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We give a detailed sketch of how the exponential, Poisson, gamma, beta, normal, χ2, t,
and F distributions arise in “natural” ways. Our only prerequisite distributions will be the
binomial distribution and the uniform distribution on [0, 1]. The details of the (more than)
healthy dose of multivariable calculus along the way may certainly be slurred over by those
looking for a sense of how the distributions arise.

The Exponential Distribution

Suppose we model waiting time by a “memoryless” random variable, meaning that the wait
from some instant until the next occurrence does not depend upon when the last occurrence
was. In mathematical terms, we mean

P (t > t1|t > t0) = P (t > t1 − t0),

where t1 ≥ t0 ≥ 0. If f(t) denotes the density function of such a random variable, then

∫∞
t1
f(t) dt

∫∞
t0
f(t) dt

=

∫ ∞

t1−t0
f(t) dt. (1)

Let G(t) =
∫∞
t
f(s) ds. Then (1) implies G(a+ b) = G(a)G(b). With a moderate amount of

work, one may prove that such a function G that is also continuous must be an exponential
function. Because G(t) is a decreasing function of t, we may write G(t) in the form e−t/β for
some positive parameter β. Noting that G(t) = G(0)−

∫ t

0
f(s) ds and using the fundamental

theorem of calculus, f(t) = −G′(t) =
1

β
e−t/β . This is the density function for the exponential

distribution.
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The Poisson Distribution

Consider a binomial random variable with enormous n and miniscule p, for instance modeling
the number of customers at a store or accidents at a busy intersection. Specifically, we
consider the behavior of binomial random variables with fixed λ = np as n goes to ∞. If X
is the number of occurrences, then we have

lim
n→∞

P (X = x) = lim
n→∞

(

n

x

)

px(1− p)n−x

= lim
n→∞

n(n− 1) · · · (n− x+ 1)

x!

(

λ

n

)x(

1− λ

n

)n−x

=
λx

x!
lim
n→∞

n(n− 1) · · · (n− x+ 1)

nx

(

1− λ

n

)n(

1− λ

n

)−x

=
λx

x!
· 1 · e−λ · 1 =

λx

x!
e−λ,

which is the Poisson distribution. Observe that
∑∞

n=0 λ
x/x! is the Taylor series at 0 for eλ.

If we have Poisson random variables X1 and X2 with means λ1 and λ2, then we can think
of λ1 ≈ n1p and λ2 ≈ n2p. Now the sum of binomial random variables with common p is
binomial, suggesting that the sum of X1 and X2 should be Poisson with mean λ1 + λ2. In
fact,

P (X1 +X2 = n) =

n
∑

k=0

P (X1 = k)P (X2 = n− k) =

n
∑

k=0

λk1
k!
e−λ1

λn−k2

(n− k)!
e−λ2

=
e−(λ1+λ2)

n!

n
∑

k=0

(

n

k

)

λk1λ
n−k
2 =

e−(λ1+λ2)

n!
(λ1 + λ2)

n .

Suppose we have a Poisson random variable with mean occurrence rate λ per unit time,
so that the number of arrivals in time t has a Poisson distribution Xt with mean λt. Suppose
we want, not the distribution of the number of occurrences over a time t, but the wait T
until the next occurrence. Then the cumulative distribution function of T is given by

P (T ≤ t) = P (Xt ≥ 1) = 1− P (Xt = 0) = 1− e−λt.

Its derivative is the density function, namely λe−λt. In, other words the waiting time has an
exponential distribution with β = 1/λ.

Conversely, given an exponential density function with parameter λ, the probability of
no arrival within a time t is e−λt. We proceed by induction. Assume that the probability of
exactly n arrivals is (λt)ne−λt/n! for all t > 0. Then, conditioning on the first arrival being
at time τ , the probability of exactly n+ 1 arrivals within a time t is

∫ t

0

λe−λτ · (λ(t− τ))n

n!
e−λ(t−τ) dτ = e−λt

∫ t

0

λn+1(t− τ)n

n!
dτ = e−λt · λ

n+1tn+1

(n + 1)!
=

(λt)n+1

n+ 1!
e−λt.
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The Gamma Function

When evaluating the mean and variance for the exponential distribution, one evaluates the
integrals

∫ ∞

0

t
1

β
e−t/β dt and

∫ ∞

0

t2
1

β
e−t/β dt.

Substituting x = t/β, one obtains the integrals

β

∫ ∞

0

x e−x dx and β2

∫ ∞

0

x2 e−x dx. (2)

With these integrals in mind, we define the gamma function

Γ(α) =

∫ ∞

0

xα−1e−x dx,

which converges for α > 0. It is easy to verify that Γ(1) = 1. For α > 1, integration by parts
yields Γ(α) = (α−1)Γ(α−1). Thus, Γ(n) = (n−1)! for n = 1, 2, . . .. It immediately follows
from (2) that the mean and variance of the exponential distribution are β and 2β2−β2 = β2,
respectively.

We now show that Γ(1/2) =
√
π and hence that

Γ(n+ 1/2) =
1 · 3 · 5 · · · (2n− 1)

2n
√
π =

(2n)!

22n · n!
√
π.

The substitution x = u2/2 leads to

Γ(1/2) =

∫ ∞

0

x−1/2e−x dx =

∫ ∞

0

√
2e−u

2/2 du =

∫ ∞

−∞
e−u

2/2/
√
2 du.

Thus,

[Γ(1/2)]2 =

∫ ∞

−∞
e−u

2/2/
√
2 du ·

∫ ∞

−∞
e−v

2/2/
√
2 dv =

1

2

∫ ∞

−∞

∫ ∞

−∞
e−(u2+v2)/2 du dv.

This is an integral over the uv-plane, which becomes easy if we change to polar coordinates.
Then

[Γ(1/2)]2 =
1

2

∫ 2π

0

∫ ∞

0

e−r
2/2r dr dθ =

1

2

∫ 2π

0

dθ = π,

and Γ(1/2) =
√
π.

In a heuristic sense, the gamma function should be thought of as an extension of (n−1)!
to non-integral values of n.
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The Gamma Distribution

If the waiting time to the next occurrence has an exponential distribution, then the waiting
time until the nth occurrence is the sum of n identical, independent exponentially-distributed
random variables. This distribution will turn out to be a particular case (α = n) of the
gamma distribution, which has density function

1

βαΓ(α)
xα−1e−x/β, x > 0, α > 0, β > 0.

Upon substituting u = x/β, we note that

∫ ∞

0

1

βαΓ(α)
xα−1e−x/β dx =

1

Γ(α)

∫ ∞

0

uα−1e−u du = 1.

The exponential distribution is the special case α = 1. We have just shown that
∫ ∞

0

xα−1+ke−x/β dx = βα+kΓ(α + k),

so the mean αβ and variance αβ2 for a gamma distribution follow easily.
We now show that the sum of n independent random variables with gamma distributions

with parameters αk and β has a gamma distribution with parameters α1+ · · ·+αn and β. In
particular, this will prove our claim for the sum of exponential random variables. Moment
generating functions provide a fairly easy way to prove this. However, we will instead take
a direct approach. By iteration or induction, it suffices to prove the case n = 2. Let x and
y denote the values from the original gamma distributions and let w denote the value of the
sum. Then the cumulative distribution function for the sum is given by

∫ w

0

∫ w−x

0

1

βα1Γ(α1)
xα1−1e−x/β

1

βα2Γ(α2)
yα2−1e−y/β dy dx.

We will change variables in the integral to s = x+ y and u = x/(x+ y). Solving for x and y,
we get x = su, y = s(1− u). Our domain 0 ≤ x, 0 ≤ y, x+ y ≤ w transforms to 0 ≤ s ≤ w,
0 ≤ u ≤ 1. The jacobian matrix (“chain rule factor”) for this transformation is

∣

∣

∣

∣

∣

∣

∣

∣

∣

det











∂x

∂s

∂x

∂u

∂y

∂s

∂y

∂u











∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

det





u s

1− u −s





∣

∣

∣

∣

∣

∣

= s,

so that dx dy = s du ds. We crunch out the algebra for the substitution and obtain that the
cumulative distribution function equals

∫ w

0

∫ 1

0

1

βα1+α2Γ(α1)Γ(α2)
sα1+α2−1uα1−1(1− u)α2−1e−s/β du ds

=
1

βα1+α2Γ(α1)Γ(α2)

∫ w

0

sα1+α2−1e−s/β ds ·
∫ 1

0

uα1−1(1− u)α2−1 du.
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The second integral is just a constant c(α1, α2) which depends on α1 and α2. Therefore, the
cumulative distribution function simplifies to

c(α1, α2)

βα1+α2Γ(α1)Γ(α2)

∫ w

0

sα1+α2−1e−s/β ds.

The density function is just the derivative of the cumulative distribution function. Hence,
by the fundamental theorem of calculus, the density function equals

c(α1, α2)

βα1+α2Γ(α1)Γ(α2)
wα1+α2−1e−w/β.

Up to the constant, this is the gamma distribution with parameters α1 +α2 and β, which is
enough to show it must be this gamma distribution. Since the constant is unique, we must
have

c(α1, α2) =
Γ(α1)Γ(α2)

Γ(α1 + α2)
.

For (unnecessary) good measure, we show this identity directly as well. We have

Γ(α + β)

∫ 1

0

xα−1(1− x)β−1 dx =

∫ ∞

0

yα+β−1e−y dy ·
∫ 1

0

xα−1(1− x)β−1 dx

=

∫ ∞

0

∫ 1

0

yα+β−1e−yxα−1(1− x)β−1 dx dy =

∫ ∞

0

∫ 1

0

(xy)α−1((1− x)y)β−1e−yy dx dy.

We now make the substitution u = xy, v = (1− x)y. The jacobian (“chain rule factor”) for
this transformation is

∣

∣

∣

∣

∣

∣

∣

∣

∣

det











∂u

∂x

∂u

∂y

∂v

∂x

∂v

∂y











∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

det





y x

−y 1− x





∣

∣

∣

∣

∣

∣

= y,

so that du dv = y dx dy. Every pair of positive u and v corresponds to exactly one pair x
and y with 0 < x < 1 and 0 < y. Thus,

Γ(α + β)

∫ 1

0

xα−1(1− x)β−1 dx =

∫ ∞

0

∫ ∞

0

uα−1vβ−1e−(u+v) du dv

=

∫ ∞

0

uα−1e−u du ·
∫ ∞

0

vβ−1e−v dv = Γ(α)Γ(β).

Now suppose we have exponential waiting time. Then the probability of exactly n oc-
currences in time t is the probability of at least n or occurrences minus the probability of at
least n+ 1 occurrences. In terms of the gamma distribution, this is

∫ t

0

1

βn(n− 1)!
xn−1e−x/β dx−

∫ t

0

1

βn+1n!
xne−x/β dx.

Perform one step of integration by parts on the first integral. The remaining integral equals

that of the second integral. This yields that the probability of n occurrences is
1

βnn!
e−t/β ,

i.e. we have a Poisson distribution with λ = 1/β.
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The Beta Distribution

Suppose we have m + n + 1 independent random variables that are uniformly distributed
on (0, 1). We wish to find the distribution of the (m + 1)st smallest value or, equivalently,
the (n + 1)st largest value. This is an example of what is known as order statistics. The
probability that a value from the uniform distribution on (0, 1) is less than x is x. Now,
for a random variable X with density function f(x), view f(x) dx as the “probability”
that X = x, which we add up, i.e. integrate, over an interval to get true probability for a
continuous distribution. The “probability” that x is the (m+1)st smallest value is then the
probability of choosing one variable to equal x, m to be smaller, and n larger,

((m+ n + 1) dx)

(

m+ n

m

)

xm(1− x)n =
(m+ n+ 1)!

m!n!
xm(1− x)n dx.

The generalization of this via gamma functions is the beta distribution, with density

Γ(α+ β)

Γ(α)Γ(β)
xα−1(1− x)β−1, 0 < x < 1, α > 0, β > 0.

Observe that this is a positive function. It will be a density function if

∫ 1

0

Γ(α + β)

Γ(α)Γ(β)
xα−1(1− x)β−1 dx = 1

or, equivalently,

Γ(α + β)

∫ 1

0

xα−1(1− x)β−1 dx = Γ(α)Γ(β).

In the last section, we saw exactly this integral in our derivation of the density for the
sum of gamma distributions.

Stirling’s Approximation

One of several forms of Stirling’s approximation is

n! ∼
√
2π nn+1/2e−n,

where the asymptotic symbol ∼ means here that the ratio has limit 1 as n goes to infinity.
One can get a slightly weaker estimate from applying the trapezoidal and midpoint

estimates to two integrals of the form

∫ n+b

a

ln x dx, (a and b constants).

We will sketch a proof using the gamma distribution. We begin more generally with the
total gamma distribution

1 =

∫ ∞

0

1

Γ(α + 1)
xαe−x dx.

A quick max-min calculation shows that the maximum value of xαe−x occurs at x = α. In
fact, the function drops off rather sharply on both sides of x = α. Chebyshev’s theorem
says that the probability of being within k > 1 standard deviations of the mean is at least
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1− 1/k2. Because [α−α3/5, α+α3/5] represents essentially α1/10 standard deviations of
√
α

from the mean of α + 1, it follows that

Γ(α + 1) ≈
∫ α+α3/5

α−α3/5

xαe−x dx,

where the error in the estimate divided by Γ(α+1) goes to 0 as α goes to infinity. The error
terms in all of our subsequent estimates will share this property.

We now write xαe−x as eα lnx−x. The Taylor series expansion of α ln x−x about x = α is

α lnα− α− 1

2α
(x− α)2 +

1

3α2
(x− α)3 − 1

4α3
(x− α)4 +

1

5α4
(x− α)5 − · · · ,

which converges to α ln x − x on an interval containing [α − α3/5, α + α3/5]. Moreover, the
sum of the terms of degree at least 3 goes (uniformly) to 0 on this interval as α goes to
infinity. Thus,

Γ(α + 1) ≈
∫ α+α3/5

α−α3/5

eα lnα−α−(x−α)2/(2α) dx = ααe−α
∫ α+α3/5

α−α3/5

e−(x−α)2/(2α) dx.

Upon substitution of u = (x− α)/
√
α, this becomes

Γ(α + 1) ≈ αα+1/2e−α
∫ α1/10

−α1/10

e−u
2/2 du.

This integral converges to

∫ ∞

−∞
e−u

2/2 du, which we saw equals
√
2 Γ(1/2) =

√
2π in the

section on the gamma function. The final estimate is Stirling’s approximation,

Γ(α + 1) ∼
√
2π αα+1/2e−α.

An Axiomatic Approach to The Normal Distribution

We proceed to derive the normal distribution along the lines of Gauss, as reported in [1].
Suppose the difference from the mean µ has continuously differentiable density function
f(x − µ). Suppose further that f is an even function and that the sign of f ′(x − µ) is
opposite that of x − µ (i.e. f gets smaller as |x − µ| gets larger). Finally, assume that the
maximal likelihood estimator for µ based on a random sample is the sample mean.

Consider a sample with values 0 and n values (n + 1)y, with sample mean ny. Our
assumptions imply that the maximum value of the joint density

f(−µ) [f((n+ 1)y − µ)]n

occurs at µ = ny. Setting the derivative at µ = ny of this joint density equal to 0, we see
that

f ′(−ny)
f(−ny) = −nf

′(y)

f(y)
.
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Since f ′/f is odd, we have
f ′(ny)

f(ny)
= n

f ′(y)

f(y)

for all integers n. Then
f ′(m

n
y)

f(m
n
y)

= m
f ′( 1

n
y)

f( 1
n
y)

=
m

n

f ′(y)

f(y)

for all integers m and n 6= 0. Continuity implies

f ′(ry)

f(ry)
= r

f ′(y)

f(y)

for all real r. Setting r = 1/y, we see that

f ′(y)

f(y)
= y

f ′(1)

f(1)

(which also holds for y = 0). Writing the negative constant f ′(1)/f(1) as 1/σ2, this differ-
ential equation has solution

f(y) = Ce−
y2

2σ2 .

Since
∫ ∞

−∞
e−

y2

2σ2 dy =
√
2πσ,

C = 1/(
√
2πσ), so that the density for X is

1√
2πσ

e−
(x−µ)2

2σ2 ,

that of the normal distribution with mean µ and variance σ2.

Special Cases of the Central Limit Theorem

In this section, we show how the normal distribution arises naturally as limits of binomial,
Poisson, and gamma distributions. These are special cases of the vitally important central
limit theorem. Because the standard deviation represents a “typical” deviation from the
mean, it is natural to measure the deviation of one value x from the mean in the context of
this particular distribution by how many standard deviations it lies from the mean, i.e. by
its z-score z = (x − µ)/σ. The suggested importance of the z-score is, perhaps, reinforced
by Chebyshev’s theorem which says that the probability of being within k > 1 standard
deviations of the mean is at least 1− 1/k2.

For a binomial random variable X with parameters n and p,

P (X = x) =

(

n

x

)

pxqn−x =
n!

x!(n− x)!
pxqn−x, x = 0, 1, . . . , n,
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where q = 1− p. By Stirling’s approximation,

P (X = x) ≈ nn+1/2

√
2π xx+1/2(n− x)n−x+1/2

pxqn−x.

The mean and standard deviation for the binomial distribution are np and
√
npq, respec-

tively. We make the substitution x = np + z
√
npq (so z is the z-score). Because we are

making the transition to a continuous distribution, we need to include the chain rule fac-
tor dx =

√
npq dz in our estimate. Substituting and simplifying, our approximation for

P (X = x) translates to density function

nn+1

√
2π (np+ z

√
npq)np+z

√
npq+1/2 (nq − z

√
npq)nq−z

√
npq+1/2

pnp+z
√
npq+1/2qnq−z

√
npq+1/2

=
1

√
2π

(

1 + z

√

q

np

)np+z
√
npq+1/2(

1− z

√

p

nq

)nq−z√npq+1/2
.

The Taylor series expansion at 0 of ln(1 + u) is u− u2/2 + u3/3− · · · . Hence,

ln

(

1 + z

√

q

np

)np+z
√
npq+1/2

= (np + z
√
npq + 1/2)

{

z

√

q

np
−

(

z

√

q

np

)2
/

2 +

(

z

√

q

np

)3
/

3− · · ·
}

.

Distributing this out yields the estimate

ln

(

1 + z

√

q

np

)np+z
√
npq+1/2

≈ npz

√

q

np
−np

(

z

√

q

np

)2
/

2+z
√
npq z

√

q

np
= z

√
npq+z2q/2,

with the sum of all remaining terms going to 0 as n goes to infinity. Similarly (replace z

with −z and interchange p and q), ln

(

1− z

√

p

nq

)nq−z√npq+1/2

is approximately

−z√npq + z2p/2

as n goes to infinity. Therefore,

(

1 + z

√

q

np

)np+z
√
npq+1/2 (

1− z

√

p

nq

)nq−z√npq+1/2

≈ ez
√
npq+z2q/2e−z

√
npq+z2p/2 = ez

2/2.

We conclude

P (X = x) ≈ 1√
2π

e−z
2/2
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as n goes to infinity, which is the density function for the standard normal distribution.

A similar derivation from the Poisson distribution is a bit easier. A Poisson distribution
with parameter nλ has mean and variance nλ and probability function p(x) = (nλ)xe−nλ/x!.
We transform to z-scores via x = nλ +

√
nλ z and let n → ∞. When we include the chain

rule factor, the density for a continuous z is approximately

(nλ)nλ+
√
nλ z

(nλ +
√
nλ z)!

e−nλ.

We apply Stirling’s approximation to the factorial, obtaining approximate density

(nλ)nλ+
√
nλ z+1/2

√
2π(nλ+

√
nλ z)nλ+

√
nλz+1/2e−(nλ+

√
nλ z)

e−nλ =
1√
2π

(

1 +
z√
nλ

)−(nλ+
√
nλ z+1/2)

e
√
nλ z.

The Taylor series expansion of

√
nλ z − (nλ+

√
nλ z) ln

(

1 +
z√
nλ

)

is

√
nλ z − (nλ +

√
nλ z)

(

z√
nλ

− z2

2nλ
+

z3

3(nλ)3/2
− · · ·

)

= −z
2

2
+

z3

6
√
nλ

− z4

12nλ
+ · · · .

Noting that

(

1 +
z√
nλ

)−1/2

→ ∞ as n→ ∞, we conclude the density approaches
1√
2π
e−z

2/2.

In the case of the gamma distribution,we will keep β fixed and let α go to infinity. As
before, we can transform to z-scores for the gamma distribution, x = αβ +

√
αβz with

dx =
√
αβ dz, obtaining the density of z is

α1/2

βα−1Γ(α)
(αβ +

√
α βz)α−1e−(αβ+

√
αβz)/β =

αα+1/2

Γ(α + 1)
(1 + z/

√
α)α−1e−(α+

√
αz).

We use Stirling’s approximation, Γ(α + 1) ∼
√
2π αα+1/2e−α, to obtain an asymptotic esti-

mate for the density

1√
2π

(1 + z/
√
α)α−1e−

√
αz =

1√
2π
e(α−1) ln(1+z/

√
α)−

√
αz.

Now

(α− 1) ln(1 + z/
√
α)−

√
α z = (α− 1)(z/

√
α− z2/(2α) + z3/(3α3/2)− · · · )−

√
α z

∼ −z2/2.

Thus, our asymptotic estimate for the density is
1√
2π
e−z

2/2. The special case of replacing α

with nα and letting n→ ∞ is another case of the central limit theorem.
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Moment Generating Functions and the Central Limit Theorem

The moment generating function defined to be MX(t) = E[etX ]. Random variables with
distinct cumulative distribution functions have distinct moment generating functions, though
this is hard to prove. It is easily seen to satisfy MaX+b(t) = ebtMX(at) and, for X and Y
independent MX+Y (t) = MX(t)MY (t). If X has mean µ and variance σ2, then MX(0) = 1,
M ′

X(0) = µ, and M ′′
X(0) = E[X2] = σ2 + µ2. The cumulant moment generating function is

ψM(t) = lnMX(t). We have ψM(0) = 0, ψ′
M (0) = µ, and ψ′′

M(0) = σ2.
The moment generating function for the standard normal random variable is

∫ ∞

−∞
etz

1√
2π

e−z
2/2 dz = et

2/2

∫ ∞

−∞

1√
2π

e−(z−t)2/2 dz = et
2/2

∫ ∞

−∞

1√
2π

e−u
2/2 du = et

2/2.

A general normal random variable X has the form X = µ+σZ, where Z is standard normal.
Thus, the moment generating function of a general normal distribution is eµt+σ

2t2/2.
If X is normal with mean µX and variance σ2

X , and Y is normal with mean µY and
variance σ2

Y , and X and Y are independent, then the moment generating function for X+Y
is

eµX t+σ
2
X t

2/2 eµY t+σ
2
Y t

2/2 = e(µX+µY )t+(σ2X+σ2Y )t2/2,

i.e. X + Y is normal with mean µX + µY and variance σ2
X + σ2

Y .
Now consider an arbitrary random variable X with mean 0 and moment generating

function is defined to be MX(t). Let Xi be independent random variables with the same
distribution as X . Then the moment generating function for (X1 + · · ·+Xn)/

√
n is

[MX(t/
√
n)]n = enψX(t/

√
n).

Applying l’Hôpital’s rule,

lim
n→∞

nψX(t/
√
n) = lim

n→∞

ψX(t/
√
n)

1/n
= lim

n→∞

ψ′
X(t/

√
n)(−t/(2n3/2))

−1/n2
= lim

n→∞

tψ′
X(t/

√
n)

2/
√
n

= lim
n→∞

ψ′′
X(t/

√
n)(−t2/(2n3/2))

−1/n3/2
= lim

n→∞

t2

2
ψ′′
X(t/

√
n)
t2

2
ψ′′
X(0) =

σ2t2

2
.

Thus,
lim
n→∞

[MX(t/
√
n)]n = eσ

2t2/2,

from which we conclude the limiting distribution of (X1 + · · · + Xn)/
√
n is normal with

mean 0 and variance σ2. When X has mean µ the limiting distribution of the sample mean
(X1+ · · ·+Xn)/n is “asymptotic” to that of a normal distribution with mean µ and variance
σ2/n.

The χ2 Distribution and Sample Variance

We explain how to derive the distribution of the sample variance s2 when the original pop-
ulation has a normal distribution.
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Step 1. Prove the miraculous identity

(n− 1)s2 =

(

x1 − x2√
2

)2

+ · · ·+
(

x1 + x2 + · · ·+ xk−1 − (k − 1)xk√
k2 − k

)2

+ · · ·+
(

x1 + x2 + · · ·+ xn−1 − (n− 1)xn√
n2 − n

)2

. (3)

The coefficient of x2k in (n− 1)s2 is

(n− 1)2

n2
+ (n− 1)

1

n2
=
n− 1

n
.

The coefficient of x2k in the right-hand side of (3) is

(k − 1)2

k2 − k
+

1

(k + 1)2 − (k + 1)
+ · · ·+ 1

n2 − n

=
k − 1

k
+

(

1

k
− 1

k + 1

)

+ · · ·+
(

1

n− 1
− 1

n

)

=
k − 1

k
+

1

k
− 1

n
=
n− 1

n
.

The coefficient of xjxk , j < k, in (n− 1)s2 is

2
−2(n− 1)

n2
+ (n− 2)

2

n2
= −2

n
.

The coefficient of xjxk , j < k, in the right-hand side of (3) is

−2(k − 1)

k2 − k
+

2

(k + 1)2 − (k + 1)
+ · · ·+ 2

n2 − n

=
−2

k
+

(

2

k
− 2

k + 1

)

+ · · ·+
(

2

n− 1
− 2

n

)

=
−2

k
+

2

k
− 2

n
= −2

n
.

This completes the proof of (3).

Step 2. Show that {(X1 + X2 + · · · + Xk−1 − (k − 1)Xk)/
√
k2 − k}2≤k≤n have mean 0

and variance σ2, and along with (X1 +X2 + · · ·+Xn)/n are independent, normal random
variables.

In general, for independent random variables X1, . . . , Xn, with means µ1, . . . , µn and
variances σ2

1, . . . , σ
2
n, the mean and variance of a1X1 + · · ·+ anXn are a1µ1 + · · ·+ anµn and

a21σ
2
1 + · · · + a2nσ

2
n, respectively. Moreover, a1X1 + · · · + anXn is normal if X1, . . . , Xn are.

We are left to show the independence.
The joint density of X1, . . . , Xn is

n
∏

k=1

1√
2πσ

e
−
(xk − µ)2

2σ2 =
1

(2π)n/2σn
e
−

n
∑

k=1

x2k − 2µ
n
∑

k=1

xk + nµ2

2σ2 .
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Let
Y1 = (X1 +X2 + · · ·+Xn)/

√
n

and
Yk = (X1 +X2 + · · ·+Xk−1 − (k − 1)Xk)/

√
k2 − k

for k = 2, . . . , n. Let x and y denote the column vectors of the xk and yk, respectively. Then
y = Qx, where Q is the orthogonal matrix (Q−1 = Qt)

Q =















































1√
n

1√
n

1√
n

. . .
1√
n

1√
2

− 1√
2

0 . . . 0

. . .

1√
k2 − k

1√
k2 − k

. . .
1√

k2 − k
− k − 1√

k2 − k
0 . . . 0

. . .

1√
n2 − n

1√
n2 − n

. . .
1√

n2 − n
− n− 1√

n2 − n















































.

The jacobian of the transformation from x to y is | detQ−1| = 1. Observe that
n
∑

k=1

xk =
√
ny1

and
n

∑

k=1

x2k = xtx = xtQtQx = yty =
n

∑

k=1

y2k.

Therefore the joint density function for x transforms to

1

(2π)n/2σn
e
−

n
∑

k=1

y2k − 2
√
nµy1 + nµ2

2σ2 =
1√
2πσ

e
−
(y1 −

√
nµ)2

2σ2

n
∏

k=2

1√
2πσ

e
−
y2k
2σ2 ,

showing that Y1, . . . , Yn are independent. Furthermore, transformations g1(Y1), . . . , gn(Yn)
of Y1, . . . , Yn are independent.

Step 3. Show that for Y normal with mean 0 and variance σ2, the distribution of Y 2/σ2

is χ2 with 1 degree of freedom.
Let w = y2/σ2 or y = σ

√
w. Then dy = σ/(2

√
w)dw. Hence

1√
2πσ

e−y
2/(2σ2)dy =

1

2
√
2π

w−1/2e−w/2dw =
1

2

1

21/2Γ(1/2)
w−1/2e−w/2dw.

However, this transformation is 2-1, namely both y and −y lead to the same value of w. In
other words, two different y-intervals will lead to the same w-interval. It follows that we
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must double the above expression to find the density function for w,

1

21/2Γ(1/2)
w−1/2e−w/2,

which is the density function of the χ2 distribution with 1 degree of freedom.

Step 4. Show that the sum of n − 1 independent χ2 random variables is χ2 with n − 1
degrees of freedom.

Observe that (n − 1)s2/σ2 is the sum of n− 1 independent χ2 random variables with 1
degree of freedom. Such a χ2 distribution is a gamma distribution with α = 1/2, β = 2.
This step is now simply a special case of our more general result on the sum of gamma
distributions.

The χ2 Distribution and Multinomial Distributions

We show that the χ2 distribution arises as a limit of multinomial distributions. The method
will be essentially a higher dimensional generalization of our derivation of the normal dis-
tribution as a limit of binomial distributions. It will require several intermediate trans-
formations. We have ν + 1 mutually exclusive states with the probability state k occurs
pk, k = 1, 2, . . . , ν + 1, with

∑ν+1
k=1 pk = 1. In n independent trials, the probability of xk

occurrences of state k for every k is the multinomial probability

n!

x1! · · ·xν+1!
px11 · · · pxν+1

ν+1 .

By Stirling’s approximation, this is approximately

(2π)−ν/2
nn+1/2

x
x1+1/2
1 · · ·xxν+1+1/2

ν+1

px11 · · · pxν+1

ν+1

= (2πn)−ν/2
(

x1
np1

)−x1−1/2

· · ·
(

xν+1

npν+1

)−xν+1−1/2

p
−1/2
1 · · · p−1/2

ν+1 .

The variance of an individual xk is
√

npk(1− pk). With this in mind, we transform to
the individual z-score variables zk defined by

xk = npk + zk
√

npk(1− pk).

(The computations would turn out to be a bit simpler by defining xk = npk + zk
√
npk, but

there is no way to know this except in hindsight.) Note that this is only a ν-dimensional
problem because

∑ν+1
k=1 xk = n, which translates to

∑ν+1
k=1 zk

√

pk(1− pk). = 0. Once again,
we need the jacobian of the transformation for our translation to continuous variables zk.
Here, this is just the product of

dxk
dzk

=
√

npk(1− pk), k = 1, . . . , ν.
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The approximation for multinomial probability turns into the density function

(2π)−ν/2p
−1/2
ν+1

ν+1
∏

k=1

(

1 + zk

√

1− pk
npk

)−npk−zk
√
npk(1−pk)−1/2 ν

∏

k=1

√

1− pk

= (2π)−ν/2p
−1/2
ν+1

ν+1
∏

k=1

(

1 + zk

√

1− pk
npk

)−npk ν+1
∏

k=1

(

1 + zk

√

1− pk
npk

)−zk
√
npk(1−pk)

×
ν+1
∏

k=1

(

1 + zk

√

1− pk
npk

)−1/2 ν
∏

k=1

√

1− pk.

As n goes to infinity, each term in the third product goes to 1 and each term in the second
to e−(1−pk)z2k . We expand the natural logarithm of the first product using the Taylor series
of ln(1 + u) = u− u2/2 + u3/3− · · · to obtain

ν+1
∑

k=1

ln

(

1 + zk

√

1− pk
npk

)−npk

=
ν+1
∑

k=1

−npk ln
(

1 + zk

√

1− pk
npk

)

=
ν+1
∑

k=1

−
(

zk
√

npk(1− pk)− z2k(1− pk)
/

2 + z3k
(1− pk)

3/2

√
npk

/

3− · · ·
)

.

The sum of the terms beyond the second goes to 0 as n goes to infinity. The first term sums
to 0 by our constraint on zk. We conclude that, as n goes to infinity, the density function
has limiting value

(2π)−ν/2p
−1/2
ν+1 e

−
ν+1
∑

k=1
(1−pk)z2k/2

ν
∏

k=1

√

1− pk.

The term in the exponent

ν+1
∑

k=1

(1− pk)z
2
k =

ν+1
∑

k=1

(xk − npk)
2

npk

is the χ2 statistic that we want; call it x. We need to combine all of the multivariate densities
with a common value of x to obtain its density function. We first let wk =

√
1− pk zk. Re-

calling that only z1, . . . , zν are our independent variables, we transform the density function
to

(2π)−ν/2p
−1/2
ν+1 e

−
ν+1
∑

k=1

w2
k/2
.

Now

wν+1 =
−w1

√
p1 − · · · − wν

√
pν√

pν+1
.

Note that the length of the vector [−√
p1, . . . ,−

√
pν ] is

√
p1 + · · ·+ pν =

√
1− pν+1. Let Q

be a ν × ν orthogonal matrix with first row

[−√
p1/

√

1− pν+1, . . . ,−
√
pν/

√

1− pν+1].
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Let [u1, . . . , uν]
t = Q[w1, . . . , wν ]

t. Then, as in the last section, the jacobian of this transfor-
mation is | detQ−1| = 1 and

w2
1 + · · ·+ w2

ν = u21 + · · ·+ u2ν .

In terms of the new variables u1, . . . , uν, the density function is

(2π)−ν/2p
−1/2
ν+1 e

−
(

ν
∑

k=1

u2k+u
2
1(1−pν+1)/pν+1

)

/

2
= (2π)−ν/2p

−1/2
ν+1 e−(u

2
1/pν+1+u22+···+u2ν)/2.

The penultimate transformation is to let

y1 = u1/
√
pν+1, y2 = u2, . . . , yν = uν ,

which yields the density

(2π)−ν/2 e−(y
2
1+···+y2ν)/2.

(Recall that the x we defined earlier is now y21 + · · ·+ y2ν).
The values of y1, . . . , yν yielding a particular value of x is the (ν−1)-dimensional “surface

area” of a ν-dimensional sphere of radius r =
√
x. (Another viewpoint is that we are integrat-

ing out the angular variables in the higher dimensional generalizations of polar and spherical
coordinates.) As in the 1, 2, and 3-dimensional cases, we obtain this by differentiating the
volume. We claim the volume Vν(r) is given by

Vν(r) =
2πν/2

νΓ(ν/2)
rν .

The formula holds for ν = 1 (and 2 and 3), so we apply induction. Assume the formula for
ν − 1. Then by cross sections

Vν(r) = rnVν(1) = rν
∫ 1

−1

Vν−1(
√
1− s2) ds

= rν
∫ 1

−1

2π(ν−1)/2

(ν − 1)Γ((ν − 1)/2)
(1− s2)(ν−1)/2 ds

= rν
2π(ν−1)/2

(ν − 1)Γ((ν − 1)/2)

∫ 1

0

2(1− s2)(ν−1)/2 ds.

We may evaluate the integral via a beta distribution integral (α = 1/2, β = (ν + 1)/2) by
substituting t = s2:

Vν(r) = rν
2π(ν−1)/2

(ν − 1)Γ((ν − 1)/2)

∫ 1

0

t−1/2(1− t)(ν−1)/2dt

= rν
2π(ν−1)/2

(ν − 1)Γ((ν − 1)/2)

Γ(1/2)Γ((ν + 1)/2)

Γ((ν + 2)/2)
=

2πν/2

νΓ(ν/2)
rν ,

where we have used Γ(1/2)
√
π and Γ(α) = (α− 1)Γ(α− 1) (twice). Differentiation yields

2πν/2

Γ(ν/2)
rν−1.
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Hence the density function in terms of r is

2

2ν/2Γ(ν/2)
rν−1e−r

2/2.

(You might note that this is twice the density function for the normal distribution when
ν = 1, the binomial case. The factor 2 arises because we implicitly assumed r > 0.) Our
final transformation is x = r2. We obtain density function

1

2ν/2Γ(ν/2)
xν/2−1e−x/2,

which is the density function for the χ2 distribution with ν degrees of freedom.

Density Functions of Quotients of Random Variables

In the next two sections, we will compute density functions for the ratios of random variables
with known densities. In this section we derive an expression for such a density function.
Let X be a random variable with density function f(x) and Y be a positive random variable
with density function g(y). In terms of the variable w, the cumulative distribution function
of W = X/Y is

∫ ∞

0

∫ wy

−∞
f(x)g(y) dx dy.

By the fundamental theorem of calculus, the density function for W is

d

dw

∫ ∞

0

∫ wy

−∞
f(x)g(y) dx dy =

∫ ∞

0

d

dw

∫ wy

−∞
f(x)g(y) dx dy =

∫ ∞

0

f(wy)g(y)y dy.

The t Distribution

We begin with a normally distributed population. We write

t =

x− µ

σ/
√
n

s/σ
.

Then (x− µ)/(σ/
√
n) has the standard normal distribution. Notation will be simplified by

letting ν = n−1 be the degrees of freedom. By transforming the χ2 density for (n−1)s2/σ2,
we obtain the following for the density for y = s/σ:

ν ν/2

2ν/2−1Γ(ν/2)
yν−1e−νy

2/2.

From the previous section on quotients, the density function for t is

∫ ∞

0

1√
2π
e−t

2y2/2 ν ν/2

2ν/2−1Γ(ν/2)
yν−1e−νy

2/2y dy =
ν ν/2√

2π 2ν/2−1Γ(ν/2)

∫ ∞

0

yνe−(t2+ν)y2/2 dy.
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Substituting u = (t2 + ν)y2/2, we obtain

ν ν/2√
2π 2ν/2−1Γ(ν/2)

2(ν−1)/2

(t2 + ν)(ν+1)/2

∫ ∞

0

u(ν−1)/2e−udu

=
ν ν/2√

2π 2ν/2−1Γ(ν/2)

2(ν−1)/2

(t2 + ν)(ν+1)/2
Γ((ν + 1)/2) =

Γ((ν + 1)/2)

Γ(ν/2)
√
πν

(

1 +
t2

ν

)−(ν+1)/2

,

which is the density function for the t distribution.

The F Distribution

We derive the distribution of f =
s21/σ

2
1

s22/σ
2
2

, where s2k is the sample variance from a sample of

size nk from a normal distribution with variance σ2
k. The density function for (nk − 1)s2k/σ

2
k

is χ2 with nk − 1 degrees of freedom. As in the previous section, we let νk = nk − 1. By
transformation, the density function for s2k/σ

2
k is

ν
νk/2
k

2νk/2Γ (νk/2)
yνk/2−1e−νky/2.

From the section on density functions of quotients, we see that the density function for f is
given by

∫ ∞

0

ν
ν1/2
1

2ν1/2Γ (ν1/2)
(fy)ν1/2−1e−ν1fy/2

ν
ν2/2
2

2ν2/2Γ (ν2/2)
yν2/2−1e−ν2y/2y dy

=
ν
ν1/2
1 ν

ν2/2
2

2(ν1+ν2)/2Γ (ν1/2) Γ (ν2/2)
f ν1/2−1

∫ ∞

0

y(ν1+ν2)/2−1e−(ν1f+ν2)y/2 dy.

We could substitute u = (ν1f + ν2) y/2, which yields a gamma function integral. Instead,
we make use of gamma distribution integrals to obtain

ν
ν1/2
1 ν

ν2/2
2

2(ν1+ν2)/2Γ (ν1/2) Γ (ν2/2)
f ν1/2−1

(

2

ν1f + ν2

)(ν1+ν2)/2

Γ ((ν1 + ν2) /2)

=
Γ ((ν1 + ν2) /2)

Γ (ν1/2) Γ (ν2/2)

(

ν1
ν2

)ν1/2 f (ν1−2)/2

(1 + ν1f/ν2)
(ν1+ν2)/2

,

which is the density function for the F distribution.
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