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Abstract

Let A and B be normal matrices with coefficients that are continuous complex-

valued functions on a topological space X, and suppose these matrices have the same

distinct eigenvalues at each point of X. We use obstruction theory to establish neces-

sary and sufficient conditions for A and B to be unitarily equivalent. We also determine

bounds on the number of possible unitary equivalence classes in terms of cohomological

invariants of X.

1 Introduction

One of the most striking theorems in linear algebra is the spectral theorem: every normal

matrix with complex entries is diagonalizable. An immediate consequence of the spectral

theorem is that a normal matrix over C is determined up to unitary equivalence by its

eigenvalues, counting multiplicities.

Given the importance of the spectral theorem, it is natural to ask whethe it holds in

more general situations. Suppose X is a topological space. Let C(X) denote the C-algebra

of complex-valued continuous functions on X, and let Mn(C(X)) be the ring of n-by-n

matrices with entries in C(X). By a slight abuse of terminology, we will refer to elements of

Mn(C(X)) as matrices over X. Given A in Mn(C(X)) and x in X, we can evaluate at x to

obtain an element A(x) of Mn(C). Define the adjoint of A pointwise: A∗(x) = (A(x))∗. We

can define normal matrices in Mn(C(X)) as those matrices that commute with their adjoint,

and we can also consider the set Un(C(X)) of unitary matrices; that is, the set of matrices

U in Mn(C(X)) with the property that UU∗ = U∗U = I. One can then ask the following

question: given a normal matrix over a topological space, is the matrix diagonalizable? More
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precisely, if A in Mn(C(X)) is normal, does there exists an element U in Un(C(X)) such

that U∗(x)A(x)U(x) is diagonal for every x in X?

In general, the answer is no: in [7], R. Kadison gave an example of a normal element

of M2(C(S4)) that is not diagonalizable. In [5], K. Grove and G. K. Pedersen considered

diagonalizability of matrices over compact Hausdorff spaces. In that paper, they determined

which compact Hausdorff spaces X have the property that every normal matrix over X is

diagonalizable. Such topological spaces X are rather exotic; for example, no infinite first

countable compact Hausdorff space has this property.

Suppose we restrict our attention to normal matrices A over X with the feature that, for

each x in X, the eigenvalues of A(x) are distinct; such matrices are said to be multiplicity-

free. Grove and Pedersen proved that if X is a 2-connected compact CW-complex, then every

normal multiplicity-free matrix over X is diagonalizable ([5], Theorem 1.4). In addition, they

give examples to show that the spectral theorem fails in general for multiplicity-free normal

matrices over CW complexes that are not 2-connected. To see why, let A be a normal matrix

over a topological space X. Define its characteristic polynomial µA ∈ C(X)[λ] by the usual

formula:

µA(x, λ) = det(λI − A(x)).

If A in Mn(C(X)) is diagonalizable and if in addition A is multiplicity-free, this means

that A is unitarily equivalent (via an element of Un(C(X))) to a diagonal matrix D in

Mn(C(X)) whose diagonal entries are functions d1, d2, . . . , dn with the property that their

values d1(x), d2(x), . . . , dn(x) are distinct for each x in X. Therefore a necessary condition

for a multiplicity-free normal matrix A to be diagonalizable over X is that its characteristic

polynomial splits over C(X):

µA(x, λ) =
n∏
i=1

(λ− di(x))

for some collection d1, d2, · · · , dn of continuous complex-valued functions on X. Consider

Example 1.2 from [5], where X = S1 and

A =

(
0 x

1 0

)
, x ∈ S1.

It is easy to check that A is normal and multiplicity-free, but µA(x, λ) = λ2− x, which does

not split over the circle. Therefore A is not diagonalizable.

The splitting condition on the characteristic polynomial is still not sufficient to guarantee

diagonalizability; in [5], Grove and Pedersen give an example of a normal multiplicity-free

matrix over S2 that is not diagonalizable but has characteristic polynomial λ2 − λ, which

certainly splits; the nondiagonalizability of their example is closely related to the fact that

there are nontrivial complex line bundles over S2.

Instead of taking a normal multiplicity-free matrix over a topological space and asking if it

is unitarily equivalent to a diagonal matrix, let us ask the following related question: Suppose

A and B are normal multiplicity-free matrices in Mn(C(X)); is A unitarily equivalent to B?
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A necessary condition is that A and B have the same characteristic polynomial; this is a

consequence of the fact that unitarily equivalent matrices have the same determinant. But

is the converse true? That is the question we explore in this paper.

Our approach involves a rather surprising application of topology; specifically, obstruction

theory. We begin by constructing a fiber bundle that encodes unitary equivalence information

for matrices with complex entries; i.e., matrices over a point. Then, given normal multiplicity

free matrices A and B over X that have the same characteristic polynomial, we associate to

the matrices a continuous map from X into the base of the fiber bundle, and we prove that

A and B are unitarily equivalent if and only if this map lifts to the total space. We next

construct a cohomology class [θ(A,B)] that lives in H2(X; ΠA,B), where ΠA,B is a system

of local coefficients determined by the monodromy of the eigenvalues of A and B. This

cohomology class is the obstruction to A and B being unitarily equivalent; specifically, the

matrices A and B are unitarily equivalent if and only if [θ(A,B)] = 0.

Recasting our unitary equivalence problem in this form yields results that are not at

all obvious via a strictly operator-theoretic approach to the problem. For example, it fol-

lows immediately from our results that if X is a CW-complex whose cellular decomposition

contains no 2-cells, then the characteristic polynomial is a complete unitary invariant for

normal multiplicity free matrices. In other words, if X contains no 2-cells and A and B

are normal multiplicity free matrices over X, then A and B are unitarily equivalent if and

only if they have the same characteristic polynomial. Another consequence of our work

is that the number of unitary equivalence classes of normal multiplicity free matrices with

given characteristic polynomial is bounded by the cardinality of aforementioned twisted co-

homology group. So if X only has a countable number of cells, then there are a countable

number of such unitary equivalence classes; a priori, there could be an uncountable number

of equivalence classes.

The paper is organized as follows: In Section 2, we construct, for each natural number n,

an n-torus fiber bundle p : En −→ Bn; this bundle captures information about various ways

one set of one-dimensional orthogonal spanning projections can be unitarily conjugated to

another set. In Section 3, we show that given two normal multiplicity free matrices A and B

over X that have the same characteristic polynomial, there is a continuous map ΦA,B : X −→
Bn with the feature that A and B are unitarily equivalent if and only if ΦA,B lifts to a map

to En. By replacing the unitary equivalence question into one involving the lifting of maps,

we construct the cohomology class [θ(A,B)] mentioned above, and show the nonvanishing of

[θ(A,B)] is a complete invariant for unitary equivalence of normal multiplicity free matrices

over X with the same characteristic polynomial. In Section 4, we explore the functorial and

naturality properties of our invariant, and extend [θ(A,B)] to topological spaces that are not

CW complexes. In Section 5, we examine monodromy issues and show that the coefficient

system ΠA,B only depends on the common characteristic polynomial of A and B, not on the

matrices themselves. In Section 6, we consider how [θ(A,B)] behaves when we vary A and

B, and we also explore how [θ(A,B)], [θ(B,C)], and [θ(A,C)] are related when A, B, and

C are normal multiplicity free matrices with the same characteristic polynomial. Finally, in

Section 7, we show that if the characteristic polynomial globally factors into linear factors,

then we can write our invariant in terms of Chern classes, and we look at some examples.
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2 A useful fiber bundle

We construct a fiber bundle p : En −→ Bn, starting with the base. Let P and Q be sets of n

pairwise orthogonal projections in Mn(C); it is important to observe that we do not assume

any ordering of the elements of P and Q. Note that each projection in P has rank one and

that
∑

P∈P P is the identity matrix In. Similarly, each projection in Q has rank one and∑
Q∈QQ = In. Set

Bn =
{

(P ,Q, σ) : σ is a bijection from P to Q
}
.

We will construct a metric on Bn. Let ‖ · ‖2 be the usual Hilbert space norm on Cn; i.e.,

if {ei} is an orthonormal basis of Cn in its standard inner product and v =
∑n

i=1 λiei, then

‖v‖2 =
√∑n

i=1 |λi|2. Let ‖ · ‖ denote the operator norm on Mn(C):

‖A‖ = sup

{
‖Av‖2

‖v‖2

: v 6= 0

}
.

For each pair of elements of Bn, define

d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
=

min
{

max
{
‖P − τ(P )‖, ‖σ(P )− σ̃τ(P )‖ : P ∈ P

}
: τ a bijection from P to P̃

}
.

Roughly speaking, the idea of the definition is that we measure the distance between sets of

projections by looking at the distances among individual pairs of projections after using τ

to match up the pairs as closely as possible.

Proposition 2.1. The function d is a metric (distance function) on Bn.

Proof. Clearly d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
is always nonnegative; suppose this quantity equals 0.

Then there exists a bijection τ : P −→ P̃ with the property that P = τ(P ) for every P in

P . Thus P = P̃ and τ is the identity map. Next, σ(P ) = σ̃τ(P ) = σ̃(P ) for all P in P , so

σ = σ̃ and thus Q = Q̃.

Next, let (P ,Q, σ) and (P̃ , Q̃, σ̃) be arbitrary elements of Bn and choose τ : P −→ P̃ so

that the minimum in d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
is realized. Then

d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
= max

{
‖P − τ(P )‖, ‖σ(P )− σ̃τ(P )‖ : P ∈ P

}
= max

{
‖τ−1(P̃ )− P̃‖, ‖στ−1(P̃ )− σ̃(P̃ )‖ : P̃ ∈ P̃

}
= max

{
‖P̃ − τ−1(P̃ )‖, ‖σ̃(P̃ )− στ−1(P̃ )‖ : P̃ ∈ P̃

}
≥ d
(
(P̃ , Q̃, σ̃), (P ,Q, σ)

)
.

Reversing the roles of (P ,Q, σ) and (P̃ , Q̃, σ̃) establishes the symmetry of d.
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Finally, for three arbitrary elements (P ,Q, σ), (P̃ , Q̃, σ̃), and (P̂ , Q̂, σ̂), in Bn, choose

τ : P −→ P̃ and ν : P̃ −→ P̂ so that the minima in the definitions of d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
and d

(
(P̃ , Q̃, σ̃), (P̂ , Q̂, σ̂)

)
are realized. Then

d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
+ d
(
(P̃ , Q̃, σ̃), (P̂ , Q̂, σ̂)

)
= max

{
‖P − τ(P )‖, ‖σ(P )− σ̃τ(P )‖ : P ∈ P

}
+ max

{
‖P̃ − ν(P̃ )‖, ‖σ̃(P̃ )− σ̂ν(P̃ )‖ : P̃ ∈ P̃

}
≥ max

{
‖P − τ(P )‖+ ‖P̃ − ν(P̃ )‖, ‖σ(P )− σ̃τ(P )‖+ ‖σ̃(P̃ )− σ̂ν(P̃ )‖ : P ∈ P , P̃ ∈ P̃

}
≥ max

{
‖P − τ(P )‖+ ‖τ(P )− ντ(P )‖, ‖σ(P )− σ̃τ(P )‖+ ‖σ̃τ(P )− σ̂ντ(P )‖ : P ∈ P

}
≥ max

{
‖P − ντ(P )‖, ‖σ(P )− σ̂ντ(P )‖ : P ∈ P

}
≥ d
(
(P ,Q, σ), (P̂ , Q̂, σ̂)

)
.

Endow Bn with the metric topology associated to d.

Lemma 2.2. Let (P ,Q, σ), (P̃ , Q̃, σ̃), and (P̂ , Q̂, σ̂) be elements of Bn.

(i). Suppose there exists a bijection τ̃ : P −→ P̃ with the property that

max
{
‖P − τ̃(P )‖, ‖σ(P )− σ̃τ̃(P )‖ : P ∈ P

}
<

1

2
.

Then

d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
= max

{
‖P − τ̃(P )‖, ‖σ(P )− σ̃τ̃(P )‖ : P ∈ P

}
.

In other words, τ̃ realizes the minimum in the definition of d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
.

Furthermore, τ̃ is the unique bijection with this property.

(ii). Suppose that d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
and d

(
(P ,Q, σ), (P̂ , Q̂, σ̂)

)
are less than 1/4 and

let τ̃ and τ̂ be the bijections that realize the minima for d in these two cases, respectively.

If

d
(
(P̃ , Q̃, σ̃), (P̂ , Q̂, σ̂)

)
< ε,

then ‖τ̃(P )− τ̂(P )‖ < ε for all P in P.

Proof. (i). From the definition of d, we see that ‖P − τ̃(P )‖ < 1/2 for every P in P . Select

one such P and let P̃ be any element of P̃ other than τ̃(P ). The ranges of the elements of P̃
are pairwise orthogonal and span Cn, whence ran P̃ ⊆ ran(τ(P ))⊥. Therefore for any unit

vector v in ran P̃ , (
P̃ − τ̃(P )

)
v = P̃ v − τ̃(P )v = P̃ v = v,

5



and thus ‖P̃ − τ̃(P )‖ ≥ 1. The triangle inequality then yields

‖P − P̃‖ ≥ ‖P̃ − τ̃(P )‖ − ‖P − τ̃(P )‖ > 1− 1

2
=

1

2
,

and hence any other choice of bijection from P to P̃ will not achieve the minimum in the

definition of d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
.

(ii). Because τ̃ is a bijection,

max
{
‖P̃ − τ̂ τ̃−1(P̃ )‖ : P̃ ∈ P̃

}
≤ max

{
‖P̃ − τ̃−1(P̃ )‖+ ‖τ̃−1(P̃ )− τ̂ τ̃−1(P̃ )‖ : P̃ ∈ P̃

}
≤ max

{
‖τ̃(P )− P‖+ ‖P − τ̂(P )‖ : P ∈ P

}
<

1

4
+

1

4
=

1

2

and

max
{
‖σ̃(P̃ )− σ̂τ̂ τ̃−1(P̃ )‖ : P̃ ∈ P̃

}
≤ max

{
‖σ̃(P̃ )− στ̃−1(P̃ )‖+ ‖στ̃−1(P̃ )− σ̂τ̂ τ̃−1(P̃ )‖ : P̃ ∈ P̃

}
≤ max

{
‖σ̃τ̃(P )− σ(P )‖+ ‖σ(P )− σ̂τ̂(P )‖ : P ∈ P

}
<

1

4
+

1

4
=

1

2
.

From (i) we see that τ̂ τ̃−1 is the bijection that realizes the minimum in d
(
(P̃ , Q̃, σ̃), (P̂ , Q̂, σ̂)

)
.

Thus

ε > max{‖P̃ − τ̂ τ̃−1(P̃ )‖ : P̃ ∈ P̃} = max{‖τ̃(P )− τ̂(P )‖ : P ∈ P}.

Endow Mn(C) with its usual topology, and let Un be the topological subspace of unitary

matrices in Mn(C). Define

En =
{(

(P ,Q, σ), U
)
∈ Bn × Un : UPU∗ = σ(P ) for all P in P

}
.

Note that
(
(P ,Q, σ), U

)
is in En if and only if U restricts to an isometric vector space

isomorphism from ranP to ran σ(P ) for every P in P .

Equip En with the subspace topology it inherits from Bn×Un, and let p : En −→ Bn be

the projection map.

If
(
(P ,Q, σ), U

)
and ((P ,Q, σ), Ũ) are both in En, then they both lie in p−1((P ,Q, σ)),

and the unitaries U and Ũ each restrict to isometries ranP to ranσ(P ) for every P in P . As

ranP and ranσ(P ) are both 1-dimensional subspaces of Cn, two such isometries can differ

from each other only by an isometry of C; such isometries can be represented by elements of

S1. Furthermore, because {ranP}P∈P is a basis of Cn, the matrices U and Ũ are determined

completely by these 1-dimensional isometries. Therefore, roughly speaking, the difference

between U and Ũ can be quantified by an element of T n ∼=
∏

P∈P S
1. This is part of the

content of the following, more precise, statement.
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Proposition 2.3. If
(
(P ,Q, σ), U

)
is in En, then ((P ,Q, σ), Ũ) is in p−1((P ,Q, σ)) if and

only if

Ũ =
∑
P∈P

z̃Pσ(P )UP

for some set {z̃P} of complex numbers of modulus 1. Furthermore, each such Ũ can be

uniquely written in this form.

Proof. Suppose Ũ has the form described in the statement of the proposition. From the

definition of En, we have σ(P ) = UPU∗ for all P in P . The projections σ(P ) in Q are

pairwise orthogonal, and thus

Ũ Ũ∗ =

(∑
P∈P

z̃Pσ(P )UP

)(∑
P∈P

z̃PP
∗U∗σ(P )∗

)

=

(∑
P∈P

z̃Pσ(P )UP

)(∑
P∈P

z̃PPU
∗σ(P )

)
=
∑
P∈P

z̃P z̃Pσ(P )UPU∗σ(P )

=
∑
P∈P

σ(P )σ(P )σ(P )

=
∑
P∈P

σ(P )

= I.

A similar computation establishes that Ũ∗Ũ = I, so Ũ is unitary. Next, because the projec-

tions in P are also pairwise orthogonal, we see that

ŨP = z̃Pσ(P )UP = σ(P )Ũ ,

and hence ŨP Ũ∗ = σ(P ) for every P in P . The uniqueness of the representation of Ũ in

the desired form is evident.

Now suppose that
(
(P ,Q, σ), Û

)
is in En. Fix P in P . From the remarks following the

definition of En, both U and Û restrict to isometric vector space isomorphisms from ranP to

ranσ(P ); in symbols, these isomorphisms are σ(P )UP and σ(P )ÛP . The subspaces ranP

and ranσ(P ) are 1-dimensional, so we must have σ(P )ÛP = ẑPσ(P )UP for some complex

number ẑP of modulus 1. This holds true for every P in P , and the pairwise orthogonality

of the projections in P and Q implies that

Û =
∑
P∈P

ẑPσ(P )UP,

whence Û has the claimed form.

A consequence of Proposition 2.3 is that we can identify p−1((P ,Q, σ)) with T n ∼=∏
P∈P S

1. In fact, En is a T n-fiber bundle over Bn. To show this, we first need to establish

a technical result.
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Lemma 2.4. Let P and P̃ be projections in Mn(C) and suppose that ‖P − P̃‖ < 1. Then

I + P̃ − P maps ranP isomorphically onto ran P̃ .

Proof. The matrix I + P̃ − P is invertible by Proposition 1.3.4 in [10]. Take v in ranP .

Then Pv = v, and because P 2 = P , we see that

(I + P̃ − P )v = (I + P̃ − P )Pv = Pv + P̃Pv − Pv = P̃Pv.

Therefore I + P̃ −P is an injective vector space homomorphism from ranP to ran P̃ , which

implies that dim ranP ≤ dim ran P̃ . A similar computation shows that I + P − P̃ is an

injective vector space homomorphism from ran P̃ to ranP , whence dim ran P̃ ≤ dim ranP .

Thus dim ranP = dim ran P̃ and I + P̃ − P is an isomorphism from ranP to ran P̃ .

Proposition 2.5. For each natural number n, the map p makes En into a fiber bundle over

Bn with fiber homeomorphic to T n, the n-dimensional torus.

Proof. Fix an element
(
(P ,Q, σ), U

)
of En. For each P in P , choose unit vectors vP and

wP in ranP and ranσ(P ) respectively. Set

O =
{

(P̃ , Q̃, σ̃) ∈ Bn : d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
< 1/4

}
and take

(
(P̃ , Q̃, σ̃), Ũ

)
in p−1(O). Let τ̃ : P −→ P̃ be the bijection that realizes the

minimum for d
(
(P ,Q, σ), (P̃ , Q̃, σ̃)

)
. Lemma 2.4 shows that I + τ̃(P ) − P maps ranP

isomorphically onto ran τ̃(P ) and I + σ̃τ̃(P ) − σ(P ) maps ranσ(P ) isomorphically onto

ran σ̃τ̃(P ) for every P in P . In particular, (I + τ̃(P ) − P )vP and (I + σ̃τ̃(P ) − σ(P ))wP
are nonzero. For each P in P , the complex vector spaces ran τ̃(P ) and ran σ̃τ̃(P ) are one-

dimensional, and so Ũ maps ran τ̃(P ) isomorphically to ran σ̃τ̃(P ). Furthermore, unitary

matrices map unit vectors to unit vectors, so for each P in P , the quantity

zτ̃ ,P =

〈
Ũ

(
(I + τ̃(P )− P )vP
‖(I + τ̃(P )− P )vP‖

)
,

(I + σ̃τ̃(P )− σ(P ))wP
‖(I + σ̃τ̃(P )− σ(P ))wP‖

〉
has modulus 1. Write T n as

∏
P∈P S

1 and define φ : p−1(O) −→ O × T n by

φ
(
(P̃ , Q̃, σ̃), Ũ

)
=

(
(P̃ , Q̃, σ̃),

⊕
P∈P

zτ̃ ,P

)
.

To show that φ is continuous, it clearly suffices to prove that the map
(
(P̃ , Q̃, σ̃), Ũ

)
7→ zτ̃ ,P

is continuous for each P in P . Define ΦP : p−1(O) −→ Cn by the formula ΦP

(
(P̃ , Q̃, σ̃), Ũ

)
=

(I + τ̃(P ) − P )vP . Suppose that
(
(P̃ , Q̃, σ̃), Ũ

)
and

(
(P̂ , Q̂, σ̂), Û

)
are in p−1(O) and that

d
(
(P̃ , Q̃, σ̃), (P̂ , Q̂, σ̂)

)
< ε. Using the result of, as well as the notation from, Lemma 2.2(ii),

we obtain

‖ΦP

(
(P̃ , Q̃, σ̃), Ũ

)
− ΦP

(
(P̂ , Q̂, σ̂), Û

)
‖ = ‖(I + τ̃(P )− P )vP − (I + τ̂(P )− P )vP‖

= ‖(τ̃(P )− τ̂(P ))vP‖
≤ ‖τ̃(P )− τ̂(P )‖
< ε,
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and so each ΦP is continuous. The formula for each zτ̃ ,P is therefore a composition of

continuous functions, and thus the map
(
(P̃ , Q̃, σ̃), Ũ

)
7→ zτ̃ ,P is continuous.

Next, define ψ : O × T n −→ p−1(O) in the following way: take (P̃ , Q̃, σ̃) in O and let τ̃ ,

vP , and wP be as above. Suppose (
(P̃ , Q̃, σ̃),

⊕
P∈P

ζP

)

is in O × T n. The set of vectors{
(I + τ̃(P )− P )vP
‖(I + τ̃(P )− P )vP‖

: P ∈ P
}

=

{
(I + P̃ − τ̃−1(P̃ ))vτ̃−1(P̃ )

‖((I + P̃ − τ̃−1(P̃ ))vτ̃−1(P̃ )‖
: P̃ ∈ P̃

}

spans Cn, so we can define a unitary matrix Ũ by setting

Ũ

(
(I + P̃ − τ̃−1(P̃ ))vτ̃−1(P̃ )

‖(I + P̃ − τ̃−1(P̃ ))vτ̃−1(P̃ )‖

)
= ζτ̃−1(P̃ )

(
(I + σ̃(P̃ )− στ̃−1(P̃ ))wτ̃−1(P̃ )

‖(I + σ̃(P̃ )− στ̃−1(P̃ ))wτ̃−1(P̃ )‖

)

for each P̃ in P̃ . Lemma 2.4 implies that Ũ maps ran P̃ to ran σ̃(P̃ ) for each P̃ in P̃ , and so

Ũ P̃ Ũ∗ = σ̃(P̃). Thus
(
(P̃ , Q̃, σ̃), Ũ

)
is in p−1(O), and we define

ψ

(
(P̃ , Q̃, σ̃),

⊕
P∈P

ζP

)
=
(
(P̃ , Q̃, σ̃), Ũ

)
.

As with φ, Lemma 2.2(ii) implies that ψ is continuous. The maps ψ and φ are inverses of

one another and thus φ is a homeomorphism.

3 Unitary equivalence of normal matrices

We now return to our study of matrices. Let X be a locally compact Hausdorff space.

Recall that C(X) is the C-algebra of complex-valued continuous functions on X and that

Mn(C(X)) is the ring of n-by-n matrices with entries in C(X). For A ∈ Mn(C(X)), we

define the adjoint of A pointwise, and A is defined to be normal if AA∗ = A∗A. The matrix

A is multiplicity free if, for each x ∈ X, the eigenvalue of A(x) are distinct.

Suppose A and B in Mn(C(X)) are normal, multiplicity-free, and have the same char-

acteristic polynomial. Then for each x in X, the matrices A(x) and B(x) have the same

distinct eigenvalues. This set of eigenvalues does not come with a natural ordering. However,

given an eigenvalue λ of A(x), we can associate to λ the spectral projection P (x)λ of A(x);

that is, the orthogonal projection of Cn onto the λ-eigenspace of A(x). Similarly, we can

associate to λ the spectral projection Q(x)λ of B(x). We thus have a bijection from the set P
of spectral projections of A(x) to the set Q of spectral projections of B(x). This determines

an element of Bn. The spectral projections of A(x) and B(x) vary continuously as functions

of x, and therefore we can assign to the pair (A,B) a continuous map ΦA,B : X −→ Bn.
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Proposition 3.1. Matrices A and B in Mn(C(X)) that are normal, multiplicity-free, and

have the same characteristic polynomial are unitarily equivalent if and only if ΦA,B : X −→
Bn lifts to a continuous map Φ̃A,B : X −→ En.

Proof. If UAU∗ = B for some U in Un(C(X)), then, by basic linear algebra, for each x in X,

the unitary matrix U(x) conjugates each spectral projection of A(x) to the corresponding

spectral projection of B(x); that is, we have U(x)P (x)λU(x)∗ = Q(x)λ for all x and λ.

Therefore (ΦA,B(x), U(x)) is an element of En for each x in X, and we can define Φ̃A,B :

X −→ En by Φ̃A,B(x) = (ΦA,B(x), U(x)). This is continuous because the assignments

x 7→ ΦA,B(x) and x 7→ U(x) are continuous by definition.

Conversely, suppose that pΦ̃A,B = ΦA,B for some continuous map Φ̃A,B : X −→ En. For

each x in X, write Φ̃A,B(x) = (ΦA,B(x), U(x)). For each eigenvalue λ of A(x) and B(x), we

have U(x)P (x)λU(x)∗ = Q(x)λ by the definitions of ΦA,B and En, and thus U(x)A(x)U(x)∗ =

B(x) for each x in X. The assignment x 7−→ U(x) is a continuous map from X to Un that

defines an element U in Un(C(X)), and UAU∗ = B.

3.1 Cohomology with local coefficients

Proposition 3.1 tells us that to approach the question of whether A is unitarily equivalent

to B, we need to know when the map ΦA,B can be lifted to the bundle En. In order to

do this, we will employ obstruction theory, which utilizes cohomology with local coefficients.

We sketch the basic ideas of cohomology with local coefficients here and refer the interested

reader to [3, Chapter 5], [6, Section 3.H], or [12, Chapter VI] for more information. In fact,

there are two equivalent approaches, both of which will be useful for us. To describe the

first, let Γ be a group and suppose we have a representation ρ of Γ on an abelian group A;

i.e., a group homomorphism ρ : Γ −→ Aut(A). Then A is a left ZΓ-module via the action(∑
g∈Γ

mgg

)
· a =

∑
g∈Γ

mgρ(g)(a);

we often write A as Aρ to highlight the dependence of the module action on the choice of ρ.

Now suppose X is a connected1 topological space with universal cover X̃ and basepoint x0.

Let Γ = π1(X, x0), and let S∗(X̃) denote the integral singular chain complex over X̃. The

groups S∗(X̃) are modules over ZΓ by the action of the covering transformations. The coho-

mology H∗(X;Aρ) of X with local coefficients in A is the cohomology of the cochain complex

HomZΓ(S∗(X̃), A). If the representation ρ is trivial, then H∗(X;Aρ) is just H∗(X;A), the

ordinary cohomology of X with coefficients in the abelian group A.

Equivalently, representations π1(X, x0) −→ Aut(A) correspond to isomorphism classes of

bundles over X with fiber A; see [12, Theorems VI.1.11 and VI.1.12]. If Π is such a bundle

of groups over X corresponding to Aρ, then H∗(X; Π) ∼= H∗(X;Aρ) can be described via

cochains whose values on singular simplices correspond to lifts of the singular simplices to

1The assumption that X be connected is not essential; if X has multiple connected components, each

component can be treated individually. Alternatively, though more technically advanced, one could replace

fundamental groups in this discussion with fundamental groupoids.
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Π. See [6, Section 3.H] for more details. Yet another approach, utilized in [12, Section VI.2],

is to think of a singular cochain as assigning to a singular chain σ : ∆k −→ X a value in

the fiber over σ(v0), where v0 is the initial vertex of ∆k. Of course, this is equivalent to

prescribing a lift of all of σ, as Π is a covering space of X. With some more effort, suitable

versions of cellular cohomology with systems of local coefficients can be defined; see [12,

Section VI.4].

Now, suppose we have a fibration p : E −→ X with fibers Fx over x ∈ X. Furthermore,

assume that the Fx are k-simple, which means that the action of π1(Fx) on πk(Fx) is trivial.

This k-simplicity implies that there are canonical isomorphisms πk(Fx, fx,0) ∼= πk(Fx, fx,1)

for any two basepoints fx,0, fx,1 ∈ Fx. In fact, we obtain bijections πk(Fx, fx,0) −→ [Sk, Fx],

the set of free homotopy classes of maps from Sk to Fx [3, Corollary 6.60], so we don’t have

to worry about basepoints in the fibers at all. As a consequence, the fibration p : E −→ X

yields a bundle of groups πk(F) over X with fibers [S1, Fx] ∼= π1(Fx); see [3, Proposition 6.62]

or [12, Example VI.1.4]. Bundles of groups arising in this way also possess nice topological

descriptions when considered as groups with representations of π1(X, x0): Let F0 denote the

fiber over the basepoint x0 ∈ X, and consider πk(F0) ∼= [Sk, F0]. If we have an element

of πk(F0) represented by a map h0 : Sk −→ F0, then the homotopy lifting property of

fibrations implies that a loop γ in X determines (uniquely up to homotopies) an extension

of h0 to H : Sk×I −→ E over γ. If h0 = H|Sk×{0}, then H|Sk×{1} determines a new map h1 =

H|Sk×{1} : Sk −→ F0. So this lifting process determines a map ρ : π1(X, x0) −→ Aut(πk(F0))

by γ 7→ ([h0] → [h1]). If we denote πk(F0) with this action of π1(X, x0) by πk(F0)ρ, the

categorical equivalence between bundles of groups over X and groups possessing π1(X, x0)

actions identifies πk(F) with πk(F0)ρ. The reader should consult [3] or [12] for further details.

3.2 Back to matrices

Now, returning to matrices, let ΦA,B : X −→ Bn be as above for two normal multiplicity-

free matrices in Mn(C(X)) with the same characteristic polynomial, and let Φ∗A,BEn be the

pullback of En. Because the fibers of En are homeomorphic to the torus T n, so are the fibers

Fx of Φ∗A,BEn over X, and π1(Fx) ∼= Zn. As Zn is abelian, the group π1(Fx) acts trivially on

itself by conjugation (see [3, Exercise 114]), so Fx is 1-simple. Therefore, we can form the

bundle of groups π1(Fx), and we will denote this bundle of groups by ΠA,B.

Theorem 3.2. Let X be a connected CW complex, and suppose A and B are normal

multiplicity-free matrices in Mn(C(X)) that have the same characteristic polynomial. Then

there exists a unique cohomology class [θ(A,B)] ∈ H2(X; ΠA,B) such that A and B are

unitarily equivalent if and only if [θ(A,B)] = 0.

Proof. The proof is by obstruction theory. We recall the relevant theorem2; see [3, Theorem

7.37] and [12, Corollary 5.7]: Given a CW complex X, a fibration p : E −→ Y with

fiber F , and a map f : X −→ Y , suppose that f̃k : Xk −→ E is a lift of f over the k-

skeleton Xk of X. Further, suppose that F is k-simple. Let πk(F) denote the πk(F ) bundle

2Our particular statement is a hybrid of the phrasings and notations in [3] and [12].
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associated to f ∗E over X. Then there is an obstruction class [θk+1(f̃k)] in the cohomology

group Hk+1(X; πk(F)) such that [θk+1(f̃k)] = 0 if and only if the restriction f̃k|Xk−1 can be

extended to a lifting of f over Xk+1.

In our situation, the fiber F is homeomorphic to T n, so πk(F ) is trivial unless k = 1, in

which case π1(F ) ∼= Zn. Thus F is trivially k-simple for k 6= 1. For k = 1, we obtain the

bundle of groups ΠA,B over X, as described above.

Now consider ΦA,B : X −→ Bn. We can construct a lift Φ̃0
A,B : X0 −→ En by just

choosing a point
(
(P ,Q, σ), U

)
in p−1(ΦA,B(x)) for each x in X0. Since π0(F ) is trivial, the

obstruction theorem ensures that there is a continuous map Φ̃1
A,B : X1 −→ En lifting ΦA,B

over the 1-skeleton X1 of X. Now we encounter an obstruction [θ2(Φ̃1
A,B)] in H2(X; ΠA,B).

The obstruction theorem says that this class vanishes if and only if Φ̃1
A,B|X0 extends to a lift

Φ̃2
A,B : X2 −→ En. If [θ2(Φ̃1

A,B)] = 0, then such a Φ̃2
A,B exists. Furthermore, because πk(F )

vanishes for k > 1, there are no other obstructions to lifting ΦA,B on all of X to obtain a

map Φ̃A,B : X −→ En.

Our construction of the obstruction [θ2(Φ̃1
A,B)] ostensibly depends on our choices of Φ̃0

A,B

and Φ̃1
A,B. First, let Φ̃0

A,B and Φ̂0
A,B be two lifts of ΦA,B over the 0-skeleton. These lifts are

vertically (or fiber-wise) homotopic (see [12, page 291]), because any two lifts of a vertex of

X0 lie in the same fiber over Bn and so can be connected by a path in that fiber, which is

homeomorphic to T n and hence is path connected. Second, let Φ̃1
A,B and Φ̂1

A,B denote the

lifts of Φ̃0
A,B and Φ̂0

A,B on X1 guaranteed by the obstruction theorem. By the same argument

that we just used above, the restrictions Φ̃1
A,B|X0 and Φ̂1

A,B|X0 are vertically homotopic. This

puts us in the setting of [12, Theorem VI.5.6.3], which implies that θ2(Φ̃1
A,B) and θ2(Φ̂1

A,B)

are cohomologous. Thus the obstruction cohomology class in H2(X; ΠA,B) is independent of

our choices in the construction. Denoting this class by [θ(A,B)], we have shown that ΦA,B

possesses a lifting if and only if [θ(A,B)] = 0. Thus by Proposition 3.1, the matrices A and

B are unitarily equivalent if and only if [θ(A,B)] = 0.

An immediate corollary is a strengthening of Grove and Pedersen’s [5, Theorem 1.4],

which implies that if X is a 2-connected compact CW complex then any multiplicity-free

normal A in Mn(C(X)) can be diagonalized.

Corollary 3.3. If X is a simply-connected (not necessarily compact) CW complex and

Hom(H2(X),Z) = 0 (in particular if H2(X) is torsion), then any two normal multiplicity-

free matrices A and B in Mn(C(X)) with the same eigenvalues at each point are unitarily

equivalent. In particular, any normal multiplicity-free matrix in Mn(C(X)) is diagonalizable.

Proof. Because X is simply connected, we see that ΠA,B is the trivial Zn bundle and so

[θ(A,B)] ∈ H2(X;Zn). By the universal coefficient theorem [9, Theorem 53.1], we have

H2(X;Zn) ∼= Hom(H2(X),Zn) ⊕ Ext(H1(X);Zn). The supposition that X is simply con-

nected implies that H1(X) = 0 and thus Hom(H2(X),Zn) ∼= ⊕ni=1 Hom(H2(X),Z). So, given

the assumption that Hom(H2(X),Z) = 0, the obstruction class [θ(A,B)] vanishes, and the

unitary equivalence follows from Theorem 3.2.

To show that any normal multiplicity-free matrix A in Mn(C(X)) is diagonalizable, it

follows from Goren and Lin [4, Theorem 1.6] that the simple connectivity of X implies that
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the characteristic polynomial µ of A splits as
∏n

i=1(λ−di(x)) for some collection d1, d2, . . . , dn
of complex-valued continuous functions on X. Let D ∈ Mn(C(X)) be the diagonal matrix

with di in the ith diagonal slot. By the preceding paragraph, A is unitarily equivalent to

D.

Example 3.4. Let us re-examine an example from [5]. Let X = S1, and let A be the normal

matrix

A(z) =

(
0 z

1 0

)
.

The characteristic polynomial of A is

µ(z, λ) = λ2 − z,

which is multiplicity free but does not globally split. Therefore, by [5], A cannot be diago-

nalized.

What about the unitary equivalence classes of A? As S1 can be treated as a cell complex

with no cells of dimension greater than 1, we see that H2(S1; ΠA,B) = 0 for any normal matrix

B with the same characteristic polynomial µ. Therefore A and B are unitarily equivalent if

B is any such matrix. In other words, there is only one unitary equivalence class of matrices

with characteristic polynomial µ(z, λ) = λ2 − z.

4 Naturality and the extension to non-CW spaces

In this section, we show that the obstructions [θ(A,B)] of Theorem 3.2 are natural with

respect to maps in an appropriate sense. We will begin by considering cellular maps of

CW complexes, but the techniques will allow us to generalize both Theorem 3.2 and our

naturality statements to certain non-CW spaces. For convenience, we will often assume that

spaces carrying matrices are pointed (i.e. that they come equipped with basepoints) and

that maps and homotopies preserve the basepoints. In these instances, the spaces Bn and

En are not assumed to have basepoints, and ΦA,B is never a pointed map. First, we recall

some background material.

4.1 Some more homotopy theory

Let us briefly recall from [12, Section VI.2] the appropriate categorical framework for maps

of cohomology with local coefficients. In [12], Whitehead defines a category L ∗ whose

objects are triples (X,A;G) with (X,A) being a space pair (in the category of compactly

generated spaces, which includes all locally compact Hausdorff spaces [12, I.4.1] and so all

CW complexes [12, II.1.6.1]) and G being a system of local coefficients (bundle of groups)

over X. A morphism φ : (X,A;G) −→ (Y,B;H) is then a continuous map of spaces φ1 :

(X,A) −→ (Y,B) along with a bundle homomorphism φ2 : φ∗1H −→ G. Here, if H is the fiber
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group of H and3 ρH : π1(Y ) −→ Aut(H) is the monodromy that determines H, then φ∗1H is

the system of local coefficients whose fiber group is H and whose monodromy is determined

by the composition π1(X)
φ1∗−−→ π1(Y )

ρH−→ Aut(H). In this setting, we obtain cohomology

maps φ∗ : H∗(Y,B;H) −→ H∗(X,A;G). In our situation, given a map f : (X,A) −→ (Y,B)

and a system of local coefficients H over Y , we will always take G = f ∗H, so our φ2 will

always be the identity and we simply write f ∗ : H∗(Y,B;H) −→ H∗(X,A; f ∗H).

We should also say a few words about homotopies. For basepoint preserving homotopies

from X to Y , it is useful to replace the usual X× I by the “reduced prism” X ∧ I+, which is

homeomorphic to X×I/{x0}×I. This space has a natural basepoint — the image of {x0}×I
in the quotient — and so serves as a good domain for basepoint-preserving homotopies. See

[12, Section III.2]. We will denote the basepoint [x0]. If X is a CW complex then so is X∧I+

by [12, Example II.1.5]. Whitehead considers the action of homotopic maps on cohomology

groups in [12, Section VI.2] using the standard prism X×I, but the arguments easily adapt to

the reduced prism. Given a system of local coefficients G on X, the prism X∧I+ is given the

system p∗G, where p : X∧I+ −→ X is the projection. Then one defines a homotopy between

φ, ψ : (X,A;G) −→ (Y,B;H) via a map η : (X ∧ I+, A ∧ I+; p∗G) −→ (Y,B;H), and we

get φ∗ = ψ∗ : H∗(Y,B;H) −→ H∗(X,A;G) by [12, VI.2.6*]. In our case, given a homotopy

h : (X ∧ I+, [x0]) −→ (Y, y0) between f : (X, x0) −→ (Y, y0) and g : (X, x0) −→ (Y, y0),

rather than work with something of the form p∗G, we would prefer to work with h∗H on

X ∧ I+, which restricts to f ∗H and g∗H on X×{0} and X×{1}. However, it is not difficult

to observe that f ∗H ∼= g∗H and that h∗H ∼= p∗f ∗H ∼= p∗g∗H; this frees us to utilize h∗H
without violating Whitehead’s framework. For this, it is useful to turn to the viewpoint of

bundles of groups as groups with π1 actions: We first observe that the two compositions

π1(X, x0)
f∗−→ π1(Y, y0)

ρH−→ Aut(H) and π1(X, x0)
g∗−→ π1(Y, y0)

ρH−→ Aut(H) are identical,

because f and g are basepoint preserving homotopic maps. Similarly, the compositions

π1(X ∧ I+, [x0])
h∗−→ π1(Y, y0)

ρH−→ Aut(H)

π1(X ∧ I+, [x0])
(fp)∗−−−→ π1(Y, y0)

ρH−→ Aut(H)

π1(X ∧ I+, [x0])
(gp)∗−−−→ π1(Y, y0)

ρH−→ Aut(H)

are all identical because fp ∼ h ∼ gp. So, in this case, it makes sense to say that f ∗ =

g∗ : H∗(Y,B;H) −→ H∗(X,A; f ∗H) = H∗(X,A; g∗H). The equality is really an abuse of

notation; we should replace it with a canonical isomorphism. However, in what follows we

will repeat this abuse rather than overburden the notation.

4.2 Back to matrices

We can now return to our study of obstructions to unitary equivalence of matrices.

3If any of the spaces in our discussion are disconnected, then these statements should be modified either

to a collection of statements over different connected components or, more direct but also a bit more fancy, a

statement in terms of fundamental groupoids. We leave these modifications for the reader. See [12, Section

VI.1].
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Definition 4.1. Suppose f : Y −→ X is a map of spaces and thatA ∈Mn(C(X)). We define

the pullback of A, denoted f ∗A, to be the matrix in Mn(C(Y )) such that (f ∗A)(y) = A(f(y)).

Notice that if A in Mn(C(X)) is normal and multiplicity free, then so is f ∗A, as these

are pointwise determined properties. Similarly, if A and B in Mn(C(X)) have the same

characteristic polynomial, then so do f ∗A and f ∗B, and if U ∈ Mn(C(X)) is unitary, so is

f ∗U .

Proposition 4.2. Let f : Y −→ X be a cellular map of CW complexes, and let A,B ∈
Mn(C(X)) be multiplicity-free normal matrices with the same characteristic polynomial.

Let [θ(A,B)] ∈ H2(X; ΠA,B) be as in Theorem 3.2. Then [θ(f ∗A, f ∗B)] = f ∗[θ(A,B)] in

H2(Y ; f ∗ΠA,B).

Proof. We first notice that Φf∗A,f∗B : Y −→ En is equal to the composition Y
f−→ X

ΦA,B−−−→ Bn.

If f is cellular, then the obstruction to lifting the composition is exactly f ∗[θ(A,B)] by

basic properties of obstruction theory that follow directly from the definitions [12, Theorem

V.5.3].

Example 4.3. Proposition 4.2 can yield some results that are a priori unexpected if the

subject is approached from a purely analytic point of view. For example, suppose (X,Z)

is any CW pair and that A,B ∈ Mn(C(X)) are multiplicity-free normal matrices. If the

restrictions of A and B to Z are not unitarily equivalent, then certainly A and B cannot be

unitarily equivalent over all of X. However, the proposition shows that in some cases there

will be a surprising converse to this. In particular, let i : Z −→ X be the inclusion and

suppose that the restriction i∗ : H2(X; ΠA,B) −→ H2(Z; i∗ΠA,B) is injective. Proposition 4.2

implies that [θ(i∗A, i∗B)] = i∗[θ(A,B)], so if [θ(A,B)] 6= 0, then [θ(i∗A, i∗B)] 6= 0.

Here’s a concrete example: Consider S1 × S2, and let i : S2 ↪→ S1 × S2 take S2 to some

{x0}×S2. Then i∗ : H2(S1×S2;Zn) −→ H2(S2;Zn) is an isomorphism. So if two multiplicity

free normal matrices with the same characteristic polynomial and no monodromy of roots

are not unitarily equivalent over S1 × S2, it follows that their restrictions to S2 cannot

be unitarily equivalent. In fact, clearly, none of the restrictions to any {x} × S2 can be

unitarily equivalent, as any such inclusion can be made cellular. This leads also to the

interesting conclusion that if A and B are two multiplicity free normal matrices with the

same characteristic polynomial over S2, then any extensions of A and B over S1 × S2 must

be unitarily equivalent.

Next, we need a corollary to Proposition 4.2 that will serve as a useful lemma later in

this section.

Corollary 4.4. Let (X, x0) be a pointed CW complex, let (Z, z0) be an arbitrary pointed

space, and let f, g : (X, x0) −→ (Z, z0) be homotopic maps. Suppose A and B in Mn(C(Z))

are normal and multiplicity free with a common characteristic polynomial. Then we have

[θ(f ∗A, f ∗B)] = [θ(g∗A, g∗B)] in H2(X; f ∗ΠA,B) = H2(X; g∗ΠA,B).

Proof. Let h : X ∧ I+ −→ Z be the (basepoint-preserving) homotopy from f to g, and, for

s = 0, 1, let is : X −→ X × {s} be the inclusions. Then hi0 = f and hi1 = g, and i0, i1 are

cellular maps.
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By Theorem 3.2, the class [θ(h∗A, h∗B)] in H2(X×I;h∗ΠA,B) is a well-defined obstruction

to h∗A and h∗B being unitarily equivalent. By Proposition 4.2 and the definitions,

[θ(f ∗A, f ∗B)] = [θ(i∗0h
∗A, i∗0h

∗B)] = i∗0[θ(h∗A, h∗B)] ∈ H2(Y ; i∗0h
∗ΠA,B)

and

[θ(g∗A, g∗B)] = [θ(i∗1h
∗A, i∗1h

∗B)] = i∗1[θ(h∗A, h∗B)] ∈ H2(Y ; i∗1h
∗ΠA,B).

But i0 and i1 are obviously (basepoint-preserving) homotopic maps, so i∗0[θ(h∗A, h∗B)] =

i∗1[θ(h∗A, h∗B)]. The corollary follows.

Using the preceding results, we can now define an obstruction to the unitary equivalence

of two normal multiplicity-free matrices on any space Z that is homotopy equivalent to a

CW complex: Suppose (Z, z0) is a pointed locally compact Hausdorff space, and suppose

(X, x0) is a CW pair that is (basepoint-preserving) homotopy equivalent to (Z, z0). Let

f : (Z, z0) −→ (X, x0) and g : (X, x0) −→ (Z, z0) be homotopy inverses to one another.

Suppose that A and B in Mn(C(Z)) are normal and multiplicity free. Then we have the

obstruction [θ(g∗A, g∗B)] in H2(X; g∗ΠA,B), where ρ is the map π1(Z, z0) −→ Aut(Zn)

obtained by composing the induced map (ΦA,B)∗ : π1(Z, z0) −→ π1(B) and the representation

π1(Bn) −→ Aut(Zn) determined by the bundle En −→ Bn.

Definition 4.5. Define [θ(A,B)] ∈ H2(Z; f ∗g∗ΠA,B) = H2(Z; ΠA,B) to be [θ(A,B)] =

f ∗[θ(g∗A, g∗B)].

Remark 4.6. Note that if Z is itself a CW complex, then this definition agrees with our

previous usage by taking both f and g to be the identity map Z −→ Z.

Proposition 4.7. Suppose (Z, z0) is a locally compact Hausdorff space that is (basepoint-

preserving) homotopy equivalent to a CW pair (X, x0). Let A,B ∈Mn(C(Z)) be normal and

multiplicity free. The class [θ(A,B)] is independent of the choice of homotopy equivalence

used to define it, and it vanishes if and only if A and B are unitarily equivalent.

Proof. Suppose that (X̂, x̂0) is another CW pair that is (basepoint-preserving) homotopy

equivalent to (Z, z0) by homotopy inverses f̂ : (Z, z0) −→ (X̂, x̂0) and ĝ : (X̂, x̂0) −→ (Z, z0).

Let k be a cellular approximation to f̂ g by a basepoint-preserving homotopy; see [6, Theorem

4.8]). Then ĝk ∼ ĝf̂ g ∼ g in the following diagram:

(Z, z0)
f
-�
g

(X, x0)

(X̂, x̂0).

ĝ

6

f̂

?�

k

Now, we can perform the following computation:
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f ∗[θ(g∗A, g∗B)] = f ∗[θ(k∗ĝ∗A, k∗ĝ∗B)] by Corollary 4.4

= f ∗k∗[θ(ĝ∗A, ĝ∗B)] by Proposition 4.2

= f ∗g∗f̂ ∗[θ(ĝ∗A, ĝ∗B)] pullbacks by homotopic maps

= f̂ ∗[θ(ĝ∗A, ĝ∗B)] pullbacks by homotopic maps.

This shows that our definition of [θ(A,B)] on Z is independent of choices.

For the second claim, first suppose that A and B are unitarily equivalent. Then B =

UAU∗, and g∗B = (g∗U)(g∗A)(g∗U∗) = (g∗U)(g∗A)(g∗U)∗. So g∗B is unitarily equivalent

to g∗A and [θ(A,B)] = f ∗[θ(g∗A, g∗ĝ∗B)] = f ∗(0) = 0.

Next, suppose that [θ(A,B)] = f ∗[θ(g∗A, g∗B)] = 0. Then we have that g∗[θ(A,B)] =

g∗f ∗[θ(g∗A, g∗B)] = 0. But fg is homotopic to the identity, so [θ(g∗A, g∗B)] = 0, which

implies by Theorem 3.2 that g∗A and g∗B are unitarily equivalent. Pulling back by f a

unitary matrix that realizes the unitary equivalence of g∗A and g∗B, as in the argument of the

preceding paragraph, shows that f ∗g∗A and f ∗g∗B are unitarily equivalent. By Proposition

3.1, this means that Φf∗g∗A,f∗g∗B : Z −→ Bn lifts to En. Unraveling the definitions, we see

that Φf∗g∗A,f∗g∗B = g ◦ f ◦ ΦA,B, which is homotopic to ΦA,B. As g ◦ f ◦ ΦA,B has a lift to

En, so does ΦA,B, by the homotopy lifting extension property of fibrations. Therefore, again

by Proposition 3.1, the matrices A and B are unitarily equivalent.

Lastly, now that we have defined an obstruction for non-CW spaces, we can show that

it is also natural.

Proposition 4.8. Let h : (Z, z0) −→ (Ẑ, ẑ0) be a map of locally-compact Hausdorff spaces

that are (basepoint-preserving) homotopy equivalent to CW complexes. Let A and B in

Mn(C(Ẑ)) be normal and multiplicity free. Then [θ(h∗A, h∗B)] = h∗[θ(A,B)].

Proof. Suppose we have maps f : (Z, z0) −→ (X, x0) and f̂ : (Ẑ, ẑ0) −→ (X̂, x̂0) that are

(basepoint-preserving) homotopy equivalences to CW pairs with inverses g : (X, x0) −→
(Z, z0) and ĝ : (X̂, x̂0) −→ (Ẑ, ẑ0). Consider the following diagram, in which k is a cellular

approximation to f̂hg. We have ĝk ∼ ĝf̂hg ∼ hg and kf ∼ f̂hgf ∼ f̂h.

(Z, z0)
f
-�
g

(X, x0)

(Ẑ, ẑ0)

h

? f̂
-�
ĝ

(X̂, x̂0).

k

?

Now we compute
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[θ(h∗A, h∗B)] = f ∗[θ(g∗h∗A, g∗h∗B)] definition

= f ∗[θ(k∗ĝ∗A, k∗ĝ∗B)] by Corollary 4.4

= f ∗k∗[θ(ĝ∗A, ĝ∗B)] by Proposition 4.2

= h∗f̂ ∗[θ(ĝ∗A, ĝ∗B)] pullback by homotopic maps

= h∗[θ(A,B)] definition.

Remark 4.9. In particular, if (Z, z0) and (Ẑ, ẑ0) in the statement of Proposition 4.8 are CW

pairs but h is not necessarily a cellular map, then Proposition 4.8 extends Proposition 4.2

to this setting; see also Remark 4.6.

5 Monodromy

So far, our invariants [θ(A,B)] have lived in the groups H2(X; ΠA,B), where ΠA,B is a bundle

of groups over X having fiber Zn. In this section, we will show that, up to isomorphism, our

Zn bundles depend only on the common characteristic polynomial of A and B and not on

the matrices themselves. For this, it will be convenient in this section to return to thinking

of a bundle of groups as a group over the basepoint x0 of X together with a π1(X, x0) action.

In our case, this corresponds to a representation ρ : π1(X, x0) −→ Zn.

Let x0 ∈ X be a fixed basepoint, let A ∈ Mn(C(X)) be normal and multiplicity-free,

and let Λ = {λ1, . . . , λn} be the eigenvalues of A(x0), listed in some arbitrary order. If γ

is a loop in X based at x0, then γ induces a permutation of Λ that depends only on the

class of γ in π1(X) = π1(X, x0). Details can be found in [4]. The basic idea is that if we

choose an eigenvalue λ of A(x0) and then follow the continuously varying eigenvalue as we

move around the loop γ, then, when we return to x0, we may arrive back at a different

eigenvalue. Altogether, this yields a monodromy assignment from the homotopy class [γ] to

SΛ, the permutation group on Λ. In fact, following all the eigenvalues as we move around

the loop leads to a 1-parameter family of configurations of n distinct points in C, and so

one obtains a representation π1(X) −→ Bn, where Bn is the braid group on n strands. Our

monodromy action on Λ then corresponds to the map Bn −→ SΛ determined by how the braid

permutes the endpoints. Similarly, as we move along γ we also obtain a 1-parameter family

of collections of n linearly independent eigenspaces which will be mutually orthogonal if A is

normal. Corresponding to the monodromy permutation of eigenvalues is the corresponding

permutation of eigenspaces (interpreted as a bijection of sets whose elements are subspaces

of Cn, not in terms of specific linear maps). Similarly, we have permutations of spectral

projections.

Proposition 5.1. Let µ be the common characteristic polynomial of normal multiplicity-free

matrices A and B in Mn(C(X)), let mµ : π1(X, x0) −→ SΛ be the representation determined

by the monodromy of the zeroes of µ around loops, and, for α ∈ SΛ, let Σα denote the
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corresponding permutation matrix. Then the representation ρ : π1(X) −→ Aut(Zn) corre-

sponding to the bundle of groups ΠA,B takes [γ] to Σmµ([γ]). In particular, ρ depends only on

the polynomial µ.

Proof. Choose a basepoint x0 in X, and let γ be a loop in X based at x0. By definition, the

representation ρ([γ]) is determined by the action of the loop ΦA,B ◦γ on π1(F0), where π1(F0)

is the fundamental group of the fiber F0 of En over ΦA,B(x0). From Proposition 2.3, we know

that F0 can be viewed as
∏

P∈P(0) S
1, where P(0) is the collection of spectral projections of

A(x0), and hence π1(F0) ∼=
∏

P∈P(0) π1(S1) ∼= Zn.

More precisely, let4
(
(P(0),Q(0), σ0), U(0)

)
be an arbitrary point in the fiber F0, and

let P1(0), P2(0), . . . , Pn(0) be the elements of P(0) written in the order determined by the

ordering of the eigenvalues in Λ. By Proposition 2.3, every element of F0 has a unique form

Ũ =
n∑
j=1

zjσ0(Pj(0))U(0)Pj(0),

as each parameter zj runs over S1. Collectively, this gives the homeomorphism T n ∼= F0.

Consequently, via this identification, we can describe the ith generator [`i] ∈ π1(F0) by the

loop

`i(z) = zσ0(Pi(0))U(0)Pi(0) +
∑
j 6=i

σ0(Pj(0))U(0)Pj(0)

for z ∈ S1 with its standard orientation.

Now, as recalled in our review of cohomology with local coefficients in Section 3, the

action of π1(X) on [`i] will be represented by any loop “at the other end” of a lift of S1 × I
over ΦA,B ◦ γ that extends `i. We will construct such a lift explicitly. First, we parameterize

the loop ΦA,B ◦ γ by t ∈ I. Note that the spectral projections of A(γ(t)) vary continuously

with t and are distinct at every point, so, given our choice of ordering P(0) = {Pj(0)},
the path γ determines paths of spectral projections {Pj(t)} that agree with our {Pj(0)}
at t = 0 (explaining our earlier choice of notation). Because γ is a loop, we have that

P(1) = P(0), but in general Pj(1) is not necessarily equal to Pj(0). In fact, if λj is the

eigenvalue of A(γ(0)) = A(x0) corresponding to the projection Pj(0), then Pj(1) is precisely

the projection corresponding to eigenvalue mµ(γ)(λj); moving along γ permutes the spectral

projections exactly as it permutes the corresponding eigenvalues.

Next, let η be a lift of ΦA,B ◦ γ to En such that η(0) =
(
(P0,Q0, σ0), U(0)

)
. We can

write η(t) =
(
(P0(t),Q0(t), σt), U(t)

)
, with each Pj(t) ∈ P(t). Now parameterize S1 × I by

coordinates (z, t), and define

H(z, t) = zσt(Pi(t))U(t)Pi(t) +
∑
j 6=i

σt(Pj(t))U(t)Pj(t).

Proposition 2.3 guarantees that this is a lift of ΦA,B ◦ γ, and we have clear agreement with

`i at t = 0. At t = 1, we have the loop

z 7→ zσ1(Pi(1))U(t)Pi(1) +
∑
j 6=i

σ1(Pj(1))U(t)Pj(1),

4It would be more consistent to write σ(0), but this choice will make the notation a bit easier below.
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which is evidently the generator of π1(F0) corresponding to the spectral projection associated

to the eigenvalue mµ(γ)(λi).

Therefore, we see that the action of γ on the generators of π1(F ) ∼= Zn is precisely as

claimed.

Corollary 5.2. Suppose the only homomorphism from π1(X) to Bn is the trivial one. Then

θ(A,B) is in H2(X;Zn).

Proof. By [4, Theorem 1.4], if the only homomorphism π1(X) −→ Bn is trivial, then any

polynomial with coefficients in C(X) splits; in particular, by Proposition 5.1, the monodromy

of roots is trivial. Thus ρ is trivial, and the claim follows.

Corollary 5.3. Suppose the only homomorphism from π1(X) to Bn is the trivial one, and

also suppose that H2(X;Z) = 0. Then any two multiplicity-free normal matrices A and B

in Mn(C(X)) with the same characteristic polynomial are unitarily equivalent.

Proof. The preceding corollary implies that θ(A,B) is in H2(X;Zn). But H2(X;Zn) ∼=
(H2(X;Z))n. Now apply Theorem 3.2.

6 Obstruction relations

In this section, we will consider how the invariants [θ(A,B)] are related to each other as

the matrices A and B vary. In previous sections our main consideration was whether or

not [θ(A,B)] = 0. Now we will be more concerned with particular elements of cohomology

groups, and, in order for us to be precise, it will be necessary for us to look under the

hood a bit more and pin down better descriptions of our cohomology groups and obstruction

elements.

6.1 Review of the obstruction cochain

First, let us describe in more detail the definition of the obstruction cochain θ2(Φ̃1
A,B) as used

in the proof of Theorem 3.2. More generally, recall ([12, Section VI.5]) that if f : X −→ B

is a map from a CW complex X to a space B, if p : E −→ B is a fibration, and if

f̃k : Xk −→ E is a lift of the restriction of f to the k-skeleton Xk, then we have defined

an obstruction cochain θk+1(f̃k). This cellular cochain is defined as follows: First, we may

as well assume X is connected, or we can work on each component separately. Because X

is connected, we can assume that X has a single 0-cell to serve as a basepoint and that

every cell attachment map is a basepoint-preserving map. Let ek+1 be a cell of X, with

characteristic map h : (∆k+1, ∂∆k+1) −→ (Xk+1, Xk). The composition of f̃k with the

restriction of h to ∂∆k+1 gives a lift map ∂∆k+1 −→ E or, equivalently, to the pullback of

E over ∆k+1. As ∆ is contractible, the pullback of E over ∆ is a trivial fibration (up to

a homotopy equivalence that we can assume fixes the fiber over the basepoint) and so is

homotopy equivalent to the fiber F0 of E over the basepoint. So our lift of ∂∆k+1 to the

pullback of E over ∆k+1 defines an element of [Sk, F0], the set of homotopy classes of maps
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of k-spheres to F0. Given the assumption that F0 is k-simple, we can identify [Sk, F0] with

πk(F0) without concern about basepoints. This assignment from cells of X to elements of

πk(F0) gives a cochain θk+1(f̃k) ∈ Ck+1(X; πk(F)), where πk(F) denotes the local system of

coefficients on X with fiber πk(F0) determined by the bundle f ∗E. As noted in Section 3, the

results of [12, Sections VI.5 and VI.6] imply that θk+1(f̃k) is a cocycle, that its cohomology

class [θk+1(f̃k)] depends only on f̃k−1, and that [θk+1(f̃k)] = 0 if and only if f̃k−1 can be

extended to a lift of f over Xk+1. It is useful to observe that finding a lift of f : X −→ B

to E is equivalent to finding a section of the induced bundle f ∗E over X (see [12, Section

VI.5]), and, in fact, the definition of θk+1(f̃k) remains identical viewing the problem in this

light.

6.2 Basing the coefficient systems

Let us return now to our obstructions [θ(A,B)] in H2(X; ΠA,B), where A,B ∈ Mn(C(X))

are normal multiplicity-free matrices with a common characteristic polynomial µ. Here ΠA,B

is the bundle of groups over X with fibers π1(Fx), where Fx ∼= T n is the fiber of Φ∗A,BEn over

x ∈ X. By the results of Section 5, we know that the bundle structure of ΠA,B depends only

on the common characteristic polynomial of A and B. In particular, Proposition 5.1 says

that if we choose an ordering Λ of the common eigenvalues of A and B over the basepoint

x0 ∈ X, then, up to isomorphism, ΠA,B is the bundle corresponding to the representation

ρ : π1(X, x0) −→ Aut(π1(F0)) ∼= Aut(Zn) determined by the permutation of the roots of

the characteristic polynomial as we move along a loop. Technically, in the language of

Proposition 5.1, we have ρ([γ]) = Σmµ([γ]), where Σ is the permutation matrix corresponding

to the permutation mµ([γ]) ∈ SΛ.

The nice thing about Znρ is that it does not refer to A and B at all, except through their

common characteristic polynomial, and so it provides a neutral coefficient system in which to

compare elements of H2(X; ΠA,B) for various A and B. However, in order to do this, we need

to be explicit about our isomorphisms Znρ ∼= ΠA,B. Already this is a bit of notational abuse,

as Znρ and ΠA,B live in different categories: Znρ is a group with a π1(X, x0) representation and

ΠA,B is a bundle of groups. To remedy this, [12, Theorem VI.1.12] tells us how to construct

a specific bundle of groups corresponding to Znρ with fiber Zn identically over the basepoint,

and we can abuse notation by allowing Znρ also to stand for this bundle. As we already know

that Znρ and ΠA,B are isomorphic (discrete) bundles, it suffices to specify an isomorphism

between them over x0 in order to determine an isomorphism completely. We will refer to

this as “basing” ΠA,B because we can think of such an isomorphism as determining a basis

of π1(F0) by imposing the image of the standard basis of Zn. This is analogous to orienting

a manifold Mn via an isomorphism from the constant bundle with Z coefficients (and an

arbitrary fixed generator of Z) to the orientation bundle with fibers Hn(M,M − {x}). As

in that setting, the exact basing, which is determined completely by our ordering of the

eigenvalues over x0, will not necessarily be so important as the establishment of a single

reference frame by which to compare objects.

If x0 is the basepoint of X, then the fiber of ΠA,B over x0 has the form π1(F0), where

F0 = {((P0,Q0, σ0), U)} with (P0,Q0, σ0) = ΦA,B(x0) and U ranging over the set of uni-
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tary matrices taking the eigenspaces of A to the corresponding eigenspaces of B. We

choose the standard basis {bi}ni=1 for Zn, and we suppose that we have chosen an ordering

Λ = {λ1, . . . , λn} of the roots of µ(x0). This determines corresponding orderings of the spec-

tral projections of A(x0) and B(x0). Now, we can define an isomorphism oA,B : Zn −→ π1(F0)

such that oA,B(bi) = [`i], where [`i] ∈ π1(F0) ∼= [S1, F0] is defined as in the proof of Proposi-

tion 5.1. Note that the definition there of the loop `i depended on a choice of matrix U0 to

obtain a basepoint ((P ,Q, σ), U0) in the fiber, but the free homotopy class [`i] ∈ [S1, F0] does

not depend on this choice. Because we know that Znρ and ΠA,B are abstractly isomorphic,

the map oA,B extends to an isomorphism of systems of local coefficients.

6.3 The transposition relation

We will now utilize our bundle isomorphisms oA,B to study the relationship between [θ(A,B)]

and [θ(B,A)].

Observe that the space En possesses an involution ν̃ : En −→ En given by

ν̃((P ,Q, σ), U) = ((Q,P , σ−1), U−1).

The map ν̃ is not a bundle map; it does not preserve fibers of Bn. However, it covers the

involution ν of Bn given by

ν(P ,Q, σ) = (Q,P , σ−1),

so we have a commutative diagram

En
ν̃
- En

Bn

p

? ν
- Bn.

p

?

Furthermore, we can see from the definitions that νΦA,B = ΦB,A, so ν̃ induces a bundle map

ν̃# : φ∗A,BEn −→ φ∗B,AEn and hence a map of local systems of coefficients that we will denote

ν̃∗ : ΠA,B −→ ΠB,A.

Lemma 6.1. The following diagram commutes:

Znρ
oA,B- ΠA,B

Znρ

−1

? oB,A- ΠB,A.

ν̃∗

?
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Proof. Let F0 continue to denote the fiber of Φ∗A,BEn over x0 ∈ X, and let F ′0 denote the

fiber of Φ∗B,AEn over x0. By definition, the isomorphism oA,B takes the generator bi of Zn to

[`i], where the loop `i in F0 has

`i(z) = zσ0(Pi)U0Pi +
∑
j 6=i

σ0(Pj)U0Pj

as its unitary coordinate; see the proof of Proposition 5.1 and note that we are free to

simplify notation a bit here because we will not be lifting a cylinder as we did in that proof.

Here, we have {Pi} = P0, though with our chosen ordering.

From the definition, the map ν̃ takes the loop `i in F0 to a loop ν̃`i in F ′0 that has

ν̃`i(z) = (`i(z))−1 in its unitary coordinate. We claim that

(`i(z))−1 = z−1σ−1
0 (Qi)U

−1
0 Qi +

∑
j 6=i

σ−1
0 (Qj)U

−1
0 Qj.

To see this, we consider the products σ−1(Qj)U
−1
0 Qjσ0(Pk)U0Pk. First, observe that σ0(Pk) =

Qk and σ−1(Qj) = Pj, so we can simplify this expression to PjU
−1
0 QjQkU0Pk. If j 6= k,

then QjQk = 0 as composition of two projections in orthogonal directions. If j = k, then

QjQk = QjQj = Qj. Furthermore, as U0 takes the range of Pk to the range of Qk by

definition of En, we actually have QjU0Pk = U0Pk. So

PjU
−1
0 QjQjU0Pj = PjU

−1
0 U0Pj = PjPj = Pj.

Therefore, multiplying `i(z) by our claimed inverse, distributing, and removing terms that

equal zero, we obtain the expression
∑

j Pj; this is the identity because the Pj are n mutually

orthogonal projections whose ranges span Cn.

Now, suppose oB,A(bi) = [`′i], where `′i is defined analogously to `i. For convenience, we

can use U−1
0 as our basepoint in F ′0, though, again, the choice of basepoint doesn’t really

matter. Then we see that oB,A takes bi to the class of the loop

zσ−1
0 (Qi)U

−1
0 Qi +

∑
j 6=i

σ−1
0 (Qj)U

−1
0 Qj.

But this is the negative of the class of the loop ν̃`i(z), proving the lemma.

Next, let us relate [θ(A,B)] ∈ H2(X; ΠA,B) with [θ(B,A)] ∈ H2(X; ΠB,A). For this, we

utilize that a map of local systems of coefficients induces a (covariant) homomorphism on

cohomology.

Lemma 6.2. The map ν̃∗ : H2(X; ΠA,B) −→ H2(X; ΠB,A) takes [θ(A,B)] to [θ(B,A)].

Proof. Let θ2(Φ̃1
A,B) denote the obstruction cochain determined by the lift Φ̃1

A,B : X1 −→ En
of the restriction of ΦA,B to X1. As we reviewed at the beginning of this section, θ2(Φ1

A,B)

acts on a cell ∆2 by thinking of Φ̃1
A,B as providing a section of the pullback of En to ∆2, which

determines a loop Φ̃1
A,B : ∂∆2 −→ F0, after identifying the pullback over ∆2 as ∆2 × F0,
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up to a fiberwise homotopy equivalence (fixing F0). Composing this section over ∂∆2 with

the pullback of ν̃ to ∆2 then yields an element of π1(F ′0) which is precisely the value of the

obstruction cochain θ2(ν̃Φ̃1
A,B). But ν̃Φ̃1

A,B is a lift over X1 of νΦA,B = ΦB,A, so we can

define Φ̃1
B,A = νΦ̃1

A,B. Also, taking the image of a loop in F0 to a loop in F ′0 via ν̃ is precisely

ν̃∗, so we obtain

θ2(Φ̃1
B,A) = θ2(ν̃Φ̃1

A,B) = ν̃∗θ
2(Φ̃1

A,B).

But these θ2 are the cochains that represent the obstruction cohomology classes, so we have

[θ(B,A)] = ν̃∗[θ
2(A,B)].

Remark 6.3. Informally, we would really like to say something like [θ(B,A)] = −[θ(A,B)],

which makes some intuitive sense. However, part of the point of the preceding discussion

is that such a statement does not quite make sense because [θ(A,B)] and [θ(B,A)] live in

groups that have isomorphic coefficient systems but not identical coefficient systems. That

said, Lemma 6.1, together with Lemma 6.2, shows that if we base the coefficient systems ΠA,B

and ΠB,A via oA,B and oB,A and then pull back both [θ(A,B)] and [θ(B,A)] to H2(X;Znρ)

using these bases, then the images of [θ(A,B)] and [θ(B,A)] in H2(X;Znρ) are negatives of

each other.

6.4 The additivity relation

Suppose that A,B,C ∈Mn(C(X)) are normal and multiplicity free with a common charac-

teristic polynomial. We study the relationship between the obstructions [θ(A,B)], [θ(B,C)],

and [θ(A,C)].

For this, we first construct a bundle morphism

mA,B,C : Φ∗A,BEn ⊕ Φ∗B,CEn −→ Φ∗A,CEn.

Over a point x ∈ X, the fiber Φ∗A,BEn consists of elements of the form
(
(P ,Q, σ), U

)
, where

(P ,Q, σ) = ΦA,B(x). Similarly, the fiber of Φ∗B,CEn at x consist of elements of the form(
(Q,R, τ), V

)
. Then we define mA,B,C over x by

mA,B,C,x

((
(P ,Q, σ), U

)
,
(
(Q,R, τ), V

))
=
(
(P ,R, τσ), V U

)
.

This is well defined because if ΦA,B(x) = (P ,Q, σ) and ΦB,C(x) = (Q,R, τ), then ΦA,C(x)

must be (P ,R, τσ), as we see by considering the eigenspaces of A(x), B(x), and C(x).

Furthermore, if U takes the eigenspaces of A(x) to the corresponding eigenspaces of B(x)

and if V takes the eigenspaces of B(x) to the corresponding eigenspaces of C(x), then V U

must take the eigenspaces of A(x) to the corresponding eigenspaces of C(x). As x ranges over

X, the maps mA,B,C,x induces a map of coefficient systems mA,B,C# : ΠA,B⊕ΠB,C −→ ΠA,C .
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Lemma 6.4. We have a commutative diagram

Znρ ⊕ Znρ
oA,B ⊕ oB,C- ΠA,B ⊕ ΠB,C

Znρ

+

? oA,C - ΠA,C .

mA,B,C#

?

Here + denotes the addition operation in Znρ .

Proof. Let us verify the commutativity over the basepoint x0. This suffices, as all maps

are bundle maps. We can assume we have fixed an ordering Λ of the zeros of µ(x0). For

convenience, we can also choose a basepoint U0 in the fiber F0 of Φ∗A,BEn over x0 and a

basepoint V0 in the fiber F ′0 of Φ∗B,CEn over x0. We let V0U0 be a basepoint in the fiber F ′′0
of Φ∗B,CEn over x0.

Let [`i] be the generators of π1(F0) employed in Proposition 5.1 and earlier in this section,

i.e.

`i(z) = zσ0(Pi)U0Pi +
∑
j 6=i

σ0(Pj)U0Pj.

Similarly, let

`′i(z) = zτ0(Qi)V0Qi +
∑
j 6=i

τ0(Qj)V0Qj

be loops generating π1(F ′0).

Next, consider the products of the form τ0(Qi)V0Qiσ0(Pk)U0Pk. Because σ0(Pk) = Qk,

this becomes τ0(Qi)V0QiQkU0Pk. If i 6= k, then QiQk = 0, as these are orthogonal projec-

tions; in this case, the entire product is 0. If i = k, then we have QiQkU0Pk = QkQkU0Pk =

QkU0Pk = U0Pk, because U0 takes the range of Pk to the range of Qk. Therefore

τ0(Qk)V0Qkσ0(Pk)U0Pk = τ0(Qk)V0U0Pk = τ0σ0(Pk)V0U0Pk.

Multiplying and distributing, we see that if j 6= k, then

mA,B,C,x0#([`i]⊕ [`′k]) = zτ0σ0(Pi)V0U0Pi + zτ0σ0(Pk)V0U0Pk +
∑
j 6=i,k

τ0σ0(Pj)V0U0Pj,

while if i = k, we have

mA,B,C,x0#([`i]⊕ [`′k]) = z2τ0σ0(Pi)V0U0Pi +
∑
j 6=i

τ0σ0(Pj)V0U0Pj.

Comparing with the standard representations of generators of π1(T n), these computations

demonstrate the commutativity of the diagram.
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Remark 6.5. It follows that the induced map

mA,B,C∗ : H2(X; ΠA,B)⊕H2(X; ΠB,C) ∼= H2(X; ΠA,B ⊕ ΠB,C) −→ H2(X; ΠA,C)

can be thought of as simple addition in the coefficients, after using our basings to re-identity

this product as a map

H2(X;Znρ)⊕H2(X;Znρ) ∼= H2(X;Znρ ⊕ Znρ) −→ H2(X;Znρ).

Lemma 6.6. mA,B,C∗
(
[θ(A,B)], [θ(B,C)]

)
= [θ(A,C)].

Proof. We can represent [θ(A,B)] by θ2(f̃ 1), where f̃ 1 is a section of Φ∗A,BEn over X1, and

similarly, we can represent [θ(B,C)] by θ2(g̃1), where g̃1 is a section of Φ∗B,CEn over X1. As

mA,B,C is a bundle map, the composition

X1 f̃1⊕g̃1−−−→ Φ∗A,BEn ⊕ Φ∗B,CEn
mA,B,C−−−−→ Φ∗A,CEn,

which we denote h̃1, is a section of Φ∗A,CEn over X1. Therefore, [θ(A,C)] = [θ2(h̃1)].

On the other hand, by definition, we know that the cochain θ2(h̃1) acts on a 2-cell e2 of

X as follows: the bundle Φ∗A,CEn pulls back to a fiber homotopically trivial F ′′0
∼= T n bundle

over ∆2 via the characteristic map i : (∆2, v0) −→ (X, x0), and the section h̃1 pulls back to

a section over ∂∆2. Via the fiber homotopy trivialization i∗Φ∗A,CEn
∼= ∆2×F ′′0 of the bundle

over ∆2, which we can assume is the identity on F ′′0 , and the projection ∆2×F ′′0 −→ F ′′0 , we

determine a class in π1(F ′′0 ) that is the value of θ2(h̃1) on e2. Of course, θ2(f̃ 1) and θ2(g̃1)

are defined similarly, and mA,B,C#(θ2(f̃ 1), θ2(g̃1)) takes the value on e2 corresponding to the

product mA,B,C,x0∗(θ
2(f̃ 1)(e2), θ2(g̃1)(e2)). In this last expression, θ2(f̃ 1)(e2) ∈ π1(F0) and

θ2(g̃1)(e2) ∈ π1(F ′0) are loops and mA,B,C,x0∗(θ
2(f̃ 1)(e2), θ2(g̃1)(e2)) is the value under the

induced map mA,B,C,x0∗ : π1(F0) × π1(F ′0) −→ π1(F ′′0 ). Up to homotopy, this is simply the

product (via mA,B,C) of the sections over ∂∆2 of the pullbacks of Φ∗A,BEn and Φ∗B,CEn. But

this is precisely the section determined by h̃1. So θ2(h1) = mA,B,C∗(θ(f̃
1), θ(g̃1)).

Thus we conclude that [θ(A,C)] = mA,B,C∗
(
[θ(A,B)], [θ(B,C)]

)
.

Corollary 6.7. mA,B,C∗([θ(A,B)], [θ(B,C)]) = 0 if and only if A and C are unitarily equiv-

alent.

Proof. The preceding lemma states that mA,B,C∗([θ(A,B)], [θ(B,C)]) = [θ(A,C)], and The-

orem 3.2 states that [θ(A,C)] = 0 if and only if A and C are unitarily equivalent.

Together, Lemmas 6.6 and 6.4 basically say that “[θ(A,B)] + [θ(B,C)] = [θ(A,C)]”

once we have chosen basings that allow us to normalize all of the elements into the same

group H2(X;Znρ) in a consistent way. Corollary 6.7 then says that A and C are unitarily

equivalent if and only if “[θ(B,C)] = −[θ(A,B)],” which, using Remark 6.3, is equivalent

to “[θ(B,C)] = [θ(B,A)].” So two matrices A and C are unitarily equivalent if and only if

they fail to be unitarily equivalent to a third matrix B via “the same” obstruction. In this

sense, we see that it makes sense to think of our obstructions [θ(A,B)] as being defined on

equivalence classes of matrices and not just on individual matrices.

Formalizing these observations leads to the following proposition and its corollary.
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Proposition 6.8. Let X be a CW complex and µ = µ(x, λ) a multiplicity free polynomial

over C(X)). Let A0 ∈ Mn(C(X)) be any normal matrix with characteristic polynomial µ.

Let OA0 denote the set {o−1
A0,B

([θ(A0, B)])} ⊆ H2(X;Znρ) as B runs over all normal matrices

in Mn(C(X)) with characteristic polynomial µ. Then there is a bijection between OA0 and the

set of unitary equivalence classes of normal matrices over X with characteristic polynomial

µ.

Proof. By Lemmas 6.6 and 6.4,

o−1
A0,C

[θ(A0, C)] = o−1
A0,B

([θ(A0, B)]) + o−1
B,C [θ(B,C)]

)
.

So o−1
A0,C

[θ(A0, C)] = o−1
A0,B

([θ(A0, B)]) if and only if o−1
B,C [θ(B,C)] = 0, which in turn is

true if and only if [θ(B,C)] = 0, because oB,C is an isomorphism. So, via Theorem 3.2, the

matrices B and C are unitarily equivalent if and only if o−1
A0,C

[θ(A0, C)] = o−1
A0,B

([θ(A0, B)]).

The lemma follows.

The lemma immediately implies the following remarkable corollary:

Corollary 6.9. Given a CW complex X and a multiplicity-free polynomial µ = µ(x, λ), the

number of unitary equivalence classes of normal matrices with characteristic polynomial µ is

less than or equal to the cardinality of H2(X;Znρ), where ρ is the representation determined

by µ. In particular, if H2(X; (Zn)ρ) is finite, there are a finite number of such equivalence

classes, and if X contains a countable number of cells, there are a countable number of such

equivalence classes5.

Example 6.10. It is possible for the inequality implied by the preceding corollary to be strict.

For example, if n = 1, then a multiplicity free normal matrix in M1(C(X)) is just a function

f : X −→ C, and, regardless of H2(X;Zρ), the unitary equivalence class of such a matrix

consists of just one element, because z∗f(x)z = f(x) for any function z : X −→ U1 = S1. In

fact, in this example, µ(x) = λ− f(x), so when n = 1 there is a bijection between elements

of M1(C(X)) and characteristic polynomials of such matrices.

Of course, when H2(X;Znρ) = 0, for example if X is a point, then equality is realized in

the corollary. We will see below that there are less trivial examples for which the inequality

is strict.

6.5 Non-CW spaces

The considerations of this section extend just as well to non-CW spaces, using the techniques

of Section 4. Recall that if Z is a locally compact Hausdorff space and that if f : (Z, z0) −→
(X, x0) and g : (X, x0) −→ (Z, z0) are homotopy inverses to one another, then we defined

[θ(A,B)] ∈ H2(X; ΠA,B) as f ∗([θ(g∗A, g∗B)]). We can define a basing here by choosing ôA,B
so that the following is a commutative diagram of isomorphisms:

5The countability of unitary equivalence classes is not obvious, given that our matrix components are

C-valued!
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H2(X;Znρg∗)
og∗A,g∗B - H2(X; g∗Φ∗A,BEn)

H2(Z;Znρg∗f∗) = H2(Z;Znρ)

f ∗

? ôA,B- H2(Z; f ∗g∗Φ∗A,BEn) ∼= H2(Z; Φ∗A,BEn).

f ∗

?

Here ρ is the representation of π1(Z, z0) on Φ∗A,BEn. The invariant to unitary equivalence

between the matrices A and B can then be written as either f ∗o−1
g∗A,g∗B([θ(g∗A, g∗B)]) or

ô−1
A,Bf

∗([θ(g∗A, g∗B)]) in H2(Z;Znρ) , and this vanishes if and only if A is unitary equivalent

to B.

Rather than go through the technicalities of translating all the results of this section

from X to Z, let us use our existing results to show directly that versions of Proposition

6.8 and Corollary 6.9 hold for Z. Let A,B,C ∈ Mn(C(X)) be normal with the same

multiplicity free characteristic polynomial. Using both the notation and proof of Propo-

sition 6.8, we see that o−1
g∗A0,g∗C

[θ(g∗A0, g
∗C)] = o−1

g∗A0,g∗B
([θ(g∗A0, g

∗B)]) in H2(X;Znρg∗) if

and only if o−1
g∗B,g∗C [θ(g∗B, g∗C)] = 0. But this implies that f ∗o−1

g∗A0,g∗C
[θ(g∗A0, g

∗C)] =

f ∗o−1
g∗A0,g∗B

([θ(g∗A0, g
∗B)]) in H2(X;Znρ) if and only if f ∗o−1

g∗B,g∗C [θ(g∗B, g∗C)] = 0 (recall

that f ∗ is an isomorphism as f is a homotopy equivalence). In other words, B is unitar-

ily equivalent to C if and only if the obstruction to A0 and B being unitarily equivalent

is equal to the obstruction to A0 and C being unitarily equivalent. This is identically the

situation that implies Proposition 6.8, so the analogous conclusions hold over Z. A version

of Corollary 6.9 follows.

7 Relation with Chern classes

In this section, we make some observations concerning the situation when our characteristic

polynomial has a global factorization µ(x, λ) =
∏n

i=1(λ − λi(x)). By [4], this is equivalent

to assuming that the monodromy of the roots of µ is trivial along all curves. In this case,

if A,B ∈Mn(C(X)) are normal and multiplicity free with characteristic polynomial µ, then

ΠA,B is isomorphic to the trivial Zn bundle. Moreover, this implies that, for each i, the λi
eigenspaces of A and B determine complex line bundles over X. It turns out that, in this

setting, the obstruction [θ(A,B)] can be expressed in terms of the Chern classes of the line

bundles of maps between these corresponding eigenspace bundles.

Proposition 7.1. Suppose A and B in Mn(C(X)) are multiplicity-free normal matrices with

a common characteristic polynomial that splits globally over the CW complex X. Choose

eigenvalue functions λ1, λ2, . . . , λn as described above. For each x in X and 1 ≤ i ≤ n,

let Pλi(x) and Qλi(x) denote the projections of Cn onto the λi(x)-eigenspaces of A(x) and

B(x) respectively, and consider the corresponding complex line bundles P̄λi and Q̄λi. Then

[θ(A,B)] ∈ H2(X;Zn) =
⊕n

i=1H
2(X;Z) is equal to

⊕n
i=1 c

1(Hom(P̄λi , Q̄λi)), where c1(·)
indicates the first Chern class.
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Proof. For each 1 ≤ i ≤ n, endow P̄λi and Q̄λi with the Hermitian metrics they inherit as

subbundles of the trivial bundle X ×Cn; this induces a Hermitian metric on Hom(P̄λi , Q̄λi).

By construction, [θ(A,B)] is the obstruction to the existence of a section over X of the torus

bundle whose S1 factors at a point x correspond to the set U(Pλi(x), Qλi(x)) of unitary

matrices in Hom(Pλi(x), Qλi(x)). Let Ui denote the corresponding S1 bundle over X. In

fact, with our assumptions, we can project each fiber of Φ∗A,BEn to the corresponding torus

factor U(Pλi(x), Qλi(x)) = Ui,x, and this induces a map of bundles of groups κi from ΠA,B

to the bundle of groups π1(Ui,x). The maps κi are projections to direct summands over

each point, and so globally due to the absence of monodromy. So, up to isomorphism, this

results in cohomology maps κi∗ : H2(X; ΠA,B) −→ H2(X;Z), and ⊕iκi∗ is an isomorphism

H2(X; ΠA,B) −→ ⊕iH2(X;Zn).

Now, [θ(A,B)] = [θ2(f̃ 1)] is the obstruction to extending a section f̃ 1 : X1 −→ Φ∗A,BEn
to X2, and we see that κi∗([θ(A,B)]) will be the obstruction to extending a section over X1

of the S1 bundle Ui. This obstruction is independent of the particular section over X1 by

the same arguments employed in the proof of Theorem 3.2. It only remains to observe that

the obstructions to extending to X2 sections of circle bundles over X1 is the Chern class

of the circle bundle c1(Ui) (or, equivalently, the Chern class of the equivalent line bundle

Hom(Pλi , Qλi). But this description of the Chern classes as obstruction classes dates back to

Chern’s original paper, see [1, Chapter III, Section 1]; Chern assumes in this section of his

paper that the base space is a complex manifold, but this is not essential. See also Steenrod

[11], particularly Sections 41.2-41.4.

Example 7.2. We can now extend another example from [5]. Let X = CP 1, and let A be

the normal, multiplicity free matrix

A([z1, z2]) =
1

|z1|2 + |z2|2

(
|z1|2 z1z̄2

z̄1z2 |z2|2
)
.

The characteristic polynomial is

µ([z1, z2], λ) = λ2 − λ = λ(λ− 1),

which globally splits with constant eigenvalue functions 0 and 1. In fact, A is the matrix

that projects the trivial C2 bundle over CP 1 to the tautological line bundle, which is the

λ = 1 eigenspace bundle of A. As this bundle is not trivial, A is not diagonalizable, by the

discussion in [5]. Let us see, though, what else we can say about unitary equivalence classes

of normal matrices on CP 1 with characteristic polynomial µ.

If B is any other normal matrix in M2(C(CP 1)) with characteristic polynomial λ2 − λ,

then B will similarly be a projection matrix onto a line subbundle of the trivial C2 bundle.

Furthermore, as the polynomial globally splits, we know that any ΠA,B is isomorphic to the

trivial Zn bundle over CP 1. In the discussion that follows, we will tacitly assume that we

have utilized our basing procedure from Section 6 to identify all possible H2(X; ΠA,B) with

H2(X;Z2). In this case, the maps mA,B,C∗ become simple addition in H2(X;Z2). We can

assume we have ordered the eigenvalues such that λ1 = 1 and λ2 = 0.
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To pick a more convenient matrix for comparison than the matrix A above, let

D =

(
1 0

0 0

)
,

which also has characteristic polynomial λ(λ − 1). The matrix D projects the trivial C2

bundle over CP 1 to a trivial C bundle over CP 1 that is also the λ = 1 eigenspace of D. The

kernel of the projection, corresponding to the λ = 0 eigenspace bundle, is another trivial C
bundle. Denote the trivial Cn bundle by εn.

Now let B be an arbitrary matrix with characteristic polynomial λ(λ − 1) and let E0

and E1 be the two eigenspace line bundles associated to B with eigenvalues 0 and 1, respec-

tively. By Proposition 7.1, we see that [θ(D,B)] ∈ H2(X;Zn) is equal to c1(Hom(ε1, E0))⊕
c1(Hom(ε1, E1)) = c1(E0)⊕c1(E1), where c1 indicates the first Chern class. But E0⊕E1

∼= ε2,

so 0 = c1(ε2) = c1(E0 ⊕ E1) = c1(E0) + c2(E1). Thus [θ(D,B)] = c1(E1) ⊕ −c1(E1) ∈
H2(CP 1) ⊕ H2(CP 1). In particular, every obstruction [θ(D,B)] ∈ H2(CP 1) ⊕ H2(CP 1)

must have the form α⊕−α.

Next, let us show that any element α⊕−α ∈ H2(CP 1)⊕H2(CP 1) ∼= Z⊕Z can be realized

by a matrix with characteristic polynomial λ(λ− 1). Every complex line subbundle L of ε2

over CP 1 is determined by a map CP 1 −→ CP 1 (in the obvious way — a subbundle of ε2

consists of a complex line in C2 over every point of CP 1, which is precisely the information of

a map CP 1 −→ CP 1). In particular, the subbundle L is the pullback of the tautological line

bundle γ1 over CP 1, which over the point [z1, z2] ∈ CP 1 has fiber that is the linear subspace

of C2 containing (z1, z2). Furthermore, the first Chern class of γ1 generates H2(CP 1) by [8,

Theorem 14.4]. But CP 1 ∼= S2, and we know there are maps fk : S2 −→ S2 of any integer

degree k. By naturality of characteristic classes, the pullback bundle Lk = f ∗kγ
1 must then

have Chern class kc1(γ). Therefore, given any k ∈ H2(CP 1) ∼= Z = 〈c1(γ1)〉, the class k

is the Chern class of the line bundle Lk, which is a subbundle of ε2. Let Pk be the matrix

representing the projection operator from ε2 to Lk. Over each point, the projection has one

eigenvalue equal to 1 and one equal to 0, so Pk has characteristic polynomial λ2 − λ. All

projections are normal operators, and the two eigenspace bundles of Pk are E1 = Lk and

E0 = L⊥k . From our discussion just above, [θ(D,Pk)] = k ⊕−k ∈ H2(CP 1)⊕H2(CP 1).

It now follows from these computations and from Proposition 6.8 that there are a count-

ably infinite number of unitary equivalence classes of normal matrices on CP 1 with charac-

teristic polynomial λ(λ− 1), indexed by the isomorphism classes of complex line bundles on

CP 1 or, equivalently, their Chern classes.

Example 7.3. In this example, we construct explicitly an example of a nontrivial “twisted”

obstruction to unitary equivalence, i.e. a nonzero [θ(A,B)] for which the common charac-

teristic polynomial has nontrivial monodromy of its roots.

First, consider the tautological line bundle γ1 over CP 1, whose Chern class c1(γ1) gen-

erates H2(CP 1) ∼= Z. We can consider γ1 to be a subbundle of the trivial C2 bundle over

CP 2; in fact, the classifying map for γ1 is the identity map CP 1 → CP 1, which assigns to

each point in CP 1 the complex line in C2 that it represents. Using the standard Hermitian

structure on C2, let γ⊥ denote the perpendicular bundle to γ1, and let ν : CP 1 → CP 1
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be the associated map taking y ∈ CP 1 to the complex line orthogonal to the complex line

represented by y. Then γ⊥ = ν∗γ1. As γ1 ⊕ γ⊥ = ε2, the trivial complex plane bundle,

we have 0 = c1(γ1 ⊕ γ⊥) = c1(γ1) + c1(γ⊥), so c1(γ⊥) = −c1(γ1). By the naturality of

Chern classes, we see that ν : CP 1 → CP 1 must have degree −1. Furthermore, ν must be a

homeomorphism because every linear subspace of C2 has a unique orthogonal subspace.

Let X be the quotient space of I × CP 1 by the identification (1, y) ∼ (0, ν(y)). Notice

that X has the structure of a CP 1 bundle over S1. Let p : X → S1 be the projection.

From the long exact sequence of the fibration, we must have π1(X) ∼= π1(S1) ∼= Z. We

can similarly construct X × C2 as the quotient space of I × CP 1 × C2 by the identification

(1, y, t) ∼ (0, ν(y), t). Thinking of E = X × C2 as the trivial C2 bundle over X, we can

identify within E a “twisted double bundle” that assigns two linear subspaces of C2 to

each point in X but such that a trip around a generating loop of π1(X) keeping track of

these lines results in interchanging the two subspaces. In fact, to the image of each point

(z, y) ∈ I×CP 1, we assign the complex line represented by y and the orthogonal subspace to

the line represented by y. While this is clearly well defined on I×CP 1, it is also well defined

on X by our construction, as the quotient identifies two points corresponding to orthogonal

lines.

Choose a base point z0 ∈ S1. Over p−1(z0) ∼= CP 1, our “double bundle” reduces to

copies of γ1 and γ⊥. Let us assign to one of these bundles one square root of z0 (identifying

S1 with the standard unit circle in C) and to the other bundle the other square root of z0.

We can continuously extend these assignments, assigning the two square roots of z to the

two orthogonal bundles on p−1(z) for each z ∈ S1. Of course each time we loop around the

full circle, the two square roots are interchanged, but, by construction, so are the bundles!

Therefore, we achieve a well-defined continuous global assignment ±
√
z to the bundles over

p−1(z). Now, at each point x ∈ X, there is a unique matrix B(x) ∈M2(C) whose eigenspaces

correspond to the complex lines in C2 given by restricting our double bundle to x and whose

eigenvalues are the values in S1 given by our assignment6. Because our eigenvalues and

eigenvectors vary continuously, so will B(x), and this gives us a matrix B ∈M2(C(X)). The

eigenspaces of B are orthogonal at each point, so B is normal, and it is clearly multiplicity

free.

Consider the matrix

A = p∗
(

0 z

1 0

)
in M2(C(X)); it follows from Example 3.4 and the fact that normality is preserved by

pullbacks that A is normal. The characteristic polynomial of A is µ = λ2 − z, which is the

same as the characteristic polynomial of B. Because A is a pullback matrix, the eigenspace

bundles of the restriction of A to p−1(z0) are trivial. So, if we let Az0 and Bz0 denote the

restrictions of A and B to p−1(z0), then by Proposition 7.1, we must have

[θ(Az0 , Bz0)] = c1(Hom(ε1, γ1))⊕ c1(Hom(ε1, γ⊥)) = c1(γ1)⊕ c1(γ⊥) ∈ H2(CP 2;Z2).

6Suppose we choose vectors v, w in our designated eigenspaces with eigenvalues λ1 6= λ2. Then the

standard basis vectors can be written in terms of v and w as e1 = av + bw and e2 = cv + dw for some

a, b, c, d ∈ C. But then we know exactly how B(x) acts on e1 and e2, and this determines uniquely our

matrix.
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This class is non-zero, so Az0 and Bz0 are not unitarily equivalent over p−1(z0). It follows

that A and B cannot be unitarily equivalent over X.

This example demonstrates that the obstruction [θ(A,B)] can be nontrivial when there is

monodromy of eigenvalues. But this example has the following additional amusing element:

the group H2(X;Z) is trivial, so any two normal matrices over X with the same characteristic

polynomial with trivial monodromy are unitarily equivalent by Theorem 3.2. So here is a

space where we have obstructions to unitary equivalence only when nontrivial monodromy

of roots occurs.

To verify the claim that H2(X;Z) = 0, recall that X is a CP 1 bundle over S1. In

the Leray-Serre spectral sequence for the cohomology of X, the only E2 term that could

contribute to H2(X) and that isn’t evidently trivial is E0,2
2 = H0(S1;H2(CP 1)). Here

H2(CP 1) is the local coefficient system induced by the bundle structure. As H2(CP 1) ∼= Z
and because we form X by attaching {0}×CP 1 and {1}×CP 1 by a map of degree −1, this

bundle is the bundle Zτ , where τ : π1(S1) ∼= Z→ Aut(Z) takes a generator of π1(S1) to the

nontrivial automorphism of Z. But now give S1 the standard CW structure with one 0-cell

e0 and one 1-cell e1. Then, in the universal cover S̃1 ∼= R, we have a natural CW structure

with 0- and 1-cells e0
i , e

1
i for all i ∈ Z. We can assume ∂e1

0 = e0
1 − e0

0. If η is a generator

of π1(S1) ∼= Z, then π1(S1) acts on the cellular chain complex C∗(S̃
1) by η(eji ) = eji+1 for

j = 0, 1. The cohomology H∗(S1;H2(CP 1)) is then the cohomology of the cochain complex

C∗(S1;Zτ ) = HomZ[Z](C∗(S̃
1),Zτ ), where we let Zτ denote Z with the stated action as a

π1(S1) module.

Let fa be the 0-cochain such that fa(e
0
0) = a. From the module structure, all elements

of C0(S1;Zτ ) have this form. We compute

(dfa)(e
1
0) = −fa(∂e1

0)

= −fa(e0
1 − e0

0)

= −fa(τe0
0 − e0

0)

= −(τfa(e
0
0)− fa(e0

0))

= −(τ(a)− a)

= −(−a− a)

= 2a;

in the first line we follow the sign convention for coboundary operators determined by [2,

Definition 10.1]. Therefore, dfa = 0 only if fa = 0. Thus there are no nontrivial cocycles in

C0(S1;Zτ ) and H0(S1;Zτ ) = 0, as claimed.
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