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We give a detailed sketch of how the exponential, Poisson, gamma, beta, normal, y?, t,
and F' distributions arise in “natural” ways. Our only prerequisite distributions will be the
binomial distribution and the uniform distribution on [0, 1]. The details of the (more than)
healthy dose of multivariable calculus along the way may certainly be slurred over by those
looking for a sense of how the distributions arise.

The Exponential Distribution

Suppose we model waiting time by a “memoryless” random variable, meaning that the wait
from some instant until the next occurrence does not depend upon when the last occurrence
was. In mathematical terms, we mean

Pt > |t > tg) = P(t > t; —tg),

where t; > to > 0. If f(t) denotes the density function of such a random variable, then
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Let G(t) = [~ f(s) ds. Then (1) implies G(a+b) = G(a)G(b). With a moderate amount of
work, one may prove that such a function G that is also continuous must be an exponential
function. Because G(t) is a decreasing functlon of t we may write G/(t) in the form e~*7 for
some positive parameter §. Noting that G(t fo ) ds and using the fundamental

1
theorem of calculus, f(t) = —G'(t) = Be_t/ A. This is the density function for the exponential

distribution.



The Poisson Distribution

Consider a binomial random variable with enormous n and miniscule p, for instance modeling
the number of customers at a store or accidents at a busy intersection. Specifically, we
consider the behavior of binomial random variables with fixed A = np as n goes to co. If X
is the number of occurrences, then we have
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which is the Poisson distribution. Observe that > -/ A%/xz! is the Taylor series at 0 for .

If we have Poisson random variables X; and X5, with means A; and As, then we can think
of A\ = nip and Ay = nop. Now the sum of binomial random variables with common p is
binomial, suggesting that the sum of X; and X5 should be Poisson with mean A\; + Ay. In
fact,
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Suppose we have a Poisson random variable with mean occurrence rate A per unit time,
so that the number of arrivals in time ¢ has a Poisson distribution X; with mean At. Suppose
we want, not the distribution of the number of occurrences over a time t, but the wait T’
until the next occurrence. Then the cumulative distribution function of 7" is given by

PT<t)=P(X;>1)=1-P(X;=0)=1—¢.

Its derivative is the density function, namely Ae *. In, other words the waiting time has an
exponential distribution with 8 = 1/\.

Conversely, given an exponential density function with parameter A, the probability of
no arrival within a time ¢ is e=*. We proceed by induction. Assume that the probability of
exactly n arrivals is (At)"e=*/n! for all t > 0. Then, conditioning on the first arrival being
at time 7, the probability of exactly n + 1 arrivals within a time ¢ is
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The Gamma Function

When evaluating the mean and variance for the exponential distribution, one evaluates the

integrals
| < 51
/ t e /P dt and / t2 —e P dt.
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Substituting = = ¢/, one obtains the integrals

5/ xe “dr and 52/ 2 e dx. (2)
0 0

With these integrals in mind, we define the gamma function

() :/ e du,
0

which converges for a > 0. It is easy to verify that I'(1) = 1. For a > 1, integration by parts
yields I'(a) = (a = 1)['(a—1). Thus, ['(n) = (n—1)! for n = 1,2,.... It immediately follows
from (2) that the mean and variance of the exponential distribution are 3 and 23? — 32 = 32,

respectively.
We now show that I'(1/2) = /7 and hence that

1-3-5---(2n—1) (2n)!
on V= S

T(n+1/2) = NS

The substitution x = u?/2 leads to
I'(1/2) :/ V%" dy :/ V2e v/ du:/ e~ )V/2 du.
0 0 —00
Thus,

[r(1/2)]2:/_Ze—“2/2/\/§du./_oo e )V2 dv = / / ~0E /2y .

This is an integral over the uv-plane, which becomes easy if we change to polar coordinates.

Then
r'(1/2)] / / e dr df = = / do =T,
and T'(1/2) = /7.

In a heuristic sense, the gamma function should be thought of as an extension of (n —1)!
to non-integral values of n.



The Gamma Distribution

If the waiting time to the next occurrence has an exponential distribution, then the waiting
time until the nth occurrence is the sum of n identical, independent exponentially-distributed
random variables. This distribution will turn out to be a particular case (« = n) of the
gamma distribution, which has density function
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Upon substituting u = =/, we note that

00 1 1 a8 1 /oo L
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The exponential distribution is the special case a = 1. We have just shown that

e B x>0, a>0, §>0.

/ 2 e P dy = BT (o + k),
0

so the mean a3 and variance a3? for a gamma distribution follow easily.

We now show that the sum of n independent random variables with gamma distributions
with parameters oy, and § has a gamma distribution with parameters a; +-- -+, and 5. In
particular, this will prove our claim for the sum of exponential random variables. Moment
generating functions provide a fairly easy way to prove this. However, we will instead take
a direct approach. By iteration or induction, it suffices to prove the case n = 2. Let z and
y denote the values from the original gamma distributions and let w denote the value of the
sum. Then the cumulative distribution function for the sum is given by
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We will change variables in the integral to s = z+y and v = /(x4 y). Solving for z and y,
we get £ = su, y = $(1 —u). Our domain 0 < z, 0 <y, x +y < w transforms to 0 < s < w,
0 <u < 1. The jacobian matrix (“chain rule factor”) for this transformation is

or Ox
ds Ou u §
det = |det = s,
@ @ l—u —s
Js Ou

so that dzr dy = s du ds. We crunch out the algebra for the substitution and obtain that the
cumulative distribution function equals

w 1
1 ai+as—1, a1—1 as—1_—s/8
/0 /0 ﬁal"’a?F(al)F(ag)S 1+az—1,, (1 —u)*""e du ds

w 1
= gatez—le=s/B g / w1 —w)*2 7! du.
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The second integral is just a constant c¢(av, as) which depends on «; and ay. Therefore, the
cumulative distribution function simplifies to

C(alv OQ) /w Soq-i—az—le—S/ﬁ ds.
Berterl(aq)l(az2) Jo

The density function is just the derivative of the cumulative distribution function. Hence,
by the fundamental theorem of calculus, the density function equals

C(Oél, OQ) a1+a2—le—w/ﬁ
pertea(on)I'(az)
Up to the constant, this is the gamma distribution with parameters a; 4+ ao and 3, which is
enough to show it must be this gamma distribution. Since the constant is unique, we must
have

I'(oy)I(a2)
(o + )’
For (unnecessary) good measure, we show this identity directly as well. We have

1 o 1
0
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= / / yoth-lemvpe (1 — ) Vde dy = / / ) (1 — 2)y)? ey da dy.

We now make the substitution u = zy, v = (1 — z)y. The jacobian (“chain rule factor”) for
this transformation is

clag,az) =

o ou
dx Oy Y x

det = |det =Y,
ov v —y 1w
or 0Oy

so that du dv = y dx dy. Every pair of positive u and v corresponds to exactly one pair x
and y with 0 <z < 1 and 0 < y. Thus,

F(oz—i—ﬁ)/olxa_l(l—x)ﬁ_l dr = f / 01y 1/"+v du dv
= [ wee du ~ iy = D(a)T().

Now suppose we have exponential waiting time. Then the probability of exactly n oc-
currences in time t is the probability of at least n or occurrences minus the probability of at
least n 4+ 1 occurrences. In terms of the gamma distribution, this is

o 1 —x/p b /8
n—lo=a/B jp _ ne=z/B o
/0 ﬁ"(n— 1)'1' e 9 /0 ﬁn_ﬂn!x e 9

Perform one step of integration by parts on the first integral. The remaining integral equals

that of the second integral. This yields that the probability of n occurrences is We_t/ B,
"n!

i.e. we have a Poisson distribution with A = 1/p.
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The Beta Distribution

Suppose we have m + n + 1 independent random variables that are uniformly distributed
on (0,1). We wish to find the distribution of the (m + 1)st smallest value or, equivalently,
the (n + 1)st largest value. This is an example of what is known as order statistics. The
probability that a value from the uniform distribution on (0, 1) is less than = is x. Now,
for a random variable X with density function f(z), view f(x) dz as the “probability”
that X = x, which we add up, i.e. integrate, over an interval to get true probability for a
continuous distribution. The “probability” that z is the (m + 1)st smallest value is then the
probability of choosing one variable to equal x, m to be smaller, and n larger,

m+n m+n+1)!

)f%1—@":< 2™ (1 — z)" da.

m min!

Km+n+Dd@(

The generalization of this via gamma functions is the beta distribution, with density

Ia+ pB)
L(a)L'(B)

Observe that this is a positive function. It will be a density function if

1F(a+5)za_1 oV gy —
/of(a)F(ﬁ) S

11—z 0<az<1l,a>0, 3>0.

or, equivalently,
1
INCES 5)/ 2711 = 2)?~V de = T(a)D(B).
0

In the last section, we saw exactly this integral in our derivation of the density for the
sum of gamma distributions.

Stirling’s Approximation

One of several forms of Stirling’s approximation is
nl ~ V2 nt/2em,

where the asymptotic symbol ~ means here that the ratio has limit 1 as n goes to infinity.

One can get a slightly weaker estimate from applying the trapezoidal and midpoint
n+b
estimates to two integrals of the form Inz dz, (a and b constants).

We will sketch a proof using the ganl;ma distribution. We begin more generally with the
total gamma distribution
o 1
1= —a% " d.
/0 Fla+1)

A quick max-min calculation shows that the maximum value of %" occurs at x = «. In
fact, the function drops off rather sharply on both sides of x = a. Chebyshev’s theorem
says that the probability of being within £ > 1 standard deviations of the mean is at least
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1 —1/k2. Because [a — a®/® a4 a3/°] represents essentially o'/!° standard deviations of /&
from the mean of o + 1, it follows that

a+a3/5

Fa+1)~ / x%e”" dz,

_a3/5

where the error in the estimate divided by I'(a+ 1) goes to 0 as « goes to infinity. The error
terms in all of our subsequent estimates will share this property.

We now write 2%~ as e*"*~*_ The Taylor series expansion of alnx — z about z = « is
5

1 1 1
alna—a—%(x—oz)sz@(x—a)‘g—@(x—oz)4+@(x—a) — e
which converges to alnz — z on an interval containing [ — a/®, a + a%/°]. Moreover, the
sum of the terms of degree at least 3 goes (uniformly) to 0 on this interval as « goes to

infinity. Thus,

a+a3/b a+ad/®

MNa+1) = / erna—a—(z-0a)?/Q20) go. ozo‘e_a/ e~ (@=a)?/(20) g
a—a3/5 «a

—a3/5
Upon substitution of u = (x — «)/+/«, this becomes
al/10
[Ma+1)~ oza+1/2e_a/ e 1 du.
_ql/10
This integral converges to / e~ /% du, which we saw equals v/2 T'(1/2) = V27 in the

section on the gamma function. The final estimate is Stirling’s approximation,

D(a+ 1) ~ V21 a®t2e7,

An Axiomatic Approach to The Normal Distribution

We proceed to derive the normal distribution along the lines of Gauss, as reported in [1].
Suppose the difference from the mean p has continuously differentiable density function
f(x — p). Suppose further that f is an even function and that the sign of f'(x — u) is
opposite that of x — p (i.e. f gets smaller as |x — p| gets larger). Finally, assume that the
maximal likelihood estimator for y based on a random sample is the sample mean.

Consider a sample with values 0 and n values (n + 1)y, with sample mean ny. Our
assumptions imply that the maximum value of the joint density

f(=p) [f((n+ 1Dy —pw)]"

occurs at u = ny. Setting the derivative at p = ny of this joint density equal to 0, we see

that
fileny) - F(y)

f(=ny) f(y)




Since f’/f is odd, we have

for all integers n. Then

F(2y)  f'(Ey)  mf(y)

Fmy) ~ "y T ()

for all integers m and n # 0. Continuity implies

firy) _ W)

fry)  f(y)
for all real r. Setting r = 1/y, we see that

Py _ S0

fly) 7 r@)

(which also holds for y = 0). Writing the negative constant f’(1)/f(1) as 1/c?, this differ-

ential equation has solution
2

fly) = Cea.

Since

0 2
/ e 302 dy = V2mo,

C =1/(V2r0o), so that the density for X is

1 _(@-w)?
2

V2o
2

that of the normal distribution with mean g and variance o*.

Special Cases of the Central Limit Theorem

In this section, we show how the normal distribution arises naturally as limits of binomial,
Poisson, and gamma distributions. These are special cases of the vitally important central
limit theorem. Because the standard deviation represents a “typical” deviation from the
mean, it is natural to measure the deviation of one value x from the mean in the context of
this particular distribution by how many standard deviations it lies from the mean, i.e. by
its z-score z = (x — pu)/o. The suggested importance of the z-score is, perhaps, reinforced
by Chebyshev’s theorem which says that the probability of being within k£ > 1 standard
deviations of the mean is at least 1 — 1/k2.
For a binomial random variable X with parameters n and p,

n T n—x n' T n—T
P(X:x):<z>pq :mpq , v=0,1,...,n,



where ¢ = 1 — p. By Stirling’s approximation,

nn+1/2 B
P(X - x) ~ Vor l.x+l/2(n _ l.)n—x+1/2 P q )

The mean and standard deviation for the binomial distribution are np and ,/npq, respec-
tively. We make the substitution = np + z,/npq (so z is the z-score). Because we are
making the transition to a continuous distribution, we need to include the chain rule fac-
tor dv = /npq dz in our estimate. Substituting and simplifying, our approximation for
P(X = z) translates to density function

n+1
"t _ PrPTEAVAPIHL/2 a2 TRT+1/2
V2m (np + 2/Apq) P tVIRTELR (ng — 2 /apg)na VP
B 1
B 7 np+z,/mpq+1/2 D nq—z/mpg+1/2"
V2T <1+z1/—) (1—2,/—)
np ngq
The Taylor series expansion at 0 of In(1 + ) is u — u?/2 + u/3 — - - -. Hence,

q np+z,/npq+1/2
In (1 + 24 /—)
np
q q ? q ’
- Vipg+1/2) o L — (2, L /2 L /3—-~- .
(np + zy/npq + /){z wp (z np) —l—(z np) }
Distributing this out yields the estimate

q np+z,/npq+1/2 q q 2 q
In(1 W ~ ] —— ] — /2 /i — 2 2,
n ( +z np) npz np np (z np) +z\/npq z p Z\/Mpq+z q/

with the sum of all remaining terms going to 0 as n goes to infinity. Similarly (replace z

D ng—z./npg+1/2
with —z and interchange p and ¢), In (1 — 2z, /—) is approximately
ng

—z\/npq + 2*p/2

as n goes to infinity. Therefore,

7 np+zy/Mpg+1/2 D ng—2z./npq+1/2
o2 )
np ngq

~ 6z\/npq—l—z2q/2e—z\/n;uq—i—z21u/2 _ 6z2/2

We conclude



as n goes to infinity, which is the density function for the standard normal distribution.

A similar derivation from the Poisson distribution is a bit easier. A Poisson distribution
with parameter n)\ has mean and variance nA and probability function p(x) = (n\)%e="/z!.
We transform to z-scores via x = nA + vn\ z and let n — co. When we include the chain
rule factor, the density for a continuous z is approximately

(n)\)n)\-l-\/Hz
(A + vVnAz)

We apply Stirling’s approximation to the factorial, obtaining approximate density

(n)\)m+mz+1/2 1 5 —(nA+HVnA z+1/2)
e = — <1 + ) eVmiz,
V2T (nA + V) 2)ndVnAzt1/20—(nA+vnd 2) 2m vV

The Taylor series expansion of

Vnhz — (RA+ VoA 2)In <1+\/%)

: e ™M,

18

Vide— v (e - 2\ lE 2 2
ZTn I\ x 20 3(nA)3/2 2 6vna 120 '

~1/2
< 1
Noting that (1 + —) — 00 as n — 00, we conclude the density approaches — e 2,

vnA V2r

In the case of the gamma distribution,we will keep ( fixed and let « go to infinity. As
before, we can transform to z-scores for the gamma distribution, x = af + /a 8z with
dx = v/a [ dz, obtaining the density of z is

1/2 oo +1/2
— (e +a Bz a=l,—(af+vapz)/B _ 1+ z/Va a=1,—(a+vaz)
5a—11"(a>

['(a+1)
We use Stirling’s approximation, I'(a + 1) ~ /27 a®*/2e7% to obtain an asymptotic esti-
mate for the density

1 a—1_-— az_ieoe—l In(14+2z/y/a)—y/az
\/—27(1+z/\/a) oVa _\/ﬁ( ) In(l42/Va)—vaz
Now
(@ =)l +z/va) = Vaz = (a=1)(z/va—2*/(20)+2°/(30*%) =) = Vaz

~ —2%/2.

1
Thus, our asymptotic estimate for the density is —26_22/ 2. The special case of replacing o
T

with na and letting n — oo is another case of the central limit theorem.
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Moment Generating Functions and the Central Limit Theorem

The moment generating function defined to be My (t) = E[e**]. Random variables with
distinct cumulative distribution functions have distinct moment generating functions, though
this is hard to prove. It is easily seen to satisfy M,x y(t) = e**Mx(at) and, for X and YV
independent My vy (t) = Mx(t)My(t). If X has mean p and variance o2, then Mx(0) = 1,
M%(0) = p, and M%(0) = E[X?] = 0% + p?. The cumulant moment generating function is
¥ar(t) = In Mx (t). We have ¥,,(0) = 0, ¥4,(0) = p, and ¢},(0) = o2.

The moment generating function for the standard normal random variable is

o 1 2 2 > 1 2 2 > 1 2 2
6tz e /2 dz = €t /2 e—(z—t) /2 dz = 6t /2 e~ /2 du = 6t /2‘
—so V2T _eo V2T —oo V2T

A general normal random variable X has the form X = py+ 07, where Z is standard normal.
Thus, the moment generating function of a general normal distribution is eHtto’t?/2,

If X is normal with mean ux and variance c% , and Y is normal with mean py and
variance 0%, and X and Y are independent, then the moment generating function for X +Y
is

6uxt+0§<t2/2 6uyt+0§,t2/2 _ e(ux+uy)t+(0§<+0%,)t2/2
)
i.e. X +Y is normal with mean ux + py and variance 0% + 0.

Now consider an arbitrary random variable X with mean 0 and moment generating
function is defined to be Mx(t). Let X; be independent random variables with the same
distribution as X. Then the moment generating function for (X; + -+ 4+ X,,)/y/n is

Mt/ )" = s OV,

Applying I’'Hopital’s rule,

| TN OND W (/R (/@) (/)
A (b y/m) = lim == = T _W —Jzﬂo 2/

2/ (9n3/2 o212
i SEVRCE @) ﬂ ’t

n—00 —1/n3/2 ( ) 9

Thus,
lim [My (t/v/n)]" = e”t/2,
n—oo

from which we conclude the limiting distribution of (X; + -+ + X,,)/+/n is normal with
mean 0 and variance 02. When X has mean y the limiting distribution of the sample mean
(X1+---+X,)/nis “asymptotic” to that of a normal distribution with mean p and variance

a?/n.

The x? Distribution and Sample Variance

We explain how to derive the distribution of the sample variance s> when the original pop-
ulation has a normal distribution.
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Step 1. Prove the miraculous identity

(n—1)s = <x1—$2)2+_‘_+ <x1+z2+---+xk_1—(k:—l):rk)z

V2 k% —k
+xp T — (n— 1Dz,
N +(x1 T2 2$ 1= (n )x) ' (3)
n2—n
The coefficient of 2 in (n — 1)s® is
(n—1)2 1 n-1
T T g =

The coefficient of 2 in the right-hand side of (3) is

(k—1)2+ 1 . 1
(k+1)2—(k+1) n?—n

B SO T S S ANV S U N B
ok k k+1 n—1 n)  k k- n  n

The coefficient of z;zy , j < k, in (n — 1)s? is

—2(n—1)

2 2

—l—( 2) 2 2
n—2) —=——.
n? n

The coefficient of z;x) , j < k, in the right-hand side of (3) is

—2(k—=1) 2 2

k? —k (k+1)2—(k+1) n?—n
-2 (2 2 2 2
—?+(rk—+1)+ *(n_l—;)
-2 2 2 2
% TR Tn T W

This completes the proof of (3).

Step 2. Show that {(X; + Xo + -+ + X1 — (K — 1) Xy)/VE? — k}ock<n, have mean 0
and variance o2, and along with (X7 + X5 + - -+ + X,,)/n are independent, normal random
variables.

In general, for independent random variables Xj,..., X, with means uq,...,u, and
variances 0%, ...,02, the mean and variance of a1 X; + -+ - + a,X,, are aypi; + -+ - + app, and
ajo? + -+ + a’0?, respectively. Moreover, a; X + - - + a, X, is normal if Xi,..., X, are.

We are left to show the independence.
The joint density of Xy,..., X, is

n

Sat =20 > w4 np?
k=1

(l"k - M)2 k=1

H 1 e 202 :%e‘ 202
L3 V2ro (2m)n/2gn
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Let
Vi=(Xi4+Xo+--+X,)/Vn

and

Yi=(Xi+Xo+ -+ Xp1 — (k= 1D)Xy)/VE2—k
for k =2,...,n. Let x and y denote the column vectors of the x; and yy, respectively. Then
y = Qx, where Q is the orthogonal matrix (Q~! = Q)

S =5
l-3l-
o G-
o G-

Q= 1 1 1 k=1 .
V2 =k VE2E—-k -k V2 —k
1 1 1 B n—1
L Vn2—n Vn?2—n Vn2—n Vn2—n |

n

The jacobian of the transformation from x to y is | det Q| = 1. Observe that > zx = /ny
k=1

and . .
Y oal=xx=x'Q'Qx=y'y =) i
k=1 k=1

Therefore the joint density function for x transforms to

> Ui — 2V/npyy + g
= N Vi) S
202 = e 202 H e 207,

——— ¢
(27 )n/2g7 V2o s V2o

showing that Yi,...,Y, are independent. Furthermore, transformations ¢;(Y7),..., gn(Yy)
of Y7,...,Y, are independent.

Step 3. Show that for Y normal with mean 0 and variance o2, the distribution of Y2 /o>

is x? with 1 degree of freedom.
Let w = y%/0? or y = oy/w. Then dy = o/(2\/w)dw. Hence

L ey, L 11
V2mo Y 2V/2m 2 2121°(1/2)

However, this transformation is 2-1, namely both y and —y lead to the same value of w. In
other words, two different y-intervals will lead to the same w-interval. It follows that we

—12emw/2 gy = w22 du.
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must double the above expression to find the density function for w,

1 —1/2 —w/2
oi2r(1/2) ¢ ¢

which is the density function of the x? distribution with 1 degree of freedom.

Step 4. Show that the sum of n — 1 independent y? random variables is x? with n — 1
degrees of freedom.

Observe that (n — 1)s%/0? is the sum of n — 1 independent x? random variables with 1
degree of freedom. Such a yx? distribution is a gamma distribution with o = 1/2, 8 = 2.
This step is now simply a special case of our more general result on the sum of gamma
distributions.

The Y? Distribution and Multinomial Distributions

We show that the x? distribution arises as a limit of multinomial distributions. The method
will be essentially a higher dimensional generalization of our derivation of the normal dis-
tribution as a limit of binomial distributions. It will require several intermediate trans-
formations. We have v + 1 mutually exclusive states with the probability state k occurs
e, k=1,2,...,v+ 1, with ZZE pr = 1. In n independent trials, the probability of
occurrences of state k for every k is the multinomial probability

n!

e — :L.l .« .. xl/+1
l’l!"‘l’lj.ﬁ’_l! pl pl/-l-l
By Stirling’s approximation, this is approximately
y nn+1/2
—v/2 x Ty+1
(2m)™" 21+1/2 e P pia
1 SRR
—z1—1/2 —Ty41—1/2
3 1 Tyl ~1/2 —1/2
— 27Tn V/2 — e - e .
(2mn) < np1> (npm) Py Pt

The variance of an individual xy is \/npr(1 — px). With this in mind, we transform to
the individual z-score variables z; defined by

x = npg + 27/ npr(1 — p).

(The computations would turn out to be a bit simpler by defining z, = npy + zx\/npk, but
there is no way to know this except in hindsight.) Note that this is only a v-dimensional

problem because ZZE xr = n, which translates to ZZ:} 2/ Pr(1 — px). = 0. Once again,
we need the jacobian of the transformation for our translation to continuous variables z.

Here, this is just the product of

e g
— = 1-— k=1,...,v.
de npk( pk)? ) v
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The approximation for multinomial probability turns into the density function

v+l 1= —npr—2p\/ npe(1-pp)—1/2 v
n) P (1 P2 [vi-n
k=1

n
el Pk

v+1 T—p —npr v+1 1—p —zkA/npr(1—px)
= (27T)_V/2p;i{2 H <1 + 2 k) H (1 + 2z k)

k=1 NPk k=1 npg
v+1 D -1/2 v
— Dk
XH(I—I—Zk ) H\/l—pk~
NPk Pl
Asn goes to infinity, each term in the third product goes to 1 and each term in the second
to e~(=Pr)% - We expand the natural logarithm of the first product using the Taylor series
ofln(1+u)—u—u2/2—|—u3/3— - to obtain
vl —npg v+1 1— p
Zln <1+qu/ ) :Z_npkln <1+Zk k)
Pk 1 NPy

l/+1

_Z ( w1 — pr) — 22(1 —Pk)/2+zk( _pk3/2/3_ )

The sum of the terms beyond the second goes to 0 as n goes to infinity. The first term sums
to 0 by our constraint on zz. We conclude that, as n goes to infinity, the density function
has limiting value

v+1 v
_ = 32 (1-pr)2;/2
(o) 22 =TT T
k=1

The term in the exponent

is the x? statistic that we want; call it 2. We need to combine all of the multivariate densities
with a common value of x to obtain its density function. We first let w, = /1 — p 2. Re-
calling that only z1, ..., 2, are our independent variables, we transform the density function
to
P ST
(2m)~ ”/zpyiﬂ e =1

Now

—Wi\/P1 = — W /Dy
\/pu—i-l ‘

Note that the length of the vector [—\/p1,...,—v/Dy) is vP1 + -+ 0, = V1T = puy1. Let Q
be a v X v orthogonal matrix with first row

_\/p_l/\/ 1 _pl/-i-la"'?_\/ZTV/\/ 1 _pu+1]~
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Let [uq,...,u,)" = Q[wi,...,w,]". Then, as in the last section, the jacobian of this transfor-
mation is |det Q7'| =1 and

2 2 2 2
w4 wt =+

In terms of the new variables uq, ..., u,, the density function is
_ ~1/2 —(XV: ui+u%(1—p,,+1)/pl,+1)/2 _ “1/2  —(u2 20 a2
o) ¢\ (o)t i)
1% 1% °
The penultimate transformation is to let

Y1 = U1/\/ Dot Y2 = U, .., Yy = Uy,

which yields the density
(QW)_V/2 6—(y%+~--+y12,)/2‘

(Recall that the x we defined earlier is now y? + - - - + y2).

The values of 1, ..., y, yielding a particular value of x is the (v —1)-dimensional “surface
area” of a v-dimensional sphere of radius r = y/z. (Another viewpoint is that we are integrat-
ing out the angular variables in the higher dimensional generalizations of polar and spherical
coordinates.) As in the 1, 2, and 3-dimensional cases, we obtain this by differentiating the
volume. We claim the volume V,,(r) is given by

27TV/2
V,(r) = ——=r".
") ="
The formula holds for » =1 (and 2 and 3), so we apply induction. Assume the formula for
v — 1. Then by cross sections

V,(r) = r"V,(1)=1r" /_l V,_1(V1 — s?) ds

1
1 (v—1)/2
= r”/ 2 (1 —s*)=1/2 s

1 (v =D0((v = 1)/2)
27T(V_1)/2

— gV ' —82 (v—=1)/2 s.
RGO ), 2

We may evaluate the integral via a beta distribution integral (o« = 1/2, § = (v + 1)/2) by
substituting ¢t = s

v 2r(v=1)/2 L i
Viir) = r (V—l)r((l/—l)/2)/0t /(1—t)( )/2 gt
_ 2m(v=1)/2 L(1/2)0((v+1)/2)  2xv/2 ;
—DIO((v—1)/2) T(w+2)/2)  vT(w/2)

where we have used I'(1/2)y/m and I'(a) = (a — 1)I'(w — 1) (twice). Differentiation yields

27TV/2 v—1

T(v/2)
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Hence the density function in terms of r is

2 v—1_-—12/2

22T (v)2)

(You might note that this is twice the density function for the normal distribution when
v = 1, the binomial case. The factor 2 arises because we implicitly assumed r > 0.) Our
final transformation is z = 2. We obtain density function

1
v/2—1_—x/2
ENO

which is the density function for the y? distribution with v degrees of freedom.

Density Functions of Quotients of Random Variables

In the next two sections, we will compute density functions for the ratios of random variables
with known densities. In this section we derive an expression for such a density function.
Let X be a random variable with density function f(x) and Y be a positive random variable
with density function g(y). In terms of the variable w, the cumulative distribution function

of W=X/Y is o
/0 /_: f(@)g(y) dz dy.

By the fundamental theorem of calculus, the density function for W is
d 0o wy o q wy 0o
[ t@ew s dy= [T [ gty dray = [ gt o
dw Jo J o dw ) o 0

The t Distribution
We begin with a normally distributed population. We write

T —
a/vn

t= .
s/o

Then (T — p)/(0/+/n) has the standard normal distribution. Notation will be simplified by
letting v = n— 1 be the degrees of freedom. By transforming the x? density for (n—1)s?/o?,
we obtain the following for the density for y = s/o:

VV/Z

v—1_-vy?/2
—_—— e .
/21T (1 /2)"

From the previous section on quotients, the density function for ¢ is
v/2

/OO 1 6_t2y2/2 1% y
0 V2r 2012711 (v/2)

v/2

14 & 2 2
dy = / ue—(t +v)y? /2 du.
Y= v (w2) Jo ! Y
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Substituting u = (t* + v)y*/2, we obtain

v/2 v—1)/2 00
vv/ 201/ / W -V2 0= gy,
V2 22710 (1 )2) (82 + )02
/2 9(v=1)/2 I‘(( N 1)/2) F((l/ + 1)/2) - 2 —(v+1)/2
= I/ R S —— J—
/2m 201210 (v )2) (82 + v) WD/ [(v/2)\/mv v ’

which is the density function for the ¢ distribution.

The F' Distribution

s3/03
size ny from a normal distribution with variance o2. The density function for (ny — 1)s?/o?
is y2 with n; — 1 degrees of freedom. As in the previous section, we let v, = n, — 1. By
transformation, the density function for si /o7 is

We derive the distribution of f = where s? is the sample variance from a sample of

I/k/2
Vi

vi/2—1 _—viy/2
wll (1/2) Y C

From the section on density functions of quotients, we see that the density function for f is
given by

0 Vllfl/2 ; ) V21/2/2 ) )
v1/2—1 ,—v1 fy/2 v2/2=1o=12y/2y, ]
/0 T oy e 22T (1py2) Y C VY
vi/2. v2/2 00
_ o V1/2—1/ yitve)2=te=nfrvy/2 gy,
2(V1+V2)/2F (V1/2) I (1/2/2) 0

We could substitute u = (14 f + 1) y/2, which yields a gamma function integral. Instead,
we make use of gamma distribution integrals to obtain

v1/2 wva/2
1/1/2/

v, . ) 9 (v1+12)/2
v1/2—1 F 2
o(witre)/2T (V1/2)F(V2/2) <V1f+1/2) ((Vl +V2)/ )

_ I'((v1 +12)/2) (ﬂ)”lm f=2)/2
F(V1/2)F(V2/2> Vs (1_|_V1f/y2)('/1+1/2)/2’

which is the density function for the F' distribution.
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