Dr. Friedman’s Calculus III Notes, or
I’m looking at an integral - so what the heck do I do now?

Integrals on curves (one dimensional integrals)

1. I’m integrating a function: $\int_C f(x, y, z) \, dr$.

 (a) There’s only one option: parameterize and evaluate:
 $$\int_C f(x, y, z) \, dr = \int_a^b f(x(t), y(t), z(t)) \left| \frac{dr}{dt} \right| \, dt$$

2. I’m integrating a vector field: $\int_C F \cdot dr$ or $\int_C Mdx + Ndy + Pdz$.

 (a) C is not a closed curve
 i. F is not conservative
 A. Your only option is to parameterize and integrate: $\int_C F \cdot dr = \int_a^b F \cdot \frac{dr}{dt} \, dt$
 ii. F is conservative: $F = \nabla f$
 A. Option 1: You can parameterize and integrate: $\int_C F \cdot dr = \int_a^b F \cdot \frac{dr}{dt} \, dt$
 B. Option 2: You can find the potential and use the fundamental theorem of line integrals: $\int_C F \cdot dr = f(r(b)) - f(r(a))$
 C. Option 3: You can parametrize and integrate but using a different path with the same endpoints.

 (b) C is a closed curve
 i. F is not conservative
 A. Option 1: Parameterize and integrate: $\int_C F \cdot dr = \int_a^b F \cdot \frac{dr}{dt} \, dt$
 B. Option 2: If C is a simple closed curve in the plane and F is a vector field in the plane, you could use Green’s theorem: $\int_C Mdx + Ndy = \int_R \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \, dA$ if C is the boundary of R and C is oriented counterclockwise
 C. Option 3: If C is a closed curve in space and it is the boundary of a surface S, then you can use Stokes’s theorem: $\int_C F \cdot dr = \oint_S (\nabla \times F) \cdot N \, dS$, where N satisfies the right hand rule with respect to the orientation of C.
 ii. F is conservative
 A. The integral is 0.

Integrals on surfaces (two dimensional integrals)

1. I’m integrating a function: $\iint_S f(x, y, z) \, dS$.

1
(a) There’s only one option: parameterize and evaluate:

\[\iint_S f(x, y, z) \, dS = \iint_R f(x(u, v), y(u, v), z(u, v)) \left| \frac{dr}{du} \times \frac{dr}{dv} \right| \, dA, \]

where \(R \) is the parametrizing region in the \(u-v \) plane.

2. I’m integrating a flux integral of a vector field \(\iint F \cdot N \, dS \)

 (a) \(S \) is not orientable
 i. The integral cannot be well-defined

 (b) \(S \) is orientable but not the boundary of anything
 i. Parametrize and evaluate:

\[\iint_S F(x, y, z) \cdot N \, dS = \iint_R F \cdot \left(\frac{dr}{du} \times \frac{dr}{dv} \right) \, dA, \]

 ii. In the rare case that \(F \) is the curl of another vector field, say \(F = \nabla \times W \), then you could use Stokes’s theorem, but this doesn’t come up very often.

 (c) \(S \) is the boundary of a solid \(Q \).
 i. Option 1: Parametrize and evaluate:

\[\iint_S F \cdot N \, dS = \iint_R F \cdot \left(\frac{dr}{du} \times \frac{dr}{dv} \right) \, dA, \]

 ii. Option 2: Use the divergence theorem

\[\iint_S F \cdot N \, dS = \iiint_Q \nabla \cdot F \, dV, \]

where \(N \) is the normal pointing out of the solid. If you want to compute flux into the solid, change the sign of the answer.

Integrals on solids (three dimensional integrals)

1. We only integrate functions on solids. Use chapter 14 methods to evaluate \(\iiint_Q f(x, y, z) \, dV \)

2. If you happen to know that the function \(f \) is a divergence \(f = \nabla \cdot F \), then you could use the divergence theorem \(\iiint_Q \nabla \cdot F \, dV = \iint_S F \cdot N \, dS \), where \(S \) is the boundary of \(Q \) and \(N \) is the outward pointing normal, but you’d almost never do this unless it really simplifies nicely for some reason.