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An algorithm is polynomial time if the number of “simple” steps
(e.g. additions, multiplications, comparisons, …) required is
bounded by polynomial in the size of the inputs.

This is equivalent to the existence of constants C and D such that
the number of steps is bounded by C |Input|D.

This reflects an asymptotically fast algorithm because for any
r>0, b>1,   xr / bx goes to 0 as x goes to ∞.

When an integer n is the input, its size is the number of
digits log10n or the number of bits lg n=log2n. Because

loga n = logb n / logb a
the only effect of changing the base is to change the constant C.
Note that n=2lg n and √n= √2lg n are exponential.



Some Easy but Vital Preliminaries
We write a≡b (mod n) for a-b divisible by n. In particular,

a≡0 (mod n) if and only if a is divisible by n.
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Clearly, if n is prime, then           is divisible by n for k=1, 2,
…, n-1.

The converse is also true. If q is a prime factor of n, then

is divisible only by n/q, but not n.
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Thus, for p prime,  (x±a)p≡xp ±ap (mod p).

Fermat’s Little Theorem For p prime and k relatively prime to
p, kp-1≡1 (mod p).
Pf.   Setting x=k and a=1, we get (k±1)p≡kp ±1 (mod p).
Induction starting at 0 gives kp≡ k (mod p) for all integers k,
from which the theorem follows.

We can now conclude that the following are equivalent:
(i) n is prime
(ii) as polynomials in x, (x+a)n≡xn +a (mod n) for some integer
a relatively prime to n
(iii) as polynomials in x, (x+a)n≡xn +a (mod n) for all integers a



The idea that Agarwal, Kayal, and Saxena, PRIMES is in P,
preprint, August 2002, use is to combine coefficients whose powers
of x are the same mod r, where r is on the order of ln6 x, a
polynomial time computation (with D=12). Specifically,
we consider whether

(x+a)n ≡ xn+a  mod(n, xr-1) for all a

If n is prime, the congruence must hold for all r and a, but the trick
is to find a good r for which the above shows n is prime.

I will follow the exposition of Daniel Bernstein, Proving Primality
after Agrawal-Kayal-Saxena, draft, January 2003. It incorporates a
theorem of Hendrik Lenstra that avoids the deep sieving result from
analytic number theory in AKS as well as a simplifying observation
of Kiran Kedlaya.



How to Exponentiate
53=25+24+22+2+1=(((1·2+1)22+1)22+1
xÆx2 Æx3 Æx6 Æx12 Æx13 Æx26 Æx52 Æx53

Compute (x+5)13 mod(13, x3-1).
(x+5)2=x2+10x+25≡x2-3x-1
(x+5)3 ≡(x2-3x-1)(x+5)=x3+2x2-16x-5 ≡2x2-16x+(1-5) ≡ 2x2-3x-4
(x+5)6 ≡ (2x2-3x-4)2=4x4-12x3-7x2+24x+16
          ≡-7x2+(4+24)x+(-12+16) ≡6x2+2x+4
(x+5)12 ≡(6x2+2x+4)2 ≡… ≡1
(x+5)13 ≡1 ·(x+5) ≡x+5

x13+5 ≡x4·3+1+5 ≡x+5



On the other hand
 (x+2)65 ≡ 2x6+2x5+53x4+49x3+14x2+52x+6 mod(65, x7-1),
not x65+2 ≡ x2+2,    so 65 is not prime.

However, (x+5)1729 ≡x1729+5 mod(1729, x3-1),
and even (x+a)1729 ≡x1729+a mod(1729, x3-1) for all a,
yet 1729 =7·13·19.

Note that
(x+5)1729 ≡1254x4+799x3+556x2+1064x+1520 mod(1729,
x5-1),
not x1729+5 ≡x4+5

This was obtained by the Maple command
Powmod(x+5,1729,x^5-1,x) mod 1729;



The Modified AKS Algorithm
1. Check that n is not a perfect power.

2. Find a special prime r≤(16+e)lg5n for which ordrn is at least
4 lg2n, checking that n is not divisible by primes up through r.

3. Verify that (x+a)n ≡ xn+a mod (n, xr-1) for a from 1 to r.

We must construct r. Once done, if n fails to clear any step, it
is clearly composite. The heart of the rest of the proof is to
show that an n that gets through the algorithm must be prime.



Step 1. N is not a perfect power

Since 2lg n=n, the largest power k to consider is lg n.

For a fixed k, we can check whether n is a perfect kth
power in polynomial time. One can perform
(essentially) lg n iterations of either the bisection
method or Newton’s method on xk-n  to estimate n1/k

to within .5 and then check whether the kth power of
the nearest integer is n



Step 2. Finding a special r
We want a prime r for which ordrn is fairly large.

ordrn ≥ x (we’ll be able to take any x > 4 lg2n)
iff

r does not divide
(n -1)(n2 -1) ⋅ ⋅ ⋅(nx-1 -1) < n1+2+⋅⋅⋅+(x-1)

= n(x-1)x / 2 < n
1
2 x2

< 2
1
2 x2 lg n



Lemma (Chebyshev). ∏p≤2mp ≥ 2m

Pf.  One checks that this is true for m<32.
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Now the power of a prime p dividing m! is

m pÎ ˚ + m p2Î ˚ + ⋅⋅ ⋅ + m p log p mÎ ˚Í 
Î Í 

˙ 
˚ ˙ 

Thus, 
lg

2m
m

Ê 
Ë 
Á ˆ 

¯ 
˜ = lg p 2m pkÎ ˚ - 2 m pkÎ ˚( )

k=1

log p 2m
Â

p£2m
Â

£ lg p +
p£2m

Â lg p 2m pkÎ ˚ - 2 m pkÎ ˚( )
k=2

log p 2m
Â

p£ 2m
Â

£ lg p +
p£2m

Â lg p lg 2m
lg p

-1Ê 
Ë 
Á ˆ 

¯ 
˜ 

p£ 2m
Â

£ lg p +
p£2m

Â lg2m -1( )
p£ 2m

Â

£ lg p +
p£2m

Â 1
2 2m lg2m -1( )       (for 2m ≥ 8, i.e. m ≥ 32)



The inequalities                                    for m ≥32 imply 

                                                                                      

                                                                             QED

p
p£2m

’ ≥ 22m-1
2 lg 4m-1

2 2m(lg 2m-1)

> 22m-1
2 2m lg 2m

> 2m

Find the least prime r that does not divide the earlier product 
and check that r and smaller primes don’t divide n. 
We conclude that, unless we have found a prime factor 
of n that is ≤r, we can find a prime r≤2m with ordrn ≥ x if 2m ≥x2lgn.
(With x≈ 4 lg2n, we’ll have 2m ~ 16 lg5n.)

† 

2m > lg 4m > lg2



Step 3. Verify that
(x+a)n ≡ xn +a mod (n, xr-1)

for a=1 to r
We now show that if n passes all these steps, that n is prime.
Let p be a prime factor of n. Note p>r.

Let h(x) Œ Fp[x] be an irreducible factor of

of degree d. We examine the implications of Step 3 on the
finite field  F = Fp[x] / ·h(x)Ò , which has pd elements. Recall that the
multiplicative group F* is cyclic of order pd -1.

Note that f(x)≡g(x) mod(n, xr-1) implies f(x)≡g(x) mod(p, h(x)),
i.e. f(x)=g(x) in F.

xr -1
x -1



Lemma. d=ordr p
Proof. Since xr=1 in F, x≠1 in F, and r is prime, the order of x is r. 

By Lagrange’s theorem r divides pd -1. Thus ordr p divides d.

To show d divides ordr p, let g(x) generate F*. We have
g(x)p = g(xp) and, iterating 

Thus, the order of g(x), pd -1, divides                             
hence d divides ordr p .

Remark. Every choice of h(x) has the same degree.

g(x) pord r p
= g(x pord r p

) = g(x)

pordr p -1



We have (x+a)n ≡ xn+a  mod(n, xr-1), 
hence (x+a)n ≡ xn+a mod(p, xr-1),  for a=0 to r. 
We also have (x+a)p ≡ xp+a mod(p, xr-1) for a= 0 to r.

The idea is that these two sets of congruences impose too much 
structure, allowing us to find u, v for which gu=gv has too many 
solutions in F. Such an equation has at most |u-v| nonzero 
solutions unless u=v.

Let w=|Fr
*/<n,p>|. Let K denote a set of w coset representatives, 

denoting a typical representative by k. Observe that
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Now consider 
ni p j : i, j Œ 0, r -1
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Thus   ni1 p j1 ≡ ni2 p j2   mod r  for some (i1, j1) ≠ (i2, j2 )

 ni1 p j1 - ni2 p j2 £ n2 r-1
w = 22 r-1

w lg n

gni1 p j1
= gni2 p j2The equation (EQ)

has at most

nonzero solutions in F unless                                 .ni1 p j1 = ni2 p j2  



Beginning with (x+a)n ≡ xn+a mod(p, xr-1),  we have
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fi x + a( )ni
≡ xni

+ a  mod( p, xr -1)  by induction

Next, we see that  

x + a( )ni p j
≡ xni p j

+ a  mod( p, xr -1)   by induction
and finally that

xk + a( )ni p j
≡ xkni p j

+ a  mod(p, xkr -1)

fi xk + a( )ni p j
≡ xkni p j

+ a  mod( p, xr -1) 



Any element of the subgroup G of F* generated by 
xk+a, k in K, 0≤a≤r  is a solution of (EQ). 

AKS restricted to k=1 and showed the order of G is too big 
if n is not prime. 

Lenstra’s idea was to introduce the set K and to consider Gw 

instead of G. The argument is more complicated, but is 
self-contained instead of depending on a VERY hard theorem.



We will let s:{0,1,…,r}Æ :{0,1,…} describe the exponents for 
an element of Gw of the following form:

g(s) = xk + a( )s(a)
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Claim: If s1≠s2 with Ss1(a)≤r-2 and Ss2(a)≤r-2, then g(s1) ≠ g(s2).

Proof of claim. Suppose g(s1) = g(s2).
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Now, knipj runs over a complete set of representatives for Fr
* 

Therefore, the degree at most r-2 polynomial over F, 
X + a( )s1(a)

0£a£r
’ - X + a( )s2 (a),

0£a£r
’

has roots x, x2, …, xr-1, so is identically 0, i.e. s1=s2 .



The number of such s is the number of r+1-tuples of nonnegative 
integers whose sum is at most r-2. This equals the number of 
r+2-tuples of nonnegative integers whose sum equals r-2. This, 
in turn,  is the number of arrangements of r+2 identical balls in
r-2 boxes. Therefore,
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for r≥3 by induction.

However,                                        iff
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Finally, 

so n is a power of p, which by Step 1 means n=p.


