The Polynomial Time Algorithm for Testing Primality

George T. Gilbert

An algorithm is polynomial time if the number of "simple" steps (e.g. additions, multiplications, comparisons, ...) required is bounded by polynomial in the size of the inputs.

This is equivalent to the existence of constants C and D such that the number of steps is bounded by C Input I^{D}.

This reflects an asymptotically fast algorithm because for any $\mathrm{r}>0, \mathrm{~b}>1, \quad \mathrm{x}^{\mathrm{r}} / \mathrm{b}^{\mathrm{x}}$ goes to 0 as x goes to ∞.

When an integer n is the input, its size is the number of digits $\log _{10} \mathrm{n}$ or the number of bits $\lg \mathrm{n}=\log _{2} \mathrm{n}$. Because
$\log _{\mathrm{a}} \mathrm{n}=\log _{\mathrm{b}} \mathrm{n} / \log _{\mathrm{b}} \mathrm{a}$
the only effect of changing the base is to change the constant C . Note that $n=2^{\lg n}$ and $\sqrt{n}=\sqrt{ } 2^{\lg n}$ are exponential.

Some Easy but Vital Preliminaries

We write $\mathrm{a} \equiv \mathrm{b}(\bmod \mathrm{n})$ for $\mathrm{a}-\mathrm{b}$ divisible by n . In particular, $a \equiv 0(\bmod n)$ if and only if a is divisible by n.
$\stackrel{n}{\square}-\bar{n}=\frac{n!}{k!(n \square k)!}$
Clearly, if n is prime, then ${ }_{\mathrm{C}}^{\mathrm{C}} \mathrm{k}[\mathrm{E}$ is divisible by n for $\mathrm{k}=1,2$, ..., n-1.

The converse is also true. If q is a prime factor of n, then

$$
\stackrel{\lceil\square}{\square} \square=\frac{n(n \square 1) \ldots(n \square q+1)}{q(q \square 1) \ldots 1}
$$

is divisible only by n / q, but not n .

Thus, for p prime, $(\mathrm{x} \pm \mathrm{a})^{\mathrm{p}} \equiv \mathrm{x}^{\mathrm{p}} \pm \mathrm{a}^{\mathrm{p}}(\bmod \mathrm{p})$.
Fermat's Little Theorem For p prime and k relatively prime to $\mathrm{p}, \mathrm{k}^{\mathrm{p}-1} \equiv 1(\bmod \mathrm{p})$.
Pf. Setting $\mathrm{x}=\mathrm{k}$ and $\mathrm{a}=1$, we get $(\mathrm{k} \pm 1)^{\mathrm{p}} \equiv \mathrm{k}^{\mathrm{p}} \pm 1(\bmod \mathrm{p})$. Induction starting at 0 gives $k^{\mathrm{p}} \equiv \mathrm{k}(\bmod \mathrm{p})$ for all integers k , from which the theorem follows.

We can now conclude that the following are equivalent:
(i) n is prime
(ii) as polynomials in $x,(x+a)^{n} \equiv x^{n}+a(\bmod n)$ for some integer a relatively prime to n
(iii) as polynomials in $x,(x+a)^{n} \equiv x^{n}+a(\bmod n)$ for all integers a

The idea that Agarwal, Kayal, and Saxena, PRIMES is in P, preprint, August 2002, use is to combine coefficients whose powers of x are the same mod r, where r is on the order of $\ln ^{6} x$, a polynomial time computation (with $\mathrm{D}=12$). Specifically, we consider whether
$(x+a)^{n} \equiv x^{n}+a \bmod \left(n, x^{r}-1\right)$ for all a
If n is prime, the congruence must hold for all r and a , but the trick is to find a good r for which the above shows n is prime.

I will follow the exposition of Daniel Bernstein, Proving Primality after Agrawal-Kayal-Saxena, draft, January 2003. It incorporates a theorem of Hendrik Lenstra that avoids the deep sieving result from analytic number theory in AKS as well as a simplifying observation of Kiran Kedlaya.

How to Exponentiate

$$
\begin{aligned}
& 53=2^{5}+2^{4}+2^{2}+2+1=\left(\left((1 \cdot 2+1) 2^{2}+1\right) 2^{2}+1\right. \\
& \mathrm{x} \square \mathrm{x}^{2} \square \mathrm{x}^{3} \square \mathrm{x}^{6} \square \mathrm{x}^{12} \square \mathrm{x}^{13} \square \mathrm{x}^{26} \square \mathrm{x}^{52} \square \mathrm{x}^{53}
\end{aligned}
$$

Compute $(x+5)^{13} \bmod \left(13, x^{3}-1\right)$.
$(x+5)^{2}=x^{2}+10 x+25 \equiv x^{2}-3 x-1$
$(\mathrm{x}+5)^{3} \equiv\left(\mathrm{x}^{2}-3 \mathrm{x}-1\right)(\mathrm{x}+5)=\mathrm{x}^{3}+2 \mathrm{x}^{2}-16 \mathrm{x}-5 \equiv 2 \mathrm{x}^{2}-16 \mathrm{x}+(1-5) \equiv 2 \mathrm{x}^{2}-3 \mathrm{x}-4$
$(\mathrm{x}+5)^{6} \equiv\left(2 \mathrm{x}^{2}-3 \mathrm{x}-4\right)^{2}=4 \mathrm{x}^{4}-12 \mathrm{x}^{3}-7 \mathrm{x}^{2}+24 \mathrm{x}+16$ $\equiv-7 x^{2}+(4+24) x+(-12+16) \equiv 6 x^{2}+2 x+4$
$(x+5)^{12} \equiv\left(6 x^{2}+2 x+4\right)^{2} \equiv \ldots \equiv 1$
$(x+5)^{13} \equiv 1 \cdot(x+5) \equiv x+5$
$x^{13}+5 \equiv x^{4 \cdot 3+1}+5 \equiv x+5$

On the other hand $(\mathrm{x}+2)^{65} \equiv 2 \mathrm{x}^{6}+2 \mathrm{x}^{5}+53 \mathrm{x}^{4}+49 \mathrm{x}^{3}+14 \mathrm{x}^{2}+52 \mathrm{x}+6 \bmod \left(65, \mathrm{x}^{7}-1\right)$, not $x^{65}+2 \equiv x^{2}+2, \quad$ so 65 is not prime.

However, $(x+5)^{1729} \equiv x^{1729}+5 \bmod \left(1729, x^{3}-1\right)$, and even $(x+a)^{1729} \equiv x^{1729}+a \bmod \left(1729, x^{3}-1\right)$ for all a, yet $1729=7 \cdot 13 \cdot 19$.

Note that
$(\mathrm{x}+5)^{1729} \equiv 1254 \mathrm{x}^{4}+799 \mathrm{x}^{3}+556 \mathrm{x}^{2}+1064 \mathrm{x}+1520 \bmod (1729$, $\left.\mathrm{x}^{5}-1\right)$,
not $x^{1729}+5 \equiv \mathrm{x}^{4}+5$
This was obtained by the Maple command Powmod $\left(x+5,1729, x^{\wedge} 5-1, x\right) \bmod 1729$;

The Modified AKS Algorithm

1. Check that n is not a perfect power.
2. Find a special prime $r \leq\left(16+\square \lg ^{5} n\right.$ for which ord n is at least $4 \lg ^{2} n$, checking that n is not divisible by primes up through r.
3. Verify that $(x+a)^{n} \equiv x^{n}+a \bmod \left(n, x^{r}-1\right)$ for a from 1 to r.

We must construct r . Once done, if n fails to clear any step, it is clearly composite. The heart of the rest of the proof is to show that an n that gets through the algorithm must be prime.

Step 1. N is not a perfect power

For a fixed k, we can check whether n is a perfect $k t h$ power in polynomial time. One can perform (essentially) $\lg \mathrm{n}$ iterations of either the bisection method or Newton's method on $x^{k}-n$ to estimate $n^{1 / k}$ to within .5 and then check whether the kth power of the nearest integer is n

Since $2^{\lg \mathrm{n}}=\mathrm{n}$, the largest power k to consider is $\lg \mathrm{n}$.

Step 2. Finding a special r

We want a prime r for which ord $_{\mathrm{r}} \mathrm{n}$ is fairly large.
$\operatorname{ord}_{\mathrm{r}} \mathrm{n} \geq \mathrm{x}$ (we'll be able to take any $\mathrm{x}>4 \lg ^{2} \mathrm{n}$)
iff
r does not divide

$$
\begin{aligned}
& (n \square 1)\left(n^{2} \square 1\right) \cdots\left(n^{x \square 1} \square 1\right)<n^{1+2+\cdots+(x \square 1)} \\
& =n^{(x \square 1) x / 2}<n^{\frac{1}{2} x^{2}}<2^{\frac{1}{2} x^{2} \lg n}
\end{aligned}
$$

Lemma (Chebyshev). $\Pi_{p \leq 2 m} p \geq 2^{m}$ Pf. One checks that this is true for $\mathrm{m}<32$.

$$
\begin{aligned}
& \mathrm{Z}_{m}^{2 m} \mathrm{G}=\frac{(2 m)!}{(m)!m!}=\frac{1 \square 3 \square 5 \square \cdots \square(2 m \square 1)}{2 \square 4 \square 6 \square \cdots \square 2 m} 2^{2 m} \\
& =\frac{1}{\sqrt{2}} \square \frac{3}{\sqrt{2} \cdot \sqrt{4}} \square \frac{5}{\sqrt{4} \cdot \sqrt{6}} \square \cdots \square \frac{2 m \square 1}{\sqrt{2 m \square 2} \cdot \sqrt{2 m}} \square \frac{1}{\sqrt{2 m}} 2^{2 m} \\
& >\frac{2^{2 m}}{\sqrt{4 m}}=2^{2 m \square \frac{1}{2} \lg (4 m)}
\end{aligned}
$$

Now the power of a prime p dividing m ! is

$$
\left[m / p \square+\square^{m / p^{2}} \square^{+\cdots}+\square_{n} / p^{\log _{p} m}\right][
$$

Thus,

$$
\begin{aligned}
& \square \underset{p \square 2 m}{\square \lg p+\underset{p \square \sqrt{2 m}}{\square} \lg p \nexists \frac{\lg 2 m}{\lg p} \square 1 \text { 日 }} \text {. } \\
& \square \underset{p \square 2 m}{\square} \lg p+\underset{p \square \sqrt{2 m}}{\square}(\lg 2 m \square 1) \\
& \square \underset{p \square 2 m}{\square} \lg p+\frac{1}{2} \sqrt{2 m}(\lg 2 m \square 1) \quad(\text { for } \sqrt{2 m} \geq 8 \text {, i.e. } \mathrm{m} \geq 32)
\end{aligned}
$$

The inequalities $\sqrt{2 m}>\lg 4 m>\lg 2$ for $\mathrm{m} \geq 32$ imply

$$
\begin{aligned}
& \square \\
& \square \square 2 m \\
& \geq 2^{2 m \square \frac{1}{2} \lg 4 m \square \frac{1}{2} \sqrt{2 m}(\lg 2 m \square 1)} \\
&>2^{2 m \square \frac{1}{2} \sqrt{2 m} \lg 2 m}>2^{m} \quad \text { QED }
\end{aligned}
$$

Find the least prime r that does not divide the earlier product and check that r and smaller primes don't divide n. We conclude that, unless we have found a prime factor of n that is $\leq r$, we can find a prime $r \leq 2 m$ with $\operatorname{ord}_{r} n \geq x$ if $2 m \geq x^{2} \operatorname{lgn}$. (With $x \approx 4 \lg ^{2} n$, we'll have $2 m \sim 16 \lg ^{5} n$.)

Step 3. Verify that $(x+a)^{n} \equiv x^{n}+a \bmod \left(n, x^{r}-1\right)$ for $\mathrm{a}=1$ to r

We now show that if n passes all these steps, that n is prime. Let p be a prime factor of n . Note $\mathrm{p}>\mathrm{r}$.

Let $\mathrm{h}(\mathrm{x}) \square \mathrm{F}_{\mathrm{p}}[\mathrm{x}]$ be an irreducible factor of $\frac{x^{r} \square 1}{x \sqcap 1}$
of degree d. We examine the implications of Step 3 on the finite field $F=F_{p}[x] / \square(x) \square$, which has p^{d} elements. Recall that the multiplicative group F^{*} is cyclic of order $\mathrm{p}^{\mathrm{d}}-1$.

Note that $f(x) \equiv g(x) \bmod \left(n, x^{r}-1\right)$ implies $f(x) \equiv g(x) \bmod (p, h(x))$,
i.e. $f(x)=g(x)$ in F.

Lemma. $d=$ ord $_{r} p$
Proof. Since $\mathrm{x}^{\mathrm{r}}=1$ in $\mathrm{F}, \mathrm{x} \neq 1$ in F , and r is prime, the order of x is r .
By Lagrange's theorem r divides $\mathrm{p}^{\mathrm{d}}-1$. Thus ord $_{\mathrm{r}} \mathrm{p}$ divides d .
To show divides ord ${ }_{r} p$, let $g(x)$ generate F^{*}. We have $\mathrm{g}(\mathrm{x})^{\mathrm{p}}=\mathrm{g}\left(\mathrm{x}^{\mathrm{p}}\right)$ and, iterating

$$
g(x)^{p^{\operatorname{ord}_{r} p}}=g\left(x^{p^{\operatorname{ord}_{r} p}}\right)=g(x)
$$

Thus, the order of $\mathrm{g}(\mathrm{x}), \mathrm{p}^{\mathrm{d}}-1$, divides $\quad p^{\operatorname{ord}_{r} p} \square 1$ hence divides $\operatorname{ord}_{\mathrm{r}} \mathrm{p}$.

Remark. Every choice of $h(x)$ has the same degree.

We have $(x+a)^{n} \equiv x^{n}+a \bmod \left(n, x^{r}-1\right)$, hence $(x+a)^{n} \equiv x^{n}+a \bmod \left(p, x^{r}-1\right)$, for $a=0$ to r. We also have $(x+a)^{p} \equiv x^{p}+a \bmod \left(p, x^{r}-1\right)$ for $a=0$ to r.

The idea is that these two sets of congruences impose too much structure, allowing us to find u, v for which $g^{u}=g^{v}$ has too many solutions in F. Such an equation has at most lu-vl nonzero solutions unless $\mathrm{u}=\mathrm{v}$.

Let $\mathrm{w}=\mathrm{F}_{\mathrm{r}}{ }^{*} /<\mathrm{n}, \mathrm{p}>\mid$. Let K denote a set of w coset representatives, denoting a typical representative by k. Observe that

$$
w=\frac{r \square 1}{|<n, p>|} \frac{r \square 1}{\operatorname{ord}_{\mathrm{r}} n} \square \frac{r \square 1}{x}
$$

Now consider

$$
\operatorname{Bn}^{i} p^{j}: i, j \square \frac{\square}{\square}, \stackrel{\square}{\frac{r \square 1}{w} \square \square}
$$

The order of this set is $\quad \frac{\square}{\square}+\frac{\square}{\square} \sqrt{\frac{r \square 1}{w} \square \square^{2}}>\frac{r \square 1}{w}$
Thus $n^{i_{1}} p^{j_{1}} \equiv n^{i_{2}} p^{j_{2}} \quad \bmod r$ for some $\left(i_{1}, j_{1}\right) \neq\left(i_{2}, j_{2}\right)$

The equation

$$
\begin{equation*}
g^{n^{i_{1}} p^{j_{1}}}=g^{n^{i_{2}} p^{j_{2}}} \tag{EQ}
\end{equation*}
$$

has at most $\left|n^{i_{1}} p^{j_{1}} \square n^{i_{2}} p^{j_{2}}\right| \square n^{2 \sqrt{\frac{r \Pi I}{w}}}=2^{2 \sqrt{\frac{r \Pi I}{w}} \lg n}$
nonzero solutions in F unless $n^{i_{1}} p^{j_{1}}=n^{i_{2}} p^{j_{2}}$

Beginning with $(\mathrm{x}+\mathrm{a})^{\mathrm{n}} \equiv \mathrm{x}^{\mathrm{n}}+\mathrm{a} \bmod \left(\mathrm{p}, \mathrm{x}^{\mathrm{r}}-1\right)$, we have $\square x^{n^{i}}+a \square^{n} \equiv x^{n^{i+1}}+a \bmod \left(n, x^{n^{i} r} \square 1\right)$
$\square \square_{\square}^{x^{n}}+a \square_{\square}^{n} \equiv x^{n^{i+1}}+a \bmod \left(p, x^{r} \square 1\right)$
$\square(x+a)^{n^{i}} \equiv x^{n^{i}}+a \bmod \left(p, x^{r} \square 1\right)$ by induction
Next, we see that

$$
(x+a)^{n^{i} p^{j}} \equiv x^{n^{i} p^{j}}+a \bmod \left(p, x^{r} \square 1\right) \quad \text { by induction }
$$ and finally that

$$
\begin{aligned}
& \left(x^{k}+a\right)^{n^{i} p^{j}} \equiv x^{k n^{i} p^{j}}+a \bmod \left(p, x^{k r} \square 1\right) \\
& \square\left(x^{k}+a\right)^{n^{i} p^{j}} \equiv x^{k n^{i} p^{j}}+a \bmod \left(p, x^{r} \square 1\right)
\end{aligned}
$$

Any element of the subgroup G of F^{*} generated by $x^{k}+a, k$ in $K, 0 \leq a \leq r$ is a solution of (EQ).

AKS restricted to $\mathrm{k}=1$ and showed the order of G is too big if n is not prime.

Lenstra's idea was to introduce the set K and to consider G^{w} instead of G. The argument is more complicated, but is self-contained instead of depending on a VERY hard theorem.

We will let $\mathrm{s}:\{0,1, \ldots, \mathrm{r}\} \square:\{0,1, \ldots\}$ describe the exponents for an element of G^{w} of the following form:

$$
\begin{aligned}
g(s) & =母_{0 \square a \square r}\left(x^{k}+a\right)^{s(a)} 母_{k \square K} \\
& =\square_{0 \square a \square r}^{\square}\left(x^{k_{1}}+a\right)^{s(a)}, \ldots, \square_{0 \square a \square r}^{\square}\left(x^{k_{w}}+a\right)^{s(a)} \square_{\square} \square G^{w}
\end{aligned}
$$

Claim：If $\mathrm{s}_{1} \neq \mathrm{s}_{2}$ with $\square \mathrm{s}_{1}(\mathrm{a}) \leq \mathrm{r}-2$ and $\square \mathrm{s}_{2}(\mathrm{a}) \leq \mathrm{r}-2$ ，then $\mathrm{g}\left(\mathrm{s}_{1}\right) \neq \mathrm{g}\left(\mathrm{s}_{2}\right)$ ．
Proof of claim．Suppose $g\left(s_{1}\right)=g\left(s_{2}\right)$ ．

$$
\begin{aligned}
& =g\left(s_{1}\right)^{n^{i} p^{j}}=g\left(s_{2}\right)^{n^{i} p^{j}}=\text { ——ロ }_{\square} \square_{\square r} x^{k n^{i} p^{j}}+a 母^{s_{2}(a)} \text { П }_{k \square K}
\end{aligned}
$$

Now， $\mathrm{kn}^{\mathrm{i}} \mathrm{p}^{\mathrm{j}}$ runs over a complete set of representatives for $\mathrm{F}_{\mathrm{r}}{ }^{*}$ Therefore，the degree at most r－2 polynomial over F ，

$$
\underset{0 \sqcap a \sqcap r}{\square}(X+a)^{s_{1}(a)} \underbrace{\square}_{0 \sqcap a \sqcap r}(X+a)^{s_{2}(a)},
$$

has roots $\mathrm{x}, \mathrm{x}^{2}, \ldots, \mathrm{x}^{\mathrm{r}-1}$ ，so is identically 0 ，i．e． $\mathrm{s}_{1}=\mathrm{s}_{2}$ ．

The number of such s is the number of $\mathrm{r}+1$-tuples of nonnegative integers whose sum is at most $\mathrm{r}-2$. This equals the number of $\mathrm{r}+2$-tuples of nonnegative integers whose sum equals $\mathrm{r}-2$. This, in turn, is the number of arrangements of $r+2$ identical balls in $\mathrm{r}-2$ boxes. Therefore,

$$
|G|^{w} \geq 母_{r+1}^{r \square 1} \square^{r}>2^{r \square 1}
$$

for $r \geq 3$ by induction.
However, $\quad 2^{2 \sqrt{\frac{r \Pi 1}{w}} \lg n} \geq 2^{\frac{r \square 1}{w}} \quad$ iff $4 \lg ^{2} n \geq \frac{r \square 1}{w} \geq x>4 \lg ^{2} n$
Finally, $n^{i_{1}} p^{j_{1}}=n^{i_{2}} p^{j_{2}}$,
so n is a power of p , which by Step 1 means $\mathrm{n}=\mathrm{p}$.

