Problem Set 11: Functional Equations

EG1 Find all complex-valued functions for which \(f(z) + zf(-z) = 1 + z \) for all \(z \in \mathbb{C} \).

EG2. Find all functions \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that \(f(x^2) - f(y^2) = (x + y)[f(x) - f(y)] \).

EG3. Suppose \(f \) and \(g \) are nonconstant, differentiable, real-valued functions on \(\mathbb{R} \). Furthermore, suppose that for each pair of real numbers \(x \) and \(y \),

\[
\begin{align*}
f(x + y) &= f(x)f(y) - g(x)g(y), \\
g(x + y) &= f(x)g(y) + g(x)f(y).
\end{align*}
\]

If \(f'(0) = 0 \), prove that \((f(x))^2 + (g(x))^2 = 1 \) for all \(x \).

1. Given a constant \(C \), find all functions \(f \) such that \(f(x) + C f(2 - x) = (x - 1)^3 \) for all \(x \).

2. Given

\[
\begin{align*}
f(x) &= \frac{u(x + 1) + u(x - 1)}{2}, \\
g(x) &= \frac{u(x + 4) + u(x - 4)}{2},
\end{align*}
\]

express \(u(x) \) in terms of \(f \) and \(g \).

3. Find all functions \(f : \mathbb{R} \rightarrow \mathbb{R} \) such that \(f(x^2 - y^2) = (x - y)[f(x) + f(y)] \).

4. Establish necessary and sufficient conditions on the constant \(k \) for the existence of a continuous real-valued function \(f(x) \) satisfying \(f(f(x)) = kx^9 \) for all real \(x \).

5. Determine \(f(x) \), if, for all real \(x \) and \(y \), \(f(xy) = f(x)f(y) - x - y \).

6. Find all real functions \(f \) such that \(f(x + 2) = f(x) \) and \(f'(x) = f(x + 1) - 2 \) for all real \(x \).