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Abstract

A well-known property of the signature of closed oriented 4n-dimensional manifolds
is Novikov additivity, which states that if a manifold is split into two manifolds with
boundary along an oriented smooth hypersurface, then the signature of the original
manifold equals the sum of the signatures of the resulting manifolds with boundary.
Wall showed that this property is not true of signatures on manifolds with boundary
and that the difference from additivity could be described as a certain Maslov triple
index. Perverse signatures are signatures defined for any stratified pseudomanifold,
using the intersection homology groups of Goresky and MacPherson. In the case of
Witt spaces, the middle perverse signature is the same as the Witt signature. This
paper proves a generalization to perverse signatures of Wall’s non-additivity theorem
for signatures of manifolds with boundary. Under certain topological conditions on the
dividing hypersurface,Novikov additivity for perverse signatures may be deduced as a
corollary. In particular, Siegel’s version of Novikov additivity for Witt signatures is a
special case of this corollary.

1 Introduction

The signature of compact 4n-dimensional manifolds is an interesting and important manifold

invariant. It satisfies a number of remarkable properties commonly referred to as the ‘signa-

ture package’. These include cobordism invariance [43], equality to the index of the signature

operator and to the L-genus [30], and Novikov additivity [3]. Signature has been used to

prove various obstruction theorems. For instance, Rokhlin’s theorem ([39]) shows that for

a 4n-dimensional smooth compact manifold to carry a spin-structure, its signature must be
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divisible by 16. Following on the heels of the successes in topology and geometric topology

of smooth compact manifolds in the 1950s and 1960s, including this work on the signature

package, mathematicians began to explore which of the results from the smooth compact

setting might be generalized to the setting of singular spaces. In the years since then, there

have been a number of interesting developments, although there is still no general signature

package for singular manifolds. In [31], the second author of this paper defined a family of

‘perverse signatures’, based on the intersection homology groups of Goresky and MacPher-

son, that may be defined for any stratified pseudomanifold. In this paper, we identify when

a generalization of Novikov additivity holds for these signatures, as well as identifying the

additivity defect in the case that it does not. In future papers, we will explore further aspects

of the signature package for perverse signatures.

More details will be given below, but to explain briefly our main results, Theorem 4.1 and

Corollary 4.13, recall that for a closed oriented n-dimensional pseudomanifold X, field coef-

ficients F , and perversity parameters1 p̄, q̄ such that p̄+ q̄ = t̄, there is a duality isomorphism

of intersection homology groups

I p̄Hi(X;F ) ∼= I q̄Hn−i(X;F ),

determined by the intersection pairing

t: I p̄Hi(X;F )⊗ I q̄Hn−i(X;F )→ F.

In the most well-known case, if X is a 4n-dimensional Witt space, which implies that

Im̄H∗(X;F ) ∼= I n̄H∗(X;F ) for the lower-middle and upper-middle perversities m̄ and n̄, then

one obtains a symmetric middle-dimensional self-pairing Im̄H2n(X;F )⊗ I n̄H2n(X;F )→ F ,

and hence a signature invariant. This is the well-known Witt signature. More generally,

though, it is possible to define signatures on any closed oriented 4n-dimensional pseudoman-

ifold as follows: If p̄ + q̄ = t̄ and p̄(k) ≤ q̄(k) for all k, then there is a map I p̄H∗(X;F ) →
I q̄H∗(X;F ), and this induces a nonsingular symmetric pairing on im(I p̄H2n(X;F )→ I q̄H2n(X;F )).

We refer to signatures of such pairings as perverse signatures σp̄→q̄(X) and note that the

Witt space signature is a special case. Similarly, in analogy with the case for manifolds,

there is also a signature on compact oriented pseudomanifolds with boundary.

Our main results are to extend to this setting the famous Novikov additivity and Wall

non-additivity theorems. In particular we have the following (which occurs below as Theorem

4.1):

Theorem 1.1. Let Z ⊂ X be a bicollared codimension one subpseudomanifold of the closed

oriented 4n-pseudomanifold X such that X = Y1 ∪Z Y2 and ∂Y1 = Z = −∂Y2, accounting

for orientations. Then

σp̄→q̄(X) = σp̄�q̄(Y1) + σp̄�q̄(Y2) + σ(V ;A,B,C).

1We will assume in the introduction that p̄ and q̄ satisfy the conditions of Goresky and MacPherson [26],
but this will be generalized below.
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Here, the term σ(V ;A,B,C) is a certain Maslov index that generalizes Wall’s correction

term to Novikov additivity for manifolds with boundary. It will be explained more fully

below. However, we do note one significant corollary:

Corollary 1.2. With the hypotheses of the preceding theorem, suppose in addition that

I p̄H2n(Z;F ) → I q̄H2n(Z;F ) is surjective and I p̄H2n−1(Z;F ) → I q̄H2n−1(Z;F ) is injective

(for example if I p̄H∗(Z;F ) ∼= I q̄H∗(Z;F )). Then

σp̄→q̄(X) = σp̄�q̄(Y1) + σp̄�q̄(Y2).

We will also generalize these results to pseudomanifolds glued along partial boundaries

in Corollary 4.13, and we will show that Wall’s theorem for manifolds with boundary follows

as a consequence of Theorem 1.1 in Corollary 5.3.

Motivation. There are several motivations for this work, aside from the general motivation

of extending the signature package to singular spaces. One of these motivations comes from

Sen’s conjecture and related conjectures arising in string theory. These are conjectures

about the signatures of certain 4n-dimensional noncompact manifolds arising as moduli

spaces of particles, such as (n+1)-monopoles in the case of Sen’s original conjecture. In

the 4- dimensional cases, for which the conjecture has been proved, the signature turns out

to be the perverse signature of a compactification of the moduli space as a stratified space

[29]. From analytic considerations, it seems likely that this will be true more generally, which

leaves still the question of how to calculate these perverse signatures to resolve the conjecture.

Our additivity and non-additivity results give a tool for this. It would also be interesting to

compare the topological obstruction to additivity for perverse signatures in this paper to the

analytic obstruction to the Mayer-Vietoris techniques for reduced cohomology, which were

also motivated by Sen’s conjecture and are related to perverse signatures, developed in some

of the same settings by Carron in [12], [14], [13].

A second motivation comes from global analysis and PDEs. For manifolds with bound-

ary, the Maslov triple index term in Wall’s non-additivity formula has been interpreted

analytically in the context of analytic signature theorems for manifolds with corners of codi-

mension two in [28] and in terms of a gluing formula for the η-invariant and the spectral

flow for operators with varying boundary conditions in [33]. It seems very likely, therefore

that our non-additivity formula will also turn out to relate to analytic signature theorems

for pseudomanifolds with boundary and signature gluing theorems for pseudomanifolds. In

particular, although a signature theorem has been proved for manifolds with cusp-bundle

ends in [44], and has been interpreted in terms of perverse signatures for pseudomanifold

compactifications of these spaces in [29], there is as yet no analytic signature or signature

gluing theorem for manifolds with cusp-edge corners. This is an interesting analytic case to

tackle, and having a sense of what should arise from the topology is helpful in doing this.

A third motivation comes from spectral sequences of perverse sheaves. In [16] and [31],

the difference between various perverse signatures in the case of a pseudomanifold with only

two strata was interpreted in terms of a signature on the pages of the Leray spectral sequence

of the fibration on the unit normal bundle of the singular stratum. It should be possible to
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interpret the difference between perverse signatures for a general pseudomanifold in terms

of the pages of the hypercohomology spectral sequence for perverse sheaves near the lower

strata.

Finally, a fourth motivation is a Wall-type non-additivity result for Witt spaces and pos-

sibly also for the new more general signature theory introduced by Banagl in [4]. Intersection

homology of pseudomanifolds was developed in the late 1970s and early 1980s, through the

work of McCrory [36], Cheeger [15], and Goresky and MacPherson [26]. Intersection homol-

ogy groups for a pseudomanifold are parametrized by a function called a perversity. There

is a subclass of stratified spaces, called Witt spaces, for which there is a Poincaré dual ‘mid-

dle perversity’ intersection homology, and for 4n-dimensional Witt spaces, it is therefore

possible to define a ‘middle perversity signature’. Most of the signature package has been

generalized to Witt spaces. In particular, the Witt cobordism group and the invariance of

signature under Witt cobordism was proved by Siegel [42] in 1983. In the same paper, he

proved a version of Novikov additivity for Witt spaces where the dividing hypersurface is

again Witt. In a very recent paper, [1], progress has also been made on the analytic side of

the signature package for Witt spaces. In particular, the authors prove that the topological

middle perversity signature for Witt spaces is the signature of the unique extension of the

signature operator for the spaces endowed with iterated cone metrics. The signature on

Witt spaces is a particular case of a perverse signature, so our theorem generalizes Siegel’s

additivity theorem to a Wall-type nonadditivity theorem for these spaces.

Banagl has extended signature theory further to a class of “non-Witt” spaces (despite

the terminology, this class of spaces includes all Witt spaces); these spaces are defined in

terms of certain signature conditions on the neighborhoods of odd codimensional strata. If

a non-Witt space is actually Witt, Banagl’s signature agrees with the Witt space signature.

It seems possible that Banagl’s signature may in fact always be a perverse signature. Our

non-additivity result may help determine if this is true, and, if so, gives an additivity and non-

additivity result for Banagl’s signatures and also would imply stratification independence of

the Banagl signatures.

Outline. In order to generalize Wall’s theorem to perverse signatures, we first need to

review past results and make some new definitions. In the next section, we review signatures

for manifolds, and in the following section we review intersection homology and make some

new constructions. In Section 4, we prove our non-additivity result, obtaining as a corollary

our additivity theorem. We prove it first for stratified pseudomanifolds without boundary,

then generalize to those with boundary. In Section 5, we discuss the relationships of our work

to Wall’s original theorem and give two examples of calculations. Finally, in an appendix

we carefully establish some conventions regarding orientation and intersection numbers that

we use in the paper.

Acknowledgment. The authors would like to thank Markus Banagl for several helpful

discussions.
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2 Background on signatures and (non-)additivity

In this section and the following, we recall known results concerning signatures and provide

a crash course on the relevant version of intersection homology.

2.1 Additivity and non-additivity

Recall that the signature of a closed connected oriented 4n-manifold is the signature σ(M)

of the nondegenerate symmetric intersection pairing

H2n(M ; Q)⊗H2n(M ; Q)→ Q,

i.e. σ(M) is the dimension of the largest positive definite subspace of this pairing minus

the dimension of the largest negative definite subspace. Alternatively, this is the same

as the signature of cup product pairing H2n(M ; Q) ⊗ H2n(M ; Q) → H4n(M ; Q) ∼= Q or

the signature of the pairing given by exterior product of forms in de Rham cohomology

H2n(M ; R)⊗H2n(M ; R)→ H4n(M ; R) ∼= R.

If N is a manifold with boundary, we instead have a nondegenerate intersection pairing

H2n(N ; Q)⊗H2n(N, ∂N ; Q)→ Q.

This descends to a nondegenerate symmetric pairing on

im(H2n(N ; Q)→ H2n(N, ∂N ; Q)),

where the arrow is induced by inclusion. The signature of this pairing is the signature σ(N).

Suppose now that M is a closed, oriented 4n-manifold, and that M = M1 ∪Z M2, where

M1,M2 are manifolds-with-boundary oriented compatibly with M and Z = ∂M1 = −∂M2.

The Novikov additivity theorem for the signature of compact 4n-manifolds is:

Theorem 2.1 (Novikov).

σ(M) = σ(M1) + σ(M2).

Since signature theory of compact manifolds is nontrivial (i.e. there exist manifolds

with non-zero signature), the theory of signatures of manifolds with boundary must also, by

Novikov additivity, be nontrivial. It also turns out to be more subtle. The Atiyah-Patodi-

Singer index theorem, [2], showed that the signature of a manifold with boundary may be

realized as the index of the signature operator with a certain global boundary condition [5],

but that it differs from the L-genus of the manifold by a spectral invariant of the boundary

called the η-invariant. It is also clear that signature for manifolds with boundary cannot

satisfy a general Novikov additivity, as any manifold may be broken up into pieces that are

homeomorphic to a disk, which has trivial signature. In [45], Wall identified the defect in

additivity for signatures of manifolds with boundary in terms of the Maslov triple index:

Theorem 2.2 (Wall [45]). Suppose M4n is a compact oriented manifold with boundary such

that M = M1 ∪ M2, where M1,M2 are compact oriented manifolds with boundary. Let
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Figure 1: A schematic of the hypothesis of Wall’s theorem: The manifold-with-boundary M

is split into the pieces M1 and M2 along the hypersurface N0. The boundary of M is split

into N1 and N2 along P .

N1 = ∂M ∩M1 and N2 = ∂M ∩M2. Suppose M1 ∩M2 = ∂M1 ∩ ∂M2 is a manifold with

boundary N0 such that ∂M1 = N0 −N1, ∂M2 = N2 −N0, and ∂N1 = ∂N2 = ∂N0 = P (see

Figure 2.1). Then

σ(M) = σ(M1) + σ(M2)− σ(V ;A,B,C), (1)

where σ(V ;A,B,C) is the Maslov triple index for the symplectic vector space H2n−1(P ; Q)

with respect to the three Lagrangian subspaces A = Kernel (H2n−1(P ; Q) → H2n−1(N1; Q)),

B = Kernel (H2n−1(P ; Q)→ H2n−1(N0; Q)) and C = Kernel (H2n−1(P ; Q)→ H2n−1(N2; Q)).

We recall the definition of σ(V ;A,B,C) in the next subsection.

2.2 Wall’s Maslov index and some care with signs

Here, we briefly review the algebraic version of the Maslov index presented by Wall in [45].

We also make some observations regarding a couple of sign issues that are not completely

clear in Wall’s original paper. For an expository account containing many viewpoints on the

Maslov index, we refer the reader to [10].

Suppose V is a vector space over F , Φ : V ×V → F is a bilinear map, and A,B,C ⊂ V are

such that Φ(A×A) = Φ(B ×B) = Φ(C × C) = 0. Wall considers the space W = A∩(B+C)
A∩B+A∩C

(which is isomorphic to the spaces formed by permuting A, B, and C). Given a, a′ ∈ A

representing elements of W , then a = −b − c and a′ = −b′ − c′ for some b, b′ ∈ B and

c, c′ ∈ C. It is easy to show using these relations that we must have

Φ(b, a′) = −Φ(c, a′) = Φ(c, b′) = −Φ(a, b′) = Φ(a, c′) = −Φ(b, c′). (2)

From here, one obtains a well-defined pairing Ψ on W by setting Ψ(a, a′) = Φ(a, b′). This

pairing is unaltered by even permutation of A,B,C and is altered by a sign for odd permu-

tations. If Φ is skew-symmetric, Ψ is symmetric, and its signature is denote σ(V ;A,B,C).

In the statement of Wall’s theorem above, V is the vector space H2n−1(P ; Q), and A,B,C

are the kernels of the various maps induced by including P in N1, N0, and N2.

In Wall’s ensuing topological arguments, there are some sign issues with which one needs

to take care. In the proof of his non-additivity theorem, Wall instead uses the formulation
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W = B∩(C+A)
B∩C+B∩A (for appropriate choices of A,B,C). This cyclic permutation should not affect

signs. However, Wall ultimately encounters an intersection pairing (∂η) t (∂ξ′) representing

Φ(∂η, ∂ξ′), where ∂η ∈ B and ∂ξ′ ∈ C. Taking B,C,A in that order, this is then a pairing

between an element from the first subspace and an element from the second subspace. By

definition, this is Ψ (whereas Wall states that this intersection pairing represents −Ψ).

However, the intersection number (∂η) t (∂ξ′) is not itself quite correct. This intersection

pairing is in Wall’s space Z (our P ), which is the boundary of a space X0 (our N0), which

is itself the negative of part of the boundary of Y+ (our M2). By “negative of”, we mean

with the reversed orientation. Wall at first encounters the intersection η tY+ ξ′ and states

this is equal to η tX0 ∂ξ
′ in X0. However, with the conventions we establish below in the

Appendix, since the degree of η is even, η tY+ ξ′ will be the negative of the intersection

number η tX0 ∂ξ
′ because X0 has its orientation reversed as it appears in the boundary of

Y+. Then from here, we do have that η tX0 ∂ξ
′ = ∂η tZ ∂ξ′. Putting these sign issues

together, it is correct that Wall arrives at the pairing −Ψ, and the statement of Wall’s

non-additivity theorem is correct in [45].

3 Background and preliminaries on intersection ho-

mology

In this section, we review intersection homology and make the necessary definitions to allow

us to state our generalized non-additivity theorem. We begin with a basic review of pseu-

domanifolds and intersection homology; the experts might want to skim this section, as we

use some recent generalizations with which they might not be familiar. Then in the second

subsection below we define perverse signatures. We also will need some symplectic vector

space that plays the role of H2n−1(P ; Q) from Wall’s theorem. We define this space in the

third subsection.

3.1 Review of intersection homology

We begin with a brief review of basic definitions. For further reference, we refer the reader

to [22, 21] as the background resources most suited to the brand of intersection homology

treated here: singular intersection homology with general perversities and stratified coeffi-

cient systems. Other standard sources for more classical versions of intersection homology

include [26, 27, 6, 34, 4, 32, 23]. Although we will not pursue them in detail here, various

analytic approaches to intersection homology can be found in, e.g [15, 17, 9, 7]; these are

particularly useful for relating intersection homology to L2-cohomology and harmonic forms,

as in [15], [29], [40], and others, and for relating perverse signatures to L2-signatures, as in

[19], [31].

Stratified pseudomanifolds. The definition of stratified pseudomanifolds is given induc-

tively. A 0-dimensional stratified pseudomanifold is just a discrete set of points. Let c(Z)

denote the open cone on the space Z, and let c(∅) be a point. An n-dimensional (topological)
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stratified pseudomanifold X (see [27] or [11]) is a paracompact Hausdorff space together with

a filtration

X = Xn ⊇ Xn−1 ⊇ Xn−2 ⊇ · · · ⊇ X0 ⊇ X−1 = ∅

such that

1. X −Xn−1 is dense in X, and

2. for each point x ∈ X i − X i−1, there exists a distinguished neighborhood U of x, a

compact n− i− 1 dimensional stratified pseudomanifold L, and a homeomorphism

φ : Ri × c(L)→ U

that takes Ri × c(Lj−1) onto X i+j ∩ U .

A space is a (topological) pseudomanifold if it can be given the structure of a stratified

pseudomanifold by some choice of filtration.

The X i are called skeleta. We denote Xi = X i−X i−1; this is an i-manifold that may be

empty. We refer to the connected components of the various Xi as strata2. If a stratum Z

is a subset of Xn = X −Xn−1 it is called a regular stratum; otherwise it is called a singular

stratum. The space L occuring in the distinguished neighborhood U of a point y is the link

of y or of the stratum containing y. A stratified pseudomanifold is defined to be orientable

(respectively oriented) if X −Xn−1 is.

We note that this definition is slightly more general than the one in common usage

[26], as it is usual to assume that Xn−1 = Xn−2. We will not make that assumption here,

but when we do assume Xn−1 = Xn−2, intersection homology with Goresky-MacPherson

perversities is known to be a topological invariant; in particular, it is invariant under choice

of stratification (see [27], [6], [32]). Examples of pseudomanifolds include complex algebraic

and analytic varieties (see [6, Section IV]).

A piecewise linear (PL) pseudomanifold is a pseudomanifold with a PL structure com-

patible with the filtration, meaning that each skeleton is a PL subspace, and such that each

link is a PL stratified pseudomanifold and the distinguished neighborhood homeomorphisms

U ∼= Rn−k × cL are PL homeomorphisms. In this paper, we will restrict ourselves entirely

to the PL setting. This is sufficient for the purpose of analysts or algebraic geometers wish-

ing to consider Thom-Mather or Whitney stratified spaces, which are PL pseudomanifolds.

Our results should also hold for the class of topological pseudomanifolds, but we wish to

avoid the technical details we would need to pursue, such as topological general position or,

alternatively, some extremely careful sheaf theory.

N.B. We will usually refer simply to “a pseudomanifold X” and assume that we have

tacitly chosen a stratification unless explicitly stated otherwise.

2This definition agrees with some sources, but is slightly different from others, including our own past
work, which would refer to Yi as the stratum and what we call strata as “stratum components.”
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Pseudomanifolds with boundary. A space X is a stratified pseudomanifold with

boundary if it satisfies the definition to be a stratified pseudomanifold, except that points

may have neighborhoods that are stratified homeomorphic either to Rk × cL or to Rk
+× cL,

where Rk
+ is the euclidean half-space but L is still a compact stratified pseudomanifold

without boundary in either case. The boundary ∂X of a stratified pseudomanifold with

boundary consists of those points x ∈ X that only have neighborhoods of the latter type.

The boundary ∂X inherits the structure of a stratified pseudomanifold (without boundary)

as a subspace of X: each point has a neighborhood Rk−1× cL ⊂ ∂X obtained by neglecting

the last coordinate of Rk
+. We will also assume as part of the definition of a stratified

pseudomanifold with boundary that ∂X has a stratified collar, i.e. there is a neighborhood

N of ∂X in X that is stratified homeomorphic to ∂X× [0, 1), where [0, 1) is given the trivial

stratification and ∂X × [0, 1) the product stratification.

A closed stratified pseudomanifold of dimension n is a compact stratified pseudomanifold

of dimension n without boundary. As with pseudomanifolds, we will often refer simply to

“pseudomanifolds with boundary,” leaving the dimension and the stratification tacit.

Remark 3.1. The boundary of a stratified pseudomanifold depends quite strongly on the

choice of stratification. For example, let M be a manifold with boundary B (in the usual

manifold sense). If we consider M to be a pseudomanifold with a trivial stratification, then B

is also the pseudomanifold boundary of M in the sense just defined. However, if we let M̂ be

the space M with the stratification M ⊃ B, then M̂ is not a stratified pseudomanifold with

boundary. This is because points of B do not have neighborhoods stratified homeomorphic

to Rk
+ × cL, i.e. the local stratified collaring requirement for the boundary of M̂ fails.

Instead, we just have for every point on the stratum M̂ −B a neighborhood homeomorphic

to Rn and for every point on the stratum B, a neighborhood in B homeomorphic to Rn−1

and a neighborhood in M̂ stratified homeomorphic to Rn−1 × c(pt). This makes M̂ instead

a stratified pseudomanifold without boundary. This distinction will be important later,

because it will allow us to treat non-additivity for stratified pseudomanifolds with boundary

by restratifying them into stratified pseudomanifolds without boundary.

Intersection homology. We will work mostly with PL chain intersection homology the-

ory with general perversities and stratified coefficient systems. General perversities (those

not necessarily satisfying the axioms of Goresky and MacPherson [26]) are indispensable

for certain results, such as the intersection homology Künneth theorem of [24]. Similarly,

stratified coefficients are necessary in order to properly formulate the most useful version of

intersection homology with general perversities. More detailed overviews of this version of

the theory can be found in [22, 21].

General perversities. A general perversity on a stratified pseudomanifold X is any

function p̄ : {singular strata of X} → Z. It is technically convenient also to define p̄(Z) = 0

if Z is a regular stratum of X.
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Stratified coefficient systems. In order to formulate the chain version of intersection

homology for general perversities that seems best to fit with the classical sheaf-theoretic

versions of intersection homology, we must use “stratified coefficients,” as introduced in [23]

(see also [22] for an exposition). Since the situation simplifies somewhat in the PL category

(and since we will not be working with local coefficient systems), we present a simpler

definition here than is found elsewhere.

First, recall that the PL chain complex C∗(X;G) of a PL space X is defined to be

lim−→T∈T C
T
∗ (X;G), where each T is a triangulation of X compatible with the PL structure

and CT
∗ (X;G) is the corresponding simplicial chain complex with coefficients in the abelian

group G. The limit is taken over all triangulations compatible with the PL structure3. In

other words, elements of C∗(X;G) are represented by sums of chains, each of which is taken

from some fixed triangulation of X. In particular, any ξ ∈ Cj(X;G) can be represented as

a finite sum ξ =
∑
giσi, where gi ∈ G and σi is a j-simplex in some triangulation of X.

Furthermore, ∂ξ =
∑
gi∂σi.

Now, suppose X is a stratified pseudomanifold. We define Cj(X;G0) to be the subgroup

of ξ ∈ Cj(X;G) such that when we write ξ as
∑
giσi, no σi is contained in Xn−1. It is easy

to check that this is a G-module. In order to define C∗(X;G0) as a chain complex, we define

∂ξ to be
∑
gi∂σi −

∑
σi⊂Xn−1 giσi. In other words, to obtain ∂ξ ∈ C∗(X;G0), we remove

from ∂ξ ∈ C∗(X;G) those simplices contained in Xn−1. This is a chain complex, and we

denote its homology H∗(X;G0). Some readers will notice that C∗(X;G0) is isomorphic to

C∗(X,X
n−1;G), but for the upcoming definition of intersection homology, we require this

formulation. We refer to H∗(X;G0) as homology with stratified coefficients G0. Note that

there is no group G0 - the subscript 0 simply signifies that we are using the construction

defined in this paragraph; this notation originates from a more general situation in [23]

in which the first author originally defined these groups using different systems of local

coefficients on different strata.

For more details of this construction (and more general cases), see [22, 23, 21]. N.B.

If p̄(S) ≤ codim(S) − 2 for all singular strata S, in particular if p̄ satisfies the Goresky-

MacPherson conditions on a perversity, then I p̄C∗(X;G0) ∼= I p̄C∗(X;G), so stratified coef-

ficients are unnecessary in this case.

Intersection homology. Given a stratified pseudomanifold X = Xn, a general per-

versity p̄, and an abelian group G, one defines the intersection chain complex I p̄C∗(X;G0)

as a subcomplex of C∗(X;G0) as follows: An i-simplex σ in X is p̄-allowable if

dim(σ ∩ Z) ≤ i− codim(Z) + p̄(Z)

for any singular stratum Z of X. The chain ξ ∈ Ci(X;G0) is p̄-allowable if each simplex with

non-zero coefficient in ξ or in ∂ξ is allowable. Notice that simplices that disappear from the

boundary because of the coefficient system G0 do not need to be checked for allowability.

3It is technically necessary to work with such chains in discussing intersection homology, since degenerate
cases can occur if a triangulation is not sufficiently fine. However, it is also possible to work with any
sufficiently fine fixed triangulation; see [35].
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Notice that this is also why it is not sufficient to work in C∗(X,X
n−1;G), where we have

no control over simplices that live in Xn−1. Let I p̄C∗(X;G0) be the complex of p̄-allowable

chains. The associated homology theory is denoted I p̄H∗(X;G0).

Relative intersection homology is defined similarly, in the obvious way, though we note

that the filtration on a subspace will always be that inherited from the larger space by

restriction, i.e. if Y ⊂ X, then Y k = Y ∩Xk, regardless of the actual dimensions involved.

We also assume that Y inherits the formal dimension of X, regardless of actual geometric

dimension, so that if Z is a stratum of codimension k in X, then we consider Z ∩ Y to have

the same codimension k in Y . Thus a chain in Y is defined to be allowable if and only if it

is allowable in X.

If p̄ is a perversity in the sense of Goresky-MacPherson [26] and X has no strata

of codimension one, then I p̄H∗(X;G0) is isomorphic to the intersection homology groups

I p̄H∗(X;G) of Goresky-MacPherson [26, 27]. If p̄ is not a Goresky-MacPherson perversity,

then we need stratified coefficients in order for some of the main properties of intersec-

tion homology, such as duality and the cone formula, to hold - see [21, 22]. General per-

versities are useful because, among other things, they allow us to talk about relative and

absolute cohomologies in the same framework as the Goresky-MacPherson intersection ho-

mologies. Suppose that Z ⊂ X are smooth manifolds. Then if p̄(Z) > codim(Z)− 2 we get

I p̄H∗(X;G0) ∼= H∗(X,Z;G), and if p̄(Z) < 0, we get I p̄H∗(X;G0) ∼= H∗(X − Z;G). Note

that if Z is the boundary of M , then also H∗(X − Z;G) ∼= H∗(X;G).

Intersection homology with general perversities can also be formulated sheaf theoretically

[21, 22] or analytically [41]. In these languages, it is more customary to use cohomological

indexing and refer to intersection cohomology but these are really the same theories (up to

various indexing issues).

Even with general perversities and G0 coefficients, the basic properties of I p̄H∗(X;G0)

established in [32] and [23] hold with little or no change to the proofs, such as stratum-

preserving homotopy equivalence, excision, the Künneth theorem for which one term is an

unstratified manifold, Mayer-Vietoris sequences, etc.

Duality. Finally, we recall the intersection homology version of Poincaré duality, due ini-

tially to Goresky and MacPherson [26] and later extended to the more general cases con-

sidered here [21]. Suppose X is a closed oriented n-pseudomanifold and that F is a field.

Suppose that p̄ and q̄ are perversities such that p̄ + q̄ ≤ r̄, i.e. p̄(Z) + q̄(Z) ≤ r̄(Z) for all

singular strata Z. Then there is an intersection pairing t: I p̄Hi(X;F0) ⊗ I q̄Hj(X;F0) →
I r̄Hi+j−n(X;F0). If p̄ + q̄ = t̄, i.e. p̄(Z) + q̄(Z) = codim(Z) − 2 for all singular strata

Z, then this induces a duality isomorphism pairing I p̄Hi(X;F0) ∼= I q̄Hn−i(X;F0). If X is

a compact pseudomanifold with boundary, we obtain an analogous Lefschetz-type duality

I p̄Hi(X;F0) ∼= I q̄Hn−i(X, ∂X;F0).

3.2 Perverse signatures

Now we can define perverse signatures. If X is a PL stratified pseudomanifold and p̄ ≤
q̄, let I p̄→q̄H∗(X; Q0) = im(I p̄H∗(X; Q0) → I q̄H∗(X; Q0)), where the map is induced by
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inclusion of chain complexes. If (Y, Z) is a pair of a pseudomanifold and any subspace Z, let

I p̄�q̄H∗(Y, Z; Q0) = im(I p̄H∗(Y ; Q0) → I q̄H∗(Y, Z; Q0)). The reason for the double arrow

in the second notation is that I p̄�q̄H∗(Y, Z; Q0) is really the image of a composition of two

maps taking the perversity from p̄ to q̄ and the space from Yi to (Y, Z).

By duality, if X is closed, oriented, and 4n-dimensional, and if Y is a compact, ori-

ented 4n-pseudomanifold with boundary, then there are nonsingular intersection pairings

between I p̄H2n(X; Q0) and I q̄H2n(X; Q0) if p̄ + q̄ = t̄, and similarly between I p̄H2n(Y ; Q0)

and I q̄H2n(Y, ∂Y ; Q0). If also p̄ ≤ q̄, this induces nonsingular symmetric pairings on

I p̄→q̄H2n(X; Q0) and I p̄�q̄H2n(Y, ∂Y ; Q0). The symmetry comes from the symmetry of the

chain level pairing (see the footnote on page 16). To see that these pairings are nonsingular,

we simply note that if [x] ∈ I p̄→q̄H2n(X; Q0) ⊂ I q̄H2n(X; Q0), then there must be a [y] in

I p̄H2n(X; Q0) such that [x] t [y] 6= 0. But then the image of [y] in I p̄→q̄H2n(X; Q0) must be

non-zero, since we could instead consider [x] as represented by a cycle in I p̄C2n(X; Q0) and

[y] by a cycle in I q̄C2n(X; Q0), but the intersection numbers would be the same. So [y] cannot

be 0 in I p̄→q̄H2n(X; Q0) ⊂ I q̄H2n(X; Q0). The same argument works for I p̄�q̄H2n(Y, Z; Q0).

The respective signatures of these intersection forms, denoted σp̄→q̄(X) and σp̄�q̄(Y ), are

the p̄→ q̄ perverse signatures of X and Y .

3.3 A new intersection homology pairing

In this subsection, we will define the homology groups that provide the symplectic pairing for

our non-additivity theorem. The relationship between this pairing and the usual Goresky-

MacPherson intersection pairing is akin to the relationship between the intersection pairing

on the boundary of a manifold and the pairing in its interior. In fact, this will be made precise

in Section 5.1, where we will show it reduces to the intersection pairing on the boundary of

a manifold in the appropriate context.

Motivation. To motivate how we define the groups we will need, let M be a manifold

with boundary and G an abelian group, and consider the long exact sequence

→ Hi(M ;G)→ Hi(M,∂M ;G)→ Hi−1(∂M ;G)→ .

On the other hand, for a stratified space X and p̄ ≤ q̄, we will see that there is a long

exact sequence

→ I p̄Hi(X;G0)→ I q̄Hi(X;G0)→ I q̄/p̄Hi(X;G0)→,

where I q̄/p̄Hi(X;G0) is defined to be the homology of the quotient I q̄Ci(X;G0)/I p̄Ci(X;G0).

But if M is a manifold with boundary, stratified as M ⊃ ∂M , and we choose perversities

p̄, q̄ such that p̄(∂M) < 0 and q̄(∂M) > t̄(∂M) = −1, then an easy computation (see

[21]), shows that I p̄H∗(M ;G0) ∼= H∗(M ;G) and I q̄H∗(M ;G0) ∼= H∗(M,∂M ;G). Thus we

expect I q̄/p̄Hi(X;G0) to play a role analogous to that classically played by the boundary of

a manifold, though with a dimension shift. We will make this connection with boundaries

even more precise in Section 5.1.
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Two q̄/p̄ long exact sequences. Let X be an n-dimensional PL stratified pseudomani-

fold; let G be an abelian group; and let p̄, q̄ be general perversities such that p̄(Z) ≤ q̄(Z) for

all singular strata Z ⊂ X. Then I p̄C∗(X;G0) is a subgroup of I q̄C∗(X;G0), and we denote

the quotient group by I q̄/p̄C∗(X;G0) and its homology by I q̄/p̄H∗(X;G0). Note that a cycle

x in I q̄/p̄Ci(X;G0) is a q̄-allowable chain such that ∂x is p̄-allowable. A homology between

cycles x1 and x2 is provided by a q̄-allowable chain y such that ∂y = x1 − x2 + p, where p is

p̄-allowable.

Suppose Y ⊂ X and that Y is given the subspace filtration, i.e. Y k = Y ∩Xk regardless

of actual geometric (co)dimensions; in particular a chain is p̄-allowable in Y if and only if it

is p̄-allowable as a chain in X. Then we have the diagram

0 - I p̄C∗(Y ;G0)
ip̄→q̄- I q̄C∗(Y ;G0)

πq̄/p̄- I q̄/p̄C∗(Y ;G0) - 0

0 - I p̄C∗(X;G0)

iY⊂X

?

∩

ip̄→q̄- I q̄C∗(X;G0)

iY⊂X

?

∩

πq̄/p̄- I q̄/p̄C∗(X;G0)

iY⊂X

?

∩

- 0

0 - I p̄C∗(X, Y ;G0)

πX,Y

?? ip̄→q̄- I q̄C∗(X, Y ;G0)

πX,Y

?? πq̄/p̄- I q̄/p̄C∗(X, Y ;G0)

πX,Y
??

- 0,

(3)

where I q̄/p̄C∗(X, Y ;G0) is defined to be the quotient of I q̄/p̄C∗(X;G0) by I q̄/p̄C∗(Y ;G0). The
righthand map in each of the first two rows is an injection because any chain supported in
Y that is p̄-allowable in X (and hence 0 in I q̄/p̄C∗(X;G0)) will already be p̄-allowable in Y .
Therefore, by the serpent lemma, the last row is also a short exact sequence. In particular,
we have long exact sequences associated to the third row of this diagram:

- I p̄Hi(X,Y ;G0)
(ip̄→q̄)∗- I q̄Hi(X,Y ;G0)

(πq̄/p̄)∗- I q̄/p̄Hi(X,Y ;G0)
d- I p̄Hi−1(X,Y ;G0) - ,(4)

and to the third column:

- I q̄/p̄Hi(Y ;G0)
(iY⊂X)∗- I q̄/p̄Hi(X;G0)

(πX,Y )∗- I q̄/p̄Hi(X,Y ;G0)
δ- I q̄/p̄Hi−1(Y ;G0) - .(5)

Observe that the “connecting maps” d can be described as acting on a representative chain

x by taking x to its boundary ∂x. Meanwhile, an element of I q̄/p̄H∗(X, Y ;G0)) can be

represented by a chain x such that ∂x = a + b with b a q̄-allowable chain in Y and a a

p̄-allowable chain in X, and δx is represented by b. Note also that a representative x of a

class in I q̄/p̄H∗(X, Y ;G0) is a q̄-allowable chain on X such that ∂x is the sum of a p̄-allowable

chain on X and a q̄-allowable chain on Y . We will use this fact in the proof of our main

theorem.

A pairing on q̄/p̄ intersection homology. Now we want to define intersection pairings

on our new groups. Suppose p̄+q̄ ≤ r̄ and R is a ring. We define a pairing Φ : I q̄/p̄Hi(X;R0)⊗
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I q̄/p̄Hj(X, ∂X;R0)→ I r̄Hn−i−j+1(X;R0) as follows. Let t denote the Goresky-MacPherson

intersection pairing on intersection chains. If x, y are chains in stratified general position

representing respective elements of I q̄/p̄Hi(X;R0) and I q̄/p̄Hj(X, ∂X;R0), let Φ̃(x, y) = x t
∂y + (−1)n−|x|(∂x) t y, where |x| denotes the degree of x. We need to see that Φ̃ makes

sense as a map on chains, and then we want to show it descends to a well-defined pairing

Φ([x], [y]) on homology.

To make sense on chains, we need to know that x t ∂y + (−1)n−|x|(∂x) t y is an r̄-

allowable chain. It follows from the standard stratified general position arguments [37, 26, 25]

that we can choose x and y in stratified general position (which includes boundaries being

in stratified general position with respect to x, y, and each other), and we may also assume

that x does not intersect ∂X. The Goresky-MacPherson intersection pairing extends to the

relevant chains in this setting by [25]. Note that each intersection x t ∂y or (∂x) t y is

between a p̄-allowable chain and a q̄-allowable chain; to see this in the case of x t ∂y, we

should observe that ∂y is the sum of a p̄-allowable chain in X and a q̄-allowable chain in

∂X, but the part in ∂X does not intersect x, which can be assumed to lie in the interior of

X, so we have the intersection of a q̄-admissible chain with a p̄-admissible chain, which will

be r̄-admissible. Furthermore4,

∂Φ̃(x, y) = (∂x) t (∂y) + (−1)n−|x|+n−|x|−1(∂x) t (∂y)

= (∂x) t (∂y)− (∂x) t (∂y)

= 0,

so indeed we obtain an admissible r̄-cycle. It is important to note that, despite appearances,

this cycle is not necessarily the boundary (−1)n−|x|∂(x t y) as x t y is the intersection of

two q̄ admissible chains, thus is not necessarily well-defined in I r̄C∗(X;R0) unless q̄+ q̄ ≤ r.

To show that this pairing is well-defined on homology, suppose that z is another chain

representing the same class as x and in stratified general position with respect to y. Then

from the definitions, z− x = ∂Q+P , where Q is another q̄-allowable chain whose boundary

is p̄-allowable and P is p̄-allowable. Again, we can assume everything in stratified general

position and that P and Q do not intersect ∂X. Then

Φ̃(z, y) = z t ∂y + (−1)n−|z|(∂z) t y

= (x+ ∂Q+ P ) t ∂y + (−1)n−|z|(∂(x+ ∂Q+ P )) t y

= x t ∂y + (−1)n−|z|(∂x) t y + (∂Q+ P ) t ∂y + (−1)n−|z|(∂P ) t y

= x t ∂y + (−1)n−|z|(∂x) t y + P t ∂y + (−1)n−|z|(∂P ) t y + ∂Q t ∂y.

Note that each intersection is of a p̄-allowable chain with a q̄-allowable chain since p̄-allowable

chains are also q̄-allowable. Now, since |z| = |P |, we see that P t ∂y + (−1)n−|z|(∂P ) t y =

(−1)n−|z|∂(P t y), which is well defined because P is p̄-allowable and y is q̄-allowable. Sim-

ilarly, ∂Q t ∂y = ∂(Q t ∂y), using again that only the p̄-allowable part of ∂y can intersect

4We use the sign conventions of Dold [20] or Goresky-MacPherson [26] so that ∂(a t b) = (∂a) t
b+ (−1)n−|a|a t (∂b).

14



Q. Thus Φ̃(z, y) = Φ̃(x, y). A similar argument shows that the pairing is independent of the

choice of chain representing [y], so Φ([x], [y]) is well-defined in I r̄Hn−i−j+1(X;R0).

Now, let Z be a compact oriented 4n − 1 PL stratified pseudomanifold with (possi-

bly empty) boundary. Suppose p̄ + q̄ = t̄. Then the composition of Φ : I q̄/p̄Hi(Z; Q0) ⊗
I q̄/p̄H4n−i(Z, ∂Z; Q0) → I t̄H0(Z; Q0) with the augmentation I t̄H0(Z; Q0) → Q gives us a

bilinear form I q̄/p̄Hi(Z; Q0)⊗ I q̄/p̄H4n−i(Z, ∂Z; Q0) → Q. We shall abuse notation and also

refer to this bilinear form as Φ in what follows.

Lemma 3.2. Φ : I q̄/p̄Hi(Z; Q0)⊗ I q̄/p̄H4n−i(Z, ∂Z; Q0)→ Q is nonsingular, and if ∂Z = ∅,
it is skew-symmetric on I q̄/p̄H2n(Z; Q0).

Proof. Consider the following diagram with coefficients in Q0:

- I q̄Hi(Z) - I q̄/p̄Hi(Z) - I p̄Hi−1(Z) -

- Hom(I p̄H4n−1−i(Z, ∂Z),Q)
?

- Hom(I q̄/p̄H4n−i(Z, ∂Z),Q)
?

- Hom(I q̄H4n−i(Z, ∂Z),Q)
?

....-

The top is the long exact sequence induced by the short exact sequence

0 - I p̄C∗(Z; Q0) - I q̄C∗(Z; Q0) - I q̄/p̄C∗(Z; Q0) - 0.

The bottom is the Hom(·,Q) dual of the same long exact sequence for (Z, ∂Z); it is also

exact because Q is a field. The first and third vertical morphisms take a class [x] to [x] t ·.
By Goresky-MacPherson [26, 27] (and [21] for general perversities and pseudomanifolds with

boundaries), these are isomorphisms. The second vertical map takes [x] to Φ([x], ·) composed

with the augmentation I t̄H0(X; Q0)→ Q.

We claim that the diagram commutes up to sign. It is standard that the square with top

corners I p̄Hi(Z) and I q̄Hi(Z) (not shown as a square on the diagram) commutes. To see

that the first square commutes, let [x] ∈ I q̄Hi(Z), [z] be the image of [x] in I p̄/q̄Hi(Z), and

[y] ∈ I q̄/p̄H4n−i(Z, ∂Z). Then Φ([z], [y]) = [z t ∂y + (−1)4n−1−|x|∂z t y] = [z t ∂y] = [x t
∂y] = [x] t [y] because ∂x = ∂z = 0 and [z] and [x] are represented by the same chain. On

the other hand, going down then right takes [x] to a map that acts on [y] by first applying

the map to the left on homology that gives [∂y] and then applying [x] t ·. So this square

also commutes.

To see that the second square commutes up to sign, suppose [x] ∈ I q̄/p̄Hi(Z). Then going

right then down takes [x] first to [∂x], then to the map that acts on [y] ∈ I q̄H4n−i+1(Z, ∂Z)

by [∂x] t [y] (note that ∂y is supported in ∂Z and cannot intersect x, which can be assumed

to have support in the interior of Z). On the other hand, going down then right takes [x] to

the map that acts on [y] ∈ I q̄H4n−i+1(Z, ∂Z) by first taking it to [y] ∈ I q̄/p̄H4n−i(Z, ∂Z) and

then applying Φ([x], ·) to obtain [x t ∂y + (−1)4n−1−|x|(∂x) t y]. But again ∂y must lie in

∂Z, so this is just [(−1)4n−1−|x|(∂x) t y] = (−1)4n−1−|x|[∂x] t [y].

We can now apply the five lemma to conclude that Φ determines a nonsingular pairing.

Even though the diagram does not commute on the nose, commuting up to sign implies that
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it is possible to change signs of some of the maps to obtain a commuting diagram. Changing

signs does not affect exactness of the horizontal sequences.

To show Φ is anti-symmetric when i = 2n and ∂Z = ∅, we calculate 5,

Φ([x], [y]) = [x t (∂y) + (−1)4n−1−|x|(∂x) t y]

= [x t (∂y)− (∂x) t y]

= [(−1)(4n−1−|x|)(4n−1−(|y|−1))(∂y) t x− (−1)(4n−1−|y|)(4n−1−(|x|−1))y t (∂x)]

= [(−1)(4n−1−2n)(4n−1−(2n−1))(∂y) t x− (−1)(4n−1−2n)(4n−1−(2n−1))y t (∂x)]

= [(∂y) t x− y t (∂x)]

= −Φ([y], [x]).

In Section 5.1, below, we will show that if X is a 4n − 1-manifold with boundary, ap-

propriately stratified and with an appropriate choice of perversities, then Φ becomes the

classical intersection pairing on ∂X.

4 Non-additivity of perverse signatures

This section contains our non-additivity theorems. We prove our first main result, on non-

additivity of perverse signatures for pseudomanifolds without boundary, in the first subsec-

tion, then obtain our second main result, for pseudomanifolds with boundary, as a corollary

in the second subsection.

4.1 Non-additivity of perverse signatures for pseudomanifolds with-

out boundary

In this section, we prove a generalization of the Wall non-additivity theorem for the perverse

pairings of intersection homology theory. The general outline of the proof is the same as

that in [45], but there are some subtleties and generalizations that need to be addressed.

Throughout this section, let X be a Q-oriented stratified 4n-pseudomanifold without

boundary (though it may possess codimension one strata). Let Z ⊂ X be a bicollared codi-

mension one subpseudomanifold such that X = Y1 ∪Z Y2 and ∂Y1 = Z = −∂Y2, accounting

for orientations.

Let V = I q̄/p̄H2n(Z; Q0) equipped with the anti-symmetric pairing Φ defined in Section

3.3. LetA = ker(iZ⊂Y1 : I q̄/p̄H2n(Z; Q0)→ I q̄/p̄H2n(Y1; Q0)), C = ker(iZ⊂Y2 : I q̄/p̄H2n(Z; Q0)→
I q̄/p̄H2n(Y2; Q0)), and let B = ker(d : I q̄/p̄H2n(Z; Q0)→ I p̄H2n−1(Z; Q0)).

Theorem 4.1. With the assumptions and definitions considered above,

σp̄→q̄(X) = σp̄�q̄(Y1) + σp̄�q̄(Y2) + σ(V ;A,B,C),

where σ is Wall’s Maslov triple index.

5Recall that on an m-pseudomanifold a t b = (−1)(m−|a|)(m−|b|)b t a; see [20, 26].
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Before presenting the proof, we provide some easy but interesting corollaries. We will

consider the case where Z is not the entire boundary of each Yi (as in Wall’s original theorem)

below in Section 4.2.

Corollary 4.2. With the hypotheses of Theorem 4.1, suppose I p̄H2n(Z; Q0)→ I q̄H2n(Z; Q0)

is surjective and I p̄H2n−1(Z; Q0)→ I q̄H2n−1(Z; Q0) is injective. Then

σp̄→q̄(X) = σp̄�q̄(Y1) + σp̄�q̄(Y2),

as in Novikov’s additivity theorem.

Proof. In this case, I q̄/p̄H2n(Z; Q0) = 0 by the long exact sequence relating p̄ and q̄ intersec-

tion homology. Thus V and hence σ(V ;A,B,C) are trivial.

This corollary allows us to recover Siegel’s theorem regarding Novikov additivity of Witt

spaces [42]. Indeed, when X, Yi, Z are all Witt-spaces, Im̄H∗ ∼= I n̄H∗ for each, and thus

σm̄→n̄(X) = σm̄�n̄(Y1) + σm̄�n̄(Y2). These signatures σm̄→n̄(X) and σm̄→n̄(Y1) are just the

signatures of the middle-perversity middle-dimension intersection pairings on these Witt

spaces [42]. Of course, when p̄ = q̄ = m̄, Theorem 4.1 also gives a non-additivity result

that applies, for instance, when a Witt space is decomposed along a codimension one sub-

pseudomanifold that is not Witt.

In terms of another important property in the signature package, note that this corollary

also implies a weak cobordism invariance, namely cobordism rel neighborhoods of the singular

strata. Of course, the resulting cobordism group is infinite dimensional, and for this reason,

not very useful. We are hopeful that it may be possible in the future to define a set of spaces

for which various perverse signatures satisfy a better cobordism invariance.

The following corollaries are particular examples that are standard for signatures.

Corollary 4.3. If (Y1, Z) is homeomorphic to (−Y2, Z) rel Z (i.e. by an isomorphism that

fixes Z pointwise), then σp̄→q̄(X) = 0.

Proof. Since Y1
∼= −Y2, their signatures are the negatives of each other. In addition,

with the hypotheses, it is clear that the inclusions I q̄/p̄H2n(Z; Q0) → I q̄/p̄H2n(Y1; Q0) and

I q̄/p̄H2n(Z; Q0)→ I q̄/p̄H2n(Y2; Q0) are isomorphic maps with identical kernels (this is why we

require Z to be fixed by the homeomorphism). Therefore A = C. But an odd permutation

of the subspaces of A,B,C alters σ(V ;A,B,C) by a sign. Hence σ(V ;A,B,C) = 0.

Corollary 4.4. If X is the suspension of the compact pseudomanifold Z, then σp̄→q̄(X) = 0.

Proof. The hypotheses of the preceding corollary apply taking Y1 and Y2 to be the two cones

on Z.

Remark 4.5. Corollary 4.4 can be obtained with less machinery by observing that if p̄ ≤
q̄ and p̄ + q̄ = t̄, then in fact p̄ ≤ m̄ ≤ n̄ ≤ q̄, where m̄, n̄ are the lower- and upper-

middle perversities. Thus I p̄H∗(X; Q0) → I p̄H∗(X; Q0) factors through Im̄H∗(X; Q0) and

I n̄H∗(X; Q0). But for a 4k-dimensional suspension X, Im̄H2k(X; Q0) = I n̄H2k(X; Q0) = 0.
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We now turn to the proof of Theorem 4.1.

Proof of Theorem 4.1. First we show that I p̄→q̄H2n(X; Q0) decomposes as a direct sum of

I p̄�q̄H2n(Y1, Z; Q0), I p̄�q̄H2n(Y2, Z; Q0), and a third piece, and that the signature pairing is

diagonal with respect to this decomposition. Consider the morphisms (induced by inclusion)

I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y2; Q0)→ I p̄H2n(X; Q0)

� I p̄→q̄H2n(X; Q0)

↪→ I q̄H2n(X; Q0)

→ I q̄H2n(X,Z; Q0)
∼= I q̄H2n(Y1, Z; Q0)⊕ I q̄H2n(Y2, Z; Q0).

The image of the composition is I p̄�q̄H2n(Y1, Z; Q0) ⊕ I p̄�q̄H2n(Y2, Z; Q0), so we have an
induced surjection

im(I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y2; Q0)→ I p̄→q̄H2n(X; Q0))→ I p̄�q̄H2n(Y1, Z; Q0)⊕ I p̄�q̄H2n(Y2, Z; Q0).

Since all groups are really Q-vector spaces, there is a (non-unique) splitting of this map.

We claim that this splitting is isometric in that it preserves the intersection pairing (where

the intersection pairing on I p̄�q̄H2n(Y1, Z; Q0)⊕ I p̄�q̄H2n(Y2, Z; Q0) is given by the orthog-

onal sum). Indeed, suppose that [x] = [x1] + [x2] and [y] = [y1] + [y2] are elements of

I p̄�q̄H2n(Y1, Z; Q0) ⊕ I p̄�q̄H2n(Y2, Z; Q0) and that [x̃] = [x̃1] + [x̃2] and [ỹ] = [ỹ1] + [ỹ2] ∈
im(I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y2; Q0)→ I p̄→q̄H2n(X; Q0)) are their images under a given split-

ting. Each [x̃i] and [ỹi] may be represented by p̄-allowable cycles with support in the in-

terior of Yi, and the same cycles represent the [xi] and [yi]. Furthermore, we can always

assume that the representing cycles are in stratified general position. Then, by defini-

tion, both intersection pairings are given by counting the intersection numbers of the the

representative chains, and it is clear that chains in Y1 do not intersect those in Y2. So

x t y = x1 t x2 + y1 t y2 = x̃1 t x̃2 + ỹ1 t ỹ2 = x̃ t ỹ, and the pairing is preserved. Notice

that if we choose a different splitting that, say, takes [x] to [x̃′], then [x̃− x̃′] must map to 0

in I q̄H2n(X,Z; Q0), i.e. it is q̄-homologous in X to a chain in Z. Such a chain clearly does

not intersect any p̄-allowable chain in the interior of either Yi, and this explains why the

choice of splitting does not affect the isometry type of the pairing.

Now, continuing with the proof of Theorem 4.1, we fix a splitting, and by an abuse of

notation, let I p̄�q̄H2n(Yi, Z; Q0) also denote its image under the splitting in I p̄→q̄H2n(X; Q0).

It is geometrically clear that a chain from I p̄�q̄H2n(Y1, Z; Q0) does not intersect a chain from

I p̄�q̄H2n(Y2, Z; Q0) in I p̄→q̄H2n(X; Q0). Thus I p̄�q̄H2n(Y1, Z; Q0) and I p̄�q̄H2n(Y2, Z; Q0) are

orthogonal in I p̄→q̄H2n(X; Q0). We also know that the restriction of the intersection pairing

to each subspace is nonsingular, and it follows that they must be disjoint. Thus, choosing

an appropriate basis, we can write I p̄→q̄H2n(X; Q0) as a direct sum with respect to which

the intersection pairing is block diagonal, as desired (we will use ⊥ to indicate direct sums

of orthogonal subspaces):

I p̄→q̄H2n(X; Q0) ∼= I p̄�q̄H2n(Y1, Z; Q0) ⊥ I p̄�q̄H2n(Y2, Z; Q0) ⊥ K.
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It follows that

σp̄→q̄(X) = σp̄�q̄(Y1) + σp̄�q̄(Y2) + σ(K),

so we must show that σ(K) = σ(V ;A,B,C). To do this, we will first decompose K as a

direct sum L⊕S⊕M and show that σ(K) = σ(L). Then we will show that we can identify

σ(L) with the desired Maslov triple index. Let

S = K ∩ im(I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y2; Q0)→ I p̄→q̄H2n(X; Q0)),

and let S⊥ denote the annihilator of S in K under t.

Lemma 4.6. Under the nonsingular pairing between I q̄H2n(X; Q0) and I p̄H2n(X; Q0). The

annihilator of

im(I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y1; Q0)→ I p̄H2n(X; Q0))

is

im(I q̄H2n(Z; Q0)→ I q̄H2n(X; Q0)).

Proof. The orthogonality of the two spaces is geometrically evident as p̄-allowable chains in

Y1 or Y2 can be assumed to have support in the interior of the space (i.e. away from the

boundary Z), due to the bicollar on Z.

On the other hand, suppose [x] is in I q̄H2n(X; Q0) but not in im(I q̄H2n(Z; Q0) →
I q̄H2n(X; Q0)). Then, by the long exact sequence of the pair, [x] has a nontrivial image

in I q̄H2n(X,Z; Q0) ∼= I q̄H2n(Y1, Z; Q0) ⊕ I q̄H2n(Y2, Z; Q0). But since I q̄H2n(Yi, Z; Q0) is

dual to I p̄H2n(Yi; Q0), this implies there must be some [y] ∈ I p̄H2n(Yi; Q0) for i = 0 or i = 1

such that y and x intersect with non-zero intersection number. Therefore [x] cannot be

orthogonal to im(I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y1; Q0)→ I p̄H2n(X; Q0)).

Thus the annihilator of im(I p̄H2n(Y1; Q0) ⊕ I p̄H2n(Y1; Q0) → I p̄H2n(X; Q0)) must be

exactly im(I q̄H2n(Z; Q0)→ I q̄H2n(X; Q0)).

Corollary 4.7. S⊥ = I p̄→q̄H2n(X; Q0) ∩ im(I q̄H2n(Z; Q0)→ I q̄H2n(X; Q0)).

Proof. First, observe that any [x] ∈ I p̄→q̄H2n(X; Q0)∩ im(I q̄H2n(Z; Q0)→ I q̄H2n(X; Q0)) is

in K because any cycle that has a q̄-allowable representative with support in Z must have

trivial intersection with any p̄-allowable chain with support in the interior of Y1 or Y2, and

any chain in either I p̄�q̄H2n(Yi, Z; Q0) can be so represented. For the same reason, [x] ∈ S⊥
because any element of S can be so represented. Thus

I p̄→q̄H2n(X; Q0) ∩ im(I q̄H2n(Z; Q0)→ I q̄H2n(X; Q0)) ⊂ S⊥.

On the other hand, anything in S⊥ lies in K ⊂ I p̄→q̄H2n(X; Q0) by definition, and so

by the preceding lemma, to complete the proof we need only show that S⊥ annihilates

im(I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y1; Q0) → I p̄H2n(X; Q0)). Since S⊥ ⊂ K, it automatically anni-

hilates each I p̄�qH2n(Yi, Z; Q0), so we only have to worry about showing that S⊥ annihilates

K ∩ im(I p̄H2n(Y1; Q0) ⊕ I p̄H2n(Y1; Q0) → I p̄H2n(X; Q0)), which is nearly the definition of

S. Suppose [x] ∈ S⊥ ⊂ I q̄H2n(X;Q0), [y] ∈ K ∩ im(I p̄H2n(Y1; Q0) ⊕ I p̄H2n(Y1; Q0) →
I p̄H2n(X; Q0)), and x t y 6= 0. Since [x] ∈ I p̄→q̄H2n(X; Q0), we can choose a p̄-allowable
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representative for [x], and we can think of y as q̄-allowable without changing x t y 6=
0. But now y is representing an element of K ∩ im(I p̄H2n(Y1; Q0) ⊕ I p̄H2n(Y1; Q0) →
I p̄→q̄H2n(X; Q0)) = S, which contradicts the assumption that [x] ∈ S⊥. So S⊥ indeed

annihilates im(I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y1; Q0)→ I p̄H2n(X; Q0)).

Lemma 4.8. S ⊂ S⊥.

Proof. S ⊂ K ⊂ I p̄→q̄H2n(X; Q0) by definition, so it suffices, by the preceding corollary, to

show that S ⊂ im(I q̄H2n(Z; Q0)→ I q̄H2n(X; Q0)).

Recall that S is the intersection of the image of I p̄H2n(Y1; Q0)⊕I p̄H2n(Y2; Q0) in I p̄→q̄H2n(; Q0X)

withK, which is the annihilator and additive complement of I p̄�q̄H2n(Y1, Z; Q0)⊕I p̄�q̄H2n(Y2, Z; Q0).

Thus if [x] ∈ S, then x can be written as the sum of two p̄-allowable cycles, one each

in Y1 and Y2. These cycles have well-defined images respectively in I p̄�q̄H2n(Y1, Z; Q0) ⊂
I q̄H2n(Y1, Z; Q0) ∼= I q̄H2n(X, Y2; Q0) and I p̄�q̄H2n(Y2, Z; Q0) ⊂ I q̄H2n(Y2, Z; Q0) ∼= I q̄H2n(X, Y1; Q0).

But each of these images must be 0 since the pairing on each I p̄�q̄H2n(Yi, Z; Q0) is nonsingu-

lar and [x] is orthogonal to everything in these spaces. Thus [x] must be 0 in I q̄H2n(Y1, Z; Q0)⊕
I q̄H2n(Y2, Z; Q0) ∼= I q̄H2n(X,Z; Q0). Therefore by the relative sequence, [x] must be in the

image of I q̄H2n(Z; Q0).

We can now proceed as in Wall [45]:

Since the intersection form restricted to K is nonsingular, we have6 (S⊥)⊥ = S. Therefore

the radical of the restriction of the intersection form to S⊥ is S. This implies that the form is

nonsingular when restricted to any additive complement L of S in S⊥. We can thus complete

the multiplication table for the intersection pairing on K as follows:

L S M

L A 0 0

S 0 0 B

M 0 Bt D

Here L ⊕ S = S⊥, M is an additive complement of S⊥, chosen so that L and M are

mutually annihilating under t. This can be done by an appropriate change of basis if

necessary, because the pairing is nonsingular on L. The letters A,B,D represent matrices

of intersection numbers, and Bt is the transpose of B. It appears because the intersection

pairing is symmetric. Furthermore, the form on S ⊕M must be nonsingular, because the

entire pairing on K is nonsingular, and the annihilator of S in S⊕M must be (S⊕M)∩S⊥ =

S. So S is self-annihilating on S ⊕M , which implies that the signature of the pairing on

S ⊕M is7 0. It readily follows that σ(K) = σ(L).

6Clearly S ⊂ (S⊥)⊥, and then we can apply dimension counting (dim(S⊥ = dim(K)− dim(S)) since K
is finite-dimensional.

7It is a standard fact about nonsingular bilinear forms that their signatures are 0 if they possess a subspace
U such that U = U⊥, but it is harder than expected to find a clear, concise proof in the expository topology
literature. Thus we include a brief proof here, owing largely to the treatment in [8].

Suppose we have a nonsingular symmetric form (·, ·) on the finite dimensional vector space V . Let
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Finally, we want to identify σ(L) with the indicated Maslov triple index. To do this, we

first will identify L with a space W defined using the spaces A, B, and C that occur in the

Maslov index. For this part of the proof, will refer to the following commutative diagram of

long exact sequences derived from the diagram (3).

- I p̄H2n+1(X,Z; Q0)
δ
- I p̄H2n(Z; Q0)

(iZ⊂X)∗- I p̄H2n(X; Q0) -

- I q̄H2n+1(X,Z; Q0)

(ip̄→q̄)∗

? δ
- I q̄H2n(Z; Q0)

(ip̄→q̄)∗

? (iZ⊂X)∗- I q̄H2n(X; Q0)

(ip̄→q̄)∗

?
-

- I q̄/p̄H2n+1(X,Z; Q0)

(πq̄/p̄)∗

?
δ
- I q̄/p̄H2n(Z; Q0)

(πq̄/p̄)∗

?
(iZ⊂X)∗- I q̄/p̄H2n(X; Q0)

(πq̄/p̄)∗

?
-

- I p̄H2n(X,Z; Q0)

d

? δ
- I p̄H2n−1(Z; Q0)

d

? (iZ⊂X)∗- I p̄H2n−1(X; Q0)

d

?
- .

Recall again that the “connecting map” d can be described as acting on a representative chain

x by taking x to its boundary ∂x, that an element of I q̄/p̄H∗(X, Y ;G0)) can be represented

by a chain x such that ∂x = a+ b with b a q̄-allowable chain in Y and a a p̄-allowable chain

in X, and, in this case, δx is represented by b.

As above, let

A = ker((iZ⊂Y1)∗ : I q̄/p̄H2n(Z; Q0)→ I q̄/p̄H2n(Y1; Q0)), (6)

C = ker((iZ⊂Y2)∗ : I q̄/p̄H2n(Z; Q0)→ I q̄/p̄H2n(Y2; Q0)), (7)

and

B = ker(d : I q̄/p̄H2n(Z; Q0)→ I p̄H2n−1(Z; Q0)), (8)

and define

W =
B ∩ (C + A)

B ∩ C +B ∩ A
. (9)

The reader may want to refer back to Section 2.2 to recall how W comes into Wall’s Maslov

index.

V+, V− be the maximal positive definite, respectively negative definite, subspaces of V . Then by definition,
the signature of the form is σ = dim(V+) − dim(V−). Let U be a subspace such that U⊥ = U . Since
dim(U) + dim(U⊥) = dim(V ), dim(U) = 1

2 dim(V ). Clearly also U ∩ V+ = U ∩ V− = 0. But then dim(V ) ≥
dim(U) + dim(V+)− dim(U ∩ V+) = dim(U) + dim(V+) and dim(V ) ≥ dim(U) + dim(V−)− dim(U ∩ V−) =
dim(U)+dim(V−) by the inclusion/exclusion formula. Thus 1

2 dim(V ) ≥ dim(V+) and 1
2 dim(V ) ≥ dim(V−).

But by diagonalizing the form, it follows easily from non-singularity that dim(V+) + dim(V−) = dim(V ).
This forces dim(V+) = dim(V−) = 1

2 dim(V ). Thus the signature must be 0.
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We seek to define a map f : S⊥ → W . To begin, for [z1] ∈ S⊥, define an element

f̃([z1]) ∈ I q̄/p̄H2n(Z; Q0) as follows. If [z1] ∈ S⊥ ∼= I p̄→q̄H2n(X; Q0) ∩ im(I q̄H2n(Z; Q0) →
I q̄H2n(X; Q0)), then [z1] is an element of I q̄H2n(X; Q0), and we can lift [z1] (non-uniquely)

to [z2] ∈ I q̄H2n(Z; Q0). Let f̃([z1]) = (πq̄/p̄)∗([z2]) ∈ I q̄/p̄H2n(Z; Q0).

Proposition 4.9. For every [z1] ∈ S⊥, f̃([z1]) ∈ B ∩ (C + A). Further, up to elements of

B∩A+B∩C, f̃([z1]) is independent of the choice of [z2] made in the definition, so f̃ defines

a map f : S⊥ → W . The map f is a homomorphism.

Proof. We begin by demonstrating that f̃([z1]) ∈ B∩(C+A). First, f̃([z1]) is by construction

in im((πq̄/p̄)∗), so by exactness of the q̄/p̄ sequence, it lies in B. To see that f̃([z1]) also lies

in A+ C, we note that

A ∼= im(δ : I q̄/p̄H2n+1(Y1, Z; Q0)→ I q̄/p̄H2n(Z; Q0))

and

C ∼= im(δ : I q̄/p̄H2n+1(Y2, Z; Q0)→ I q̄/p̄H2n(Z; Q0))

by the long exact sequence (5). So

A+ C = im(δ + δ : I q̄/p̄H2n+1(Y1, Z; Q0)⊕ I q̄/p̄H2n+1(Y2, Z; Q0)→ I q̄/p̄H2n(Z; Q0))

∼= im(δ : I q̄/p̄H2n+1(X,Z; Q0)→ I q̄/p̄H2n(Z; Q0)). (10)

Now let us go through the definition of f̃ again carefully, referring to the diagram above.

If [z1] ∈ S⊥, then by Corollary 4.7, z1 can be represented by a p̄-allowable cycle, a, in X

(representing a class in I p̄H2n(X; Q0)) that is q̄-homologous to a q̄-allowable cycle, b, in

Z which represents the class [z2] in the definition of f̃ . So (iq̄/p̄)∗([a]) = (iZ⊂X)∗([b]) in

I q̄H2n(X; Q0). Let ξ be a q̄-allowable 2n + 1 chain in X realizing such a homology, i.e.

∂ξ = b− a. Since a is p̄-allowable in X and b is q̄-allowable in Z, ξ represents an element of

I q̄/p̄H2n+1(X,Z; Q0). By definition of δ, the image δ(ξ) in I q̄/p̄H2n(Z; Q0) is also represented

by b, and so is (πq̄/p̄)∗[b] = f̃([z1]). Thus f̃([z1]) ∈ im(δ) = A+ C.

Next, suppose that [z2], [z′2] ∈ I q̄H2n(Z; Q0) are two choices of lifts for the same [z1] ∈
S⊥ ⊂ im(I q̄H2n(Z; Q0) → I q̄H2n(X; Q0)), i.e., (iZ⊂X)∗([z2]) = (iZ⊂X)∗([z

′
2]) = [z1]. Let

f̃([z1]) := (πq̄/p̄)([z2]) and f̃ ′([z1]) := (πq̄/p̄)([z
′
2]). We need to show that f̃([z1]) − f̃ ′([z1]) ∈

B ∩ A+B ∩ C.

We have

[z2]− [z′2] ∈ im(δ : I q̄H2n+1(X,Z; Q0)→ I q̄H2n(Z; Q0))
∼= im(δ + δ : I q̄H2n+1(Y1, Z; Q0)⊕ I q̄H2n+1(Y2, Z; Q0)→ I q̄H2n(Z; Q0)).

Let [x1], [x2] be elements, respectively, of I q̄H2n+1(Y1, Z; Q0), I q̄H2n+1(Y2, Z; Q0) such that

δ[x1] + δ[x2] = [z2] − [z′2]. Then δ ◦ (πq̄/p̄)∗([x1]) ∈ B ∩ A and δ ◦ (πq̄/p̄)∗([x2]) ∈ B ∩ C. So

(πq̄/p̄)([z2]− [z′2]) = (πq̄/p̄) ◦ δ([x1] + [x2]) ∈ B ∩ A+B ∩ C as required.

Putting our arguments so far together, we see that f is well-defined as a function from

S⊥ to W . But f is then also a homomorphism since for a sum [z1] + [z′1], we can certainly

find a lift of the form [z2] + [z′2], we have just shown that this choice is acceptable and does

not affect the image, and the other maps are all homomorphisms.

22



Now we can let f([z1]) = [z3], where by an abuse of notation, [z3] is also taken to be the

class that z3 represents in W as f̃([z1]).

Proposition 4.10. The map f surjects onto W with kernel S, hence L ∼= W .

Figure 2: A schematic for the argument that f is surjective.

Proof. First we show that f : S⊥ → W is surjective. Suppose [x] is a class in B ∩ (A+ C).

Since [x] ∈ B, there exists an [x2] ∈ I q̄H2n(Z; Q0) with (πq̄/p̄)∗[x2] = [x]. To get surjectivity

of f , we need to show there is a [v] ∈ I p̄H2n(X; Q0) such that (ip̄→q̄)∗[v] = (iZ⊂X)∗[x2] := [x1].

Then f [x1] = [x].

It might aid the reader to refer to the schematic in Diagram (4.1) during the following

argument.

Since [x] ∈ A+ C, we can write [x] = [a] + [c], where [a] ∈ A and [c] ∈ C. Since [a] ∈ A,

it is the image under δ of some [y1], which may be represented by a q̄-allowable chain y1

with support in Y1 such that ∂y1 = a + w1 and w1 is a p̄-allowable relative 2n chain in Y1.

Similarly, there is a q̄-allowable chain y2 with support in Y2 such that ∂y2 = c + w2 and

w2 is a p̄-allowable 2n chain in Y2. Then d[y1] = [w1] and d[y2] = [w2]. Since x is also in

B, d[x] = [∂x] = [0] ∈ I p̄H2n−1(Z; Q0), so there is a p̄-allowable chain u in Z such that

∂u = ∂x = ∂a+ ∂c. Now consider the p̄-allowable 2n-chain v = w1 + u+ w2. We have

∂(w1 + u+ w2) = ∂w1 + ∂u+ ∂w2

= −∂a+ ∂a+ ∂c− ∂c
= 0,

so v represents a class [v] ∈ I p̄H2n(X; Q0), and

∂(y1 + y2) = ∂y1 + ∂y2

= a+ w1 + c+ w2

= a+ c− u+ w1 + u+ w2.

In other words, y1+y2 provides a q̄-allowable homology from the p̄-allowable cycle −(w1+u+

w2) inX to the q̄-allowable cycle a+c−u in Z. This means that (ip̄→q̄)∗[v] = (iZ⊂X)∗[a+c−u],
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so we can set [x2] = [a+ c− u] and we get that [x1] = (iZ⊂X)∗[a+ c− u] ∈ S⊥ by Corollary

4.7. Finally, since u is p̄-allowable, we have that (πq̄/p̄)∗[x2] = (πq̄/p̄)∗[a+c−u] = [a+c] = [x]

as desired.

Lastly, we must show that ker f = S, which will suffice, as L is an additive complement

of S in S⊥. Suppose [x] ∈ S = K ∩ im(I p̄H2n(Y1; Q0)⊕ I p̄H2n(Y2; Q0)→ I p̄→q̄H2n(X; Q0)).

Then we can write [x] = (ip̄→q̄)∗[x1 + x2], where each xi is a p̄-allowable cycle with sup-

port in Yi. Since [x] ∈ K, we get (πX,Z)∗[x] = [0] ∈ I q̄H2n(Y1, Z; Q0) ⊕ I q̄H2n(Y2, Z; Q0) ∼=
I q̄H2n(X,Z; Q0) (or else its image would be nontrivial in I p̄�q̄H2n(Y1, Z; Q0)⊕I p̄�q̄H2n(Y2, Z; Q0)

and thus it could not be orthogonal to this group, on which the intersection pairing is non-

singular). So the cycle x1 + x2 which we can take to represent [x] is q̄-homologous to a cycle

in Z. But using that I q̄H2n(X,Z; Q0) ∼= I q̄H2n(Y1, Z; Q0)⊕ I q̄H2n(Y2, Z; Q0), it follows that

each of x1 and x2 is individually q̄-homologous to a q̄-allowable cycle in Z. Thus [x1] and

[x2] are each individually elements of K and so are individually elements of S. We claim

that f([x1]) ∈ B ∩ A and f([x2]) ∈ B ∩ C; the proofs are the same so we will just show the

first. Let y1 be a q̄-homology in Y1 from x1 to a q̄-chain x′1 with support in Z. Then x′1
represents f([x1]), and it is clear that f([x1]) ∈ B since x′1 is a cycle. But it is also clear that

[x′1] ∈ A, since ∂y1 = x′1−x1, which is the sum of a q̄-allowable chain on Z and a p̄-allowable

chain on Y1, thus y1 is a cycle in I q̄/p̄H2n+1(X,Z; Q0) and δ[y1] = [x′1]. It follows now that

f(S) = 0 ∈ W .

Conversely, suppose [x] ∈ S⊥ and that f([x]) = 0 ∈ W , i.e. f([x]) ∈ B ∩ A + B ∩ C.

We will show that [x] ∈ S; the reader may want to refer to Diagram (4.1) for a schematic of

the construction. Since [x] ∈ S⊥, we can assume by Corollary 4.7 that [x] is represented by

a q̄-allowable cycle x supported in Z, and this same chain represents f([x]). Since f([x]) ∈
B ∩ A + B ∩ C ⊂ I q̄/p̄H2n(Z; Q0), there is a q̄-allowable chain z supported in Z such that

∂z = x−(x1 +x2)−u, where [x1] ∈ B∩A, [x2] ∈ B∩C, and u is p̄ allowable in Z. Note that

x1 and x1 +u represent the same element of B∩A, so we can represent f([x]) as [x1 +u]+[x2]

in B∩A+B∩C. Since [x1+u] ∈ B, 0 = d[x1+u] = [∂(x1+u)] ∈ I p̄H2n−1(Z; Q0), so there is a

2n-dimensional p̄-chain w in Z such that ∂w = ∂(x1 +u), which are both p̄-allowable. Notice

also that x1 +u−w is a cycle in the usual sense (its boundary is identically 0), and u−w is

p̄-allowable, so [x1 + u−w] = [x1] ∈ B ∩A. Because this class is also in A, there is a 2n+ 1

dimensional q̄-chain y1 in Y1 such that ∂y1 = x1 +u−w−p1, where p1 is p̄-allowable. Notice

that 0 = ∂∂y1 = ∂(x1 + u−w) + ∂p1 = ∂p1, so ∂p1 = 0, and p1 is a cycle in Y1. But now we

observe that [p1] is in S: it is represented by a p̄-cycle in Y1, and since it is q̄-homologous by y1

to a cycle supported in Z, it is orthogonal to I p̄�q̄H2n(Y1, Z)⊕I p̄�q̄H2n(Y2, Z). Now observe

that ∂∂z = 0 and ∂x = 0, so that ∂(x1 + u) = −∂x2. Thus by a similar argument, there is a

[p2] ∈ S represented by a cycle p2 in Y2 that is q̄-homologous by some y2 to the cycle x2 +w.

Putting these together, p1 +p2 is q̄-homologous to x1 +u−w+x2 +w = x1 +u+x2. But we

have already seen that x1+u+x2 is q̄-homologous to x, and so [p1+p2] = [x] ∈ I q̄H2n(X; Q0).

Thus [x] ∈ S.

Finally, we must show that, under our isomorphism L ∼= W , the signature of L becomes

the Maslov index σ(V ;A,B,C) associated with the pairing Φ on V = I q̄/p̄H2n(Z; Q0). For

24



Figure 3: A schematic for the argument that ker(f) ⊂ S.

this Maslov triple index to make sense, we need the spaces A, B, and C to be self-annihilating

subspaces of V under the pairing Φ([x], [y]) := x t ∂y + (−1)n−|x|(∂x) t y, so we need the

following lemma.

Lemma 4.11. Φ(A× A) = Φ(B ×B) = Φ(C × C) = 0.

Proof. It is clear that Φ(B × B) = 0, for if [x] ∈ B, then [x] ∈ im(I q̄Hi(Z; Q0) →
I q̄/p̄Hi(Z; Q0)). So [x] can be represented as a q̄-cycle, i.e. ∂x = 0. Thus if [x], [y] ∈ B,

certainly Φ([x], [y]) = 0 from the definition.

Now suppose [x], [y] ∈ A are represented by q̄-allowable chains x, y in stratified general

position in Z. The fact that [x], [y] ∈ A means that there exist q̄-allowable 2n+ 1-chains ξ, η

in Y1 such that ∂ξ = x+u, ∂η = y+v, and u, v are p̄-allowable chains in Y1. We can assume

that ξ and η are in stratified general position rel Z and that in a collared neighborhood of

Z, ξ looks like [0, 1]× x and η looks like [0, 1]× y. Consider the chain ξ t v − u t η in Y1.

Since u and v are p̄-allowable and η and ξ are q̄-allowable, this is a well-defined t̄-allowable

1-chain. Next we compute, using tY1 to denote intersection numbers in Y1 and tZ to denote

those in Z:

∂(ξ tY1 v − u tY1 η) = (∂ξ) tY1 v + (−1)4n−|ξ|ξ tY1 ∂v − (∂u) tY1 η − (−1)4n−|u|u tY1 ∂η

= (∂ξ) tY1 v − ξ tY1 ∂v − (∂u) tY1 η − u tY1 ∂η

= (x+ u) tY1 v + ξ tY1 ∂y + ∂x tY1 η − u tY1 (y + v)

= x tY1 v + u tY1 v + ξ tY1 ∂y + ∂x tY1 η − u tY1 y − u tY1 v

= ξ tY1 ∂y + ∂x tY1 η

= x tZ ∂y + (−1)|∂x|∂x tZ y

= x tZ ∂y − ∂x tZ y
= Φ([x], [y]).

Here was have used that Z is 4n − 1 dimensional, Y1 is 4n-dimensional, x, y, u, v are

2n-dimensional, and ξ, η are 2n+ 1 dimensional. We have also used the geometrically clear
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fact that x does not intersect v and y does not intersect u, which follows from x and y being

in stratified general position and our collar assumptions on ξ and η. For the sign conventions

relating intersection numbers in Y1 with those in Z, see the Appendix. We conclude from this

argument that the intersection number Φ(x, y) must be 0, as it represents the boundary of

a 1-chain in Y1. Thus Φ(A×A) = 0. An analogous argument shows that Φ(C×C) = 0.

Now we can relate the intersection pairing on L ⊂ I p̄→q̄H2n(X; Q0) to the pairing Φ on

V = I q̄/p̄H2n(Z; Q0). Suppose that [x], [y] ∈ L ⊂ S⊥. Then [x] and [y] can be represented

by q̄-allowable cycles x and y in Z that are homologous via q̄-allowable chains χ and γ in X

to p̄ allowable cycles x̃ and ỹ in X. By definition, [x] t [y] = x̃ tX y.

The representatives x and y descend also to represent classes [x] and [y] in B∩ (A+C) ⊂
I q̄/p̄H2n(Z; Q0), which in turn represent f([x]) and f([y]) in W . Since [y] ∈ A + C, we can

write [y] = [a] + [c] ∈ I q̄/p̄H2n(Z; Q0), where [a] ∈ A, [c] ∈ C are represented by q̄−allowable

chains in Z, and y is q̄ homologous to a + c + w for some p̄-allowable chain w on Z. Since

[a] ∈ A and [c] = [c + w] ∈ C, there exist q̄-allowable chains ξ ∈ Y1 and η ∈ Y2 such that

∂ξ = a + u, ∂η = c + v + w, and u, v are p̄-allowable chains in Y1 and Y2, respectively with

boundaries in Z. We can further assume that in the collar neighborhood of Z, ξ and η have

a product structure [−1, 0]×a and [0, 1]×−v−w and that all chains are in stratified general

position. Observe that a+ w + c is q̄-homologous to the p̄-cycle −u− v via ξ + η.

Now again consider the pairing [x] t [y] in I p̄→q̄H2n(X; Q0). We have x̃ tX y = x̃ tX
(a+ c+w) = x̃ tX −u− v. Now we have a p̄ allowable chain on the right, so we can replace

x̃ with the q̄ allowable chain, x ⊂ Z to which it is q̄-homotopic to obtain x tX −u− v. By

pushing x into Y1 along the collar and using the product structure of u near Z, we get this is

equal to the intersection x tX −u = x tZ −∂u = x tZ ∂a. But this is precisely the pairing

Φ on I q̄/p̄H2n(Z; Q0), Φ([x], [a]) := x tZ ∂a + (−1)n−|x|(∂x) tZ a because x is a cycle, and

by definition this is in turn equal to Ψ(f([x]), f([y])) on W . Thus the intersection pairing

on L may be identified with the pairing Ψ on W as desired.

To check the sign in this last equality, we must be careful about which roles A and C

are playing. Certainly we have B∩(A+C)
B∩A+B∩C

∼= B∩(C+A)
B∩C+B∩A as spaces, but A and C play different

roles in the pairing. In Wall, the choice of which plays which role is determined so that A is

associated to the half of the space whose boundary orientation agrees with the orientation

of the intersection and C is associated with the space whose boundary has the opposite

orientation of that assigned to the intersection. Thus we can let Wall’s A correspond to ours

and Wall’s C corresponds to ours, and we can also use the order B,C,A for these subspaces.

So, since [x] represents an element of B, our Φ([x], [a]) corresponds to Wall’s

−Φ(element of first subspace, element of last subspace),

where the negative sign comes from our choice of y = a+c rather than the y+a+c = 0 that

Wall uses. So, using (2), this is Ψ([x], [y]). Thus the intersection pairing restricted to S⊥ is

taken to Wall’s pairing Ψ determined from Φ on W , and we conclude by Wall’s definition

that σ(L) = σ(W ;A,B,C).

This completes the proof of the Theorem 4.1.
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4.2 Pseudomanifolds with boundary

If we start with a pseudomanifold X without boundary and decompose it as Y1 ∪Z Y2 along

a pseudomanifold Z which is not a stratum of X, then Y1 and Y2 with the subspace strat-

ification induced from X are pseudomanifolds with boundary. We would like to be able to

further decompose X by cutting the Yi into pieces, but to do this, we need a version of our

non-additivity theorem for a stratified pseudomanifold X (here, our Yi’s) with boundary. To

get this result as a corollary of Theorem 4.1, we use the restratification trick we discussed

in Section 3.1.

For intuition, consider Figure 4.2 below, where X4k is a compact oriented stratified

pseudomanifold with boundary ∂X = W such that X = Y1 ∪Z Y2. Assume that Y1, Y2 are

compact oriented stratified pseudomanifolds with boundary such that Y1∩Y2 = ∂Y1∩∂Y2 = Z

is a bicollared (in X) pseudomanifold with boundary such that ∂Y1 = Z−W1, ∂Y2 = W2−Z,

and ∂W1 = ∂W2 = ∂Z. Also assume that (W1, ∂W1) ⊂ (Y1, Z) and (W2, ∂W2) ⊂ (Y2, Z),

(Z, ∂Z) ⊂ (Y1,W1), and (Z, ∂Z) ⊂ (Y2,W2) are collared as pairs. Note that ∂X = W2−W1.

The orientations are chosen to agree with Wall’s conventions in [45] (see also Section 5.1,

below).

Figure 4: A schematic of a splitting of a pseudomanifold with boundary (left) and a flatter

schematic of the relative orientations (right).

Note that since X is a pseudomanifold with boundary W , W is not a union of strata

of X. We begin by restratifying X so that W becomes a union of strata, and we obtain a

stratified pseudomanifold without boundary which we will denote by X̂ (remember, though,

that X = X̂ as topological spaces). The strata of X̂ are defined as follows:

1. for each stratum S of X, then S ∩X −W is a stratum of X̂,

2. for each stratum S of X such that S ∩W 6= ∅, then S ∩W is a stratum of X̂.

It is not hard to see that X̂ is a PL stratified pseudomanifold. In fact, certainly X and X̂

agree off W , and if N ∼= W × [0, 1] ⊂ X̂ is a collared neighborhood of W with W = W ×{1},
then under the subspace stratification from X̂, N is stratified as the product of W , with

its stratification inherited from X, and [0, 1] with the stratification [0, 1] ⊃ {1}. Let Ŷi, Ẑ

and Ŵi be the restratifications of Yi, Z and Wi as subspaces of X̂. Note that, with these

stratifications, X̂ and Ẑ are PL stratified pseudomanifolds without boundary, while ∂Ŷ1 = Ẑ

and ∂Ŷ2 = −Ẑ.
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Suppose p̄, q̄ are perversities on X, and induced also on the subspaces Yi. Let p̂ be the

perversity on Ŷi that agrees with p̄ on Yi −Wi and is such that p̂(S) < 0 for all S ⊂ Ŵi.

Let q̄ = t̄ − p̄. Note that then q̂(S) > t̄(S) for all S ⊂ Ŵi. Then we get the following

isomorphisms of intersection homology groups.

Lemma 4.12. 1. I p̂H∗(X̂;G0) ∼= I p̄H∗(X;G0) and I q̂H∗(X̂;G0) ∼= I q̄H∗(X, ∂X;G0),

2. I p̂H∗(Ẑ;G0) ∼= I p̄H∗(Z;G0) and I q̂H∗(Ẑ;G0) ∼= I q̄H∗(Z, ∂Z;G0),

3. I p̂H∗(Ŷi;G0) ∼= I p̄H∗(Yi;G0) and I q̂H∗(Ŷi, Ẑ;G0) ∼= I q̄H∗(Yi, ∂Yi;G0).

Therefore

1. I p̂→q̂H∗(X̂;G0) ∼= I p̄�q̄H∗(X, ∂X;G0),

2. I p̂→q̂H∗(Ẑ;G0) ∼= I p̄�q̄H∗(Z, ∂Z;G0),

3. I p̂�q̂H∗(Ŷi, Ẑ;G0) ∼= I p̄�q̄H∗(Yi, ∂Yi;G0).

Furthermore, these last isomorphisms preserve the intersection pairing when G is a ring.

Proof. We will show the proof for Ŷi; the others are the same (though easier without the

extra boundary component).

By [21, Lemma 2.4], we may assume p̂ to be arbitrarily negative on Ŵi. Therefore, it

follows from the definition that no p̂-allowable simplex can intersect Ŵi. Thus I p̂H∗(Ŷi;G0) ∼=
I p̂H∗(Ŷi − Ŵi;G0) ∼= I p̄H∗(Yi −Wi;G0) ∼= I p̄H∗(Yi;G0), the last isomorphism by stratum-

preserving homotopy equivalence.

Next, by [21, Lemma 2.4], we might assume q̂ to be arbitrarily large on Ŵi. Thus there

is no impediment to chains intersecting Wi. Thus in the neighborhood N of Ŵi that is the

product of Wi with (0, 1] ⊃ {1}, all allowable chains are homologous by product homologies

to chains in Ŵi. But as Ŵi consists entirely of singular strata, the coefficient system is 0

there, and so I q̂H∗(N ;G0) = 0 and similarly I q̂H∗(N,N ∩ Z0;G0) = 0. The isomorphism

I q̂H∗(Ŷi, Ẑ;G0) ∼= I q̄H∗(Yi, ∂Yi;G0) now follows by some easy arguments from the Mayer-

Vietoris sequence for the pair consisting of (N,N ∩ Z0) and (Ŷi − Ŵi, Ẑ − Ŵi ∩ Ẑ).

The rest of the lemma follows easily.

Let V̂ = I q̂/p̂H2n(Ẑ; Q0) equipped with the anti-symmetric pairing Φ. Let

Â = ker(I q̂/p̂H2n(Ẑ; Q0)→ I q̂/p̂H2n(Ŷ1; Q0)),

Ĉ = ker(I q̂/p̂H2n(Ẑ; Q0)→ I q̂/p̂H2n(Ŷ2; Q0)),

and

B̂ = ker(d : I q̂/p̂H2n(Ẑ; Q0)→ I p̂H2n−1(Ẑ; Q0)).

Corollary 4.13.

σp̄�q̄(X) = σp̄�q̄(Y1) + σp̄�q̄(Y2) + σ(V̂ , Â, B̂, Ĉ).
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Proof. The corollary follows from Theorem 4.1 and the preceding lemma.

It is reasonable to ask the following question: Is it possible to identify σ(V̂ ; Â, B̂, Ĉ) as

an invariant of a pairing involving only subspaces of intersection homology groups associ-

ated with Z? Unfortunately, the obvious choices do not seem to be correct. For example,

σ(V̂ , Â, B̂, Ĉ) cannot be the signature of the pairing Φ on im(I q̄/p̄H2n(Z)→ I q̄/p̄H2n(Z, ∂Z)),

which would be a natural guess. To see this, suppose all spaces are manifolds with boundary

as in Wall’s original non-additivity theorem. In this case, Z is a manifold and I q̄/p̄H2n(Z) = 0.

Thus this term would always have to be 0, which is certainly not true. Another natural guess

would be that σ(V̂ ; Â, B̂, Ĉ) would be expressible in terms of a pairing on the intersection

homology of ∂Z. However, this cannot be, as Theorem 4.1 should be a special case of Corol-

lary 4.13 in which all boundaries (except for the intersection Z itself) are empty. In such a

case, any groups associated with ∂Z would vanish, and this would violate the existence of

the Maslov index term in Theorem 4.1.

Remark 4.14. Rather than restratifying as we have done, it is tempting to do “the usual

thing” and treat pseudomanifolds with boundary by simply adding a cone on the boundary

and working with the resulting space. However, that will not quite do here, as Z ∪∂Z c(∂Z)

will not generally be bicollared in X ∪∂X c(∂X).

One alternative would be the following construction. Beginning with the bi-collared Z ×
[0, 1] ⊂ X, consider X ′ = X∪∂Z×[0,1] (c(∂Z)× [0, 1]). Then X ′ has boundaries homeomorphic

to W1∪∂Z c(∂Z) and W2∪∂Z c(∂Z). By separately coning off these boundary components we

get a space X ′′ that possesses strata [0, 1] ⊃ {0, 1} and such that X ′′− [0, 1] is homeomorphic

to the interior of X. If the perversities p̄ and q̄ are extended so that p̄ takes values < 0 on

the new strata and q̄ takes values > t̄ on the new strata, then the intersection homology of

X ′′ with these perversities is homeomorphic to that of X̂ with respect to p̂ and q̂.

5 Relationship to previous work

In this section, we relate perverse signatures and our non-additivity theorem to other signa-

tures and to Wall non-additivity.

5.1 Relation to Wall’s non-additivity theorem

If we take our pseudomanifolds to be manifolds then, as expected, we recover Wall’s non-

additivity theorem. The relationship between our Maslov index and Wall’s is not completely

obvious, however, since the pairing Φ at first glance seems mysterious from the manifold

point of view. We will show that, in fact, that if M is a manifold with boundary and X is

the pseudomanifold obtained by coning off ∂M , then I q̄/p̄H∗(X) is just H∗−1(∂M) and the

pairing Φ is the intersection pairing on ∂M , up to sign.

Suppose Mm is a compact manifold with boundary, ∂M . Let X denote M ∪∂M c(∂M).

We suppose X is stratified as X ⊃ v, where v is the cone vertex. Let p̄, q̄ be perversities

for which p̄(v) < 0 and q̄(v) > m − 2. Then I p̄H∗(X;G0) ∼= H∗(M ;G) and I q̄H∗(X;G0) ∼=
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H∗(M,∂M ;G). We would then expect from the long exact sequences of the pairs that

I q̄/p̄H∗(X;G0) ∼= H∗−1(∂M ;G). We will make this isomorphism explicit.

Suppose ξ is an j-chain in ∂M . Let cξ denote the chain obtained by coning off ξ in

c(∂M) ⊂ X. In other words, if ξ =
∑
aiσi, then cξ =

∑
aic(σi), where for a simplex

σ, c(σ) : ∆j+1 → X is the cone on the map σ : ∆j → ∂M obtained by extending σ

linearly to the cone vertex. We take the convention that the new vertex is the first vertex

in cσ. With this convention, ∂(cξ) = ξ + c(∂ξ). This coning c determines a homomorphism

c : C∗−1(∂M ;G)→ I q̄/p̄C∗(X;G0), since every cξ is q̄-allowable, as can be confirmed from the

definition of allowability as (c(σ))−1(v) ⊂ the 0-skeleton of ∆j+1 for every singular simplex

σ in ∂M . Furthermore, c is a chain map, as ∂(cξ) = ξ + c(∂ξ) = c∂ξ ∈ I q̄/p̄C∗(X;G0), since

ξ is p̄-allowable. As a chain map, c induces a homomorphism on homology, which we claim

is an isomorphism.

Lemma 5.1. The homomorphism c induces an isomorphism H∗−1(∂M ;G)→ I q̄/p̄H∗(X;G0).

Proof. Consider the diagram (with coefficients suppressed)

- Hi+1(M,∂M) - Hi(∂M) - Hi(M) - Hi(M,∂M) -

- I q̄Hi+1(X)
?

- I q̄/p̄Hi+1(X)
?

- I p̄Hi(X)
?

- I q̄Hi(X)
?

-

It will suffice to show this diagram commutes (up to sign). The map from Hi(M) to I p̄Hi(X)

is given by inclusion, the map Hi(M,∂M) to I q̄Hi(X) is given by taking a representative ξ

to ξ − c(∂ξ).
It is easy to check the the squares on the right and in the middle commute. For the

square on the left, note that if ξ is a chain representing an element of Hi+1(M,∂M), then

the image of ξ− c(∂ξ) in I q̄/p̄Hi+1(X) is simply −c(∂ξ) as ξ is p̄-allowable. This is enough to

establish that the left square commutes up to sign. Thus the diagram commutes up to sign

and has exact rows, which is enough to establish the isomorphism via the five-lemma.

Proposition 5.2. If R is a ring, M is a 4n−1 manifold the isomorphism c of the preceding

lemma takes the intersection pairing H2n−1(∂M ;R) ⊗ H2n−1(∂M ;R) → R to the pairing

−Φ : I q̄/p̄H2n(X;R0)⊗ I q̄/p̄H2n(X;R0)→ R, i.e. x t∂M y = −Φ(cx, cy).

Proof. Suppose x ∈ Hi(∂M ;R), y ∈ Hj(∂M ;R), represented by cycles in general position.

Let cx be the cone on x as described above, and let cy be the cone on y except assuming

that y has first been pushed outward slightly into c∂M ⊂ X along the cone line so that x

does not intersect cy. In fact, we observe geometrically that x tX cy = (∂(cx)) tX cy = 0,

while (cx) tX y = (cx) tX ∂(cy) must equal x t∂M y up to sign. This will establish the

claim once we work out the sign.

We write out the argument in simplicial notation, which of course is not quite the actual

situation, but it provides the correct intuition and reasoning. With this abuse of notation,
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simplices of cx have the form [v, σ] = [v, v0, . . . , vi], where v is the singular point of X and

the vi are the vertices of σ, a simplex of x. The orientation here corresponds to a basis of

vectors [v, v0], . . . , [v, vi]. To compare with the orientation of σ, though, it is best to note that

[v, v0, . . . , vi] = −[v0, v, v1, . . . , vi]. Here [v0, v, v1, . . . , vi] has an orientation corresponding to

a basis of vectors [v0, v], [v0, v1], . . . , [v, vi], which is a basis for σ with a vector from v0 to v,

which corresponds to an outward pointing normal from M , adjoined at the beginning. Thus,

using our conventions from the Appendix, Φ(cx, cy) = cx tX ∂(cy) = cx tX y = −x t∂M
y.

There is an alternative way to formulate the above correspondences using codimension

one strata. In particular, instead of forming X, we can stratify M as M ⊃ ∂M , where ∂M is

treated as a codimension one stratum of the stratified space M . If we then choose perversities

p̄, q̄ such that p̄(∂M) < 0, q̄(∂M) ≥ 0, then we will again have I p̄H∗(M ;G0) = H∗(M ;G)

and I q̄H∗(M ;G0) = H∗(M,∂M ;G). This follows from [21, Lemma 2.4], which says that this

is equivalent to choosing p̄(∂M) arbitrarily negative and q̄(∂M) arbitrarily large, and then

simple arguments taking into account with the stratified coefficient system.

Using this alternative correspondence, we can recover Wall’s non-additivity theorem [45].

In Wall’s situation, we suppose M4n is a compact oriented manifold with boundary W

such that M = M1 ∪ M2, where M1,M2 are compact oriented manifolds with boundary

and M1 ∩M2 = ∂M1 ∩ ∂M2 is a manifold with boundary N such that ∂M1 = N − W1,

∂M2 = B2 −N , and ∂N1 = ∂N2 = ∂N = P .

Let V = H2n−1(P ; Q), and let A,B,C be the respective kernels of the maps induced

by inclusion from V to H2n−1(W1; Q), H2n−1(N ; Q), H2n−1(W2; Q). For a 4n manifold with

boundary, σ(M) denotes the signature of the pairing on im(H2n(M ; Q)→ H2n(M,∂M ; Q)).

Corollary 5.3 (Wall).

σ(M) = σ(M1) + σ(M2)− σ(V ;A,B,C).

Proof. Wall’s theorem follows from our Theorem 4.1 as follows. Restratify M as M ⊃ ∂M

and choose p̄(∂M) arbitrarily negative and q̄(∂M) = t̄(∂M)− p̄(∂M) = −1− p̄(∂M). Then,

I p̄H∗(M ;G0) = H∗(M ;G), I q̄H∗(M ;G0) = H∗(M,∂M ;G), I p̄H∗(Mi;G0) = H∗(Mi;G), and

I q̄H∗(Mi, N ;G0) = H∗(Mi, ∂Mi;G) . In particular, I p̄→q̄H∗(M ; Q0) ∼= im(H∗(M ; Q) →
H∗(M,∂M ; Q)), and I p̄�q̄H∗(Mi, N ; Q0) ∼= im(H∗(Mi; Q) → H∗(Mi, ∂Mi; Q)). Further-

more, by Lemma 5.1 and Proposition 5.2, I q̄/p̄H∗(N ; Q0) ∼= H∗−1(P ;R0) with Φ correspond-

ing to the negative of the intersection pairing on P . The corollary thus follows from Theorem

4.1.

5.2 Examples

In this section, we provide some simple sample computations applying our (non-)additivity

theorem.
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First example. Suppose W is a compact oriented 4k-dimensional Q-Witt space with non-

zero Witt signature. Let M be a 4m-dimensional connected compact oriented PL manifold

with boundary ∂M . Consider the space X = M × W ∪∂M×W ∂M × c̄W , i.e. the space

obtained from M ×W by coning off the boundary fiberwise. Then X is not a Witt space,

as W is the link of the stratum ∂M × v, where v is the cone point of the closed cone c̄W ,

and by assumption, W has non-vanishing middle-dimensional middle-perversity intersection

homology. Furthermore, because the signature of W does not vanish, X cannot be a Banagl

“non-Witt” space. Nonetheless, the signature σm̄→n̄(X) is defined, and we will show that if

∂M ∼= S4m−1, then σm̄→n̄(X) = σ(M)σ(W ), where σ(M) is the usual manifold signature of

M and σ(W ) = σm̄→n̄(W ) is the Witt signature of W .

Lemma 5.4. Suppose Y is a compact oriented 4k-dimensional pseudomanifold and that N

is a closed oriented 4n-dimensional manifold. Then for perversities p̄ ≤ q̄, p̄ + q̄ = t̄, we

have σp̄→q̄(N × Y ) = σ(N)σp̄→q̄(Y ).

Proof. By the Künneth theorem for intersection homology in which one term is a manifold

(see [32], which extends to more general perversities and stratified coefficients), I p̄H∗(N ×
Y ; Q0) ∼= H∗(M ; Q) ⊗ I p̄H∗(Y ; Q0), and similarly for q̄. Thus, by the naturality of the

Künneth theorem, I p̄→q̄H∗(N×Y ; Q0) ∼= H∗(N ; Q)⊗I p̄→q̄H∗(Y ; Q0). The lemma now follows

just as it does for manifolds (e.g. [30, 18]), using stratified general position arguments to see

that the intersection pairing of the product behaves as one expects.

Now suppose W and M as above with ∂M PL homeomorphic to S4m−1. Let M̂ be

the closed manifold M ∪S4m−1 D4m. By the lemma, σm̄→n̄(M̂ × W ) = σ(M)σm̄→n̄(W ) =

σ(M)σ(W ), the last equality because W is Witt. Notice that S4m−1×W is also a Witt space

and so Im̄H∗(W ; Q) ∼= I n̄H∗(W ; Q). Thus, by Corollary 4.2, σm̄→n̄(M̂ ×W ) = σm̄�n̄(M ×
W )+σm̄�n̄(D4m×W ). But D4m×W possesses an orientation-reversing self-homeomorphism,

so σm̄�n̄(D4m×W ) = 0, and σm̄�n̄(M×W ) is the Witt signature σm̄�n̄(M×W ) = σ(M×W ).

Thus σ(M ×W ) = σ(M)σ(W ).

Returning now to our space X, obtained by coning off the boundary of M ×W fiberwise,

we see by a second application of Corollary 4.2 that σm̄→n̄(X) = σ(M ×W ) +σm̄→n̄(S4n−1×
c̄W ). But S4n−1 × c̄W again possesses an orientation-reversing self-homeomorphism, so its

perverse signature is 0. Putting the preceding arguments together, we obtain σm̄→n̄(X) =

σ(M ×W ) = σ(M)σ(W ).

A second example. In this example, we show that coning off a boundary does not change

perverse signatures, i.e. that σp̄→q̄(X ∪∂X c̄(∂X)) = σp̄�q̄(X). In this example, X may be

neither Witt nor Banagl non-Witt. This example utilizes an explicit computation of the

Maslov index term of Theorem 4.1.

We first need a lemma that is clearly useful in its own right as a computational tool.

Lemma 5.5. Let p̄ ≤ q̄, p̄ + q̄ = t̄, and suppose Y is a closed, oriented 4n− 1 dimensional

pseudomanifold with closed cone c̄Y . Then σp̄�q̄(c̄Y ) = 0.
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Proof. Notice that c̄Y is a pseudomanifold with boundary ∂(c̄Y ) = Y . By the standard

cone formula for intersection homology, for any perversity r̄, I r̄H∗(c̄Y ; Q0) is either 0 or

isomorphic to I r̄H2n(Y ; Q0), with the isomorphism determined by inclusion Y ↪→ c̄Y . Thus

I p̄�q̄H2n(c̄Y, Y ; Q0) = 0, because any possible non-zero element [x] ∈ I p̄H2n(c̄Y ; Q0) can be

written with the support of x in Y , and so the image of [x] is 0 in I q̄H2n(c̄Y, Y ; Q0). Thus

certainly σp̄�q̄(c̄Y ) = 0.

Proposition 5.6. Suppose X̂ is a closed oriented 4n-pseudomanifold of the form X̂ =

X ∪∂X c̄(∂X). Let p̄ ≤ q̄, p̄+ q̄ = t̄ be two perversities on X̂. Then σp̄→q̄(X̂) = σp̄�q̄(X).

Proof. We apply Theorem 4.1. By the preceding lemma, σp̄�q̄(c̄(∂X)) = 0, so we need only

show that the Maslov index term vanishes.

Consider ker(d : I q̄/p̄H2n(∂X; Q0) → I p̄H2n−1(∂X; Q0)), which is the group B in the in-

dex term. By the exact sequence (5), B = im(I q̄H2n(∂X; Q0) → I q̄/p̄H2n(∂X; Q0)), and

so every class [x] ∈ B can be represented by a q̄-allowable 2n-cycle in ∂X. Consider

now (i∂X⊂c̄(∂X))∗[x] ∈ I q̄/p̄H2n(c̄(∂X); Q0). This is also represented by the same chain x.

In c̄(∂X), we have that ∂(c̄x) = ±x, so if we can show c̄x is q̄ allowable, then we have

(i∂X⊂c̄(∂X))∗[x] = 0, which implies B ⊂ A, where A = ker((i∂X⊂c̄(∂X))∗ : I q̄/p̄H2n(∂X; Q0)→
I q̄/p̄H2n(c̄(∂X); Q0)). Thus B ∩ (A+C) = B ∩A, and so W = B∩(A+C)

B∩A+B∩C = 0, which implies

that the index term must vanish.

To show c̄x is q̄-allowable, first note that the conditions on p̄, q̄ imply that q̄ ≥ n̄, where

n̄ is the upper middle perversity. For any simplex of c̄x, we only need to check allowability

at the cone vertex v (the allowability of c̄x otherwise comes for free - see the arguments in

[23]). For simplices σ of c̄x that intersect the cone vertex, we know that σ−1(v) is in the

0-skeleton of the model ∆2n+1. So by definition of allowability, we only need to check that

0 ≤ 2n + 1 − 4n + q̄(v) = 1 − 2n + q̄(v). But q̄(v) ≥ n̄(v) = 2n − 1. So 1 − 2n + q̄(v) ≥ 0,

and q̄-allowability is confirmed.

A Orientations and intersection numbers

In this appendix we establish conventions for orientation and intersection numbers. This is

not meant to be a thorough treatise on every possible case that can occur in the stratified

world, but rather the working through of the simplest manifold cases in order to establish

compatibility of convention choices.

Let M be an m-dimensional oriented manifold with boundary. We choose the orien-

tation of ∂M by adjoining an outward-pointing normal in the first component, i.e. if

x ∈ ∂M , e1, . . . , em−1 is a basis for Tx∂M , and n ∈ TxM is an “outward pointing” vec-

tor, then the ordered collection 〈e1, . . . , em−1〉 agrees with the orientation for ∂M if and only

if 〈n, e1, . . . , em−1〉 agrees with the orientation for M . This convention seems to agree with

the standard conventions for simplices.

Suppose ξ, η are cycles of complementary dimension in ∂M in general position and inter-

secting generically at the point x. Then the contribution to the intersection number ξ t η
of the intersection at x is ±1 according to whether a local basis for ξ concatenated with a
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local basis for η agrees or disagrees with the orientation at Tx∂M . It makes sense to talk

about local bases for ξ and η as generic intersections will occur in the interiors of oriented

simplices.

Suppose now that there is a chain Ξ in M with ∂Ξ = ξ contained in ∂M . We may

assume that in a neighborhood of ∂M , Ξ looks like the chain [0, 1] × ξ with the “1” end

of the cylinder on the boundary (suitably simplicialized). Note that this gives the proper

boundary ∂([0, 1] × ξ) = 1 × ξ − 0 × ξ with 1 × ξ = ξ ⊂ ∂M . Note also that the [0, 1]

component points in the direction of an outward pointing normal. Thus if ξ and η intersect

at x, the intersection number contribution at x of ξ t η in ∂M is equal to the intersection

number contribution at x of Ξ and η in M . This is because the intersection number of Ξ

with η in M is determined by using the basis of [0, 1]× ξ (i.e. the outward normal and then

the basis of ξ) and then the basis for η. Since the normal comes at the beginning, there is

agreement with how we expect to compare orientations in M with those in ∂M . On the

other hand, suppose H is a chain in M with ∂H = η and that H looks like [0, 1] × η in a

neighborhood of ∂M . Then the intersection at x of ξ with H compares with the basis for

M the basis obtained from ξ then from the outward normal, then from η. So to compare

properly with the intersection number of ξ and η in ∂M , we must move the normal to the

front. This changes the orientation number by (−1)|ξ|. So the intersection number of ξ with

η in ∂M is (−1)|ξ| times the intersection number of ξ with H in M .

Summarizing, we have:

∂Ξ t∂M η = Ξ tM η

ξ t∂M ∂H = (−1)|ξ|ξ tM η.
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