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1. Introduction, J. H. C. Whitebead has shown in [11} that every
compect differentiable manifold can be assigned a combinatorial structure
which is essentially unique. (Precise statements of whitghead‘s results
are given in  §3.) We will see, on the other hand, that a given com-
binatorial manifold may either (a) have no differentiable structure at

all which 1s compatible with its given combinatorial structure; or {b)
have several, essentinlly distinct, differentiable structures which are
compatible with i1t. (Theorems 2 and 1 of §4 For further discussion
se6  §5.) Assertion (a) is due to R. Thom {10] and is based on his con-
struction of Pontrjagin classes for triangulated manifolds.

An appendix to this paper attempts to set a foundation for the study
of differentiable manifolds with boundary. A second appendix is concern-
ed with Whitehead's Cr~triangu1ations.

2.  Definitions. We remark first that the word "differentiable’
will be used to mean "differentiable of class GOO"; and that the word
tmanifold" will mean "manifold with boundary®.  Our manifolds are re-

quired to be separeble (i.e. have o countable basis}; but are not

_necessarily connected.

1. This paner is a continuetion of the author's paper {6]s By
s combinatorial manifold we mean a manifold in the sense of Newman (7]
and Alexander [1]. Definitions will be given in  §2
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The underlying space of a simplicial complex K is denoted oy K|«
A trisnguiation (K,f) of a space X consists of a simplicial complex
K, together with a homeomorphism § of fX| onto X, 4 second triangu-
lation (K,,fy)} of X 1is called a subdivision of (K,f£) 1if the com-
nosition f-lfls IK1|~*_> x| maps simplexcs linearly into sim-lexes.
We will also say that the trianculated space (K,f,,X} is a subdivision
of the triangulated space (K,f,X).

Two trianguleted snaoces (Kl,fl,xl) and (Kz,fz,i?) are isomorphic

if K, 1is isomorphic ta K They are combinatorially souivalent if

1 2"

they have isomorphic subdivisions. In particular we will say that a

triangulated space is a combinatorial n-cell (or (n-1)-spherg} if it is

combinatorially equivalent to the n-simplex (or its boundary).

A triangulated space is a combinntorial n-manifold if the ster

neighborhocd of every vertex is a combinatorial n-cell. (Aﬁ egulvalent
condition would be that the link of every j-simplex, 0% j< n, should
be either & combinatorial (n~-j-1)-sphere or a combinotorial {(a=-j-1)-owil.;
The concept of differentiable manifold (that is g% -manifold witn
boundary) will be defined in Appendix I. A triangulation (K,f} of s

differentiable n-manifold is & C% -griassulation if, for each n-simnien

o of |Kl, themap f |o is differentiable (see Appendix I} snd has
Jacobian of rank n at all points. (This definition is equivalen! o that
given by Whitchead, although not identical to it. Sec Aprendix Il
Klternatively we will eny that the differentiable structure for o

compatible with the trisngulation (K,f), if (K,£) is a C®-trisnguiziion.



3i  The Theorems of Whitohead. (These theorems have heen restutsd

-~ in the author's terminology. )

Wl. EEEEX-EEEE%EEQ differentiable wanifold has a CcouzgﬁggggégﬁignL

LY SX18

in_fact every Goo—triangulation of the boundary can be exiunded to a

quutriaqulation of the whole manifold.

. P ¢ ' o
W2, If (K.f) is e ¥ -triaugviation of MY, thus the trisngulated

space (K, 0,H0) s 2 sombinatorial manifold.

.......
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43. If Lﬁlgfl) and (Kgffg) are Cco—iriangulahiqqgﬂginpp§“§ggg

compagg? differentiable manifold MP,_ then ?he triangulsted&spaces

(Kl,fl,Mn}, (Kz,fz,Mn) arc combinatorially ecuivalent.

Without the hypothesis of differentiability, thesc assertions would
reduce to extremely'difficult unsolved problems. {(Namely: the tri=ngu-
lability of manifolds; ths question of whether every triangulated manifold

ie a combinntorial manifold; and the Hauptvermutvng. )

For the proof of Wl see [11] theorems 3, 7,10, togetuer with the
remarks at the bottom of page B22, For Y3 see theorem #, together with
these same remarks. In the case of an unbounded manifold, W2 follous
from theorem 5. The extension to 8 manifold with boundary is straight-
foruard.

These theorems suggest the following dsfinition.  Two compact

differentiable manifolds M;, M% ars combinatorially equivalent if),

for some (and therefore for all) €% -triangulations (Kl’fl) and (Kz,fg}

of ME and Mg resrectively the triangnlated snaces (K],fi,ﬁg) and

~ - sk et -

2. Whitehead remarks ( p. 823) thet the hypothesis of comractness
is not necessary,



(Kz,fz,ﬁg ) are combinstorially equivalent.

4 The Main.Theorems.

———— 3 R -

Theorem 1. There exipta a differentiable 7-manifold which ig

gombinatorially eguivalent to_the_snhere 87, but_not diffeomorphic to s’

-

Theorem 2.  (R. Thom} There exists a closed combinatorial manifold

(K,f,Mg) such that no differentiable stiructure for M8 1g compatible with

the glven trianguletion (K,f), or with any subdivision of (K,f).

In order to prove theorem 1 it will be sufficient (comparing [6] )

toe prove the following.

Lemma 1. EEE Mn be a eclosed differontiable manifold. 1f there

exigts a differentiable real valued function g on M®  with only tuo

eritical points, both being non-dezénersts, then M?  is combinatorially

eguivalent fo S%

Proof.  Suppose that g has maximum +1 and minimum ~1. Consider
the submanifolds Mf, le defined by the inequalities g>0,g< 0. The
argﬁment given in [6] shows that cach of these manifolds is diffeomor»hic
to the solid n-ball. By Wl we can choose a Gaj-triangulation (K+,f;)
of M! and extend it to a C® -triangulation (K,f) of M Let (K_‘,f_)-
denote the resulting triangulation of M. By W3 the triangulated
spaces (K+,f+,1ﬁf )} are combinatorial n-cells. But a triangulated snace
obtained by ;atohing the boundaries of two combinatorial n-cells is clearly

a combinatorial n-sphera. This proves lemma 1 and theorem I.

Proof of theorem 2 (fellowing [10] ). Consider the manifold Bi




1%

with borndary ME as defined in | 6], Form a space X; from ﬁ;
by adjoining & cone over M;.. Choose a €% -triangulation of Eﬁ ’

P

and extend it to a triangulation (K,f) of Xz by using the standard
triangulation for a cone. Lemma 1, together with W2, implies that

o4
(x,f,xk)
Let p,¢ Héi(xi,(a) denote the Pontrjagin classes as defined by

is a combinatorisl manifold.,

Thom {10]; and let #Q'HR(Xi,Z) be a suitably chosen generator. 48

in [6] we obtain <p§,.ﬂ > = 4k2; and therefore

<p2;U> = (4-54'4-‘(2)/7 .

But for k # +1 (mod 7), this expression is not an integerj which im~
plies that Py is not the Fontrjagin class corresnonding to any differ-

entiable structure for Xi. This proves thsorem 2.

5. Miscellaneous remarks. It is interesting to ask whether the

phenomena described in theorems 1 and 2 can occur in lower dimensicns.
Cairns has proved in [5] that for n < 4 every unbounded combinatorial
n-manifold possesses a differentiable structurs. Cairns' proof actually

shows that every unbounded combinatorial n-manifold, n< 4, has a sub-

division which possesses a compatible differentiable structure. The

corresponding question for n=5,6,7 renains open.

It is definitely necessary to allow subdivision, since Cairns has
given in {4] an example of a combinatorial 4-manifold such that the star
neighborhood of a certain vertex can not be imbedded in euclidean 4-space

by any linear homeomornhism. Lemma 7 of Appendix II implies that this

combinatorial manifold cannot possess any compatible differentiable structure.
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J« K. Munkres has proved (unpublished) that, if two closed differ-
entiable 2-manifolds are homeomorphic, then they are necessarily diffeo-
morphic.  The corresponding question for 3 ¢ n ¢ é remain open.

Up to this noint we have restricted attention to 6% ~manifolds and

_ Ooo—maps. The discussion could have begen carried out using Cr—manifolds,

3 with

1<r < o0 . Tor example Whitchead's theorem W1, W2, W3 hold
GO peplaced by "6T" . Our excuse for sticking to the 0 -case is

provided by the following theorems of Whitney [13]:  Every unbounded

¢'-manifold ean be given a compatible Caa—struetg;g. Eyery Gr-isomorphism

between two unbounded ¢® -panifolds can be arproximated by a Culggg-

morphism (or diffeomorphism).  Thus, for the problems which we are con-
gidering, it is sufficient to consider the ¢ ~case
The situation is less clear for real analytic manifolds. However

suppose we call a real analytic manifold imbeddable if it possesses an

snalytic imbedding in some euclidean space. (Compare Bochner {3]. The

‘existence of non-imbeddable analytic manifolds is an unsolved problem.}

Then (see Whitney [13] ) every unbounded ¢ manifold_can be given a

gompatible real anslytie gtructure which is_imbeddable; and any Ggl_gg—

morphism between imbeddable_sanalytic manifolds gan be anvroximsted by an

analytig-isomorphism. So a.ain it is sufficient to consider the ¢

[s1:2:1:0

e

3. ihitehead assumes {p. #22) that r>3, but this assumption
ecould be removed, making use of ocur lemma 3.
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Appendix 1. Differentiable manifolds.

Tet HY be a closed half-space in euclidean space ¥, 3y an

n~dimensional coordinate system on a space X we will mean a collection

f(g< Ly Y| of pairs, where the Ug are open sets covering X, and

-

where each gk is a homeomorphism of qi. onto either B or ®
Ain n~manpifold is a Hausdorff space which nosscesses such a coordinate
system. We assume that all manifolds considered are separable and
hance paracompact.

The set of points in X which correspond to boundary points of g
forms the bouncary X. A manifold is unbounded if its boundary is
vacuous. (Fote that the boundary of any n-menifold is an unbounded
(n-1)~manifold.) A manifold is glosed if it is compact and unbounded,

Let A be any subset of euclidean space R A map f¢ A —> R?

is differentiable of class G (or briefly, is & Cr-ggg), l<r<w, if

for every point ag¢ A therc exists a neighborhoed U of a in Rm,
and a mep g U ——> Rn, guch that g has continuous j-th partial
derivatives for all j < r, and such that £(x) =g(x) for x ¢ Anl.
(Compare *hitney [12].)

A coordinate system | (Ié( ,£< )} for X isa Gr-goordinate

system if, for each a(l,c<2 the map

I

f £t f
LKy 41(

T nlU
Ly Kp

r_ r_ : o
is & G -map. Two G -coordinate systems I“L(’féi) b, v T 3

are Cr—gquivalqu if the composite system f(EK ,{ﬂ_), (ig ,& 1t is



ot A <

nlbo a 0¥ -cocrdinate systen.

By a gifferentiable manifold of class ot (or c* emanifeld) we

meanA a manifold together with a ¢*-equivalence class of ¢¥-coordinate
systens. (This equivalence class is called a c¢Fostructure.)  Mote that
the boundary of any ¢ -manifold can itself be coneidered as a ¢F -manifold.
Also any open subset of a ¢ -manifold is a ¢ -manifold.
Let Mm M pe CF-manifolds with representative coordinate systems
i(q‘ 'L, i, {(V 18 4 )}; and let A be any subset of ¥ A map

h: A == N is a ¢T-mgp if for each « , 4 the map

-1, ~1 S <
gﬁimg(. g*(AnU*nh (Uﬁ)) > R

ig differuntiable of class ¢r.
A homeomorphism h of M® into N (or onto N is called a

Gr-imggdding {ox ¢~ -igsomorphism) if h is a o -mar and has Jacoblen of

A A Ay i o B T

renk m at all points. 4 C%®-isomorphism is also called a diffeomorphism.

Some basic vropsrties of ¢F-manifolds follow.

lomma 2. Let A be & subset of the C'-manifold M and Jet

¥ be an_unbounded c"-manifom, Then every O -map ht A —> N

PR ST A A g ¢ i i e B

(Compare Whitney [12].)
Lemma 3. If M is a C'-manifold with boundary MP, then there

exigts s neishborhoed U of VAl and a ¢*-isomorphism

-na-

gt M8 x [0,1)—> U

4e This definition diffars from the definition of tyaridtd & bord"
usaed by Thom [9].




satisfying g(y,0) = y-
(The corresponding statement for topological menifolds ssems Very
difficult.)

Lemma 4. Let #®  be the unbounded manifold obtained by piecing

together two bounded ¢’ -manifolds Mi‘, Mg by means of a eri_g_g_r_r_xgrphism

ne f0 -—> 3 . Then M gcan be glven o ¢F-structure compatible with

that of ¥y

(3y "ecomnatible" we mean thatl the natural homeomorphisms

n
:‘EE;. MQ .

iyt 1-:1? ~— M7, 1=1,2, are C'-imbeddings. This lemna was used

without proof in [6] and [9].)

Lemoa 5. Any C'-menifold M) can be imbedded in an unbounded.

¢T-manifold " of the same dimension. If ¥ is compact, then T

[ tutupe———y

can be chosen ag a closed manifold.

The basic tool used in proving these lemmas is the partition of anity.

By & C -martition of unity on a oF-manifold #® is meant a collection

ip{g | of C'-mans Pyt M® —> R satisfying

(1) P (x)2 0 (2) %Pﬁ"‘““

and (3) the collection [Carrier pg | is locally finite. Here "Carrier

" denotes the closure of the sct of x in M® with Pa (x)# 0.

Pa

e wil) say that ip & | is associated with an open covering {v /9; of
n .

p  4f Carrier pﬁcv for each (& .

Lemma 6. Given any open covering ivﬁ | of a ¢F-manifold Mn,

y

thore exigts an associated ¢T~partition of vnity Ip i o
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Proof. It is well known that there exists a erpartition of
unity lqa"} such that each set (Carrier q, } is contained in some

set V of the given covering. (For the case of an unbounded manifold,

Y

, se¢ deRham [B], pede The extension to manifolds with boundary is

straightforward.] Now for each index ¥ choose a{¥) so that
Carrier q_ C V H
¥ #(x)

and defins

Then } is the required partition of unity.

ipé,

Proof of lemma 2,  First suppose that the imegu space is the

euclidean srace R®,  From the definition of a Gr—map it follows that for
gach point ag€A we can choose an cpen neighborhood Va and a Gr—map
ht V= R®  which agrees with h on V_n A, Let V be the union
of these ssts V,, and let Ip | be C -partition of unity in V
associated with the covering  {Val.  Then the required extunsion
H: ¥ = R® is ziven by H(x) = L. p,(x)h, (x)s (It is to be understood
that p (x) b (x) = 0 for x ¢ v,

Now let N be any unbounded ¢ -meni fold. Accord ng to Whitney

20+l

113}, lemma 19, there existe a Gr-imbedding 13 ¥ —=> R By

lemma 23 of [13], there exists a neighborhoed U of (M) in R2n+1,
and a ¢ -retraction A e i(Nn). By the previous remarks, we

2n+1 n+l

can extend ih: A —= R to a O -map H: V=== R Now

i’%;;H: H"I(U)'~“% "  is the required extension of h.
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Proof of lemma 3.  From lemma 2 wo see that, for some neighborhood

e}

J of I:'In, there exists a C -retraction Pl Vl —~= 1. (This follows

by substituting Mn,f.fin,ffln, and the identity map, respectively, for
- M", N?, A and h in lemma 2.)

Let Mt M® ~> R be a Gr-map whi_ch vanishes on M® but is
positive on M ~M"  and hes non~vanishing gradient on o, (It is
elearly possible to choose a Ornmap A o l[< ~—> R satisfying this

condition for esch coordinate nsighborhood %( . If | dis a

5

Gr—partition of unity associated with {U, |, then

A,
) (x) if: P, (A (x)

will be the required function on M)
Define tha Cr-map pt Vl“*b xR by w{x) = (/Q(X), (=) ).
Let V2 denote the set of points x in Vl such that the Jacobian of L
at % has the maximal rank 1. It is clear that VQ iz a neighbor-
hood of M . If y is not one-one on V2 then we will construet &
smaller nelghborhood V3 such that p] VB is one-one.
et D be the subset of V, x YV

2 2
with M(y]_)= p,(yz) but ylféyz. Since |V, is a local homeo-

consisting of all pairs (yl,y23

morphism,‘it follows that D 1is o closed set. Choose any metric d{x,y)
for the space V,, and define the distance between points (xl,xz) and
(yl,yz) of V,*x V, as i‘?ax(d(xl,yl), d(xz,yz) Yo Define §(x) > ©
88 the distance of the point (x,x) from the set D. Tet VB be the set
of all points x of V, with a(x, o (x) ) < 8(}; (x)).

Clearly V., is a neighborhood of M® . If L (xl) = ,Lt(xz)

3
with x,x, € Vg then f’(xl) =/:;(x2). Since  x; and x, have
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distance less than 8(/5(X)) from /”(Xl)’ it follows that (xi,xg)lg D3
and therefore x; =X, Thus p.ﬁva is one-one.

Choose a Cr-map g3 HD —=> R so that E{y) >0, and so that
the region W= {(y,t) | 0<t< &y} ! is contained in }L(VB). (This
can be constructed, using a Gr~partition of unity on ') Tet
V4= u“l(W)r)Va and define

gr M0 x [0,1) > VA

by
gly,t) = ;Lﬁl(yl,éj(y)t). Then g is the required
Gruisomorphiam. This completes the proof.

Proof_of lemma 4. Choose G'-isomorphisms gy ﬁ??‘[o,l) s Ui

as in lepma 3 (1=1,2). Let U be the open sot § (U)w Io(U,) of M

4 homeomorphism g: M7 X {-1,1) = U 1is defined by

'jl 81 (Ys t) t>0

gly,t) = ‘
32 gz (h(Y),"t) t“.:‘..o'

In order to define s G ~structure on a manifold, it is sufficient
to define compatibls ¢*-structures on opén sets covering the manifeld.
But ¥ is covered by the sebs 300 -0, 3,000 -R0) , and UL
Since the differentiasble structures on these sets which are induced by
31,32, and g respectively, are compatible, this completes the proof.

Tt e

L b

E
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Proof of 1em@§w§.' This follows from lemma / by taking Mg = Mg;

with h the identity map of ﬁ;c The resulting manifold M*  is cnlled

the "double' of M? .

Appendix 1I. ' -frisngulations:

A trisngulation (K,£) of a cF-manifold ® will be called a
Gr-g;gggggiggggg if, (1), for each closed n-simrleX ¢ of ]K}] ‘the
map £f£lo isa Gr-maps; and {2), this map £l¢ has Jacoblan of vank
n at all points.

For every point x of [kl let W, denote the open star neighbor=
rood of x in ki, and leb Tprp genote the tangent space of W'
at f£{x). Following Whitehead, we define a lincar map F3 N - To(x)
as follows. For each yeN,  there i a unioue linear map
g s (0,1} =% N, satisfying g, (Q) =%, gyﬁl) =¥ Define Fx(y) as
the velocity vector of the curve fg : [0,2) > M® oat O

Lemna 7. If (K,f) 1s.a ¢ —triangulation of u", then for

s

e s s

v

gach x 1o K| the map ¥y ;§‘a homeomorphism of N into the
guclidean space Tf(X).

The relationshlp of our definition of ©F~triangulation to that of
whitehead can now be deseribed as follows. Jhitehead considers only 4
pounded manifold M which is impedded in an unbounded manifold Hi.

By lemma 5, this is no restriction on u He calls a triangulation

o el et e T

5. Ses Appendix IL. The simplex ¢ 18 b0 be considered 28 a
vectil insar subset of a suclidean n-spacs.

i e AT T Y

EE——— . 1]
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(K, s of MY a Gr—triangulation if it satisfies the [ollowing two
conditions:

(1') TFor sach j-simplex “ of lkl, 1< j<n, the map fiu
ean be extended to a Gr-map of a neighborhood of ¥ in euclidean
j-space into Mi,.

(2‘) For each point x of |K]| , the map Fx is a homcomorphism
of Nx into Tf(x)'

It follows easily from lemmas 2 and 7 that this definition is
equivalent to our earlier definition.

Froof of lemma 7. Let o be any n-simolex of |X| dncident %o

© e Since f|¢ hes Jacobian of rank n at x, it follows that

(a) Fx}(driNy) is a homeomorphism.
This implies:

-

(b) Let y Dbeany point of N. [Then F (z) #F (y) for ail

2 #y in a sufficiently small neighborhood (namely Ny"Nx of ¥

1f v is not a boundary point of [K| this implies that the map F_
hes a local degree dy at y, which is well defined up to sign {See
{2 x11, 42 By the boundary |X ] of |K] we mean f-l(ﬁn).

Let w be an interior point of the n-simrlex ¢ .  The following

statement is not hard to verify.

(e} If e: {0,1] —> M® is a @ifferentiable curve which is
tangent to fg: [0,1] —> M° at O, then o(t) ¢ £(o) for small
values of t. ,

This implies:
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(d) Let w be an interior point of o, and let =z he any

- b

point of N, other than w. Then Fx(z) £ Fx(w). (In fact (d) follows
from (a) if =ze9¢, and from {c} if zfm

Now let y Dbe any point of Nx which is not & boundary point of
lK}. . Choose an n-simplex ¢ incident to y, According to (d)
the points Fx(dn Nx) are covered only once by F..  From this it
follows that the local degree dy must be +1. Therefore F_ maps
any neighborhood of y onto a neighborhood of Fx(y); or in other words:

(¢) P, restricted to N - IK| 1is an opon mapping.

We are now ready to prove by induction on n that the linear map
F, is one-one. Suppose Fx(y} =Fx(z} with y#2z. If y and =z
both belong to the boundary K| then this contradicts the induction
hypothesis. If one of the points, say y, 1s in Nx—fkf , ‘then
F, maps BN n Nx onto & neighborhoéd of Fx(z) which must inter-
sect the inferior of Fx(o) for any n-simplex ¢ containing 2.
By (4) this implies that the interior of o intersects Ny n Nx’ and
therefore that ¢ contains y. But this contradicts (a); which

completes the proof.
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