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1 Introduction

As the introduction to any book on knot theory will tell you, if you have ever
tied your own shoe laces, then you are already somewhat familiar with knot
theory. Of course, your shoe laces aren’t really knotted, in a mathematical
sense, since you can untie them. A more appropriate mental image would be
that of a circular string, one with no free ends, looping around itself in three-
dimensional space. Defined more precisely as differentiable embeddings of S1

into R3 or S3 (the three dimensional sphere), knots, as mathematical objects,
have been the focus of intense study for over a century. Originally studied
mainly for its inherent interest and for providing some of the simplest examples
of topological embeddings, knot theory today remains a field of active research
and maintains strong and growing ties with many other disciplines, not only in
mathematics but also in physics, chemistry, and biology (see, e.g., [1, Chapter
7]). The concept has also evolved to include knots in higher dimensional spaces:
knottings of n− 2 dimensional spheres inside n-dimensional space.

This exposition is intended to provide some introduction to this last concept.
Once our shoe laces have been taken away (or turned into spheres!), how can
we construct and visualize concrete examples of higher dimensional knots. One
important theoretical method has been surgery theory (see [11] for a survey of
the confluence of surgery and knot theories). Surgery is both a powerful and a
complex tool, but construction of knots by surgical methods often does not allow
one to “see” the knot. Knots can be obtained by surgery and their properties
studied, but often these knots can be described only in terms of their algebraic
properties. In this paper, we want to be able to visualize our knots, at least as
far as it is possible to do so with our three-dimensional brains. This brings us
to a series of constructions known as knot spinnings. Various contributions and
refinements have been made to this theory, dating back as far as 1925, but the
various spinning constructions all have the appeal of being geometric in nature
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and highly visual. On top of providing a myriad of examples of importance in
knot theory, these constructions provide an excellent introduction to thinking
about higher-dimensional knots and higher-dimensional topology in general.

There exist by now a nearly uncountable number of books and papers in the
literature concerning knot theory. We mention just a few for the reader who
would like to pursue knot theory further: Colin Adams’s The Knot Book [1] is an
introduction to knot theory for non-mathematicians but provides an expansive
and readable overview; Charles Livingston’s Knot Theory [14] is an excellent
basic introduction to classical knot theory that assumes no background beyond
linear algebra; Dale Rolfsen’s Knots and Links [15] is the by-now classic in-
troductory text assuming some background in algebraic topology; and W.B.
Raymond Lickorish’s An Introduction to Knot Theory [12] also assumes some
background in topology but contains some more recent topics such as the ex-
citing new field of quantum invariants of knots. Of these, only Adams’s [1] and
Rolfsen’s [15] books touch upon higher-dimensional knot theory. We would be
remiss not to mention also the plethora of knot resources now available on the
World Wide Web. We refer the reader to Peter Suber’s “Knots on the We” [17]
as a comprehensive index.

I thank Joan Doran for drawing all figures.

2 Some basics

We begin with the precise definition of a knot.
Let Sn be the n-dimensional sphere. Without further comment, we will be

free to think of Sn in several ways: as an abstract manifold, as the set of points
in Rn+1 unit distance from the origin, or as Rn compactified by adding a point
at infinity. More generally, we will use Sn to denote any object diffeomorphic
to the sphere, i.e. any object that admits a differentiable bijection to Sn with
differentiable inverse. Similarly, we will use Bn to denote any object diffeomor-
phic to the unit ball in Rn, the set of points within unit distance of the origin.
Note that the boundary of Bn, denoted ∂Bn, is Sn−1.

Figure 1: Some differentiable knots S1 ⊂ R3.
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With these conventions, a knot of dimension n is a differentiable embedding
K : Sn−2 ↪→ Sn or K : Sn−2 ↪→ Rn, where a differentiable embedding is a
smooth injective map whose derivative matrix is also injective at all points.
There is no real theoretical difference between letting Sn or Rn serve as the
codomain since if we think of Sn as the compactified Rn, we are free to push a
knot off the point at infinity so that it will lie in Rn. Sticking with spheres has
some technical advantages, and we will principally use spheres as the ambient
space, though occasionally it will suit us to use Rn instead.

The requirement that a knot be differentiable is a common restriction; it
is designed to avoid “infinite knottedness”, which can occur if we only require
the embedding to be continuous (Figure 2). There are other assumptions that
can be made to prevent these problems, but we adhere to the differentiability
criterion as the one with which the reader is most likely to be familiar.

Figure 2: A “wild” knot that is not differentiable at the point of infinite “knot-
tedness”.

Now, if you have a knotted string lying on your desk and you pick it up and
move it someplace else, we would like to think of it as the same knot. This
is taken care of mathematically by considering equivalence classes of knots.
We call two knots K0,K1 : Sn−2 ↪→ Sn equivalent if there is an orientation-
preserving diffeomorphism f : Sn → Sn such that fK0 = K1. In particular,
this will be true if there is an ambient diffeotopy of Sn taking K0 to K1, i.e. a
map H : Sn × [0, 1] → Sn that is a diffeomorphism for each fixed time t ∈ [0, 1]
and that moves the knot K0 at time 0 to the knot K1 at time 1. In fact, this
stronger condition is sometimes used as the definition of knot equivalence; for
classical knots, the case n = 3, these two conditions are equivalent.

It is a standard abuse, in which we shall engage freely, to use the word “knot”
and the same symbol, K, to refer to the equivalence class of the knot K or even
to the image of K. We also sometimes speak of the knotted pair of spaces
(Sn, Sn−2) or (Sn,K), where we follow the standard convention in topology by
which the symbol (X, Y ) refers to two spaces with Y ⊂ X. We refer to K or
(Sn,K) as n-dimensional or an n-knot. This is also not a universal notation; it
is perhaps slightly more standard to refer to such a knot as an n− 2 knot.

The unknot in dimension n is the equivalence class of the “standard em-
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bedding” Sn−2 ⊂ Sn. In other words, if Sn = {~x ∈ Rn+1 | |~x| = 1}, then
the unknot can be represented as {~x ∈ Rn+1 | |~x| = 1, xn+1 = xn = 0}. The
3-dimensional unknot is equivalent to the unit circle in the x-y plane in R3.
Note that the unknot is the boundary of the ball Bn−1 ⊂ Bn+1 obtained by
letting Bn−1 = {~x ∈ Bn+1 | xn = xn+1 = 0}. We will refer to this particular
pair (Bn+1, Bn−1) as the unknotted ball pair or the standard ball pair.

We conclude this introductory section with a construction that will be used
repeatedly. Consider an n-dimensional knot K, and choose any image point
K(x) ∈ Sn. Since Sn is a manifold, this point has an open neighborhood
diffeomorphic to Rn that we shall denote Bn

− (see Figure 4). If this neighborhood
is chosen small enough, the intersection Bn

−∩K will be a ball Bn−2
− of dimension

n − 2, and together the pair (Bn
−, Bn−2

− ) is unknotted, i.e. it is diffeomorphic
to the standard ball pair. This follows from the general theory of differentiable
embeddings of manifolds. Since the complement of an open smoothly embedded
ball in a sphere is a closed ball (Figure 3), the complements Sn −Bn

− and K −
Bn−2
− will each be balls, and we label this complementary pair by (Bn

K , Bn−2
K ).

The ball Bn−2
K may be knotted in Bn

K .

Figure 3: Any sphere Sn is the union of two balls Bn along the equator Sn−1.
This diagram illustrates the case n = 2.

We also observe that the common boundary of the pairs (Bn
−, Bn−2

− ) and
(Bn

K , Bn−2
K ) is the unknotted pair of spheres (Sn−1, Sn−3). In what follows, it

will often be convenient to identify this with the standard unknot, which we
have already discussed.

You might be asking, what if we choose the neighborhood of a different
point to remove in this construction. It turns out that we get the same pair
(Bn

K , Bn−2
K ) up to diffeomorphism. To see this, consider the ball neighborhoods

of two different points. We can simply slide one ball to the other along the
knot, which complementarily takes the complement of one neighborhood to the
complement of the other. Note that while this idea has nice intuitive appeal,
it does require some technical checking to ensure that such sliding is always
allowed. However, this theory is well-established, and we avoid going far afield
to visit the details here.
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Figure 4: Removing a trivial neighborhood from a knotted circle to obtain a
knotted arc

3 Basic spinnings

3.1 Simple spinning

Examples of knots S1 ↪→ S3 are numerous. Just play with a length of wire and
then solder the ends together. These knots also can be easily drawn on paper as
knot diagrams (Figure 1). However, to get knots of higher dimensions requires
a little bit more ingenuity.

The earliest spinning construction is due to Emil Artin in 1925 [2]. Artin
used spinning to construct 4-dimensional knots from 3-dimensional knots, but
the same idea can be used to create an n+1 dimensional knot from any n dimen-
sional knot. This construction is generally referred to as “spinning,” but we will
call it simple spinning to differentiate it from the more general constructions to
follow.

In this section, it will be most convenient to consider knots in Rn instead of
Sn (see Section 2).

To see the basic idea, consider the upper half plane H2 = {(x, y) ∈ R2 | y ≥
0} and choose a point (x0, y0) ∈ H2 with y0 > 0. Now rotate H2 around the
x-axis in R3 (Figure 5). The point will sweep out a circle. Analytically, the
circle will be parametrized in R3 by the set of points (x0, y0 cos θ, y0 sin θ), as θ
runs from 0 to 2π (assuming that we rotate counterclockwise as see from the
positive x-axis looking in the negative x direction).

To see how this applies to knots, let us consider a knot K in R3. Up to
equivalence, we can arrange for the image of K to lie in the upper half space
H3 = {(x, y, z) | z ≥ 0} except for an unknotted arc that dips below the x-y
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Figure 5: Spinning a point in the half-plane around the axis.

plane R2 = {(x, y, z) | z = 0} (Figure 6). Let us remove the interior of this
unknotted arc; what remains is a knotted arc in H3 with its endpoints in R2.
We can now rotate H3 in R4 just as we rotated H2 in R3. Analytically, we
parametrize by θ, and each point (x, y, z) in the upper half space sweeps out
the circle (x, y, z cos θ, z sin θ). Note that R2 remains fixed. By thinking about
how the longitude lines swing around the globe with the north and south poles
remaining fixed, you can imagine how the the knotted arc gets spun into the
image of a 2-sphere S2. Thus, by spinning, we obtain a knotted S2 in R4.

Figure 6: Turning a knotted circle into a knotted arc in the upper half space in
order to spin it about the plane. We must remove the extra arc so that we spin
into a sphere, not a torus!

You might be worried that our new spun knot will not be a differentiable
embedding if the knotted arc does not meet R2 perpendicularly. This turns
out not to be a problem for several reasons: 1) it is easy to make the arc
meet R2 perpendicularly; 2) even if not, we could modify our newly constructed
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knot slightly to make it differentiable; and 3) most generally, there is a method
called “smoothing” of modifying the differential structure of R4 (within its dif-
feomorphism class) to make things work out. This will be possible in all of our
constructions, and we will avoid mentioning it explicitly.

You might also be asking, what if we had chosen a different way to split
our original knot into a knotted arc? It turns out that we get the same spun
knot, essentially for the same reason by which we noted in Section 2 that Bn

K is
independent of such choices. In fact, notice that if we start with our knot in S3,
then our construction to get a knotted arc in the upper half plane is completely
equivalent to the construction of Bn

K by removing a small ball neighborhood of
a point on the knot.

This simple spinning construction already has several important ramifica-
tions. For example, it can be shown very easily (see, e.g., [15]) that the fun-
damental group of the complement of this spun knot in R4 is isomorphic to
the fundamental group of the complement of our original knot in R3. Based on
known results about knots in R3, this implies the existence of an infinite number
of inequivalent knots in R4.

The construction for higher dimensions is similar. We begin with a knot
K : Sn−2 → Rn. Again, we can manipulate the knot within its equivalence
class so that it lies mostly in the upper half space Hn = {(x1, . . . , xn) ∈ Rn |
xn ≥ 0} and so that the intersection of the knot with the lower half space is an
unknotted ball. We then remove the interior of this unknotted ball to obtain
the complementary knotted ball Bn−2 in Hn. Its intersection with Rn−1 is
unknotted. Now we spin Hn into Rn+1 so that each point (x1, · · · , xn) sweeps
out the circle (x1, · · · , xn−1, xn cos θ, xn sin θ).

It is a little harder now to see that our knotted ball in the upper half plane
gets spun into a sphere Sn−1, but the idea of pivoting a longitude around its
poles extends to higher dimensions. To see this, consider Sn−1 as the unit sphere
in Rn, Sn−1 = {~x ∈ Rn | |~x| = 1}, and consider Rn as Rn−2 ×R2. Then we can
define the latitude for a point y ∈ Sn−1 as its projection onto the Rn−2 factor
and its longitude as the angular polar coordinate of the projection of y onto the
R2 factor. Hence the latitude is always well-defined, while the longitude is either
undefined or a unique angle, dependent on whether or not y lies in the sphere
Sn−3 that is the intersection of Sn−1 with Rn−2 × 0. Notice that in the case
where the longitude in undefined, the point on the sphere is uniquely determined
by its latitude (just as on a globe). To simplify the notation in abstract cases,
we will simply refer to the latitude-longitude coordinates (z, θ) whether θ is
defined or not. Then the point (z, θ) in these coordinates on Sn−1 corresponds
to the point in Rn determined by the rectangular coordinates (z, r cos θ, r sin θ)
for z ∈ Rn−2, r ≥ 0, θ ∈ [0, 2π), and such that |z|2 + r2 = 1.

Now, consider the set of points in Sn−1 with a fixed longitude θ = 0. These
points can be written in rectangular coordinates as (z, r, 0), where r ≥ 0 is
chosen so that |z|2 + r2 = 1. In other words, this longitude is the graph of
r = +

√
1− |z|2 in Rn−2×R, which is diffeomorphic to a ball Bn−2. Its boundary

is the n−3 sphere with |z|2 = 1 and r = 0, and this corresponds to the generalize
pole of Sn−1. Now for each point (z, r, 0) in rectangular coordinates, we can spin
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to get the set of points (z, r cos θ, r sin θ) as θ runs from 0 to 2π. The points of
the generalized pole remain fixed as (z, 0, 0), and the rest of the chosen longitude
sweeps out the rest of the sphere. Analogously, as we spin a knot, the knotted
ball sweeps out a knotted sphere.

The results about fundamental groups continue to hold in this higher-dimensional
setting, and by iterating the spin construction, we establish the existence of an
infinite number of inequivalent knots in any dimension n ≥ 3.

3.2 Superspinning

Having spun knots around circles, how about spinning around higher dimen-
sional spheres? Superspinning of classical knots was initially used by D.B.A.
Epstein [4] in 1960 to show that two n−2 spheres can be embedded in euclidean
n-space (n ≥ 3) such that neither can be shrunk to a point in the complement
of the other. The construction was generalized by Sylvain Cappell in 1970 [3]
as a way to construct an n + p dimensional knot from any n-dimensional knot
by spinning it around a p-sphere Sp, p ≥ 1. Cappell utilized superspinning to
demonstrate the existence of knots whose complements are homotopy equivalent
but not homeomorphic.

This time let us jump straight to the general construction. We start with
a knot K : Sn−2 ↪→ Sn and construct the knotted ball pair (Bn

K , Bn−2
K ) as in

Section 2.
Next, we consider Sn+p as ∂Bn+p+1. Since Bn+p+1 ∼= Bp+1×Bn, ∂Bn+p+1

can be written as [Sp ×Bn]
⋃

Sp×Sn−1 [Bp+1 × Sn−1]. Here
⋃

Sp×Sn−1 indicates
that we are gluing the two spaces along their common boundary Sp × Sn−1.
If you are not familiar with the fact that ∂(X × Y ) = (∂X × Y ) ∪ (X × ∂Y ),
try thinking of some low-dimensional examples. For n = 3, p = 1, our example
yields a decomposition of S3 into two unknotted solid tori S1 × Bs2. Try to
picture the decomposition of the unknotted S2 in S4, taking p = 1, n = 3 and
recalling that S0 is a pair of points.

Furthermore, if we consider the standard ball pair (Bn+p+1, Bn+p−1) and
write it as (Bp+1 × Bn, Bp+1 × Bn−2), we can take boundaries to obtain the
pair of spaces ([Sp × Bn]

⋃
[Bp+1 × Sn−1], [Sp × Bn−2]

⋃
[Bp+1 × Sn−3]. We

can compress the notation a little and write this as Sp × (Bn, Bn−2)
⋃

Bp+1 ×
(Sn−1, Sn−3). Since the boundary of the standard ball pair is an unknotted
sphere, we have so far just found a complicated way to write the unknot.

But now, within this construction, we can replace each standard (Bn, Bn−2)
in the product Sp × (Bn, Bn−2) with the knotted pair (Bn

K , Bn−2
K ) to get the

product Sp × (Bn
K , Bn−2

K ). The tricky part here is getting the loose ends (Sp ×
∂Bn−2

K ) to close up to form a legitimate sphere, but this is accomplished by
the set Bp+1 × Sn−3 that closed up the unknot in the last paragraph. So,
we define the superspun knot K∗ to be the subset of Sn+p given by [Sp ×
Bn−2

K ]
⋃

Sp×Sn−3 [Bp+1 × Sn−3]. In effect, we have taken all of the unknotted
cross-sections of Sp×(Bn, Bn−2) and replaced them with knotted cross-sections.
As K∗ is diffeomorphic to the standard decomposition of Sn+p−2, we see that
K∗ is a sphere of dimension n + p− 2 knotted in Sn+p.
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Figure 7: The decomposition of S3 (thought of as R3 plus a “point at infinity”)
into two solid tori S1 × B2 and B2 × S1. The left picture shows the circular
cores of the tori (the vertical line becomes a circle as it wraps through the point
at infinity). The right picture shows a slice through the y-z plane: The two
disks are a slice of one solid torus (cut a donut in half and then view it on end),
while the arcs represent slices of such meridional disks of the other solid torus.

If p = 1, superspinning K gives us the same simple spun knot that we
obtained in the previous section (why?).

It turns out that the fundamental group of the complement of a superspun
knot is also the same as the fundamental group of the complement of the original
knot, but, in general, superspinning does not create the same knots as does
iterated simple spinning.

3.3 Frame spinning

Even more general than superspinning is frame spinning : why limit ourselves
to spinning about spheres? How about other manifolds? Frame spinning was
introduced by Dennis Roseman in 1989 [16], though the name is due to Alexan-
der Suciu [18], who used frame spinning to construct inequivalent knots that
have the same complement (classifying which knots are determined by their
complements has been one of the main themes of knot theory).

To describe frame spinning, let us once again begin with an n-dimensional
knot K and construct (Bn

K , Bn−2
K ). This time, however, our additional data

comes in the form of an m-dimensional manifold Mm differentiably embedded
in Sn+m−2 with a framing φ. This last condition means that we in fact con-
sider an embedding φ : Mm ×Bn−2 ↪→ Sn+m−2. Furthermore, we assume that
Sn+m−2 is embedded in the standard, unknotted way into Sn+m with the stan-
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dard framing (so that Sn+m = ∂Bn+m+1 = Sn+m−2 × B2
⋃

Bn+m−1 × S1).
Putting these framings together, we get a pair of tubular neighborhoods of Mm

in (Sn+m, Sn+m−2) of the form N = Mm×(Bn, Bn−2), where this (Bn, Bn−2) is
an unknotted ball pair (although the exact embedding of N into Sn+m depends
on our choice of framing φ).

Figure 8: The trefoil knot spun about the manifold M consisting of three disjoint
points in S1. Note that the framing at each point (indicated by an arrow that
depicts the orientation of the framing) determines how to attach the knot.

The idea now is to take all of those unknotted ball pairs and replace them
with our knotted ball pair (Bn

K , Bn−2
K ) as we did for superspinning. In other

words, having used the framing to identify the neighborhood pair N as Mm ×
(Bn, Bn−2), we remove it, and then replace it with Mm× (Bn

K , Bn−2
K ), glued in

along the same framing. Thus, our frame spun knot will be

(Sn+m−2 −Mm ×Bn−2)
⋃

Mm×Sn−3

Mm ×Bn−2
K

sitting inside the n + m sphere

(Sn+m −Mm ×Bn)
⋃

Mm×Sn−1

Mm ×Bn
K .

In the special case where Mm is the sphere Sm embedded in the standard way
into Sn+m−2, we recover superspinning (why?).

If the manifold M has multiple components, or even components of different
dimensions, then we can spin different knots (also possibly of different dimen-
sions) around each component. It is possible to generalize this construction even
further, but first we should study some other types of spinning.
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4 Spinning with a twist

4.1 Twist spinning

Twist spinning, introduced by E.C. Zeeman in 1965 [20], was an early general-
ization of Artin’s construction. Again, we begin with an n-dimensional knot and
obtain an n + 1-dimensional knot, but the difference between simple spinning
and twist spinning can be illustrated celestially. As the moon orbits the Earth,
it always keeps the same face towards the Earth. This is analogous to simple
spinning in which the knot is rotated around the plane of rotation but always
keeps “the same face” toward this plane. By comparison, twist spinning is like
the Earth orbiting the sun: as the earth orbits, it also rotates around its own
axis.

Before giving a general formula, let us consider heuristically the case of
twist spinning a knot of dimension 3. As in the simple spinning constructions,
we replace the knot with a knotted arc in the upper half space whose endpoints
lie in the x-y plane. We can also assume that the knotted part of the arc is
contained within a ball whose intersection with the arc is its north and south
poles. Now, as we rotate half-space around the plane, we simultaneous spin
this ball on its axis (Figure 9). It is only necessary that the end result lines up
with the starting position, so we are free to spin the ball on its axis any integral
number k times as we rotate H3.

Figure 9: A 180 degree twist of the trefoil knot.

Let us be more specific. Given an n-knot K, then just as for superspinning
about S1 (which is equivalent to simple spinning), we can consider the two space
pairs S1 × (Bn

K , Bn−2
K ) and B2 × (Sn−1, Sn−3). To superspin, we simply glued

these pairs together along their common boundary S1× (Sn−1, Sn−3). In order
to create the k-twist spin, however, we glue these pairs together in the following
way: we represent points in S1 × Sn−1 by (η, z, θ), where η ∈ S1 and (z, θ)
are latitude/longitude coordinates for Sn−1 (see Section 3.1). If (η, z, θ) is such
a point in the boundary of B2 × Sn−1, we attach that point to the boundary
of S1 × Bn

K by (η, z, θ) → (η, z, θ + kη). The addition here is standard angle
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addition in the circle, which we can think of as R/2πZ, applied to the longitude
coordinate. In this way, as we glue the pieces together, we introduce a k-fold
twisting by rotations of the longitude coordinate.

Zeeman showed that a twist spun knot depends only on K and |k|, i.e. k-
twist spinning and −k-twist spinning yield the same knot. Furthermore, he
proved the surprising fact that any 1-twist spun knot (and hence also any −1-
twist spun knot) is actually unknotted.

4.2 Frame twist spinning

Now that we have seen how to add twisting to Artin’s basic spinning construc-
tion, can we add some kind of twisting to our other spins? For superspinning
about spheres of dimension greater than 1, the answer is no! This is related to
the fact that for n > 1, all maps Sn → S1 that can be deformed to maps to a
single point. This fact ensures that any attempt at twisting can be deformed to
give back ordinary superspinning. On the other hand, there are infinitely many
maps S1 → S1 that cannot be so deformed. Roughly, these are the maps that
run around the circle k times (eiθ → eikθ), and their existence allows for the
non-triviality of the twist spin construction. A rigorous formulation and proof
of these facts about maps can be found in any book that deals with introductory
homotopy theory, for example [8].

However, where superspinning fails to be twistable, frame spinning does
allow a twist if the manifold Mm admits a map Mm → S1 that cannot be
deformed into the trivial map to a point. Just as for twist spinning, this map
provides us with enough data to alter the gluing map of the construction by
twisting the longitude coordinate of Bn

K as we glue. The gluing of the latitude
coordinates is once again controlled by the framing φ of M .

So let us be specific. Recall that, in frame spinning, we used the framing of
Mm in Sn+m−2 along with the trivial framing of Sn+m−2 in Sn+m to identify a
neighborhood N of Mm in (Sn+m, Sn+m−2) with the product Mm×(Bn, Bn−2).
Then we replaced (Bn, Bn−2) with the knotted ball pair (Bn

K , Bn−2
K ) and glued

it back in along the same framing. Suppose, however, that we are given a
map τ : Mm → S1. Then we can use this map to augment the gluing with a
twist along the longitude. This is done as follows: we use the framings to assign
coordinates (x, z, θ) to the boundary M×Sn−1 of the neighborhood N in Sn+m.
Here x ∈ M and (z, θ) are latitude/longitude coordinates on Sn−1 = ∂Bn. The
boundary of the complement of N in Sn+m possesses the same coordinates,
as these two boundaries agree. Again, we cut out N ∼= M × (Bn, Bn−2) and
replace it with Mm × (Bn

K , Bn−2
K ), which we glue back in, but instead of gluing

the point (x, z, θ) ∈ ∂N right back to its counterpart in ∂(Sn+m −N), we glue
it by the attaching map f : (x, z, θ) → (x, z, θ + τ(x)), where again the addition
in S1 is standard angle addition.

In other words, we form

[(Sn+m, Sn+m−2)−Mm × (Bn, Bn−2)]
⋃

f

[Mm × (Bn
K , Bn−2

K )],
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where
⋃

f indicates a gluing via the attaching map given above.
This construction was introduced by the author in his dissertation. He goes

on to calculate various algebraic invariants of frame twist-spun knots; see [6]
and [7]. If the map τ is homotopic to the trivial map, we recover Roseman’s
frame spinning. If M = S1 and τ is the map that wraps the circle around itself
k times, we recover Zeeman’s k-twist spinning (why?).

5 More general spinnings

5.1 Deform spinning

An even more general class of spinning constructions is known to exist. The first
example, roll spinning, was introduced in a short paper by Ralph Fox in 1966
[5]. This example was formalized and generalized by R.A. Litherland in 1979
[13], who introduced deform spinning and showed that both Fox’s roll spinning
and Zeeman’s twist spinning are special cases. This is another construction that
takes n-knots to n + 1 knots.

The tersest description of deform spinning comes from once again thinking
of a simple spin as

S1 × (Bn
K , Bn−2

K )
⋃

∂

B2 × (Sn−1, Sn−3),

where
⋃

∂ indicates gluing along the common boundary in the obvious (un-
twisted) fashion. Suppose now that we have a 1-parameter family fψ of defor-
mations rel ∂(Bn

K×I). In other words, each fψ, ψ ∈ [0, 2π], is a diffeomorphism
Bn

K → Bn
K such fψ restricted to the boundary ∂Bn

K is the identity for all ψ and
such that f0 = f2π is the identity map of Bn

K . The family fψ should also depend
differentiably on the parameter ψ. Litherland then describes the deform spin of
K as

(S1 ×Bn
K ,∪ψ∈S1ψ × fψ(Bn−2

K )) ∪∂ B2 × (Sn−1, Sn−3).

In other words, as we spin, we deform the knotted arc according to fψ. Note that
in this description S1×Bn

K is the ordinary undeformed product, but we equally
well could have used the deformation of the pair; Litherland demonstrates the
equivalence of the two approaches and uses it to redefine the deform spin in
terms of crossed products of spaces. However, for our purposes it is perhaps
easier to maintain the original viewpoint. In this language, it is easy to observe
that simple spinning corresponds to setting fψ equal to the identity for each
ψ, while k-twist spinning corresponds to setting fψ equal to rotation of the
longitude coordinate of Bn

K by kψ (technically, to get around the fact that we
need to keep the boundary of Bn

K fixed, we rotate a smaller interior ball allowing
the region between the two boundaries to become stretched around; however, it
is clear that so long as the ball being rotated encompasses the knotted part of
Bn−2

K , this does not affect the final construction of the deform spun knot).
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Litherland also shows that, thinking of the collection fψ as a differentiable
map f: Bn

K × I → Bn
K × I, the type of the deform spun knot is dependent only

upon the (pseudo-)isotopy class of f rel ∂(Bn
K × I).

With this definition of deform spinning, we can define roll spinning of a
classical knot K : S1 ↪→ S3 as follows: Recall our definition of (Bn

K , Bn−2
K ) by

removing an unknotted ball neighborhood of a point on the knot K. Since we
are dealing with a classical knot, we can parametrize S1 by angles ψ and consider
(Bn

K,ψ, Bn−2
K,ψ ) built as the complement of the neighborhood of the point K(ψ).

We have already noted that for different choices of ψ, the pairs (Bn
K,ψ, Bn−2

K,ψ ) are
all diffeomorphic. Nevertheless, starting from a fixed base point, say ψ = 0, we
can view the collection fψ : (Bn

K,0, B
n−2
K,0 ) → (Bn

K,ψ, Bn−2
K,ψ ) as a one parameter

family of deformations and use this to deform spin. We obtain the roll spin of
K. k-roll spinning can be created by rolling the basepoint around the knot k
times. A more technical formulation is given in [13] (see also [19]). Note that
this construction depends on a choice of framing of K in order to control the
twist of the ball (the “roll” in the aeronautical sense) as it traverses the knot;
we can define rolling with respect to some fixed framing (for example, that in
which K and a longitude of the boundary torus of the framed neighborhood of
K do not link), but if we use a different framing, we will twist as we roll. This
leads to twist roll-spun knots or, generally, l-twist k-roll spun knots.

Figure 10: Rolling the trefoil. The circle in these pictures represents B−. Rather
than moving B−, it is more illustrative to hold it fixed and roll the knot around
it!

Unfortunately, untwisted roll spinning cannot be generalized to higher di-
mensional knots, again because any path in the sphere Sn, n > 1, can be shrunk
to a point. Hence, any path along which we would roll Bn

− is equivalent to the
stationary path.

Litherland also treats another example of deform spinning that applies only
to knots which possess symmetries, i.e. periodic homeomorphisms Sn → Sn that
take the knot to itself. This construction is called symmetry spinning. However,
the construction is slightly technical, involving certain branched covers of the
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sphere, and so we omit a detailed description. The interested reader is referred
to [13] or [9], in which Taizo Kanenobu utilizes symmetry spinning to obtain
some results about commutator subgroups of the fundamental groups of the
complements of knots in dimension 4.

5.2 Frame deform spinning

Putting together frame spinning and deform spinning, we can introduce a new
knot construction, frame deform spinning (this construction is, perhaps, implicit
in a remark in [16, §3]). By now the method should be obvious: we begin with
an n-knot K and an m-manifold Mm embedded with framing in Sn+m−2, which
itself sits unknotted and with the standard framing in Sn+m. We also posit a
map f from Mm into the space of diffeomorphisms of Bn

K rel ∂Bn
K . The map

f takes x ∈ Mm to the diffeomorphism fx : Bn
K → Bn

K such that the map
Mm ×Bn

K → Bn
K given by (x, y) → fx(y) is differentiable. Then we can define

the frame deform spin of K as

[(Sn+m, Sn+m−2)−Mm× (Bn, Bn−2)]
⋃

Mm×Sn−3

[Mm× (Bn
K ,∪x∈Mmfx(Bn−2

K )].

If K is a classical knot in S3 and there is a non-trivial map g : Mm → S1, we
can compose g with the 1-parameter families of deformations used to define roll
spinning and twist roll spinning to create frame roll spinning and frame twist
roll spinning.

6 Other constructions

We close by briefly mentioning two other known constructions of knots related
to spinning.

The first, due to John Klein and Alexander Suciu in 1991 [10], is called
diff-spinning. It is a modified version of frame spinning in which the manifold
Mm is altered by a diffeomorphism in the process of spinning. Note that the
complement of a knot frame spun about Mm is diffeomorphic to the union of
Bn+m−1×S1 with Mm×X, where X is the complement of the knot K that is
being spun. Suppose now that we are given a self-diffeomorphism Φ of Mm that
extends to a diffeomorphism Φ̄ of Bn+m−1 ⊃ Sn+m−2 ⊃ Mm. Then, roughly
speaking, the diff-spin is formed by removing this complement and replacing it
with the twisted product (Bn+m−1×Φ̄ S1)

⋃
(Mm×Φ X). If Φ satisfies a certain

algebraic condition (see [10, §5]), this space will also be the complement of a
knot, the diff-spun knot.

Another type of spinning, also introduced by Roseman in [16], is what he
calls “spinning a knot about a projection”. We shall refer to this as projection
spinning. This clever construction involves many technical details, but, very
roughly, the idea is to spin about an immersed manifold M , rather than an
embedded one as we did in frame spinning. (Recall that a map of manifolds
M → N is an immersion if it restricts to an embedding in a neighborhood
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of each point in M , but an immersion need not be globally 1-1.) Away from
the points of M at which the immersion is 1-1 (locally an embedding), the
construction is the same as for frame spinning, i.e. each cross section is replaced
with a knot. Where the immersion fails to be 1-1, neighborhoods are replaced
by multi-knots in which some knot K is blended together with itself in multiple
directions. If M is embedded, we recover frame-spinning. We refer the reader to
[16] both for the technical definitions of projection spinning and for some nice
graphical illustrations of the process. In Remark 7 of [16], Roseman notes that
it is further possible to deform projection spin, perhaps the ultimate in knot
spinning constructions.
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