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Abstract

We provide a generalization of the Deligne sheaf construction of intersection homol-

ogy theory and a corresponding generalization of Poincaré duality on pseudomanifolds

such that the Goresky-MacPherson, Goresky-Siegel, and Cappell-Shaneson duality the-

orems all arise as special cases. Unlike classical intersection homology theory, our du-

ality theorem holds with ground coefficients in an arbitrary PID and with no “locally

torsion free” conditions on the underlying space.
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1 Introduction

Our goal in this paper is to construct generalized versions of the Deligne sheaf and a gen-

eralized Poincaré duality theorem on stratified pseudomanifolds such that the Goresky-

MacPherson, Goresky-Siegel, and Cappell-Shaneson duality theorems for intersection ho-

mology all occur as special cases. In particular, our duality theorem will hold with ground

coefficients in an arbitrary PID and with no “locally torsion free” conditions on the un-

derlying space. In order to explain this result and its context, we begin by recalling some

historical background.

Background and results. In [14], Goresky and MacPherson introduced intersection ho-

mology for a closed oriented PL stratified pseudomanifold X and showed that if p̄, q̄ are

complementary perversity parameters1 (i.e. p̄(Z) + q̄(Z) = codim(Z) − 2 for all singular

strata Z of X), then the intersection pairing

I p̄Hi(X)⊗ I q̄Hdim(X)−i(X)→ Z

becomes nonsingular after tensoring with Q. This provides an important generalization of

Poincaré duality to non-manifold spaces. In [15], and in the broader context of topological

stratified pseudomanifolds, Goresky and MacPherson further refined this intersection homol-

ogy version of Poincaré duality into the statement that there is a quasi-isomorphism of sheaf

complexes over X:

P∗p̄ ∼qi (DP∗q̄ )[− dim(X)]. (1)

Here P∗r̄ denotes the “Deligne sheaf” with perversity r̄ (this is an iteratively-constructed sheaf

complex characterized by nice axioms whose hypercohomology groups give intersection ho-

mology via Hi
c(X;P∗r̄ ) ∼= I r̄Hn−i(X) — see [15]), the symbol D denotes the Verdier dualizing

functor, the sheaf complex S∗[n] is the shifted sheaf complex of S∗ with (S∗[n])i ∼= S i+n, and

∼qi denotes quasi-isomorphism. The stratified pseudomanifold X is also no longer required

to be compact, but the ground ring of coefficients is required in [15] to be a field.

In [16], Goresky and Siegel explored the duality properties of Deligne sheaves with co-

efficients in a principal ideal domain, demonstrating that, in general, one cannot hope for

a version of (1) in this generality. The obstruction occurs in the form of torsion in local

intersection homology groups at the singular points of X. This led to the definition of a

locally p̄-torsion-free space. More precisely, a stratified pseudomanifold is locally p̄-torsion-

free (with respect to the PID R) if for each x in each singular stratum Z of codimension k,

the torsion subgroup of I p̄Hk−2−p̄(Z)(L;R) vanishes, where L is the link of x. If X is such a

space, then (1) holds with coefficients in R, leading to certain other nice “integral” proper-

ties of duality and homology such as nonsingular linking pairings and a universal coefficient

theorem.

1In early work on intersection homology, e.g. [14, 15, 3, 16], perversities were only considered that took

the same value on all strata of the same codimension. We employ a slightly revisionist history in this

introduction by stating the theorems in a form more consonant with more general notions of perversity; see

[9, 10].
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In [4], Cappell and Shaneson proved a “superduality” theorem, which holds in a situation

that can be considered somewhat the opposite of that of Goresky and Siegel. Cappell and

Shaneson showed that if the stratified pseudomanifold X possesses the property that all local

intersection homology groups are torsion, then (1) holds provided p̄ and q̄ are “superdual”,

meaning p̄(Z) + q̄(Z) = codim(Z) − 1 for all singular strata Z of X. While this statement

seems more drastic than that of Goresky-Siegel in terms of the number of dimensions for

which there is a local intersection homology condition, it follows from the proof that one

could impose this “torsion only” condition in just one dimension per link2.

In Complement 3.3 of [2], Beilinson, Bernstein, and Deligne construct a t-structure on

the derived category D(X,Z) of sheaves of abelian groups (or R-modules over a Dedekind

ring) on a space X that takes into account torsion by setting

n+D≤0 = {K ∈ D(X,Z) | H i(K) = 0 for i > 1 and H i(K)⊗Q = 0}
n+D≥0 = {K ∈ D(X,Z) | H i(K) = 0 for i < 0 and H0(K) is torsion free}.

If X is stratified and equipped with a perversity p̄, they observe that one can glue such

t-structures over strata to obtain a t-structure (p̄
+
D≤0(X,Z), p̄

+
D≥0(X,Z)). It is then noted

that Verdier duality interchanges this t-structure with the standard t-structure of the form

(Dp̄D≤0(X,Z),Dp̄D≥0(X,Z)), where we use Dp̄ to denote the dual perversity to p̄.

In this paper, we work through the details of a generalization of this Beilinson-Bernstein-

Deligne construction from the point of view of intersection homology and Deligne sheaves,

meaning, among other things, that we shall focus on the explicit construction of sheaf com-

plexes as opposed to the more abstract construction of t-structures. We will provide a

detailed modification of the Deligne sheaf construction such that a version of (1) holds over

a PID for any topological stratified pseudomanifold. Furthermore, rather than asking our

Deligne sheaves to be either “all torsion” or “no torsion” at the truncation dimensions as

in [2], we allow mixed situations, and, in fact, we will take as part of our perversity in-

formation a set of primes on each stratum and allow torsion at the truncation dimension

only with respect to those primes. Verdier duality then interchanges the set of primes with

its complement. As we shall see in Section 5, this leads to some interesting duality re-

sults, even for quite simple spaces. We will also demonstrate how the duality theorems of

Goresky-MacPherson, Goresky-Siegel, and Cappell-Shaneson all occur as special cases.

More specifically, in order to implement our construction, we generalize the notion of

perversity from that of a function

p̄ : {singular strata of X} → Z

to that of a function

~p = (~p1, ~p2) : {singular strata of X} → Z× P(P(R)),

2It is also worth noting that Cappell and Shaneson use local coefficient systems on the complement of the

singular locus throughout [4] so that their local intersection homology groups are akin to Alexander modules

of knots. This explains how it is possible for each local intersection homology group to be torsion, even in

degree zero.
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where P(R) is the set of primes of the PID R and P(P(R)) is its power set (the set of all

subsets). We refer to such functions as “torsion-sensitive perversities” or “ts-perversities”,

and we denote our associated Deligne sheaf complex as P∗
~p . In the case that ~p2(Z) = ∅ for all

singular strata Z, P∗
~p is isomorphic to the classical Deligne sheaf P∗~p1 . The complementary

ts-perversity ~q to a ts-perversity ~p is defined by ~q1(Z) = codim(Z)− 2− ~p1(Z) and ~q2(Z) =

D~q1(Z), where D~q1(Z) is the complement of ~q1(Z) in P(R). Then, for complementary ~p, ~q,

our generalized duality statement has the form

P∗
~p ∼qi (DP∗

~q )[− dim(X)]. (2)

To derive from this statement the pre-existing duality statements mentioned above, the

following facts will be shown below:

1. With coefficients over a field, P∗
~p
∼= P∗~p1 . Thus (2) reduces to the Goresky-MacPherson

version of (1).

2. When X is locally p̄-torsion-free over the ground ring R, again P∗
~p
∼= P∗~p1 and (2)

reduces to the Goresky-Siegel version of (1).

3. If the local intersection homology of X is all torsion and ~p2(Z) = P(R) for all singular

strata Z, then P∗
~p
∼= P∗~p1+1, where ~p1 + 1 is the perversity defined by (~p1 + 1)(Z) =

~p1(Z) + 1. Also, since this forces ~q2(Z) = ∅ for all Z, P∗
~q
∼= P∗~q1 , and (2) reduces to

the Cappell-Shaneson version of (1).

It would be interesting to have a geometric formulation of the hypercohomology groups

H∗(X; P∗
~p ) in terms of simplicial or singular chains with certain restrictions, as is the case

for intersection homology theory and the Deligne sheaf P∗r̄ .

Motivation. Let us attempt to provide some brief motivation for why the Goresky-Siegel

or Cappell-Shaneson conditions are necessary for duality over a PID in the classical for-

mulation of intersection homology and why one might expect to find something like the

Beilinson-Bernstein-Deligne t-structure or P∗
~p . To simplify this discussion, we work over

Z and suppose perversity values depend only on codimension as in [14]. We also will not

attempt to get too deeply into technical details here; we will limit ourselves to presenting

the basic idea.

Recall the Deligne sheaf is defined by a process of consecutive pushforwards and trun-

cations. In the original Goresky-MacPherson formulation, if X = Xn ⊃ Xn−2 ⊃ · · · is a

stratified pseudomanifold and P∗p̄ (k) is the Deligne sheaf defined over X−Xn−k (or, if k = 2,

P∗p̄ (2) is a locally constant sheaf of coefficients over Z), then one extends P∗p̄ (k) to P∗p̄ (k+ 1)

on X −Xn−k−1 as

P∗p̄ (k + 1) = τ≤p̄(k)Rik∗P∗p̄ (k),

where ik is the inclusion X−Xn−k ↪→ X−Xn−k−1, τ is the sheaf complex truncation functor,

and p̄(k) is the common value of p̄ on all strata of codimension k. In particular, it follows
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that at a point x ∈ Xn−k, k ≥ 2, with link L, we have H i((P∗p̄ )x) = 0 for i > p̄(k), while for

i ≤ p̄(k), we have H i((P∗p̄ )x) = Hi(L;P∗p̄ ).

On the other hand, using the properties of Verdier duality (see [3]), one obtains a universal

coefficient-flavored calculation that looks like this3:

H i((DP∗q̄ [−n])x) ∼= Hom(Hn−i(f !
xP∗q̄ ), R)⊕ Ext(Hn−i+1(f !

xP∗q̄ ), R),

where fx : x → X is the inclusion. If we were working instead with coefficients in a field

F , the Ext term would vanish, and so H i((DP∗q̄ [−n])x) ∼= Hom(Hn−i(f !
xP∗q̄ ), F ). One of

the steps in proving the Goresky-MacPherson duality isomorphism (1) then involves show-

ing4that Hn−i(f !
xP∗q̄ ) = 0 for i > p̄(k), which is compatible with our computation for

H i((P∗p̄ )x). With a bit more work, one then shows the sheaf complexes DP∗q̄ [−n] and P∗p̄ are

in fact quasi-isomorphic.

However, with coefficients over Z, we have the following problem: From the truncations

in the definition of P∗p̄ , we must have H p̄(k)+1((P∗p̄ )x) = 0. Meanwhile, from the duality

computation, we have

H p̄(k)+1((DP∗q̄ [−n])x) ∼= Hom(Hn−(p̄(k)+1)(f !
xP∗q̄ ),Z)⊕ Ext(Hn−(p̄(k)+1)+1(f !

xP∗q̄ ),Z).

The observation of the last paragraph that Hn−i(f !
xP∗q̄ ) = 0 for i > p̄(k) holds for any PID

coefficients and implies that Hn−(p̄(k)+1)(f !
xP∗q̄ ) = 0. However, it will not generally be true

that Hn−p̄(k)(f !
xP∗q̄ ) = 0, and so

H p̄(k)+1((DP∗q̄ [−n])x) ∼= Ext(Hn−p̄(k)(f !
xP∗q̄ ),Z)

might not be zero, in which case we could not have H p̄(k)+1((DP∗q̄ [−n])x) ∼= H p̄(k)+1((P∗p̄ )x).

However, Hn−p̄(k)(f !
xP∗q̄ ) will be finitely generated and if it were also torsion-free, then

H p̄(k)+1((DP∗q̄ [−n])x) would indeed vanish! It turns out one could then continue on to com-

plete the argument that P∗p̄ and DP∗q̄ [−n] are quasi-isomorphic. This is the source of the

Goresky-Siegel condition which, with a bit more computation, implies that Hn−p̄(k)(f !
xP∗q̄ ) is

torsion-free. See [16] for details5.

The Cappell-Shaneson computation is remarkably similar “from the other side”. If we

extend our perversity from p̄ to p̄ + 1 (but keep q̄ the same), then it is acceptable to have

H p̄(k)+1((DP∗q̄ [−n])x) not vanish, but as we have seen, it must be isomorphic to the torsion

group Ext(Hn−p̄(k)(f !
xP∗q̄ ),Z), as Hom(Hn−(p̄(k)+1)(f !

xP∗q̄ ),Z) still vanishes. This is problem-

atic if H i((DP∗q̄ [−n])x) is not all torsion, but if we assume it is torsion, then again this

turns out to be enough to dodge catastrophe and allow the original Goresky-MacPherson

quasi-isomorphism argument to go through.

The preceding arguments should lead one to the thought that it might be possible to

make the duality quasi-isomorphism arguments “come out alright”, provided one is able to

exercise sufficient control on when (and what kind of) torsion is allowed to crop up in local

3See Section 4.3 for more details.
4For the technicalities, see [3], in particular Step (b) of the proof of Theorem V.9.8 and the (2b) implies

(1′b) part of the proof of Proposition V.4.9.
5And be mindful of the different indexing convention!
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intersection homology groups and when it is not. Indeed, such control at the level of spaces

is precisely the idea behind the Goresky-Siegel and Cappell-Shaneson conditions. We will

pursue an alternative route by allowing the space to be arbitrary while instead building such

torsion control into the definition of the Deligne sheaf complex. This is precisely what the

second component ~p2 of our torsion sensitive perversities will do: it is a switch indicating

what kind of torsion the strata are permitted to have in their local intersection homology

groups at the cut-off dimension. This information is assimilated into the ts-Deligne sheaf

via a modified “torsion-tipped” version of the truncation functor that, rather than simply

cutting off all stalk cohomology of a sheaf complex at a given dimension, permits a certain

torsion subgroup of the stalk cohomology to continue to exist for one dimension above the

cutoff, analogously to the Beilinson-Bernstein-Deligne construction. The ts-Deligne sheaf

then incorporates this torsion-tipped truncation according to the instructions given by ~p2.

This is the main idea of the paper. The rest is details!

Outline of the paper. Section 2 contains some algebraic preliminaries. In Section 3,

we introduce the torsion-tipped truncation functor. Then in Section 4, we construct the

torsion-sensitive Deligne sheaf, demonstrate that it satisfies a set of characterizing axioms

generalizing the Deligne sheaf axioms of Goresky and MacPherson [15], and prove our duality

theorem, Theorem 4.15. Finally, in Section 5, we conclude with an example, computing the

hypercohomology groups of ts-Deligne sheaves for pseudomanifolds with isolated singularities

and showing how their duality relates to classical Poincaré-Lefschetz duality for manifolds

with boundary. This leads us to formulate and prove some results concerning manifold

theory that are not so obvious from more direct approaches.

Prerequisites and assumptions. We assume the read has some background in inter-

section homology theory along the lines of Goresky-MacPherson [15], Borel [3], or Banagl

[1]. We will also freely utilize the author’s generalizations to arbitrary perversity functions,

for which background can be found in [6, 9, 10]. Accordingly, we may also allow stratified

pseudomanifolds to possess codimension one strata.

Acknowledgments. Thanks to Jim McClure for conversations and questions that led to

the ideas developed here. Thanks to Sylvain Cappell for pointing out that the sets of primes

don’t have to be all or nothing and for introducing me to intersection homology in the first

place.

2 Some algebraic preliminaries

Throughout the paper, R will be a principal ideal domain (PID). We let P(R) be the set of

equivalence classes of primes of R, where two primes p, q ∈ R are equivalent if p = uq for

some unit u ∈ R. In practice, we fix a representative of each equivalence class and identify

the class with its representative prime, i.e. we think of P(R) as a set of specific primes, one

from each equivalence class.
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Let ℘ ⊂ P(R) be a set of primes of R. Define the span of ℘, S(℘), to be the set

S(℘) =

{
n ∈ R | n =

s∏
i=1

pmi
i , where pi ∈ ℘ and mi, s ∈ Z≥0

}
.

In other words, S(℘) is the set of products of powers of primes in ℘. We allow s = 0 (which

is necessary when ℘ = ∅), and in this case we interpret the product to be 1. In particular,

S(∅) = {1}, and {1} = S(∅) ⊂ S(℘) for all ℘, so, in particular, S(℘) is never empty. Also,

notice that 0 /∈ S(℘) for any ℘.

If M is an R-module, we define T ℘M to be the submodule of elements of M annihilated

by elements of S(℘), i.e.

T ℘M = {s ∈M | ∃n ∈ S(℘) such that ns = 0}.

This is a well-defined submodule: if s, t ∈ T ℘M with ns = mt = 0 for n,m ∈ S(℘) and

r ∈ R, then nm ∈ S(℘) and n(rs) = r(ns) = 0, (mn)(s + t) = m(ns) + n(mt) = 0, n0 = 0,

and n(−s) = −ns = 0. We will refer to T ℘M as the submodule of elements of M possessing

S(℘)-torsion. Note that if ℘ = ∅, then T ℘M = 0 for any M .

Recall (see [18, Section III.7]) that any finitely-generated R-module M can be written as a

direct sum M ∼= RrM⊕
⊕

pM(p), where rM is the rank of M and p ranges over P(R) (though

there will only be a finite number of non-trivial summands) and each M(p) ∼= R/(pν1)⊕· · ·⊕
R/(pνsp ). This is the PID generalization of the fundamental theorem of finitely generated

abelian groups, and the submodule M(p) ⊂ M consists of precisely those elements of M

that are annihilated by some non-negative power of p. In particular, T ℘M ∼=
⊕

p∈℘M(p).

Clearly, if we identify M with RrM ⊕
⊕

pM(p) and T ℘ ∼=
⊕

p∈℘M(p) with the obvious

submodule, then M/T ℘M ∼= RrM ⊕
⊕

p/∈℘M(p). In fact, this is the only way to obtain this

quotient:

Lemma 2.1. If M ∼= RrM ⊕
⊕

pM(p) is a finitely-generated R-module and A ⊂ M is a

submodule such that M/A ∼= RrM ⊕
⊕

p/∈℘M(p), then A = T ℘M .

Proof. Without loss of generality, we use the given isomorphism to identify M with RrM ⊕⊕
pM(p) and T ℘M with the summand

⊕
p∈℘M(p).

By hypothesis, M/A contains no S(℘)-torsion. This implies that T ℘M ⊂ A. For other-

wise, suppose that x ∈ T ℘M , x /∈ A. The quotient class [x] of x in M/A is non-zero, but

it is S(℘)-torsion (if rx = 0 in M , then r[x] = 0 in M/A). Since RrM ⊕
⊕

p/∈℘M(p) has no

S(℘)-torsion, this would be a contradiction.

On the other hand, suppose x ∈ A but x /∈ T ℘M . Given the direct sum structure of

M , we can write x = x℘ + xc, where x℘ ∈ T ℘M and xc 6= 0 is in the complementary

summand RrM ⊕
⊕

p/∈℘M(p). Since we have already established T ℘M ⊂ A, it follows that

xc ∈ A. Let 〈xc〉 be the submodule of M generated by xc. Then M/A is a quotient of

M/(T ℘M ⊕ 〈xc〉) ∼= (RrM ⊕
⊕

p/∈℘M(p))/〈xc〉. But no such quotient can be homeomorphic

to RrM ⊕
⊕

p/∈℘M(p) ∼= M/A, another contradiction.

So A = T ℘M .
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We also recall that, in analogy with abelian groups, if M ∼= RrM ⊕
⊕

pM(p) is finitely-

generated, then6

Hom(M,R) ∼= Hom(RrM , R)⊕ Hom

(⊕
p

M(p), R

)
∼= Hom(RrM , R)
∼= (Hom(R,R))rM

∼= RrM ,

while

Ext(M,R) ∼= Ext(RrM , R)⊕ Ext

(⊕
p

M(p), R

)

∼= Ext

(⊕
p

M(p), R

)
∼=
⊕
p

Ext(M(p), R)

∼=
⊕
p

Ext(R/(pν1)⊕ · · · ⊕R/(pνsp ), R)

∼=
⊕
p

sp⊕
i=1

Ext(R/(pνi), R)

∼=
⊕
p

sp⊕
i=1

R/(pνi).

In particular, Hom(M,R) is free with the rank of M , and Ext(M,R) is isomorphic to the

torsion submodule of M .

3 Torsion-tipped truncation

We wish to define an endofunctor Ö℘≤k, which we will call the ℘-torsion-tipped truncation

functor, in the category of cohomologically indexed complexes of sheaves of R-modules on a

space X. We will first define Ö℘≤k as an endofunctor of presheaves.

Let A∗ be a presheaf complex on X with boundary map d. Let W ℘Aj be the presheaf of

weak ℘-boundaries in degree j, which we define to be

W ℘Aj(U) = {s ∈ Aj(U) | ∃n ∈ S(℘) such that ns ∈ im(d : Aj−1(U)→ Aj(U))}.

Notice that if ℘ = ∅, then W ∅Aj(U) = im(d : Aj−1(U) → Aj(U)); in particular im(d :

Aj−1(U)→ Aj(U))} = W ∅Aj(U) ⊂ W ℘Aj(U) for all ℘.

6Since all modules will be R modules, we write Hom and Ext rather than HomR and ExtR.
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Then W ℘Aj is a presheaf. First of all, for each U , W ℘Aj(U) is a submodule of Aj(U):

Suppose s, t ∈ Aj(U) are such that ms, nt ∈ im(d : Aj−1(U) → Aj(U)) for m,n ∈ S(℘).

Then then for any r ∈ R, m(rs) = r(ms) ∈ im(d : Aj−1(U) → Aj(U)) (since d is a module

homomorphism), so rs ∈ W ℘Aj. And then also mn(s + t) = n(ms) + m(nt) ∈ im(d :

Aj−1(U) → Aj(U)), but if m,n ∈ S(℘) then also mn ∈ S(℘), so s + t ∈ W ℘Aj. Clearly

also 0 and −s are in W ℘Aj. So W ℘Aj(U) is an R-module. Also, W ℘Aj is a preseheaf, using

the fact that restriction commutes with boundaries: if u ∈ Aj−1(U) and du = ns for some

u ∈ Aj(U), n ∈ S(℘), and if V ⊂ U , we have du|V = ns|V . Thus s|V ∈ W ℘Aj(V ).

Now define

(Ö℘≤kA
∗)i =


0, i > k + 1,

W ℘Ak+1, i = k + 1,

Ai, i ≤ k.

This is a presheaf complex: we have seen that we have legitimate presheaves at all levels

and furthermore, as already observed, im(d : Ak → Ak+1) = W ∅Ak+1 ⊂ W ℘Ak+1.

Suppose f : A∗ → B∗ is a chain map of presheaf complexes. Then if du = ns for some

u ∈ Ak, n ∈ S(℘), we see that df(u) = f(du) = f(ns) = nf(s), so s ∈ W ℘Ak+1 implies

f(s) ∈ W ℘Bk+1. So f induces in the obvious way a map Ö℘≤k(f), and Ö℘≤k is a functor.

Additionally, it is clear that we always have a monomorphism Ö℘≤kA
∗ ↪→ A∗.

Lemma 3.1.

H i(Ö℘≤kA
∗(U)) =


0, i > k + 1,

T ℘Hk+1(A∗(U)), i = k + 1,

H i(A∗(U)), i ≤ k.

Furthermore, the homology isomorphisms or torsion submodule isomorphisms, in the

respective degrees, are induced by the inclusion Ö℘≤kA
∗ ↪→ A∗.

Proof. This is trivial in all degrees save i = k+1. Notice that the chain inclusion Ö℘≤kA
∗(U)→

A∗(U), induces a map f : Hk+1(Ö℘≤kA
∗(U)) → Hk+1(A∗(U)). If s ∈ W ℘Ak+1(U), then for

some n ∈ S(℘), u ∈ Ak, we have ns = du, so the image of f must lie in T ℘Hk+1(A∗(U)).

Conversely, given a cycle s representing an element of T ℘Hk+1(A∗(U)), by the definition of

THk+1(A∗(U)), there must be some n ∈ S(℘) and u ∈ Ak(U) such that ns = du. Thus f is

surjective. Now suppose s ∈ W ℘Ak+1(U) and f(s) = 0. Then there is a u ∈ Ak(U) such that

du = s. But then this relation also holds in Ö℘≤kA
∗(U) and s represents 0 in Hk+1(Ö℘≤kA

∗(U)).

Thus f is an isomorphism Hk+1(Ö℘≤kA
∗(U))→ T ℘Hk+1(A∗(U)).

Remark 3.2. If ℘ = ∅, then the Lemma demonstrates that Ö℘≤kA
∗(U) has the cohomology we

obtain from the standard truncation functor, τ≤kA
∗(U). In fact, it is not difficult to see that

this cohomology isomorphism is induced by an inclusion τ≤kA
∗(U) ↪→ Ö℘≤kA

∗(U).

We can now extend Ö℘≤k to a functor of sheaves by sheafification, i.e. if S ∗ is a sheaf

complex, define Ö℘≤kS
∗ as the sheafification of the presheaf U → Ö℘≤k(S

∗(U)). Furthermore,

there is a canonical injection of sheaves Ö℘≤kS
∗ ↪→ S ∗.

9



Lemma 3.3. Suppose S ∗ is a sheaf complex on X and x ∈ X. Then,

H i((Ö℘≤kS
∗)x) =


0, i > k + 1,

T ℘Hk+1(S ∗
x ), i = k + 1,

H i(S ∗
x ), i ≤ k.

Furthermore, the homology isomorphisms or torsion submodule isomorphisms, in the respec-

tive degrees, are induced by the inclusion Ö℘≤kS
∗ ↪→ S ∗.

Proof. By basic sheaf theory and the definitions above, H i((Ö℘≤kS
∗)x) ∼= H i(lim−→x∈U Ö℘≤k(S

∗(U))),

which, by the properties of direct limits, is isomorphic to lim−→x∈U H
i(Ö℘≤k(S

∗(U))). Applying

Lemma 3.1 and basic sheaf theory proves the lemma for i 6= k + 1.

For i = k + 1, note that there are natural maps

lim−→
x∈U

Hk+1(Ö℘≤k(S
∗(U))) ∼= lim−→

x∈U
T ℘Hk+1(S ∗(U)) ↪→ lim−→

x∈U
Hk+1(S ∗(U))→ Hk+1(S ∗

x )

whose composite image must lie in T ℘Hk+1(S ∗
x ) because each element of each T ℘Hk+1(S ∗(U))

is S(℘)-torsion. We claim that this produces an isomorphism lim−→x∈U T
℘Hk+1(S ∗(U)) →

T ℘Hk+1(S ∗
x ). To see that this is onto, recall that any element sx ∈ T ℘Hk+1(S ∗

x ) must

be represented by a section s ∈ S k+1(V ) for some neighborhood V of x, and further-

more, since s is S(℘)-torsion in the stalk homology, there must be a germ tx ∈ S k
x such

that dtx = nsx for some n ∈ S(℘). Let t be an element of S k(V ′), for some open V ′

such that t|x = tx. Since dtx = nsx, we must have dt = ns on some open V ′′ 3 x,

V ′′ ⊂ V ∩ V ′. But therefore s represents an element of T ℘Hk+1(S ∗(V ′′)) whose image

under T ℘Hk+1(S ∗(V ′′))→ lim−→x∈U T
℘Hk+1(S ∗(U))→ T ℘Hk+1(S ∗

x ) is sx. This establishes

surjectivity. Injectivity is established similarly: if s̃ ∈ lim−→x∈U T
℘Hk+1(S ∗(U)) is represented

by s ∈ THk+1(S ∗(V )) and s|x = 0 in Hk+1(S ∗
x ), then there is a t ∈ S ∗(V ′), V ′ ⊂ V such

that dt = s, whence s̃ = 0.

Remark 3.4. Following on Remark 3.2, if ℘ = ∅, then the inclusion τ≤kS ∗ ↪→ Ö∅≤kS
∗ induces

a quasi-isomorphism.

4 The torsion-sensitive Deligne sheaves

In this section, we define our ℘-torsion-sensitive Deligne sheaf, first in Section 4.1 for perver-

sities that depend only on codimension and then more generally in Section 4.1.1. In Section

4.2, we investigate the axiomatic and constructibility properties of the ts-Deligne sheaf. The

duality theorem then follows in Section 4.3.

4.1 Definitions

Let P(R) be the set of primes of R (up to unit), and let P(P(R)) be its power set (so elements

of P(P(R)) are sets of primes of R). Let a skeletal torsion-sensitive perversity (or simply
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skeletal ts-perversity) be a function ~p : Z≥1 → Z× P(P(R)). We denote the components of

~p(k) by (~p1(k), ~p2(k)). Notice that the function ~p1 is a (loose) perversity in the usual sense

[17].

Now let X ⊃ Xn−1 ⊃ · · · be a topological stratified n-pseudomanifold. Let Uk =

X −Xn−k, let Xn−k = Xn−k −Xn−k = Uk+1 − Uk, and let ik : Uk ↪→ Uk+1 be the inclusion.

Let E be a locally constant sheaf of finitely generated R-modules on U1 for a principal

ideal domain R. We define a torsion sensitive Deligne sheaf7 (or ts-Deligne sheaf) P∗ (or,

if we must, P∗
X,~p,E) inductively. Let P∗

1 = E on U1, and suppose P∗
k is defined on Uk.

Then we inductively define P∗
k+1 = Ö~p2(k)

≤~p1(k)Rik∗P
∗
k , where Ö~p2(k)

≤~p1(k) is the ~p2(k)-torsion-tipped

truncation functor. Let P∗ = P∗
n+1.

Perhaps a slicker way to write the definition is as follows:

Definition 4.1. Given a skeletal ts-perversity ~p, define

t≤~p(k) = Ö~p2(k)
≤~p1(k).

Then we define the torsion-sensitive Deligne sheaf (or ts-Deligne sheaf ) by

P∗
X,~p,E = t≤~p(n)Rin∗ · · · t≤~p(1)Ri1∗E .

So P∗ is defined just like the Deligne sheaf, but using torsion-tipped truncation with

respect to a set of primes specified by the ts-perversity.

Example 4.2. If ~p2(k) = ∅ for all k, then Remark 3.4 implies that P∗ is quasi-isomorphic to

the standard Deligne sheaf P∗ as defined in [15].

More generally, P∗ is the standard Deligne sheaf if, for each k, we have T ~p2(k)H~p1(k)+1((Rik∗P∗
k)x) =

0 for each x ∈ Xn−k. If X is locally p̄-torsion-free in the sense of Goresky and Siegel [16],

this will be the case for any ~p such that ~p1 = p̄.

Example 4.3. Suppose H~p1(k)+1((Rik∗P∗
k)x) is always a torsion R-module, and that ~p is a

ts-perversity with ~p2(k) = P(R), the set of all primes in R, for all k. Then the complex P∗
~p

is the same as the Deligne sheaf P∗~p1+1, where ~p1 + 1 is the perversity whose value on k is

~p1(k) + 1. Such Deligne sheaves arise in the Cappell-Shaneson superduality theorem [4].

4.1.1 A variation for general ts-perversities

While the original perversity functions of Goresky and MacPherson were functions p̄ : Z≥2 →
Z (with additional restrictions), in recent years it has become useful to define more general

perversities p̄ : {singular strata of X} → Z, where by singular strata we mean connected

components of Xk−Xk−1, k < n. Deligne sheaves that accommodate such perversities were

built in [9] via a modification of the the standard sheaf complex truncation functor τ≤m.

7We apologize to the reader for the plethora of “P”s. Unfortunately, it is standard to refer to primes,

power sets, and Deligne sheaves all with variants of the letter “P”. The other likely candidate letter for

Deligne sheaves, “D”, is unfortunately reserved for the Verdier dualizing sheaf and the Verdier dualizing

functor. Additionally, we will use the same R both for our ground ring and for labeling right derived

functors, though context should prevent any confusion.
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In this section, we will describe how to likewise generalize the torsion-tipped truncation

functor. It will thus be possible to define a modified Deligne sheaf P∗
p̄ for torsion-sensitive

perversities (abbreviated ts-perversities) ~p : {singular strata of X} → Z× P(P(R).

Remark 4.4. The reader who is interested primarily in intersection homology with Goresky-

MacPherson perversities, or who might just wish to keep things more simple through a

first reading, might safely skip this section. Proofs in later sections are presented using the

general ts-Deligne sheaf for general ts-perversities given here, but it will not be difficult for

the reader to “scale back” these proofs to conform to the context of the ts-Deligne sheaf of

Definition 4.1.

Definition 4.5. Let A∗ be a sheaf complex on X, and let F be a locally-finite collection of

subsets of X. Let |F| = ∪V ∈FV . Let ~P be a function F → Z × P(P(R)). We intentionally

do not assume that F is necessarily the collection of all singular strata of X, and so ~P is

not technically a perversity; below, F will generally be the set of strata of X of a given

dimension.

If F ⊂ F is a subset, define infF ~P to be the ts-perversity (inf{~P1(V ) | V ∈ F},∩V ∈F ~P2(V )).

Note that, conceivably, inf{~P1(V ) | V ∈ F} could be −∞, which we will allow - in our ap-

plications, any truncation in dimension < 0 will be the trivial complex of 0 sheaves, so all

truncations in negative dimensions are equivalent.

We now wish to define a sheaf tF
≤~P
A∗. It will be the sheafification of the presheaf TF

≤~P
A∗.

Let

TF

≤~P
A∗(U) =

{
Γ(U ;A∗), U ∩ |F| = ∅,
Γ(U ; t≤inf{V ∈F|U∩V 6=∅} ~P

A∗), U ∩ |F| 6= ∅.

If inf{V ∈F|U∩V 6=∅} ~P = −∞, then we let t≤inf{V ∈F|U∩V 6=∅} ~P
A∗ = 0.

We observe that restriction is well-defined. In particular, if W ⊂ U and we let F (W ) =

{V ∈ F | W ∩ V 6= ∅} and F (U) = {V ∈ F | U ∩ V 6= ∅}, then F (W ) ⊂ F (U). So in

the definition of TF

≤~P
A∗(W ), the infs and intersections are being taken over subset of what

they are for TF

≤~P
A∗(U). So if infF (W )

~P = (a(V ), ℘(V )) and infF (U)
~P = (a(U), ℘(U)), then

a(U) ≤ a(W ) and ℘(U) ⊂ ℘(W ). But in general if a ≤ a′ are integers and ℘ ⊆ ℘′ are sets

of primes of R, there are natural inclusions Ö℘≤aA∗ ↪→ Ö℘
′

≤a′ . So such an inclusion induces a

well-defined restriction homomorphism TF

≤~P
A∗(U)→ TF

≤~P
A∗(W ).

We now let the generalized ts-truncation sheaf tF
≤~P
A∗ be the sheafification of TF

≤~P
A∗.

For maps f : A∗ → B∗ of sheaf complexes over X, we can define tF
≤~P
f in the obvious

way. In fact, TF

≤~P
f is well-defined by applying the truncation functors on the appropriate

subsets, and we obtain tF
≤~P
f again by passing to limits in the sheafification process.

The following lemma contains the key facts we will need about the generalized ts-

truncation; they all follow immediately from the definition and the properties of Ö℘≤m.

Lemma 4.6. 1. tF
≤~P

is an endofunctor of sheaf complexes on X.

2. There is an inclusion of sheaf complexes tF
≤~P
A∗ ↪→ A∗.

12



3. (tF
≤~P
A∗)|X−|F| = A∗|X−|F|

4. Suppose F has the property that for each V ∈ F and each x ∈ V , there is a neighborhood

U of x such that U ∩ V ′ = ∅ for each V ′ ∈ F such that V ′ 6= V . Then for each V ∈ F ,

(tF
≤~P
A∗)|V = (t≤~P (V )A∗)|V .

Remark 4.7. It follows from the last statement of the lemma that if F = {X}, then tF
≤~P
A∗ =

t≤~P (X)A∗, which is a ℘-torsion-tipped truncation in the sense of our original definition.

Remark 4.8. TF

≤~P
A∗ will not necessarily be a sheaf, so the sheafification in the definition

is necessary. This is true even when all ~P2(V ) = ∅ so that all truncation functors are the

classical ones; see [9, Remark 3.5] for an example.

Now, suppose that ~p : {singular strata of X} → Z × P(P(R)) is a ts-perversity. We

will abuse our earlier notation and write tXk

≤~p , allowing Xk to stand for the set of connected

components of Xk = Xk −Xk−1 and letting ~p also refer to its restriction to the components

of Xk.

Definition 4.9. Given a ts-perversity ~p : {singular strata of X} → Z × P(P(R)) and a

locally constant sheaf of finitely generate R-modules E on X−Xn−1, let the torsion-sensitive

Deligne sheaf (or ts-Deligne sheaf ) be defined by

P∗
X,~p,E = tX0

≤~pRin∗ . . . t
Xn−1

≤~p Ri1∗E .

This generalizes both our construction in the preceding section and the construction of

the Deligne sheaf for general perversities in [9].

4.2 Axiomatics and constructibility

We define a set of axioms analogous to the Goresky-MacPherson axioms Ax1 and show that

they characterize P∗. The treatment parallels the work of [15] and the exposition of [3,

Section V.2].

Let X be a stratified n-pseudomanifold and let E be a locally constant sheaf of finitely

generated R-modules on U1 over a principal ideal domain R. For a sheaf complex S ∗ on X,

let S ∗
k = S ∗|Uk

.

Recall the notation from Section 2. We say S ∗ satisfies the axioms TAx1(X, ~p, E) (or

simply TAx1) if

1. S ∗ is quasi-isomorphic to a complex that is bounded and that is 0 for ∗ < 0;

2. S ∗|U1 is quasi-isomorphic to E ;

3. if x ∈ Z ⊂ Xn−k, where Z is a singular stratum, then H i(Sx) = 0 for i > ~p1(Z) + 1

and H~p1(Z)+1(Sx) is S(~p2(Z))-torsion;

4. if x ∈ Z ⊂ Xn−k, where Z is a singular stratum, then the attachment map αk : S ∗
k+1 →

Rik∗S ∗
k induces stalkwise cohomology isomorphisms at x in degrees ≤ ~p1(Z) and it in-

duces stalkwise cohomology isomorphismsH~p1(Z)+1(S ∗
k+1,x)→ T ~p2(Z)H~p1(Z)+1((Rik∗S ∗

k )x).
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Theorem 4.10. The sheaf complex P∗
X,~p,E satisfies the axioms TAx1(X, ~p, E), and any sheaf

complex satisfying TAx1(X, ~p, E) is quasi-isomorphic to P∗
X,~p,E .

The theorem relies on the following lemma.

Lemma 4.11. Suppose S ∗ satisfies the axioms TAx1(X, ~p, E). Then, for k > 0, the sheaf

complex S ∗
k+1 is quasi-isomorphic to t

Xn−k

≤~p Rik∗S ∗
k .

Proof. By the functoriality of the truncation functors and their inclusion properties, we have

a commutative diagram

S ∗
k+1

αk - Rik∗S
∗
k

t
Xn−k

≤~p S ∗
k+1

β

6

t
Xn−k

≤~p αk
- t

Xn−k

≤~p Rik∗S
∗
k .

γ

6

The map β is a quasi-isomorphism by axiom (3), the properties of t, and Lemma 3.3.

At x ∈ Z ⊂ Xn−k, the map t
Xn−k

≤~p αk is evidently an isomorphism in degrees i > ~p1(Z)+1.

In degrees i ≤ ~p1(Z), αk is a quasi-isomorphism by axiom (4) and γ is a quasi-isomorphism

by the properties of t and Lemma 3.3; thus t
Xn−k

≤~p αk is a quasi-isomorphism in this range, as

well. Finally, consider the diagram

H~p1(Z)+1(S ∗
k+1,x) - T ~p2(Z)H~p1(Z)+1((Rik∗S

∗
k )x)

H~p1(Z)+1((t≤~pS
∗
k+1)x)

β

6

t
Xn−k

≤~p αk
- H~p1(Z)+1((t≤~pRik∗S

∗
k )x).

6

By Lemma 3.3, the righthand map is an isomorphism induced by the inclusion. The top

map is induced by α and is an isomorphism by axiom (4). We have already seen that β

induces an isomorphism. Thus the bottom map must be an isomorphism, and t
Xn−k

≤~p αk is a

quasi-isomorphism of sheaves.

Together, β and t
Xn−k

≤~p αk provide the desired quasi-isomorphism of the lemma.

Proof of Theorem 4.10. It is evident from the definition of P∗ that it satisfies the axioms.

Conversely, suppose S ∗ satisfies the axioms and that S ∗
k is quasi-isomorphic to P∗

k for some

k. This is true for S ∗
1 by axiom (2). By the preceding lemma, S ∗

k+1 = t
Xn−k

≤~p Rik∗S ∗
k . But

by the induction hypothesis, this is quasi-isomorphic to t
Xn−k

≤~p Rik∗P∗
k , which is P∗

k+1.

Theorem 4.12. Let X denote the stratification of the stratified pseudomanifold X. The sheaf

complex P∗
X,~p,E is X-cohomologically locally constant (X-clc), X-cohomologically constructible

(X-cc), and cohomologically constructible (cc), using the definitions of [3, Section V.3.3].
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Proof. The proof follows from the machinery developed in Section V.3 of Borel [3]. This the-

orem is completely analogous to Borel’s Proposition V.3.12. The only additional observation

needed is that t
Xn−k

≤~p preserves the properties of being X-cc.

As in [15, 3], it will be useful to have some slight reformulations of the axioms. First

we have the following lemma, which shows that axiom (3) can be replaced by an equivalent

condition if we assume a priori that S∗ is X-cc.

Lemma 4.13. Suppose S∗ is X−cc and satisfies axiom TAx1 (3). Then TAx1 (4) is equivalent

to the following condition: Suppose x ∈ Z ⊂ Xn−k, k > 0, and let j : Z ↪→ X be the

inclusion; then

1. H i((j!S∗)x) = 0 for i ≤ ~p1(Z) + 1,

2. H~p1(Z)+2((j!S∗)x) ∼= Hp1(Z)+1((Rik∗S∗k)x)/T
~p2(Z)Hp1(Z)+1((Rik∗S∗k)x).

Proof. For x ∈ Z, there is a long exact sequence (see [3, V.1.8(7)])

- H i((j!S∗)x) - H i(S∗x)
α
- H i((Rik∗S∗k∗)x) - .

Suppose S∗ satisfies TAx1(4). Then we have H i((j!S∗)x) = 0 for i ≤ p1(Z) + 1, noting

that α remains injective in degree p1(Z) + 1. Around degree p1(Z) + 2 and using TAx(3),

the sequence specializes to

0 - H~p1(Z)+1(S∗x)
α
- H~p1(Z)+1((Rik∗S∗k)x) - H~p1(Z)+2((j!S∗)x) - 0,

and since α is an isomorphism onto T ~p2(Z)H~p1(Z)+1((Rik∗S∗k)x), it follows thatH~p1(Z)+2((j!S∗)x) ∼=
H~p1(Z)+1((Rik∗S∗k)x)/T

~p2(Z)H~p1(Z)+1((Rik∗S∗k)x).

Conversely, if j!S∗ satisfies the conditions stated in the lemma, then certainly α is an

isomorphism on cohomology for i ≤ ~p1(Z). Around H~p1(Z)+2((j!S∗)x), we have the same spe-

cialized sequence as above, so H~p1(Z)+2((j!S∗)x) ∼= H~p1(Z)+1((Rik∗S∗k)x)/im(α). But also by

assumption, H~p1(Z)+2((j!S∗)x) ∼= Hp1(Z)+1((Rik∗S∗k)x)/T
~p2(Z)Hp1(Z)+1((Rik∗S∗k)x). Now since

S∗ is X-cc, so is Rik∗S∗k by [3, Corollary V.3.11], and thus Hp1(Z)+1((Rik∗S∗k∗)x) is finitely-

generated. By Lemma 2.1, T ℘M is the unique subgroup
⊕

p∈℘M(p), such that M/T ℘M ∼=
RfM ⊕

⊕
p/∈℘M(p). Thus α must take H~p1(Z)+1(S∗x) onto T ~p2(Z)Hp1(Z)+1((Rik∗S∗k)x).

Next, we say S ∗ satisfies the axioms TAx1’(X, ~p, E) (or simply TAx1’) if it is X-cc and

1. S ∗ is quasi-isomorphic to a complex that is bounded and that is 0 for ∗ < 0;

2. S ∗|U1 is quasi-isomorphic to E ;

3. if x ∈ Z ⊂ Xn−k, where Z is a singular stratum, then H i(Sx) = 0 for i > ~p1(Z) + 1

and H~p1(Z)+1(Sx) is S(~p2(Z))-torsion ;

4. if x ∈ Z ⊂ Xn−k, where Z is a singular stratum, and fx : x ↪→ X is the inclusion, then
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(a) H i(f !
xS∗) = 0 for i ≤ ~p1(Z) + n− k + 1

(b) Hp1(Z)+n−k+2(f !
xS∗) ∼= H~p1(Z)+1((Rik∗S∗k)x)/T

~p2(Z)H~p1(Z)+1((Rik∗S∗k)x).

If x ∈ Z ⊂ Xn−k and `x : x ↪→ Z, j : Z ↪→ Uk ∪ Z, and fx : x ↪→ Uk ∪ Z are inclusions,

thenfx = j ◦ `x, so f !
x = `!

xj
!. So H i(f !

xS∗) = H i(`!
xj

!S∗), which, since Z is an n − k

dimensional manifold, is isomorphic to H i−n+k((j!S∗)x), by [3, Proposition V.3.7.b]. We use

here that j!S∗ is X-clc, which follows from S∗ being X-clc by [3, Proposition V.3.10]. Thus,

since any sheaf complex satisfying TAx1 is X-cc by Theorem 4.12, and in light of Lemma

4.13, we have the following theorem:

Theorem 4.14. TAx1’ is equivalent to TAx1.

4.3 Duality

Let DX be the Verdier dualizing functor on the space X. Given a ts-perversity ~p, let D~p =

(D~p1, D~p2) be the ts-perversity with D~p1(Z) = codim(Z)−2−p1(Z) and D~p2(Z) = P(R)−
~p2(Z), the complement of ~p2(Z) in the set of primes (up to unit) of R. Notice the D~p1 is

the perversity that is complementary to the perversity ~p1. Let E be a locally constant sheaf

of finitely generated free R-modules on U1 for a principal ideal domain R.

Theorem 4.15. (DXP∗
X,~p,E)[−n] is quasi-isomorphic to P∗

X,D~p,(DU1
E)[−n] by a quasi-isomorphism

that extends the identity morphism of (DU1E)[−n] on U1.

Before providing the proof, we make some observations and present some corollaries.

Remark 4.16. If our base ring is in fact a field, then each P∗
X,~p,E is in fact equal to the Deligne

sheaf P∗X,~p1,E , where ~p1 is the first component of ~p. In this case, Theorem 4.15 reduces to the

duality theorem of Goresky and MacPherson [15] if ~p1 is a Goresky-MacPherson perversity. If

~p1 is a general perversity, Theorem 4.15 with field coefficients reduces to the duality theorem

proven in [9].

Suppose R is a PID, p̄ is a general perversity, and X is locally (p̄, E)-torsion-free in the

sense of [16] (see also [9]), i.e. for each singular stratum Z and each x ∈ Z, the R-module

I p̄Hcodim(Z)−2−p̄(Z)(Lx; E) is R-torsion-free, where Lx is the link of x in X. In this case8,

again P∗
X,~p,E = P∗X,p̄,E for any ~p such that ~p1(Z) = p̄(Z), and Theorem 4.15 reduces to the

duality theorem of Goresky and Siegel [16] if p̄ is a Goresky-MacPherson perversity or the

duality theorem proven in [9] for more general perversities.

Finally, suppose that p̄ is a Goresky-MacPherson perversity and that for each singular

stratum Z and each x ∈ Z, I p̄H∗(Lx; E) is R-torsion. Suppose further that ~p is a ts-

perversity with ~p2(Z) = P(R) for all singular strata Z. Then P∗
X,~p,E = P∗X,~p1+1,E , where

8This can be shown by induction. By definition, P∗
1
∼= P∗1 ∼= E . Now assuming P∗k ∼= P∗

k , we have for x ∈
Z ⊂ Xn−k, Hi((Rik∗P∗k )x) ∼= lim−→x∈U Hi(U −U ∩Z;P∗k ) ∼= lim−→x∈U I

p̄H∞n−i(U −Z; E). But we may assume U

is chosen from the cofinal system of distinguished neighborhoods of x, and thus U−Z ∼= Rn−k+1×L. So then

each I p̄H∞n−i(U −Z; E) is isomorphic to I p̄Hk−i−1(L; E). Thus H~p1(Z)+1((Rik∗P∗k )x) ∼= I p̄Hk−2−~p1(Z)(L; E),

which is torsion free by assumption. And this implies that P∗
k+1

∼= t
Xn−k

≤~p Rik∗P∗
k
∼= t

Xn−k

≤~p Rik∗P∗k ∼=
τ
Xn−k

≤p̄ Rik∗P∗k ∼= P∗k+1, using the notation of [9].
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~p1 + 1 is the Z-valued perversity such that (~p1 + 1)(Z) = ~p1(Z) + 1 for all singular Z.

Then also P∗
X,D~p,(DU1

E)[−n] = P∗X,q̄,(DU1
E)[−n], where q̄ is the Z-valued perversity such that

(~p1 + 1)(Z) + q̄(Z) = ~p1(Z) + 1 + q̄(Z) = codim(Z)− 1. With these assumptions Theorem

4.15 reduces to the Superduality Theorem of Cappell and Shaneson [4]. Note that in order

to have P∗
X,~p,E = P∗X,~p1+1,E it is in fact sufficient to require only I p̄Hk−2−p̄(Z)(Lx; E) to be

torsion.

Corollary 4.17. Let X be an n-dimensional stratified pseudomanifold, and let E be a locally

constant sheaf of finitely generated free R-modules on U1 for a principal ideal domain R.

Let TH∗ and FH∗ denote, respectively, the R-torsion submodule and R-torsion-free quotient

module of H∗, and let Q(R) denote the field of fractions of R.

Suppose Ext(Hn−i+1
c (X; P∗

X,~p,E), R) is a torsion R-module (for example, if Hn−i+1
c (X; P∗

X,~p,E)

is finitely generated). Then

FHi(X; P∗
X,D~p,DU1

E)
∼= Hom(Hn−i

c (X; P∗
X,~p,E), R) ∼= Hom(FHn−i

c (X; P∗
X,~p,E), R)

and

THi(X; P∗
X,D~p,DU1

E)
∼= Ext(Hn−i+1

c (X; P∗
X,~p,E), R) ∼= Hom(THn−i+1

c (X; P∗
X,~p,E), Q(R)/R).

In particular, if X is compact and orientable,

FHi(X; P∗
X,D~p,R) ∼= Hom(FHn−i

c (X; P∗
X,~p,R), R)

and

THi(X; P∗
X,D~p,R) ∼= Hom(THn−i+1

c (X; P∗
X,~p,R), Q(R)/R).

Proof. These statements follow directly from the theorem, using the universal coefficient

short exact sequence for Verdier duality and basic homological algebra. See [3, 16, 7] for

more details.

Proof of Theorem 4.15. Note that since E is a local system of finitely-generated free R-

modules, (DU1E)[−n] is also a locally constant sheaf of finitely-generated free R-modules by

[3, Section V.7.10]. Thus, as in [15, 3], it suffices to verify that (DXP∗
X,~p,E)[−n] satisfies

the axioms for P∗
X,D~p,(DU1

E)[−n]. However, we do not have available the reformulation into

a version of the Goresky-MacPherson axioms Ax2, so our proof will have to proceed a bit

differently from those in [15, 3]; instead we emulate the proof of [4, Theorem 3.2] and utilize

the axioms TAx1’.

Constructibility. By [3, Corollary V.8.7], DXP∗
X,~p,E is X-clc and X-cc because P∗

X,~p,E is

by Theorem 4.12.

Axiom TAx1’ (2). Let j : U1 ↪→ X be the inclusion. Since U1 is open in X, j! =

j∗, and thus if D∗X is the Verdier dualizing sheaf on X, j∗D∗X = j!D∗X = D∗U1
. Now for

any sheaf complex, DXS∗ ∼= RHom(S∗,D∗X) ∼= Hom(S∗,D∗X), since D∗ is injective in the

construction of [3]. Furthermore, it is clear from the construction of the sheaf functor Hom

that Hom(S∗,D∗X)|U1
∼= Hom(S∗|U1 ,D∗U1

) ∼= DU1(S∗|U1). Thus since P∗
X,~p,E |U1

∼= E , it follows
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that (DXP∗
X,~p,E)[−n] is quasi-isomorphic to (DU1E)[−n] on U1. This demonstrates axiom

TAx1’(2).

Axiom TAx1’ (3). Next, let x ∈ Z ⊂ Xn−k, k > 0. Let j : Z → Uk ∪ Z, `x : x ↪→ Z, and

fx : x ↪→ X all be the inclusion maps, and let us abbreviate P∗
X,~p,E as simply P∗.

Then

H i((DXP∗[−n])x) ∼= H i−n(f ∗xDXP∗)
∼= H i−n(Dx(f !

xP
∗)) see footnote9

∼= Hom(Hn−i(f !
xP

∗), R)⊕ Ext(Hn−i+1(f !
xP

∗), R) by [3, Section V.7.7].

Since P∗ satisfies TAx1’(X, ~p, E), we know H i(f !
xP

∗) = 0 for i ≤ p1(Z) + n − k + 1 and

Hp1(Z)+n−k+2(f !
xP

∗) ∼= H~p1(Z)+1((Rik∗P∗
k)x)/T

~p2(Z)H~p1(Z)+1((Rik∗P∗
k)x). ThusH i((DXP∗[−n])x) =

0 for n− i+ 1 ≤ p1(Z) + n− k + 1, i.e. for i ≥ k − p1(Z) = D~p1(Z) + 2. Furthermore,

HD~p1(Z)+1((DXP∗[−n])x) ∼= Hom(Hn−D~p1(Z)−1(f !
xP

∗), R)⊕ Ext(Hn− ~Dp1(Z)(f !
xP

∗), R)

= Hom(H~p1(Z)+n−k+1(f !
xP

∗), R)⊕ Ext(H~p1(Z)+n−k+2(f !
xP

∗), R)

= Ext(H~p1(Z)+n−k+2(f !
xP

∗), R)

= Ext(H~p1(Z)+1((Rik∗P
∗
k)x)/T

~p2(Z)H~p1(Z)+1((Rik∗P
∗
k)x), R)

Since H~p1(Z)+1((Rik∗P∗
k)x) is finitely generated by the constructibility assumptions and

since H~p1(Z)+1((Rik∗P∗
k)x)/T

~p2(Z)H~p1(Z)+1((Rik∗P∗
k)x) has no S(~p2(Z))-torsion,

HD~p1(Z)+1((DXP∗[−n])x) must then consist entirely of S(D~p2(Z))-torsion.

This demonstrates TAx1’(3).

Axiom TAx1’ (4). Next, consider

H i(f !
xDXP∗[−n]) ∼= H i−n(f !

xDXP∗)
∼= H i−n(DxP∗

x) by [3, Proposition V.8.2]
∼= Hom(Hn−i(P∗

x), R)⊕ Ext(Hn−i+1(P∗
x), R) by [3, Section V.7.7].

Since P∗ satisfies TAx1’(X, ~p, E), we know that H i(P∗
x) = 0 for i > ~p1(Z) + 1 and

H~p1(Z)+1(Px) is S(~p2(Z))-torsion. This immediately implies H i(f !
xDXP∗[−n]) = 0 if n −

i > p1(Z) + 1, i.e. if i ≤ n − ~p1(Z) − 2 = D~p1(Z) + n − k. Furthermore, if i =

D~p1(Z) + n − k + 1, then n − i = ~p1(Z) + 1, and we still have n − i + 1 > p1(Z) + 1,

so HD~p1(Z)+n−k+1(f !
xDXP∗[−n]) ∼= Hom(H~p1(Z)+1(P∗

x), R). But H~p1(Z)+1(P∗
x) is torsion by

the axioms for P, so also HD~p1(Z)+n−k+1(f !
xDXP∗[−n]) vanishes.

It remains to show that

HD~p1(Z)+n−k+2(f !
xDXP∗[−n])

∼= HD~p1(Z)+1((Rik∗DXP∗[−n])x)/T
D~p2(Z)HD~p1(Z)+1((Rik∗DXP∗[−n])x).

9This is well-known. For an official proof, we can use that j!DS∗ ∼= Dj∗S∗ for a closed inclusion

j by [3, Proposition V.8.2] and that DDS∗ = S∗ by [3, Theorem V.8.10] to conclude Dx(f !
xP

∗) ∼=
Dx(f !

xDXDXP∗) ∼= DxDxf
∗
xDXP∗ ∼= f∗xDXP∗ in the derived category Db(X).
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As all modules are finitely-generated by the constructibility assumptions, by Lemma 2.1 it

suffices to show that HD~p1(Z)+n−k+2(f !
xDXP∗[−n]) has the same rank as

HD~p1(Z)+1((Rik∗DXP∗[−n])x) and that the torsion subgroup ofHD~p1(Z)+n−k+2(f !
xDXP∗[−n])

is equal to T ~p2(Z)HD~p1(Z)+1((Rik∗DXP∗[−n])x).

From our formula above,

HD~p1(Z)+n−k+2(f !
xDXP∗[−n]) ∼= Hom(H−D~p1(Z)+k−2(P∗

x), R)⊕ Ext(H−D~p1(Z)+k−1(P∗
x), R).

Clearly the first summand determines the rank, while the second summand determines

the torsion. Additionally, since H−D~p1(Z)+k−1(P∗
x) = H~p1(Z)+1(P∗

x), which is S(~p2(Z))-

torsion by the axioms for P∗
x, so all torsion of HD~p1(Z)+n−k+2(f !

xDXP∗[−n]) is automatically

S(~p2(Z))-torsion.

Let us first consider the rank. By axiom TAx1’(X, ~p, E),

H−D~p1(Z)+k−2(P∗
x) = H~p1(Z)(P∗

x) (3)

∼= H~p1(Z)((Rik∗P
∗
k)x)

∼= lim−→
x∈U

H~p1(Z)(U ;Rik∗P
∗
k)

∼= lim−→
x∈U

H~p1(Z)(U − Z; P∗
k).

We may assume that the U are all distinguished neighborhoods of x, in which case

U −X ∼= Rn−k+1 × L, where L is a compact link, and, by [3, Lemma V.3.8.b],

H~p1(Z)(U − Z; P∗) ∼= H~p1(Z)(L; P∗) ∼= Hp1(Z)−k+1+n
c (U − Z; P∗).

Furthermore, the direct systems are constant over distinguished neighborhoods of x, and

H~p1(Z)(L; P∗) is finitely generated as L is compact and P∗ is X-cc by Theorem 4.12, so

therefore P∗|L is clearly X-cc and thus cc by [3, Proposition 3.10.e].

On the other hand,

HD~p1(Z)+1((Rik∗DXP∗
k [−n])x) ∼= lim−→

x∈U
HD~p1(Z)+1(U ;Rik∗DXP∗

k [−n]) (4)

∼= lim−→
x∈U

HD~p1(Z)+1−n(U − Z;DP∗)

∼= lim−→
x∈U

(Hom(H−D~p1(Z)−1+n
c (U − Z; P∗), R)

⊕ Ext(H−D~p1(Z)+n
c (U − Z; P∗), R))

∼= lim−→
x∈U

(Hom(Hp1(Z)−k+1+n
c (U − Z; P∗), R)

⊕ Ext(Hp1(Z)−k+2+n
c (U − Z; P∗), R)),

where again the direct sequence is constant.

So the rank of HD~p1(Z)+1((Rik∗DXP∗
k [−n])x) is the rank of Hom(Hp1(Z)−k+1+n

c (U −
Z; P∗), R), which is the rank of Hp1(Z)−k+1+n

c (U−Z; P∗), R), which is the rank of H~p1(Z)(U−
Z; P∗), which is the rank of H−D~p1(Z)+k−2(P∗

x).
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Similarly, the torsion submodule of HD~p1(Z)+n−k+2(f !
xDXP∗[−n]) is isomorphic to

Ext(H−D~p1(Z)+k−1(P∗
x), R) (see Section 2), which is isomorphic to the torsion submod-

ule of H−D~p1(Z)+k−1(P∗
x). By a computation equivalent to (3), this is isomorphic to the

torsion of lim−→x∈U H~p1(Z)+1(U − Z; P∗
k), which, since the directed set is constant over dis-

tinguished neighborhoods, is isomorphic to the torsion of H~p1(Z)+1(U − Z; P∗
k), which is

isomorphic to the torsion of Hp1(Z)−k+2+n
c (U − Z; P∗). But now using (4) again, this is

precisely the torsion of HD~p1(Z)+1((Rik∗DXP∗
k [−n])x). As already noted, the torsion of

HD~p1(Z)+n−k+2(f !
xDXP∗[−n]) must be all S(~p2(Z))-torsion, so this suffices.

This verifies Axiom TAx1’(4).

Axiom TAx1’ (1). Lastly, we need to demonstrate that H i((DXP∗[−n])x) = 0 for i < 0,

and hence complete axiom TAx1’(1). This requires a bit of an induction argument, so we

prove it next as a separate lemma.

Lemma 4.18. For any x ∈ X, H i((DXP∗[−n])x) = 0 for i < 0.

Proof. We have

H i((DXP∗[−n])x) ∼= lim−→
x∈U

Hi−n(U ;DXP∗)

∼= lim−→
x∈U

Hom(Hn−i
c (U ; P∗), R)⊕ Ext(Hn−i+1

c (U ; P∗), R),

and the systems are essentially constant over distinguished neighborhoods of x by [3, Propo-

sition V.3.10] since P∗ is X-clc. So it suffices to show Hj
c(U ; P∗) = 0 for j > n and for any

distinguished neighborhood U of x.

We will perform an induction argument over the depth of X, utilizing Lemma V.9.5 of [3],

according to which if Y is a stratified space and there exists an ` ∈ Z such that Hj(S∗y ) = 0

for j > `− n+ k whenever y ∈ Xn−k, then Hj
c(Y ;S∗) = 0 for j > `. Thus, taking ` = n, we

must show Hj(S∗y ) = 0 for j > k for each y ∈ Xn−k.

First, we note that since P∗|U1
∼= E , we have both H i(P∗

x) = 0 for i > 0 and x ∈ U1

and, for any Euclidean neighborhood U of x, Hi
c(U ; E) = 0 for i > n by classical manifold

theory.

Now, we assume as induction hypothesis that for all K ∈ Z, 0 ≤ K < k, Hj(P∗
y ) = 0

for j > K whenever y ∈ Xn−K and that Hi
c(U ; P) = 0 for i > n if U a distinguished

neighborhood of such a y. We will show the corresponding facts for points in Xn−k.

Let x ∈ Xn−k. Then H i(P∗
y ) ∼= lim−→x∈U Hi(U ; P∗), and from the definition of P∗, each

Hi(U ; P∗) is a subgroup of Hi(U −Z; P∗). Since U −Z ∼= Rn−k−1×L, where L is the k− 1

dimensional link of Z, Hi(U − Z; P∗) ∼= Hi(L; P∗|L) by [3, Lemma V.3.8.b]. Recall that

if y ∈ Xn−K ∩ L, then y ∈ Lk−1−K , and since L is compact, Hj(L; P∗|L) = Hj
c(L; P∗|L).

If y ∈ Lk−1−K , then since y ∈ Xn−K , we have by induction hypothesis that Hj(P∗
y ) = 0

for j > K = (k − 1) − (k − 1) + K, and we know this for all y ∈ Y . Therefore, by [3,

Lemma V.9.5], Hj(L; P∗|L) = Hj
c(L; P∗|L) = 0 for j > k − 1. It follows that H i(P∗

y ) = 0

for i > k − 1, and so also for i > k. But then again by [3, Lemma V.9.5] Hi
c(U ; P∗) = 0 for

i > n.

This completes the induction.
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5 Torsion-tipped truncation and manifold duality

In this section, we provide an interesting example by computing H∗(X; P∗), where X is a

PL pseudomanifold with just one singular point v and R = Z, and relating these groups to

the homology groups of the ∂-manifold obtained by removing a distinguished neighborhood

of v. We then use manifold techniques to verify (abstractly) the isomorphisms guaranteed by

Corollary 4.17. It would be interesting to have a proof that the isomorphisms of the Corollary

are induced by geometric intersection and linking pairings as is the case for intersection

homology with field coefficients (see [14, 8]). We leave this question for future research.

Let X be a compact Z-oriented n-dimensional PL stratified pseudomanifold with strati-

fication X = Xn ⊃ X0 = {v}, where v is a single point. Then X has the form X ∼= M ∪∂M
c̄(∂M), where Mn is a compact Z-oriented PL manifold with boundary. Let U = X−v. Let

O be the constant orientation sheaf with Z coefficients on U , let i : U ↪→ X be the inclusion,

and let k ∈ Z. Let P∗ = P∗
X,~p,O be the ts-Deligne sheaf with ~p1({v}) = k and ~p2({v}) = ℘

for some ℘ ∈ P(P(Z)). If k < 0, then P∗ is the extension by 0 of (an injective resolution

of) O. If k ≥ 0, then P∗ = Ö℘≤kRi∗O. If ℘ = ∅, then P∗ would be the classical Deligne

sheaf for the perversity p̄ with p̄({v}) = k, and its hypercohomology would be the classical

perversity p̄ intersection homology.

To simplify notation, we let Hi(X; P∗
X,~p,O) be denoted by N ~pHn−i(X). We also let

~q = D~p, so that ~q1({v}) = n−k−2 and ~q2({v}) is the complement of ℘ in P(Z). Further, note

that DO ∼= O, so (DXP∗
X,~p,DO)[−n] = P∗

X,~q,O, with hypercohomology groups N~qHn−i(X).

We begin by computing N ~pHn−i(X) as best as possible in terms of the homology groups

of M . For comparison, it is worth recalling that the standard computation involving the

cone formula and the Mayer-Vietoris sequence gives10

I p̄Hn−i(X) ∼=


Hn−i(M), i > k + 1,

im(Hn−i(M)→ Hn−i(M,∂M)), i = k + 1,

Hn−i(M,∂M), i < k + 1.

As noted above, this will then also be the computation for N ~pHn−i(X) when ~p2({v}) = ∅.
Recall that X is compact by assumption, so N ~pHn−i(X) = Hi(X; P∗) = Hi

c(X; P∗).

Therefore, to study N ~pHn−i(X), we can use that the adjunction triangle yields a long exact

sequence [5, Remark 2.4.5.ii]

→ Hi
c(U ; P∗)→ Hi

c(X; P∗)→ Hi
c(v; P∗)→ .

We know the restriction of P∗ to U is quasi-isomorphic to O, so

Hi
c(U ; P∗) ∼= Hi

c(U ;O) ∼= Hc
n−i(U) ∼= Hc

n−i(M).

10For k < 0 or k > dim(M)−2, this computation continues to hold if we interpret I p̄Hi(X) in the sense of

intersection homology with general perversities treated in [9, 10]. In those papers, the notation I p̄H∗(X;Z0)

was used, but here we conform to the notation of [13].
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Furthermore, applying Lemma 3.3,

Hi
c(v; P∗) ∼= Hi(v; P∗)

∼=


0, i > k + 1,

T ℘Hk+1((Ri∗O)v), i = k + 1,

H i((Ri∗O)v), i ≤ k.

But

H i((Ri∗O)v) ∼= lim−→
v∈U

Hi(U ;Ri∗O)

∼= lim−→
v∈U

Hi(U − v;O)

∼= lim−→
v∈U

H∞n−i(U − v;O).

Restricting to a cofinal sequence of conical neighborhoods, this becomes simply H∞n−i(∂M ×
(0, 1);O) ∼= Hn−i−1(∂M). Similarly, T ℘Hk+1((Ri∗O)v) ∼= T ℘Hn−k−2(∂M).

So if we denote Hi
c(X; P∗) by N ~pHn−i(X), our exact sequences look like

→ Hn−i(M)→ N ~pHn−i(X)→ Hn−i−1(∂M)→

for i ≤ k, like

→ Hn−i(M)→ N ~pHn−i(X)→ 0→

for i > k + 1, and at the transition, we have

→ Hn−k−1(∂M)→ Hn−k−1(M)→ N ~pHn−k−1(X)

→ T ℘Hn−k−2(∂M)→ Hn−k−2(M)→ N ~pHn−k−2(X)→ 0. (5)

It is therefore immediate that N ~pHi(X) ∼= Hi(M) for i ≤ n − k − 3. Furthermore,

the inclusion P∗ ↪→ Ri∗O induces a map between the corresponding long exact adjunction

sequences. The sequence for Ri∗O is simply the sheaf-theoretic long exact (compactly sup-

ported) cohomology sequence of the pair (M,∂M), and so it follows from the five lemma

that N ~pHi(X) ∼= Hi(M,∂M) for i ≥ n − k. It also follows from this that all maps in

the sequence for P∗ are the evident ones. For i = n − k − 2, n − k − 1, we see that

N ~pHn−k−2(X) ∼= cok(T ℘Hn−k−2(∂M) → Hn−k−2(M)). The module N ~pHn−k−1(X) is a bit

more complicated, but we can nonetheless compute it using the following lemma.

Lemma 5.1. Let ∂∗ : Hn−k−1(M,∂M) → Hn−k−2(∂M) be the boundary map of the exact

sequence, and let q℘ be the quotient q℘ : Hn−k−2(∂M) → Hn−k−2(∂M)/T ℘Hn−k−2(∂M).

Then N ~pHn−k−1(X) ∼= ker(q℘∂∗).

Proof. Consider the following diagram of exact sequences induced by the inclusion P∗ ↪→
Ri∗O:
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Hn−k−1(∂M) - Hn−k−1(M)
j̃
- N ~pHn−k−1(X)

f
- T ℘Hn−k−2(∂M) - Hn−k−2(M)

Hn−k−1(∂M)

=

? i
- Hn−k−1(M)

=

? j
- Hn−k−1(M,∂M)

g

? ∂∗- Hn−k−2(∂M)

h

?
- Hn−k−2(M)

=

?

(6)

The map h here is the inclusion of the S(℘)-torsion subgroup of Hn−k−2(∂M).

From the diagram, if x ∈ N ~pHn−k−1(X), then g(x) ∈ Hn−k−1(M,∂M) maps to a S(℘)-

torsion element in Hn−k−2(∂M) under the boundary map. Thus N ~pHn−k−1(X) must map

into ker(q℘∂∗).

We now proceed with diagram chases akin to those in the proof of the five lemma.

To see that g maps onto ker(q℘∂∗), suppose u ∈ ker(q℘∂∗). Then ∂∗(u) ∈ T ℘Hn−k−2(∂M),

so ∂∗(u) is in the image of h. Since the image of ∂∗(u) in Hn−k−2(M) must be 0 (from the

long exact sequence on the bottom), it follows that ∂∗(u), as an element of T ℘Hn−k−2(∂M)

must be in the image of f . Let x ∈ N ~pHn−k−1(X) be such that hf(x) = ∂∗u ∈ Hn−k−2(∂M).

Then ∂∗(g(x)) = ∂∗(u) from the diagram, i.e. ∂∗(g(x)−u) = 0, so there is a z ∈ Hn−k−1(M)

such that j(z) = g(x)−u. But j(z) = gj̃(z), so gj̃(z) = g(x)−u, whence u = g(x)−gj̃(z) =

g(x− j̃(z)). Therefore u is in the image of g and so g maps onto ker(q℘∂∗).

For injectivity, suppose x ∈ N ~pHn−k−1(X) and g(x) = 0. Then ∂∗g(x) = hf(x) = 0, but

h is injective, so f(x) = 0 and x = j̃(y) for some y ∈ Hn−k−1(M). This implies that j(y) =

gj̃(y) = g(x) = 0, so y = i(z) for some z ∈ Hn−k−1(∂M). But then x = j̃(y) = j̃i(z) = 0,

from the short exact sequence.

So, altogether, we see that

N ~pHi(X) ∼=


Hi(M,∂M), i ≥ n− k,
ker(Hi(M,∂M)

q℘∂∗−−→ Hi−1(∂M)/T ℘Hi−1(∂M)), i = n− k − 1,

cok(T ℘Hi(∂M)→ Hi(M)), i = n− k − 2,

Hi(M), i ≤ n− k − 3.

(7)

In particular, N ~pHi(X) ∼= I~p1Hi(X) for i 6= n− k − 2, n− k − 1.

For reference, if we replace ~p with its dual ~q, we see that similarly

N~qHj(X) ∼=


Hj(M,∂M), j ≥ k + 2,

ker(Hk+1(M,∂M)
qD℘∂∗−−−→ Hk+1(∂M)/TD℘Hk+1(∂M)), j = k + 1,

cok(TD℘Hj(∂M)→ Hj(M)), j = k,

Hj(M), j ≤ k − 1

in which case N~qHi(X) ∼= I~q1Hi(X) for i 6= k, k + 1.

23



Corollary 4.17 implies that there must be isomorphisms

FN ~pHi(X) ∼= Hom(FI q̄Hn−i(X),Z) and TN ~pHi(X) ∼= Hom(TI q̄Hn−i−1(X),Q/Z),

(8)

where, as before, given an abelian group G, we let TG denote the torsion subgroup of G and

FG = G/TG.

Next, we would like to see how these isomorphisms (8) relate to the known isomorphisms

from Lefschetz duality. For such a simple pseudomanifold, many of the isomorphisms of

(8) correspond precisely to the known duality isomorphisms of intersection homology, which

themselves can be described in terms of the intersection and torsion linking pairing on the

manifold M . However, we will not provide here the technical proof that the pairings induced

by the sheaf isomorphism of Theorem 4.15 correspond to the classical intersection and linking

pairings; this turns out to be a difficult result. We refer the reader to [12] for a proof that

sheaf-theoretic duality is compatible with geometric intersection pairings. The author hopes

to provide a similar result concerning linking pairings in the future.

What we will first look at here is the extent to which the isomorphisms of (8) are ab-

stractly reflected by isomorphisms in Lefschetz duality, meaning that we will see that Lef-

schetz duality guarantees isomorphisms between the same groups though without showing

that we obtain the same isomorphisms. Then we will observe that some of the dualities of

(8) are not so obvious from classical manifold theory. Finally, we will show that some of

the less expected abstract isomorphisms really do reflect intersection and linking pairings

on manifolds. Altogether then, our results about intersection homology will have led us to

formulate and prove some unexpected results concerning manifold theory.

We begin with the following easy observations:

1. We have seen that N ~pHi(X) ∼= Hi(M) for i ≤ n−k−3, while N~qHj(X) ∼= Hi(M,∂M)

for j > k+1. So for i ≤ n−k−3, there exist isomorphisms of the form (8) by classical

Lefschetz duality.

2. Similarly, we have N ~pHi(X) ∼= Hi(M,∂M) for i ≥ n−k, while N~qHi(X) ∼= Hi(M) for

i ≤ k − 1. So, again, there exist isomorphisms of the form (8) by classical Lefschetz

duality when i ≥ n − k + 1 and also for the classical Lefschetz torsion pairing when

i = n− k.

3. When i = n − k, the torsion-free part of (8) also follows abstractly from Lefschetz

duality, since

FN~qHj(X) ∼= F (cok(TD℘Hj(∂M)→ Hj(M)))
∼= FHj(M).

4. We have seen that N ~pHn−k−2(X) ∼= cok(T ℘Hn−k−2(∂M) → Hn−k−2(M)), and so

FN ~pHn−k−2(X) ∼= FHn−k−2(M). Once again, I q̄Hk+2(X) ∼= Hk+2(M,∂M), so there

is an isomorphism as in (8) by Lefschetz duality.
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By contrast, the remaining isomorphisms

FN ~pHn−k−1(X) ∼= Hom(FN~qHk+1(X),Z)

TN ~pHn−k−1(X) ∼= Hom(TN~qHk(X),Q/Z)

TN ~pHn−k−2(X) ∼= Hom(TN~qHk+1(X),Q/Z)

are more complex and less evident from the classical manifold point of view, though, by

Corollary 4.17, such isomorphisms must exist. We will provide explicit such isomorphisms

via intersection and linking forms on M in the special case where ℘ = P(Z), the set of

all primes, and D℘ = ∅. The same arguments would also handle the case with ℘ and D℘

reversed. The more general situation seems to be quite a bit more delicate, and we will not

take it up here. We will also shift to working with piecewise-linear (PL) manifolds so that

we may make geometric arguments, though the results hold on topological manifolds with

a little more work and interpreting the intersection pairing as the Lefschetz dual of the cup

product pairing.

Lemma 5.2. If M is a PL manifold with non-empty boundary and ~p2({v}) = P(Z),

the intersection pairing on M induces a nonsingular pairing between FN ~pHn−k−1(X) ⊂
FHn−k−1(M,∂M) and FN~qHk+1(X) ⊂ FHk+1(M,∂M).

Proof. As indicated in the statement of the lemma, we identify FN ~pHn−k−1(X) with F ker(q℘∂∗) ⊂
Hn−k−1(M,∂M) and FN~qHk+1(X) with F ker(qD℘∂∗) ⊂ Hk+1(M,∂M). As D℘ = ∅, the lat-

ter group is really just F ker(∂∗) ⊂ Hk+1(M,∂M).

We define f : FN~qHk+1(X) → Hom(FN ~pHn−k−1(X),Z) via intersection pairings. Sup-

pose ξ ∈ FN~qHk+1(X). Then ∂∗ξ = 0, and ξ = j(x) for some x ∈ Hk+1(M) by the long

exact sequence in (6). Define the homomorphism f(ξ) so that if y ∈ FN ~pHn−k−1(X) then

(f(ξ))(y) = x t y, where t denotes the Lefschetz duality intersection pairing on M . We

first check this is well-defined.

The intersection pairing is trivial on torsion elements, so f is well defined on the torsion

free quotients. Next, we show that f is independent of the choice of x. For this, suppose

z ∈ ker(Hk+1(M) → Hk+1(M,∂M)). We will shows that z t y = 0. So if x′ is another

preimage of ξ in Hk+1(M), then x−x′ ∈ ker(Hk+1(M)→ Hk+1(M,∂M)), so (x−x′) t y = 0

and x t y = x′ t y. It will follow that f is independent of the choice of x. So let

z ∈ ker(Hk+1(M) → Hk+1(M,∂M)). Then z is represented by a chain in ∂M . Now if

y ∈ ker(q℘∂∗), then for some m ∈ S(℘), we have m∂∗y = 0 ∈ Hn−k−2(∂M), and this implies

m∂∗y, which is represented by m∂y, is itself a boundary in ∂M , say11 m∂y = ∂Y for some

Y ∈ Cn−k−1(∂M). So my−Y is a cycle in M that also represents my in Hk+1(M,∂M). But

then my − Y is homologous to a cycle u in the interior of M . In particular, u and z can be

represented by disjoint cycles in M . So, in M , the intersection number of z and u is 0. But

the intersection number between z and u represents z t my as my = u ∈ Hn−k−1(M,∂M).

So z t my = m(z t y) = 0, and z t y must be 0. Thus f is independent of the choice of x.

11We will have occasion to abuse notation by sometimes letting the same symbol refer to both a chain and

the homology class it represents.

25



We also observe that f(x)(y1 + y2) = f(x)(y1) +f(x)(y2) by the basic properties of inter-

section products. To show that f is a homomorphism, we note that if ξ1, ξ2 ∈ FN~qHk+1(X)

and j(x1) = ξ1, j(x2) = ξ2, then j(x1 + x2) = ξ1 + ξ2, and so

f(ξ1 + ξ2)(y) = (ξ1 + ξ2) t y

= ξ1 t y + ξ2 t y

= f(ξ1)(y) + f(ξ2)(y).

Altogether, we have now shown that f is a well-defined homomorphism.

Next we show that f is injective. Recall that, by Lefschetz duality, FHk+1(M) ∼=
Hom(FHn−k−1(M,∂M),Z) and FHk+1(M,∂M) ∼= Hom(FHn−k−1(M),Z) via the intersec-

tion pairing. Let ξ ∈ FN~qHk+1(X) ∼= F ker(∂∗) with ξ 6= 0. We will show that f(ξ) 6= 0,

which implies injectivity. The class ξ is represented by a cycle x in M , which also represents

an element of FHk+1(M). As 0 6= ξ ∈ FHk+1(M,∂M), by Lefschetz duality, there must be

a y ∈ FHn−k−1(M) such that x t y 6= 0. Furthermore, the intersection number continues

to be the same if we think of a chain representing y as instead representing an element

of FHn−k−1(M,∂M), while x can be represented by an element of Hk+1(M). Therefore,

the class of the chain representing y must be non-zero in FHn−k−1(M,∂M), and, since it’s

in the image of FHn−k−1(M), it must be in ker(∂∗) and hence in F ker(q℘∂∗). Therefore,

given a non-zero ξ ∈ FN~qHk+1(X), with x a preimage of ξ in Hk+1(M), we have found a

y ∈ FN ~pHn−k−1(X) such that x t y 6= 0. It follows that f(ξ) 6= 0, and thus f is injective.

For surjectivity, we note that q℘∂∗ has free image (as ℘ = P(Z)), so the group ker(q℘∂∗) =

FN ~pHn−k−1(X) is a direct summand of FHn−k−1(M,∂M). Let y be a generator of ker(q℘∂∗),

and let {y′j} be a collection of elements of FHn−k−1(M,∂M) that together with y form a

basis. Let {y′′` } be a collection of elements of ker(q℘∂∗) that together with y form a basis.

As ker(q℘∂∗) ⊂ FHn−k−1(M,∂M), ever y′′` must be a linear combination of the {y′j}. Now,

let x ∈ FHk+1(M) be the Lefschetz dual of y in the pairing between FHn−k−1(M,∂M) and

FHk+1(M). In other words, let x be the unique element with x t y = 1, while x t y′j = 0 for

each of the y′j. Let ξ be the image of x in FHk+1(M,∂M); then ξ ∈ ker(∂∗) = FN~qHk+1(X).

We must have f(ξ)(y) = 1, while all f(ξ)(y′′` ) = 0. So ξ is a dual to y in the pairing between

FN ~pHn−k−1(X) and FN~qHk+1(X). Since y was an arbitrary generator of F ker(q℘∂∗), we

see that we can construct a dual basis in FN~qHk+1(X) to our basis of FN ~pHn−k−1(X), and

it follows that f is surjective.

Lemma 5.3. If M is a PL manifold with non-empty boundary and ~p2({v}) = P(Z), the

linking pairing on M induces a nonsingular pairing between TN ~pHn−k−1(X) and TN~qHk(X)

and a nonsingular pairing between TN ~pHn−k−2(X) and TN~qHk+1(X).

Proof. Given that ~p2({v}) = P(Z), the pairing involving TN ~pHn−k−1(X) actually reduces

to the standard torsion Lefschetz pairing. To see this, we first notice that TN ~pHn−k−1(X)

must be the torsion elements of ker(Hn−k−1(M,∂M)
q℘∂∗−−→ Hn−k−2(∂M)/T ℘Hn−k−2(∂M)).

But this is precisely12 THn−k−1(M,∂M), itself, as any torsion element of Hn−k−1(M,∂M)

12We can see here one reason that a general choice of ℘ would make things much more complicated:

TN~pHn−k−1(X) would have to contain of all the S(℘)-torsion of THn−k−1(M,∂M), but also any other

torsion elements that happen to be in ker ∂∗.
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that is not in ker ∂∗ has its image in THn−k−2(M), and so dies under q℘ = qP(Z). Thus

TN ~pHn−k−1(X) ∼= THn−k−1(M,∂M) ∼= Hom(THk(M),Q/Z), via the linking pairing. But

now we notice that I~qHk(M) ∼= cok(TD℘Hk(∂M)→ Hk(M)) = Hk(M), as D℘ is empty and

thus TD℘Hk(∂M) = 0. So

TN ~pHn−k−1(X) ∼= Hom(TI~qHk(M),Q/Z),

via the classical linking duality.

Now, we consider TN ~pHn−k−2(X). By (7),

N ~pHn−k−2(X) ∼= cok(T ℘Hn−k−2(∂M)→ Hn−k−2(M)) = cok(THn−k−2(∂M)→ Hn−k−2(M)).

So if we let U = im(THn−k−2(∂M)→ THn−k−2(M)); then TN ~pHn−k−2(X) ∼= THn−k−2(M)/U .

Meanwhile

N~qHk+1(X) ∼= ker(Hk+1(M,∂M)
qD℘∂∗−−−→ Hk+1(∂M)/TD℘Hk+1(∂M))

∼= ker(Hk+1(M,∂M)
∂∗−→ Hk+1(∂M))

∼= im(Hk+1(M)→ Hk+1(M,∂M)),

since D℘ = ∅. For brevity, let W = im(Hk+1(M) → Hk+1(M,∂M)) ∼= N~qHk+1(X), and let

� : THn−k−2(M) ⊗ THk+1(M,∂M) → Q/Z denote the linking pairing operation13. Define

f : TN ~pHn−k−2(X)→ Hom(TW,Q/Z) by f(x)(y) = x� y. We must first show that this is

well-define by showing that x� y = 0 if x ∈ U . But in this case x is represented by a cycle

in ∂M and if mx = 0 ∈ THn−k−2(∂M), m 6= 0, then mx = ∂z for some chain z in ∂M . But,

by definition, y is represented by a cycle in M , which we can assume is supported in the

interior of M . Thus z t y = 0, so x� y = 0.

Consider the inclusion TW ↪→ THk+1(M,∂M). By classical manifold linking duality, the

linking pairing induces an isomorphism THn−k−2(M)→ Hom(THk+1(M,∂M),Q/Z). Since

TW is a subgroup of THk+1(M,∂M) and Q/Z is an injective group, we have a surjection

Hom(THk+1(M,∂M),Q/Z) → Hom(TW,Q/Z) induced by restriction. The composition

g : THn−k−2(M)→ Hom(TW,Q/Z) induces f , which we therefore see is onto.

Next, since we already know U ⊂ ker g, to show that f is injective, it now suffices to

show ker g ⊂ U . By counting,

|THn−k−2(M)| = | ker g| · |img| = | ker g| · |Hom(TW,Q/Z)| = | ker g| · |TW |.

Consider the linking duality isomorphism THk+1(M,∂M) → Hom(THn−k−2(M),Q/Z).

Since U ⊂ THn−k−2(M) and Q/Z is an injective group, the map Hom(THn−k−2(M),Q/Z)→
Hom(U,Q/Z) is surjective, and thus we have a composite surjection h : THk+1(M,∂M) →
Hom(U,Q/Z). So

|THk+1(M,∂M)| = | kerh| · |imh| = | kerh| · |Hom(U,Q/Z)| = | kerh| · |U |.
13Recall that the linking number can be described geometrically as follows: if x, y are cycles in general

position with mx = ∂z and ny = ∂u, m,n 6= 0, then x � y = zty
m = xtu

n ∈ Q/Z, where now t denotes the

intersection number on chains in general position. A derivation of this formula in the dual cohomological

setting can be found in [6].
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We have already seen that U and TW are orthogonal under the linking pairing, thus h

induces a surjective homomorphism THk+1(M,∂M)/TW � Hom(U,Q/Z). In particular,

TW ⊂ kerh. We will see that in fact ker(h) ⊂ TW , so ker(h) = TW . Therefore,

ker(g) = |THn−k−2(M)| ÷ |TW |
= |THk+1(M,∂M)| ÷ |TW |
= | ker(h)| · |U | ÷ |TW |
= |TW | · |U | ÷ |TW |
= |U |,

which implies ker g = U .

To prove the claim that kerh ⊂ TW , suppose x ∈ THk+1(M,∂M) and x /∈ W . Then

∂x 6= 0 ∈ THk(∂M). However, since x is a torsion element, there exists a z ∈ Ck+2(M)

such that ∂z = mx + z′, where m 6= 0 and z′ is a chain in ∂M . Then m∂x = −∂z′ ∈
Ck(∂M). Now since THk(∂M) ∼= Hom(THn−k−2(∂M),Q/Z) by the linking pairing �∂M in

∂M , there is a y ∈ THn−k−2(∂M) such that ∂x �∂M y = −1
m
z′ t∂M y 6= 0 (see e.g. [11,

Appendix]). But z′ t∂M y = ±z tM y, where the subscript indicates the space in which

we are computing the intersection number, after moving chains into general position (which

does not alter homology classes). Therefore ∂x �∂M y = ± 1
m
z tM y. But now thinking of

y as representing an element of U and of z as a chain rel ∂M , in which case ∂z = mx, we

have 1
m
z tM y = x�M y. As this linking number is not 0, we have shown that if x /∈ TW ,

then h(x) 6= 0. Thus kerh ⊂ TW .
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