ) = (M, X)⊗̄(R, trR), and view A
as a ∥ · ∥2,Y -dense subalgebra of N . Then γ is a map A ⊗ M2∞ → (N ⊗ R)ω given by
γ(a ⊗ c) = aβ(c). It suffices to show γ∗(τ) = τ |A ⊗ tr2∞ for all τ ∈ Y∞. Fix τ ∈ Y∞

and positive a ∈ A. If τ(a) = 0, then τ(aβ(c)) = 0 = τ(a)tr2∞(c) by the Cauchy–Schwarz
inequality. If τ(a) ̸= 0, then c 7→ τ(γ(a⊗c))/τ(a) is a trace onM2∞ and hence is the unique
trace tr2∞ . Therefore, for all a ∈ A and c ∈M2∞ , we have τ(γ(a⊗ c)) = τ(a)tr2∞(c).
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Recall that R has an approximately inner half-flip, in the sense that there
exists unitaries (ūm)

∞
m=1 in R⊗̄R such that for all b ∈ R

(5.48) lim
m→∞

∥ū∗m(b⊗ 1R)ūm − 1R ⊗ b∥2,trR⊗trR = 0.

Moreover, since R⊗̄R is a von Neumann algebra, each unitary ūm is of the
form exp(2πih̄m) for some self-adjoint h̄m ∈ R⊗̄R.

Set um := γ̄(1M ⊗ ūm) ∈ (M⊗̄R)ω ∩ (M⊗ 1R)
′ (it is in this commutant

because γ̄(M⊗ 1R ⊗ 1R) =M⊗ 1R). Then the two embeddingsM⊗̄R →
(M⊗̄R)ω given by

(5.49) a⊗b 7→ γ̄(a⊗b⊗1R) = a⊗b and a⊗b 7→ γ̄(a⊗1R⊗b) = (a⊗1)β(b)
are approximately unitary equivalent in ∥ · ∥2,(X⊗{trR})ω , via the sequence
(um)

∞
m=1. Since β(b) ∈ (M⊗ 1R)

ω, it follows that

(5.50) lim
m→∞

inf
{
∥u∗mxum − z∥2,(X⊗{trR})ω :

z ∈ (M⊗ 1R)
ω

∥z∥ ≤ 1

}
= 0

for all contractions x ∈ M ⊗ R. We also have um = exp(2πihm), where
hm = γ̄(1M ⊗ h̄m). Since we can lift the self adjoint hm ∈ (M⊗̄R)ω to
a sequence of self-adjoint elements (hm,n)

∞
n=1 in ℓ∞(M⊗̄R), we can find a

sequence of unitaries (um,n)
∞
n=1 inM⊗R representing um.

We are now ready to construct an isomorphism ψ : M → M⊗R. Let
(xk)

∞
k=1 be a ∥ · ∥2,X -dense sequence in the unit ball ofM and (yk)

∞
k=1 be a

∥ · ∥2,X⊗{trR}-dense sequence in the unit ball ofM⊗R. We shall iteratively

produce unitaries wk in M⊗R and contractions z
(j)
k ∈ M for k ∈ N and

1 ≤ j ≤ k. The construction begins with w0 := 1. Fix k ≥ 1 and suppose

that ws, z
(r)
s ∈M for 1 ≤ r ≤ s < k have already been constructed.

By (5.50), there exists contractions z̄(1), . . . , z̄(k) ∈ (M⊗1R)ω andmk ∈ N
such that

∥u∗mk
w∗
k−1yjwk−1umk

− z̄(j)k ⊗ 1R∥2,(X⊗{trR})ω <
1

k
.(5.51)

for j = 1, . . . , k − 1. Let (umk,n)
∞
n=1 be a sequence of unitaries in M⊗R

representing umk
and let (z

(j)
k,n)

∞
n=1 be sequences of contractions representing

each z̄
(j)
k . Since umk

∈ (M⊗̄R)ω ∩ (M⊗ 1R)
′, we can choose nk ∈ N such

that

∥u∗mk,nk
w∗
k−1yjwk−1umk,nk

− z(j)k,nk
⊗ 1R∥2,X⊗{trR} <

1

k
,(5.52)

∥[umk,nk
, xj ⊗ 1R]∥2,X⊗{trR} < 2−k,(5.53)

for all 1 ≤ j ≤ k, and

∥[umk,nk
, z(r)s ⊗ 1R]∥2,X⊗{trR} < 2−k,(5.54)

for all 1 ≤ r ≤ s < k. Set wk := wk−1umk,nk
and set z

(j)
k := z

(j)
k,nk

for

j = 1, . . . , k.
For j ∈ N, the sequence (wk(xj ⊗ 1R)w

∗
k)

∞
k=1 is ∥ · ∥2,X⊗{trR}-Cauchy by

(5.53) as
∑∞

k=1 2
−k converges. Since (xj)

∞
j=1 is a ∥·∥2,X -dense sequence in the

unit ball ofM, a 3ϵ-argument gives that (wk(a⊗1R)w
∗
k)

∞
n=1 is ∥·∥2,X⊗{trR}-

Cauchy for all a ∈M. As (wk(a⊗1R)w∗
k)

∞
n=1 is ∥·∥-bounded, we may define

a map ψ : M → M⊗R by ψ(a) := limk→∞wk(a ⊗ 1R)w
∗
k. Since the wk
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are unitaries, we see that ψ is an injective ∗-homomorphism and we have
(τ ⊗ trR) ◦ ψ = τ for all τ ∈ X. Surjectivity follows from the ∥ · ∥2,X⊗{trR}-
density of (yj)

∞
j=1 in the unit ball ofM, because for k > j we have

(5.55)

∥yj − ψ(z(j)k )∥2,X⊗{trR}
(5.54)

≤
∞∑

r=k+1

2−r + ∥wk(z
(j)
k,nk
⊗ 1R)w

∗
k∥

(5.52)
<

∞∑
r=k+1

2−r +
1

k
,

which converges to zero as k → ∞. Indeed, as the unit ball of M is
∥ · ∥2,X -complete and ψ preserves the uniform 2-norm, its image must be
∥ · ∥2,X⊗{trR}-closed. □

5.3. Property Γ. In its original formulation, a II1 factorM has property Γ
if there is an approximately central net of trace-zero unitaries inM. Since

R ∼=
⊗∞

n=1(R, trR), the hyperfinite II1 factor has property Γ. Consequently,
all McDuff factors have property Γ. On the other hand, Murray and von
Neumann’s 14ϵ-argument shows that the factors associated to free groups
do not have property Γ ([83, Lemma 6.2.1]).

Dixmier extended the work of Murray and von Neumann, proving that
property Γ was equivalent to the existence of systems of approximately cen-
tral projections that sum to the unit ([32]). It is through this reformulation
that most structural consequence of property Γ are obtained for II1 factors
(see [26, 27, 49, 91]), and so it was the basis for the definition of uniform
property Γ for C∗-algebras introduced in [23] and studied further in [22].

Here, we define property Γ for tracially complete C∗-algebras. It is an
immediate consequence of Proposition 5.7 and a reindexing argument (see
Remark 5.24 below) that a C∗-algebra A with T (A) compact has uniform
property Γ in the sense of [23, Definition 2.1] if and only if its tracial com-
pletion with respect to T (A) has property Γ as defined here (see Proposi-
tion 5.20).

Definition 5.19 (cf. [23, Definition 2.1]). Let (M, X) be a factorial tracially
complete C∗-algebra. We say that (M, X) has property Γ if for any ∥ · ∥2,X -
separable subset S ⊆M and any k ∈ N there exist projections p1, . . . , pk ∈
Mω ∩ S′ summing to 1Mω such that

(5.56) τ(api) =
1

k
τ(a), a ∈ S, τ ∈ Xω, i = 1, . . . , k.

Proposition 5.20. Let A be a separable C∗-algebra with T (A) compact.
Then A has uniform property Γ as in [23, Definition 2.1] if and only if
its tracial completion with respect to T (A) has property Γ in the sense of
Definition 5.19.

Remark 5.21. We have chosen to restrict our definition of property Γ to
the case of factorial tracially complete C∗-algebras. Although Definition 5.19
makes sense for non-factorial tracially complete C∗-algebras, in the absence
of results, we are not confident that this would be appropriate definition
outside of the factorial setting.
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The following simple observation provides many examples of factorial tra-
cially complete C∗-algebras with property Γ. Combining this with Propo-
sition 5.17 shows that the tracial completion of a separable Z-stable C∗-
algebra with respect to a compact face of traces has property Γ (cf. [23,
Proposition 2.3]).

Proposition 5.22. If (M, X) is a factorial McDuff tracially complete C∗-
algebra, then (M, X) satisfies property Γ.

Proof. Let S ⊆ M be a ∥ · ∥2,X -separable set and fix k ≥ 1. Fix a unital
embedding ϕ : Mk → Mω ∩ S′. If a ∈ S, then the function τ(aϕ( · )) is a
tracial functional on Mk. Hence τ(aϕ(eii)) = τ(aϕ(e11)) for all i = 1, . . . , k,
and since ϕ is unital and

∑n
i=1 eii = 1Mk

, we have τ(aϕ(eii)) =
1
kτ(a) for all

a ∈ S. Thus the projections pi := ϕ(eii), i = 1, . . . , k, satisfy the conditions
in Definition 5.19. □

The following proposition records several equivalent formulation of prop-
erty Γ.

Proposition 5.23 (cf. [22, Proposition 2.3]). For a factorial tracially com-
plete C∗-algebra (M, X), the following are equivalent:

(i) (M, X) satisfies property Γ.
(ii) For every finite set F ⊆M and ϵ > 0, there is a self-adjoint contraction
p ∈M such that for all a ∈ F and all τ ∈ X,

(5.57) ∥[p, a]∥2,X < ϵ, ∥p− p2∥2,X < ϵ, and
∣∣τ(ap)− 1

2
τ(a)

∣∣ < ϵ.

(iii) There is c ∈ (0, 1) such that for every ∥ · ∥2,X-separable set S ⊆ Mω,
there is a projection p ∈Mω ∩ S′ such that τ(ap) = cτ(a) for all a ∈ S and
τ ∈ Xω.
(iv) There exists a faithful trace σ ∈ T (C2) such that for every ∥ · ∥2,X-
separable set S ⊆ Mω, there is a unital embedding ϕ : C2 →Mω ∩ S′ such
that τ(aϕ(x)) = τ(a)σ(x) for all a ∈ S, x ∈ C2, and τ ∈ Xω.
(v) For every ∥ · ∥2,X-separable set S ⊆ Mω, there is a ∗-homomorphism
ϕ : L∞[0, 1]→Mω ∩ S′ such that

(5.58) τ(aϕ(f)) = τ(a)

∫ 1

0
f(t)dt

for all a ∈ S, f ∈ L∞[0, 1], and τ ∈ Xω.

Proof. (i)⇒(ii): Apply the definition of property Γ with k := 2 and S :=
F and take a suitable element of a representative sequence for one of the
projections witnessing property Γ to give (ii).

(ii)⇒(iii): Let {s(i) : i ∈ N} be a countable dense set in S. For each i ∈ N,
let (s

(i)
n )∞n=1 be a sequence representing s(i). For each n ∈ N, set ϵn := 2−n

and Fn := {s(i)n : i ≤ n}. Let pn ∈ M be given as in (ii) with (Fn, ϵn) in
place of (F , ϵ). Then the sequence (pn)

∞
n=1 induces a projection p ∈Mω∩S′

such that τ(ap) = 1
2τ(a) for all a ∈ S and τ ∈ Xω.

(iii)⇒(iv): Let e1, e2 ∈ C2 be the standard basis vectors and let p ∈
Mω ∩S′ be the projection constructed in (iii). Define ϕ : C2 →Mω ∩S′ by



TRACIALLY COMPLETE C∗-ALGEBRAS 67

ϕ(e1) := p and ϕ(e2) := 1Mω − p. Define σ(x1, x2) := cx1 + (1− c)x2. Then
τ(aϕ(x)) = τ(a)σ(x) for all a ∈ S, x ∈ C2, and τ ∈ Xω.

(iv)⇒(v): Let ϕ1 : C2 → Mω ∩ S′ be a unital embedding such that
τ(aϕ1(x)) = τ(a)σ(x) for all a ∈ S, x ∈ C2, and τ ∈ Xω. Then define
S1 := C∗(ϕ1(C2) ∪ S) and use (iv) again to produce a unital embedding
ϕ2 : C2 →Mω ∩ S′

1 such that τ(aϕ2(x)) = τ(a)σ(x) for all a ∈ S1, x ∈ C2,
and τ ∈ Xω.

Continuing inductively, there are unital embeddings ϕn : C2 → Mω ∩ S′

with commuting ranges such that the induced embedding

(5.59) ϕ :
∞⊗
n=1

C2 →Mω ∩ S′

satisfies τ(aϕ(x)) = τ(a)σ⊗∞(x) for all a ∈ S, x ∈
⊗∞

n=1C2, and τ ∈ Xω.
SinceMω ∩ S′ is tracially complete, ϕ extends to a ∗-homomorphism

(5.60) ϕ̄ : πσ⊗∞

( ∞⊗
n=1

C2
)′′
→Mω ∩ S′.

Writing, σ̄ for the trace on πσ⊗∞

(⊗∞
n=1C2

)′′
induced by σ⊗∞, we have

τ(aϕ̄(x)) = τ(a)σ̄(x) for all a ∈ S, x ∈ πσ⊗∞
(⊗∞

n=1C2
)′′
, and τ ∈ Xω. The

uniqueness of the standard probability space then provides an isomorphism

(5.61) πτ0

( ∞⊗
n=1

C2
)′′ ∼= L∞[0, 1]

which carries σ̄ to the trace on L∞[0, 1] given by integration with respect to
the Lebesgue measure.

(v)⇒(i): For k ≥ 1 and 1 ≤ i ≤ k, set pi := ϕ(χ[(i−1)/k,i/k)). □

Remark 5.24. Using reindexing, as in Remark 5.15, we can see that Defi-
nition 5.12 is equivalent to an a priori stronger definition where S is allowed
to be any ∥ · ∥2,Xω -separable subset ofMω. Similarly, each of (iii), (iv) and
(v) is equivalent to an a priori weaker statement with S ⊆M.

The local characterisation of property Γ given in Proposition 5.23(ii) pro-
vides the following permanence property. Recall that factoriality is preserved
by inductive limits by Proposition 3.34.

Proposition 5.25. Property Γ is preserved by inductive limits of factorial
tracial complete C∗-algebras.

Remark 5.26. It is also true that the reduced product of a sequence of
factorial tracially complete C∗-algebras with property Γ is both factorial
and has property Γ, but we do not yet have the machinery to prove the
factorial part of this claim.45 Once the factorial issue is sorted, it is clear
that the condition in Proposition 5.23(ii) is preserved by reduced products.
See Corollary 7.7(ii).

45Recall that in general it is not true that a reduced product of factorial tracially
complete C∗-algebras is factorial (see Remark 5.10).
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The definition of property Γ requires that one can tracially divide all
elements of a tracially complete C∗-algebra in an approximately central
fashion, whereas for a II1 factor M it suffices just to divide the unit (i.e.
(5.56) only needs to hold for a = 1Mω). In [22, Proposition 3.2], several
of the present authors observed that such a result is also true for separable
C∗-algebras with Bauer tracial simplices. The same holds in the tracially
complete setting with a very similar proof.

Proposition 5.27 (cf. [22, Corollary 3.2]). Let (M, X) be a factorial tra-
cially complete C∗-algebra such that X is a Bauer simplex. Suppose that for
any ∥ · ∥2,X-separable subset S ⊆M and k ∈ N, there exists pairwise orthog-
onal projections p1, . . . , pk ∈ Mω ∩ S′ with τ(pi) = 1/k for all i = 1, . . . , k.
Then (M, X) has property Γ.

Proof. First assume thatM is ∥ · ∥2,X -separable, so we can take S :=M in
the statement. Using Remark 5.24, it will suffice to show that we automat-
ically have

(5.62) τ(api) =
1

k
τ(a), a ∈M, τ ∈ Xω, i = 1, . . . k.

By [10, Proposition 3.9],Mω is a W ∗-bundle over (∂eX)ω (in the notation
defined before [10, Proposition 3.9]),46 so it suffices to prove (5.62) for τ ∈
(∂eX)ω, which means it suffices to assume that τ is a limit trace coming
from a sequence (τn) of traces in ∂eX and an ultrafilter ω′ ⊇ ω. In this case,
since ∂eX is compact, τ |M ∈ ∂eX (as it is the ω′-limit of the τn). Define
σ :M→ C by σ(x) := τ(xpi). This is a positive tracial functional such that
σ(1M) = 1

k ; since τ is an extreme point in T (M), we have σ = 1
kτ , which

amounts to (5.62).
In the non-separable case, we can use the fact that factoriality is separably

inheritable (Theorem A.3(i)) to see that for any ∥ · ∥2,X -separable subset S
ofM, there exists a ∥·∥2,X -separable factorial tracially complete subalgebra
M0 ofM which contains S and satisfies the hypotheses of the proposition
and, therefore, has property Γ. Consequently, M has property Γ as the
projections witnessing property Γ forM0 also witness property Γ forM. □

In the setting of W ∗-bundles, abstracting the results in [110, 97, 68], an
amenable factorial type II1 tracially complete C∗-algebra (M, X) with ∂eX
compact and finite dimensional turns out to have property Γ. This will be
contained in the forthcoming work by the third- and fifth-named authors,
which will show that a factorial W ∗-bundle over a finite dimensional space
has property Γ when viewed as a tracially complete C∗-algebra if and only
if each fibre has property Γ as a von Neumann algebra. We show here that
this holds in the zero dimensional setting.

Proposition 5.28. If (M, X) is a factorial tracially complete C∗-algebra
such that ∂eX is compact and totally disconnected and πτ (M)′′ has property
Γ for each τ ∈ ∂eX, then (M, X) has property Γ. In particular, if (M, X) is
an amenable type II1 factorial tracially complete C∗-algebra such that ∂eX
is compact and totally disconnected, then (M, X) has property Γ.

46In [10], ω is taken to be an ultrafilter, but the same considerations apply to any free
filter on N.
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Proof. Note that the second statement follows from the first. Indeed, if
(M, X) is as in the second statement, then for all τ ∈ ∂eX, πτ (M)′′ is
semidiscrete by Theorem 1.2 and is a II1 factor by Proposition 3.14. It then
follows from [29, Corollary 2.2] that πτ (M)′′ has property Γ.

We now prove the first statement. As ∂eX is compact,M can be viewed
as a W ∗-bundle over K := ∂eX by Theorem 3.37. Let C(K) ⊆ M be
the corresponding inclusion. Fix a finite set F ⊂ M, ϵ > 0, and k ∈ N.
By Proposition 5.27, it suffices to show that there are positive contractions
p1, . . . , pk ∈M such that

(i) ∥[pi, a]∥2,X < ϵ for all a ∈ F and i = 1, . . . , k,
(ii) ∥pi − p2i ∥2,X < ϵ for all i, . . . , k,
(iii) ∥pipi′∥2,X < ϵ for i, i′ = 1, . . . , k with i ̸= i′, and
(iv) |τ(pi)− 1/k| < ϵ for all τ ∈ X and i = 1, . . . , k.

For each τ ∈ K, as the II1 factor πτ (M)′′ satisfies property Γ, there
are mutually orthogonal projections p̄1,τ , . . . , p̄k,,τ ∈ πτ (M)′′ with trace 1/k
such that

(5.63) ∥[p̄i,τ , πτ (a)]∥2,τ < ϵ, a ∈ F , i = 1, . . . , k.

Using Kaplansky’s density theorem to approximate each p̄τ,i by a positive
contraction in M in the norm ∥ · ∥2,τ together with the compactness of
K, there is a finite open cover U1, . . . , Un of K and positive contractions
pi,j ∈M for i = 1, . . . , k and j = 1, . . . , n such that

(i′) ∥[pi,j , a]∥2,Uj < ϵ for all a ∈ F , i = 1, . . . , k, and j = 1, . . . , n,

(ii′) ∥pi,j − p2i,j∥2,Uj < ϵ for all i, . . . , k and j = 1, . . . , n,

(iii′) ∥pi,jpi′,j∥2,Uj < ϵ for i, i′ = 1, . . . , k with i ̸= i′ and j = 1, . . . , n,
and

(iv′) |τ(pi,j)− 1/k| < ϵ for all τ ∈ Uj and i = 1, . . . , k.

AsK is totally disconnected, after refining the open cover, we may assume
that the sets U1, . . . , Un form a clopen partition of K. Then the elements

(5.64) pi :=

n∑
j=1

χUjpi,j ∈M, j = 1, . . . n,

are positive contractions satisfying (i)–(iv). □

It remains open whether the approximately central division of the unit as
in Proposition 5.27 implies property Γ outside the setting of Bauer simplices
([22, Question 3.5]). This question is just as valid in the tracially complete
framework.

Question 5.29. Does Proposition 5.27 hold for all factorial tracially com-
plete C∗-algebras (i.e. without assuming that X is a Bauer simplex)?

Immediately following [22, Proposition 5.10], the second-, third-, and last
two named authors asserted that all the Villadsen algebras of the first type
– namely the examples from [114], which were used by Toms to give striking
counterexamples to Elliott’s original classification conjecture ([109]) – have
property Γ. These algebras are so-called diagonal AH algebras (i.e. inductive
limits of homogeneous algebras of a particularly nice form), and they prove
a fertile testing ground for comparing regularity properties of very different
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natures, with the analysis in [112] leading to a positive solution to the Toms–
Winter conjecture on this class of algebras. Uniform tracial completions of
diagonal AH algebras satisfy the central divisibility-of-the-unit hypothesis
of Proposition 5.27 (this is [22, Proposition 5.10]) and the assertion that
Villadsen algebras of the first type have property Γ was based on [112,
Section 8] (where it is suggested, based on computations in [108, Theorem
4.1], that these have Bauer simplices of traces).47 However recent results of
Elliott, Li, and Niu ([36, Theorem 4.5]) show that, in fact, the trace space
of Villadsen algebras of the first type is the Poulsen simplex (whenever the
algebra is not Z-stable) – maximally far from being Bauer! Accordingly,
the argument in [22] is not valid, and it does not seem straightforward to
determine whether the Villadsen type I algebras have property Γ.

Question 5.30. Do the uniform tracial completions of the (non-Z-stable)
Villadsen algebras of the first type have property Γ?

The connecting maps in the inductive limit construction of a Villadsen
type I algebra involve a combination of coordinate projections and point
evaluations, the latter of which ensure simplicity of the inductive limit. In
the case of a non-Z-stable Villadsen type I algebra A, the point evaluations
are relatively sparse (see [112, Theorem 3.4 and Lemma 5.1]). As such they
do not affect the structure of the tracial completion of A. For this reason, the
heart of Question 5.30 lies in determining whether Γ holds for the tracially
complete inductive limit of the trivial W ∗-bundles

(5.65) C([0, 1])→ C([0, 1]2,M2)→ C([0, 1]4,M4)→ · · · ,

where each stage is equipped with all its traces, and the connecting maps
are given as the direct sum of the two coordinate projections.

6. Complemented partitions of unity

This section formally introduces the notation of CPoU for factorial tra-
cially complete C∗-algebras as discussed in Section 1.4. The definition of
CPoU is given in Section 6.1. Some examples of tracially complete C∗-
algebras with CPoU can be found in Section 6.2, and permanence proper-
ties are discussed in Section 6.3. The proof Theorem 1.4 (property Γ implies
CPoU) will be given in Section 6.4.

6.1. Formal definition and its reformulations. The following definition
extends the notion of CPoU introduced in [23] in the C∗-setting to factorial
tracial complete C∗-algebras. More precisely, a separable C∗-algebra A with
T (A) compact has CPoU in the sense of [23] if and only its tracial comple-
tion with respect to T (A) has CPoU in the sense of Definition 6.1 below;
this is immediate from the definition and Proposition 5.7, which identifies
the uniform 2-norm central sequence algebra of A with that of its uniform
tracial completion.48 Recall our convention that (unless specified otherwise)

47In [22], the second-, third-, and last two named authors incorrectly referenced the
non-existent [109, Theorem 4.1] rather than [108, Theorem 4.1].

48In [23], CPoU was only defined in the separable setting, but we will not make this
restriction here.
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ω denotes a free filter on N. It will follow from the local characterisation in
Proposition 6.2 that Definition 6.1 does not depend on the choice of filter ω.

Definition 6.1 (cf. [23, Definition 3.1]). Let (M, X) be a factorial tracially
complete C∗-algebra. We say that (M, X) has complemented partitions
of unity (CPoU) if for any ∥ · ∥2,X -separable subset S ⊆ M, any family
a1, . . . , ak of positive elements inM, and any scalar

(6.1) δ > sup
τ∈X

min
1≤i≤k

τ(ai),

there exist orthogonal projections p1, . . . , pk ∈ Mω ∩ S′ summing to 1Mω

such that

(6.2) τ(aipi) ≤ δτ(pi), τ ∈ Xω, i = 1, . . . , k.

We note that when M is ∥ · ∥2,X -separable, it suffices to take S := M.
As with property Γ, we have have chosen to restrict the definition to the
setting of factorial tracially complete C∗-algebras since it is not clear if this
definition is appropriate outside of the factorial setting.

The following proposition provides an equivalent formulation of CPoU
that avoids the language of reduced products. Moreover, a reindexing argu-
ment shows that Definition 6.1 is equivalent to an a priori stronger definition
where a1, . . . , ak ∈Mω and S can be any ∥ ·∥2,X -separable subspace ofMω.

Proposition 6.2. Let (M, X) be a factorial tracially complete C∗-algebra.
Then the following are equivalent:

(i) (M, X) has CPoU;
(ii) for every finite set F ⊆M, ϵ > 0, a1, . . . , ak ∈M+, and

(6.3) δ > sup
τ∈X

min
1≤i≤k

τ(ai),

there exist orthogonal positive contractions e1, . . . , ek ∈M such that

(6.4)

∥∥∥ k∑
j=1

ej − 1M

∥∥∥
2,X

< ϵ,

max
x∈F
∥[ei, x]∥2,X < ϵ, i = 1, . . . , k,

τ(aiei)− δτ(ei) < ϵ, τ ∈ X, i = 1, . . . , k;

(iii) for every ∥ · ∥2,X-separable subset S ⊆M, a1, . . . , ak ∈Mω, and

(6.5) δ > sup
τ∈Xω

min
1≤i≤k

τ(ai),

there exist orthogonal projections p1, . . . , pk ∈ Mω ∩ S′ summing to 1Mω

such that

(6.6) τ(aipi) ≤ δτ(pi), τ ∈ Xω, i = 1, . . . , k.

Proof. (i)⇒(ii): Let ϵ > 0, let a1, . . . , ak ∈ M+, let F ⊆ M be a finite
subset, and let δ > 0 be such that (6.1) holds. Since (M, X) has CPoU,
we obtain orthogonal projections p1, . . . , pk ∈ Mω ∩ F ′ summing to 1Mω

such that (6.2) hold. We can lift p1, . . . , pk ∈ Mω to orthogonal positive

contractions e(1), . . . , e(k) ∈ ℓ∞(M) by [1, Proposition 2.6] (this is a special
case of projectivity of cones over finite dimensional C∗-algebras; see [72,
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Corollary 3.8]). Write (e
(i)
j )∞j=1 for a sequence of positive contractions rep-

resenting e(i) for i = 1, . . . , k. Note that for each j ∈ N, e(1)j , . . . , e
(k)
j are

orthogonal positive contractions. Since the pi sum to 1Mω and commute
with F , we have

(6.7) lim sup
j→ω

∥∥∥e(1)j + · · ·+ e
(k)
j − 1M

∥∥∥
2,X

= 0,

and

(6.8) lim sup
j→ω

∥[e(i)j , x]∥2,X = 0, x ∈ F , i = 1, . . . , k.

Moreover, we must have

(6.9) lim sup
j→ω

sup
τ∈X

(
τ
(
aie

(i)
j

)
− δτ

(
e
(i)
j

))
≤ 0, i = 1, . . . , k,

as otherwise we could choose a sequence of traces (τj)
∞
j=1 in X and an

ultrafilter ω′ ⊇ ω such that the corresponding limit trace τ does not satisfy

τ(aipi) ≤ δτ(pi). Therefore, taking ei := e
(i)
j for suitable choice of j, the

orthogonal positive contractions e1, . . . , ek will satisfy (6.4).
(ii)⇒(iii): Let S ⊆Mω be a ∥ ·∥2,Xω -separable subset and fix a countable

dense subset {s(i) : i ∈ N} of S. For each i ∈ N, let (s(i)j )∞j=1 be a sequence

representing s(i). Let a1, . . . , ak ∈ Mω be positive contractions in Mω.

Let (a
(i)
j )∞j=1 be a sequence of positive contractions representing ai for i =

1, . . . , k. Let δ > 0 satisfy (6.5). Then we have

(6.10) lim sup
j→ω

sup
τ∈X

min
1≤i≤k

τ
(
a
(i)
j

)
< δ.

Therefore, there exists a set J ∈ ω such that for all j ∈ J , we have

(6.11) sup
τ∈X

min
1≤i≤k

τ
(
a
(i)
j

)
< δ.

For each j ∈ N, set ϵj := 2−j and Fj := {s(i)j : i ≤ j}. Applying (ii) for each

j ∈ J , we obtain orthogonal positive contractions e
(1)
j , . . . , e

(k)
j such that

(6.12)

∥∥∥ k∑
i=1

e
(i)
j − 1M

∥∥∥
2,X

< ϵj ,

max
x∈Fj

∥∥[e(i)j , x]∥∥2,X < ϵj , i = 1, . . . , k, x ∈ Fj

τ
(
a
(i)
j e

(i)
j

)
− δτ

(
e
(i)
j

)
< ϵj , τ ∈ X, i = 1, . . . , k.

For j ̸∈ J , we may choose e
(1)
j , . . . , e

(k)
j arbitrarily. Let pi ∈ Mω be the

element represented by
(
e
(i)
j

)∞
j=1

. Then (6.12) ensures that the pi sum to

1Mω , commute with S, and satisfy (6.6). Since p1, . . . , pk are orthogonal
positive contractions summing to the identity, they are in fact projections.

(iii)⇒(i): If S ⊆M is ∥ · ∥2,X -separable, then viewed as a subset ofMω,
it is ∥ · ∥2,Xω -separable. If a1, . . . , ak ∈M+, we have

(6.13) sup
τ∈Xω

min
1≤i≤k

τ(ai) = sup
τ∈X

min
1≤i≤k

τ(ai).
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Therefore, (i) is a special case of (iii). □

6.2. First examples and non-examples. The main source of example of
factorial tracially complete C∗-algebras with CPoU come from Theorem 1.4,
which, as a special case, implies the uniform tracial completion of a separable
Z-stable Cj-algebra with respect to a compact face of traces will have CPoU.
In this subsection, we shall investigate some more elementary examples of
tracially complete C∗-algebras (M, X) with CPoU in the case when X is a
Bauer simplex. We will also prove a special case of Theorem 1.4 showing
that Γ implies CPoU in the case of W ∗-bundles (Proposition 6.7), which is
easier and more conceptual than the general result taken up in Section 6.4).
We also provide examples of type II1 factorial tracially complete C∗-algebras
without CPoU in Example 6.6.

In the setting of W ∗-bundles with totally disconnected base space, a
strong form a CPoU holds: one can take the partition of unity to be central
as opposed to approximately central.

Proposition 6.3. Let (M, X) be a factorial tracially complete C∗-algebra
such that ∂eX is compact and totally disconnected. Then for all a1, . . . , ak ∈
M+ and

(6.14) δ > sup
τ∈X

min
1≤i≤k

τ(ai),

there are projections p1, . . . , pk ∈ Z(M) summing to 1M such that τ(aipi) ≤
δτ(pi) for all τ ∈ X and i = 1, . . . , k. In particular, (M, X) has CPoU.

Proof. It suffices to prove the first part since for any ∥·∥2,X -separable subset
S ⊆M, we have Z(M) ⊆Mω ∩ S′.

For i = 1, . . . , k, define

(6.15) Ui := {τ ∈ ∂eX : τ(ai) < δ},
so that U1, . . . , Uk is an open cover of ∂eX. By total disconnectedness,
we may partition ∂eX into clopen sets V1, . . . , Vk such that Vi ⊆ Ui for
i = 1, . . . , k.

AsM is factorial, X is a closed face of T (M) and so is a Choquet simplex
in its own right, which is then Bauer from the assumption that ∂eX is
compact. By Theorem 3.37, there is a natural embedding C(∂eX) ⊆ Z(M).
Let us define

(6.16) pi := χVi ∈ C(∂eX) ⊆ Z(M).

For τ ∈ ∂eX, we have pi ∈ C(∂eX) ⊆ M is in the multiplicative domain
of τ , and hence τ(aipi) = τ(ai)τ(pi). Since τ(pi) = 0 for τ ∈ ∂eX \ Vi and
τ(ai) < δ for τ ∈ Vi, we have τ(aipi) ≤ δτ(pi) for all i = 1, . . . , k and τ ∈
∂eX. It then follows from the Krein–Milman theorem that τ(aipi) ≤ δτ(pi)
for all i = 1, . . . , k and τ ∈ X. □

A noteworthy special case of Proposition 6.3 is when M is a finite di-
mensional C∗-algebra and X = T (M). This is easily seen to be a tracially
complete C∗-algebra as the norms ∥ · ∥2,X and ∥ · ∥ are equivalent. Although
this example is fairly trivial, it played a notable role in the proof of [23,
Theorem 3.8], which could be viewed as bootstrapping CPoU from the fi-
nite dimensional setting (where it is easy to verify) to the nuclear setting



74 J. CARRIÓN ET AL.

with the aid of uniform property Γ. The proof of Theorem 1.4 will similarly
make use of the following special case of Proposition 6.3.

Corollary 6.4. If M is a finite von Neumann algebra, then the factorial
tracially complete C∗-algebra

(
M, T (M)

)
has CPoU. In fact, if a1, . . . , ak ∈

M+ and

(6.17) δ > sup
τ∈X

min
1≤i≤k

τ(ai),

then there are projections p1, . . . , pk ∈ Z(M) summing to 1M such that
τ(aipi) ≤ δτ(pi) for all τ ∈ T (M) and i = 1, . . . , k.

Proof. As all traces on M factor through the centre-valued trace M →
Z(M) (Proposition 2.8(i)), composition with the centre-valued trace pro-
duces a homeomorphism from the Gelfand spectrum of Z(M) to ∂eT (M).
In particular, ∂eT (M) is compact and totally disconnected (in fact hyper-
stonean) as Z(M) is a von Neumann algebra, and so the result follows from
Proposition 6.3. □

In the next proposition, we consider what it means for a trivial W ∗-
bundle to have CPoU. (See Example 3.7 for the definition of trivial W ∗-
bundles.) The heuristic idea is that for aW ∗-bundle over a space that is not
totally disconnected, the approximately central projections in Definition 6.1
cannot come from the centre of the algebra, and hence any constructions of
approximately central projections must make use of central sequences in the
fibres. In particular, if there are no central sequences in the fibres, then the
W ∗-bundle must not have CPoU.

Proposition 6.5. Let (M, X) be the trivial W ∗-bundle over a compact
Hausdorff space K with fibre a finite factor N . If (M, X) has CPoU, then
either K is totally disconnected or N satisfies property Γ.

Proof. Suppose (M, X) satisfies CPoU and K is not totally disconnected.
Let τN be the trace on N and let S ⊆ N be a ∥ · ∥2,τN -separable subset. We
work to show that there is a projection q ∈ N ω ∩ S′ with trace 1/2. This
will show N satisfies property Γ – this is a standard von Neumann algebra
result; its also special case of (i)⇒(iii) of Proposition 5.23, for example.

Fix a point x ∈ K and an open neighbourhood U ⊆ K of x such that there
is no clopen neighbourhood of x contained in U . Let a1 ∈ C(K) ⊆ M be
such that 0 ≤ a1 ≤ 1M, a1(x) = 1, and supp(a1) ⊆ U , and set a2 := 1M−a1.
Then

(6.18) sup
τ∈X

min{τ(a1), τ(a2)} ≤
1

2
<

2

3
.

Let ω be a free ultrafilter on N and view S ⊆ M as constant functions.
Since (M, X) has CPoU, there are projections p1, p2 ∈ Mω ∩ S′ such that
p1 + p2 = 1Mω and

(6.19) τ(aipi) ≤
2

3
τ(pi), i = 1, 2, τ ∈ Xω.

For i = 1, 2, let (pi,n)
∞
n=1 ⊆ M be a sequence of positive contractions

representing pi. If τ ∈ Xω is the limit trace determined by the constant
sequence (τN ◦ evx)∞n=1 ⊆ X. Then τ(a1) = 1, and hence τ(a2) = 0. Since
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a2 ≥ 0, the Cauchy–Schwarz inequality implies τ(a2p1) = 0. So τ(a1p1) =
τ(p1). Now, (6.19) implies τ(p1) = 0. Therefore,

(6.20) lim
n→ω

τN (p1,n(x)) = 0.

Similarly, consider a sequence (yn)
∞
n=1 ⊆ K \U , and let τ ∈ Xω be the limit

trace defined by the sequence (τN ◦ evyn)∞n=1 ⊆ X. Then τ(a2) = 1, and as
above, this shows τ(p2) = 0. This implies τ(p1) = 1. As this holds for all
sequences (yn)

∞
n=1 ⊆ K \ U , it follows that

(6.21) lim
n→ω

inf
y∈K\U

τN (p1,n(y)) = 1.

Define

(6.22) N :=
{
n ∈ N : τN (p1,n(x)) <

1

2
, inf
y∈K\U

τ(p1,n(y)) >
1

2

}
,

and note that N ∈ ω by (6.20) and (6.21). For each n ∈ N , there is a
yn ∈ K such that τN (p1,n(y)) = 1/2 since otherwise

(6.23)
{
y ∈ K : τN (p1,n(y)) <

1

2

}
⊆ K

is a clopen neighbourhood of x contained in U . For n ∈ N , set qn :=
p1,n(yn) ∈ N and for n ∈ N\N , set qn = 0 ∈ N . Then the sequence (qn)

∞
n=1

defines a projection q ∈ N ω ∩ S′ with trace 1/2. □

Proposition 6.5 provides us with explicit examples of tracially complete
C∗-algebras that do not have CPoU.

Example 6.6. For any n ≥ 2, the trivial W ∗-bundle Cσ([0, 1], L(Fn)) does
not have CPoU. Indeed, the II1 factors L(Fn) do not have property Γ ([83];
see also [100, Theorem A.7.2]), and hence the result follows from Proposi-
tion 6.5.

The converse of Proposition 6.5 is also true. If (M, X) is a trivial W ∗-
bundle whose fibre is a II1 factor with property Γ, then it is easy to show
(M, X) has property Γ, and then Theorem 1.4 will show that (M, X) has
CPoU. In fact, in the W∗-bundle case we can give a more direct proof that
property Γ implies CPoU. In light of Theorem 3.37, the following result is
just the special case of Theorem 1.4 when X is a Bauer simplex. As the
proof is more conceptual in this special case, we include it here.

Proposition 6.7. Let (M, X) be a factorial tracially complete C∗-algebra
coming from a W ∗-bundle over the space K = ∂eX. Suppose (M, X) has
property Γ. Then (M, X) has CPoU.

Proof. Fix an ultrafilter ω on N. By the Krein–Milman theorem and Propo-
sition 3.3, we have that ∥a∥2,X = ∥a∥2,K for all a ∈ M. Moreover, writing
Kω for the weak∗-closure of the set of limit traces coming from a sequence
of traces in K, we have ∥a∥2,Xω = ∥a∥2,Kω for all a ∈Mω.

Let a1, . . . , ak ∈M+ and δ > 0 satisfy

(6.24) δ > sup
τ∈K

min
1≤i≤k

τ(ai).

Let S ⊆ M be ∥ · ∥2,X -separable subset, which we may assume contains
a1, . . . , ak. Let Ui := {τ ∈ K : τ(ai) < δ} for i = 1, . . . , k. Then {U1, . . . , Uk}
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is an open cover of K. Let g1, . . . , gk : K → [0, 1] be a continuous partition

of unity subordinate to this open cover. Set h0 := 0 and hi :=
∑i

j=1 gi for
i = 1, . . . , k.

Since M has property Γ, by (i)⇒(v) of Proposition 5.23, there exists a
∗-homomorphism ϕ : L∞[0, 1]→Mω ∩ S′ such that

(6.25) τ(aϕ(f)) = τ(a)trLeb(f)

for all a ∈ S, f ∈ L∞[0, 1] and τ ∈ Xω, where trLeb is integration with re-
spect to the Lebesgue measure. SinceM is aW ∗-bundle there is a canonical
copy of C(K) in Z(M). As the image of ϕ commutes with C(K) ⊆ Z(Mω),
we have an induced ∗-homomorphism ψ : C(K)⊗ L∞[0, 1]→Mω ∩ S′. Let
τ be a limit trace given by a sequence of traces (τn)

∞
n=1 in K. Then, since

every τn ∈ K restricts to a point evaluation on C(K), we see that

τ(aψ(g ⊗ f)) = lim
n→ω

τn(a)g(τn)trLeb(f)

= lim
n→ω

τn(a)trLeb(g(τn)f)
(6.26)

for all a ∈ S, g ∈ C(K), and f ∈ L∞[0, 1]. Identifying C(K)⊗L∞[0, 1] with
C(K,L∞[0, 1]), we have

(6.27) τ(aψ(F )) = lim
n→ω

τn(a)trLeb(F (τn))

for all a ∈ S and F ∈ C(K,L∞[0, 1]).
In particular, we have ∥ψ(F )∥2,Kω = supτ∈K ∥F (τ)∥2,τLeb

. It follows that
ψ extends to an embedding Cσ(K, (L

∞[0, 1], τLeb)) → Mω ∩ S′ (which we
also denote by ψ) of the trivial W ∗-bundle with fibre L∞[0, 1] such that
(6.27) holds for all a ∈ S and F ∈ Cσ(K, (L∞[0, 1], τLeb)).

Using χ[hi−1,hi] : K → L∞([0, 1]) to denote the function τ 7→ χ[hi−1(τ),hi(τ)],
this function is in Cσ(K, (L

∞[0, 1], τLeb)), and so we can define

(6.28) pi := ψ(χ[hi−1,hi]), i = 1, . . . , k.

Then p1, . . . , pk are orthogonal projections in Mω ∩ S′ summing to 1Mω .
Let τ be a limit trace given by a sequence of traces (τn)

∞
n=1 in K. Then

τ(aipi) = lim
n→ω

τn(ai)trLeb(χ[hi−1,hi](τn))

= lim
n→ω

τn(ai)gi(τn)

≤ lim
n→ω

δgi(τn)

= δτ(pi),

(6.29)

where the inequality in the third line holds as for any τn ∈ K, either
τn(ai) < δ or gi(τn) = 0 because g1, . . . gk is a partition of unity subor-
dinate to {U1, . . . , Un}. An application of the Krein–Milman theorem shows
that (6.29) holds for all τ ∈ Xω. Therefore,M has CPoU. □

6.3. Permanence properties of CPoU. We will show CPoU is preserved
by inductive limits and matrix amplifications. CPoU is also preserved under
reduced products of tracially complete C∗-algebras, but the proof will be
deferred to Section 7 (see Remark 6.13). We begin by showing that CPoU
passes to “quotients” in the sense that restricting to a closed face of traces
(and completing in the corresponding uniform 2-norm) preserves CPoU (cf.
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Corollary 6.10). We isolate the following lemma, which will go into the proof
of Proposition 6.9, as well as being recycled in Appendix A.

Lemma 6.8. IfM is a unital C∗-algebra, Y ⊆ T (M) is a closed face, and
S ⊆M is ∥ · ∥-separable, then there is a separable unital C∗-algebra A ⊆M
containing S such that

(6.30) YA := {τ |A : τ ∈ Y } ⊆ T (A)

is a closed face in T (A).

Proof. We will construct a sequence (An)
∞
n=1 of separable unital C∗-sub-

algebras ofM containing S and self-adjoint elements an ∈ An+1 such that
for each n ≥ 1,

(i) An ⊆ An+1,
(ii) every trace on An extends to a trace onM,
(iii) τ(an) ≥ 0 for all τ ∈ T (M), and
(iv) if Yn := {τ |An : τ ∈ Y }, then for all τ ∈ T (M), we have τ(an) = 0

if and only if τ |An ∈ Yn.
The construction is by induction on n. Using [86, Lemma 9], there is

a separable unital C∗-algebra A1 ⊆ M which contains S such that every
trace on A1 extends to a trace on M. With Y1 as in (iv), note that Y1 is
closed49 and T (A1) is metrisable, and hence T (A1) \Y1 is an Fσ-set. By the
continuity of the restriction map T (M)→ T (A1), we have

(6.31) U1 := {τ ∈ T (M) : τ |A1 /∈ Y1}

is an Fσ-set in T (M) disjoint from Y . By Theorem 2.4, there is a continuous
affine function f : T (M)→ [0, 1] such that f(τ) = 0 for all τ ∈ Y and f(τ) >
0 for all τ ∈ U1. By Proposition 2.7, there is a self-adjoint a1 ∈ M with
f(τ) = τ(a1) for all τ ∈ T (M). Now repeat the argument with A1 ∪ {a1}
in place of S to obtain A2 and a2, and continue in this fashion.

Let A ⊆ M be the ∥ · ∥-closure of the union of the An. Note that every
trace τ ∈ T (A) extends to a trace on M – indeed, for each n ≥ 1, τ |An

extends to a trace τ̃n ∈ T (M), and then any weak∗-limit point of the traces
τ̃n will extend τ . Now suppose σ, ρ ∈ T (A) and that τ := 1

2(σ + ρ) ∈ YA.
Since σ and ρ extend to traces on M, (iii) implies σ(an), ρ(an) ≥ 0 for all
n ≥ 1. Since τ ∈ YA, we have τ |An ∈ Yn for all n ≥ 1, and hence τ(an) = 0
for all n ≥ 1. Therefore, σ(an) = 0 for all n ≥ 1. Using again that σ extends
to a trace on M, it follows from (iv) that σ|An ∈ Yn for all n ≥ 1. Let
σ̃n ∈ Y be a trace with σ̃n|An = σ|An . Let σ̃ be a weak∗-limit point of the
σ̃n; then σ̃ ∈ Y and σ̃|A = σ. So σ ∈ YA. Similarly, ρ ∈ YA, and hence
YA is a face in T (A). The argument of Footnote 49 shows YA is closed in
T (A). □

Proposition 6.9. If (M, X) is a factorial tracially complete C∗-algebra

with CPoU and Y ⊆ X is a closed face, then
(
MY

, Y
)
is factorial and

satisfies CPoU.

49Given a net (τi|A) in Y1 arising from a net of traces τi ∈ T (M) with τi|A → σ ∈ T (A),
it follows that any weak∗-limit point τ ∈ T (M) of the τi is an extension of σ, so σ ∈ Y1.
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Proof. Note that N := MY
is factorial by Proposition 3.23(iv). Define

ϕ : (M, X)→ (N , Y ) be the canonical map. Since the range of ϕ is ∥ · ∥2,Y -
dense in N , it suffices to show that for every δ > 0, a1, . . . , an ∈ M, and
S ⊆M such that S is ∥ · ∥-separable and

(6.32) sup
τ∈Y

min
1≤i≤n

τ(ϕ(ai)) < δ,

there are projections p1, . . . , pn ∈Mω ∩ S′ such that

(6.33)
n∑
j=1

ϕω(pj) = 1Nω and τ(ϕω(aipi)) < δτ(ϕω(pi))

for all i = 1, . . . , n and τ ∈ Y ω.
Given δ, S and a1, . . . , an as above, define

(6.34) C := {τ ∈ T (M) : min
1≤i≤n

τ(ai) ≥ δ} ⊆ T (M).

Then C is a compact convex subset of T (M) disjoint from the compact
convex set Y ⊆ T (M). By the Hahn–Banach theorem, there is α > 0 and
self-adjoint b ∈ M such that τ(b) > α for all τ ∈ Y and τ(b) < α for all
τ ∈ C. Replacing b with b + (∥b∥ + 1)1M and α with α + ∥b∥ + 1, we may
assume that b ∈M+. Finally, by scaling b, there exists a0 ∈M+ such that
τ(a0) > δ for all τ ∈ Y and τ(a0) < δ for all τ ∈ C.

If τ ∈ X such that τ(ai) ≥ δ for all i = 1, . . . , n, then τ ∈ C, and hence
τ(a0) = f(τ) < δ. Therefore,

(6.35) sup
τ∈X

min
0≤i≤n

τ(ai) < δ.

By Lemma 6.8, there is a separable unital C∗-algebra A ⊆M containing S
and a0 such that the set YA ⊆ T (A) defined in (6.30) is a face in T (A). Now,
since (M, X) has CPoU, there are projections p0, p1, . . . , pn ∈Mω ∩A′ such
that

(6.36)

n∑
j=0

pj = 1Mω and τ(aipi) ≤ δτ(pi)

for all i = 0, . . . , n and τ ∈ Xω.
To verify (6.33), it suffices to show ϕω(p0) = 0. Suppose this fails. Then

there is a trace τ ∈ Y ω with τ(ϕω(p0)) ̸= 0. Define σ0 : A→ C by

(6.37) σ0(a) :=
τ(ϕω(ap0))

τ(ϕω(p0))
, a ∈ A.

Then σ0 is a trace on A that is dominated by a multiple of τ ◦ ϕ|A ∈ YA,
and since YA is a face in T (A), we have σ0 ∈ YA. By the definition of YA,
there is a trace σ ∈ Y such that σ|A = σ0. Then σ(a0) > δ by the choice
of a0. But this contradicts (6.36) with i = 0 and with τ ◦ ϕω in place of τ .
Therefore, ϕω(p0) = 0, as required. □

As recalled at the beginning of Section 6.1, a C∗-algebra A with T (A)
has compact has CPoU in the sense of [23] if and only if, in our notation,
the uniform tracial completion of A with respect to T (A) has CPoU as a
tracially complete C∗-algebra. As a consequence of Proposition 6.9, CPoU
passes to quotients of C∗-algebras.
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Corollary 6.10. Let A be a C∗-algebra with T (A) compact and let I ⊴ A
be an ideal. Then T (A/I) is compact. Further, if A satisfies CPoU in the
sense of [23], then so does A/I.

Proof. We may identify T (A/I) with the closed face Y of T (A) consisting
of traces on A vanishing on I so that T (A/I) is certainly compact. Apply
Proposition 6.9 after making this identification – note that we are implicitly

using Proposition 3.23(v) to identify the uniform tracial completion of A
T (A)

with respect to T (A/I) with the uniform tracial completion of A/I with
respect to T (A/I). □

Now we show that CPoU is preserved under direct limits. While the
corresponding result for the McDuff property and property Γ followed easily
from the approximate characterisations of these properties, this permanence
property for CPoU will take more work. The new difficulty arises from the
supremum over traces in (6.1) since traces on the finite terms of an inductive
system will not generally extend to traces on the limit. We overcome this
challenge with the following lemma.

Lemma 6.11. Let (M, X) := lim−→
(
(Mn, Xn), ϕ

n+1
n

)
be an inductive limit

of tracially complete C∗-algebras and write the inductive limit morphisms as
ϕ∞n : (Mn, Xn)→ (M, X). Suppose k,m0 ≥ 1, δ > 0, and b1, . . . , bk ∈Mm0

are positive with

(6.38) sup
τ∈X

min
1≤i≤k

τ(ϕ∞m0
(bi)) < δ.

Then there exists m ≥ m0 such that

(6.39) sup
τ∈Xm

min
1≤i≤k

τ(ϕmm0
(bi)) < δ,

where ϕmm0
:= ϕmm−1 ◦ · · · ◦ ϕm0+1

m0
.

Proof. Suppose the conclusion of the lemma does not hold. For each m ≥
m0, since Xm is compact, the failure of (6.39) implies there exists τm ∈ Xm

such that

(6.40) min
1≤i≤k

τm(ϕ
m
m0

(bi)) ≥ δ.

Fix a free ultrafilter ω on N, and for every m ≥ m0, define

(6.41) σm := lim
n→ω

τn ◦ ϕnm ∈ Xm,

which exists as Xm is compact and Hausdorff. If n ≥ m2 ≥ m1 ≥ m0, then
τn ◦ ϕnm1

= τn ◦ ϕnm2
◦ ϕm2

m1
for all n ≥ m2. Since ω is a free ultrafilter, we

obtain σm1 = σm2 ◦ϕm2
m1

. Therefore, the sequence (σm)
∞
m=m0

induces a trace
σ ∈ X such that σm = σ ◦ ϕ∞m for all m ≥ m0.

By (6.40), min1≤i≤k σm0(bi) ≥ δ. Hence, min1≤i≤k σ(ϕ
∞
m0

(bi)) ≥ δ, con-
trary to (6.38). This completes the proof. □

With the above technical lemma in hand, we now proceed with the proof
that CPoU passes to inductive limits.
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Proposition 6.12. Let (M, X) := lim−→
(
(Mn, Xn), ϕ

n+1
n

)
be an inductive

limit of factorial tracially complete C∗-algebras. If (M, X) has CPoU for
all n ≥ 1, then (M, X) has CPoU as well.50

Proof. Write the inductive limit morphisms as ϕ∞n : (Mn, Xn) → (M, X).
We will use (ii)⇒(i) of Proposition 6.2. As

⋃∞
m=1 ϕ

∞
m (Mm) is ∥ · ∥2,X -dense

in M, we may assume the finite set F := {x1, . . . , xl} in the statement of
Proposition 6.2(ii) is contained in

⋃∞
m=1 ϕ

∞
m (Mm). By rescaling, we may

assume that each xj is a contraction. Fix ϵ > 0 and consider a family
a1, . . . , ak of positive elements inM and a scalar

(6.42) δ > sup
τ∈X

min
1≤i≤k

τ(ai).

By the ∥ · ∥2,X -density of
⋃∞
m=1 ϕ

∞
m (Mm) in M, there are an integer

m0 ≥ 1 and positive b1, . . . , bk ∈Mm0 such that

(6.43) ∥ai − ϕ∞m0
(bi)∥2,X < ϵ/3.

Since τ ◦ ϕ∞m0
∈ Xm0 for all τ ∈ X, this implies

(6.44) sup
τ∈X

min
1≤i≤k

τ(ϕ∞m0
(bi)) < δ + ϵ/3.

Accordingly, by Lemma 6.11, we can find m ≥ m0 large enough so that

(6.45) sup
τ∈Xm

min
1≤i≤k

τ(ϕmm0
(bi)) < δ + ϵ/3,

and enlarging m if necessary, we may find y1, . . . , yl ∈ Mm such that
ϕ∞m (yj) = xj for 1 ≤ j ≤ l.

Now we apply CPoU inMm using Proposition 6.2(ii) to obtain pairwise
orthogonal positive contractions f1, . . . , fk ∈Mm such that

(6.46)

∥[fi, yj ]∥2,Xm < ϵ, i = 1, . . . , k, j = 1 . . . , l,

τ(f1 + · · ·+ fk) > 1− ϵ, τ ∈ Xm, and

τ(ϕmm0
(bi)fi) < (δ + ϵ/3)τ(fi) + ϵ/3

≤ δτ(fi) + 2ϵ/3, τ ∈ Xm, i = 1, . . . , k.

Set ei := ϕ∞m (fi) ∈ N . These are pairwise orthogonal positive contrac-
tions. By the ∥ · ∥2,Xm-∥ · ∥2,X -contractivity of ϕ∞m , we have

(6.47) ∥[ei, xj ]∥2,X < ϵ, i = 1, . . . , k, j = 1, . . . , l.

As (ϕ∞m )∗(X) ⊆ Xm,

(6.48) τ(e1 + · · ·+ ek) > 1− ϵ, τ ∈ X,

and

(6.49)
τ(aiei)

(6.43)

≤ τ(ϕ∞m0
(bi)ei) + ϵ/3

= (ϕ∞m )∗(τ)(ϕmm0
(bi)fi) + ϵ/3

(6.46)
< δ(ϕ∞m )∗(τ)(fi) + ϵ = δτ(ei) + ϵ, τ ∈ X.

Therefore, (M, X) has CPoU. □

50Note that (M, X) is factorial by Proposition 3.34.
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Remark 6.13 (cf. Remark 5.26). We will later show that a reduced products
of factorial tracially complete C∗-algebras with CPoU is factorial and has
CPoU (Corollary 7.7(i)). Once the reduced product is shown to be factorial,
the reduced product will have CPoU since the local characterisation of CPoU
in Proposition 6.2(ii) is easily seen to be preserved by reduced products.

The property CPoU also passes to matrix algebras.

Proposition 6.14. If (M, X) is a factorial tracially complete C∗-algebras
with CPoU, then so is

(
M⊗Md, X ⊗ {trd}

)
for all d ∈ N.

Proof. First note that (M⊗Md, X ⊗{trd}) is a factorial tracially complete
C∗-algebra by Proposition 3.18. Now fix a ∥ · ∥2,X⊗{trd}-separable set S ⊆
M⊗Md and let a1, . . . , ak ∈ (M⊗Md)+ and δ > 0 be such that

(6.50) sup
τ∈X

min
1≤i≤k

(τ ⊗ trd)(ai) < δ.

Let T ⊆M be the set of entries of elements of S and note that T is ∥ · ∥2,X -
separable. Applying CPoU to the elements (idM⊗ trd)(ai) ∈M+, there are
projections q1, . . . , qk ∈Mω ∩ T ′ such that

(6.51)
k∑
j=1

qj = 1M and τ((idM ⊗ trd)(ai)qi) ≤ δτ(qi)

for all i = 1, . . . , k and τ ∈ X. Then pi := qi⊗1Md
, 1 ≤ i ≤ k, are projections

in (M⊗Md)
ω ∩ T ′ which verify CPoU.51 □

6.4. Property Γ implies CPoU. We now have the machinery to prove
Theorem 1.4, giving a large supply of examples of tracially complete fac-
torial C∗-algebras which satisfy CPoU. In particular, all (uniform tracial
completions of) unital Z-stable C∗-algebras satisfy CPoU, removing the nu-
clearity condition from [23, Theorem 3.8].

In the separable setting, the proof reduces to the strategy outlined towards
the end of Section 1.4, which is modelled on the proof of [23, Theorem 3.8].
The following result is the weak form of CPoU discussed in the first step
of the outline. This was shown to hold for uniform tracial completions of
nuclear C∗-algebras with compact trace simplex in [23, Lemma 3.6] – we
extend the result to all factorial tracially complete C∗-algebras.

Theorem 6.15. Let (M, X) is a factorial tracially complete C∗-algebra
such thatM is ∥ · ∥2,X-separable. If a1, . . . , ak ∈M+,

(6.52) δ > sup
τ∈X

min
1≤i≤k

τ(ai),

and q ∈ Mω ∩ M′ is a projection with τ(q) > 0 for all q ∈ Xω, then
for every ∥ · ∥2,Xω -separable set S ⊆ Mω, there are positive contractions
e1, . . . , ek ∈Mω ∩S′ summing to q with τ(aiei) ≤ δτ(ei) for all τ ∈ Xω and
i = 1, . . . , k.

Proof. Let γ := infτ∈Xω τ(q), and note that γ > 0 as Xω is compact. By
Kirchberg’s ϵ-test (Lemma 5.1), it suffices to show that for any finite set

51Note that we are using Proposition 5.8 to identify Mω ⊗Md and (M⊗Md)
ω.



82 J. CARRIÓN ET AL.

F ⊆ M and ϵ > 0, there are positive contractions e1, . . . , ek ∈ Mω such
that

(6.53)

∥∥∥ k∑
j=1

ej − q
∥∥∥
2,Xω

< ϵ,

max
x∈F
∥[x, ei]∥2,X < ϵ, i = 1, . . . , k, and

τ(aiei)− δτ(ei) < γ−1ϵ, τ ∈ Xω, i = 1, . . . , k.

Fix the finite set F and the tolerance ϵ > 0. We will first show that for
any τ ∈ X, there are

(6.54) e′1, . . . , e
′
k, b1, . . . , bk, c1, . . . ck ∈M

with each e′i and bi positive, ∥e′i∥ ≤ 1, and ci in the span of the commutators
inM such that ∥∥∥ k∑

j=1

e′j − 1M

∥∥∥
2,τ

< ϵ,

max
x∈F
∥[x, e′i]∥2,τ < ϵ, i = 1, . . . , k, and

∥(ai − δ)e′i − bi − ci∥2,τ < ϵ, i = 1, . . . , k.

(6.55)

Fix τ ∈ X. For each σ ∈ T (πτ (M)′′), we have σ◦πτ ∈ X by Lemma 2.10.
Therefore,

(6.56) δ > sup
σ∈T (πτ (M)′′)

min
1≤i≤k

σ(πτ (ai)).

By Corollary 6.4, there are projections ē1, . . . , ēk ∈ Z(πτ (M)′′) summing to
1πτ (M)′′ such that σ(aiēi) ≤ δσ(ēi) for all i = 1, . . . , k and σ ∈ T (πτ (M)′′).
For i = 1, . . . , k, define

(6.57) b̄i := trπτ (M)′′(aiēi − δēi) ∈ Z(πτ (M)′′).

Then b̄i is positive and

(6.58) σ(aiēi) + σ(b̄i) = δσ(ēi), σ ∈ T (πτ (M)′′).

Let c̄i = (ai − δ)ēi − b̄i. Then c̄i vanishes on all traces, so c̄i is a sum of
commutators (see [43, Théorème 2.3]).52 The existence of the required e′i,
bi, and ci then follows from Kaplansky’s density theorem.

The pointwise result above, holding for all ϵ > 0, and Lemma 4.753 imply
that for any ϵ > 0 there are positive contractions e′1, . . . e

′
k ∈ M, positive

52A standard Hahn–Banach argument implies that since c̄i vanishes on all traces, c̄i is
in the ∥ ·∥-closed span of the commutators. After adjusting the bounds, this weaker result
is sufficient to run the proof without quoting [43, Théorème 2.3]

53We apply Lemma 4.7 with C equal to the set of all tuples
(e1, . . . , ek, b1, . . . , bk, c1, . . . , ck) ∈ M3k such that e1, . . . , ek are positive contrac-
tions, b1, . . . , bk are positive, and c1, . . . , ck are sums of commutators (this set is evidently

convex); the functions fi are given by (e1, . . . , ck) 7→
∑k

i=1 ei − 1M, (e1, . . . , ck) 7→ [x, ei]
for x ∈ F and i = 1, . . . , k, and (e1, . . . , ck) 7→ (ai − δ)ei − bi − ci (these are evidently
affine).
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elements b1, . . . , bk ∈ M, and elements c1, . . . , ck ∈ M in the span of the
commutators inM such that∥∥∥ k∑

j=1

e′j − 1M

∥∥∥
2,X

< ϵ,

max
x∈F
∥[x, e′i]∥2,X < ϵ, i = 1, . . . , k, and

∥(ai − δ)e′i − bi − ci∥2,X < ϵ, i = 1, . . . , k.

(6.59)

The final equation in (6.59) implies that for all τ ∈ X, we have

(6.60) τ
(
(ai − δ)e′i − bi − ci) < ϵ.

Rearranging, this implies

(6.61) τ(aie
′
i) < δτ(e′i) + τ(bi) + τ(ci) + ϵ ≤ δτ(e′i) + ϵ,

where the last inequality holds since bi is positive and ci in the closed span
on commutators.

We now have positive contractions e′1, . . . , e
′
k ∈M such that∥∥∥ k∑

j=1

e′j − 1M

∥∥∥
2,Xω

< ϵ,

max
x∈F
∥[x, e′i]∥2,X < ϵ, i = 1, . . . , k, and

τ(aie
′
i)− δτ(e′i) < ϵ, τ ∈ X, i = 1, . . . , k.

(6.62)

For i = 1, . . . , k, define a positive contraction ei := e′iq ∈ M. The first two
conditions in (6.53) follow from the corresponding conditions in (6.62). We
work to verify the third condition in (6.53).

Fix τ ∈ Xω. By hypothesis, τ(q) > 0, so we may define τq ∈ M∗ by
τq(a) := τ(q)−1τ(a). As q commutes with M, τq ∈ T (M). Further, since
τ |M ∈ X, τq ≤ τ(q)−1τ |M, and X is face, we have τq ∈ X. By the third
condition in (6.62), we have

τq(aie
′
i) < δτq(e

′
i) + ϵ i = 1, . . . , k,(6.63)

or equivalently,

τ(aie
′
iq) < δτ(eiq) + ϵ i = 1, . . . , k.(6.64)

Dividing by τ(q) yields the final condition in (6.53). □

The rest of the proof that property Γ implies CPoU proceeds as in [23].
The following proposition is a tracially complete version of the “tracial pro-
jectionisation” result in [23, Lemma 2.4] and the proof is essentially identical.
For the sake of completeness, we provide a sketch.

Proposition 6.16 (Projectionisation). Suppose (M, X) is a factorial tra-
cially complete C∗-algebra with property Γ. If S ⊆Mω is a ∥·∥2,Xω -separable
subset and e ∈ Mω ∩ S′ is a positive contraction, then there is a projection
p ∈ Mω ∩ S′ commuting with e such that τ(ae) = τ(ap) for all a ∈ S and
τ ∈ Xω.
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Proof. Let k ≥ 1. Using property Γ, we may fix projections r1, . . . , rk ∈
Mω ∩ S′ ∩ {e}′ partitioning the unit with

(6.65) τ(ari) =
1

k
τ(a), τ ∈ Xω, a ∈ C∗(S ∪ {e}), i = 1, . . . , k.

For i = 1, . . . , k, consider the continuous function fi : [0, 1]→ R given by

(6.66) fi(t) :=


0, 0 ≤ t ≤ (i− 1)/k,

kt− i+ 1, (i− 1)/k ≤ t ≤ i/n,
1, i/k ≤ t ≤ 1.

Then set q :=
∑k

i=1 fi(e)ri ∈Mω∩S′∩{e}′, which is a positive contraction.
A computation (as in [23, Equations (2.9) and (2.10)])54 shows

(6.67) τ(ae) = τ(aq) and τ(q − q2) < 1

4k
, τ ∈ Xω, a ∈ S.

The result follows from Kirchberg’s ϵ-test (Lemma 5.1). □

Applying the above projectionisation to each of the ei from the conclusion
of Theorem 6.15 will produce projections which have the correct behaviour
on traces, but fail to be orthogonal. As in [23], this will be addressed via
another application of property Γ with a construction deemed “orthogonal-
isation” in [23]. The orthogonalised projections will no longer sum to the
unit, but they will sum to a projection of constant trace 1

k . From here,
CPoU follows from a maximality argument by repeating the construction
in the complementary corner – this is the reason for the projection q in
Theorem 6.15. (A geometric series argument could be used instead of the
maximality argument for this last step.)

Theorem 1.4. Let (M, X) be a factorial tracially complete C∗-algebra with
property Γ. Then (M, X) has CPoU. In particular, unital C∗-algebras with
uniform property Γ (e.g. unital Z-stable C∗-algebras) have CPoU.

Proof. The results of Appendix A reduce the theorem to the case whenM
is ∥ · ∥2,X -separable. Namely, Theorem A.3 shows that both factoriality plus
property Γ and factoriality plus CPoU are strongly separably inheritable
properties; therefore, to show one implies the other, it suffices to do so in
the ∥ · ∥2,X -separable case.

For the rest of the proof, we assume M is ∥ · ∥2,X -separable. Suppose
a1 . . . , ak ∈ M+ and δ > 0 are given as in the definition of CPoU, i.e. they
satisfy

(6.68) δ > sup
τ∈X

min
1≤i≤k

τ(ai).

Let I ⊆ [0, 1] denote the set of α ∈ [0, 1] such that for all ∥ · ∥2,Xω -separable
sets S ⊆ Mω, there are orthogonal projections p1, . . . , pk ∈ Mω ∩ S′ such
that

(6.69)
k∑
j=1

τ(pj) = α and τ(aipi) ≤ δτ(pi)

54[23, Equation (2.7)] is still correct if the right side is changed to 1
4
1C([0,1]), and using

this, the right side of [23, Equation (2.10)] can be improved to 1/4n.
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for all τ ∈ Xω and i = 1, . . . , k. Clearly I ̸= ∅ as 0 ∈ I, and I is closed
by Kirchberg’s ϵ-test. Hence I contains a maximal element α. It suffices to

show α = 1 since this forces
∑k

j=1 pj = 1Mω . We will assume α < 1 and

show α+ 1
k (1− α) ∈ I, which contradicts the maximality of α.

Assume α < 1 and let S ⊆ Mω be a ∥ · ∥2,Xω -separable set with M ⊆
S. By the assumption on α, there are mutually orthogonal projections
p′1 . . . , p

′
k ∈Mω ∩ S′ such that

(6.70)
k∑
j=1

τ(p′j) = α and τ(aip
′
i) ≤ δτ(p′i)

for all τ ∈ Xω and i = 1, . . . , k. Define

(6.71) q := 1Mω −
k∑
j=1

p′j ∈Mω ∩ S′ ⊆Mω ∩M′

Note that τ(q) = 1− α > 0 for all τ ∈ Xω.
Theorem 6.15 provides positive contractions e1, . . . , ek ∈ Mω ∩ S′ sum-

ming to q with τ(aiei) ≤ δτ(ei) for all τ ∈ Xω and i = 1, . . . , k. Let
q1, . . . , qk ∈Mω ∩ (S ∪{q, e1, . . . , ek})′ be projections as in Proposition 6.16
satisfying τ(aei) = τ(aqi) for all a ∈ C∗(S ∪ {q}) and i = 1, . . . , k. Let
A ⊆ Mω denote the C∗-algebra generated by S, the ei, and the qi, and
using property Γ, let r1, . . . , rk ∈ Mω ∩A′ be projections summing to 1Mω

such that τ(ari) =
1
kτ(a) for all τ ∈ X

ω, i = 1, . . . , k, and a ∈ A
Define p′′i := qiri for i = 1, . . . k. These are orthogonal projections since

r1, . . . , rk are orthogonal projections and each qi is a projection commuting
with qi. We have

(6.72)
k∑
j=1

τ(p′′i ) =
1

k

k∑
j=1

τ(qi) =
1

k

k∑
j=1

τ(ei) =
1

k
τ(q) =

1

k
(1− α)

for all τ ∈ Xω. Further, for all τ ∈ Xω and i = 1, . . . , k, we have

(6.73) τ(aip
′′
i ) =

1

k
τ(aiqi) =

1

k
τ(aiei) ≤

δ

k
τ(ei) =

δ

k
τ(qi) = δτ(p′′i ).

Note also that eiq = ei, and hence τ(qiq) = τ(eiq) = τ(ei) = τ(qi) for all
τ ∈ Xω. As qi and q are commuting positive elements, we have qiq ≤ qi,
and hence the equality on traces implies qiq = qi. Therefore, p

′′
i ≤ q′i ≤ q for

all i = 1, . . . , k. Set pi := p′i + p′′i ∈Mω ∩ S′. Since p′1, . . . , p
′
k, p

′′
1, . . . , p

′′
k are

mutually orthogonal projections, the same is true of p1, . . . , pk. Further, the
projections pi witness α + 1

k (1 − α) ∈ I, which contradicts the maximality
of α. □

7. Applications of CPoU

The power of CPoU lies in the fact that we can prove many useful struc-
tural properties for a reduced product of a sequence of factorial tracially
complete C∗-algebras with CPoU. That is the topic of this subsection.

Our first goal is show in Section 7.1 that a reduced product of factorial tra-
cially complete C∗-algebras with CPoU is factorial. In fact, we will show all
traces on the reduced product are in the closed convex hull of the limit traces
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– solving the trace problem for such reduced products. Along the way, we
show that such reduced products have real rank zero and comparison of pro-
jections with respect to limit traces. We then analyse the unitary group of
factorial tracially complete C∗-algebras with CPoU in Section 7.2 and show
that a uniform 2-norm dense set of unitaries are exponentials. This also
provides a stability result for unitaries showing that in the uniform 2-norm,
every approximate unitary is close to a unitary. Finally, Section 7.3 strength-
ens the comparison property obtained in Section 7.1 mentioned above and
classifies projections in factorial tracially complete C∗-algebras with CPoU
via traces.

7.1. Traces on reduced products. The following lemma gives an approx-
imate version of the existence of spectral projections in factorial tracially
complete C∗-algebras with CPoU, and the proof is a typical application of
CPoU. The idea is the following: ifM is a von Neumann algebra and x ∈M
is self-adjoint, then there is a projection q ∈M such that qx = x+; indeed,
one may take q to be the spectral projection of x corresponding to the inter-
val [0,∞). Then CPoU provides a method for transferring this result from
tracial von Neumann algebra completions of a tracially complete C∗-algebra
(M, X) to produce an analogous result inM up to a small ∥ · ∥2,X -error.

Lemma 7.1. Suppose (M, X) is a factorial tracially complete C∗-algebra
with CPoU. If x ∈ M is self-adjoint and ϵ > 0, then there is a positive
contraction q ∈M such that

(7.1) ∥q − q2∥2,X < ϵ and ∥qx− x+∥2,X < ϵ.

Proof. For each τ ∈ X, let q̄τ ∈ πτ (M)′′ be the spectral projection of
πτ (a) corresponding to the interval [0,∞) so that q̄τπτ (x) = πτ (x+). By
Kaplansky’s density theorem, there is a positive contraction qτ ∈ M such
that

(7.2) ∥qτ − q2τ∥2,τ <
ϵ√
3

and ∥qτx− x+∥2,τ <
ϵ√
3
.

For all τ ∈ X, define

(7.3) aτ := |qτ − q2τ |2 + |qτx− x+|2 ∈M+

and note that τ(aτ ) < 2ϵ2/3. For τ ∈ X, let

(7.4) Uτ :=
{
σ ∈ X : σ(aτ ) <

2ϵ2

3

}
,

which is an open neighbourhood of τ . As X is compact, there are traces
τ1, . . . , τk ∈ X such that (Uτi)

k
i=1 is an open cover of X. Therefore,

(7.5) sup
τ∈X

min
1≤i≤k

τ(aτi) <
2ϵ2

3
.

Set S := {qτi : i = 1, . . . , k} ∪ {x}. As (M, X) has CPoU, there are
pairwise orthogonal projections p1, . . . , pk ∈Mω ∩ S′ such that

(7.6)
k∑
i=1

pi = 1Mω and τ(aτipi) ≤
2ϵ2

3
τ(pi)
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for all 1 ≤ i ≤ k and τ ∈ Xω. Let q :=
∑k

i=1 qτipi ∈ Mω
+. Since p1, . . . , pk

are mutually orthogonal projections summing to the identity which commute
with {qτi : i = 1, . . . , k} ∪ {x}, we have

|q − q2|2 + |qx− x+|2 =
k∑
i=1

|q2τi − qτi |
2pi +

k∑
i=1

|qτix− x+|2pi

=
k∑
i=1

aτipi.

(7.7)

Now, we compute

∥q − q2∥22,τ + ∥qx− x+∥22,τ =
k∑
i=1

τ(aτipi) ≤
2ϵ2

3

k∑
i=1

τ(pi) < ϵ2(7.8)

for all τ ∈ Xω. If (qn)
∞
n=1 is a sequence of positive contractions in M

representing q, then for ω-many n,

□(7.9) ∥qn − q2n∥2,X < ϵ and ∥qnx− x+∥2,X < ϵ.

We will prove a stronger version of the following result in Corollary 7.15
once we show reduced products of factorial tracially complete C∗-algebras
with CPoU are factorial and have CPoU.

Proposition 7.2. Let
(
(Mn, Xn)

)∞
n=1

be a sequence of factorial tracially

complete C∗-algebras with CPoU. Then
∏ωMn has real rank zero.

Proof. Define (M, X) :=
(∏ωMn,

∑ωXn

)
and let x ∈ M be self-adjoint.

Let (xn)
∞
n=1 ∈

∏∞
n=1Mn be a self-adjoint element lifting x and then use

Lemma 7.1 to produce a positive contraction (qn)
∞
n=1 ∈

∏∞
n=1Mn such that

for all n ≥ 1,

(7.10) ∥qn − q2n∥2,Xn <
1

n
and ∥qnxn − (xn)+∥2,Xn <

1

n
.

Let q ∈Mω denote the image of (qn)
∞
n=1. Then we have

(7.11) ∥q − q2∥2,X = 0 and ∥qx− x+∥2,X = 0.

Hence, q is a projection with qx = x+, which also implies that x and q
commute.

Fix ϵ > 0 and note that

(7.12) y := x+ ϵ(2q − 1M) = (x+ + ϵ)q − (x− + ϵ)q⊥ ∈M

is self-adjoint and invertible with ∥x − y∥ ≤ ϵ. Hence, the invertible self-
adjoint elements in M form a dense subset of the self-adjoint elements of
M. Therefore,M has real rank zero. □

Now we turn to comparison of projections in tracially complete C∗-algebras.
Just as Murray–von Neumann subequivalence of projections in finite von
Neumann algebras is determined by traces, we will show in Theorem 7.18
that a factorial tracial complete C∗-algebra (M, X) with CPoU has com-
parison of projections with respect to X, i.e. that a projection p ∈ M is
Murray–von Neumann subequivalent to a projection q ∈ M if and only if
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τ(p) ≤ τ(q) for all τ ∈ X. Before doing this, we need the following ap-
proximate comparison result, which will lead to comparison of projections
in reduced products.

Lemma 7.3. Suppose (M, X) is a factorial tracially complete C∗-algebra
with CPoU, ϵ > 0, and p, q ∈M are positive contractions such that

(7.13) τ(p− p2) < ϵ, τ(q − q2) < ϵ, and τ(p) < τ(q) + ϵ

for all τ ∈ X. Then there is a contraction v ∈M such that

(7.14) ∥v∗qv − p∥2,X <
(
2
√
2 +
√
5
)√
ϵ.

Proof. Using that X is compact, there is an ϵ′ ∈ (0, ϵ) with

(7.15) τ(p− p2) < ϵ′, τ(q − q2) < ϵ′, and τ(p) < τ(q) + ϵ′

for all τ ∈ X. We first show that for each τ ∈ X, there is a partial isometry
v̄τ ∈ πτ (M)′′ such that

(7.16) ∥v̄∗τπτ (q)v̄τ − πτ (p)∥2,τ < δ :=
(
2
√
2 +
√
5
)√
ϵ′.

Fix τ ∈ X and let pτ , qτ ∈ πτ (M)′′ denote the spectral projections of πτ (p)
and πτ (q) corresponding to the interval [1/2, 1]. Then

|πτ (p)− pτ |2 ≤ |πτ (p)− pτ | ≤ 2(πτ (p)− πτ (p)2) and

|πτ (q)− qτ |2 ≤ |πτ (q)− qτ | ≤ 2(πτ (q)− πτ (q)2),
(7.17)

so that (7.15) gives

(7.18) ∥πτ (p)− pτ∥2,τ ≤
√
2ϵ′ and ∥πτ (q)− qτ∥2,τ ≤

√
2ϵ′.

By Lemma 2.10, we have σ ◦ πτ ∈ X for all σ ∈ T (πτ (M)′′), and so (7.15)
and (7.17) imply that

(7.19) σ(pτ ) < σ(qτ ) + 5ϵ′, σ ∈ T (πτ (M)′′).

By the general comparison theorem for projections in von Neumann alge-
bras (see for example [104, Theorem V.1.8]), there exists a central projection
zτ ∈ πτ (M)′′ with zτpτ ≾ zτqτ and z⊥τ qτ ≾ z⊥τ pτ . Fix a partial isometry
v̄τ ∈ πτ (M)′′ such that

zτ v̄
∗
τ v̄τ = zτpτ and zτ v̄τ v̄

∗
τ ≤ zτqτ ,(7.20)

z⊥τ v̄
∗
τ v̄τ ≤ z⊥τ pτ and z⊥τ v̄τ v̄

∗
τ = z⊥τ qτ .(7.21)

In the special case where zτ = 1M, then (7.20) implies that pτ = v̄∗τqτ v̄τ ;
hence, the required inequality (7.16) is now a consequence of (7.17) and
(7.15). Suppose now that zτ ̸= 1M. Then τ(z⊥τ ) ̸= 0, so we may define
σ ∈ T (πτ (M)′′) by σ(a) := τ(z⊥τ )

−1τ(z⊥τ a). Then (7.20) implies that zτpτ =
zτ v̄

∗
τqτ v̄τ , and (7.21) implies that z⊥τ pτ−z⊥τ v̄∗τqτ v̄τ is a projection. Therefore,
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we have

∥pτ − v̄∗τqτ v̄τ∥22,τ = ∥zτ (pτ − v̄∗τqτ v̄τ ) + z⊥τ (pτ − v̄∗τqτ v̄τ )∥22,τ
= ∥z⊥τ pτ − z⊥τ v̄∗τqτ v̄τ∥22,τ
= τ(z⊥τ pτ − v̄∗τz⊥τ qτ v̄τ )

= τ(z⊥τ pτ )− τ(z⊥τ q̄τ v̄τ v̄∗τ )

= τ(z⊥τ )
(
σ(pτ )− σ(qτ )

)
< 5ϵ′,

(7.22)

where the final estimate uses (7.19). Combining (7.22) with (7.18) proves
(7.16).

Now we use CPoU to obtain (7.14) from (7.16). By Kaplansky’s density
theorem, there is a contraction vτ ∈M such that

(7.23) ∥v∗τqvτ − p∥2,τ < δ.

Define aτ := |v∗τqvτ − p|2, and use this to define the open neighbourhood

(7.24) Uτ := {σ ∈ X : σ(aτ ) < δ2}

of τ in X. As X is compact, there are τ1, . . . , τk ∈ X such that (Uτi)
k
i=1

covers X. Therefore,

(7.25) sup
τ∈X

min
1≤i≤k

τ(aτi) < δ2.

Set S := {vτi : i = 1, . . . , k} ∪ {p, q}. As (M, X) has CPoU, there are
mutually orthogonal projections e1, . . . , ek ∈Mω ∩ S′ such that

(7.26)

k∑
i=1

ei = 1Mω and τ(aτiei) ≤ δ2τ(ei)

for all τ ∈ Xω and i = 1, . . . , k. Define v :=
∑k

i=1 eivτi ∈ Mω. Since
e1, . . . , ek are mutually orthogonal projections summing to the identity which
commute with {vτi : i = 1, . . . , k} ∪ {p, q}, we have

|v∗qv − p|2 =
k∑
i=1

|v∗τiqvτi − p|
2ei =

k∑
i=1

aτiei.(7.27)

Hence, for each τ ∈ Xω,

(7.28) ∥v∗qv − p∥22,τ = τ(|v∗qv − p|2) =
k∑
i=1

τ(aτiei) ≤ δ2
k∑
j=1

τ(ei) = δ2.

Finally, if (vn)
∞
n=1 ⊆M is a sequence representing v, then

(7.29) lim
n→ω
∥v∗nqvn − p∥2,X = ∥v∗qv − p∥2,Xω ≤ δ < (2

√
2 +
√
5)
√
ϵ,

and the result follows. □

Proposition 7.4. Suppose
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tra-

cially complete C∗-algebras with CPoU and p, q ∈
∏ωMn are projections.

(i) If τ(p) ≤ τ(q) for all τ ∈
∑ωXn, then p is Murray–von Neumann

subequivalent to q.
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(ii) If τ(p) = τ(q) for all τ ∈
∑ωXn, then p and q are unitarily equiv-

alent.

Proof. Lemma 7.3 immediately implies (i). For (ii), use (i) to obtain v ∈∏ωMn with v∗v = p and vv∗ ≤ q. Since q − vv∗ ≥ 0 and

(7.30) τ(q − vv∗) = τ(q)− τ(p) = 0

for all τ ∈
∑ωXn, we have vv∗ = q. Repeating this argument with p⊥ and

q⊥ in place of p and q produces a partial isometry w ∈
∏ωMn such that

w∗w = p⊥ and ww∗ = q⊥. Then u := v +w is a unitary with upu∗ = q. □

Combining Propositions 7.2 and 7.4 resolves the trace problem (Ques-
tion 1.1) for reduced products of tracially complete C∗-algebras with CPoU.
This generalises the case of McDuff W ∗-bundles from [10, Proposition 3.32]
(taking A := C in that proposition).

Theorem 7.5. If
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tracially com-

plete C∗-algebras with CPoU, then T
(∏ωMn) =

∑ωXn.

Proof. Let (M, X) :=
(∏ωMn,

∑ωXn

)
. Then M has real rank zero by

Proposition 7.2 and comparison of projections with respect to X by Proposi-
tion 7.4. Further, for all d ≥ 1,M⊗Md has comparison of projections with
respect toX⊗{trd} since Proposition 5.8 identifies (M⊗Md, X⊗{trd}) with∏ω(Mn⊗Md, Xn⊗{trd}) and each of the algebras (Mn⊗Md, Xn⊗{trd})
are factorial and have CPoU by Proposition 6.14.

Let V (M) denote the Murray–von Neumann semigroup of M and let
[p] ∈ V (M) denote the class of a projection p ∈ M ⊗Md for an integer
d ≥ 1. For τ ∈ T (M), let τ̂ denote the induced state on V (M) given by

(7.31) τ̂([p]) := (τ ⊗ Trd)(p)

for a projection p in M⊗Md, where Trd is the unnormalised trace on Md

so that Trd(1Md
) = d. By comparison of projections in matrices over M,

the natural map

(7.32) V (M)→ Aff(X) : x 7→ (τ 7→ τ̂(x))

is an order embedding.
Now suppose σ ∈ T (M). By [9, Corollary 2.7], the state σ̂ on V (M)

extends to a state ϕ on Aff(X). Since all states on Aff(X) are point evalua-
tions, (see Proposition 2.1(i)), there is a trace τ ∈ X such that ϕ(f) = f(τ)
for all f ∈ Aff(X). Then, by construction, σ̂ = τ̂ , and hence σ(p) = τ(p)
for all projections p ∈ M. AsM has real rank zero by Proposition 7.2,M
is the ∥ · ∥-closed span of its projections, and hence σ = τ ∈ X. □

Remark 7.6. Versions of Theorem 7.5 have appeared previously in [10,
Proposition 3.22] and [23, Proposition 4.6] in the settings of ultrapowers of
factorial McDuffW ∗-bundles and uniform tracial ultrapowers of C∗-algebras
with CPoU, respectively. The proofs in these references are based on a result
of Fack and de la Harpe ([43, Théorème 2.3]). This style of argument could
also be adapted to the setting of tracially complete C∗-algebras, providing
an alternative proof of Theorem 7.5.
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Theorem 7.5 also proves that factoriality passes to reduced products in
the presence of CPoU. This allows us to prove both property Γ and CPoU
pass to reduced products as promised in Remarks 5.26 and 6.13.

Corollary 7.7. Suppose
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tracially
complete C∗-algebras with reduced product (M, X).

(i) If each (Mn, Xn) has CPoU, then (M, X) is factorial and has
CPoU.

(ii) If each (Mn, Xn) satisfies property Γ, then (M, X) is factorial and
satisfies property Γ.

Proof. To see (i), note that (M, X) is factorial by Theorem 7.5. The ap-
proximation property in Proposition 6.2(ii) characterising CPoU passes to
reduced products, so (M, X) satisfies CPoU. For (ii), Theorem 1.4 implies
each (Mn, Xn) satisfies CPoU, so (M, X) is factorial by (i). The approx-
imation property in Proposition 5.23(ii) characterising Γ passes to reduced
products, and hence (M, X) satisfies property Γ. □

Corollary 7.7 and Kirchberg’s ϵ-test (Lemma 5.1) allow for the following
variation of CPoU for reduced products. The point is that the projections
pi in the definition of CPoU can be chosen in the reduced product instead
of the reduced power of the reduced product.

Corollary 7.8. Suppose
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tracially

complete C∗-algebras with CPoU. If a1, . . . , ak ∈ (
∏ωMn)+, S ⊆

∏ωMn

is ∥ · ∥2,Xω -separable, and

(7.33) sup
τ∈X

min
1≤i≤k

τ(ai) < δ,

then there are projections p1, . . . , pk ∈
∏ωMn ∩ S′ such that

(7.34)
k∑
i=1

pi = 1Mω and τ(aipi) ≤ δτ(pi)

for all 1 ≤ i ≤ k and τ ∈ Xω.

7.2. Structure of unitaries. With Corollary 7.7 in hand, we derive some
properties unitaries in tracially complete C∗-algebras with CPoU. The fol-
lowing result and its proof are analogous to [21, Proposition 2.1].

Proposition 7.9. Suppose
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tra-

cially complete C∗-algebras with CPoU and S ⊆
∏ωMn is a ∥ · ∥2,Xω -

separable subset. If u ∈
∏ωMn∩S′ is a unitary, then there is a self-adjoint

h ∈
∏ωMn ∩ S′ such that u = eih and ∥h∥ ≤ π.

Proof. Since this theorem involves the numbers π and i =
√
−1, we shall

write στ to denote the GNS representation corresponding to a trace τ and
use the letter j for our summation index. For the sake of brevity, we write
(M, X) :=

(∏ωMn,
∑ωXn

)
.

Fix ϵ > 0 and a finite set F ⊆M. By Kirchberg’s ϵ-test (Lemma 5.1), it
suffices to show that there is a self-adjoint h ∈M with ∥h∥ ≤ π such that

(7.35) ∥u− eih∥2,X ≤ ϵ and max
x∈F
∥[h, x]∥2,X ≤ ϵ.
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For each τ ∈ X, there is a self-adjoint h̄τ ∈ στ (M)′′ ∩στ (F)′ with ∥h̄τ∥ ≤ π
such that στ (u) = eih̄τ . By Kaplansky’s density theorem, there is a self-
adjoint hτ ∈M with ∥hτ∥ ≤ π such that

∥u− eihτ ∥2,τ < (|F|+ 1)−1/2ϵ and

max
x∈F
∥[hτ , x]∥2,τ < (|F|+ 1)−1/2ϵ.

Then define

(7.36) aτ := |u− eihτ |2 +
∑
x∈F
|[hτ , x]|2 ∈M+,

so that τ(aτ ) < ϵ2. By the compactness of X, there are τ1, . . . , τk ∈ X such
that

(7.37) sup
τ∈X

min
1≤j≤k

τ(aτj ) < ϵ2.

By CPoU (in the form of Corollary 7.8), there are mutually orthogonal
projections

(7.38) p1, . . . , pk ∈M∩F ′ ∩ {u}′ ∩ {hτ1 , . . . , hτk}
′

such that

(7.39)

k∑
j=1

pj = 1M and τ(aτjpj) ≤ ϵ2τ(pj)

for all 1 ≤ j ≤ k and τ ∈ X.

Define h :=
∑k

j=1 hτjpj ∈ M and note that ∥h∥ ≤ π as ∥hτj∥ ≤ π for all
1 ≤ j ≤ k as the pj are mutually orthogonal projections commuting with
the hτj . Also, for each τ ∈ X, we have

(7.40) ∥u− eih∥22,τ ≤
k∑
j=1

τ(aτjpj) ≤ ϵ2
k∑
j=1

τ(pj) = ϵ2,

and for each τ ∈ X and x ∈ F ,

(7.41) ∥[h, x]∥22,τ ≤
k∑
j=1

τ(aτjpj) ≤ ϵ2
k∑
j=1

τ(pj) = ϵ2.

This verifies (7.35). □

Applying Proposition 7.9 to matrix algebras (with S = ∅) yields the
following K-theoretic computation.

Corollary 7.10. If
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tracially com-

plete C∗-algebras with CPoU, then K1

(∏ωMn

)
= 0.

Proof. Proposition 7.9 implies that the unitary group of
∏ωMn is path-

connected, and Propositions 6.14 and 5.8 imply the same result for matrices
over

∏ωMn. □

The following result facilitates the use of Theorem 5.11 in the presence of
CPoU.
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Corollary 7.11. If
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tracially com-

plete C∗-algebras with CPoU and u ∈
∏ωMn is a unitary, then there is a

sequence of unitaries (un)
∞
n=1 ∈

∏∞
n=1Mn lifting u.

Using a sequence of counterexamples argument (see for example [71]),
Corollary 7.11 also provides a uniform 2-norm stability result for unitaries.

Corollary 7.12. For all ϵ, c > 0, there is a δ > 0 such that if (M, X) is a
factorial tracially complete C∗-algebra with CPoU and v ∈ M with ∥v∥ ≤ c
and ∥v∗v − 1∥2,X < δ, there is a unitary u ∈M such that ∥u− v∥2,X < ϵ.

Proof. Suppose the result is false and that ϵ, c > 0 provide a counterexample.
For each n ∈ N, let (Mn, Xn) be a tracially complete C∗-algebra with CPoU
and let vn ∈ Mn be such that ∥vn∥ ≤ c, ∥v∗nvn − 1∥2,Xn < 1

n , but for all
unitaries u ∈Mn, we have

(7.42) ∥u− vn∥2,Xn ≥ ϵ.
The sequence (vn)

∞
n=1 induces an element v ∈

∏ωMn. We have ∥v∗v −
1∥2,∑ω Xn

= 0, and hence v is an isometry. Since 1−vv∗ ≥ 0 and τ(1−vv∗) =
0 for all τ ∈ X, we further have that v is unitary. By Corollary 7.11, there
is a sequence of unitaries (un)

∞
n=1 ∈

∏∞
n=1Mn lifting v. Now,

(7.43) lim
n→ω
∥un − vn∥2,Xn = 0,

which contradicts (7.42). □

Proposition 7.9 also implies that if (M, X) is a factorial tracially complete
C∗-algebra with CPoU, then there is a ∥ · ∥2,X -dense set of unitaries in

M that have the form eih for a self-adjoint h ∈ M with ∥h∥ ≤ π. We
do not know if every unitary in M has this form. Without CPoU, there
are certainly commutative counterexamples such as

(
C(T), T (C(T))

)
, but

we do not know of any counterexamples among type II1 tracially complete
C∗-algebras (M, X) – with or without CPoU –, or even among tracially
complete C∗-algebras (M, X) for which πτ (M)′′ is diffuse for each τ ∈ X.

Question 7.13. If (M, X) is a factorial tracially complete C∗-algebra with
CPoU, is every unitary in M an exponential? Slightly less ambitiously, is
the unitary group ofM path connected in the C∗-norm topology?

In every finite von Neumann algebra, every element has a unitary polar
decomposition. The same holds in reduced products of factorial tracially
complete C∗-algebras with CPoU. In fact, this can be done in an approxi-
mately central way.

Proposition 7.14. Suppose
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tra-

cially complete C∗-algebras with CPoU and S ⊆
∏ωMn is a ∥ · ∥2,Xω -

separable subset. If a ∈ M ∩ S′, then there is a unitary u ∈
∏ωMn ∩ S′

such that a = u|a|. Further, if a = a∗, we may arrange that u = u∗.

Proof. For the sake of brevity, define (M, X) :=
(∏ωMn,

∑ωXn

)
. We

may assume S is a set of contractions. Fix ϵ > 0 and a finite set F ⊆ S.
For the first part, by Kirchberg’s ϵ-test, it suffices to show that if a ∈ M,
then there is a unitary u ∈M such that

(7.44) ∥a− u|a|∥2,X ≤ ϵ and max
b∈F
∥[u, b]∥2,X ≤ ϵ.
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By the existence of unitary polar decompositions in finite von Neumann
algebras, for each τ ∈ X, there is a unitary ūτ ∈ πτ (M)′′∩πτ (F)′ such that

(7.45) πτ (a) = ūτπτ (|a|).

Since πτ (M)′′ ∩ πτ (F)′ is a von Neumann algebra, ūτ = eih̄τ for some self-
adjoint h̄τ ∈ πτ (M)′′ ∩ πτ (F)′.

By Kaplansky’s density theorem, we can approximate h̄τ by a self-adjoint
in πτ (M) and lift to a self-adjoint element hτ ∈M such that unitary uτ :=
eihτ ∈M satisfies

∥a− uτ |a|∥2,τ < (2 + |F|)−1/2ϵ,

max
b∈F
∥[uτ , b]∥2,τ < (2 + |F|)−1/2ϵ.

(7.46)

For τ ∈ X, define

(7.47) cτ :=
∣∣a− uτ |a|∣∣2 +∑

b∈F

∣∣[uτ , b]∣∣2 ∈M+,

and note that τ(cτ ) < ϵ2 for all τ ∈ X. By the compactness of X, there are
τ1, . . . , τk ∈ X such that

(7.48) sup
τ∈X

min
1≤j≤k

τ(cτj ) < ϵ2.

By CPoU (in the form of Corollary 7.8), there are mutually orthogonal
projections

(7.49) p1, . . . , pk ∈M∩F ′ ∩ {a}′ ∩ {uτ1 , . . . , uτk}
′

such that

(7.50)
k∑
j=1

pj = 1M and τ(cτjpj) ≤ ϵ2τ(pj),

for all 1 ≤ j ≤ k and τ ∈ X. Define u :=
∑n

i=j uτjpj . As the uτj are
unitaries commuting with the pj , we have that u is a unitary. We compute
that for all τ ∈ X and b ∈ F ,

∥a− u|a|∥22,τ ≤
k∑
j=1

τ(cτjpj) ≤ ϵ2
k∑
j=1

τ(pj) = ϵ2(7.51)

and

∥[u, b]∥22,τ ≤
k∑
j=1

τ(cτjpj) ≤ ϵ2
k∑
j=1

τ(pj) = ϵ2(7.52)

which implies (7.44), as required.
In the case that a∗ = a, the unitaries ūτ can be taken to be self-adjoint.

For this, by ensuring the unitaries uτ are chosen with ∥uτ−u∗τ∥2,τ sufficiently
small, and replacing cτ with cτ + |uτ −u∗τ |2 in the above proof, one may also
arrange ∥u− u∗∥2,Xω ≤ ϵ in (7.44). □

As promised, we have the following strengthened version of Proposi-
tion 7.2.
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Corollary 7.15. If
(
(Mn, Xn)

)∞
n=1

is a sequence of factorial tracially com-

plete C∗-algebras with CPoU and S ⊆
∏ωMn is a ∥·∥2,Xω -separable subset,

then
∏ωMn ∩ S′ has real rank zero and stable rank one.

Proof. Suppose a ∈
∏ωMn ∩ S′ and write a = u|a| for a unitary u ∈∏ωMn ∩ S′ as in Proposition 7.14. Then for each ϵ > 0, the element

b := u(|a| + ϵ) is invertible and ∥a − b∥ ≤ ϵ. Therefore,
∏ωMn ∩ S′ has

stable rank one. If a is self-adjoint and we take u = u∗, then u and |a|
commute. It follows that b is self-adjoint, and this shows

∏ωMn ∩ S′ has
real rank zero. □

In the same spirit as the comments after Corollary 7.11, an approximate
version of stable rank one can be obtained for all factorial tracially complete
C∗-algebras (M, X) with CPoU. Indeed, combining Proposition 7.14 (with
S = ∅) and Corollary 7.11 shows that a ∥ · ∥2,X -dense set of elements a ∈
M have the form a = u|a| for some unitary u ∈ M. Then the proof of
Corollary 7.15 shows that a ∥·∥2,X -dense set of elements inM are invertible.
The analogous statement for self-adjoint elements is less clear – this would
require a version of Corollary 7.11 for self-adjoint unitaries (or, equivalently,
for projections).

Question 7.16. If (M, X) is a factorial tracially complete C∗-algebra with
CPoU, doesM have real rank zero or stable rank one?

7.3. Classification of projections. Questions 7.13 and 7.16 expose a com-
mon drawback of the CPoU technique – even when exact results or ∥ · ∥-
approximate results are possible in finite von Neumann algebras, a direct ap-
plication of CPoU will always introduce a uniform 2-norm error. In the case
of classification of projections, we can overcome this defect by controlling the
2-norm distance from the unitary implementing the equivalence to the unit.
The following lemma and its proof is analogous to [105, Lemma XIV.2.1]
where the result is shown for finite von Neumann algebras. It is possible
to prove this result by combining the von Neumann algebra result with a
CPoU argument similar to those above, but with the structural results of
reduced products already obtained, a more direct proof is possible.

Lemma 7.17. Suppose (M, X) is a factorial tracially complete C∗-algebra
with CPoU. If p, q ∈ M are projections with τ(p) = τ(q) for all τ ∈ X and
ϵ > 0, then there is a unitary u ∈M such that

(7.53) ∥upu∗ − q∥2,X < ϵ and ∥u− 1M∥2,X < 2
√
2∥p− q∥2,X + ϵ.

Proof. By the liftability of unitaries in reduced products (Corollary 7.11), it
suffices to show there is a unitary u ∈Mω such that

(7.54) upu∗ = q and ∥u− 1Mω∥2,Xω ≤ 2
√
2∥p− q∥2,X .

By Proposition 7.4, there is a unitary v ∈ Mω such that vpv∗ = q. Set
a := pvp + p⊥vp⊥. As a ∈ Mω ∩ {p}′, Proposition 7.14 implies there is a
unitary w ∈Mω ∩{p}′ such that a = w|a|. Then u := vw∗ is a unitary with
upu∗ = q.
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Note that (pvp− pv)∗(p⊥vp⊥− p⊥v) = 0. Therefore, by the Pythagorean
identity,

∥a− v∥22,Xω = ∥pvp− pv∥22,Xω + ∥p⊥vp⊥ − p⊥v∥22,Xω

= ∥p(q − p)v∥22,Xω + ∥p⊥(q⊥ − p⊥)v∥22,Xω

≤ 2∥p− q∥22,X .
(7.55)

Further, since ∥a∥ ≤ 1, we have (1Mω − |a|)2 ≤ (1Mω − |a|2)2 in Mω.
Therefore,

∥w − a∥22,Xω = ∥1− |a|∥22,Xω

≤ ∥1− |a|2∥22,Xω

= ∥p− pv∗pvp∥22,Xω + ∥p⊥ − p⊥v∗p⊥vp⊥∥22,Xω

= ∥pv∗(q − p)vp∥22,Xω + ∥p⊥v∗(q⊥ − p⊥)vp∥22,Xω

≤ 2∥p− q∥22,X .

(7.56)

Combining (7.55) and (7.56) shows

□(7.57) ∥u− 1Mω∥2,Xω = ∥v − w∥2,Xω ≤ 2
√
2∥p− q∥2,X .

The second part of the following result is Theorem 1.3(ii) from the in-
troduction. Note also that taking (M, X) to be a trivial W ∗-bundle over a
compact Hausdorff space K with fibre being a II1 factor with property Γ in
the following result proves Theorem E from the overview, using Theorem 1.4
to verify the CPoU hypothesis.

Theorem 7.18. Suppose (M, X) is a factorial tracially complete C∗-algebra
with CPoU and p, q ∈M are projections.

(i) If τ(p) ≤ τ(q) for all τ ∈ X, then p is Murray–von Neumann
subequivalent to q.

(ii) If τ(p) = τ(q) for all τ ∈ X, then p and q are unitarily equivalent.

Proof. First we show (ii). Let (ϵn)
∞
n=1 ⊆ (0,∞) be a decreasing sequence

with
∑∞

n=1 ϵn <∞. We will construct a sequence of unitaries (un)
∞
n=1 ⊆M

such that

(7.58)
∥unpu∗n − q∥2,X < ϵn, n ≥ 1,

∥un+1 − un∥2,X < 4ϵn−1, n ≥ 2.

Then (un)
∞
n=1 ⊆M is a ∥ · ∥-bounded, ∥ · ∥2,X -Cauchy sequence, and hence

converges to some u ∈ M. Since multiplication is ∥ · ∥2,X -continuous on
∥ · ∥-bounded sets, it follows that u is a unitary and upu∗ = q.

The sequence (un)
∞
n=1 will be constructed inductively. Lemma 7.17 im-

plies there is a unitary u1 ∈M such that

(7.59) ∥u1pu∗1 − q∥2,X < ϵ1.

Assuming un has been constructed, applying Lemma 7.17 to the projections
unpu

∗
n and q, there is a unitary vn ∈M such that

∥vnunpu∗nv∗n − q∥2,X < ϵn+1,

∥vn − 1M∥2,X < 2
√
2ϵn + ϵn+1.

(7.60)
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Now set un+1 := vnun. Then ∥un+1pun+1 − q∥2,X < ϵn+1 and

∥un+1 − un∥2,X ≤ ∥un∥∥vn − 1∥2,X
< 2
√
2ϵn + ϵn+1

≤ 3ϵn + ϵn

= 4ϵn,

(7.61)

as required.
Now we show (i). By Proposition 7.4, there is a partial isometry v ∈

M∞ such that v∗v = p and vv∗ ≤ q. Suppose r : N → N is a func-
tion with limn→∞ r(n) =∞ and consider the reparameterisation morphism
r∗ :M∞ → M∞ as defined just before Theorem 5.11. Since p, q ∈ M, we
have r∗(p) = p and r∗(q) = q. For all τ ∈ X∞,

(7.62) τ(r∗(q − vv∗)) = τ(r∗(q))− τ(r∗(p)) = τ(q)− τ(p) = τ(q − vv∗).
By Proposition 7.4, q− vv∗ and r∗(q− vv∗) are unitarily equivalent inM∞.
By Corollary 7.11, unitaries in M∞ lift to unitaries in ℓ∞(M), so we may
apply intertwining through reparameterisation (Theorem 5.11) in the case
where S is a one point space, and obtain a projection p′ ∈M that is unitarily
equivalent to q − vv∗ inM∞. The projections p ⊕ p′ and q ⊕ 0 in M2(M)
agree on traces. By Proposition 6.14, M2(M) has CPoU. Hence, p⊕ p′ and
q ⊕ 0 are unitarily equivalent by (ii). Therefore, p ≾ q in M2(M) and so
also inM. □

The uniqueness theorem for projections is complemented by a correspond-
ing existence theorem building projections with prescribed behaviour on
traces. This is obtained by applying CPoU to Proposition 2.8(iv). Note
that the following result is precisely Theorem 1.3(ii) from the introduction.

Theorem 7.19. Suppose (M, X) is a type II1 factorial tracially complete
C∗-algebra with CPoU. If f ∈ Aff(X) with 0 ≤ f ≤ 1, then there is a
projection p ∈M such that τ(p) = f(τ) for all τ ∈ T (M).

Proof. It suffices to construct a projection p ∈M∞ such that

(7.63) τ(p) = f(τ |M), τ ∈ X∞.

Indeed, assuming this has been done, for every function r : N → N with
limn→∞ r(n) =∞, we have

(7.64) τ(r∗(p)) = f((τ ◦ r∗)|M) = f(τ |M) = τ(p)

for all τ ∈ X∞, and hence by Lemma 7.3, r∗(p) and p are unitarily equiv-
alent. Since unitaries in M∞ lift to unitaries in ℓ∞(M) (Corollary 7.11),
intertwining through reparameterisation (Theorem 5.11) implies that there
is a projection p0 ∈M that is unitarily equivalent to p. Then τ(p0) = f(τ)
for all τ ∈ X.

We work to build a projection p ∈M∞ satisfying (7.63). First, we extend
f to all of T (M) using Theorem 2.3. Then, by Proposition 2.7, there is a
self-adjoint c ∈M such that τ(c) = f(τ) for all τ ∈ T (M).

Fix τ ∈ X and ϵ > 0. Since πτ (M)′′ is type II1, Proposition 2.8(iv)
implies there is a projection p̄τ ∈ πτ (M)′′ such that σ(p̄τ ) = σ(πτ (c)) for
all σ ∈ T (πτ (M)′′). Therefore, by [43, Théorème 3.2] and Kaplansky’s
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density theorem, there are a positive contraction pτ ∈ M and elements
xj,τ , yj,τ ∈M, for j = 1, . . . , 10, of norm at most 12(∥c∥+ 1) such that

(7.65)
∥∥∥pτ − c− 10∑

j=1

[xj,τ , yj,τ ]
∥∥∥2
2,τ

< ϵ and τ(pτ − p2τ ) < ϵ

for all τ ∈ X. Define

(7.66) aτ := pτ − p2τ +
∣∣∣pτ − c− 10∑

j=1

[xj,τ , yj,τ ]
∣∣∣2 ∈M+

and note that τ(aτ ) < 2ϵ.
As X is compact, there are τ1, . . . , τk ∈ X such that

sup
τ∈X

min
1≤i≤k

τ(aτi) < 2ϵ.

By CPoU, there are projections q1, . . . , qk ∈ M∞ summing to 1M∞ and
commuting with c, pτi , xj,τi and yj,τi for all i = 1, . . . , k and j = 1, . . . , 10,
such that

(7.67) τ(qiaτi) ≤ 2ϵτ(qi), τ ∈ X∞, i = 1, . . . , k.

Define

(7.68) p :=

k∑
i=1

qipτi , xj :=

k∑
i=1

qixj,τi , and yj :=

k∑
i=1

qiyj,τi

for j = 1, . . . , 10. Then we have

(7.69)
∥∥∥p− c− 10∑

i=1

[xj , yj ]
∥∥∥
2,X∞

≤
√
2ϵ and sup

τ∈X∞
τ(p− p2) ≤

√
2ϵ

The result of the previous paragraph and Kirchberg’s ϵ-test implies there
are a projection p ∈M∞ and elements xj , yj ∈M∞ such that

(7.70) p = c+
10∑
j=1

[xj , yj ].

Then for all τ ∈ X∞, τ(p) = τ(c) = f(τ |M) as required in (7.63). □

The classification of projections given in Theorems 7.18 and 7.19 allows
us to compute the Murray–von Neumann semigroup and the K0-group for
factorial tracially complete C∗-algebra with CPoU. This is immediate from
the previous two results and Propositions 5.8 and 6.14, which allow us to
apply the previous two results to projections in matrix amplifications.

Corollary 7.20. Suppose (M, X) is a type II1 factorial tracially complete
C∗-algebra with CPoU. The natural maps

(7.71) V (M)→ Aff(X)+ and K0(M)→ Aff(X)

are isomorphisms of ordered monoids and ordered groups, respectively.
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8. Hyperfiniteness

There is a natural notion of hyperfiniteness for tracially complete C∗-
algebras which is modelled on the Murray–von Neumann notion of hyper-
finiteness for II1 factors from [83]. It is defined by a local approximation
condition, asking that every finite set is approximately contained in a finite
dimensional C∗-subalgebra and the existence of an inductive limit decom-
position.

Section 8.1 contains the definition of hyperfiniteness along with the state-
ments of all the results needed to prove the regularity theorem: namely,
hyperfiniteness implies amenability and CPoU. The proof of the latter im-
plication occupies most of this section. En route to proving CPoU, we
prove an inductive limit decomposition for hyperfinite tracially complete
C∗-algebras in the separable setting (Theorem 8.4). Section 8.2 requires
the finite dimensional perturbation lemmas required to obtain the induc-
tive limit decomposition. The proofs of Theorems 8.3 and 8.4 are given in
Section 8.3.

8.1. Definition and main properties. We define hyperfiniteness analo-
gously to Murray and von Neumann’s notion for II1 factors in [83].

Definition 8.1. We say that a tracially complete C∗-algebra (M, X) is
hyperfinite if for every finite set F ⊆ M and ϵ > 0, there is a finite dimen-
sional C∗-algebra F ⊆ M such that for every a ∈ F , there is a b ∈ F with
∥a− b∥2,X < ϵ.

The passage from hyperfiniteness to amenability is a little subtle. The
obvious approach is to verify the completely positive approximation property
directly by taking the “downward” maps to be conditional expectations onto
finite dimensional subalgebras and the “upward” maps to be the inclusions.
For the estimates to match up correctly, one must arrange for the conditional
expectations to be continuous in the uniform 2-norms, and it is not clear
if this can be done. This issue does not arise in the setting of tracial von
Neumann algebras (as the trace-preserving conditional expectation onto a
subalgebra is necessarily 2-norm contractive), so we can obtain amenability
by working locally.

Theorem 8.2. Every hyperfinite tracially complete C∗-algebra is amenable.

Proof. Suppose (M, X) is a hyperfinite tracially complete C∗-algebras. For
all τ ∈ X, the tracial von Neumann algebra πτ (M)′′ is hyperfinite and hence
is semidiscrete. The result follows from Theorem 1.2 (which was proved in
Theorem 4.9). □

The following result obtaining CPoU from hyperfiniteness is more subtle
yet.

Theorem 8.3. Every hyperfinite factorial tracially complete C∗-algebra sat-
isfies CPoU.

It is easy to see that finite dimensional C∗-algebras satisfy CPoU in the
sense that if F is a finite dimensional C∗-algebra, then

(
F, T (F )

)
is a fac-

torial tracially complete C∗-algebras with CPoU (this is a very special case
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of Corollary 6.4). If one strengthens the definition of hyperfiniteness (Def-
inition 8.1) to require that the finite dimensional subalgebras F ⊆ M is
factorial when viewed as a tracially complete C∗-algebra with the traces
inherited from (M, X) (or equivalently, that every trace on F extends to
a trace in X), then CPoU for (M, X) follows directly from CPoU from(
F, T (F )

)
.

For a general finite dimensional C∗-subalgebra F ⊆M, we do not have a
way of relating general traces in T (F ) to traces of the form τ |F for τ ∈ X, so
the above argument does not work. A somewhat related issue was addressed
by Murray and von Neumann in the setting of II1 factors in [83]. They
defined a II1 factorM to be “approximately finite (B)” if it satisfies for all
finite set F ⊆M and ϵ > 0, there is a finite dimensional C∗-algebra F ⊆M
such that for all a ∈ F , there is a b ∈ F such that ∥a − b∥2 < ϵ, and they
defineM to be “approximately finite (A)” if one can further arrange for F
to be a factor. It is a non-trivial result that these two notions coincide (see
[83, Lemma 4.6.2]).55

We circumvent the need to establish the equivalence discussed in the pre-
vious paragraph by showing that (in the separable setting) hyperfiniteness
is equivalent to the a-priori stronger property of being a sequential inductive
limit of finite dimensional algebras. Murray and von Neumann established
such a result for separably acting hyperfinite II1 factors (using the terminol-
ogy “approximately finite (C)” for sequential inductive limits), and Bratteli
proved a C∗-version of this result in his seminal paper on AF C∗-algebras,
([11]).

Theorem 8.4. If (M, X) is a hyperfinite tracially complete C∗-algebra such
that M is ∥ · ∥2,X-separable, then (M, X) is an inductive limit of tracially
complete C∗-algebras (Mn, Xn), n ≥ 1, such that eachMn is finite dimen-
sional.

The proof has the same flavour as the corresponding results for C∗-
algebras and tracial von Neumann algebras. We will prove Theorem 8.4
in Section 8.3 after we set out the relevant uniform 2-norm perturbation
and near-containment lemmas in the next section.

Once, Theorem 8.4 is in place, it will allow us to realise a separable facto-
rial hyperfinite C∗-algebras as a tracial completion of the tracial completion
of an AF algebra with respect to a closed face of its traces. Such tracial
completions have CPoU by the permanence properties of Section 6.3. This
will prove Theorem 8.3 in the separable case, and we will deduce the non-
separable case from there.

8.2. Perturbation lemmas. The goal of this subsection is to prove a uni-
form 2-norm ‘near-containment’ result (Proposition 8.8) for finite dimen-
sional subalgebras. Similar results were used by Murray and von Neumann
in the von Neumann algebra setting, and Glimm and Bratteli for C∗-algebras
(cf. [83, 51, 11]). The main observation is that although the Borel functional

55In the end, for type II1 factorial tracially complete C∗-algebras, the two analogous
notions of hyperfiniteness are equivalent as a consequence of Theorem 9.15 using that the
tracially complete C∗-algebras (RX , X) of Example 3.35 satisfy the stronger notion of
hyperfiniteness. However, this is circular since Theorem 9.15 depends on Theorem 8.3.
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calculus used in the von Neumann algebraic results does not exist in a tra-
cially complete C∗-algebra, it is defined in all finite dimensional subalgebras.

We start with a perturbation result for almost orthogonal projections.

Lemma 8.5. For all ϵ > 0 and n ∈ N, there is a δ > 0 such that for all
finite dimensional tracially complete C∗-algebras (F,X) and all self-adjoint
contractions q1, . . . , qn ∈ F with

(8.1) ∥qi − q2i ∥2,X < δ and ∥qiqj∥2,X < δ,

for all i, j = 1, . . . , n with i ̸= j, there are mutually orthogonal projections
p1, . . . , pn ∈ F such that ∥pi − qi∥2,X < ϵ.

Proof. We will prove the result by induction on n. When n = 1, set δ = ϵ/2,
let f : R → R denote the characteristic function of [1/2,∞), and define
p1 := f(q1). Then

(8.2) |f(t)− t| ≤ 2|t− t2|, t ∈ R,
and so ∥p1 − q1∥2,X ≤ 2∥q1 − q21∥2,X < ϵ.

Assuming the result has been proven for n ∈ N, let δ′ > 0 be given by
applying the lemma with this n and with ϵ/(8n) in place of ϵ. Define

(8.3) δ := min
{
δ′,

ϵ

8n+ 4

}
.

Let q1, . . . , qn+1 ∈ F be given as in the statement. As δ ≤ δ′, the choice
of δ′ implies there are mutually orthogonal projections p1, . . . , pn ∈ F such
that ∥pi − qi∥2,X < ϵ/(10n+ 2) for i = 1, . . . , n.

Define p :=
∑n

i=1 pi, q := qn+1, and pn+1 := f(p⊥qp⊥). Then pn+1 is
a projection and is orthogonal to each of p1, . . . , pn. Using the bimodule
property of (3.2), we can estimate

∥pn+1 − qn+1∥2,X ≤ ∥f(p⊥qp⊥)− p⊥qp⊥∥2,X + ∥p⊥qp⊥ − q∥2,X
≤ 2∥p⊥qp⊥ − (p⊥qp⊥)2∥2,X + 2∥pq∥2,X
≤ 2∥q − qp⊥q∥2,X + 2∥pq∥2,X
≤ 2∥q − q2∥2,X + 4∥pq∥2,X

< 2δ + 4

n∑
i=1

∥piq∥2,X

≤ 2δ + 4

n∑
i=1

(
∥pi − qi∥2,X + ∥qiq∥2,X

)
< 2δ + 4n

( ϵ

8n
+ δ

)
≤ ϵ □

The following perturbation result for partial isometries will be used to
perturb the off diagonal matrix units of a near inclusion of finite dimensional
C∗-algebras.

Lemma 8.6. Suppose (F,X) is a finite dimensional tracially complete C∗-
algebra and p, q ∈ F are projections. If w ∈ F is a contraction, then there
is a partial isometry v ∈ F such that vp = v = qv and

(8.4) ∥v − w∥2,X ≤ 6max
{
∥w∗w − p∥1/22,X , ∥ww

∗ − q∥1/22,X

}
.
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Proof. Define

(8.5) δ := max
{
∥w∗w − p∥2,X , ∥ww∗ − q∥2,X

}
.

Let u := qwp and note that u is a contraction and

(8.6) max
{
∥u∗u− p∥2,X , ∥uu∗ − q∥2,X

}
≤ 3δ.

Indeed,

∥u∗u− p∥2,X = ∥pw∗qwp− p∥2,X
≤ ∥pw∗(q − ww∗)wp∥2,X + ∥pw∗w(w∗w − p)p∥2,X

+ ∥p(w∗w − p)p∥2,X
≤ 3δ,

(8.7)

where the last inequality uses (8.5) and the bimodule property of (3.2). The
other inequality in (8.6) follows similarly.

Define g : [0, 1]→ R by

(8.8) g(t) :=

{
0 0 ≤ t ≤ 1

4

t−1/2 1
4 < t ≤ 1

and define v := ug(u∗u). Then v∗v is a projection, and hence v is a partial
isometry. As up = u = qu, we also have vp = v = qv. After solving some
polynomial inequalities, we get that for t ∈ [0, 1], we have

(8.9) 0 ≤ |t− tg(t)| ≤ 4

3
(t− t2) and 0 ≤ g(t) ≤ 2.

Therefore, for each τ ∈ X,
(8.10)
∥u− v∥22,τ = τ

(
(u− ug(u∗u))∗(u− ug(u∗u))

)
= τ

(
u∗u− 2u∗ug(u∗u) + u∗ug(u∗u)2

)
= τ

(
u∗u− u∗ug(u∗u)

)
+ τ

(
(u∗ug(u∗u)− u∗u)g(u∗u)

)
≤ τ

(
|u∗u− u∗ug(u∗u)|

)
+ 2τ

(
|u∗u− u∗ug(u∗u)|

)
(8.9)

≤ 4τ(u∗u− (u∗u)2)
≤ 4(∥u∗u− p∥2,τ + ∥p− (u∗u)2∥2,τ )

(8.6)

≤ 36δ,

using Cauchy–Schwarz, and the fact that p is a projection. □

The perturbations of the previous two lemmas may change the trace of
the diagonal matrix units. The following is used to account for this.

Lemma 8.7. If (F,X) is a finite dimensional tracially complete C∗-algebra
and p1, . . . , pn, p ∈ F are projections with pi ≤ p for all i = 1, . . . , n, then

(8.11)
∥∥∥p− n∧

i=1

pi

∥∥∥
2,X
≤

( n∑
i=1

∥p− pi∥22,X
)1/2

≤
n∑
i=1

∥p− pi∥2,X .

Proof. The second inequality amounts to
∑n

i=1 λ
2
i ≤ (

∑n
i=1 λ)

2 for positive
λi, so is immediate. We prove the first inequality by induction on n with
the case n = 1 being trivial. Let q1 :=

∧n
i=1 pi and q2 := pn+1. By [7,

Proposition III.1.1.3],

(8.12) (q1 − (q1 ∧ q2)) and ((q1 ∨ q2)− q2),
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are Murray–von Neumann equivalent. Therefore, for each τ ∈ X,

∥p− (q1 ∧ q2)∥22,τ = τ(p− (q1 ∧ q2))
= τ(p− q1) + τ(q1 − (q1 ∧ q2))
= τ(p− q1) + τ((q1 ∨ q2)− q2)
≤ τ(p− q1) + τ(p− q2)
= ∥p− q1∥22,τ + ∥p− q2∥22,τ .

(8.13)

Hence, we have∥∥∥p− n+1∧
i=1

pi

∥∥∥2
2,X
≤

∥∥∥p− n∧
i=1

pi

∥∥∥2
2,X

+ ∥p− pn+1∥22,X(8.14)

The first inequality in (8.11) now follows by induction. □

The last three lemmas combine to prove the following stability result for
near inclusions of finite dimensional tracially complete C∗-algebras.

Proposition 8.8. Suppose (M, X) is a tracially complete C∗-algebra, let
F be a finite dimensional C∗-subalgebra of M, and let F ⊆ F be a system
of matrix units. For all ϵ > 0, there exists δ > 0 such that if G ⊆ M is
a finite dimensional C∗-algebra and for all a ∈ F , there exists b ∈ G with
∥a − b∥2,X < δ, then there is a (not necessarily unital) ∗-homomorphism
ϕ : F → G such that

(8.15) ∥ϕ(a)− a∥2,X ≤ ϵ∥a∥, a ∈ F.

Proof. Let

(8.16)
(
e
(k)
i,j

)k=1,...,m

i,j=1,...,dk
⊆ F

be a system of matrix units for F . After replacing ϵ with a scalar multiple
(depending only on the dimension of F ), it suffices to construct a corre-
sponding system of matrix units

(8.17)
(
f
(k)
i,j

)k=1,...,m

i,j=1,...,dk
⊆ G

such that
∥∥e(k)i,j − f

(k)
i,j

∥∥
2,X

< ϵ for all i, j, k.

Let d = max{d1, . . . , dm} and choose ϵ′ > 0 with

(8.18) (4ϵ′ + 24(ϵ′)1/2)(d+ 1) < ϵ.

Apply Lemma 8.5 with ϵ′ in place of ϵ and with
∑m

k=1 dk in place of n to
obtain δ′ > 0, and define δ := min{ϵ′/3, δ′/9} > 0. By assumption and
Lemma 3.27, for each i = 1, . . . , dk and k = 1, . . . ,m, there are contractions

q
(k)
i , w

(k)
i ∈ G such that

(8.19)
∥∥q(k)i − e

(k)
i,i

∥∥
2,X

< 3δ ≤ ϵ′ and
∥∥w(k)

i − e
(k)
i,1

∥∥
2,X

< 3δ ≤ ϵ′.

For all k, k′ = 1, . . . ,m, i = 1, . . . , dk, and i
′ = 1, . . . , dk′ such that (i, k) ̸=

(i′, k′), we have

(8.20) ∥(qi(k))2 − q(k)i ∥2,X < 9δ ≤ δ′, and ∥q(k)i q
(k′)
i′ ∥2,X < 6δ < δ′.
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By the choice of δ′, we may invoke the conclusion of Lemma 8.5 to produce

mutually orthogonal projections p
(k)
i ∈ G such that for all i and k,

(8.21) ∥p(k)i − q
(k)
i ∥2,X < ϵ′.

Now for each i and k, we have

(8.22) w
(k)
i

∗w
(k)
i

(8.19)
≈ 2ϵ′ e

(k)
1,i e

(k)
i,1 = e

(k)
1,1

(8.19)
≈ ϵ′ q

(k)
1

(8.21)
≈ ϵ′ p

(k)
1 ,

and similarly w
(k)
i w

(k)
i

∗ ≈4ϵ′ p
(k)
i , where the approximations are in ∥ · ∥2,X .

By Lemma 8.6, for each i and k, there is a partial isometry v
(k)
i ∈ G with

source contained in p
(k)
1 and range contained in p

(k)
i and such that

(8.23) ∥v(k)i − w
(k)
i ∥2,X ≤ 12(ϵ′)1/2.

For k = 1, . . . ,m and i, j = 1, . . . , dk, define

(8.24) r(k) :=

dk∧
i=1

v
(k)
i

∗v
(k)
i ≤ p(k)1 and f

(k)
i,j := v

(k)
i r(k)v

(k)
j

∗.

Then the f
(k)
i,j ∈ G satisfy the matrix unit relations, so it suffices to show

that
∥∥e(k)i,j − f

(k)
i,j

∥∥
2,X

< ϵ for all i, j, k. For each k = 1, . . . ,m, we have

(8.25) v
(k)
i

∗v
(k)
i

(8.23)
≈ 24(ϵ′)1/2 w

(k)
i

∗w
(k)
i

(8.22)
≈ 4ϵ′ p

(k)
1

where the approximations are in the ∥ · ∥2,X -norm. Therefore, Lemma 8.7
implies

(8.26) ∥p(k)1 − r
(k)∥2,X < (4ϵ′ + 24(ϵ′)1/2)dk.

For all k = 1, . . . ,m and i, j = 1, . . . , dk, we have

(8.27) e
(k)
i,j = e

(k)
i,1 e

(k)
1,j

(8.19)
≈ 2ϵ′ w

(k)
i w

(k)
i

∗ (8.23)
≈ 24(ϵ′)1/2 v

(k)
i v

(k)
i

∗ = v
(k)
i p

(k)
1 v

(k)
i

∗.

Combining (8.26) and (8.27), we have

□(8.28)
∥∥e(k)i,j − f

(k)
i,j

∥∥
2,X
≤ (4ϵ′ + 24(ϵ′)1/2)(dk + 1)

(8.18)
< ϵ.

8.3. Hyperfinite implies CPoU. The perturbation results of the previ-
ous subsection allow us to prove Theorem 8.4, from which we will deduce
Theorem 8.3.

Proof of Theorem 8.4. Suppose (M, X) is hyperfinite and M is ∥ · ∥2,X -
separable. Let Gn be an increasing sequence of finite subsets of M with
∥ · ∥2,X -dense union and let ϵn > 0 be such that

∑∞
n=1 ϵn < ∞. We will

inductively construct sequences of finite dimensional subalgebras Fn ⊆ M
and ∗-homomorphisms ϕn : Fn → Fn+1 such that for all n ≥ 1,

(i) for all a ∈ Gn, there is a b ∈ Fn such that ∥a− b∥2,X < ϵn, and
(ii) for all b ∈ Fn, ∥ϕn(b)− b∥2,X < ϵn∥b∥.
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We can find F1 satisfying (i) by the definition of hyperfiniteness. Assum-
ing that Fn has been constructed, let Fn be a system of matrix units for
Fn, and let δn > 0 be given by applying Proposition 8.8 with Fn and ϵn
in place of F and ϵ. By the definition of hyperfiniteness, there is a finite
dimensional C∗-algebra Fn+1 ⊆ M such that (i) holds and for all a ∈ Fn,
there is a b ∈ Fn+1 such that ∥a− b∥2,X < δn. Then Proposition 8.8 yields
the ∗-homomorphism ϕn+1

n : Fn → Fn+1 required in (ii), which completes
the construction.

For n,m ∈ N with m < n, let ϕnm : Fm → Fn be given by composing the

maps ϕk+1
k for m ≤ k < n. For m ∈ N and b ∈ Fm, condition (ii) above

together with the choice of ϵn imply that the bounded sequence (ϕnm(b))
∞
n=m

is ∥ · ∥2,X -Cauchy. Define ψm : Fm →M by

(8.29) ψm(b) := lim
n→∞

ϕnm(b), b ∈ Fm.

Note that ψn ◦ ϕnm = ψm for all m,n ∈ N with m < n. If A := lim−→ (Fn, ϕn)
is the C∗-algebraic inductive limit of the algebras Fn and ϕ∞,n : Fn → A are
the natural maps, then there is an induced ∗-homomorphism ψ : A → M
such that ψ ◦ ϕ∞,n = ψn for all n ∈ N.

Since A is an AF algebra and quotients of AF algebras are also AF alge-
bras (see [31, Theorem III.4.4], for example), we have that ψ(A) is an AF
subalgebra ofM. It suffices to show that ψ(A) ⊆ M is ∥ · ∥2,X -dense. For
each n ∈ N, condition (ii) and the definition of ψn implies

(8.30) ∥ϕn(b)− b∥2,X ≤
∞∑
m=n

ϵm∥b∥, b ∈ Fn.

As
∑∞

n=1 ϵn < ∞ and the sets Gn are increasing, the above inequality and
condition (i) imply that Gn is contained in the ∥ · ∥2,X -closure of ψ(A) for
all n ≥ 1. As the sets Gn have ∥ · ∥2,X -dense union in M, this completes
the proof that (M, X) is an inductive limit of finite-dimensional tracially
complete C∗-algebras. The converse is straightforward. □

We now have the pieces to show hyperfinite implies CPoU in the factorial
setting.

Proof of Theorem 8.3. Let (M, X) be a hyperfinite factorial tracially com-
plete C∗-algebra. Suppose first that M is ∥ · ∥2,X -separable. Then, by
Theorem 8.4, there is an increasing sequence (Fn)

∞
n=1 of finite dimensional

unital C∗-subalgebras of M with ∥ · ∥2,X -dense union. Let A ⊆ M denote
the norm closure of the union of the Fn so that A is an AF C∗-algebra. If
XA := {τ |A : τ ∈ X}, then Corollary 3.29 implies that XA is a closed face

in T (A) and
(
A
XA , XA

) ∼= (M, X).

Note that (A
T (A)

, T (A)) is the inductive limit of the factorial tracially
complete C∗-algebras

(
Fn, T (Fn)

)
and each of these has CPoU by Corol-

lary 6.4. Therefore (A
T (A)

, T (A)) has CPoU by Proposition 6.12. Further,

note that the tracial completion of A
T (A)

with respect to XA is (A
XA , XA) ∼=

(M, X). This has CPoU by Proposition 6.9.
The general case follows from the ∥·∥2,X -separable case as hyperfiniteness

is separably inheritable and factorial CPoU tracially complete C∗-algebras
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are strongly separably inheritable (see the discussion immediately follow-
ing Definition A.1 in Appendix A). The proofs of the (strong) separable
inheritability are given in Theorem A.3.

□

9. Classification and Regularity

In this final section, we combine the pieces together to obtain our main
results. The classification theorem (Theorem C) will follow from the exis-
tence and uniqueness results for morphisms obtained in Sections 9.2 and 9.1,
respectively, via standard intertwining arguments.

In more detail, we will show that for all suitable tracially complete C∗-
algebras (M, X) and (N , Y ), such as those covered in the classification
theorem, any continuous affine map Y → X is induced by a morphism
(M, X)→ (N , Y ), and this map is unique up to approximate unitary equiv-
alence. From here, if X ∼= Y , then the existence theorem can be applied
twice to produce morphisms ϕ : (M, X)→ (N , Y ) and ψ : (N , Y )→ (M, X)
which are inverses of each other on traces. Then, two applications of the
uniqueness theorem allow us to show that ψ ◦ϕ and ϕ◦ψ are approximately
unitary equivalent to the identity maps onM and N , respectively. An ap-
plication of (a tracially complete version of) Elliott’s intertwining argument
will then imply (M, X) ∼= (N , Y ).

The uniqueness result is covered in Section 9.1 and follows from a mostly
standard uniqueness theorem for weakly nuclear ∗-homomorphisms into fi-
nite von Neumann algebras (Proposition 9.2) and a CPoU argument. The
existence result in Section 9.2 is more subtle. On the first pass, we will only
be able to obtain an “approximate existence” result showing the existence
of approximately multiplicative mapsM→N approximately implementing
a given continuous affine map Y → X; a discussion of the strategy behind
this can be found at the beginning of Section 9.2. As is standard in the
C∗-algebra classification literature, this approximate existence result can be
paired with an analogous uniqueness result for approximately multiplicative
maps via an approximate intertwining argument to strengthen our existence
result and produce a genuine morphism (M, X) → (N , Y ) with prescribed
behaviour on traces (Theorem 9.12).

In the proof of Theorem 9.12, we will avoid explicitly using an approx-
imate uniqueness theorem and this final intertwining argument by mak-
ing use of the intertwining via reparameterisation technique given in The-
orem 5.11. More precisely, the approximate existence result will provide a
∗-homomorphism (M, X) → (N∞, Y∞). Our uniqueness result will apply
to morphisms into (N∞, Y∞) since the hypotheses on the codomain of the
existence theorem are preserved by reduced powers. This then allows us to
use Theorem 5.11 to obtain the final existence result.

With the classification theorem in hand, the structure theorem for separa-
ble type II1 factorial amenable tracially complete C∗-algebras with property
Γ (Theorem B) will follow.

9.1. Uniqueness results for morphisms. This subsection gives a unique-
ness result for tracially nuclear ∗-homomorphisms into factorial tracially
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complete C∗-algebras with CPoU. Uniqueness will be up to approximate
unitary equivalence in uniform 2-norm, as follows.

Definition 9.1. If (M, X) is a tracially complete C∗-algebra and ϕ, ψ : A→
M are functions, we say that ϕ and ψ are approximately unitarily equivalent
if there is a net of unitaries (uλ) ⊆M such that

(9.1) ∥uλϕ(a)u∗λ − ψ(a)∥2,X → 0, a ∈ A.
Note that when A is a separable C∗-algebra and ϕ and ψ are ∥·∥-continuous
we may arrange the net (uλ) to be a sequence.

We begin by recording following the uniqueness result for von Neumann
algebras which is a consequence of Connes’ theorem. Several variations and
special cases of this can be found in the literature (see [28, Proposition 2.1]
or [99, Proposition 1.1] for example); the result most often appears when A
is nuclear andM is a II1 factor. Most, if not all, variations of this argument
(including the one below) follow the same strategy:

(i) use Connes’ theorem to replace the domain with a hyperfinite von
Neumann algebra;

(ii) use an ϵ/3-argument to replace the domain with a finite dimensional
algebra;

(iii) use the Murray–von Neumann classification of projections by traces
to compare matrix units in the codomain.

Proposition 9.2. Suppose A is a C∗-algebra, N is a finite von Neumann
algebra, and ϕ, ψ : A→ N are weakly nuclear ∗-homomorphisms. Then there
is a net of unitaries (uλ) ⊆ N such that

(9.2) σ-strong∗- lim
λ
uλϕ(a)u

∗
λ = ψ(a), a ∈ A,

if and only if τ ◦ ϕ = τ ◦ ψ for all τ ∈ T (N).
Proof. Suppose that τ ◦ ϕ = τ ◦ ψ for all τ ∈ T (N ). Let M ⊆ N denote
the von Neumann subalgebra generated by ϕ(A). Recall that since N is
finite, T (N ) forms a faithful set of traces, i.e. if x ∈ N is non-zero, then
there exists τ ∈ T (N ) with τ(x∗x) ̸= 0. Accordingly the hypothesis en-
sures ker(ϕ) = ker(ψ), and so ψ factorises through ϕ(A). Let ϕ̄ :M → N
denote the inclusion map and let ψ̄ : M → N denote the unique normal
∗-homomorphism with ψ̄ ◦ ϕ = ψ. Then τ ◦ ϕ̄ = τ ◦ ψ̄ for all normal traces
τ ∈ T (N ) (and hence also for all τ ∈ T (N )).

As N is finite, there is a normal conditional expectation N →M (see
[15, Lemma 1.5.10]; for example), and so, the corestriction of ϕ to a ∗-
homomorphism A → M is weakly nuclear. Then M is hyperfinite by the
proof of (6) implies (5) of [12, Theorem 3.2.2].56

Let F ⊆M be a finite dimensional C∗-algebra, so that τ ◦ϕ̄|F = τ ◦ψ̄|F . It
is a standard consequence of the classification of projections in the finite von
Neumann algebra N by traces that ϕ̄|F and ψ̄|F are unitarily equivalent.57

56This reference handles the case that M = πτ (A)
′′ for a trace τ ∈ T (A) and ϕ = πτ .

To prove the claim in our setting, fix a faithful normal ∗-homomorphism π : M → B(H)
so that M ∼= π(M) = π(ϕ(A))′′, and in the proof in [12], replace πτ with π ◦ ϕ.

57 Let e
(k)
i,j be a system of matrix units for F . For each k = 1, . . . ,m, we have

τ
(
ϕ̄
(
e
(k)
1,1

))
= τ

(
ψ̄
(
e
(k)
1,1

))
, τ ∈ T (N ),
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Therefore ϕ̄ and ψ̄ are strong∗-approximate unitarily equivalent, and hence
so too are ϕ and ψ. The converse is immediate. □

Our main uniqueness result is obtained by a CPoU argument to pass
from local uniqueness at the fibres to a global statement. This works in
essentially the same way as [21, Theorem 2.2] (which handles the case when
A is nuclear).58

Theorem 9.3. Suppose A is a C∗-algebra, (N , Y ) is a factorial tracially
complete C∗-algebra with CPoU, and ϕ, ψ : A → N are tracially nuclear ∗-
homomorphisms. Then ϕ and ψ are approximately unitarily equivalent if
and only if τ ◦ ϕ = τ ◦ ψ for all τ ∈ Y .

Proof. Fix a finite set F ⊆ A and ϵ > 0. For each pair of traces τ ∈ Y and
σ ∈ T (πτ (N )′′), we have σ ◦ πτ ∈ Y by Lemma 2.10, and hence

(9.3) σ ◦ πτ ◦ ϕ = σ ◦ πτ ◦ ψ.
As πτ ◦ ϕ and πτ ◦ ψ are weakly nuclear, Proposition 9.2 implies there is a
unitary ūτ ∈ πτ (N )′′ such that

(9.4) max
a∈F
∥ūτπτ (ϕ(a))ū∗τ − πτ (ψ(a))∥2,τ < ϵ, τ ∈ Y.

As πτ (N )′′ is a von Neumann algebra, we know that ūτ = eih̄τ for some
self-adjoint h̄τ ∈ πτ (N )′′. Applying Kaplansky’s density theorem to h̄τ ∈
πτ (N )′′ and making use of the existence of self-adjoint lifts, we deduce that
for each τ ∈ Y , each unitary ūτ is a ∥ · ∥2,τ -limit of unitaries of the form

πτ (uτ ) for a unitary uτ = eihτ ∈ N , and in particular, we may find unitaries
uτ ∈ N so that

(9.5) max
a∈F
∥uτϕ(a)u∗τ − ψ(a)∥2,τ < ϵ, τ ∈ Y.

For τ ∈ Y , define

(9.6) aτ :=
∑
a∈F

∣∣uτϕ(a)u∗τ − ψ(a)∣∣2 ∈ N+

and note that τ(aτ ) < |F|ϵ2 for all τ ∈ Y . As Y is compact, there are traces
τ1, . . . , τn ∈ Y such that

(9.7) sup
τ∈Y

min
1≤i≤n

τ(aτi) < |F|ϵ2.

Define S := ϕ(F)∪ψ(F)∪ {uτ1 , . . . , uτn} ⊆ N . As (N , Y ) has CPoU, there
are projections p1, . . . , pn ∈ N ω ∩ S′ such that

(9.8)

n∑
j=1

pj = 1Nω and τ(aτipi) ≤ |F|ϵ2

and hence there is a partial isometry vk ∈ N with source ϕ̄(e
(k)
1,1) and range ψ̄(e

(k)
1,1). Define

u :=

m∑
k=1

dk∑
i=1

ψ̄(e
(k)
i,1 )vkϕ̄(e

(k)
1,i ) ∈ N .

Then u ∈ N is a unitary with uϕ̄(x)u∗ = ψ̄(x) for all x ∈ F .
58The setup in [21] considers uniform tracial sequence algebras B∞ as codomains when

B is a separable C∗-algebra with CPoU, but there are no additional difficulties in working
in the abstract framework of tracially complete C∗-algebras.
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for all i = 1, . . . , n and τ ∈ Y ω. Then, using the fact that the pi commute
with S and are orthogonal, u :=

∑n
i=1 piuτi ∈ N ω is a unitary and

(9.9) max
a∈F
∥uϕ(a)u∗ − ψ(a)∥2,Y ω ≤ |F|1/2ϵ.

By Corollary 7.11, there is a sequence of unitaries (un)
∞
n=1 ⊆ N representing

u. Then

(9.10) lim sup
n→ω

max
a∈F
∥unϕ(a)u∗n − ψ(a)∥2,Y ≤ |F|1/2ϵ,

which proves the theorem. □

In the special case of reduced products of factorial tracially complete
C∗-algebras with CPoU, the uniqueness theorem gives on-the-nose unitary
equivalence.

Corollary 9.4 (cf. [21, Theorem 2.2]). Let A be a separable C∗-algebra and
(N , Y ) is a factorial tracially complete C∗-algebra with CPoU. If ϕ, ψ : A→
N ω are tracially nuclear ∗-homomorphisms, then ϕ and ψ are unitarily
equivalent if and only if τ ◦ ϕ = τ ◦ ψ for all τ ∈ Y ω.

Proof. As (N , Y ) is a factorial tracially complete C∗-algebra with CPoU,
the same is true for (N ω, Y ω) by Corollary 7.7. Hence, applying Theorem
9.3, we get that ϕ and ψ are ∥ · ∥2,Y ω -approximately unitary equivalent if
and only if τ ◦ ϕ = τ ◦ ψ for all τ ∈ Y ω. By the separability of A and a
standard application of Kirchberg’s ϵ-test (Lemma 5.1), ϕ, ψ : A → N ω are
∥ · ∥2,Y ω -approximately unitary equivalent if and only if they are unitary
equivalent. □

9.2. Existence results for morphisms. We will give a general existence
result showing that morphisms can be constructed from amenable tracially
complete C∗-algebras to factorial tracially complete C∗-algebras with CPoU
with prescribed tracial information (see Corollary 9.9 below).

By construction, the approximate morphisms we produce will approxi-
mately factor through finite dimensional C∗-algebras. In fact, given a sepa-
rable C∗-algebra A, a factorial tracially complete C∗-algebra (N , Y ), and a
continuous affine map γ : Y → T (A), we will produce approximate factorisa-
tions of γ through the trace simplices T (Fn) of finite dimensional C∗-algebras
Fn. If γ(τ) satisfies a suitable approximation property for all τ ∈ Y (e.g.
amenability), the maps T (Fn)→ T (A) may be approximately implemented
by approximate morphisms A → Fn. Further, when (N , Y ) has CPoU,
the classification of projections in N (Theorems 7.18 and 7.19) allows us to
show the maps Y → T (Fn) are implemented by morphisms Fn → N . The
compositions A→ Fn → N provide the desired approximate morphism.

The following lemma gives the required existence result for morphisms
out of finite dimensional C∗-algebras. When N is a II1 factor, this is a stan-
dard result, and the proof here is essentially identical using Theorems 7.18
and 7.19 in place of the classification of projections in II1 factors.

Lemma 9.5. If F is a finite dimensional C∗-algebra, (N , Y ) is a type II1
factorial tracially complete C∗-algebra with CPoU, and γ : Y → T (F ) is a
continuous affine map, then there is a unital ∗-homomorphism ϕ : F → N
with τ ◦ ϕ = γ(τ) for all τ ∈ Y .
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Proof. We first assume that F is commutative and let e1, . . . , em denote
the minimal projections of F . It suffices to construct pairwise orthogonal
projections p1, . . . , pn ∈ F such that τ(pi) = γ(τ)(ei) for all τ ∈ Y and
i = 1, . . . ,m since we may then define a ∗-homomorphism ϕ : F → N by
ϕ(ei) := pi. Further, since τ(ϕ(1F )) = 1 for all τ ∈ Y , we will have ϕ(1F ) =
1N .

The existence of p1 follows immediately from Theorem 7.19. Assuming
p1, . . . , pk have been constructed some some k < m, Theorem 7.19 provides
a projection p′k+1 ∈ N such that τ(p′k+1) = γ(τ)(ek+1) for all τ ∈ Y . Note
that

(9.11) τ(p′k+1) = γ(τ)(ek+1) ≤ 1−
k∑
i=1

γ(τ)(ei) = τ
(
1N −

k∑
i=1

pi

)
for all τ ∈ Y . Then Theorem 7.18 implies there is a partial isometry v with
p′k+1 = v∗v and such that pk+1 := vv∗ is orthogonal to each of p1, . . . pk.
This completes the proof when F is commutative.

Next consider a general finite dimensional C∗-algebra F with a system of
matrix units

(9.12)
(
e
(k)
i,j

)1≤k≤m
1≤i,j≤dk

⊆ F.

By the first part of the proof, there are mutually orthogonal projections

p
(k)
i ∈ N for k = 1, . . . ,m and i = 1 . . . , dk such that

(9.13) τ(p
(k)
i ) = γ(τ)

(
e
(k)
i,i

)
for all τ ∈ Y.

By Theorem 7.18, for each k = 1, . . . ,m and i = 1 . . . , dk, there is a

partial isometry v
(k)
i ∈ N such that

(9.14) v
(k)
i

∗v
(k)
i = p

(k)
i and v

(k)
i v

(k)
i

∗ = p
(k)
1 .

Then we may define a ∗-homomorphism ϕ : F → N by

(9.15) ϕ
(
e
(k)
i,j

)
:= v

(k)
i

∗v
(k)
j

for all k = 1, . . . ,m and i, j = 1, . . . , dk Then τ ◦ϕ = γ(τ) for all τ ∈ Y , and
since τ(ϕ(1F )) = 1 for all τ ∈ Y , we have ϕ(1F ) = 1N . □

We now work towards an existence result for constructing morphisms
A→ N ω with prescribed tracial data. One of the most influential embedding
results is Connes’ theorem from [29] that every separably acting injective
II1 factor embeds into Rω.59 This is a key ingredient in showing that such
factors are isomorphic to R. In the same paper Connes poses his eponymous
embedding problem asking if every separably acting II1 factor embeds into
Rω (see the paragraph above [29, Notation 5.6]). Note that since every II1
factor contains R, we have that every II1 factor which embeds into Rω also
embeds into N ω for each II1 factor N .

Our embedding result will be along these lines showing that if A is sepa-
rable C∗-algebra, (N , Y ) is a type II1 factorial tracially complete C∗-algebra

59This statement does not appear explicitly in [29], but follows by Lemma 5.2 and
7 ⇒ 6 of Theorem 5.1. Condition 7 of Theorem 5.1 is verified by composing the trace on
N with a conditional expectation onto N .
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with CPoU, then there is a ∗-homomorphism A→ N ω with prescribed tra-
cial data in the case that all the relevant traces on A factorise through Rω.
We first provide the following local characterisation of traces factorising
through Rω.

Definition 9.6. A trace τ on a C∗-algebra A is hyperlinear if there is a net
of self-adjoint linear maps (ψλ : A→Md(λ)) such that for all a, b ∈ A,

(i) ∥ψλ(ab)− ψλ(a)ψλ(b)∥2 → 0,
(ii) trd(λ)(ψλ(a))→ τ(a), and
(iii) lim sup

λ
∥ψλ(a)∥ <∞.

For applications to classification, the hyperlinear traces of interest will
be amenable, so that the maps ψi can be taken to be c.p.c. However, we
will prove the existence theorem in terms of hyperlinear traces since it takes
little extra effort.

Remark 9.7. We collect here a few general observations about hyperlinear
traces.

(i) As usual, when A is unital, we may arrange for each ψλ to be unital,
and when A is separable, we can arrange for the net (ψλ) to be a
sequence.

(ii) If A is separable, we choose a sequence (ψn)
∞
n=1 as above and view

Md(n) as a unital subalgebra of R. In this way, the ψn induce a
∗-homomorphism ψ : A → Rω with trRω ◦ ψ = τ . Note that part
(iii) of Definition 9.6 is needed to guarantee that ψn is well-defined.

(iii) If G is a discrete group, then G is hyperlinear if and only if the
canonical trace on the reduced group C∗-algebra C∗

λ(G) is hyper-
linear. This is the reason for the terminology.

(iv) Definition 9.6(iii) is equivalent to

(9.16) lim sup
λ
∥ψλ(a)∥ ≤ ∥a∥, a ∈ A.

Indeed, if Λ is the index set of the net and we view each Md(λ) as a
subalgebra of R, , then the ψλ induce a ∗-homomorphism ψ : A →
ℓ∞(Λ,R)/c0(Λ,R), where c0(Λ,R) consists of all bounded strongly
null nets. As ∗-homomorphisms are contractive, (9.16) follows.

The following is our main existence result for ∗-homomorphisms, although
in the classification theorem, it will be accessed through Corollary 9.9 which
gives a restatement in terms of reduced products when the domain is separa-
ble. We keep track of the additional details regarding factorisations through
finite dimensional C∗-algebras as it is conceivable that these will play a role,
for example, in subsequent nuclear dimension calculations.

Theorem 9.8. Suppose A is a C∗-algebra, (N , Y ) is a type II1 factorial
tracially complete C∗-algebra with CPoU, and γ : Y → T (A) is a continuous
affine map such that γ(τ) is hyperlinear for all τ ∈ Y . For every finite set
F ⊆ A and ϵ > 0, there are a finite dimensional C∗-algebra F , a self-adjoint
linear map ψ : A → F , and a unital ∗-homomorphism ϕ : F → N such that
for all a, b ∈ F :

(i) ∥ψ(ab)− ψ(a)ψ(b)∥2,T (F ) < ϵ,
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(ii) |τ(ϕ(ψ(a)))− γ(τ)(a)| < ϵ for all τ ∈ Y , and
(iii) ∥ψ(a)∥ < ∥a∥+ ϵ.

Moreover, if A is unital, we may arrange for ψ to be unital, if γ(τ) is
amenable for all τ ∈ Y , we may arrange for ψ to be c.p.c., and if γ(τ) is
quasidiagonal for all τ ∈ T (A), we may arrange for

(i′) ∥ψ(ab)− ψ(a)ψ(b)∥ < ϵ

for all a, b ∈ F . Finally, the last three statements can be performed simul-
taneously.

Proof. Since Y is a closed face in T (N ), we have that Y is a Choquet simplex
(Theorem 2.6). Applying Theorem 2.2 to the continuous affine maps eva ◦γ
for a ∈ F , there is a finite dimensional Choquet simplex Z together with
continuous affine maps α′ : Z → Y and β : Y → Z so that

(9.17) |γ(α′(β(τ)))(a)− γ(τ)(a)| < ϵ, a ∈ F , τ ∈ Y.
Define α := γ ◦ α′ : Z → T (A) so that α(τ) is hyperlinear for all τ ∈ Z and

(9.18) |α(β(τ))(a)− γ(τ)(a)| < ϵ, a ∈ F , τ ∈ Y.
Let ρ1, . . . , ρn ∈ Z denote the extreme points of Z. For i = 1, . . . , n, since

α(ρi) ∈ T (A) is hyperlinear (by the assumption on γ), there are di ∈ N and
∗-linear maps ψi : A→Mdi such that for all a, b ∈ F ,

∥ψi(ab)− ψi(a)ψi(b)∥2,trdi < ϵ,

|trdi(ψi(a))− α(ρi)(a)| < ϵ, and

∥ψi(a)∥ − ∥a∥ < ϵ.

(9.19)

Define F :=
⊕n

i=1Mdi and let ψ :=
⊕n

i=1 ϕi : A→ F . We identify Z with
T (F ) via the affine map given by

(9.20) Z → T (F ) : ρi 7→ trdi ◦ πi,
where πi : F → Mdi denotes the projection map for i = 1, . . . , n. By
Lemma 9.5, there is a unital ∗-homomorphism ϕ : F → N such that τ ◦ ϕ =
β(τ) for all τ ∈ Y . Then all three conditions in the theorem follow from the
corresponding conditions in (9.19).

The additional claims in the theorem follow by choosing the ψi with the
appropriate properties in the second paragraph of the proof. □

Corollary 9.9. Suppose A is a separable C∗-algebra, (N , Y ) is a type II1
factorial tracially complete C∗-algebra with CPoU. Given a continuous affine
map γ : Y → T (A) such that γ(τ) is hyperlinear for all τ ∈ Y , there is a
unital ∗-homomorphism θ : A→ N ω such that τ ◦θ = γ(τ |N ) for all τ ∈ Y ω.

Proof. SinceA is separable, we may choose a countable denseQ[i]-subalgebra
A0 ⊆ A. By Theorem 9.8, there are sequences (Fn)

∞
n=1 of finite dimen-

sional C∗-algebras, (ψn : A0 → Fn)
∞
n=1 of self-adjoint linear maps, and

(ϕn : Fn → N )∞n=1 of unital ∗-homomorphisms such that for all a, b ∈ A0

and τ ∈ Y ,

(i) ∥ψn(ab)− ψn(a)ψn(b)∥2,T (Fn) → 0,
(ii) |τ(ϕ(ψ(a)))− γ(τ)(a)| → 0, and
(iii) lim sup

n→∞
∥ψ(an)∥ ≤ ∥a∥.
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The sequences (ϕn)
∞
n=1 and (ψn)

∞
n=1 induce ∗-homomorphisms

(9.21) A0
ψ−→

ω∏(
Fn, T (Fn)

) ϕ−→ N ω.

Define θ0 := ϕ ◦ ψ. By (iii), θ0 is contractive, and hence extends to a ∗-
homomorphism θ : A→ N ω with the required property. □

If the range of γ is contained in the uniformly amenable traces on A,
then θ will necessarily be tracially nuclear by Theorem 4.9. In the next
subsection, we will use this observation together with the uniqueness result
in Corollary 9.4 to strengthen this existence theorem – namely, θ can be
chosen to take values in N (Theorem 9.12).

As a first application of Theorem 9.8, we establish aW ∗-bundle version of
the Connes’ embedding problem assuming a positive solution in each fibre.
In the following result, we assume ω is a free ultrafilter on N (as opposed to
a free filter on N as above).

Corollary 9.10. Suppose M is a W ∗-bundle over a compact metrisable
space K with separably acting fibres. If each fibre of M admits a trace-
preserving embedding into Rω, then there is an embeddingM ↪→ Cσ(K,R)ω
which restricts to the identity on C(K).

Proof. As in Proposition 3.6, we may view N := Cσ(K,R) as a factorial
tracially complete C∗-algebra (N , Y ) where Y ∼= Prob(K) is the set of traces
given by integrating the trace on R over K. It is easy to see that N is
McDuff, and hence (N , Y ) has CPoU by Theorem 1.4. Similarly, we may
view M as a tracially complete C∗-algebra (M, X) where X ∼= Prob(K)
where again, a Radon probability measure on K induces on trace onM by
integrating the traces on the fibres ofM.

Let γ : Y → X be the continuous affine map induced by the identity map
on Prob(K). By hypothesis, γ(τ) ∈ X is hyperlinear for all τ ∈ K. It
is easy to show that the hyperlinear traces on a unital C∗-algebra form a
closed convex set, and hence γ(τ) ∈ X is hyperlinear for all τ ∈ Y . Since
K is metrisable and each fibre ofM is separably acting, we have thatM is
∥ · ∥2,X -separable. Let A ⊆M be a ∥ · ∥-separable unital C∗-subalgebra.

By Corollary 9.9, there is a ∗-homomorphism θ0 : A → N ω such that
γ(τ)|A = τ ◦θ0 for all τ ∈ Y ω. Then θ0 extends by continuity to a morphism
(M, X)→ (N ω, Y ω). By construction, the inclusion map C(K) ↪→ N ω and
θ|C(K) : C(K) ↪→ N ω agree on traces, and hence are unitarily equivalent by
Corollary 9.4. If u ∈ N ω is a unitary conjugating θ|C(K) to the inclusion
map, then ad(u) ◦ θ is the desired embedding. □

Question 9.11. Can Corollary 9.10 be improved to provide an embedding
M→ Cσ(K,Rω) (which restricts to the identity on C(K))?

9.3. Classification and consequences. The existence and uniqueness re-
sults for morphisms in the last sections together can be combined with tra-
cially complete versions of standard intertwining arguments to produce our
main classification theorems. First, we use the intertwining via reparameter-
isation technique (Theorem 5.11) to obtain a classification result for tracially
nuclear morphisms.
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Theorem 9.12. Let (N , Y ) be a a type II1 factorial tracially complete C∗-
algebra with CPoU.

(i) Let A be a separable C∗-algebra. If γ : Y → T (A) is a continuous
affine map such that γ(τ) is uniformly amenable for all τ ∈ Y , then
there is a tracially nuclear ∗-homomorphism ϕ : A → N such that
τ ◦ ϕ = γ(τ) for all τ ∈ Y , and this ϕ is unique up to approximate
unitary equivalence.

(ii) Let (M, X) be a ∥ · ∥2,X-separable tracially complete C∗-algebra.
If γ : Y → X is a continuous affine function such that γ(Y ) is
contained in the uniformly amenable traces on M then there is a
tracially nuclear ∗-homomorphism ϕ : (M, X) → (N , Y ) such that
τ ◦ ϕ = γ(τ) for all τ ∈ Y , and this ϕ is unique up to approximate
unitary equivalence.

(iii) Let (M, X) be a ∥ · ∥2,X-separable amenable tracially complete C∗-
algebra. If γ : Y → X is a continuous affine function, then there is
a tracially nuclear ∗-homomorphism ϕ : (M, X)→ (N , Y ) such that
τ ◦ ϕ = γ(τ) for all τ ∈ Y , and this ϕ is unique up to approximate
unitary equivalence.

Proof. (i). The uniqueness part of (i) is Theorem 9.3. For the existence
part of (i), since uniformly amenable traces are hyperlinear, Corollary 9.9
implies there is a ∗-homomorphism θ∞ : A→ N∞ with τ ◦ θ∞ = γ(τ |N ) for
all τ ∈ Y∞. By Theorem 4.9, θ is tracially nuclear. Note that if r : N → N
is a function with limn→∞ r(n) = ∞ and r∗ : N∞ → N∞ is the reparame-
terisation map as in Theorem 5.11, then

(9.22) τ ◦ θ∞ = γ(τ |N ) = γ((τ ◦ r∗)|N ) = τ ◦ r∗ ◦ θ∞, τ ∈ Y∞.

By Corollary 9.4, r∗ ◦ θ and θ are unitarily equivalent. By Corollary 7.11,
unitaries in N∞ lift to unitaries in ℓ∞(N ), and hence Theorem 5.11 pro-
vides a ∗-homomorphism θ : A → N such that ιN ◦ θ and θ∞ are unitarily
equivalent. Then θ satisfies τ ◦ θ = γ(τ) for all τ ∈ N , and Theorem 4.9
implies that θ is tracially nuclear.

(ii). Let A ⊆ M be a separable ∥ · ∥2,X -dense C∗-subalgebra. Then
uniqueness follows from uniqueness in (i) as all morphisms between tracially
complete C∗-algebras are automatically contractive between the uniform 2-
norms. Part (i) gives a (tracially nuclear) ∗-homomorphism ϕ̃ : A→ N with

τ ◦ ϕ̃ = γ̃(τ) for τ ∈ Y , which extends uniquely to ϕ : (M, X)→ (N , Y ) by
Corollary 3.29(iii). The extension is tracially nuclear by Lemma 4.12. As A
is ∥ · ∥2,X -dense inM, τ ◦ ϕ = γ(τ) for τ ∈ Y .

(iii). This is immediate from (ii) as amenability ofM forces all traces in
X to be uniformly amenable (by Theorem 4.9(iii), taking θ to be idM). □

The classification theorem for regular amenable tracially complete C∗-
algebras is obtained from a tracially complete version of the two-sided El-
liott intertwining argument (the C∗-version of which can be found as [93,
Corollary 2.3.4], for example; note that [38, Theorem 3] abstracts this C∗-
version to an abstract intertwining result for categories with notions of inner
automorphisms and metric structure on the morphism sets, and one could
apply it to the category of separable tracially complete C∗-algebras). As
with C∗-classification results, any isomorphism at the level of the invariants
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– in this case the designated traces – lifts to an isomorphism of tracially
complete C∗-algebras. The second part of Theorem D from the overiew fol-
lows from part (ii) below, with the first part of Theorem D having already
been proven in Theorem 4.9.

Theorem 9.13. Suppose that (M, X) and (N , Y ) are type II1 semidis-
crete factorial tracially complete C∗-algebras with property Γ such that M
is ∥ · ∥2,X-separable and N is ∥ · ∥2,Y -separable.

(i) (M, X) ∼= (N , Y ) if and only if X ∼= Y , and moreover,
(ii) For any affine homeomorphism γ : Y → X, there is an isomorphism

θ : (M, X)→ (N , Y ) such that τ ◦ θ = γ(τ) for all τ ∈ Y .

Proof. The first part follows from the second, so fix an isomorphism γ as
in (ii). Both (M, X) and (N , Y ) have CPoU by Theorem 1.4. So, by two
applications of the existence portion of Theorem 9.12(ii), there are tracially
nuclear morphisms ϕ0 : (M, X) → (N , Y ) and ψ0 : (N , Y ) → (M, X) such
that

(9.23) τ ◦ ϕ0 = γ(τ) and σ ◦ ψ0 = γ−1(σ)

for all τ ∈ Y and σ ∈ X. In particular,

(9.24) τ ◦ ϕ0 ◦ ψ0 = τ and σ ◦ ψ0 ◦ ϕ0 = σ

for all τ ∈ Y and σ ∈ X. Using the uniqueness portion of Theorem 9.12(ii)
twice, we have ϕ0◦ψ0 is approximately unitarily equivalent to idN and ψ0◦ϕ0
is approximately unitarily equivalent to idM.

Let (F ′
n)

∞
n=1 and (G′n)∞n=1 be increasing sequences of finite subsets of M

and N , respectively, whose unions are dense in the respective uniform 2-
norms. We will inductively construct increasing sequences (Fn)∞n=1 and
(Gn)∞n=1 of finite subsets of M and N , respectively, and sequences of ∗-
homomorphisms (ϕn :M→N )∞n=1 and (ψn : N →M)∞n=1 such that for all
n ≥ 1,

(i) F ′
n ⊆ Fn and G′n ⊆ Gn,

(ii) ϕn and ψn are unitarily equivalent to ϕ0 and ψ0, respectively,
(iii) ϕn(Fn) ⊆ Gn and ψn(Gn) ⊆ Fn+1, and
(iv) for all a ∈ Fn and b ∈ Gn, we have

∥ψn(ϕn(a))− a∥2,X < 2−n(9.25)

and

∥ϕn(ψn−1(b))− b∥2,Y < 2−n.(9.26)

Assuming that Fn−1, Gn−1, ϕn−1, and ψn−1 have been constructed, let
Fn := F ′

n∪Fn−1∪ψn−1(Gn−1). Since ϕn−1 and ψn−1 are unitarily equivalent
to ϕ0 and ψ0, respectively, and ϕ0 ◦ψ0 is approximately unitarily equivalent
to idM, we have ϕn−1 ◦ ψn−1 approximately unitarily equivalent to idM.
Therefore, there is a ∗-homomorphism ϕn :M → N which satisfies (9.26),
and is unitarily equivalent to ϕn−1, and hence also ϕ0. The construction of
Gn and ψn is similar.
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If m ≥ n ≥ 1 and a ∈ Fn, then
∥ϕm+1(a)− ϕm(a)∥2,Y ≤ ∥ϕm+1(a− ψm(ϕm(a)))∥2,Y

+ ∥ϕm+1(ψm(ϕm(a)))− ϕm(a)∥2,Y
< 2−m + 2−m−1.

(9.27)

In particular, (ϕm(a))
∞
m=1 is norm-bounded and ∥ · ∥2,Y -Cauchy for all a ∈

Fn. So (ϕn(a))
∞
n=1 is norm-bounded and ∥·∥2,Y -Cauchy for all a ∈

⋃∞
n=1Fn,

and hence also for all a ∈ M. Similarly, (ψn(b))
∞
n=1 is norm-bounded and

∥ · ∥2,X -Cauchy for all b ∈ N .
Define ϕ :M→N and ψ : N →M by

(9.28) ϕ(a) := lim
n→∞

ϕn(a) and ψ(a) := lim
n→∞

ψn(a).

By construction, ϕ and ψ are approximately unitarily equivalent to ϕ0 and
ψ0, respectively, and in particular, τ◦ϕ = τ◦ϕ0 for all τ ∈ Y and σ◦ψ = σ◦ψ0

for all σ ∈ X. To complete the proof, note that ϕ and ψ are mutual inverses
using (9.25) and (9.26). □

Theorem A from the overview is an immediate consequence of Theo-
rem 9.13, provided (as set out in Footnote 1) we interpret it to mean
that for unital separable nuclear Z-stable C∗-algebras A and B, one has(
A
T (A)

, T (A)
) ∼= (

B
T (B))

if and only if T (A) and T (B) are affinely home-
omorphic. The point is that the ‘easy direction’ – recovering the trace
space from an isomorphism – is a tautology when the isomorphism is in
the category of tracially complete C∗-algebras.60 To see the ‘hard direc-
tion’, note that if A is a unital separable nuclear Z-stable C∗-algebra, then(
A
T (A)

, T (A)
)
is ∥ · ∥2,T (A)-separable, semidiscrete by Corollary 4.10, facto-

rial by Proposition 3.23(iv), and satisfies property Γ by Propositions 5.17
and 5.22. The result then follows from Theorem 9.13(i).

The classification result for morphisms provides the following strength-
ened version of completely positive approximation property in which the ‘up-
ward maps’ can be taken to be ∗-homomorphisms (and the downward maps
are approximately multiplicative). Such a result holds for injective von Neu-
mann algebras, and this was the starting point to obtaining strengthened
forms of the completely positive approximation property involving decom-
posable approximations in the C∗-algebraic setting ([14, 18, 59]).61

Theorem 9.14. Suppose A is a C∗-algebra, (N , Y ) is a type II1 facto-
rial tracially complete C∗-algebra, and θ : A → N is a tracially nuclear
∗-homomorphism. Then there are nets

(9.29) A
ψλ−−→ Fλ

ϕλ−→ N

60To recover T (A) from A
T (A)

as a C∗-algebra requires the forthcoming solution to the
trace problem (Question 1.1) for tracially complete C∗-algebras with CPoU due to the
third-named author.

61In [59, Section 1] a local reflexivity argument is given which shows how to use hy-
perfiniteness of a von Neumann algebra M to obtain nets of finite dimensional algebras
Fi together with u.c.p. maps ψi : M → Fi, ψi : Fi → M such that ϕi a

∗-homomorphism
and ϕi(ψi(x)) → x in the weak∗-topology for all x ∈ M. In fact all of Connes’, Popa’s,
and Haagerup’s proofs of injectivity implies hyperfiniteness ([29, 92, 57]) output such
approximations in the case of factors.
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of finite dimensional C∗-algebras Fλ and c.p.c. maps ϕλ and ψλ such that

(i) ∥ϕλ(ψλ(a))− θ(a)∥2,Y → 0 for all a ∈ A,
(ii) ∥ψλ(ab)− ψλ(a)ψλ(b)∥2,T (Fλ) → 0 for all a, b ∈ A,
(iii) each ϕλ is a unital ∗-homomorphism.

If ∥τ ◦ θ∥−1(τ ◦ θ) is quasidiagonal whenever τ ∈ Y with τ ◦ θ ̸= 0, we may
further arrange for

(ii′) ∥ψλ(ab)− ψλ(a)ψλ(b)∥ → 0 for all a, b ∈ A.
In either case, when A and θ are unital, we may arrange for each ψλ to be
unital.

Proof. Adding a unit to A, we may assume that A is unital (Lemma 4.3).
Further, as the conclusion of Theorem 9.14 is a local condition, it suffices to
prove it when A is separable. By Theorem 4.9, τ ◦ θ is uniformly amenable
for each τ ∈ T (A). By Theorem 9.8 (applied to the affine map τ 7→ τ ◦ θ),
there are finite dimensional C∗-algebras Fn and u.c.p. maps

(9.30) A
ψn−−→ Fn

ϕ′n−→ N

so that for all a, b ∈ A and τ ∈ Y , we have

(9.31) ∥ψn(ab)− ψn(a)ψn(b)∥2,T (Fn) → 0,

and

(9.32) |τ(ϕ′n(ψn(a)))− τ(θ(a))| → 0,

and such that each ϕ′n is a unital ∗-homomorphism. Further, if τ ◦ θ is
quasidiagonal for all τ ∈ T (A), we may replace (9.31) with

(9.33) ∥ψn(ab)− ψn(a)ψn(b)∥ → 0

for all a, b ∈ A.
The maps (ϕ′n ◦ ψn)∞n=1 induce a ∗-homomorphism θ′ : A → N∞ with

τ◦θ′ = τ◦θ for all τ ∈ Y∞. By Theorem 4.9, θ′ is tracially nuclear, and hence
by Corollary 9.4, θ and θ′ are unitarily equivalent. If u ∈ N ω is a unitary
with ad(u) ◦ θ′ = θ, then by Corollary 7.11, there is a sequence of unitaries
(un)

∞
n=1 ⊆ N lifting u. The result follows by setting ϕn := ad(un) ◦ ϕ′n. □

We end by proving the structure and classification theorems from the
overview (Theorem B and C). Most of the implications involved are already
in place, and it remains to use the classification theorem to pass back from
hyperfiniteness to the McDuff property via CPoU.

Theorem 9.15. Let (M, X) be a type II1 factorial tracially complete C∗-
algebra. Then the following conditions are equivalent:

(i) (M, X) hyperfinite;
(ii) (M, X) is amenable and has CPoU;
(iii) (M, X) is amenable and satisfies property Γ;
(iv) (M, X) is amenable and McDuff.

In this setting, ifM is also assumed to be ∥ · ∥2,X-separable, then (M, X) ∼=
(RX , X) (see Example 3.35).
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Proof. The implications (iv) =⇒ (iii), (iii) =⇒ (ii), and (i) =⇒ (ii) hold
by Proposition 5.22, Theorem 1.4, and Theorem 8.3, respectively. Further,
Theorem 9.14 applied to θ = idM shows (ii) =⇒ (i). Suppose (ii) holds
and (M, X) is ∥ · ∥2,X -separable. Both (M, X) and (RX , X) satisfy the
conditions of Theorem 9.13, and hence (M, X) ∼= (RX , X). As (RX , X)
is McDuff, this also shows (M, X) is McDuff and finishes the proof in the
separable setting.

It remains to show (ii) implies (iv) without separability. Assume (M, X)
satisfies CPoU. By the local characterisation of McDuff’s property (Propo-
sition 5.14(ii)), it suffices to show that every finite set F ⊆M is contained
in a unital ∥ · ∥2,X -closed C∗-subalgebra ofM which is factorial and McDuff
as a tracially complete C∗-algebra. Using the separable inheritability of the
conditions in (ii) (Theorem A.3(ii) and (vi), together with Proposition A.2),
this follows from the fact that (ii) implies (iv) in the separable setting. □

Appendix A. Separabilisation

In this appendix we collect the machinery needed to reduce our main
structural results – Theorems B and 1.4 – to the case of separable tracially
complete C∗-algebras, and prove the non-metrisable version of Theorem 2.2.

A.1. Separabilising tracially complete C∗-algebras. The following def-
inition is modelled on Blackadar’s notion of separable inheritability for C∗-
algebras ([7, Section II.8.5]). Recall from Section 3.1 (before Definition 3.11)
that if (M, X) is a tracially complete C∗-algebra then a tracially complete
C∗-subalgebra of (M, X) is (M0, X0) where M0 ⊆ M is a unital ∥ · ∥2,X -
closed C∗-subalgebra and X0 ⊆ T (M) is the set of traces arising as restric-
tions of traces in X toM0.

Definition A.1 (cf. [7, Section II.8.5]). We say that a property (P ) of
tracially complete C∗-algebras is separably inheritable if

(i) whenever (M, X) is a tracially complete C∗-algebra satisfying (P )
and S ⊆M is a ∥ · ∥2,X -separable subset ofM, there is a tracially
complete C∗-subalgebra (M0, X0) which is ∥ · ∥2,X0-separable, sat-
isfies (P ) and such that S ⊆M0,

(ii) if
(
(Mn, Xn)

)∞
n=1

is a sequence of tracially complete C∗-algebras

satisfying (P ) and ϕn+1
n : (Mn, Xn)→ (Mn+1, Xn+1) is an embed-

ding for each n ≥ 1, then lim−→
(
(Mn, Xn), ϕ

n+1
n

)
also satisfies (P ).

We say that (P ) is strongly separably inheritable if, in addition,

(iii) if (M, X) is a tracially complete C∗-algebra such that for every
∥·∥2,X -separable subset S ofM, there exists a tracially complete C∗-
subalgebra (M0, X0) satisfying (P ) and containing S, then (M, X)
satisfies (P ).

Adapting the language of [99, Definition 1.4] to tracially complete C∗-
algebras, condition (iii) asks that (M, X) satisfies (P ) whenever it separably
satisfies (P ).

If (P ) is a separably inheritable property and (Q) satisfies condition (iii),
then in order to prove (P ) =⇒ (Q) for all tracially complete C∗-algebras,
it is enough to prove it for ∥ · ∥2,X -separable tracially complete C∗-algebras.
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The following will allow us to construct separable subalgebras that satisfy
several separably inheritable properties simultaneously. The proof is an
easy modification of the corresponding result for C∗-algebras given in [7,
Proposition II.8.5.3].

Proposition A.2. The conjunction of countably many (strongly) separably
inheritable properties is (strongly) separably inheritable.

Proof. Let
(
(Pλ)

)
λ∈Λ be a collection of separably inheritable properties of

tracially complete C∗-algebras indexed by some countable set Λ, and let (P )
be the conjunction of the (Pλ).

It is clear that Definition A.1(ii) holds for (P ) as it holds for each (Pλ).
To see Definition A.1(i), let (M, X) be a tracially complete C∗-algebras sat-
isfying (P ) and let S ⊆ M be a ∥ · ∥2,X -separable subset. Fix a surjective
map f : N → Λ such that each λ ∈ Λ has infinitely many preimages. Using
Definition A.1(i) for the properties (Pλ), inductively construct an increasing
sequence of ∥ · ∥2,X -closed and ∥ · ∥2,X -separable C∗-subalgebrasMn ⊆ M
such that S ⊆ M1 and Mn satisfies (Pf(n)). As each (Pλ) satisfies Defini-
tion A.1(ii), the ∥ · ∥2,X -closed union of theMn satisfies (P ).

For strong separable inheritability, it is clear that Definition A.1(iii) is
closed under (arbitrary) conjucntions. □

We will show that many of the properties of tracially compete C∗-algebras
defined in this paper are strongly separably inheritable.

Theorem A.3. The following properties are strongly separably inheritable:

(i) factoriality,
(ii) amenability,
(iii) hyperfiniteness,
(iv) McDuff’s property
(v) factoriality and property Γ, and
(vi) factoriality and CPoU.

In the case of the last two conditions, we include the factoriality condition
as we have not defined property Γ or CPoU in the non-factorial setting.

The rest of this subsection is devoted to the proof. We will show each
condition separately. For factoriality, most of the work is contained in
Lemma 6.8.

Proof of Theorem A.3(i). A sequential direct limit of factorial tracially com-
plete C∗-algebras is factorial by Proposition 3.34. Now suppose (M, X) is
a factorial tracially complete C∗-algebra and S ⊆M is a ∥ · ∥2,X -separable
subset ofM.

By Lemma 6.8, there is a ∥ · ∥-separable unital C∗-algebra A ⊆ M con-
taining a ∥ · ∥2,X -dense subset of S such that

(A.1) XA := {τ |A : τ ∈ X} ⊆ T (A)

is a closed face. Let (N , Y ) denote the tracial completion of A with respect to
XA and note that (N , Y ) is factorial by Proposition 3.23(iv). The inclusion
A →M extends to a morphism ϕ : (N , Y ) → (M, X) by Proposition 3.25.
Note that ϕ is an embedding whose range contains S. Also, the unit ball of
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ϕ(N ) is ∥·∥2,X -closed in the unit ball ofM, and it follows from Lemma 3.27
that ϕ(N ) is ∥ · ∥2,X -closed inM.

Finally, suppose that (M, X) is a tracially complete C∗-algebra such that
every ∥·∥2,X -separable subset S is contained in a factorial tracially complete
C∗-subalgebra of (M, X). To show that (M, X) is factorial, let τ1, τ2, τ ∈
T (M) be such that τ ∈ X and τ is a non-trivial convex combination of
τ1 and τ2, and we will check that τ1 ∈ X. For any finite subset F of
M, we can find a factorial tracially complete C∗-subalgebra (M0, X0) such
that F ⊆M0. Since τ |M0 is a non-trivial convex combination of τ1|M0 and
τ2|M0 , and X0 is a face, it follows that τ1|M0 ∈ X0. By definition of X0, this
means that there exists σF ∈ X such that τ1|M0 = σF |M0 , so in particular,
τ1|F = σF |F . By doing this over all finite subsets F , we see that τ1 is a
weak∗-limit of traces in X, and therefore τ1 ∈ X as required. □

It is somewhat subtle to show that amenability is preserved by inductive
limits. Even in the tracial von Neumann algebra setting, the only known
proof that the weak closure of an increasing union of semidiscrete von Neu-
mann algebras is semidiscrete relies on the equivalence of semidiscreteness
and injectivity from Connes’ work ([29]). Our argument for parts (i) and
(ii) of Definition A.1 goes via the extension result for tracially nuclear mor-
phisms (Lemma 4.12) proved using the local-to-global characterisations of
amenability in Section 4.

Proof of Theorem A.3(ii). For condition (iii) of Definition A.1, fix a finite
subset F ofM and ϵ > 0. Use the hypothesis to find an amenable tracially
complete C∗-subalgebra (M0, X0) ofM containing F . By Arveson’s exten-
sion theorem, the maps witnessing amenability of (M0, X0) can be extended

to give a finite dimensional C∗-algebra F and c.p.c. maps M ψ→ F
ϕ→ M

with ∥ϕ(ψ(x)) − x∥ < ϵ for x ∈ F . Working with a net indexed over finite
sets F and ϵ > 0 gives amenability ofM.

Suppose
(
(Mn, Xn)

)∞
n=1

is a sequence of amenable tracially complete C∗-

algebras and ϕn+1
n : (Mn, Xn) → (Mn+1, Xn+1) is an embedding for each

n ≥ 1 and consider (M, X) := lim−→
(
(Mn, Xn), ϕ

n+1
n

)
. If A ⊆ M is the

C∗-algebraic direct limit of theMn, then the inclusion A ↪→M is tracially
nuclear (using Arveson’s extension theorem as above). By Lemma 4.12,
(M, X) is amenable, and this shows Definition A.1(ii).

Suppose now that (M, X) is an amenable tracially complete C∗-algebra.
We’ll first show that for every unital ∥ · ∥2,X -separable, ∥ · ∥2,X -closed C∗-
subalgebra M0 ⊆ M, there is a ∥ · ∥2,X -separable, ∥ · ∥2,X -closed C∗-
subalgebra N ⊆ M containing M0 so that the inclusion M0 ↪→ N is
tracially nuclear.

Fix a ∥ · ∥-separable, ∥ · ∥2,X -dense C∗-algebra A ⊆M0 and an increasing
sequence (Fn) of finite subsets of A with ∥ · ∥-dense union, and for each
n ≥ 1, use Proposition 4.4 to construct a finite dimensional C∗-algebra Fn
and c.p.c. maps

(A.2) A
ψn−−→ Fn

ϕn−→M
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so that

(A.3) ∥ϕn(ψn(a))− a∥2,X <
1

n
, a ∈ Fn.

Let N denote the tracially complete C∗-subalgebra ofM generated byM0∪⋃∞
n=1 ϕn(Fn). By construction, N is ∥·∥2,X -separable and the inclusion A ↪→
N is tracially nuclear, and by Lemma 4.12, so is the inclusionM0 ↪→ N .

Applying this result inductively, given a ∥ · ∥2,X -separable subset S ⊆M,
we may construct an increasing sequence (Mn)

∞
n=1 of ∥ · ∥2,X -separable,

∥ · ∥2,X -closed subalgebras of M such that S ⊆ M1 and the inclusions
Mn ↪→Mn+1 are tracially nuclear. If N is the ∥ · ∥2,X -closure of the union
of theMn, then N is ∥ · ∥2,X -separable. If A ⊆ N is the ∥ · ∥-closure of the
union of theMn, then the inclusion A ↪→ N is tracially nuclear (by the same
application of Arveson’s extension theorem used in the previous parts), and
hence N is amenable by Lemma 4.12. This shows Definition A.1(i). □

The proof that hyperfiniteness is separably inheritable is standard.

Proof of Theorem A.3(iii). Verifying Definition A.1(ii) and (iii) is a standard
ϵ/3 argument. To see Definition A.1(i) suppose (M, X) is a hyperfinite
tracially complete C∗-algebra and let S be a ∥ · ∥2,X -separable subset ofM,
and letM1 denote the tracially complete C∗-subalgebra ofM generated by
S.

AsM1 is ∥ · ∥2,X -separable, fix an increasing sequence (Fk) of finite sets
with dense union inM1. For each k ≥ 1, let Fk ⊆M be a finite dimensional
C∗-algebra such that for every a ∈ Fk, there is a b ∈ Fk with ∥a−b∥2,X < 1

k .
LetM2 denote the tracially complete C∗-subalgebra generated byM1 and
the Fk.

Iterating this construction, there is an increasing sequence of ∥ · ∥2,X -
closed C∗-algebrasMn ⊆M such that for every n ≥ 1, finite set F ⊆Mn,
and ϵ > 0, there is a finite dimensional C∗-algebra F ⊆Mn+1 such that for
all a ∈ F there is a b ∈ F with ∥a − b∥2,X < ϵ. Then the ∥ · ∥2,X -closure
of the union of theMn is a tracially complete hyperfinite subalgebra ofM
containing S. □

The separable inheritability of McDuff’s property and property Γ are
easy consequences of the local characterisation of these properties in Propo-
sition 5.14(ii) and Proposition 5.25 respectively.

Proof of Theorem A.3(iv) and (v). McDuff’s property is preserved by se-
quential inductive limits by Corollary 5.16, and the combination of factorial-
ity and property Γ is preserved under sequential inductive limits by Propo-
sitions 3.34 and 5.25, respectively. In particular, Definition A.1(ii) holds for
both conditions. Likewise, Proposition 5.14(ii) shows that Definition A.1(iii)
holds for McDuff’s property, while Proposition 5.23(ii) (together with the
fact that Definition A.1(iii) holds for factoriality) handles this condition for
factorial tracially complete C∗-algebras with property Γ.

For Definition A.1(i), let (M, X) be a McDuff tracially complete C∗-
algebra and let S ⊆M be a ∥ · ∥2,X -separable set; writeM1 for the ∥ · ∥2,X -
closed C∗-subalgebra of M generated by S which is necessarily ∥ · ∥2,X -
separable. Inductively, given a ∥·∥2,X -separable, ∥·∥2,X -closed C∗-subalgebra
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Mn ofM, Proposition 5.14(ii) provides a sequence (vm)
∞
m=1 ⊆M such that

for any finite subset F ⊆ Mn and ϵ > 0, there is m ≥ 1 such that for all
a ∈ F ,
(A.4) ∥[vm, a]∥2,X < ϵ, ∥v∗mvm + vmv

∗
m − 1M∥2,X < ϵ, and ∥v2m∥2,X < ϵ.

LetMn+1 be the ∥·∥2,X -closed C∗-subalgebra ofM generated byMn∪{vm :
m ∈ N}. Let N denote the ∥ · ∥2,X -closure of the union of the Mn. Then
N is a ∥ · ∥2,X -separable, ∥ · ∥2,X -closed C∗-subalgebra of M containing S
and satisfying the approximation property in Proposition 5.14(ii). So N is
McDuff, and Definition A.1(i) holds.

The argument for Definition A.1(i) works very similarly for the com-
bination of factoriality and property Γ. For the inductive step, given a
∥ · ∥2,X -separable, ∥ · ∥2,X -closed C∗-subalgebra ofM which is factorial with
the tracially complete structure induced from M, we replace the sequence
(vm)

∞
m=1 with a sequence (pm)

∞
m=1 of contractions such that for any finite

subset F ⊂Mn and ϵ > 0, there is m with

(A.5) ∥pm − p2m∥2,X < ϵ, ∥[pm, a]∥2,X < ϵ and sup
τ∈X

∣∣τ(apm)− 1

2
τ(a)

∣∣ < ϵ

for all a ∈ F which is given by the characterisation of property Γ in Propo-
sition 5.23(ii). Now use the corresponding part of Theorem A.3(i) to obtain
a ∥ · ∥2,X -separable, ∥ · ∥2,X -closed C∗-subalgebra Mn+1 of M containing
Mn∪{pm : m ∈ N} which is factorial in the induced tracially complete struc-
ture. Just as in the previous paragraph, the ∥ · ∥2,X -closure of the union of
the Mn is factorial (by Theorem A.3(i)) with property Γ (via Proposition
5.23(ii)). □

Finally we establish that CPoU is strongly separably inheritable for fac-
torial tracially complete C∗-algebras. This works in a very similar fashion
to separable inheritability of the McDuff property and property Γ.

Proof of Theorem A.3(vi). The combination of factoriality and CPoU is pre-
served under inductive limits by Propositions 3.34 and 6.12. Similarly,
Proposition 6.2(ii) (together with the fact that Definition A.1(iii) holds for
factoriality) shows that factoriality and CPoU satisfies Definition A.1(iii).

Suppose now that (M, X) is a factorial tracially complete C∗-algebra
satisfying CPoU. Let S ⊆ M be a ∥ · ∥2,X -separable subset of M. We
start by constructing an increasing sequence (Nn)∞n=1 of ∥ · ∥2,X -separable,
∥ · ∥2,X -closed C∗-subalgebras ofM such that

• S ⊆ N1,
• each Nn is factorial as a tracially complete C∗-algebra, and
• for each k, n ≥ 1, if a1, . . . , ak ∈ (Nn)+ and δ > 0 with

(A.6) sup
τ∈X

min
1≤i≤k

τ(ai) < δ,

then there are projections p1, . . . , pk ∈ (Nn+1)
ω ∩N ′

n such that

(A.7)
k∑
j=1

pj = 1Mω and τ(aipi) ≤ δτ(pi)

for all i = 1, . . . , k and τ ∈ Xω.
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We will construct the algebras Nn by induction starting with N1 being any
unital factorial ∥·∥2,X -closed C∗-subalgebra ofM containing S, which exists
as factoriality is separably inheritable (part (i) of Theorem A.3).

Suppose n ≥ 1 and Nn has been constructed. Let Sn be a countable,
∥ · ∥2,X -dense subset of (Nn)+, and let Kn be the set of all pairs κ = (Gκ, δκ)
where Gκ ⊆ Sn is a finite set and δκ > 0 is rational with

(A.8) sup
τ∈X

min
a∈Gκ

τ(a) < δκ.

Note that Kn is a countable set. Since (M, X) satisfies CPoU, for each
κ ∈ Kn and a ∈ Gκ, there are projections pκ,a ∈Mω ∩N ′

n such that

(A.9)
∑
b∈Gκ

pκ,b = 1Mω and τ(apκ,a) ≤ δτ(pκ,a)

for all a ∈ Gκ and τ ∈ Xω. For each κ ∈ Kn and a ∈ Gκ, let (pκ,a,m)∞m=1 ⊆M
be a sequence inM representing pκ,a. As factoriality is separably inheritable
(part (i) of the theorem), there is a unital ∥ · ∥2,X -separable, ∥ · ∥2,X -closed
C∗-subalgebra Nn+1 ⊆M which contains Nn and each pκ,a,m for all m ≥ 1,
κ ∈ Kn and a ∈ Gκ, and is factorial as a tracially complete C∗-algebra.
Then Nn+1 satisfies the required properties.

Let N ⊆M be the ∥ · ∥2,X -closure of the union of the algebras Nn. Then
N is a ∥ · ∥2,X -closed, ∥ · ∥2,X -separable C∗-subalgebra ofM which contains
S. As each Nn is factorial, so too is N by Proposition 3.34. The third
condition on the Nn ensures that N satisfies CPoU, and this completes the
proof. □

A.2. Proof of Theorem 2.2. The final section of the appendix is devoted
to finite dimensional approximations of non-metrisable Choquet simplices.
We show how reduce Theorem 2.2 to the metrisable case ([40, Lemma 2.8],
which is a corollary of the fundamental work of Lazar and Lindenstrauss in
[70]). The strategy is another variation of Blackadar’s separable inheritabil-
ity, this time for compact convex sets; roughly, we want to know the property
of being a Choquet simplex is “metrisably inheritable” among compact con-
vex sets. We find it conceptually easier to do this in the dual picture and
consider separably inheritable properties of Archimedean order unit spaces.

Choquet simplices can be characterised in terms of Archimedean order
unit spaces using Kadison duality as follows. An ordered vector space V
satisfies Riesz interpolation if for all f1, f2, g1, g2 ∈ V with fi ≤ gj for
i, j = 1, 2, there is an h ∈ V with fi ≤ h ≤ gj for i, j = 1, 2.

Theorem A.4 ([3, Corollary II.3.11]). Suppose X is a compact convex set
and V is an Archimedean order unit space.

(i) X is a Choquet simplex if and only if Aff(X) has Riesz interpolation.
(ii) V has Riesz interpolation if and only if S(V ) is a Choquet simplex.

Proof. The first statement is [3, Corollary II.3.11], and the second statement
follows from the first by Kadison duality (see Section 2.1). □

We will show Riesz interpolation is a separably inheritable property in
Proposition A.6. To facilitate this, we show that Riesz interpolation can be
detected on a dense set.
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Lemma A.5. Let V be an Archimedean order unit space. Then V satisfies
Riesz interpolation if and only if there exists a unital dense rational subspace
V0 ⊆ V with Riesz interpolation.

Proof. The forward direction is clear by taking the subspace to be V . In
the other direction, suppose V0 ⊆ V is a unital dense rational subspace of
V . Since all states (i.e. positive and unital functionals) on both V0 and V
are bounded and V0 is dense in V , the restriction map S(V )→ S(V0) is an
affine homeomorphism. As V0 has Riesz interpolation, S(V0) is a Choquet
simplex by [55, Corollary 10.6], and hence S(V ) is a Choquet simplex. So
V has Riesz interpolation. □

Finally, we arrive at the main separabilisation result needed in this sub-
section. The proof is similar to the proofs in the previous subsection, and
also to the proofs of separabilisation results in other settings, such as those
in [7, Section II.8.5]

Proposition A.6. Riesz interpolation is a separably inheritable property of
Archimedean order unit spaces in the following sense.

(i) If V is an Archimedean order unit space with Riesz interpolation
and S is a separable subset of V , then there is a separable unital
closed subspace V0 ⊆ V that contains S and has Riesz interpolation.

(ii) For a sequence (Vn)
∞
n=1 of separable Archimedean order unit spaces

with Riesz interpolation and unital order embeddings Vn ↪→ Vn+1,
the inductive limit of the Vn also has Riesz interpolation.

Proof. Part (ii) follows from Lemma A.5 since the non-closed union of the
Vn will have Riesz interpolation.

Assume in (i) that V and S are given, and without loss of generality,
assume S is countable and 1 ∈ S. Let V1 be the rational vector space
spanned by S so that V1 is countable.

We can inductively construct an increasing sequence of countable rational
subspaces (Vn)

∞
n=1 of V such that for all n ≥ 1 and f1, f2, g1, g2 ∈ Vn with

fi ≤ gj for 1 ≤ i, j ≤ 2, there is an h ∈ Vn+1 such that fi ≤ h ≤ gj
for all 1 ≤ i, j ≤ 2. Indeed, as V has Riesz interpolation, for any such
quadruple (f1, f2, g1, g2) from Vn, we may choose a corresponding h ∈ V .
As the set of all such quadruples in Vn is countable, we may define Vn+1 as
the rational span of Vn and the corresponding functions h corresponding to
these quadruples.

Now,
⋃∞
n=1 Vn has Riesz interpolation. Let V0 be the closure of this union

and note that V0 has Riesz interpolation by Lemma A.5. □

With these results in hand, we prove Theorem 2.2 by reducing it to the
metrisable setting. We restate the theorem for the convenience of the reader.

Theorem 2.2. If X is a Choquet simplex, then there are nets of finite
dimensional Choquet simplices Zλ and continuous affine maps

(2.5) X
βλ−→ Zλ

αλ−→ X

such that limλ ∥f ◦ αλ ◦ βλ − f∥ = 0 for all f ∈ Aff(X).
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Proof of Theorem 2.2. View Rd as an ordered vector space with the coordi-
natewise order and with order unit (1, . . . , 1). By Kadison duality, it suffices
to show that for every finite set F ⊆ Aff(X) and ϵ > 0, there are an integer
d and unital positive linear maps

(A.10) Aff(X)
ψ−→ Rd ϕ−→ Aff(X)

such that ∥ϕ(ψ(f))− f∥ < ϵ for all f ∈ F .
By Proposition A.6, there is a separable unital closed subspace V0 of

Aff(X) that contains F and satisfies Riesz interpolation. By the Hahn–
Banach theorem (applied in each coordinate), any unital positive map V0 →
Rd extends to a unital positive map Aff(X) → Rd (since unital functionals
are positive exactly when they have norm 1). Therefore, it suffices to find
an integer d and unital positive linear maps

(A.11) V0
ψ−→ Rd ϕ−→ V0

such that ∥ϕ(ψ(f))− f∥ < ϵ for all f ∈ F . Since V0 has Riesz interpolation,
S(V0) is a Choquet simplex by Theorem A.4(ii). Using Kadison duality to
identify V0 with Aff(S(V0)) the result follows from the separable case, [40,
Lemma 2.8]. □
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Neumann finies continues. Ann. Inst. Fourier (Grenoble), 30(3):49–73, 1980.

[44] I. Farah, D. Hathaway, T. Katsura, and A. Tikuisis. A simple C∗-algebra with finite
nuclear dimension which is not Z-stable. Münster J. Math., 7(2):515–528, 2014.

[45] J. Gabe. Classification of O∞-stable C∗-algebras. Mem. Amer. Math. Soc., to ap-
pear. arXiv:1910.06504.

[46] J. Gabe. A new proof of Kirchberg’s O2-stable classification. J. Reine Angew. Math.,
761:247–289, 2020.

[47] J. Gabe and G. Szabó. The dynamical Kirchberg–Phillips theorem. Acta. Math., to
appear. arXiv:2205.04933.

[48] E. Gardella, S. Geffen, J. Kranz, P. Naryshkin, and A. Vaccaro. Tracially amenable
actions and purely infinite crossed products. arXiv:2211.16872.

[49] L. Ge and S. Popa. On some decomposition properties for factors of type II1. Duke
Math. J., 94(1):79–101, 1998.

[50] S. Ghasemi. SAW ∗-algebras are essentially non-factorizable. Glasg. Math. J.,
57(1):1–5, 2015.

[51] J. G. Glimm. On a certain class of operator algebras. Trans. Amer. Math. Soc.,
95:318–340, 1960.

[52] G. Gong, H. Lin, and Z. Niu. A classification of finite simple amenable Z-stable
C∗-algebras, I: C∗-algebras with generalized tracial rank one. C. R. Math. Acad.
Sci. Soc. R. Can., 42(3):63–450, 2020.

[53] G. Gong, H. Lin, and Z. Niu. A classification of finite simple amenable Z-stable
C∗-algebras, II: C∗-algebras with rational generalized tracial rank one. C. R. Math.
Acad. Sci. Soc. R. Can., 42(4):451–539, 2020.

[54] K. R. Goodearl. Algebraic representations of Choquet simplexes. J. Pure Appl. Al-
gebra, 11(1–3):111–130, 1977/78.

[55] K. R. Goodearl. Partially ordered abelian groups with interpolation, volume 20 of
Mathematical Surveys and Monographs. American Mathematical Society, Provi-
dence, RI, 1986.

[56] U. Haagerup. All nuclear C∗-algebras are amenable. Invent. Math., 74(2):305–319,
1983.

[57] U. Haagerup. A new proof of the equivalence of injectivity and hyperfiniteness for
factors on a separable Hilbert space. J. Funct. Anal., 62(2):160–201, 1985.

[58] U. Haagerup. Quasitraces on exact C∗-algebras are traces. C. R. Math. Acad. Sci.
Soc. R. Can., 36(2-3):67–92, 2014.

[59] I. Hirshberg, E. Kirchberg, and S. White. Decomposable approximations of nuclear
C∗-algebras. Adv. Math., 230(3):1029–1039, 2012.

[60] X. Jiang and H. Su. On a simple unital projectionless C∗-algebra. Amer. J. Math.,
121(2):359–413, 1999.

[61] R. V. Kadison. A representation theory for commutative topological algebra. Mem.
Amer. Math. Soc., 7:39, 1951.

[62] R. V. Kadison and J. R. Ringrose. Fundamentals of the theory of operator algebras.
Vol. I, volume 15 of Graduate Studies in Mathematics. American Mathematical
Society, Providence, RI, 1997. Elementary theory, Reprint of the 1983 original.

[63] E. Kirchberg. The classification of purely infinite C∗-algebras us-
ing Kasparov’s theory. Unpublished. Available at https://www.uni-
muenster.de/imperia/md/content/MathematicsMuenster/ekneu1.pdf.

[64] E. Kirchberg. C∗-nuclearity implies CPAP. Math. Nachr., 76:203–212, 1977.
[65] E. Kirchberg. Discrete groups with Kazhdan’s property T and factorization property

are residually finite. Math. Ann., 299(3):551–563, 1994.
[66] E. Kirchberg. On subalgebras of the CAR-algebra. J. Funct. Anal., 129(1):35–63,

1995.
[67] E. Kirchberg. Central sequences in C∗-algebras and strongly purely infinite algebras.

In Operator Algebras: The Abel Symposium 2004, volume 1 of Abel Symp., pages
175–231. Springer, Berlin, 2006.

[68] E. Kirchberg and M. Rørdam. Central sequence C∗-algebras and tensorial absorption
of the Jiang-Su algebra. J. Reine Angew. Math., 695:175–214, 2014.



128 J. CARRIÓN ET AL.

[69] J. Kranz. Amenable actions on C∗-algebras. PhD thesis, University of Münster, 2023.
[70] A. J. Lazar and J. Lindenstrauss. Banach spaces whose duals are L1 spaces and

their representing matrices. Acta Math., 126:165–193, 1971.
[71] T. A. Loring. Lifting solutions to perturbing problems in C∗-algebras, volume 8 of

Fields Institute Monographs. American Mathematical Society, Providence, RI, 1997.
[72] T. A. Loring and G. K. Pedersen. Projectivity, transitivity and AF-telescopes. Trans.

Amer. Math. Soc., 350(11):4313–4339, 1998.
[73] A. Marrakchi. Kadison’s problem for type III subfactors and the bicentralizer con-

jecture. arXiv:2308.15163.
[74] A. Marrakchi. Strongly ergodic actions have local spectral gap. Proc. Amer. Math.

Soc., 146(9):3887–3893, 2018.
[75] H. Matui and Y. Sato. Strict comparison and Z-absorption of nuclear C∗-algebras.

Acta Math., 209(1):179–196, 2012.
[76] H. Matui and Y. Sato. Decomposition rank of UHF-absorbing C∗-algebras. Duke

Math. J., 163(14):2687–2708, 2014.
[77] D. McDuff. A countable infinity of Π1 factors. Ann. of Math. (2), 90:361–371, 1969.
[78] D. McDuff. Uncountably many II1 factors. Ann. of Math. (2), 90:372–377, 1969.
[79] D. McDuff. Central sequences and the hyperfinite factor. Proc. London Math. Soc.

(3), 21:443–461, 1970.
[80] G. J. Murphy. C∗-algebras and operator theory. Academic Press, Inc., Boston, MA,

1990.
[81] F. J. Murray and J. von Neumann. On rings of operators. Ann. of Math. (2),

37(1):116–229, 1936.
[82] F. J. Murray and J. von Neumann. On rings of operators. II. Trans. Amer. Math.

Soc., 41(2):208–248, 1937.
[83] F. J. Murray and J. von Neumann. On rings of operators. IV. Ann. of Math. (2),

44:716–808, 1943.
[84] P. W. Ng and L. Robert. Sums of commutators in pure C∗-algebras. Münster J.

Math., 9(1):121–154, 2016.
[85] N. Ozawa. Solid von Neumann algebras. Acta Math., 192(1):111–117, 2004.
[86] N. Ozawa. Dixmier approximation and symmetric amenability for C∗-algebras. J.

Math. Sci. Univ. Tokyo, 20(3):349–374, 2013.
[87] N. Ozawa and S. Popa. On a class of II1 factors with at most one Cartan subalgebra.

Ann. of Math. (2), 172(1):713–749, 2010.
[88] V. Paulsen. Completely bounded maps and operator algebras, volume 78 of Cambridge

Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 2002.
[89] G. K. Pedersen and N. H. Petersen. Ideals in a C∗-algebra. Math. Scand., 27:193–204

(1971), 1970.
[90] N. C. Phillips. A classification theorem for nuclear purely infinite simple C∗-algebras.

Doc. Math., 5:49–114, 2000.
[91] G. Pisier. Remarks on the similarity degree of an operator algebra. Internat. J.

Math., 12(4):403–414, 2001.
[92] S. Popa. A short proof of “injectivity implies hyperfiniteness” for finite von Neumann

algebras. J. Operator Theory, 16(2):261–272, 1986.
[93] M. Rørdam. Classification of nuclear, simple C∗-algebras. In Classification of nuclear

C∗-algebras. Entropy in operator algebras, volume 126 of Encyclopaedia Math. Sci.,
pages 1–145. Springer, Berlin, 2002.

[94] M. Rørdam. The stable and the real rank of Z-absorbing C∗-algebras. Int. J. Math.,
15(10):1065–1084, 2004.

[95] A. K. Roy. Closures of faces of compact convex sets. Ann. Inst. Fourier (Grenoble),
25(2):221–234, 1975.

[96] S. Sakai. C∗-algebras and W ∗-algebras. Classics in Mathematics. Springer-Verlag,
Berlin, 1998. Reprint of the 1971 edition.

[97] Y. Sato. Trace spaces of simple nuclear C∗-algebras with finite-dimensional extreme
boundary. arXiv:1209.3000.

[98] Y. Sato, S. White, and W. Winter. Nuclear dimension and Z-stability. Invent. Math.,
202(2):893–921, 2015.



TRACIALLY COMPLETE C∗-ALGEBRAS 129

[99] C. Schafhauser. Subalgebras of simple AF-algebras. Ann. of Math. (2), 192(2):309–
352, 2020.

[100] A. M. Sinclair and R. R. Smith. Finite von Neumann algebras and masas. Number
351. Cambridge University Press, 2008.
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