Some free actions of cyclic groups on spheres

J. Milnor, December 1963

Let \(p \geq 5 \) be prime and let \(n \geq 5 \) be odd. This note will show that the cyclic group \(\mathbb{Z}/n \) of order \(n \) can act differentiably on the \(n \)-sphere, without fixed points, in infinitely many different ways. These actions are "different" in the sense that the corresponding quotient manifolds \(M = S^n/\mathbb{Z}/n \) can be distinguished by their Reidemeister-Franz-de Rham torsion invariants. Hence two such "different" manifolds \(M, M' \) cannot have the same simple homotopy type, cannot be piecewise-linearly homeomorphic, and cannot be diffeomorphic. (It is not known whether or not \(M \) and \(M' \) can be homeomorphic.)

First let me review the basic properties of the torsion invariant, following [3], [4]. Let \(K \) be a finite, connected CW-complex and let \(\Pi \) denote the fundamental group of \(K \). Let

\[
f: \mathbb{Z}[\Pi] \longrightarrow \mathbb{C}
\]

be a ring homomorphism from the integral group ring to the complex numbers. If the homology groups \(H_1(K; \mathbb{C}_f) \) are all zero (homology with local coefficients twisted by \(f \)) then the torsion invariant

\[\Delta_f K \in \mathbb{C}_0/\mathbb{C}_0 \, f\Pi \]

is defined. (Here \(\tilde{K} \) denotes the universal covering complex, \(\mathbb{C}_0 \) the multiplicative group of non-zero complex numbers, and \(f\Pi \) the subgroup generated by \(f(\Pi) \) and \(\pm 1 \).) To simplify the notation we will henceforth leave off the tilde, and write simply \(\Delta_f K \).
Similarly, given a pair K, L with $H_\pi(K, L; C_\pi) = 0$ the torsion $\Delta_\pi(K, L)$ is defined. This satisfies the identity

\[\Delta_\pi(K, L) = \Delta_\pi K \Delta_\pi L, \]

providing that the three terms are defined. (If two out of three are defined, then the third is automatically defined.)

If W is a triangulated manifold of dimension n with boundary ∂W, then the following duality theorem holds. We must assume that $|f(t)| = 1$ for $t \in \tau = \tau_1(W)$. Then

\[\Delta_\pi(\partial W) = (\Delta_\pi W)(\Delta_\pi W)^\varepsilon(n) \]

where $\overline{\Delta}$ denotes the complex conjugate and $\varepsilon(n) = (-1)^n$. We will also need the following variant form. If M is a triangulated manifold without boundary of dimension $n - 1$ then

\[\Delta_\pi M = (\Delta_\pi M)^\varepsilon(n). \]

Now consider an h-cobordism $(W; M, M')$. That is, assume that W is a smooth manifold with boundary $M + M'$, and that both M and M' are deformation retracts of W. Choosing a C^1-triangulation of $(W; M, M')$ we will assume that the torsion

\[\Delta_\pi M \in C_\pi/\pm f \tau \]

is defined.
Lemma 1. Then $\Delta M'$ is defined, and equal to

$$(\Delta W)(\Delta (W, M)(\Delta (W, M))^\epsilon(n)).$$

Proof. Since M is a deformation retract of W, it is clear that $\Delta (W, M)$ is defined. Thus ΔW is defined, and similarly $\Delta M'$ is defined. Consider the duality statement

$$\Delta (bW) = (\Delta W)(\Delta (W))^\epsilon(n).$$

Since $\Delta (bW) = (\Delta M)(\Delta M')$ and since $\Delta W = (\Delta M)(\Delta (W, M))$, this can be rewritten as

$$(\Delta M)(\Delta M') = (\Delta M)(\Delta (W, M)(\Delta (W, M))^\epsilon(n)(\Delta (W, M))^\epsilon(n).$$

Now dividing through by

$$\Delta M = (\Delta M)^\epsilon(n)$$

we obtain the required formula

$$\Delta M' = (\Delta M)(\Delta (W, M)(\Delta (W, M))^\epsilon(n).$$

Henceforth we will assume that the dimension n of W is even. Thus Lemma 1 can be rewritten in the form

$$(4) \quad \Delta M' = (\Delta M)|\Delta (W, M)|^2.$$

Suppose that we are given the manifold M with fundamental group Π, and wish to construct the h-cobordism $(W; M, M')$.
Lemma 2 (Stallings). If \(\dim(M) \geq 5 \) then the h-cobordism \((W; M, M')\) can be constructed so that \(\Delta_{f}(W, M) \) is equal to the image in \(C_{0}^{+} \) of any unit of the ring \(\mathbb{Z}[\Pi] \).

Proof. Stallings actually observes that the h-cobordism can be constructed so that the Whitehead torsion invariant \(\tau(W, M) \) is any desired element of the Whitehead group
\[
\text{Wh}(\Pi) = \text{GL}(\infty, \mathbb{Z}[\Pi])/(\text{Commutators}, \pm \Pi).
\]
(See Stallings [6, §2].) In particular if \(u \) is a unit of \(\mathbb{Z}[\Pi] \) then \(W \) can be chosen so that \(\tau(W, M) \) is the element of \(\text{Wh}(\Pi) \) corresponding to the matrix
\[
\begin{pmatrix}
 u & 1 \\
 1 & \ddots \\
 \vdots & \ddots & \ddots
\end{pmatrix}
\in \text{GL}(\infty, \mathbb{Z}[\Pi]).
\]
It is then clear that \(\Delta_{f}(W, M) \) is equal to the image of \(u \) in \(C_{0}^{+} \). (Compare Cockcroft [1], or [3, pg. 589].) This completes the proof.

Thus in order to construct examples of h-cobordisms, we need only look for units in \(\mathbb{Z}[\Pi] \). To be more specific, let us now assume that \(\Pi \) is cyclic of order \(p \) with generator \(t \). Define \(f: \mathbb{Z}[\Pi] \to \mathbb{C} \) by \(f(t) = \exp(2\pi i/p) \).

Lemma 3 (Higman). If \(p \geq 5 \) is an integer of the form \(6k + 1 \) then \(\mathbb{Z}[\Pi] \) contains a unit \(u \) with \(|f(u)| \neq 1 \).
5.

Proof. This follows easily from Higman [2]. Alternatively, here is a direct proof. Let

\[u = t + t^{-1} - 1 \]

so that \(f(u) = 2 \cos(2\pi/p) - 1 \neq -1 \). To see that \(u \) is a unit it is only necessary for the reader to verify the identity

\[u(l + t - t^3 - t^4 + t^6 + t^7 - - - - + t^{p-1}) = 1 \]

for \(p \equiv 1 \pmod{6} \); or

\[u(- l + t^2 + t^3 - t^5 - t^6 + - - - - + t^{p-3} + t^{p-2}) = 1 \]

for \(p \equiv -1 \pmod{6} \). This completes the proof.

Now combining the three lemmas we have the following.

Theorem. Let \(M \) be a smooth manifold of odd dimension \(\geq 5 \) whose fundamental group is cyclic of order \(p = 6k + 1, \ p \geq 5 \). Then there exist infinitely many manifolds \(M_1, M_2, M_3, \ldots \) which are h-cobordant to \(M \), but such that no two have the same simple homotopy type.

Proof. For each integer \(m \) we can choose the h-cobordism \((W_m; M, M_m) \) so that

\[\Delta_f(W_m, M) = |f(u^m)|. \]
Then

$$\Delta^M_\pi = (\Delta^M_\pi)^{|f(u)|^{2^m}}.$$

Since $|f(u)| \neq 0,1$ the real numbers Δ^M_π are all distinct.

This does not yet prove that the M_π^m all have distinct simple homotopy types, since the invariant $|\Delta^M_\pi|$ depends on the choice of f. But there are only finitely many homomorphisms from $Z[\pi]$ to \mathbb{C}, so out of the infinite sequence M_1, M_2, \ldots one can certainly extract an infinite subsequence consisting of pairwise distinct manifolds. This completes the proof.

In particular let us apply this theorem to a lens space

$$L = S^{2k-1}/\pi.$$

The resulting h-cobordant manifolds L_1, L_2, \ldots will all have universal covering spaces diffeomorphic to the sphere. (See Smale [5].) Thus we have infinitely many distinct free actions of the cyclic group π on S^{2k-1}. But there are only finitely many orthogonal actions of π on S^{2k-1}. Thus we have:

Corollary. For $2k - 1 > 5$ and p prime > 5 there exist infinitely many smooth fixed point free actions of the cyclic group of order p on S^{2k-1} which are not smoothly equivalent to orthogonal actions.

It would be interesting to know whether any corresponding phenomenon occurs in dimension 3.
References

1. W. H. Cockcroft, Simple homotopy type torsion and the
Reidemeister-Franz torsion, Topology, 1 (1962), 143-150.

46 (1940), 231-248.

3. J. Milnor, Two complexes which are homeomorphic but combinatorially

4. ————, A duality theorem for Reidemeister torsion,

5. S. Smale, On the structure of manifolds, Amer. J. Math.,
84 (1962), 387-399.

6. J. Stallings, On infinite processes leading to differentiability
in the complement of a point, to appear.