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1 Introduction

This paper consists of two related parts: In the first part, we provide some examples of the

phenomena that arise when considering intersection homology over coefficient groups with

torsion, including various forms of violation of the universal coefficient theorem and spaces

that satisfy the Witt condition for certain fields but not others (and hence possess Poincaré

duality with respect to certain fields but not others). In the second part, we compute the

bordism theory of spaces that are K-Witt for an arbitrary field K. Let us explain what

all this means by providing some rough definitions and context; more precise background

details can be found below in Section 2.

Intersection homology groups were developed by Goresky and MacPherson in [13] for

the purpose of extending Poincaré duality and ensuing invariants to non-manifold spaces.

In [13], this is accomplished, over rational coefficients, for the class of (compact, oriented)

piecewise-linear pseudomanifolds, a class of spaces including all projective complex varieties.

Using sheaf theory, this duality was later expanded [14] to the broader class of topological

pseudomanifolds and to coefficients in any field. Other generalizations followed; see, e.g. [7].

The dual pairing of intersection homology, in generality, pairs intersection homology

groups with dual indices (as in the familiar case of manifolds) and with dual sets of per-

versity parameters. Thus the general duality result for an n-dimensional compact oriented

pseudomanifold asserts that there is a perfect (nonsingular) pairing

I p̄Hi(X;K)× I q̄Hn−i(X;K)→ K.

Here IH denotes the intersection homology groups, K is a coefficient field, and p̄ and q̄ are

dual sets of perversity parameters that occur as one of the inputs to the theory; see Section

2, below, for details.

Ideally, however, one would like a little more. For 2k-dimensional spaces, one would like

a (−1)k-symmetric self-pairing on I p̄Hk(X;K). This would yield signatures, elements of

Witt groups, and other further algebraic information. Unfortunately, this is not possible in

general because there are no self-dual perversities, but there are dual “middle perversities,”

m̄ and n̄, and certain spaces such that Im̄Hi(X;K) ∼= I n̄Hi(X;K), in which case we obtain

the desired middle dimensional form.

It was recognized early on (right in [13]) that pseudomanifolds with only even codimension

singularities possess this form of self-duality. This class was soon generalized by Siegel [27]

to a class of spaces he dubbed Witt spaces, and which we will more specifically call Q-

Witt spaces. These spaces are identified by certain local intersection homology conditions,

and they possess the middle-dimensional self-duality over Q. Siegel further computed the

bordism groups of these spaces, showing that in nontrivial cases they equal the Witt group

W (Q) - hence the name “Witt spaces” - and that the resulting bordism homology theory

provides a geometric formulation of KO-homology at odd primes. Further work in this

direction was done by Pardon [25], who computed the bordism groups of the more restrictive

integer “Poincaré Duality spaces” of Goresky and Siegel [15] and related these groups to

computations of [X,G/TOP ].
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Banagl [2] has since extended duality even further by identifying conditions on which

non-Witt spaces possess self-duality (conditions equivalent to the existence of certain towers

of Lagrangian structures on strata), but Witt spaces remain an important class of examples

defined by a relatively tractable condition.

This brings us to intersection homology with coefficients. Unlike ordinary homology

theories, intersection homology does not, in general, possess a universal coefficient theorem

(though Goresky and Siegel [15] have shown, using the Deligne sheaf formulation of inter-

section homology, that a universal coefficient sequence will occur if a space possesses certain

local torsion properties). Thus, intersection homology groups with different coefficients must

be treated in their own right, without any clear connections between them. In particular,

spaces that satisfy intersection homology Poincaré duality with one set of coefficients may

not possess duality with other sets of coefficients.

Our first goal is to provide some examples of these phenomena. We produce concrete

examples of spaces where the universal coefficient theorem breaks down (in different ways),

and we present spaces that are K-Witt (and hence possess self-duality) with respect to some

coefficient fields K but not others. Our arguments and constructions are purely geometric,

avoiding sheaf theory in favor of hands-on examination of intersection chains.

The following facts will be demonstrated throughout Section 3.2 (except for the first,

which is shown in Section 4.2):

Theorem 1.1. Let K denote a field, and let Zp denote the field of p elements.

1. If K has characteristic p > 0, then X is K-Witt if and only if X is Zp-Witt; if K has

characteristic 0, then X is K-Witt if and only if X is Q-Witt.

2. If n > 4 and P is a finite set of primes, then there is a compact orientable n-

dimensional pseudomanifold that is Zp-Witt for any p ∈ P but that is not Q-Witt

and not Zp-Witt for p /∈ P .

3. If n > 4 and P is a finite set of primes, then there are Q-Witt spaces that are not

Zp-Witt for any p ∈ P and are Zp-Witt for p /∈ P .

4. If X is a 3- or 4-dimensional Zp-Witt space, then X is a Q-Witt space.

5. If X is a 3- or 4-dimensional Q-Witt space, then X is a Zp-Witt space for any p 6= 2.

If X is also Q-orientable, then it is also a Z2-Witt space. However, there are non-

orientable 3- and 4-dimensional PL Q-Witt spaces that are not Z2-Witt spaces.

6. All 0-, 1-, and 2-dimensional pseudomanifolds are K-Witt for all K.

We also find examples of 4k-dimensional pseudomanifolds demonstrating conditions (2)

and (3) that not just satisfy or fail to satisfy the appropriate Witt conditions but that also

definitively possess or fail to possess the associated dualities in nontrivial ways.

Finally, in the second half of the paper, Section 4, we follow Siegel [27] by computing

the bordism groups ΩK−Witt
n of oriented K-Witt spaces for any coefficient field K as well

as identifying the resulting generalized homology theories. We show the following theorems
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(bear in mind item (1) of the preceding theorem, which implies that ΩK−Witt
n

∼= ΩK′−Witt
n if

K and K ′ have the same characteristic):

Theorem 1.2 (Theorem 4.5). Let p 6= 0 be a prime, and let W (Zp) denote the Witt group

of symmetric bilinear forms over the field Zp of p elements. Then

1. Ω
Zp−Witt
0

∼= Z,

2. for n 6≡ 0 mod 4, Ω
Zp−Witt
n = 0, and

3. for n ≡ 0 mod 4, n > 0, the homomorphism w : Ω
Zp−Witt
n → W (Zp) that assigns to

Xn the intersection form on Im̄Hn/2(X; Zp) is an isomorphism.

Theorem 1.3 (Theorem 4.10). As a homology theory on CW complexes, Zp-Witt bordism

splits as a direct sum of ordinary homology with coefficients. In particular,

ΩZp−Witt
n (X) ∼=

⊕
r+s=n

Hr(X; ΩZp−Witt
s ).

Acknowledgment. I thank Shmuel Weinberger for suggesting that it would be interesting

to study intersection homology with coefficients, in general, and for asking about extending

Siegel’s results to Zp-Witt bordism, in particular. In the course of chasing down Theorem

4.10, I had the pleasure of several fruitful correspondences and therefore owe great thanks

to John McCleary, Jim McClure, Andrew Ranicki, Yuli Rudyak, Larry Taylor, and Shmuel

Weinberger.

2 Background material

In this section we provide the relevant background for the rest of the paper.

Pseudomanifolds. We will work entirely in the class of piecewise linear (PL) spaces,

although intersection homology can be defined more broadly on topological pseudomanifolds

(see [14]).

We recall (see [13]) that a PL stratified space X is a PL space equipped with a filtration

(compatible with the PL structure)

X = Xn ⊃ Xn−1 ⊃ Xn−2 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

such that for each point x ∈ Xi = X i −X i−1, there exists a lower-dimensional compact PL

stratified pseudomanifold L, a compatible filtration of L

L = Ln−i−1 ⊃ · · · ⊃ L0 ⊃ L−1 = ∅,

and a distinguished neighborhood U of x such that there is a PL homeomorphism

φ : Ri × c(L)→ U
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that takes Ri× c(Lj−1) onto X i+j ∩U . Here cL denotes the open cone on L. In other words,

each point has a neighborhood that is a trivial bundle of cones on a lower-dimensional

stratified space.

A PL stratified space X is a PL stratified pseudomanifold if Xn−1 = Xn−2 and X−Xn−1

is dense in X. A space is called is PL pseudomanifold if it can be given the structure of a

PL stratified pseudomanifold by some choice of stratification.

The subspace Xi = X i−X i−1 is called the ith stratum, and, in particular, it is a (possibly

empty) PL i-manifold. L is called the link of the component of the stratum. Note that we

do not allow a codimension 1 stratum. There are various technical reasons for this, including

the avoidance of “pseudomanifolds with boundary” (see, e.g., [11, 10], where this issue is

treated in detail); however, we will revisit this idea in our discussion of bordism in Section

4. Xn−1 = Xn−2 is often referred to as the singular locus and denoted Σ. A PL stratified

pseudomanifold X is oriented if X − Σ is oriented as a manifold.

Intersection homology. Intersection homology, due to Goresky and MacPherson [13], is

a topological invariant of pseudomanifolds (in particular, it is invariant under choice of PL

structure or stratification - see [14], [5], [17]). It possesses a definition via sheaf theory, which

is important (indeed crucial) for many applications, but the original definition was given as

the homology of a subcomplex of the complex C∗(X) of PL chains on X. This C∗(X) is

a direct limit lim−→T∈T C
T
∗ (X), where CT

∗ (X) is the simplicial chain complex with respect to

the triangulation T , and the direct limit is taken with respect to subdivision within a family

of triangulations compatible with each other under subdivision and compatible with the

filtration of X. In fact, while it is convenient to work with these PL chains, one can also

work with simplicial chains, supposing a fine enough triangulation of X (see the appendix

to [20]).

Intersection chain complexes are subcomplexes of C∗(X) defined with regard to perversity

parameters p̄ : Z≥2 → Z that are required to satisfy p̄(2) = 0 and p̄(k) ≤ p̄(k+1) ≤ p̄(k)+1.

We think of the perversity as taking the codimensions of the strata of X as input. The

output tells us the extent to which chains in the intersection chain complex will be allowed

to intersect that stratum. Thus a simplex σ in Ci(X) (represented by a simplex in some

triangulation) is deemed p̄-allowable if dim(σ∩Xn−k) ≤ i− k+ p̄(k), and a chain ξ ∈ Ci(X)

is p̄-allowable if every simplex with non-zero coefficient in ξ or ∂ξ is allowable as a simplex.

The allowable chains constitute the chain complex I p̄C∗(X), and the p̄-perversity intersection

homology groups I p̄H∗(X) are the homology groups of this chain complex. Note that if M is

a manifold, then I p̄H∗(M) ∼= H∗(M). This is not obvious if M is stratified in an interesting

way, but it follows from the topological invariance of intersection homology groups, which

implies that I p̄H∗(M) may be computed from the trivial filtration M ⊃ ∅.
For more general background on intersection homology, we urge the reader to consult

the expositions by Borel, et. al. [5] or Banagl [3]. For both background and application of

intersection homology in various fields of mathematics, the reader should see Kirwan and

Woolf [18].
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Intersection homology with coefficients. The definition of intersection homology with

coefficients is given analogously so that I p̄C∗(X;G) is the subcomplex of C∗(X;G) ∼= C∗(X)⊗
G, again consisting of chains ξ such that every simplex with non-zero coefficient in ξ or ∂ξ is

allowable as a simplex. However, a critical point to observe is that, in general, I p̄C∗(X;G)

is not isomorphic to I p̄C∗(X) ⊗ G. It is true that a simplex with nonzero coefficient in a

chain ξ ∈ I p̄C∗(X;G) is allowable or not depending only on the simplex itself and not the

coefficient. However, which simplices appear with non-zero coefficient in ∂ξ might depend

strongly on the coefficients being used.

For example, consider a chain of the form ξ =
∑

i σi over some collection of oriented

simplices, each with coefficient 1. The allowability of each of the simplices σi is independent

of whether we think of ξ as a chain in Ci(X) or Ci(X; Z2). Now suppose each σi in ξ is

allowable, and consider ∂ξ. Suppose that ∂ξ = 2η for some chain η. It is possible in Ci(X)

that η may contain simplices that are not allowable. However, in Ci(X; Z2), ∂ξ = 0, and the

allowability conditions are satisfied vacuously.

Thus when working with coefficients, the obvious homomorphism I p̄C∗(X)⊗G→ I p̄C∗(X;G)

is an injection, but it is not, in general, a surjection. These considerations, of course, have

the potential to affect the intersection homology groups quite radically. For example, the

universal coefficient theorem is not generally valid for intersection homology. In the next

section, we turn to concrete examples that demonstrate geometrically what can go wrong.

The cone formula. Perhaps the most important concrete computation in intersection

homology is the formula for the intersection homology of an open cone. If L is an n-

dimensional compact pseudomanifold, then the open cone cL is stratified so that (cL)0 is

the cone vertex and, for i > 0, (cL)i = Li−1 × (0, 1) ⊂ cL. Then the intersection homology

of the cone cL is given as follows:

I p̄Hi(cL;G) ∼=

{
0, i ≥ n− p̄(n+ 1),

I p̄Hi(L;G), i < n− p̄(n+ 1).

This formula comes from direct consideration of the definition of the intersection chain

complex and the fact that the dimension of the intersection of a simplex with the cone

vertex can be at most 0. See [5, Section 1] for more details.

It is also useful to have the formula for the intersection homology of a suspension, which

comes from the cone formula and a Mayer-Vietoris argument (see1 [17]). If X is a compact

n-dimensional pseudomanifold with suspension SX, then

I p̄Hi(SX;G) ∼=


I p̄Hi−1(X;G), i > n− p̄(n+ 1),

0, i = n− p̄(n+ 1),

I p̄Hi(X;G), i < n− p̄(n+ 1).

1The formula presented here is slightly simpler than the one in [17] since we allow only traditional
perversities, not “loose” perversities.
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Witt spaces. The chief interest (at least originally) in intersection homology is that,

with field coefficients, it satisfies Poincaré Duality. More specifically, assume that Xn is a

compact, oriented, and irreducible (meaning X − Σ is connected) PL pseudomanifold, and

let F be a field and p̄ and q̄ dual perversities (meaning that p̄(k) + q̄(k) = k − 2 for all

k). Then there is a nondegenerate pairing I p̄Hi(X;F ) ⊗ I q̄Hn−i(X;F ) → F , defined via

the intersection pairing on intersection chains in general position. We refer the reader to

[13, 14, 5, 8] for more details. While this is good, one would like something even better, a

condition that guarantees a self-pairing between middle-dimensional intersection homology

groups for even-dimensional manifolds. This is what the Witt spaces provide.

Let m̄ and n̄ be the lower and upper middle perversities given by (0, 0, 1, 1, 2, 2, . . . ) and

(0, 1, 1, 2, 2, 3, . . .), i.e. m̄(k) = bk−2
2
c and n̄(k) = bk−1

2
c. These are dual perversities, and

it is not hard to check from the definitions that if X2n is compact and oriented and has

nonempty strata only of even dimension, then Im̄H∗(X;F ) ∼= I n̄H∗(X;F ). So in this case

there is a (−1)n-symmetric form Im̄Hn(X;F )⊗ Im̄Hn(X;F )→ F . When X has dimension

4n this yields signatures, etc; see [13]. A weaker condition on Xn that yields the same

outcome is the F -Witt condition, which assumes that Im̄Hk(L;F ) = 0 for each link L2k

of each stratum of dimension n − 2k − 1, k > 0. In this case, it follows once again that

Im̄H∗(X;F ) ∼= I n̄H∗(X;F ) (see [5]), and we obtain middle dimensional pairings [14]. The

Witt condition turns out to be independent of the choice of stratification of X [27] and so

it is a property of the pseudomanifold X, itself.

In keeping with the conventions of [13] and [27], we will call an oriented compact irre-

ducible PL stratified pseudomanifold satisfying the F -Witt condition an F -Witt space. The

orientation condition is implicit in [27] based on the definition of pseudomanifold given in

[13]. If we need to refer to a nonorientable pseudomanifold satisfying the Witt condition, we

will call it explicitly a “non-orientable Witt space.”

Witt spaces were so-named by Siegel due to his observation in [27] that the bordism

groups of 4k-dimensional Witt spaces, k > 0, are isomorphic to the Witt group W (Q). We

recall that, for any commutative ring with unity R, the Witt group W (R) is the group of

equivalence classes of symmetric inner product spaces over R under the equivalence relation

X ∼ X ′ if X ⊕ S ∼= X ′ ⊕ S ′, where S and S ′ are split inner product spaces, i.e. S and S ′

possess direct summands N and N ′ that are equal to their own orthogonal complements.

The group operation is orthogonal direct sum. W (R) can also be given a ring structure via

the tensor product. For more on Witt groups, see [22, 19].

3 Oddities of finite coefficients

In this section, we begin with some simple examples of the violation of the universal coef-

ficient theorem for intersection homology. We move on to more complex examples that are

then used to construct spaces that satisfy Witt conditions with respect to certain fields but

not others.
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3.1 Violations of the universal coefficient theorem

In [15], Goresky and Siegel used sheaf machinery to prove that p̄-perversity intersection ho-

mology satisfies the universal coefficient theorem for an abelian group G on a pseudomanifold

X if X is locally p̄-torsion free. This condition means that if L is the link of a stratum of X

of codimension c, then the abelian group I p̄Hc−2−p̄(c)(L) is torsion free. While the proof of

the theorem in [15] involves the axiomatic sheaf formulation of intersection homology, one

can work directly with chains to find examples of the trouble that can arise if this torsion

condition is violated. In this section, we provide several such examples of varying degrees of

complexity.

A simple example of violation of universal coefficients. As a first example of the

violation of the universal coefficient theorem in intersection homology, consider X = c(RP 2),

the open cone on RP 2, and suppose that p̄(3) = 0. The link of the singular vertex v of X is

L = RP 2, and I p̄H1(L) = H1(L) = Z2. So X is not locally p̄-torsion free.

We compute from the cone formula (see Section 2):

I p̄Hi(cRP 2) ∼=

{
0, i ≥ 2− p̄(3) = 2,

I p̄Hi(RP 2), i < 2.

In particular, I p̄H1(X) ∼= Z2 and I p̄H2(X) ∼= 0.

Similarly, since the cone formula holds for any coefficients,

I p̄Hi(cRP 2; Z2) ∼=

{
0, i ≥ 2− p̄(3) = 2,

I p̄Hi(RP 2; Z2), i < 2,

and so also I p̄H1(X; Z2) ∼= Z2 and I p̄H2(X; Z2) ∼= 0.

But this violates the universal coefficient theorem, which would predict that I p̄H2(X; Z2)

would equal (I p̄H2(X)⊗ Z2)
⊕

(I p̄H1(X) ∗ Z2) ∼= Z2.

We can see in this example a situation in which a chain that would not be allowable in

integer intersection homology becomes allowable in intersection homology with coefficients

– recall from Section 2 that it this effect that is ultimately responsible for the violation of

the universal coefficient theorem. Specifically, consider the standard cell decomposition2 of

RP 2 with one cell in each dimension, and let x be the 1-cell that represents the generator

of H1(RP 2). Similarly, let y be the 2-cell with ∂y = 2x. y does not represent an integer

homology class because it is not a cycle, but with coefficients in Z2, ∂y = 0 and [y] represents

the nontrivial class in H2(RP 2) ∼= Z2. This is precisely the term coming from the torsion

product in the universal coefficient theorem in ordinary homology. Now, in cRP 2, consider

the 3-chain cy determined by the cone on y. This is not an allowable chain with integer

coefficients because even though dim(cy) ∩ X0 = 0 ≤ 3 − 3 + p̄(3) = 0, we have ∂(cy) =

y − c∂y = y − c2x, and this 2-chain intersects the cone point, which is not allowed with

this perversity. However, with Z2 coefficients, ∂(cy) = y, which does not intersection the

2We give a description using cells, but this argument could also be made simplicially.
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cone point; thus cy is allowable and kills the cycle y. It is interesting to note that with Z
coefficients y is not even a cycle to begin with!

A “worse” violation of universal coefficients. In the last example, we saw that inter-

section homology can violate the universal coefficient theorem when the Goresky-Siegel local

torsion condition is violated. More specifically, the expected torsion product summands did

not materialize. In the next example, we see that something more unexpected can happen:

the tensor product terms might also vanish. In particular, we will construct spaces that have

non-trivial integer intersection homology in their middle dimensions but whose intersection

homology with finite coefficients vanishes in the same dimensions.

These examples were motivated initially by applying a construction that Siegel uses with

rational coefficients in [27]. We also follow the arguments of Haefliger from [5, Section I.5.3]

for computing the intersection homology of a Thom space.

Consider p copies of CP 2 labeled CP 2
i , i = 1, . . . , p. In each CP 2

i , let Vi denote an

embedded S2 representing the generator of H2(CP 2
i ). Let X = #p

i=1CP 2
1 . We may assume

that the Vi are disjoint within X, and we may form the connected sum V = #p
i=1Vi

∼= S2

embedded in X. The homology class [V ] ∈ H2(CP 2) is equal to
∑

[Vi]. In particular, since

the intersection number [Vi] · [Vi] = 1 in CP 2
i , we have [V ] · [V ] = p.

Now let U denote a tubular neighborhood of V in X, and let Û denote the one point

compactification of U . This is none other than the Thom space of the normal bundle to V

in X. As shown in [5, Section I.5.3], the intersection homology of a Thom space is easy to

compute. In general, if M is a compact n-manifold with boundary and Y = M ∪∂M c(∂M), a

short calculation with the Mayer-Vietoris sequence and the cone formula demonstrates that

I p̄Hi(Y ) ∼=


Hi(Y ), i > n− p̄(n)− 1,

Im: Hi(M)→ Hi(Y ), i = n− p̄(n)− 1,

Hi(M), i < n− p̄(n)− 1.

Roughly speaking, in analogy with the cone formula, chains below a certain dimension

are not allowed to intersect the distinguished cone point v, and in these dimensions the

intersection homology is H∗(Y − v) ∼= H∗(M). In high dimensions, any chain is allowed,

and the intersection homology is H∗(Y ) ∼= H∗(M,∂M). In the transition dimension, cycles

cannot intersect v, but chains one dimension up can, and so we get the groups Im: (Hi(M)→
Hi(Y )) ∼= Im: (Hi(M)→ Hi(M,∂M)).

If now M is an r-disk bundle over a compact m-dimensional manifold B, then Y is the

associated Thom space, and then we know Hi(Y ) ∼= Hi(M,M − B) ∼= Hi−r(B) by the

Thom isomorphism theorem. In particular, Im(Hi(M)→ Hi(Y )) ∼= Im(Hi(B)→ Hi(Y )) ∼=
Im(Hi(B)

e∩·→ Hi−r(B)), where e is the euler class of the bundle (see, e.g. [6, Section VI.12]).

In our case at hand, and using the lower middle perversity m̄ (see Section 2), we therefore

have

Im̄Hi(Û) ∼=


Hi−2(S

2), i > 2,

Im: H2(S
2)

∩e→ H0(S
2), i = 2,

Hi(S
2), i < 2.
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So the nonzero groups are Im̄H0(Û) = Z, Im̄H4(Û) = Z, and Im̄H2(Û) = pZ ∼= Z, since the

self-intersection number [V ] · [V ] = p is equal to the euler number.

Letting p be a prime, these same calculations hold over the field Zp of p elements except

in this case we see that Im̄H0(Û ; Zp) = Zp, I
m̄H4(Û ; Zp) = Zp, and, Im̄H2(Û ; Zp) = pZp = 0.

In addition, for a prime p′ 6= p, we get Im̄H0(Û ; Zp′) = Zp′ , I
m̄H4(Û ; Zp′) = pZp′

∼= Zp′ , and

Im̄H2(Û ; Zp′) = Zp′ .

Remark 3.1. More generally, if m is a positive composite integer and we perform the above

construction with m copies of CP 2, then we will have Im̄H2(Û ; Zp) = 0 for each prime p

such that p | m but Im̄H2(Û ; Zp′) = Zp′ for each prime p′ such that p′ - m.

Obviously there is nothing particularly special here about having found our bundle within

a connected sum of CP 2s. In fact, we can perform the same intersection homology computa-

tions starting with any n-bundle over an n-manifold and with an appropriate Euler number.

However, our example also illustrates a more general procedure adapted from [27] for finding

spaces with trivial middle-dimensional Zp intersection homology; see Remark 4.8, below.

3.2 K-Witt spaces that are not K ′-Witt spaces

In this section, we construct spaces that are Witt with respect to certain fields but not

Witt with respect to others, collectively demonstrating the assertions of Theorem 1.1 of the

Introduction, with the exception of item (1), which is proven in Section 4. Recall that item

(1) states that whether or not a space is K-Witt depends only on the characteristic of K;

hence in this section we consider only the fields Q and Zp, the finite field of p elements.

Low dimensions. We first dispense with some low-dimensional considerations, estab-

lishing items (4), (5), and (6) of Theorem 1.1. We observe immediately that all 0- and

1-dimensional pseudomanifolds are manifolds, and hence K-Witt for all fields K, while

2-dimensional pseudomanifolds that are not manifolds can have only codimension 2 singu-

larities and so are also K-Witt for all K. For dimensions 3 and 4, we have the following

propositions.

Proposition 3.2. Let X be a 3- or 4-dimensional Zp-Witt space. Then X is a Q-Witt space.

Proof. The only nontrivial even-dimensional links L in X must be 2-dimensional compact

pseudomanifolds. But each of these is the union of a finite number of compact surfaces

S1, · · ·Sr, joined along a finite number of points (see [4]). Since intersection homology is

invariant under normalizations3 (see [13, Section 4]), I p̄H1(L; Zp) ∼= H1(qiSi; Zp), and so

the result follows from the universal coefficient theorem for ordinary homology.

We also have the following converse:

Proposition 3.3. If X is a 3- or 4-dimensional Q-Witt space, then X is a Zp Witt space

for any p 6= 2. If X is also Q-orientable, then it is also a Z2-Witt space. However, there are

non-Q-orientable 3- and 4-dimensional Q-Witt spaces that are not Z2-Witt spaces.

3A pseudomanifold is normal if its links are connected, and every pseudomanifold is an image of a finite-
to-one cover by a normal manifold, its normalization.
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Proof. The proposition is true for p 6= 2, since if X is a 3- or 4-dimensional Q-Witt space,

then the two-dimensional links must consist of S2s and RP 2s glued along points, and these

links will then have trivial Zp intersection homology in degree one, as well.

For p = 2, if a Q-Witt space has a link that does involve at least one RP 2, the space

will not be Z2-Witt. However, we claim such a space will not be Q-orientable either. To

see this, note that any such pseudomanifold must have distinguished neighborhoods of the

form cL or R1 × cL and for which there is a map RP 2 → L that is injective off of finitely

many points. Any embedded curve representing a generator of π1(RP 2) can be homotoped

by a small homotopy to an embedded curve γ in L whose neighborhood in the distinguished

neighborhood is homeomorphic to the product of a Möbius band with R1 or R2. Thus tracing

around γ in X must reverse orientation.

For examples of non-orientable 3- and 4-dimensional PL Q-Witt spaces that are not

Z2-Witt, we can take the suspension and double suspension of RP 2.

Remark 3.4. We note that the non-Q-orientable Q-Witt non-Z2-Witt spaces also technically

violate Siegel’s definition of a Q-Witt space in [27], since it implicitly uses the original

Goresky-MacPherson definition of a pseudomanifold from [13], and this definition includes

an orientability condition. In any event, there will be no rational perfect pairing on middle

intersection homology, and this is what we like Witt spaces for.

Spaces that are Zp-Witt but not Q-Witt or Zp′-Witt for p′ 6= p. We turn to demon-

strating item (2) of Theorem 1.1 by next constructing, for n > 4, an n-dimensional Zp-Witt

space, p-prime, that is neither Q-Witt nor Zp′-Witt for any prime p′ 6= p. From the pre-

ceding section, there exists a 4-dimensional pseudomanifold Û whose Im̄H2(Û ; Zp) vanishes

but such that neither Im̄H2(Û ; Q) nor Im̄H2(Û ; Zp′) vanishes for prime p′ 6= p. It follows

immediately that the suspension SÛ is Zp-Witt but not Q-Witt and not Zp′-Witt for any

p′ 6= p. By taking products with manifolds, M × SÛ , we obtain compact Zp-Witt spaces

that are not Witt for fields of any other characteristic in all dimensions ≥ 5.

However, to make these examples a bit more robust, we would like to find some 4k-

dimensional spaces with these Witt properties and for which we can see directly that there

is a nontrivial nonsingular middle intersection pairing over Zp but not over Q or Zp′ for

p′ 6= p. For this, we use a slightly more elaborate starting point.

Consider a bundle of 2-planes over the torus T 2 ∼= S1×S1 and with euler number e = p.

These can be found, for example, by providing T 2 with a complex structure and then forming

the complex line bundle associated to a divisor p[x] for x ∈ T 2; see, e.g. [16]. Let Y be the

associated Thom space. Then, by our computations above, we have
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Im̄Hi(Y ; Q) ∼=


Hi−2(T

2; Q), i > 2,

Q ∼= Im: H2(T
2; Q)

∩e→ H0(T
2; Q), i = 2,

Hi(T
2; Q), i < 2,

∼=



Q, i = 4,

Q⊕Q, i = 3,

Q, i = 2,

Q⊕Q, i = 1,

Q, i = 0,

and with coefficients in Zp′ , we obtain the same results with each Q replaced by Zp′ . Mean-

while,

Im̄Hi(Y ; Zp) ∼=


Hi−2(T

2; Zp), i > 2,

0 ∼= Im: H2(T
2; Zp)

∩e→ H0(T
2; Zp), i = 2,

Hi(T
2; Zp), i < 2,

∼=



Zp, i = 4,

Zp ⊕ Zp, i = 3,

0, i = 2,

Zp ⊕ Zp, i = 1,

Zp, i = 0.

If α, β denote cycles generating H1(S
1×S1; Zp), then α and β also generate Im̄H1(Y ; Zp),

while Im̄H3(Y ; Zp) is generated by the restrictions of the Thom space over α and β, say α̂, β̂

(each of which is homeomorphic as a space to the one point compactification of S1×R2 since

the bundle is trivial over the complement of the divisor).

Now let X = S1×S2×SY , where SY is the suspension of Y . The only singular stratum is

S1×S2×{N,S}, where {N,S} represents the north and south poles of the suspension. This

is a codimension 5 stratum of an 8-dimensional pseudomanifold, and the link of the stratum

is Y . Since Y has vanishing middle dimensional middle perversity intersection homology

over Zp, X is a Zp-Witt space, but the middle intersection homology fails to vanish over Q
so that X is not a Q-Witt space.

Using the formula for the intersection homology of a suspension (see Section 2), together

with the Künneth theorem, which holds holds for intersection homology when one term is a

manifold (see [17]), we see that

Im̄H4(X; Zp) ∼= Zp ⊕ Zp ⊕ Zp ⊕ Zp.

If ∗ denotes a basepoint in S1 × S2, the generators are ∗ × Sα̂, ∗ × Sβ̂, S1 × S2 × α and

S1 × S2 × β. If the intersection number α · β = 1, then the intersection matrix with respect

to this basis is
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
0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

 ,

assuming that SX is thought of as I ×X/ ∼ (as opposed to Z × I/ ∼).

On the other hand,

Im̄H4(X; Q) ∼= Q⊕Q⊕Q⊕Q⊕Q,

where the first four summands are generated as before and the additional summand is

generated by z = ∗ × S2 times the generator of Im̄H2(X; Q), which can be represented

by T 2. Its intersection with each generator of Im̄H4(X; Q), including itself, is 0. For the

intersections with ∗×Sα̂, ∗×Sβ̂, and itself, this can be seen by pushing it off the basepoint in

the S1 direction. For the intersections with S1×S2×α and S1×S2×β, we can push z off in

the direction of the suspension. Thus we obtain a degenerate intersection pairing. The dual

of z lives, of course, in I n̄H4(X; Q) ∼= Q5, which is generated by our earlier four generators

and S1 × ∗ × ST 2. With the above convention for suspensions, we have an intersection

number (∗ × S2 × T 2) · (S1 × ∗× ST 2) = p. For Zp′ , p 6= p′, the computations are the same,

replacing all Qs by Zp′s.

Similar examples may be obtained easily in higher dimensions. For example, in dimen-

sions 4k, k > 2, we can take the product of X from the previous example with k − 2

copies of CP 2. The new space will be Witt (or non-Witt) for exactly the same fields as

for X, the middle-dimensional pairing over Zp remains nontrivial (and nonsingular), and, if

Vi represents the sphere in the ith copy of CP 2 generating the homology in degree 2, then

∗ × S2 × T 2 ×
∏k−2

i=1 Vi represents a nontrivial m̄-allowable class over Q and Zp′ whose dual

S1 × ∗ × ST 2 ×
∏k−2

i=1 Vi is n̄-allowable but not m̄-allowable.

Furthermore, applying Remark 3.1 from above, if we carry through the above procedure

for a bundle with euler number m, a composite instead of a prime, then we obtain spaces

that are Zp-Witt for all primes p such that p | m but not Q-Witt nor Zp-Witt when p - m.

Q-Witt, but not Zp-Witt for some p. We now look for spaces that are Q-Witt but

that fail to be Zp-Witt for a single prime or a collection of primes. This corresponds to

item (3) of Theorem 1.1. In general, obtaining such spaces is easy; for example, take any

even-dimensional closed manifold whose middle homology is all torsion and suspend as many

times as desired. However, we would once again like to verify that these actually exhibit

the correct existence or lack of middle-dimensional pairings (at least for spaces of dimension

4k, k > 1). It turns out that we can do even this without having to resort to constructions

quite as specialized as those in the last section; in particular, we can start with manifolds

and introduce a singularity with just a single suspension.

To start off, fix a prime p, and let L be a 3-dimensional lens space with H1(L) ∼= Zp (see,

e.g. [24, Section 40]). Then we have H0(L; Q) ∼= H3(L; Q) ∼= Q, H1(L; Q) = H2(L; Q) = 0,

and the same formulas replacing Q everywhere by Zp′ for p′ 6= p. However, for coefficients
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in Zp, Hi(L; Zp) ∼= Zp for 0 ≤ i ≤ 3. This follows from the ordinary integer homology of the

lens space and the universal coefficient theorem.

If we now let J = L × S1, then J is a compact orientable 4-manifold with H2(J ; Zp) ∼=
Zp ⊕ Zp and H2(J ; Q) = H2(J ; Zp′) = 0 for p′ 6= p. Thus the suspension SJ is Q-Witt and

Zp′-Witt for all p′ 6= p, but it is not Zp-Witt. By taking products with manifolds, we obtain

spaces of all dimensions ≥ 5 with these properties.

Computing with the ordinary Künneth Theorem and the suspension formula for inter-

section homology (see Section 2, above), we see that

Im̄Hi(SJ ; Q) ∼=



Q, i = 5,

Q, i = 4,

0, i = 3,

0, i = 2,

Q, i = 1,

Q, i = 0,

and similarly with all Qs replaced by Zp′ . On the other hand,

Im̄Hi(SJ ; Zp) ∼=



Zp, i = 5,

Zp ⊕ Zp, i = 4,

0, i = 3,

Zp ⊕ Zp, i = 2,

Zp ⊕ Zp, i = 1,

Zp, i = 0.

Now, consider X = SJ × S1 × S2, which is an 8-dimensional pseudomanifold. We have

Im̄H4(X; Q) ∼= Q⊕Q, generated by the suspension S(L×∗S1)×∗S1×S2 and by (∗L× S1)×
S1×S2. These cycles are readily checked to be dual to each other. The same is true replacing

Q with Zp′ .

On the other hand, let di be the i-cell in the standard decomposition of the lens space

with one cell in each dimension (see [24]). Then Im̄H4(X; Zp) ∼= Z6
p. The generators are:

S(L× ∗S1)× ∗S1×S2 S(d2 × S1)× ∗S1×S2

(d2 × ∗S1)× ∗S1 × S2 (d1 × S1)× ∗S1 × S2

(d1 × ∗S1)× S1 × S2 (d0 × S1)× S1 × S2.

It is the middle row of generators that do not have appropriate duals in Im̄H4(X; Zp).

Their duals should be, respectively, S(d1×S1)×S1×∗S2 and S(d2×∗S1)×S1×∗S2 , which, of
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course, are generators of I n̄H4(X; Zp). One readily checks geometrically that the intersection

numbers of (d2 × ∗S1) × ∗S1 × S2 and (d1 × S1) × ∗S1 × S2 are 0 with all other generators

of Im̄H4(X; Zp) - with the first two and the middle two by pushing off in the ∗ × S1 × ∗
direction and with the last two by pushing up or down in the direction of the suspension.

From here, we may once again obtain examples in all dimensions 4k, k > 2, by taking

products with CP 2s. Also, by taking connected sums with spaces constructed in the exact

same way but for different primes in a set P = {pi}, we obtain spaces that are Q-Witt and

Zp-Witt for any p /∈ P but that are not Zp-Witt for any p ∈ P .

Remaining questions. We leave the following as open questions:

Question. Are there spaces that are Q-Witt but that are not Zp-Witt for an infinite set of

primes? Are there spaces that are Q-Witt but that are not Zp-Witt for all but a finite set

of primes?

There can be no such compact example with all links compact manifolds, since the middle

dimensional homology groups would be finitely generated and thus not capable of carrying

infinite different types of torsion.

Question. Are there spaces that are not Q-Witt but that are Zp-Witt for an infinite set of

primes? Are there spaces that are not Q-Witt but that are Zp-Witt for all but a finite set

of primes?

4 K-Witt bordism groups

In this section, we discuss the adaptation of Siegel’s theorem on Q-Witt bordism to other

coefficient fields. In [27], Siegel notes that, as a consequence of the Poincaré duality on

Q-Witt spaces, for each k > 0 there is a well-defined homomorphism from the Witt bor-

dism group ΩQ−Witt
4k of compact 4k-dimensional Q-Witt spaces to the Witt group W (Q) of

nondegenerate symmetric Q-bilinear forms, given by taking a Q-Witt space to its middle

dimensional middle-perversity intersection form. One of the principal results of [27] is that

this homomorphism is, in fact, an isomorphism and that these bordism groups are 0 in all

other dimensions except for k = 0, which has ΩQ−Witt
0

∼= Z. It then follows from work of Sul-

livan that, as a homology theory, Q-Witt bordism, ΩQ−Witt(·), is equivalent to KO[1/2](·).
In this section, we extend Siegel’s results by computing the K-Witt bordism groups for an

arbitrary field K. We prove Theorems 1.2 and 1.3, stated in the introduction. The reader

can find more background on Witt groups in [22, 19].

In Subsection 4.1, we provide the basic definitions and some preliminary observations.

In Subsection 4.2, we show that the Witt bordism groups (in fact the property of being a

K-Witt space) depends only on the characteristic of K. In Subsection 4.3, we prove the

analogue of Siegel’s theorem, Ω
Zp−Witt
4k

∼= W (Zp) for k > 0. In Subsection 4.4, we examine

more closely the map Ω
Fq−Witt
4k → W (Fq) for the finite fields Fq. Finally, in Subsection 4.5,

we show that, as a homology theory, Zp-Witt bordism splits into a sum of (shifted) ordinary

homology groups with coefficients.
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4.1 Preliminaries

Let K be a field. A PL space X is a K-Witt space with boundary if ∂X and X − ∂X are PL

pseudomanifolds that satisfy the K-Witt condition and ∂X has a collar in X. This collared

boundary requirement is a more restrictive condition than allowing codimension 1 strata in

general (which are referred to as “pseudoboundaries” in [10]). We let ΩK−Witt
n denote the

group of bordism classes of n-dimensional K-Witt spaces, in which X is trivial if X is the

boundary of an n+1 dimensional K-Witt space with boundary. See [27, 12] for more details

in the Q-Witt case.

The main invariant of the Witt bordism groups comes from the middle-dimensional inter-

section pairings. For a 2k-dimensional compact oriented K-Witt space, there is a nondegen-

erate (−1)k-symmetric intersection pairing Im̄Hk(X;K) ⊗ Im̄Hk(X;K) → K; see [13, 8]

for more on the intersection pairing. For n ≡ 0 mod 4, the resulting homomorphism

w = wK : ΩK−Witt
n → W (K) is well-defined. The proof of this in the K case is exactly

the same as that for Q-Witt spaces given in [27, Theorem 2.1], which itself uses intersection

homology Poincaré duality to show that the intersection form of a boundary must have a

self-annihilating subspace of half the dimension of Im̄Hk(X;K). The basic idea is exactly

the same as the proof of signature invariance under manifold bordism. Any pairing with a

self-annihilating subspace of half the dimension is trivial in the Witt group; see [22].

4.2 Reduction to prime fields

First, we reduce the problem of computing ΩK−Witt
n to the special cases where K = Zp

or Q by showing that whether or not X is a K-Witt space is determined entirely by the

characteristic of K. For ease of treating all cases simultaneously, we define Z0 := Q. We

state the key results and then provide the proofs at the end of the subsection.

Lemma 4.1. Let X be a PL stratified pseudomanifold. Suppose K is a field of characteristic

p (which may be 0). Then, (letting Z0 = Q), there is a chain isomorphism

I p̄C∗(X; Zp)⊗Zp K → I p̄C∗(X;K).

Corollary 4.2. Let X be a PL stratified pseudomanifold and K a field of characteristic p,

possibly with p = 0. Then X is K-Witt if and only if X is Zp-Witt (taking Z0 = Q).

Corollary 4.3. If K is of characteristic p, ΩK−Witt
n = Ω

Zp−Witt
n . In particular, if K has

characteristic 0, ΩK−Witt
n = ΩQ−Witt

n .

Corollary 4.3 follows immediately from Corollary 4.2.

To see how this reduction relates to the Witt group invariants, note that for any inclusion

of fields Zp ↪→ K (or Q ↪→ K if p = 0), we obtain a commutative diagram

Ω
Zp−Witt
4k

wZp−−−→ W (Zp)

=

y y
ΩK−Witt

4k

wK−−−→ W (K).

(1)
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Here the righthand vertical map is induced by the field homomorphism Zp ↪→ K. To see

that this diagram commutes, first note that by Lemma 4.1, Im̄H2k(X;K) is generated over

K by elements of the form [ξ]⊗1, where ξ ∈ Im̄H2k(X; Zp). So, if X4k is K-Witt (and hence

Zp-Witt) and we choose a basis for Im̄H2k(X; Zp), then the resulting intersection pairing

matrix for the dual K pairing on Im̄H2k(X;K) is identical to the intersection pairing matrix

for the Zp pairing on Im̄H2k(X; Zp). Thus the same matrix with entries in Zp represents both

wZp(X) ∈ W (Zp) and wK(X) ∈ W (K). This is consistent with the map W (Zp) → W (K)

induced by inclusion.

It follows that wK is determined entirely by wZp , which will be studied in the next

subsection for p 6= 0.

We return now to the deferred proofs.

Proof of Lemma 4.1. Define Φ : I p̄C∗(X; Zp) ⊗Zp K → I p̄C∗(X;K) by Φ(
∑

i ξi ⊗ ki) =∑
i kiξi, where each ξi ∈ I p̄C∗(X; Zp) and ki ∈ K. Note that kiξi makes sense as each ξi

equals
∑
mjσj for mj ∈ Zp and σj a simplex of some triangulation of X, and kimj makes

sense as an element of K. It is easy to check that Φ is a chain map and well-defined.

Perhaps the simplest way to check that Φ is injective is to consider the following com-

mutative diagram:

I p̄C∗(X; Zp)⊗Zp K
Φ
- I p̄C∗(X;K)

C∗(X; Zp)⊗Zp K
?

∩

==== C∗(X;K).
?

∩

Note that it is clear from the definitions that I p̄C∗(X;G)→ C∗(X;G) is always an inclusion.

Since the tensor product over a field is left exact, the vertical arrows are inclusions, and the

bottom map is a standard isomorphism. It follows from the diagram that Φ is injective.

For surjectivity, let ξ =
∑
kiσi ∈ I p̄C∗(X;K). Note that the sum is finite, since each

element of C∗(X) lives in a fixed triangulation. Consider the Zp vector subspace V of K

spanned by the ki. Let {xj}Nj=1 be a basis for V . Then each ki =
∑
njxj, nj ∈ Zp. Using

this, we can rewrite ξ in the form
∑
xjξj, where ξj ∈ C∗(X; Zp). We claim that each

ξj ∈ I p̄C∗(X; Zp), from which it will follow that ξ = Φ(
∑
ξj ⊗ xj). It is clear that each

simplex σ appearing in each ξj must be allowable since each occurs with non-zero coefficient

in ξ. The point is to show that each ∂ξj is allowable, which is not immediately clear. However,

suppose that τ is a simplex that appears with nonzero (Zp-)coefficient in ∂ξj for some j.

The total coefficient of τ in ∂ξ must have the form
∑

j xjmj, where mj is the coefficient

of τ in ∂ξj. Since τ appears nontrivially in ∂ξj for some j, some mj 6≡ 0 mod p, and so∑
j xjmj 6= 0, as the ξj are linearly independent as a vector space basis. Thus τ appears

nontrivially in ∂ξ, and hence must be allowable, because ξ is an allowable chain.

Remark 4.4. This lemma can be shown more generally over topological pseudomanifolds

using the sheaf approach to intersection homology. We provide a PL chain level proof, more

in keeping with the spirit of the current paper.
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Proof of Corollary 4.2. From the lemma and the algebraic universal coefficient theorem for

fields, for a compact PL pseudomanifold, I p̄H∗(X;K) ∼= I p̄H∗(X; Zp) ⊗Zp K. So, for a

compact link L, I p̄Hi(L;K) vanishes if and only if I p̄Hi(L; Zp) vanishes. The corollary

follows.

4.3 Witt bordism over Zp

In this section we compute Ω
Zp−Witt
n . For a further discussion of the case of more general

finite fields, see Section 4.4 below.

Theorem 4.5. Let p 6= 0 be a prime.

1. Ω
Zp−Witt
0

∼= Z.

2. For n 6≡ 0 mod 4, Ω
Zp−Witt
n = 0.

3. For n ≡ 0 mod 4, n > 0, the homomorphism w : Ω
Zp−Witt
n → W (Zp) that assigns to

Xn the intersection form on Im̄Hn/2(X; Zp) is an isomorphism.

We can observe immediately that all 0- and 1-dimensional Zp-Witt spaces are, of course,

manifolds, so that Ω
Zp−Witt
0

∼= Z, as for manifolds and Q-Witt spaces. Furthermore, as for

Q-Witt spaces, Ω
Zp−Witt
2k+1 = 0, since if X is an odd-dimensional Zp-Witt space, then the

closed cone c̄X is also Zp-Witt, as the new stratum consisting of the cone vertex has even

codimension.

This leaves the Witt spaces of positive even dimension.

We must next show the following:

Proposition 4.6. w : Ω
Zp−Witt
n → W (Zp) is an isomorphism for all primes p and n = 4k >

0, and Ω
Zp−Witt
n = 0 for n ≡ 2 mod 4.

Proof of Proposition 4.6. The proof is mostly analogous to that of Siegel’s theorem for Q-

Witt bordism. The main difference is the proof of surjectivity for 0 6= q ≡ 0 mod 4. We

will demonstrate this surjectivity and then discuss the one significant change from Siegel’s

proof of injectivity that we must make in the Zp situation. The proof that Ω
Zp−Witt
q = 0 for

q ≡ 2 mod 4 is included with the proof of injectivity of w for 0 < q ≡ 0 mod 4.

The surjectivity of w : Ω
Zp−Witt
4k → W (Zp) is contained in the following proposition.

Proposition 4.7. Given any element of x ∈ W (Zp) and any integer k > 0, there exists a

4k-dimensional Zp-Witt space X whose intersection pairing on Im̄H2k(X; Zp) represents x.

Proof. It follows from the theory of Witt rings (see [19, Chapter 2]) that for a finite field F ,

the Witt ring W (F ) is isomorphic to a semi-direct product Q(F ) = Z2 n Ḟ /Ḟ 2, where Ḟ is

the multiplicative group F − {0} and Ḟ /Ḟ 2 ∼= Z2. The group operation in Q(F ) is given

by (e, f) · (e′, f ′) = (e+ e′, (−1)ee′ff ′), and the isomorphism W (F )→ Q(F ) is given by the

pair of operators (dim0, d±). Here dim0 takes a representative symmetric bilinear form to its

dimension mod 2 and d± takes a representative form of dimension n to (−1)n(n−1)/2 times

the determinant of the matrix representing the form.
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When F = Fq with q ≡ 3 mod 4, then W (F ) ∼= Q(F ) ∼= Z4. The generator is (1, 1) and

Q(F ) = {(0, 1), (1, 1), (0,−1), (1, 0)} (note that −1 is not a square when q ≡ 3 mod 4). In

terms of forms, W (F ) is therefore generated by 〈1〉.
If q ≡ 1 mod 4, then Q(F ) splits as Z2×Z2. If s ∈ Fq is not a square, then the elements

of Q(F ) are represented by {(0, 1), (1, 1), (1, s), (0, s)}, generated in W (F ) by 〈1〉 and 〈s〉.
If q is even, then W (Fq) ∼= Z2 [22].

So when p ≡ 3 mod 4, it is easy to find manifolds of dimension 4k, k ≥ 1 whose middle

dimensional pairings represent any element of the Witt group. Specifically, the pairing on

CP 2k is the generator of W (Zp) and taking connected sums of CP ks yields representatives

of any element of W (Zp).

For p ≡ 1 mod 4, CP 2k again yields the generator 〈1〉 of the Witt group W (Zp). To

obtain the generator 〈s〉, we can proceed with Thom spaces as in Section 3.1. If s > 0

represents a non-square unit in Zp, let U be the normal bundle of the connected sum of

s copies of the generator [Vi] ∈ H2k(CP 2k), represented by embedded spheres S2k
i , in the

connected sum of s copies of CP 2k.4 Let Û be the associated Thom space. Then, as in

the computations in Section 3.1, Im̄H2k(Û ; Zp) ∼= Im: (H2k(S
2n; Zp) ∼= Zp

∩e→ H0(S
2k; Zp) ∼=

Zp). Since the euler number of the bundle is the unit s, Im̄H2k(Û ; Zp) ∼= Zp generated by

[V ] =
∑

[Vi] = [S2n]. Furthermore, [V ] · [V ] = s. Thus, since the only singularity of Û has

codimension 4k, Û is a Witt space with intersection form 〈s〉. So we have constructed spaces

representing both generators of W (Zp).

For p = 2, W (Zp) is generated simply by 〈1〉, and we can use again any CP 2k as a

geometric realization.

Turning to the injectivity of w : Ω
Zp−Witt
4k → W (Zp), as well as the fact that Ω

Zp−Witt
n = 0

for n ≡ 2 mod 4, we note again that the proof is nearly identical to that of the Q-Witt

case, though some care must be taken, primarily with the use of geometric cycles (see the

discussion at the end of Section 4.4 for more elaboration on what can go wrong over fields

more general than Zp). We discuss this issue and refer the reader to [27] for the remainder

of the proof.

Siegel’s proof of injectivity over Q begins by supposing we have a Q-Witt space X2k with

an isotropic element [z] ∈ Im̄Hk(X; Q), i.e. [z] · [z] = 0. Siegel then finds a representative

of [z] by an irreducible cycle z, meaning that Hk(|z|; Z) ∼= Z and such that the generator of

this homology group has coefficient ±1 on every k simplex of |z| in some triangulation of

|z|. The key point is that the support |z| of z should have infinite cyclic kth homology, and

it should be generated by |z|, itself, considered as the cycle represented by its fundamental

class.

In the Zp case, the construction of z should be altered slightly. Given any 2k-dimensional

Witt space, any class [z] ∈ Im̄Hk(X; Zp) will satisfy [z] · [z] = 0 if 2k ≡ 2 mod 4, while

if 2k ≡ 0 mod 4 and w(X) = 0 ∈ W (Zp), such a cycle certainly exists. We construct

a “Zp-irreducible” representative cycle z for [z] by slightly modifying Siegel’s construction

to obtain a z such that Hk(|z|; Zp) ∼= Zp, generated by a “fundamental class” of |z|. The

4Note that here it is crucial that we work in Zp and not some Fpn so that s can be represented by an
integer.
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quotation marks indicate that this is not quite the right language since |z| might have a

codimension one singularity - however since z is a cycle, these singularities will cancel when

thinking of z as a chain, and so the idea of a fundamental class makes some sense.

Briefly, we make z irreducible as follows: Choose an arbitrary representative y for [z]

in some triangulation of X. Then y =
∑
niσi, where ni ∈ Zp and each σi is a unique

oriented k-simplex. Choose mi ≡ ni mod p such that 0 ≤ mi < p, and abusing notation,

let y =
∑
miσi. Note that the interior of each k-simplex of y lies in X − Σ due to the

allowability conditions for an intersection chain. Now, for each σi such that mi 6= 0, we may

use a relative stratified general position argument following McCrory [21] (see also [8]) to

PL isotope the interiors of the mi copies of σi, rel boundary, into stratified general position

with respect to each other, and in such a way that none of the new mi copies of σi intersect

any of the mj copies of σj similarly created, except along boundaries. This is more or less

an alternative description of Step 1 of the proof of Siegel’s [27, Lemma 2.2], except that

Siegel separates by isotopy entire open j-strata of |y|. Arguments along the lines of the

stratified homotopy invariance of intersection homology (see [9]) show that this new chain,

ȳ, also represents [z], and clearly ∂ȳ = ∂y = 0 ∈ Ck−1(X; Zp). Furthermore, y has the form

y =
∑
σi, where the sum is taken over those oriented simplices in the support of y. To form

z, one then connects all of the k-simplices of y by orientation respecting pipes; see [27, page

1087] for more details. Then one also has z of the form z =
∑
σi (with different σs from ȳ),

and clearly z generates Hk(|z|; Zp) ∼= Zp.

This z can then be used in the remainder of a Zp analogue of Siegel’s injectivity proof.

This completes the proof of Theorem 4.5.

Remark 4.8. Incidentally, the process of the injectivity proof can be used to find many more

examples of Zp-Witt spaces with vanishing middle-dimensional Im̄Hk since, by copying the

proof of Siegel’s [27, Proposition III.3.1] exactly, Im̄Hk(Û ; Zp) = 0, where U is a regular

neighborhood of our irreducible z (still assuming [z] · [z] = 0), and Û = U ∪ c̄(∂U).

4.4 Witt bordism over finite fields

In this section, we observe the ramifications of the results of the previous section to Ω
Fq−Witt
n

for the finite field Fq. We also provide an illustrative example.

Proposition 4.9. For n ≡ 0 mod 4, n > 0, the homomorphism w : Ω
Fq−Witt
n → W (Fq)

that assigns to Xn the intersection form on Im̄Hn/2(X; Fp) is an isomorphism, except when

q = pm, p ≡ 3 mod 4, m even. In these exceptional cases, Ω
Fpm−Witt
n is isomorphic to

W (Zp), and w is the homomorphism induced by inclusion W (Zp)→ W (Fpm).

The proposition follows from Theorem 4.5, Corollary 4.3, and the commutativity of

diagram (1) for k,m > 0. In particular, Corollary 4.3 tells us that the map w : Ω
Zp−Witt
4k →

W (Zp) is an isomorphism, and so from the commutativity of the diagram, w : Ω
Fpm−Witt

4k →
W (Fpm) is isomorphic to the homomorphism W (Zp)→ W (Fpm). We recall the properties of

this homomorphism.
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Consider the homomorphism ψ : W (Zp) ↪→ W (Fpm) induced by the natural inclusion

Zp ↪→ Fpm . If p ≡ 1 mod 4, then pm ≡ 1 mod 4 for all m > 0, while if p ≡ 3 mod 4,

p2m+1 ≡ 3 mod 4 and p2m ≡ 1 mod 4. In all cases except the last (p2m for p ≡ 3 mod 4),

ψ is an isomorphism. This follows from the discussion in the proof of Proposition 4.7: in

these cases we know that W (Zp) ∼= W (Fpm) abstractly and ψ clearly preserves dimension

and determinant of the form, which constitute a complete set of invariants.

In the exceptional case, W (Zp) ∼= Z4, generated by 〈1〉, but W (Fp2m) ∼= Z2⊕Z2, in which

〈1〉 is one of the generators. So ψ maps W (Zp) onto one of the summands of W (Fpm) with

kernel Z2.

What does this mean geometrically? As an example, consider Z3 and F9
∼= Z3[x]/〈x2−2〉.

Let {1, x} denote a basis of F9 as a 2-dimensional vector space over Z3. We showed above

that CP 2 is a generator of ΩZ3−Witt
4 corresponding to 〈1〉 in W (Z3). According to the

results of the preceding section, ΩZ3−Witt
4

∼= W (Z3) ∼= Z4 so that CP 2 has order 4. Since

ΩZ3−Witt
4 = ΩF9−Witt

4 , CP 2 also has order 4 in the latter group. However W (F9) ∼= Z2 ⊕ Z2,

so, in particular, w(CP 2#CP 2) = 0 ∈ W (F9). To see where a proof of injectivity along the

lines of Siegel breaks down, observe that w(CP 2#CP 2) is represented by

(
1 0

0 1

)
. Since

this pairing is nonzero in W (Z3), in order to find an isotropic element over F9, we must mix

1 and x nontrivially. For example, let V1 and V2 denote two disjoint spheres in CP 2#CP 2

generating Im̄H2(CP 2#CP 2; F9) ∼= H2(CP 2#CP 2; F9) ∼= H2(CP 2#CP 2)⊗F9. An isotropic

element is given by [V1] + x[V2], since ([V1] + x[V2]) · ([V1] + x[V2]) = 1 + x2 = 1 + 2 = 0 ∈ F9.

There is no way to create a cycle representing [V1] + x[V2] that is irreducible in the sense

discussed in the injectivity proof in Section 4.3, since the mixing of 1 and x coefficients would

prevent us from piping simplices together (for that matter, we cannot make sense of taking

x copies of something).

4.5 Zp-Witt bordism as a generalized homology theory

This subsection contains a computation of the homology theory Ω
Zp−Witt
∗ (·). As for rational

Witt bordism, K-Witt bordism yields a generalized homology theory for any K; as noted

by Siegel [27, Chapter IV], this follows from Akin [1, Proposition 7], making the obvious

generalizations from unoriented to oriented bordism. Akin’s axioms are easy to check for

K-Witt spaces with boundary, by making use of the collars on the boundaries to see that

Akin’s cuttings and pastings do not create new links that would violate the Witt conditions.

It follows from the results of the preceding sections that the only parameter that matters

in K-Witt-bordism is the characteristic of the field K. By Siegel, ΩQ−Witt
∗ (·) ∼= KO[1/2]∗(·),

so we focus on fields of finite characteristic. In particular, there is no loss of generality

limiting ourselves to Zp. It turns out that Ω
Zp−Witt
∗ (·) splits as a sum of ordinary homology

theories with coefficients, which is the content of the following theorem.

Theorem 4.10. As a homology theory on CW complexes, Zp-Witt bordism splits as a direct

sum of ordinary homology with coefficients. In particular,

ΩZp−Witt
n (X) ∼=

⊕
r+s=n

Hr(X; ΩZp−Witt
s ).
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Proof. Brown representability tells us that Zp-Witt bordism is representable by a spectrum;

see, e.g. [28, Theorem 14.35, Corollary 14.36, and Remark 1 on page 331]. To see that

Zp-Witt bordism on CW complexes satisfies the wedge axiom, and hence the conditions in

[28, Remark 1], note the unreduced version of the wedge axiom within the proof of [28,

Proposition 10.16] and that our bordism theory breaks into a sum over what happens on

connected components. We let Wp denote the spectrum yielding Zp-Witt bordism. We will

show below that Wp is, in fact, an MSO-module spectrum, but the proof of this fact is

deferred for now.

Let X be a compact CW complex so that the homology of X is finitely generated.

We consider the Atiyah-Hirzebruch spectral sequence for Ω
Zp−Witt
∗ (X), whose E2

r,s term is

Hr(X; Ω
Zp−Witt
s ). Since Ω

Zp−Witt
s is 2-primary for all s > 0, the only odd torsion in the

spectral sequence is in the terms Hr(X; Ω
Zp−Witt
0 ) ∼= Hr(X; Z), which lie along the x-axis. It

follows that the odd torsion part of the spectral sequence splits off and that the odd torsion

subgroup of Ω
Zp−Witt
n (X) is isomorphic to the odd torsion subgroup of Hn(X).

Now, for the rest of Ω
Zp−Witt
n (X), we consider instead the theory Ω

Zp−Witt
n (X; Z(2)) ∼=

Ω
Zp−Witt
n (X)⊗Z(2) with 2-local coefficients (see [26, Section II.5] for a general reference). In

this case, the Atiyah-Hirzebruch E2 terms look like Hr(X; Ω
Zp−Witt
s ⊗ Z(2)). Since Ω

Zp−Witt
s

is 2-torsion for s > 0, in this case the terms are identical to those from the spectral se-

quence before the localization, while the (r, 0) term becomes Hr(X; Z(2)). Now, this spectral

sequence degenerates at the E2 term by a theorem of Taylor and Williams [29, Section 2]

that states that any 2-local MSO-module spectrum (in this case (Wp)(2)) splits as a wedge of

Eilenberg-MacLane spectra. The upshot of this is the degeneration of the Atiyah-Hirzebruch

spectral sequence. By this degeneration,

ΩZp−Witt
n (X)⊗ Z(2)

∼= ΩZp−Witt
n (X; Z(2)) ∼= Hn(X; Z(2))⊕

⊕
r+s=n
s>0

Hr(X; ΩZp−Witt
s ).

The group Ω
Zp−Witt
n (X) must be finitely generated (since everything else in the spectral

sequence is), so, by basic facts about localization, we can read off the 2-primary and infinite

cyclic summands of Ω
Zp−Witt
n (X) from Ω

Zp−Witt
n (X)⊗Z(2). In particular, any 2-primary com-

ponents are shared between the two, and Z summands of the former, correspond bijectively

with Z(2) terms in the latter, which can come only from the summand Hn(X; Z(2)). Thus,

modulo odd torsion, we must have Ω
Zp−Witt
n (X) ∼= Hn(X; Z)⊕

⊕
r+s=n
s>0

Hr(X; ΩZp−Witt
s ).

But now we know that the odd torsion of Ω
Zp−Witt
n (X) is that of Hn(X). So, putting

everything together, we must have

ΩZp−Witt
n (X) ∼= Hn(X; Z)⊕

⊕
r+s=n
s>0

Hr(X; ΩZp−Witt
s ) ∼=

⊕
r+s=n

Hr(X; ΩZp−Witt
s ),

since Ω
Zp−Witt
0

∼= Z.

For infinite CW complexes, we can now use the preceding formula and take direct limits

(see [28, page 331, Remark 1]).
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Now we return to the following lemma.

Lemma 4.11. Wp is an MSO-module spectrum.

Proof. To begin with, Wp is, in the language of Rudyak [26, Definition III.7.7], a quasi-

module spectrum over the Thom spectrum MSO. This means that for CW pairs (X,A)

and (Y,B) and letting ΩSO
∗ (·) be smooth oriented bordism, there is a pairing ΩSO

∗ (X,A) ⊗
Ω

Zp−Witt
∗ (Y,A)→ Ω

Zp−Witt
∗ (X×Y,X×B ∪A×Y ) that possesses the expected associativity.

To see that such a pairing exists, we observe that smooth oriented manifolds are all Zp-

Witt spaces for any p and so is the product of a smooth oriented manifold with a Zp-Witt

space (the links don’t change). Furthermore, we should check that if Mm is a manifold

with boundary and Nn is a Zp-Witt space with Zp-Witt boundary, then ∂(M × N) =

M × ∂N ∪∂M×∂N ∂M ×N is Zp-Witt. The links in int(M)× ∂N are the same as the links

of ∂N , and the links of ∂M × N are the same as the links of N . Now, if x ∈ ∂M × ∂N ,

then x has a distinguished neighborhood in this space of the form Rm−1 × Rn−1−k × cL. In

M × ∂N , this neighborhood expands to the form Rm−1 × Rn−1−k × cL× (−1, 0], where the

(−1, 0] coordinate represents the collar of ∂M in M . But in ∂M × N , this neighborhood

similarly expands to Rm−1 × Rn−1−k × cL × [0, 1). where [0, 1) is the collar of ∂N in N .

Putting these together, x has a neighborhood of the form Rm+n−1−k × cL, and so again the

link of x in ∂(M ×N) is L, which is a link in ∂N , and hence satisfies the Witt condition.

It is not true in general that being a quasi-module spectrum leads to being an actual

module spectrum (see [26]), but we will be able to show this for Wp.

We note that both MSO and Wp have finite Z-type, meaning that they are bounded

below (i.e. their coefficient groups vanish below a certain dimension) and each πi(MSO)

and πi(Wp) is finitely generated. For MSO this is well-known; see, e.g., [23, Theorem 18.8].

For Wp, this follows from Theorem 4.5. Thus, by [26, Proposition II.4.26.ii], we may assume,

up to equivalence, that MSO and Wp have finite type, i.e. that each skeleton of each

spectrum is finite (see [26, Definition II.1.2.e]).

We can now apply a module spectrum version of [26, Theorem III.7.3]. It is noted by

Rudyak immediately prior to his [26, Theorem III.7.8] that there is such a module spectrum

version of his Theorem III.7.3, which gives conditions for when a quasi-ring spectrum is

in fact a ring spectrum. The actual hypotheses of his Theorem III.7.8 as stated are more

restrictive than those of Theorem III.7.3 only because this is what is needed in the rest of

the book, but a version or Theorem III.7.3 in its full generality can be directly applied to the

case of quasi-module spectra. The quasi-module version of this theorem says the following:

Since our spectra have finite Z-type, our MSO-quasi-module structure will be induced by

a unique (up to homotopy) MSO-module structure on Wp if the following groups vanish:

lim←−
1{W−1

p (W
(n)
p )}, lim←−

1{W−1
p (MSO(n)∧W (n)

p )}, and lim←−
1{W−1

p (MSO(n)∧MSO(n)∧W (n)
p )}.

To clarify, the superscript −1 stands, in each case, for the degree −1 generalized cohomology

group, while E(n) stands for the n-skeleton of the spectrum E. The existence of a module

morphism MSO ∧Wp → Wp inducing the module structure on homology is automatic, but

the vanishing of these three groups is necessary to yield, respectively, the multiplicative unit,

uniqueness, and associativity for the module spectrum structure.
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To show that these groups vanish, we consider the Atiyah-Hirzebruch spectral sequences.

Let X(n) be any of W
(n)
p , MSO(n)∧W (n)

p , or MSO(n)∧MSO(n)∧W (n)
p . Then, for W−1

p (X(n)),

the relevant E2 terms of the spectral sequence will have the form H i(X(n); Ω
Zp−Witt
−j ), with

i + j = −1. For j > 0, these terms vanish obviously. For j = 0, i = −1, they also vanish.

To see this, note that since Ω
Zp−Witt
k = πk(Wp) = 0 and ΩSO

k = πk(MSO) = 0 for k < 0,

MSO and Wp are connected spectra (this is just the definition of connected spectrum). By

[26, Proposition II.4.5.iv], for any spectrum E, the inclusion E(k) ⊂ E induces isomorphisms

on πi for i ≤ k, and by [26, Lemma II.4.2], we may assume (by replacing spectra with

equivalent ones) that, if E is connected, E(k) = ∗ for k ≤ −1. It follows from these two

facts that MSO(n) and W
(n)
p are also connected spectra. Furthermore, by [26, Proposition

II.4.5.i], the smash products of connected spectra are connected. In particular, then, each

of our X(n) is connected. So, by [26, Corollary II.4.7], Hi(X
(n)) = 0 for i < 0, and, by the

universal coefficient theorem for spectra with coefficients in an abelian group [26, Theorem

II.4.9], H i(X(n);G) = 0 for any abelian group G and any i ≤ −1.

Finally, we consider the terms H i(X(n); Ω
Zp−Witt
−j ) for j < 0, i > −1. As noted above,

we can assume up to equivalence that the skeleta W
(n)
p and MSO(n) are finite spectra, and,

as a consequence of [26, Proposition II.1.5.ii,iii], the (co)homology of a finite spectrum is

the same as the (co)homology of some finite CW complex. Thus, applying the Künneth

theorem to the smash products X(n) (see the remarks following [26, Theorem II.4.11]), the

remaining terms H i(X(n); Ω
Zp−Witt
−j ), i > −1, look like the cohomology of products of finite

complexes with coefficients in the finite groups Ω
Zp−Witt
−j , j < 0. Therefore, they must vanish

for sufficiently large i and will be finite groups otherwise.

It now follows from the Atiyah-Hirzebruch spectral sequence that each W−1
p (X(n)) is

finite, and this will suffice to make the above lim←−
1 groups vanish by [26, Corollary III.2.18],

which notes that lim←−
i A = 0 for i > 0 if A is a system of finite abelian groups.
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Corrigendum to “Intersection homology with field

coefficients: K-Witt spaces and K-Witt bordism”

Greg Friedman∗

August 14, 2012

The author’s paper [2] concerns K-Witt spaces and, in particular, a computation of

the bordism theory of such spaces. However, there is an error in the computation of the

coefficient groups in dimensions 4k + 2 when char(K) = 2. In this corrigendum, we state, as

far as possible, the correct results. Details can be found in [1].

If we consider K-Witt spaces and K-Witt bordism using K-orientations, then for char(K) =

2, this is unoriented bordism, which we denote NK−Witt
∗ .

Theorem 1. For a field K with char(K) = 2 and for1 i ≥ 0,

NK−Witt
i

∼=

{
Z2, i ≡ 0 mod 2,

0, i ≡ 1 mod 2.

This result is also provided without detailed proof by Goresky in [3, page 498].

If we consider K-Witt spaces and K-Witt bordism using Z-orientations, then we denote

the bordism theory by ΩK−Witt
∗ . In this case, there remains one ambiguity in the computation,

but we can show the following:

Theorem 2. For a field K with char(K) = 2 and k ≥ 0,

1. ΩK−Witt
0

∼= Z,

2. ΩK−Witt
4k

∼= Z2,

3. ΩK−Witt
4k+1 = ΩK−Witt

4k+3 = 0,

4. Either

(a) ΩK−Witt
4k+2 = 0 for all k, or

(b) there exists some N > 0 such that ΩK−Witt
4k+2 = 0 for all k < N and ΩK−Witt

4k+2
∼= Z2

for all k ≥ N .

∗This work was partially supported by a grant from the Simons Foundation (#209127 to Greg Friedman)
1Since these are geometric bordism groups, they vanish in negative degree.
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See [1] for a discussion of the difficulty in determining which case of item (4) of Theorem

2 holds.

Independent of the existence or value of N in condition (4) of the theorem, the computa-

tions from [2, Section 4.5] of ΩK−Witt
∗ ( · ) as a generalized homology theory on CW complexes

continue to hold and to imply that for char(K) = 2,

ΩK−Witt
n (X) ∼=

⊕
r+s=n

Hr(X; ΩK−Witt
s ).

Similarly,

NK−Witt
n (X) ∼=

⊕
r+s=n

Hr(X;NK−Witt
s ).

Other minor errata. In [2] it should not be part of the definition of a K-Witt space that

the space be irreducible as a pseudomanifold. However, as every K-Witt space of dimension

> 0 is bordant to an irreducible K-Witt space [4, page 1099], this error does not affect the

bordism group computations of [2]. Not every 0-dimensional K-Witt space is bordant to an

irreducible one, but the computation of ΩK−Witt
0 reduces to the manifold theory and gives

the result of [2] if one removes irreducibility from the definition.

The argument that ΩK−Witt
4k+2 = 0 given in [2] does not hold when k = 0. However, in this

dimension it is not difficult to prove the result directly; details are provided in [1].
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K-Witt bordism in characteristic 2
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Abstract

This note provides a computation of the bordism groups of K-Witt spaces for

fields K with characteristic 2. We provide a complete computation for the unoriented

bordism groups. For the oriented bordism groups, a nearly complete computation is

provided as well a discussion of the difficulty of resolving a remaining ambiguity in

dimensions equivalent to 2 mod 4. This corrects an error in the char(K) = 2 case of

the author’s prior computation of the bordism groups of K-Witt spaces for an arbitrary

field K.

In [1], an n-dimensional K-Witt space, for a field K, is defined1 to be an oriented com-

pact n-dimensional PL stratified pseudomanifold X satisfying the K-Witt condition that

the lower-middle perversity intersection homology group Im̄Hk(L;K) is 0 for each link

L2k of each stratum of X of dimension n − 2k − 1, k > 0. Following the definition of

stratified pseudomanifold in [2], X does not possess codimension one strata. Orientability

is determined by the orientability of the top (regular) strata. This definition generalizes

Siegel’s definition in [11] of Q-Witt spaces (called there simply “Witt spaces”). The moti-

vation for this definition is that such spaces possess intersection homology Poincaré duality

Im̄Hi(X;K) ∼= Hom(Im̄Hn−i(X;K), K).

The author’s paper [1] concerns K-Witt spaces and, in particular, a computation of the

bordism theory ΩK−Witt
∗ of such spaces. However, there is an error in [1] in the computation

of the coefficient groups ΩK−Witt
4k+2 when char(K) = 2.

It is claimed in [1] that ΩK−Witt
4k+2 = 0. When char(K) > 2, the null-bordism of a 4k + 2

dimensional K-Witt space X is established in [1] by following Siegel’s computation [11] for Q-

Witt spaces by first performing a surgery to make the space irreducible and then performing

∗This work was partially supported by a grant from the Simons Foundation (#209127 to Greg Friedman)
2000 Mathematics Subject Classification: 55N33, 57Q20, 57N80

Keywords: intersection homology, Witt bordism, Witt space
1There is a minor error in [1] in that Witt spaces are stated to be irreducible, meaning that there is

only a single top dimensional stratum. In general, this should not be part of the definition of a K-Witt

space; cf. [11]. However, as every K-Witt space of dimension > 0 is bordant to an irreducible K-Witt

space (see [11, page 1099]), this error does not affect the bordism group computations of [1]. It is not true

that every 0-dimensional K-Witt space is bordant to an irreducible K-Witt space, but in this dimension the

computations all reduce to the manifold theory and the computations given for this dimension in [1] are also

correct if one removes irreducibility from the definition.

1



a sequence of singular surgeries to obtain a space X ′ such that Im̄H2k+1(X ′;K) = 0. The

K-Witt null-bordism of X is the union of the trace of the surgeries from X to X ′ with

the closed cone c̄X ′. One performs the singular surgeries on elements [z] ∈ Im̄H2k+1(X;K)

such that [z] · [z] = 0, where · denotes the Goresky-MacPherson intersection product [2]. As

the intersection product is skew symmetric on Im̄H2k+1(X;K), such a [z] always exists. The

error in [1] stems from overlooking that this last fact is not necessarily true in characteristic 2,

where skew symmetric forms and symmetric forms are the same thing and so skew-symmetry

does not imply [z] · [z] = 0.

Corrected computations. To begin to remedy the error of [1], we first observe that it

remains true in characteristic 2 that the map2 w : ΩZ2−Witt
4k+2 → W (Z2) is injective, where

W (Z2) is the Witt group of Z2 and w takes the bordism class [X] to the class of the in-

tersection form on Im̄H2k+1(X;Z2). For k > 0, this fact can be proven as it is proven for

w : ΩK−Witt
4j → W (K), j > 0, in [1]: if one assumes that the intersection form on X repre-

sents 0 in W (Z2) then the intersection form is split, in the language of [7]; see [7, Corollary

III.1.6]. And so Im̄H2k+1(X;Z2) will possess an isotropic (self-annihilating) element by [7,

Lemma I.6.3]. The surgery argument can then proceed3. As W (Z2) ∼= Z2 (see [7, Lemma

IV.1.5]), it follows that ΩZ2−Witt
4k+2 is either 0 or Z2.

This argument does not hold for 4k+2 = 2 as in this case the dimensions are not sufficient

to guarantee that every middle-dimensional intersection homology class is representable by

an irreducible element, which is necessary for the surgery argument; see [11, Lemma 2.2].

However, all 2-dimensional Witt spaces must have at worst isolated singularities, and so in

particular such a space must have the form X ∼= (qSi)/ ∼, where the Si are closed oriented

surfaces and the relation ∼ glues them together along various isolated points. But then X

is bordant to qSi. This can be seen via a sequence of pinch bordisms as defined by Siegel

[11, Section II] that pinch together the regular neighborhoods of sets of points of qSi. To

see that the bordism is via a Witt space, it is only necessary to observe that the link of

the interior cone point in each such pinch bordism will be a wedge of S2s, and it is easy to

compute that Im̄H1(∨iS2;K) = 0 for any K. But now, since all closed oriented4 surfaces

bound, ΩZ2−Witt
2 = 0. This special case was also over-looked in [1], though this argument

holds for any field K and is consistent with the claim of [1] that ΩK−Witt
2 = 0 for all K.

Thus we have shown that w : ΩZ2−Witt
4k+2 → W (Z2) ∼= Z2 is an injection for k ≥ 0, trivially

2Recall from [1, Corollary 4.3] that the bordism groups depend only on the characteristic of the field, so

for characteristic 2 it suffices to consider K = Z2.
3There is one other possible complication due to characteristic 2 that must be checked but that does

not provide difficulty in the end: For characteristic not equal to 2, every split form is isomorphic to an

orthogonal sum of hyperbolic planes [7, Lemma I.6.3], and this appears to be used in the proof of Theorem

4.4 of [11], which is heavily referenced in [1]. For characteristic 2, one can only conclude that a split form

is isomorphic to one with matrix

(
0 I

I A

)
for some matrix A. However, a detailed reading of the proof of

[11, Theorem 4.4, particularly page 1097] reveals that it is sufficient to have a basis {α, β, γ1, . . . , γ2m} such

that α ·α = α · γi = 0 for all i and α · β = 1, and this is certainly provided by a form with the given matrix.
4Recall that Z2-Witt spaces are assumed to be Z-oriented, though see below for more on orientation

considerations
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so for k = 0. Unfortunately, the question of surjectivity of w in dimensions 4k + 2 is more

complicated and not yet fully resolved. We can, however, make the following observation: if

X is a Z2-Witt space of dimension 4k − 2, then5 w([X × CP 2]) = w([X]). So if there is a

non-trivial element of ΩZ2−Witt
4k−2 , then there is a non-trivial element of ΩZ2−Witt

4k+2 .

Putting this together with the computations from [1] of ΩK−Witt
∗ in dimension 6≡ 4k + 2

mod 4 (which remain correct), we have the following theorem:

Theorem 1. For a field K with char(K) = 2, ΩK−Witt
∗ = ΩZ2−Witt

∗ , and for6 k ≥ 0,

1. ΩK−Witt
0

∼= Z,

2. for k > 0, ΩK−Witt
4k

∼= Z2, generated by [CP 2k],

3. ΩK−Witt
4k+3 = ΩK−Witt

4k+1 = 0,

4. Either

(a) ΩK−Witt
4k+2 = 0 for all k, or

(b) there exists some N > 0 such that ΩK−Witt
4k+2 = 0 for all k < N and ΩK−Witt

4k+2
∼= Z2

for all k ≥ N .

We will provide below some further discussion of the difficulties of deciding which case

of (4) holds after discussing unoriented bordism.

Remark. Independent of the existence or value of N in condition (4) of the theorem, the

computations from [1, Section 4.5] of ΩK−Witt
∗ ( · ) as a generalized homology theory on CW

complexes continue to hold and to imply that for char(K) = 2,

ΩK−Witt
n (X) = ΩZ2−Witt

n (X) ∼=
⊕

r+s=n

Hr(X; ΩZ2−Witt
s ).

Unoriented bordism. Given the motivation to recognize spaces that possess a form of

Poincaré duality, it seems reasonable to consider K-Witt spaces that are K-oriented. This

has no effect when char(K) 6= 2, in which case K-orientability is equivalent to Z-orientability

as considered in [1]. But when char(K) = 2, all pseudomanifolds are Z2-orientable, which

is equivalent to being K orientable, and the Poincaré duality isomorphism Im̄Hk(X;K) ∼=
Hom(Im̄Hn−k(X;K), K) holds for all such compact pseudomanifolds satisfying the K-Witt

condition.

If we allow K-Witt spaces and K-Witt bordism using K-orientations, then for char(K) =

2 we are essentially talking about unoriented bordism7, so to clarify the notation, let us

denote the resulting bordism groups by NK−Witt
∗ . These groups can be computed as follows:

5Recall that the Künneth theorem holds within a single perversity when one term is a manifold, so we

can compute the intersection forms of such product spaces in the usual way; see e.g. [6].
6Since these are geometric bordism groups, they vanish in negative degree.
7One could also define unoriented bordism groups of unoriented compact PL pseudomanifolds satisfying

the K-Witt condition with char(K) 6= 2, but it is not clear how to study such groups by the present

techniques, as there is no reason to expect that Im̄H∗(X;K) would satisfy Poincaré duality for such a space

X.
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Theorem 2. For a field K with char(K) = 2 and for i ≥ 0,

NK−Witt
i

∼=

{
Z2, i ≡ 0 mod 2,

0, i ≡ 1 mod 2.

Since writing [1], the author has discovered that this theorem is also provided without

detailed proof by Goresky in [4, page 498]. We provide here the details:

Proof. It continues to hold that the local Witt condition depends only on the characteristic

of K for the reasons provided in [1], so we may assume K = Z2. To see that N Z2−Witt
n = 0

for n odd, we simply note that X bounds the closed cone c̄X, which is a Z2-Witt space. The

map w : N Z2−Witt
2k → W (Z2) ∼= Z2 is onto for each k > 0, as the intersection pairing on the

Z2-coefficient middle-dimensional homology of the real projective space RP 2k corresponds

to the generator of W (Z2) represented by the matrix 〈1〉. Furthermore, w is injective for

k > 1 as in the preceding surgery argument, which does not rely on whether or not X is

oriented, only on the existence of the intersection pairing over Z2. In dimension 0, we have

unoriented manifold bordism of points, so N Z2−Witt
0

∼= Z2. Finally, as in the argument above

for ΩZ2−Witt
2 , the group N Z2−Witt

2 must be generated by closed surfaces (now not necessarily

oriented), so N Z2−Witt
2 is a quotient of the unoriented manifold bordism group N2

∼= Z2;

thus N Z2−Witt
2 must be isomorphic to Z2 as w maps RP 2 onto the non-trivial element of

W (Z2) ∼= Z2.

Remark. An even simpler version of the argument of [1] implies that as a generalized homol-

ogy theory

NK−Witt
n (X) ∼=

⊕
r+s=n

Hr(X;NK−Witt
s )

for char(K) = 2, as in this case one no longer needs a separate argument to handle the odd

torsion that can arises in Hn(X; ΩK−Witt
0 ) as a result of ΩK−Witt

0
∼= Z not being 2-primary.

Further discussion of oriented bordism. We next provide some results that demon-

strate the difficulty of determining which case of item (4) of Theorem 1 holds.

We will first see that w([M ]) = 0 for any Z-oriented manifold: Since dimension mod 2

is the only invariant8 of W (Z2), this is a consequence of the following lemma, recalling that

for a manifold, Im̄H∗(M) = H∗(M).

Lemma. Let M be a closed connected Z-oriented manifold of dimension 4k + 2. Then

dim(H2k+1(M ;Z2)) ≡ 0 mod 2.

Proof. By the universal coefficient theorem,

H2k+1(M ;Z2) ∼= (H2k+1(M)⊗ Z2)⊕ (H2k(M) ∗ Z2) ,

8As observed in the proof of [7, Lemma III.3.3], rank mod 2 yields a homomorphism W (F ) → Z2 for

any field F . Since we know that W (Z2) ∼= Z2 and that 〈1〉, which has rank 1, is a generator of W (F ) (it

is certainly non-zero, using [7, Lemma I.6.3 and Lemma III.1.6]), it follows that rank mod 2 determines the

isomorphism.
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where the asterisk denotes the torsion product. Let T∗(M) denote the torsion subgroup of

H∗(M), and let T 2
∗ (M) denote T∗(M) ⊗ Z2

∼= T∗(M) ∗ Z2; the isomorphism follows from

basic homological algebra because T∗(M) is a finite abelian group. T 2
∗ (M) is a direct sum

of Z2 terms. Then H2k+1(M) ⊗ Z2
∼= ZB

2 ⊕ T 2
2k+1(M), where B is the 2k + 1 Betti num-

ber of M , and H2k(M) ∗ Z2
∼= T 2

2k(M). Thus H2k+1(M ;Z2) ∼= ZB
2 ⊕ T 2

2k+1(M) ⊕ T 2
2k(M).

Since M is a closed Z-oriented manifold, there is a nondegenerate skew-symmetric inter-

section form on H2k+1(M ;Q), and so B is even. Since M is a closed Z-oriented mani-

fold, the nonsingular linking pairing T2k+1(M) ⊗ T2k(M) → Q/Z gives rise to an isomor-

phism T2k+1(M) ∼= Hom(T2k(M),Q/Z), and since Hom(Zn,Q/Z) ∼= Zn, it follows that

T2k+1(M) ∼= T2k(M). Therefore T 2
2k+1(M) ∼= T 2

2k(M). Thus H2k+1(M ;Z/2) consists of an

even number of Z2 terms.

Remark. Since the lemma utilizes only integral Poincaré duality and the universal coefficient

theorem, it follows that, in fact, w([X]) = 0 for any IP space9; these are spaces that satisfy

local conditions guaranteeing that intersection homology Poincaré duality holds over the

integers and that a universal coefficient theorem holds (see [3, 10]).

A slightly more elaborate argument demonstrates that it is also not possible to have

w([X]) 6= 0 if X is a Z-oriented Z2-Witt space with at worst isolated singularities:

Proposition. Let X be a closed Z-oriented 4k+ 2-dimensional Z2-Witt space with at worst

isolated singularities. Then w([X]) = 0.

Proof. Since X has at worst point singularities, it follows from basic intersection homology

calculations (see [2, Section 6.1]) that Im̄H2k+1(X;Z2) ∼= im(H2k+1(M ;Z2)→ H2k+1(M,∂M ;Z2)),

where M is the compact Z-oriented PL ∂-manifold obtained by removing an open regular

neighborhood of the singular set of X. We will show that if [z] ∈ im(H2k+1(M ;Z2) →
H2k+1(M,∂M ;Z2)), then the intersection product [z] · [z] = 0. It follows that the intersec-

tion pairing on Im̄H2k+1(X;Z2) is split by [7, Lemma III.1.1], since then there can be no

non-trivial anisotropic subspace. This implies that w([X]) = 0 by the definition of the Witt

group.

The following argument that [z] · [z] = 0 was suggested by “Martin O” on the web site

MathOverflow [9]. By Poincaré duality, it suffices to show that α ∪ α = 0, where α is the

Poincaré dual of [z] in H2k+1(M,∂M ;Z2). But now α∪α = Sq2k+1α = Sq1Sq2kα = β∗Sq2kα,

where β∗ is the Bockstein associated with the sequence 0 → Z2 → Z4 → Z2 → 0 (see

[5, Section 4.L]). In the case at hand, this is the Bockstein β∗ : H4k+1(M,∂M ;Z2) →
H4k+2(M,∂M ;Z2). But this map is trivial. To see this, observe that there is a commutative

9Also called “intersection homology Poincaré spaces,” though this is perhaps a misnomer as “Poincaré

spaces” are generally not required to be manifolds while IP spaces are still expected to be pseudomanifolds.
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diagram

H4k+1(M,∂M ;Z2)
β∗
- H4k+2(M,∂M ;Z2)

H1(M ;Z2)

∼=

? β∗ - H0(M ;Z2),

∼=

?

where β∗ is the homology Bockstein and the vertical maps are Poincaré duality. The existence

of this diagram follows as in [8, Lemma 69.2]. But now β∗ : H1(M ;Z2) → H0(M ;Z2) is

trivial, as the standard map ×2 : H0(M ;Z2)→ H0(M ;Z4) is injective.

Hence any candidate to have w([X]) = 1 must have singular set of dimension > 0 and

must not be an IP space. Given that all K-Witt spaces for char(K) 6= 2 are K-Witt bordant

to spaces with at worst isolated singularities [11, 1], it is unclear how to proceed to determine

whether Z2-Witt spaces with w([X]) = 1 exist. One method to prove that they do not would

be to try to show “by hand” that every Z2-Witt space is Z2-Witt bordant to a space with

at most isolated singularities, but the only proof currently known to the author of this fact

for fields of other characteristics utilizes the bordism computations of [11, 1].
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