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Thans notes are part of the firat chapter of & saries of lacturee
given by the author in the spring of 1970, The ultimate aim of thees
notes will be to prove the theorem that the set of topologically stable
mappinge {orm s denes subsst of C-(N,P) for any [inite dimensional
manifolds N and P where N is compect. The firat chapter is a etudy
of the Thom-Whitney thaory of stratified sate and etrstified mappings.
Thae connectlon of the material In thees notee with the theorem on the
density of topologically stable mappings appeara in §1t, whera wa give
Thom'as sacond isotopy lamma. This result givee sufficient conditiona for
two mappings to be topologically equivalent.



§1. Cendition a. Wae begin by Introducing some notions that are

due to Whitney ([ 5] end[ 6 ] .

Lat M be & positive number pr @ , which will be fixed throughout

this chapter. By "emooth" we will mean differentiable of claes ct.

Let M be a smooth (i.e., C") n-manifold without boundary. By
a smooth (l.e., Cu) aubmanifold of M , we will mean s subset X of
M such that for every x € X there exists a coordinate chart o, U)
ofclaas C” suchthat x€U and p(XNU)= Rnglt), fora
suitable coordinate plane !lk in R". In the definition of submanifold,
we do not assume that X is closed. However, it follows from the
definition of submanlfold that X 1la locally closed i.e., each point in

S has a neighborhood U tn M euchthat XnU s closed in U.

If X lsan r-dimensional Submanifoldof M and x € X, then
the tangent space 'rx: of X at x iaas point in the Grassmannian
bundle of r-planes in TM: . In what follows "convergence" means

convergence in the standard topology on this bundle,

Let X and Y be armooth submanifolds of M andlet y€ Y.

Set radimX.
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§2. Condition b, We will begin by defining Whitaey's condition b

DEFINITION 1.I. Ve say the pai «
.1, r {(X,Y) eatiefi
v - sfies_condition a at for submanifolds of R" . Then we extend this definition to submanifolds
¢ followin lde. Given any sequence of point
1
th“_._—l_nd ol x points In X wuch of an arbitrary manifold, using the definition In R" . We will also show
-y & TX
x and x; <converges to soma r-plane r ¢ T'MY » wahave that condition b Implies condition a .
TY 1.
y
Example 1 If xy€R" and xvky, then the gecant Q will denote the line
m 2.
e 1.2, (Whithey [ ¢ ]). Let x,y.s denots coordinates for n
3 In B® which is parallel to the line Jolning x and ¥ and passes
€ . Let Y bethe s-axis and let X bae the aet {:xz-yzllO] with
through the orlgln. For any x € R" we ldentiy T R® with R" in

th - v
o s-axie deleted. {In I"'l.ur. l, we have sketched the intersection of X
the standard whY.

3
with
R”.) Thenm X and Y are complex anslytic submanifolds ol Cs.

It is easily seen that (X,Y) satisfies condition a at all pointsof Y Let X.Y be (emooth) submanlfolds of R. « Let y€Y. Let

axcept the origin, and that It does not eatlafy condition a there. redimX.

DEFINITION 2.1. Ve say that the pelr {X,Y) satisfies condition

We will say that the palr (X,Y) eatisfles condition a if it satisfies

condition a at every polntof Y. b at y If the following holds. Let x, be a_sequence of pointa in X,

converglng to y and Y a sequence of points in Y , alsoconvergin

In Examp th X n
ample 1,2, the pair (X,Y) doas not satisfy condition a. If we c ea t me r-plane ¢ G R and that
onveargea Lo 80 - puledeeiecenidenle]

to Y. SUEEO.. ] x‘l_l
[ 1.} 2- {o} .nd Y‘IY-Z an .Pl rs “ » , AN ‘ Ior. 1
» l xl ] X ,l.
t .h th ‘ Y ' (x z, d l' { .nd the |.c.ntl Y conve l. l‘n P'oj.c“

Pn'l) to somne llne {SR™. Then ICT.

{Y’,Z) do satialy condition a.
Let (X°,Y°) bea second palr of submanifolds of R" , and let
Yy €Y .

LEMMA 2.2. Suppose there exist open neighborhoods U and u*
of y and y° In ®" and a_(emooth) diffeomorphiem ?:U-ou' such
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that EUNX)=U'NX" , (UNY)=U2Y" and @yl=y’. Then

(X,¥) satiofles condition b at y ifand only if (X’,Y”) satisfies

condition b at y*,
Proof: Obvious.

DEFINITION 2,2. Let M be a manifoldand X,Y submanlfolds,

Let y€Y. We say that (X,Y) patiafies condition b at y if{or

some coordinate chart (?. U) about y, ws have that the pair

(KUNX) , pUNnY)) satisfies condition b at oly).

In vlew of Lemma 2.2, 1f (X,Y) satisfles condition b st y, then
for every coordinate chart (@, U) about ¥ . we have that lT(Uﬂ X}, cP(Un Y)

satisfies condition b at y.

For the rest of this section, le¢ M be a manifoldand X and Y

submanifolds and let y €Y,

PROPOSITION 2.4. U (X,Y) satisfies condition b at y then

it satisfies condition » at y.

Proof: Since both conditions a snd b are purely local, we may
suppose that X and Y are submanifolds of R" ., Let X be a
sequence of points iIn X such that x =y and Tx‘l =7, for some

L= TIIR: = R™, V& must show that TYY ST . Suppose otherwise.

5.
Then there existe a line { cR", passing through the origin, such that
1c TYY but £<£ T. Since Ig 'l‘\'Y ., wa can chooss & sequence of pnlntl
A €Y such that A + X .Y and (;I.DI" . But since fd v, this

contradicts condltion b, Q.E,.D.

We say (X,Y) seatiefies condition b If it satisfles condition b »t

every point y € Y,

Example 2.5, Let X be the spiral in Rz defined by the condition
that the tangent of X makes a constant angle with the radilal vector, snd
let Y be the origin. In polar coordinates, this spiral is glven by
r -~ 9 = constant. Then the pair (X,Y) does not eatisfy condition b .
For, by definition, the angle a between the line TX and the socant
’0; is independentof x . If x, € X 1o a sequence convergingto 0,
then the tangents 'rx,i convergeto a line Tgl&z) and g;? converges

toallne 4, which makes anangle a with T,

Example 2.6, (Whitney{ 6]}). Let x,y,5 be coordinates for (23 .
Lst Y hethe z-axis. Let X be the set {yz+ x? - a%x?a 0} with
the z-axis deleted. (In Figure 2 we have sketched the intersection of X
with !R:‘ .} It ls easlly seen that the pair (X,Y) satisfies condition a,
and the pair  (X,Y) satisfies condition b at all points of Y except the

origin and that it does not satisfy condition b there.
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PROPOSITION 2.5, Suppose yEX .Y and (X,Y) satisfles

conditlon b at y. Then dimY <dimX.

Proof: 1t is enough to conslder the case when M = IR™ ., Since
y EX-Y , there exists & sequence x in ¥ -Y which converges
to y. By the compactness of the Grassmannian, we may suppose, by
pasesing to a subsequence if necessary, that 'rx,l converges to an r
plane T cIRm (where r = dim X), Since conditlon b implles condition
a2 (Propoeition 2, 4), TYy; T . For i sufficlently large, there ls a

point Y, on Y which minimizes the distance to x By paseing to

& subsequence If necessary, we may suppose the secants x,y, converge

i
toa line fc m“_ . Slince Y minimizes the distance to X the
secant ylxi is orthogonal to TYy; i hence f {s orthogonal to TYY .
Since (X,Y) eatisfics condition b at y, we have fCcT. Wehave
shown 'I"r'7 +4C+c and { {s orthogonal to TYY : hence

dim X = dim T > dlm TYy=dle . Q.E.D.

1.
§3. Blowing up. In the next section, we will give an intrinsic
formulation of condition b which will be useful later on. This formulation
depends on the notlon of blowing up a manifold along & submanifold, which we

deflne in this section.

Let N bea manifoldand U =a closed submanlfold. By the
manifold BUN obtained by blowilng up N along U, we will mean the manifold
deflned in the following way. As a set BUN ts the disjoint union
{(N-U)u PnU , where PTI'U denotes the projective normal bundle of U

in N,

By the natural projection w: BUN =N, wemean the mapping

defined by letting 'lp"U be the projection of Pnu on U andletting

w|N - U be the inclustionof N - U inta N,

To define the differentlable structure on BUN , we first conslder
the case when N s open In R" and U=R"NN, where R" 1s the
coordinate plane defined by the vanishing of the last n ~ r coordinates.
Then we have a mapping a: B /N - Rr" x lRPn'r'_]deﬂned as follows.
Firat, aanU is the standard Identification of Pr, with
UxREMT IR x P T, Secondly, U x = (-, x JER" - R,
then ofx) =(x,f(x)), where Bix)} i thepointin RP" ™1 with

homogeneous coordinates (xr+1' ety xn) .



It le eanily verified that al'BUN] tea G® gubmenifold of
xi'o.“‘°9" '

n-r-l

R®x R P , 80 follows. Let (xl, ve .xn] denote the coordinatee of

R®. Let xr“. Vel 'xn denote the homogeneous coordinates for R po-t-! where w: BUN =N {is the natural projection, the first statemant is
For r+lgclen, lot Z, denote the subset of B P " ldefined by obvious.
Xl $h 0, andlet le be the real valued function X" - lexl on Zl . To prove the remalning two statements, we set o x 9 and
Then the intersection of uLBUN] with N x Zl is the set defined by obeerve that there exiet functions b of class M1 . for
!j=lex] relei<n , §ek1 . r+l<i{ , a<n, euch that
n
Therefore afB N| 1s s submanifold of R" x rRET!, (*) (W ﬂ_zr H"a’iu :
Since the mapplng &« I8 Injective, we may define a manifsld structure ) This {e proved as follows. Since for r+l <l <n, wehave that ?
on BUN by pulling back the manlfold structure on u[TlUN] . vanisheson U= NN R", we got that
! d
Now, let N’ be a second open subeetof R", let U’ =aminN‘, 'pilxl, tes ,:n) = J -&-Epl(x', X B eee, tx Mt
1]
endlet q: (N, U)=(N",U’) beas c” diffeomorphiam. Let
n 1 3yp
” i
P, ! DUN - BU.N be the induced mapping, defined by letting a uzrnxa 6'. —axahl' X ur-l»l' .o ,tzn)dt
(p.IPqU : Py = Pnyy.  be the mapping Induced by the differential, and
letting ?‘IN ~U:N-.U=-«N’-U" be the restriction of p. Then ?‘ o0 that 4 holds, where
1s a diffeomorphism of clase ! . 1 3,
Y ” J -a_':'-|::h‘|'"''xl"':"'r*ll'-“'.:"'n)(n -

To show this, we first observe that P i{s a blfection and (p‘)'l a («p-li.

-1
- ow Z, Z
Therefore, 1t suffices to show that (P‘ is of clags CM l. To show this, it In vi of (%), % ( i]n k Is the subset of zk defined by

. . T B -1,
la ennugh to show that X P isofclass C o leign, that (p, Hl.i) {e X b &0 ,
+41 ok lo

R

ocren, r+1<i<n, »nd that xl.?‘ ts of class Cu-] for r+l1<j<n and

J

J# 1. Since and hence 18 open. It follows that .p;‘zl ls open, It also follows from



0.
») that
n
X s - rﬁrﬂ’ﬂk*jn
1! Pe n X
Ea-r-}] q-k’la

on p;l(zi]ﬂ Z, + and hence s of class P! there.

This completes the proof that @, 1s a diffeomorphism of class ch!,

Now we return to thie general situstlon where N {s a meanifold, snd
U e a closed submanifold, both of class C*. In view of what we have
Just done, we can construct a differentiable structure on the part of BUN
which liea above any coordinate patch, and the differentlable structures
ahove different coordinate patches are C”-1 compatible. Thus, we

obtailn the structure of a manifold of class Cu-] on BUN .

Note that the natural projection «: BUN ~N s differentiable of

clans (.'I""-1 .

Since we have defined a structure of & manifold of class C'ud on
BUN » we have also defined a topology on BUN . In the local case,
when N=R" and U=R" , this topology may be described more
directly, Let {xl} be a sequence of points In R" - R*, and sunpose

n-r-1

zl-'lGer. Let £ € RP . wothst (x,f) s s memberof BN,

11.

if we identify B N witb the subset a[B,N] of R x PR, as

ahove. Then it 1s oasily soen that x, converges (in BUNI ta (x,1)

{f and only {f the secants xlll‘ converge te t, where :I' denotes the

projection of x on R".

This suggests that {t should be possible to reformulate condition b

in terms of "blowing up”. Wae do this In the next section.
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f4. An Intrinsic formulation of condition b. Let

N be s smooth
——C_ oTTnulation of condition

manifold, Let dN denots the disgonal in Nz + By the fat square of N,

we will mean the manifold F(N) obtasined by blowing up Nz slong ‘N .

The normal bundle 7 of AN 1n Nz can be identifled with the

tangent hundle TN ina canonical way, as follows, If x¢ AN » then by

definition

n,o® lTN' o TN:)/dllloul

The mapping of TN' [ ] 'I'N! into TN: whichsends vyOw to v.w

Induces an tsomarphism of 1’! with TN! « We une this luomorphlam to

identfy n_ with TN_.,

From this {dentification and the definition of the rrocess nf blowing up
& manifold along & submanifold, it follows that

F(N) » PT(N)y (N2 . 8y) (disjoint union)

where PT(N) denntes the projective tangent bundle of N . Thus, points

of F(N) are nf two kinds: pairs (x,y}) with x,y €N and x+y

and tangent directionse on N .

It foliowe from the previous section that F(N)
cht,

{9 8 manifold of claas

13.

Roughly spesking, & sequence “’I"i” of pointe In NZ . bn
converges to s tangent direction £ on N If the sequences {z‘} and
{yl} converge to the same point x In N and the dlrection from x,
to yi converges to £. Inthecssee N r" , this can be made precise:
{(xi.yl}} converges to (x,1) € r" x l'an'l 1f both {:’) and {y’}

1.
converge to x, and the secants !IYI converge to

Nowlet X and Y be smooth submanifoldsof N andlet y€Y.
Suppose Y ig closed. In view of the previous paragraph, we obtain the

follnwing result.

PROPOSITION 4.1. The pair (X,Y) gatisfles condition b at y If

and only If the following condition holds. Let {xl} be any sequence of

points in X and {yl} any sequence of points in Y such that x w y.l .

tg PTN_,
Suppose {x}~y, {n}-y, {(x.y)} convergestosline £ FIN,

f r planesin TN,
and {Tx,l} converges (in the Grassmannian o

cTr.
where r > dim X)tosn r-plane rg 'I‘Ny . Then fC
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§5. Vhliney pre-stratifications, Let M be a smooth (l.e., cH

manifold without boundary. Let S be s subsatof )j. Bya pre-stratification

3 of S, wewlll meana cover of S5 by pairwise disjoint smooth
submanifolds of M, whichllain §. We will say that 8 ls locally
finite i{f each point of M has 2 neighborhoed which meete at most finitely
many strata, We say 3 gatlsfles the condition of the frontlerif for each

stratumi X of 8 {its frontier (X - X)N S 1s & unlon of strata,

We will say 8 19 a2 Whitney prea-stratification if it 15 locally finlte,
satisfies the condition of the frontier, and (X, Y) satisfies condition b

for any palr (X,Y) of strataof 8 .,

Let % be a Whitney pre-stratification of a subset 5 of a manifold
M. Supprose X and Y arestrata, Wewrlte Y<X If Y 1lsin
the frontler of X . In view of Proposition 2.5, If Y <X then
dim ¥ <dim X . 1t follows eanily that the relation "< defines a partial

nrder on 8

Remark, Lot M he a manifold, S a closed subsectof M . and
3 a Whitney pre-stratificatlonof S, Let x and x° be two points
in the same connected component of a stratum of 8 . Then there existe
a2 homeomnrphlemm h of M onto Iteelf which preserves S and 3
such that hi(x)= x“. This follaws from Thom's theory [ 4 ] and wa will

prove it below. In the case 3 has only two strata, it ls quite ensy to

is,
prove by an argument due to Thom [ 4 , p.242].

We skatch Thom's argument for the two strata casge here, The only
non-triviasl case {9 when the two strata satisfy X <Y and the two points

x and x° arein X, Inthiecase X lecloswd and X P =YUX.

For simpliclty, we will suppose that M Is compact, though it {s not
difficult to modify the argument to make it work in the case M 1

non-compact,

Let N be a small tubular neighborhoodoef X In M, let w:N-X
be a emooth retractlon, and let p be s smooth function on M such that
P2 0, X= {'P-.- 0}, sndatapoint x €X, p s non-degenerate on
the normal plane to X in the sense that the Hesslan matrix of p ot

x hae rank equal to the codim'ension of X .

Nowlet x and x” be two points In the same connectad component
of X . Let Yy be & smooth vector fleld on X  such that the trajectory
of v startingat x arrivesat x° at timetal,

For ¢>0 sufficlently smail, the subset M( = [P= ¢} of N s
compact, and w: M‘ ~X lea submerslon. Furthermore, Yf = M‘ ny
lse campact, and (t follows from condition b that = : Y( ~X fsn

submereion for ¢ oufficlently smail. It follows eansily that there is a

vector fleld v on M - X andan (i>n such that v 1s tangent
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along Y, end the following hold,

(#) v#m) = 0 mEM . X
i
(*s) wvim) = vx(rm) and P(n'Il ‘(l .

From * and the compactness of M , It follows that the trajectory
of v etartingatany pointof M - X 1s defined for all time. Hence v
g§enerates & one-parameter group {h:' . t€ R} of diffeomorphismae of

M - X. Clearly vy §enerstss a one-parameter group fh:‘ :t€ER)

of diffeomorphiems of X . Let ht 1M=M be defined by htIM - X = ho
t

and b |X =hX . It follows from (¢} and (e¢) that

X 0

ht wm) = :htlm) if mEM-X and ﬁm) <q . Hence ht fea
homeomorphism of M. Clearly ht preserves X , and furthermore
ht preserves Y , since v 1ls tangentalong Y . Finally hl(:] ex”

slnce trajectory of x startingat x arrivesnt x° at timetwl.

Thas h= hl is the requlred homeomorphism of M ,

7

§6. Tubular neighborhoods. in this section, we define the notion of &
tubular neighborhood of a submanifold of a manifold, and prove an existence
and unlqueness theorem for tubular nelghborhoods. Our existence and
uniqueness theorem is slightly more gsneral than the standard one
(cf., Lang[ Z ]). The method of proof we uss was suggested to us by

A. Ogus.

¥ e rocall that & vector bundle E over a smooth manifold M 1is said
to be smooth if the coordinate transition functions which define E are
smooth functions. Py a smooth inner product on a vector tundle E, we
will mean a rule which assigns to each fiber Eu of E aninner product
t . )u on Eu and which has the following property: If U 1{s any open
setin M and *:9, are two smooth sections of E above U then the
mapping u - (-|(ul. lzlull“ is smooth. From now on, we will assume all
vector bundles and lnner products on vector undles are smooth, unless the
contrary is explicitly stated. By a {(smooth) inner product bundle, we mean
a pair consisting of a (smooth} vector bundle E and a {smooth} inner

producton E.

If w:E=M {3 an lnner product bundle over a manifold, and ¢ las
positive function on M, then the open ¢-ball bundie B' of E will be
defined ss the setof e in E such that [e] <ei(re), where [lof] 1o

defined as (e, .)IIZ -



Let M he s manifold and X & submanifold.

DEFINITION. A wubular neighborhood T of X in M i a triple

{E,c,p}), where »:E =X isaninner product bundie, ¢ isa positive
smooth function on X, and ¢ iea diffeornorphismof B onto an open
«

subset of M which commutes with the soro sectlon T of E:

B
€
o
c[
X ————>»M .

Veoset |T|a= P(B() » By the projection assoclatedto T, we mean

-1
the mapping "r*®s9p :|T|=X. By the tubular function associated to

T, we mean the non-negative real valued function

where ple) = nq"z

-1
= . (T R
Pr pre Tt— forall e€ |T| .

It follows from these deflnitions that *r lsaretractionof |T| on

X, i.e., the compoeition

x inclusion T

"TI > X

is the identity. Also, X is the O-set of Pt the differential of Pr

i .
vanishes only on X, and (in the caee F22)stapoint x€ X, Pr is

iy

non-degenerate on the normal plane to X in the sense that the Hessian

matrixof p at x has rank equal to the co-dimension of X .

If U lsaosubsetof X, the restriction T|U of T to U is

defined as (E|U, ¢|U, ?IU) .

If T=(E ¢p) aad T = (E'.('.?'l are two tubular neighborhoods
of X In M, aninner product bundle isomorphism #$: E - E° will be
said to be an isomorphismof T with T if there existe s positive
continuous funcion ¢ on X suchthat ¢ $min{c,¢’) and
(P' . ﬁIB(. = P'B(’ . Note that if this holds, then I‘T’PB(. . IpB(.
and po I(PB(- = pre I?B(" . Yemmy T and T’ areisomorphic and

write T~ T’ If there exists an lsomorphism from T to T .

A smooth mapping f: M~ P will be said to be a submersion if

df: TM -~TP is onto for each xE M.
x fix)

Throughout the rest of this section, let {: M =P be a smooth mapping.

and X & submanifoldof M.

A tubular neighborhood T of X in M will be said to be compatible
with f if fow = f|IT|. A mepping h of M Into iteelf will be said
to be compatibie with f if fe+h=f. A homotopy H: M al-M of M
into iteeif wiil be said to be compatibie with f if - Ht ={ for ail

t€l (=[0,1)). By anisotopyof M, we will meana smooth mapping
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H:Mxl-+M guch that Ho-ld:u-hl and Ht:M-M faa
diffeomorphism forall t€1. If h Iloa diffeomorphiem of M inmto itself,
the support of h will mean the closure of {x€M:hix) % x}) . Likewlse,

if H:Mx1=M isan isotopy, the support of H will mean the closure of
(xeM: te1, Hix,t)kx}.

If M’ 1sa second manifold and X 1a 8 submanifold of M’ , and
hi(M,X) = (M’ X°) {s s diffeomorphism, then for any tubuler nelghborhood
Tw (E.(,Pl of X we define s tubular neighborhood h,T of X° by
BTa(™ME , ¢on!, hogh.

We will hegln by stating and proving s uniqueness theorem for tubuler
neighborhoods, and then we will derive an existence theorem from the
uniquenees theorem. This procedure of deducing the existence theorem

from the uniqueness theorem was suggested to us by A. Ogus.

The simplest unlqueness theorem for tubular neighborhoods states thst
i X ie closed and 'I‘o ond ‘I‘l are tubular nelghborhoode of X In M,
then there existe a diffeomorphism h of M onto Lteelf which leaves X
polnt-wiee filxed such that h.To Y '1'l « Moreover, h can be chosen so
that there le anlsotopy H of M with hl = H which leaves X

point wise fixed. Weo con generalise this result in various ways.

21

First, under the hypothesis that To and 'I‘l are compatibls with
and f(|X 1s s submersion, we can choose h and H to be compatible with
f. Secondly, if T0|U~ TIIU forsomesopenset U in X, and Z laa
closed subsetof M oeuchthat ZA XSU, then wecanchooss h and H

to leave Z point-wise fixed.

The following proposition implies these statements, and has some other

wrinkles ss well. We will uss it in ite full generality.

PROPOSITION 6.1 (Uniqueness of ubular neighborhoods). Suppose the

submanifold X of M isclosed, and (|X :X =P {isa submeraion, Let

U be anopen subsetof X, let U’ and V° be closed subssteof X,

let V be an open subset of M, and suppose U'ctyU and V' QV.

(See Figure 3.) Let T, and T, be tubulsr neighborhoods of X ia M

which are compatible with f snd supposs there is an isomorphism
o T0|U -Tl|U . Then there is snisotopy H: M x1 =M, compatible

with f, leaving X point-wise fixed, and with supportin V, such that

h'TOIV' U’ ~ TIIV' UU’, where hw= Hl . Moreover, if N is any

neighborhood of the diagonal in M x M, we can choose H such that

lHl!l).x) €N foreny t€l snd x€M . Also, we can choose H 19 that

there {s an isomorphism §: h'To|V‘ vu’ = T1|V‘ UU° such that

plu‘ "’olu"
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Proof., Let mz=dimM , ¢c=codX, and pzdimP. For k<m,

let llk he embedded as !!k X 0“.l n R™., wewill say that we are

-k
in the local case when V'’ is compact and there exists a diffeomorphiem

& of M ontoanopen subsetof R, suchthat &X)=R™ "N &(M), and
a diffeomorphism ¥ of P onto an open subset of RP  such that the

following disgram commutes, where « s given by LETERREE S R R AT :P)

There are two steps in the proof:

Step . Reduction to the local case, From the hypothesia that f|X s

a submersion, it foliows that for each x € X there exists an open neighborhood
W! of x in M, adiffeomorphism 0‘ of 'Wx onto an open subset of

m m-c .
R such that 'wa nX}= ‘N“"l nR , and a diffeomnorphism 'I'x of

l(\'r':l onto an open subset of RP  guch that the foliowing diagram comrnutes

23

¢
w L s R™
x
f w
;4
X P
—_— .
l(Wl]

Furthermore, we may suppose each Wl is relatively compact, and that

“.'n VvV AR -owxgv
(*)
w!nu' * Q@ -ow‘n Xcu .
Then {M - X}U {‘W'} is & cover of M, 6o that there exists a locally
finite refinement of it, which we may take to be of the form {M - X}y {‘Wl} .

where each W, 18 containedin W i

i x(i)
a countable basis for ite topoiogy, the collection {Wl} is countable. Now

for some :li X. Since M hae

we discard all w‘ for which \Vi nNu“ =g or Wl NV’'= @, and we

index the remalining W"l by the positive Integers. Then we have

V'gUUWiUVzU-" ., and W‘;V foralt i, by e,

We can choose closed sets \\'i' < wl N X such that

V':UU\':’;U W;U--- . Since W;;W and the latter is reiatively

nfl) *

comnpact, it follows that wi' is compact.
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Now we construct by induction » sequence Ho,Hl. H". ++-  of isotopies
of M Into iteelf and sequence ’o.gl.pz. +e«  of isomorphisme of tubular
nelghborhoods. We let l-l° be defined by H? = fjdentity , 0 <t<l, and

let ’0 be 2 glven in the statement of the proposition.

For the inductive step, we suppose that Ho. H'. s .Hl-l and

¢°, ven "I-l have been constructed, are compatible with f and leave X

point-wise flxed,. We let G'I be the jsotopy of M defined by

J -1 0
G’:-Ht.l{': s.c0 H

¢’ We set J-G{. Welet U

-UUWl Uee U W

J J

and suppose supp Gl-l [= Ul-l N V., Furthermore, we suppose

IG:.l(xl.xlEN forall x€M and t€[0,1], andthat p , lsan

isomorphism of tubular neighborhoods g‘;"l'o 'UI.-I =T, Iﬁi.-l » where UP

is an open nelghhorhood of U‘y Wl' U+l wi‘-l in X.

Then it follows from the local case of the proposition that HI and .pi

can be chosen so that the conditions of the induction are satisfied. For, let

'Wlo be an open subset of w, such that Wl' = W? and W? Ls relatively

compactin W, , and let Ul‘ he an open nelghborhood of
u’u Wl' U-..u Wi' in X whose closure lies in Ul' Y wlo . From the

local case, 1t follows that we can construct an isotopy l-li of Wi ’

compatible with f, leaving Xn Wi peint-wise flxed, and with support in

Wo such that hi g:l-lTo IE; nw

- i i
-~ - -
N . Tllul n Wi . where h l'li . (This is

1
because g:'i'ro 'U?.I” W ~ TIIU;-ln W, #nd Ui.-ic WDJ Moreover, we may

choose Hl so that H: is arbitrarily close to the identity for all ¢ ,

and so there is an {somorphism

i -1

. * e )
$, b8, 'rolul nw —s 'rllUi nw

1 i

such that

-, - — -
plUfnw nup, = p fUFnwnnup, .

Since supp Hi ls in a compact subset of wl +» WO may extend I-Il
to an {sotopy of M whose support lles in Wl « Likewlise, we may
- - . i
extend §, toallof UF by letting ﬂlut-l " P|-||U1-| . Then H

and ﬂ satisfy the conditions of the induction,

Now if it ie true that the sequence G:(x) is eventually constant

in a nelghborhood of any point x € M, we can set

H(x) = UmGi(x)
t f~oo ¢

Ppix) = ll_l.rarcn'oihtl

(since the latter is eventually constant In a neighborhood of any point), If
we choose N so that the projection LI N-M is proper (where 12'
denotes the projection on the second factor), then It is sasily seoen that

the sequence G:t:l is eventually constant in a neighborhood of any point

xEM, and that H and § have the required properties.
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This completea the reduction to the local caae.

Proof in the local case. Let Ty 3 (Eg€gipy) and T ={E,q.p).
We will first construct an laomorphlam p : Eo - El of inner product bundiea
which extends %o |[U”, and then construct the laotopy H to have the

required properties.

The tubular nel ghborhood '1‘l (1=0,1) gives » natursl identlllcation

o, of Ei with the normal bundle Uy of X In M. Expllcitly, if
x € X, the reatriction of o to the fiber El x ls the compoasition
’
dep
E, _ = TE, ) —t—> 1M B2 1y 1 =y .
lL,x l,x'0 x = x X, x

Let B a a,l-la_o : Eo - El « We may consider £ aa s aection of

llo(Eo, E|) , where the latter 1o the bundle whose fiber over x is the
space of iaomorphiams of Eo.x Into El.: . In general, £ will not he
of claas c* , only of claas Cu-l ; however, we may approximate f

arbitrarlly closely on any compact auhaet of X by » section ﬂl of class

ct.

To conatruct p, we will need the following well known lemma In

lnear algebrs.

LEMMA. Let V and W be vector spaces, provided with inner

prtoducts 1| and j. Let L:V —~<W bea vector apace isomorphiam,

27

Then there exiats a unique positive definite self-adjoint linesr mapping

H:W-W asuchthat He L :V~V preserves inner products.

Remark 1, 1t is easlly seen that this is equivalent to the assertion that
any Invertible matrix L of resl numbers has a unique decomposition
L=HYW where H iaa positive definite symmetric matrix and U {san

orthogonal matrix.

Remark 2. Similarly, it ls essily verifled thst there exists a unique

positive definite aelf-adjoint linear mapping Hl : V=V asuch thst

-1
L l-l1 : V- W preserves inner products, snd that H, = L HL.

Proof of the lemma. Existence, Let e .-, °n be an orthonormal

basiafor V, andlet A= (alj) be the matrix given by ai) a (Lei. Lcjlj .
Then @ is aymmetric and positive definite. It follows {rom the spectral
theorem for aymmetric positive definite matrices that we may choose the

basls .l' el a0 that (aij, is a diagonal matrlx: aij = lia{j

fwhere bu 1a the Kronecher deita symbol}). Let 'l = ueillﬁ_" . Then

fl' .++,f 1sanorthonormal basisof V¥ . Let H: W =W be given by
n

H“i, 3 Iilfl'i"' . Then H has the required properties.

Uniqueneas. If there weretwo, H and H", we would have thst

U = (HL) » lH'l..)-l is orthogonal. Then UH’L 2z HL 8o UH’=H.

1 2

™ ,Z I -1 .
Taking sdjointa, we then obtasin H'U = H w0 that H* =H'U UH =H
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This implies H’ = H, since a positive definite self-adjoint mapping has

only one positive deflnite self-adjoint square root. Q.E.D.

Now we return to the proof of the uniqueness of tubular neighbarhoods.
For each x€ X, let N be the unique self-sdjoint positive definite Huear

automorphism of El,: such that bx = 17‘ . ﬂl.x : EO.: -E preserves

l,x
inner products. Clearly, p= “x} is & smooth isomorphism of Eo Into
El » and it preserves lnner products. From the fact that n is positive
definite and self-adjoint it follows that (1 - t) identity ) ia an
sutomorphism of El.x for 0ctcl. Hencelif ﬁl is chosen

sufficlently close to B . it follows that

A-tp+w: E ~—>E

is an isomorphism for 0 <t< 1. Moreover, if we choose pl s0 that
'Bl = B in a neighborhood of U’ (which we may do since plu = $o bY
definition of Fll + then 7 = jdentity in a neighborhood of U so that

olU‘wolu' .

l L]

Since we are in the local case, we may suppose without loss of generality
that M {s open in n™ » P isopenin mP ., Xx=mr™C NM, and
f=x|M, 1tis easily seen that there exists a neighborhood Vl of ¥° |In

¥ wsuch that for all m¢€ VI s we have that

Bm) = gy o (L 0B + 1)« g 'em)
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.
is defined. Since V’c X, we have gIIV' = inclusion. Since V' ls

»

compact there exists an open neighborhood VZ of V' |(n Vl such that
w0
<s , t<l. Let bea C functionon M
l‘(Vzl < gttvll for 0<e < P
which is ideatically 1 in s neighborhood of V° and which has compact

support ¢ Vz . Let G-.t :M =M be defined by

-1
G.'t(m) u {l - Fim)}m + dm)gtg' {m) , m € Vz

G m) a m meM-Vz .
st

t
esmoothly on s and t. Since Gt,t = identity end there is a compact

Then G is & smooth mappingfor 0<e , t<1, and |t depsnds
.l

set which contains the support of Gs.t forall s and t, it follows that

there exists 5>0 wsuchthat G lea diffeomorphlsm for |s - t] <&,

1
l1.et n ben positive integer such that 3 < & and set
H, = G Gy 2¢°Cna
t °§ ‘ﬁ"%‘ et
Then H_ ieanisotopyof M into M, and it follows from the deflnition
t
of H that H' ol A in sufficiently small neighborhood of V* . Also, [t
follows from the definitions that 8, and Ht is the identity in a sufficliently

small neighborhood of U” for all t. Thus Hl =g in a sufficiently

smail neighborhood of U” Y V*. Clearly suppHSV,CV.
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Furthermaore, l-!l ‘P h TR $ ina sufficiently small
neighborhood of U’ UV’ . Thus @ is an lsomorphism of HI‘TOIU‘ uv’

with TIIU' uv’.

It is clear from the construction that H 1e compatible with [ and
leaves X polnt-wise fixed, Finally, by choosing the function p used in
the construction of G to have support in a very small neighborhood of V°,
we may arrange for Ht to be as close to the identity (in the compact-open

topology) as we like, Q.E.D.

Now we state and prove the existence theorem for tubular nei ghborhoaods.

PROPOSITION 6,2. Suppose f|X:X~P }s s submersion, Let U

be an open subset of X and let T, bea tubular neighborhoodof U in

X. Let U’ bea subset of U whichis closedin X . Then there exists

a tubular neighborhood T of X in M such that TIU'-.TOIU'.

Proof. It is enough to consider the case when X {s closedin M,

For, in genersl, there is an open subset M_ In M suchthat X isa

0
closed subset of MO » since X is locally closedin M. Clesrlya
tubular nelghborhood of X in Mo is a tubular neighborhood of X iIn
M,

The local case of this proposition is trivial.

N

To prove the proposition in general, we take a locally finite family {w.]

of open seta in M  having the following properties:

{a) For each 1, there is a coordinate chart L Wl -R" such that

'Pl(wl nX)=p(wWin R""® (where ¢ = cod X) and such that there Is a

coordinate chart ’l : ﬂwl' ~RP  such that the following dlagram commutes

.

3 b
I'(Wi) —s R

(b) each ?‘ is compact, and
(c) {WIl NX} ismcoverof X,

Furthermore, we can choose closed sets Wl' c Wi such that {wi‘}
isa coverof X. Since M has a countable basis for its topology, the
famnily {Wi} is countable. We will suppose that it is Indexed by the

poaitive integers. For each positive integer we let Ui aUy Wl TEEDIE . '

and Ul=U UWlU---UWl. We let U0=U and Uo-.-u .

Now we construct by induction on 1| an open neighborhood Ut" of

Ui' in X and a tubular neighborhood T, of U;‘. We take T, s
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given. For the inductive step, we suppose Ui':l and Tl-l have been

constructed. We let Ui" be any open nelghborhood of U" In X which

-~

is relatlvely compact in Wl U Ul 1°

Since Ul" c Wl - Ul'-l ., there exietopen sets A and B in U;" such
that U;' sAUB, ACW- Ul' , *nd B ;Ul”l ., Slace the existence theorem

for tubular neighborboods is true in the local case, we may choose & tubular

neighborhood T  of WX in W Then we have two tubular

i 1

neighborhoods of u{'ln W,NX in M, namely the restrictions of 'I‘;

snd T Since ANB is relatively compact In tUl" -U;_llﬂ v,nx.

1-1°
we may find a diffeomorphism h of ™ onto itself leaving X pointwise

fixed such that h"l'i lA NB~ TI'IA fn B . Furthermore, we may suppose h

is compatible with f and b is the identity outside an arbitrarlly small
neighborhood of AN B; in particular, that h {ie the identity ina

neighborhood of U, . Since h‘Tl_llA nB~ 'I‘l' |[AnB thereisa

tubular neighborhood Ti of U;'-AUB in M such that

'I'i A ~ Tl‘ A and Ti!B ~ htTl-lIB . Clearly T, is compatible with f.

i

-1 i-1-
easily that there is & tubular nelghborhood T of X in M such that

Furthermore, Ti ~ T in & nelghborhood of U 1t follows

T~ Ti in a neighborhood of U; for all i, and that this tubular

neighborhood is compatible with f . Q.E.D.

3

§7. Cantrol data. Throughout this section, let M be » manlfold and

8 & Whitney pre-stratification of a subset S of M.

Suppose that for each stratum X of 8 we are given a tubular

nelghborhood T, of X im M. Lat Ty ! |'rx|-x denote the

X

projection associated to T_ and .(:ax : |'I‘x| =R the tubular function

b 4

associated to Tx .

DEFINITION. The family {Tx} of tubular neighborhaods will be called

control data for 8 if the followlng commutation relationa are satisfied:
e ] —_—— -

i X and Y asrestrataand X <Y, then

IXIY(m) = 'xlml

th‘,(l'nl L] Dx‘m]

for all m such that both sides of the aqustion are defined, I.e., all

m € |'rx|n 'Tvl such that w (m) € |Tx| .

If £f maps M into P, then the family {Tx} will be aaid to be
compatible with f ifforall X €3 sndall mé€ ITxl . we have

hximl = flm) .

PROPOSITION 7.1. If (: M =P is s submersion, then there exists

s family {Tx] of control data for 8 which is compatible with f .
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For the proof of the proposition, we will need Lernma 7. 3 below. The
proof of Lemnma?.Idpends on Lemma 7.2, which saye (roughly speaking) that

every tubular neighborhood is locally like a standard example.

DEFINITION. By the standard tubular nelghborhood Tm c of
rM | Oc In ., we mean the triple (E.¢,¢), where E I8 the

trlvial bundle over R™ C with fiber R® (provided with its standard

Inner product), ¢ =1, and o@: B( - l-lm is the restriction map of the

ldentlfication mapping rR™C x R -R™,

More generally iIf U is open in P S , the standard tubular

nelghborhood of U in R™  will mem TmcIU'
L]

LEMMA 7.2. If X 1iesa submanifoldof M, Tx is a tubular

nelghborhood of X, and x € X, then there exists 2 coordinate chart

¢:U-n'“, where U isopenln M and x€ U, such that

m=C

elXnNU)=zlUIN R (where c = cod X) and auch that
P AT XN U~ T [aAXnU) .

Proof. lmmediate from the definitions.

If T=s(E ¢,0) isa tubular neighborhoodof X in M and ¢’ is
any smooth positive function on X, we let |T|‘. = dB‘ n -l-.":-,l ,

0 .
|T|‘--?‘B‘r‘3¢-| and B{TI(.-pIB‘nS(») where S . isthe ¢
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sphere bundle in E, f.a., S .* {ve E: fvls ¢ (n(v))} where
x: E—~X denotes the projection. Clearly |T|‘. Is & smooth manifold

T

0
with boundary 3 |T|‘. and interlor |T|‘. . Wewlll say ¢
admissible if ¢ < ¢ . In this case the tubular retrsction = : |T|(. -X

is a proper mapping

LEMMA 7.3, Let X and Y be disjoint submani folde of M such

that the psir (Y, X) satlsfles condition b. Let T be a tubular

neighborhood of X in M. Then there exists a positive smooth function

¢ on X such thatthe mapping

0
B ‘_,n x
tpprvg) 1 YN ITH x

is a submersion.

Proof. Let Y bethesetof y€ |T| wsuch that the rank of the

mapping
(PT,'Tl'.Yn IT|— R xX

at y Is <dim(R x X). The lermnna s equivalent to the assertlon that
for any x € X there exists s neighborhood N of x in M such that
NN L= ©. Since this s a purely local statement, it follows from
Lemma 7.2 that it is enough to prove the proposition when M = lRm .

X = m""‘ x0 , and T is the standard tubular neighborhood T

m, <
c



of R™™° 1n R™. Inthlscase ». fsthe orthogonal projection of

T
R™ on nmC , and Pr is the function which Ls glven by

oly) = dist. (y, Rm'c]z .

Let y€ |T| - R™ . The kernel of the differential of (rp.pp) at
- TN
Y ls the orthogonal complemaent of (I!m € x Oc) -] yt,r(vl in R™. The '
hypothasle that condition b ls satisfied implies that for y bpeasr R™C . l

Ma=C

(R x Oc) o wa(f) ls close In the Grassmannlan of m - ¢ +1 planes

in m spacetoas m-c +lplane which lies In 'l'Yy . Hence for vy

[

near enough to R » we have that TY ls transversal to the kernel

Y
of the differential of (r,r.o_rl at y, so thet (t,r.o_rlh' ie a pubmersion

at y, l.e., y¢€L. Q. E.D.

Proof of Proposition 7.1. Let 8 denote the famlly of strata of 8

denote the unlon of all strata In 8

of dimenslon <k, and let Sk .

¥ o will show by Induction on k that the proposition la true for Bk and

Sk Inplaceof 8 and S.

For the Inductive step, we suppose that for each stratum X of

dimension <k, we are given a tubular neighborhood T of X, and

X
this femily of tubular nelghborhoods satisfies the cornmutation relations. '1

By shrinking the T If necessary, we may suppose that If X and

X

Y are strata of dimension <k which are not cormnparable (i.e., neither

n

Y<X nor X<Y holde), then ITXI n lTYI = @, To construct the
'l'x on the strata of dimenslon k, we may do It one stratum at a time,
slnce there are no commutation relations to be satisfled among the strats

of the same dimenslon. Let X be a etratum of dimenslon k.,

We conatruct the tubular nelghborhoods ‘1‘x In two steps, as followas.
For each f<k, welet U, denote the unlon of all ITYI for Y <X
and dimY 22. We let Xl - U!n X . In the first step, we conltruct.l
tubular pelghborhood T! of x! by decreasing induction on 2. In the
Inductive step, we will ehrink varlous ITYI , but this la permitted, slnce
we do It only a finlte number of times. Then in the sacond step, we extend

T, toa tubular nelghborhood '1'x of X.

o

Firat step. For fsk, wehave X" @, oo there ls nothing to

construct. For the inductlve step, we suppose that T“_l has been
constructed and that the {ollowing speclal cases of the commutation
relatione are satisfied: i#f Y <X, dimY 2241 , mE€ |'rm| n 'Tvl

and tu{m)E lTYI , where =

y 4l " "Tpar then

PyTalm} = pylm)
Cra)

Ty Talm = wylm)
By replacing Tl+l with & amsller tubular nelghborhood If necessary, we

may suppose that for m € IT“_ll thereis Z <X with dim Z >t such
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that m¢€ szl and (m) € szI-

"1
To construct T! it is enough to construct T‘ on 'TY Inx for

each straturn Y <X of dimeneion { seperately, sinceif Y and Y~
are two strata of dimeneion £, we have ]'I‘Y| n ITy.f oG, since Y

and Y’ are not comparable,

Thus, we wish to construct & tubular neighborhood '1‘x Y of
ITYI N X whose restriction to ITYI 0 X,y 19 isomorphic to the

restrictionof T such that the following commutaticn relation {s

"'
satisfied: if m € lrx.\,ln ITYI and 'x.'r‘“"’e ITYI. where

" then

x, Y "Tx, v’

Py x, y!™ = oylm)

IYIx'Y(ml a IYIrnI .

By shrinking |T if necessary, we may arrange that if

v!

In 'TYl snd «

m € IT‘ “_l[m) € ITY' , then this commutation relation

+1

is already satisfied (with LAY XY

thero exists Z <X with dimZ>¢, m¢€ |'rz|

in place of w
Since m € ITH-II .
and l‘“(ml € ITZI . Since I‘”(ml € lTYI n |Tz| + the last named

space is not empty; hence Y and Z are comparable, and by dimenaion

restrictions Y < Z . Therefore

} for the foilowing reason.

9
Py pal™) = pymampyim) = pyw,(m) = p(m)

l(ml = (m) = w_ v _{m) = rY(mJ .

v e+ Yz 1 Y'z

(V ¢ may have to shrink ITYI to guarantee that these equalities hold for

al me¢ l'rmln IT,‘,I .}

Furthermore, by shrinking T further 1f necessary, we may

Y
suppose that

(pyrmy): ITY“”(—’R!Y

is & submersion. The commutation relation that we rnust verify is
precisely the condition that Tx. Y be compatible with the mapping

oy 7y) ITYI NX, ~RxY. Therefore from the generalized tubulsr

neighborhood theorem, we get that if x:'H is an open gubset of X

whose closure lies in X then there existe which satisfles the

41’ Tx,Y

commutation relations and whose restriction to ITyl n xfﬂ ls lsomorphic

to the reatrictionof T ac Now we replace T for Z <X by smaller

| Z
. . 0 .
tubular neighborhoods Tz such that x“l c le . where x“l is
defined snajogously to x“l , but with T:_; In place of Tz . Then
T has the required properties.

X, Y

This completes the first step: we conclude that there exlsts s tubular

neighborhood T, of X, sstisfying (®o) forany Y <X.
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Second step. From (%;), it follows that we may assume that 'I"J le
compatible with {. For, by replacing To with a smualler tubular
neighborhood if necessary, we may assume that if m € ITOI + then for some

Y<Xx, h
we have m¢€ ]TY[ snd ¥ (m)€ I'I‘Yl. Then
lrotml " fr‘,ro(m) = (r‘,(ml = fim}

Since To is compatible with {, we may extend a sultable restriction
of To to a tubular neighborhood T of X which ls compatible with
f, by the generalised tubular neighborhood theorem. Then, by replacing
the '.l'Y with possibly smaller tubular neighborhoods {as In Step 1), we

got that the compatibility conditions sre satiefled,

This completes the construction of Tx » and therefore also completes

the proof of the proposition.
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§8. Abstract pre-stratified sets. If V {8 a closed subset of & manifold

M which admite a Whitney pre-etratification (in the sense defined In
Section 5) then we can find control data for this pre-stratification by thae
previous section. Thie provides V with conelderable structurs. The
purpose of this section is to axiomatize the sort of structure which occurs.

Weo depart only slightly from Thom's notion of abstract stratified sst

{3 Jemda [4 ).

DEFINITION 1. An abstract pre-stratified set is a triple {v.8,3)

satisfying the following axiomas, Al - A9.

(Al) V is a Hausdorff, locally compact topological space with a

countable basls for its topology.

This axiom implies that V 1s metrizable, For, since V s locally
compact, it ls regular, so the metrizabllity of V follows from Urysohn
metrization theorem (Kelly { 1 ]). Since V is metrizable, every subset
X of V is normal {in the sense that any two disjoint closed subsets of

X can be separsted by open sets). We will often use this fact without

expllcit mention.

(A2) 8 is a family of locally closed subsets of V, such that V

tes the disjoint union of the memberes of 8.
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The members of 8 will be called the strata of VvV,

{A3) Each stratumof Vv isa topological manifold (in the Induced

topology), provided with & smoothness structure {of claas C”l.
(A4} The famlly 8 1 locally finite.

(AS5) The family 8 gatisfles the sxiom of the frontler: if X,Ye€s

and Yn;(-#rd. then Ygi.

iy ;? and Y # X, wewrlte Y <X, Thls relation 1s obviously

transitive: Z <Y and Y <X imply Z <X.

(A6} T s & triple {{Tx}. {Ix}. '[px}} « where for each Xe¢s8,
'I‘x is an open neighborhoodof X In V v My is a continuous
retraction of '1':\c onto X, and Px H 4] [0.m) is a continuous

function.

Ve will call T:\c the tubular neighborhood of X (with respect to

the given gtructure of a pre-stratified seton Vv ), the local

X
retraction of 'I‘x onto X gand Py the tubular function of X.

(A7) X = {ve Tx:px(v.l:O}.

If =
X and Y are any strata, we let TX,Y 'rxn Y.

"X, ¥ " 'XITX,Y . and Px.y * PXITX,Y . Then Tx.y 198 mapping
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of Ty y into X and p , isemappingof T, . into (0,0},

Of course, Tx. y ™Y be empty, in which case these are the empty

mappingse.
(AB) For any strata X and Y the mapping
: —=> X x (0, )
v, v) Tx, v
ls & smooth submersion. This Implies dim X <dlm ¥ when Tx' Y G,
(A9) Forany strata X, Y, and Z, we have

. Y'Y, z'(‘.r) - Ty, z(')

Px, v"y, zV g, V)

whenever both sides of this equation are defined, f.e., whenever

vE TY. z and Ty z("l € TX.Y .

DEFINITION 2. We say that two stratified seta {V,5,7)} and

{v'.8°,3°) are equivalent if the following conditiona hoid.

{8}, V=V° , 8=8", andfor each stratum X of 8=8", the
two smoothness structures on X given by the two stratifications are

the same.

(b). If J= {{Tx}' {wx}. {px}} and T ‘= {{T;}I {W;c}n {Di}} , then

for each stratum X , there exists & neighborhood T; of X in
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Ty N Ty such that pxl'rx 'PxITx and |'x|'l‘:'c ° I‘xlTx .

From the normallty of arbitrary subsets of & stratified set, it follows
that any {abstract} pre-atratified set 1s equivalent to one which satisfien

the following conditions
(Al0} If X.Y are strata and Tx Y %@, then X <Y.

(AL} If X,Y are atrata and Txf'l TYJIO. then X and Y are

comparable, 1.e., one of the following holde: X <Y  Y<X , or XavY,

From (A10), it followa that X <Y if and only if Ty y * @, and

from (Alljthat X and Y are comparable if and only if Tx NT, +0a.

Note that from (A8) it follows that the relation X <Y defines a partial
order on 8. Itis enough to verify X <Y and Y <X do not hold

simultaneously. But (AB) implies X <Y =& dim X < dim Y .

As an example of an {(abstract} pre-stratified set, let V be a subset
of 8 manifold M and suppose V admlits a V¥ hitney pre-stratification
8, andlet {T;[] be s family of control data for 8, and let
L T;( =X and Py : T;( ~{0,0). Set T = {Txl - Then {v,8,7)
ia an abatract pre-stratified set, In this way, we associate with any systern

of control data for a Whitney pre-stratified set v » & structure of an

abatract pre-etratified aeton V.
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Hence it follows from Proposition 7.1 that any Whtiney pre-stratified

set admits the structure of an abetract pre-stratified set,

I (V,8,7) isa pre-stratified sst, V° Is any topological space,

and @ V' =V isa homeomorphism, then the structure of a stratified

set on V "pulls back" in an obvious way to give & structure

lV'.p‘l.o'ﬂ'l of & stratified seton V° .

If (v°,8°,7°) and (V,8,3) sreabstract pre-stratified sets, then
a homeomorphism P V® =V is said to be an isomorphism of stratified

sete if (V°,8°,3°) 1o equivalent to (V' ,9*8",0%T°).

The uniqueness result that we will prove below Implies the following:

if (V,8,7)is ¢« Whithey pre-stratified set, and T and T’ are two

systermns of control data, then the sbstract pre-stratified sets (V,8,3)

and (V.8,7) are isomorphic,
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§9. Controlled vector fields, Throughout thls section, we let {V,8, T)

be an {(abatract) pre-stratified set. We suppose u 22,

DEFINITION. By a stratified vector fleld n on V, we mesna

collection {nx :X€8), where for each stratum X, we have that

Ty 12 & smooth vector fieldon X.

By smooth vector fleld we mean a vector fleld of clasa C"'-l .

Let T u {{Tx}. {wx], {px]} , and for two strata X and Y, let

TX,Y , l'le . and PX,Y be defined as In the previous section.

DEFINITION. A stratified vector fleld 1 on V will be said to be

controlled (hy T ) If the following control conditions are satisfied: for any

»
Y of Y in Ty Such that

for any second straturn X >Y andany v€ T; N X, wehave

stratum Y there exists a neighborhood T

(9.1-a) NPy x(vh = ©

{9.1-b) "’v.x'-“x(" = "Y"Y.x('" .

DEFINITION. If P ies s smooth manifoldand {: V~P isa

continuous mapping, we will say that { is a controlled submersion if

the following conditions are satisfied.

(1) rlx :X =P isa smooth submerslon, for each stratum X of V.
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(2). For any stratum X , there le a nelghborhood T;( of X in

T such that f(v) » hx(v) forall v€ T;( .

X

Note that both the notions that we have just introduced depend only on
the equlvalence class of the pre-stratified aet (V.3,3), i.e., it (v,8,3°)
is a pre-stratified set which is equivalant to (V,3,7}, thena controlied
vector field (or controlled submeraion} with respect to one of these

pre-stratified sets is the same as a controlled vector field (or controlled

submersion) with respect to the other.

PROPOSITION9.1l. If f:V =P |s a controlled submersion, then

]

for any smooth vector fleld [ on P, there is & controlled vector field

7 on V¥ such that (.q(v] = Liflv)) for all v€ v.

Proof. By induction on the dimension of V (whera the dimenslon of

N

V {is defined to be the supremum of the dimensions of the strata of V).
By the k akeleton Vk of V, we will mean the union of all strata of
V of dimension £k ., Clearly Vk has the structure of a stratified set,

where the strata of Vk are the strata of V which llein V_, the

tubular nelghborhoods are the intersections with Vk of the tubular

neighborhoods (in  V |} of strata in vk and the local zetrsctions and

tubulsr function on Vk are the restrictions of the local retractione and

tubular functions on V.
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In the case dim V » 0, the statement of the propoeltion s trivial,
Hence, by Induction, it la enough to show that if the proposition is true

whenever dim V <k then itis true when dm Ve k +1. Thus, we may

{and do) sesume that dim V « k + 1 and that there is & controlled vector

fleld n, on Vk such that l_nk(v) = Zifiv)) forasll ve€ Vk + We will ghot

that there exists & controlled vector field n on V which extends "k

such that £ n{v)={{filvh forall veEV.

To conetruct 7, itls enough to construct 'qx separately for each
stratum X of V geuchthat dim X =k +1, because the condition that

& vector fleld be controlled involves only strata Y, X suchthat Y <X .

Since by the induction sesumption M ls controlled, we can choose
nelghborhoods ‘I‘; of Y 'in TY {one for each stratum Y g Vk )
such that if ¥ <Z are strats, then the control conditions (9.1} are
oatlefied (with Z inplaceof X ) for vE€ T; N Z. By the assumption
that [ le controlled, we may choose the nelghborhoods 'l" such that

Y
fiv) = h,‘,(vl foral ve¢ ‘1‘; .

1t ie easily seen that we may choose nelghborhoods T:, of Y In
1
TY (one for each stratum Y Vkl such that the following holds: if

Y<Z are strata in Vk then

2 2 (|
Ty N T, 'r,( .

19

2 2 )
V' o can furthermore choose the 'l'Y so that 'l'Y is closed In V - 2Y

(where 2Y denotes the frontlerof Y ), since ¥V -23Y s metrisable

and therefore normal, and Y le closedin V -3Y . Finally, we can

chooee the 'l'2 so that If Y ls not comparableto Z , then

Y
TEN T, =0,
Now conaider the following conditions on & vector fleld Ny on X:
9. 2'.1’" The control condition (9.1) ls satisfled for sny
vETLNX.

(9.2 - hl, (-nxlv) =Cllvh) forall veEX.

v @ claim that there le & vector fleld % on X eatlefylng (9.2-b)

and {9.2-a_) for all strata ¥ <X . To prove this claim will clearly be
' Y

enough to prove the proposition.

Conelder a point v € X . The set Sv of etrata Y <X such that

v € TE{ ie totally ordered by Inclusion, since if ¥ and Z are not

: 2 lea
comparable then TY N Tz =0. U sv is not empty, then there

largest member Y » \'v .

Suppose for the moment this 1s the caee and 9. ?--lYl holds at v.
= <Y .
Then (9.2-lzl holde for all Z € Sv . Forelther Z=Y or 2

2
1In the latter case IY[V' € 'l'iz {by the cholce of the TY'I ). Then
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nxpzlx("' = npo.Y'Y,x(v' s 0

and

)t

2. eV 2 trg Ptay demyte)

» "Z, Y"',Y"Y, x[v))
= 0%, vy xV)

"z"z, ovn .

Thue (9.2-:21 holde at v forall 2z esv. Furthermore

l‘ﬂx(\r' = ([ Ile}.r,x(v]

Mylry xtvll

= {iLv)

Thus (9.2-b) holde at v.

This shows that to construct r;x satisfying (9.2-b) and (9.2--Y)
forall Y <X, {tis enough to construct Ny satisfying l?.Z-lyv) at

v forall v€ X for which Sv is non-empty, and satisfying (9.2-b)

at v for ail v€ X for which Sv is empty. Ciearly, we can construct
a vector field % in a neighborhood of each point v in X satiefying
the appropriate condition (9, Z-Iij or (9.2-b). Since the set of vectors
satiefying the appropriate conditlon in 'rxv is convex, we may construct

Ny globaliy by meana of a partition of unity, Q.E.D,
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§10. Ome parameter groups. Let V bae a topological space. By a

one-parameter gtoup of homeomorphlams of V, we mean a continuous

R
mapping a«: R x V=V such that at_“{vl . ata.(v} for all t,e €
and all v € V. Now suppose V isa stratified set (V,8,7) and a
prese rves oach stratum. If n is a stratified vector fieldon V, we
say that 7 generates o if the following condition is satlefled. For
1

C as a

any v €V, the mapping ¢t -at(v) of R into V s {

mapping into the stratum which contains v ) and
d
;,-(at(vn w0 * mv) .
Note that this implles
Liavn = wagon ter .

1t is weli known that any l'.':l vector field on a compact manifold

without boundary generates a unique one-parameter group (see, e.g.,

[2. p- 66 ]) . 1t is also known that to extend this result to non-compact

manifolds, we must generalize the notion of one parameter group.

DEFINITION, Let V be a locally compact space. A local one-

arameter group {on V) s a pair (J,a), where J is an open subset
parameter g where is an open suheet

of RxV and @:J -V is a continuous mapping such that the following

hoid.
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(a). Oxveyr . Since @ is a one-parameter group, condition ¢ is equivalant to:
ibl If veV, then the set Jv =JN{R xvJSR (s an open interval {¢’). Forany (t,vJ€J, wehave
(a .b )},
v'w

Lait,v) = mattv) .

e M ve€V, and t,s and t+s arein (a .b) then
v ¥
This generalises the ordinary notion of what 1t means for a vector field

aft + 9, v) = aft,afw, v]) .

to generate a local one-parameter group.

{d). Forany v€V andsny compactaet KCV, there exists
Since {V,3,7) 1s a pre-stratified set, it makea sense to talk of &

¢ >0 wsuchthat afv,t) € K If t€la ,a_+adU(lb -¢b).
v v
controlled vector fieldon V (Section S}.

From now on in this section, we suppose (V,3,3) {s an (abstract)
PROPOSITION 10.1. lIf n 1lsa controlled vector fleldon V then n

Kenerates a unique local one-parameter group (J, o).

pre-otratified set, and 1 is & stratified vector fleldon V.,

DEFINITION. 1f (J,a) 3isa locsl one-parameter group (om V),

Proof, For each straturn X , the reastriction of to X is
Xesay n generatea o If the following conditions a - ¢ are satisfied. a—— x i

a amooth vector fleld on X (by the definition of atratified vector field);

(a). Each stratum X of V ls invariant under a, l.e.,
hence Ny generates a smooth local one-parameter group (Jx.ax) of

alJNiR x X))cx.
diffeomorphisms of X, by a standard result in differential geometry

(b). For each v €V, the mapping t - a(t,v} of {(a_.b ) into the [2, 1v, 82 ]. Let (J,a) be defined by
v'i'w

stratum which containse v is CI .
J= yyJ as U .
xes xes %

(chh, Forany vEV, wehave
Ve assert that (J, ) is a local one-parameter group generated by 1.

d
a?dtlv’ t=0 x ﬁv) .
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It le clear that a, b, and ¢ In the definitlon of local one-parameter
group hold, and that If o ls a local one-parameter group, then it is.gensrate
by v . Unlqueness la obvious. All that remaine to be verified is that

J isopen, a ls contlnuous, and d holds.

We begln by showing that d holds. If not, there exists vEV anda
compact set K in V such that oft,v}€ K for values of t arbitrarlly
close to s, or hv . We may suppose that oft,v) € K for values of ¢t
arbitrarlly close to bv ; the other case is treated slmilarly. Then there
exlets a sequence {tl} ,» converglng to bv from below, such that
y = lim av(ti' exlsts and lies In K. Let X (resp. Y ) denote the

stratum of V which containe v (resp. vy).

I X=Y, wegeta contradictlon to the fact that oy ls a one-paramaete
4 . Otherwl Y .
group erwise <X, Forlarge 1, pY'x(av(tl)) and 'Y,xlav“i”

are defined, and the control conditlons are satisfied for mi = “l' .
v

Thus, by taking { sufficiently large, we may suppose that there exlsts

€ >t-t such that [0.¢]an. where (m), andlf T, s

I * Ty, x

the tubular nelghborhoodof Y, =« ie the local retraction of TY onto

Y

Y and Py ls the tubular function of Y , then Py xlm‘} <¢ on

ayil[o.t']) and the control conditions for the pair Y,X are satisfied for

. -1
me€ {oy o =Py yIMm)}N Wl fay ([0,])NX. Sinee
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{pY x = Py x(ml)} n ::{l X(aYl[o' ¢]) le compact (because

Py, x

(rni) <e¢

Y

on aﬂl[o.(]l). and o staye in X ({by definition),

it follows from the control conditions that

-1
alt +o)€ {PY.x = W,x‘mi” n rY-xtant-l)n X for 0585¢C .

But thls contradicts the hypcthesis that avltj) -y as j=o. This

contradletion proves d.

snd

Now let

o ie continuous at (t,v}. Y e will suppose

ft,vJ€J . We will show that J

ie a neighborhood of (t, v}

t2> 0 ; the other csse

is treated similarly. As before, let X be the stratum which contains v.

Since oy loa 'local one-parameter group, there ia a compact

neighborhood U of v in X andan ¢2>0

Let

of

Tx

X

such that [-¢.t+¢]xUGCJT.

denote the tubular nelghborhood of X, «

X

the locsel retraction

T on X, and Px the tubular function of X . Since

axl[-(.t + ¢] x U) is compact, we may choose an f > 0 such thst the

following hold:

(a). Let Z={y€Ty,:pylyl<e and w.ly}€ g ([-€.t ¢ €] x m}.

Then T

Y

(b). If yeZL,

where

ls compact,

Y

is the stratum which containe

Y .

then the control conditions for the pair X, Y hold at



56

Clearly, the set !‘o of y¢€ TX euch that px(y)_s q and
"y(y)€ U 15 anelghborhoodof v in V, If y¢ L, It followe from

the control conditions that

oxlaylnn » pxtn

'x‘ay"” = {n)

e,
'x‘”
forall e € J, such that ay(.') €L for 0<a’ <e. From these facts

and d, it follows that {-¢.t ¢ ¢]x LoS73: thus ] contains a

neighborhood of (t,v) .

The axguiient that we have just given ahowe that §f
orreft-e.t+e)x Lo+ then y =gft”,y)€ Ty + Pyly)se . and
:x(y'l =a(t”, 'xly]l + Hence for an arbitrarily small neighborhood of
olt,x) we maychoose ¢>0 anda nelghborhood El « Hence a Iis

continuous at {t,v) ., Q.E.D,

COROLLARY 10. 2. Let P bea manifold, and f: VY ~+P bhea

proper, controlled aubmersion, Then f |Is alocally trivial fibration,

Proof, It is enough to consider the case when P =Rk and show in

this case that there is a homeomorphlem h: V - Vo X Rk ., where Vo

denotes the fiber of V over 0 1 such that the following diagram commutea:
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V-—-——ov :ll

where T, denotes the projection on the second factor.

k
Conslder the coordinate vector fielde b|. ‘e, Dk on R . By
Proposition 10.1, foreach 1, 1 <1 <k, there is a controlled vector fleld

al on VY such that

. [
t.ﬁ](ﬂ = 3, (flv)) . v

By Proposition 10.1, each al generates a local one-parameter group
(Jl. al) . Clearly !la.!lt. vl = flv} +(0,¢++,0,t,0,---,0), where the
non-vanishing entry is in the ith place, Then from the assumption that
f 1s proper and condition d in the definition of one paramaeter group, it

follows that .ll =R xV. Let h beglven by
hiv) = (ot ayl-tyee « s l-t.v)e + )L AVY)

t
where we set  fiv) = ttl. cve, tk) . Itis eanily seen that h mape V into

- k
Vo X Rk and that Diagram 10.1 commutes. Let h: Vo xR =¥ be

defined by
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h g t lly, Then XAWCTNW,
h("-(!!.' Tt ) = @t .. "“z"z'“l“l"’m . which meets X transversa en

Let EXNW, Toshow € YN W, itle enough to coneider
From the fact that the uil. sre one-psrameter groups, it follows that Proof. et x

bh = hh = identity, Hence h is a homeomorphlsm, as required Q.E.D what heppens in a neighborhood of x. By replacing M with a sufficiently

small open neighborhood of x , we may suppose that X {s connected and

Note that Vo has & natural structure of a pre-stratified get

closed, and there exista a tubular neighborhood 'I‘x of X in M such

lVo.lo.Jo) » where 8, and Jy sre defined as follows, 80 ls the that WN T, = ';:(w fi X), where L\ Tx = X is the projection
collection  {Xn VO ‘X€8}. M X€8 and xO =Xn VO ia the aaaochteq to T)( . From Lemma 7.3, it follows that by choosing Tx
corresponding member of 80 » then we let Txo = Tx n Vo . sufficiently small, we may suppose that there exists ¢ >0 such that

'xo ) 'xlTxo wd P)Co ' leTxo + Note that 'xo meps Txo Px <¢ on Tx , where Px is the tubular function associated to TX '

into Xo because { is a controlled submersion. We let 3‘0 be the where (px.'x, : TX =[0,€) x X is proper, and where for each stratum

triple  {{Tx,}. {I'xol ' {pxol} . 2 of 8. the mapping

k
Furthermore V. xR has a structure of a pre-stratified set : —_—
0 P (P Ty 122 20 Ty 0, ¢l x X

{defined in an obvious way).

is a submersion.
COROLLARY 10. 3, f h 1is constructed as in the proof of

* = T, -X):2€8). Then B3’ 1isa Whitney
Lorollary 10.2, then h is an lasomorphism of pre-stratified gets. Let 5 {znt X ) }

pre-atratificationof SN (Tx - X) . By Proposition 10.1, there ls a family

Proof. Immediate from the construction of h . (See the end of of control data ¥ for 3 which is compatible with (px'_".x) . Then

Section 8 for the definition of isomorphism. ) (SN ‘Tx - X).8°.3°) is an abstract pre-stratified set and t°x"x) is a

10. 4 Let M be a ma trol ] meraion Hence bv Co:lol.lllv 10, Z. sn ( T - Xl s a
= l'I‘fOldl let X be a CIO.ed controlled sub . x
M and let 8 be & wh the - i v v O, x X » and bY coro]llry 10. 3. the local
1 Y pre -tratiﬁcatlon of s 1 et locllly tri 131 bundle over ‘ ()

X and Y beostratawith X <¥Y. Let W be & submanifold of M trivializations respect the stratification,
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&0
1t follows that any stratumof 3° (s.g., YN lTx = X))} Intersects mapping 'I’x""x’ N | |Tx| eX)NZ > X is & submersion, where
-1 .
sach fiber of (px.txl « Inparticular @G YN (px.lrx) (e, X)cYnw Tx' (E, g «) and X = {t, xe RxX: 0<t<q {x) }. Then the bundle
far 0<¢’<e. Itfollows that € TR W. Q. E.D. (|‘rx| - X, ‘Px. fx,‘x‘, is locatly trivial and the local trivializations can

be chosen to respect the stratification

The next corollary says that a pre-stratification which satisfies all the
conditions of s Whitney pre-stratification except the condition of the frontier
sleo satiefles the condition of the frontier, provided that ite etrata are

connected.

COROLLARY 10.5., Let M beas manifoldand 8 bea locally finite

pre-stratification of s closedsubset V of M whose strata are connected

such that any pair of strata eatisfy condition b, Then 8 ies a Whitney

pre-stratification,

Proof. It sufficee to show that the condition of the frontier holds.
Suppose X and Y arestratasnd YNX 4 @G. The proof of Corollary
10.4 shows that YN X ia openin Y. Since YNX s clearly closed in

Y, and Y ie connected, l‘.hl.l proves Y gf.
The proof of Corollary 10, 4 also ehows:

COROLLARY 10.6. Let M be a manifold, 8 a Whitney

pre-stratificationof M, X s stratumof M, and Tx a tubular

neighborhood of X jin M such_that for any stratum 2 of 3, the
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§11. The isotopy lemmas of Thom. In this section, we will atate

Thom's first and second isotopy lemmas, We will prove the first and

sketch a proof of the second.

Throughout thie section, we let M and P be emooth manifolds,
f:M = P 3 gmooth mapping, snd 5 a closed subset of M which

admite a Whitney pre-stratification,

Proposition 11. 1. Thonts firstisotopy lemrhs. Suppose {]S:5 < P 1ig

proper and f|X:X ~ P is s submerasion for each stratumn X of .

Then the bundle (S, f, P) s locaily trivial,

Proof: By Proposition 7.1, we can find a system of control data for

S which s compatible with . This provides S with a structure of

an abstract stratified set in such » way that f is a controlled submereion.

Then the conclusion of the theorem Is an Immediate consequence of

Corollary 10. 2, Q.E.D,

Remark: Thom considered the case P = R. If a,beg R, then
tbe proof of Proposition 10,1 constructs an isotopy from the fiber Sa

to the fiber Sb » Whence the name "igotopy lemma''.

The second {sotopy lemma is an analogoua result for mappings instead

of spaces. Consider a diagram of spaces and mappings:
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We say that { ie trivial over Z {f there exiets spaces xo and Yo .

a mapping to:xo - Y, and homeomorphlams X ° X, X z,
Y = Yo x Z such that the following dlagram of spaces and mappings ie
comrnutative:

X

S|
PNy

—_—
xe txid Yo"

We say f 1is locally trivialover Z ifforany s € Z, thereisa

neighborhood U of =z in Z such thatin the diagram

(U) —-—--’-—I‘

N

we have that { 1ia trivial over U.
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Local triviality of & mapping f over s space 2 has & consequence
which will be very important in what follows. We think of f asa
famil :

y {f. 8 €2} of mappings, where l. :X, = Y_ is the mapping
obtalned by restricting f tothe fiber X of X over a, If Z

. .
is connected and f{ is locally trivial over 2, then for any & and
b in Z, the mappings f. and !b are squivalent in the sense that
there exist homeo hi : - g
morphiems h: x. xb and h°: '(. - Yb such

that hf. ] !\Jh'

Thie i» the relation of equivalence that {s used in the definition of
topologically stable mapping, and a step in the proof that the topologically
stable mappings form an open dense set will be to show that certain
famiiles of mappings are locally trivial in the sense defined above, by

an appilcation of Thom's second isotopy lemma.

Now suppose M’ 1sa smooth manifold and S’ s s closed
subset of M’ , which admits a Whitney pre-stratification 3 ° .
Let g: M’ = M bea smooth mapping and suppose gi{5°) ¢ 5.
Thom's second lsotopy lemma gives sufficlent conditions for the followlng

diagram to be locally trivial:

diagram 1.1 E*f .

To state Thom's second {sotopy lemma, we must introduce Thom's

condition l‘. Let X and Y be submanifolds of M’ andlet y

bea pointin Y. Suppose g|X and g|lY are of constant rank,
at y if the following

We say the palir (X, Y) eatisfies condition a‘

holds:

Lot x, be any sequence of points in X convergingto y.

Suppose that the sequence of planes kcr(dl;lx‘)ﬂl < TM‘:‘l

converges to a plane T & TM;’ in the appropriate Grassmannian

bundle. Then ter(d(gl'{'lv €r.

Ve say that the pair (X, Y) satisfies condition l' if it satisfios

condition n‘ at every point y of Y.
Now, we return to the situstion of Diagram 11. 1. Ve will eay that

g 1s a Thom mapping (over _P) if the following conditions are satisfied.
(a) glS’ and (|5 are proper.
(b} For each stratum X of 3, {|X 1sa submersion.

(c¢) For each stratum X* of 37, g(X°) Uesinas stratum X
of 8, and g: X’ = X {sa submersion (whence glX° isof

constant rank}.

{d) Any pair {X’,Y”) of strama of 83° satisfies condition ag

{which makes aense in view of (<))



66
In the case P ig a point, we will drop gver P,

PROPOSITION 1. 2 (Thom's second leotopy lemma), If g las

Thom mapping over P, then g lalocally trivial over P .

The proof of this requires new machinery. Let {T} be a system
of control data for the stratification 8 of §. We need the notlon of
a system {T°} of control data over {T} for the stratification 8 *

of 5.

CAUTION: A system of control data over (T} ie nota system of
control data as previcusly defined. !f we were to require that a system
of control data over (T} alsobea system of control data tout court
then the fundamental existence theorem for control data over {T}

{Propoeition II. 3, below) would not be true.

SFINITION: Suppose g is a Thom mapping. A system (T}

of control data for 3 ° over {T} isa family of tubular neighborhoods,

indexed by 5, where T;: is & tubular neighborhood of X in M°

with the following properties:

(a) f X’ and Y areostrataof $°* and X’ < Y’, then the

commutation relation

holde for all v
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Ty Ty (v) = LN iv)

for which both sides are defined, l.e., all

v E ITx.In |'r‘,.| such that 7..(v) € |Tx.| .

Furthermore, If g(X°) and g(Y’) e in the same stratum

of 8 , then the commutation relation

Px* "y’ (v} = Px.(ﬂ

holds for all v for which both sidea of this equation are defined.

f 3 which
(b) 1f X° isastratumof 8 ° and X iaa stratumo

contains g(X’), then
gtx,(vl = "y 8(V)

for all v for which both sides of this equation are defined, i. e., for

-1
all v € |Tx.|f'lg [Tyt -

Note that a Is weaker than the commutation relation for control

data in the case g(X’) and g{Y’) arenotin the same stratum of

1.

Is 2 Thom mapping then for any system

PROPOSITION .3, If g

there exists a system {T"} of control

{T} of control data for 3

data for 3% over {T}.
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The proof of this {s similar to the proof of the existence theorem

rl ' rd
for Y <X’ and dim¥Y’21. Welet X, = u/n x°. In the first

for control data (P ition 7.1), We will onl tilne it.
c ) {Proposition ) e only outllne step, we conatruct a tubular neighborhood T; of x; by decreasing

. ary.
Proof {Qutline): Let § ‘k be the family of all etrata of 8° of induction on f, shrinking various T, where necessary
& . . .,
mension < k, andlet Sk denote the union of all strata in 3 K . This step is carried out in essentially the same way as the first
w Ll
e will show by induction on k that the proposition is true for 8 k step in the proof of Proposition 7.1. We start the induction at ¢ = k,

> L >
and Sk Inplaceof 8° and S“. This will suffice to prove the where there is nothing to prove. For the inductive step, we suppose

proposition. T . has been constructed. We observe that to construct T“ it ie
"+
. ’ ch stratum Y’ <X’
The case k = 0 {s trivial. For the Inductive step, we suppose encugh to construct T, on ITY'I N X7 for es
that for each stratum X* of 3’ of dmension < k . we are given of dimnension 1§ separately. Then there are two cases.

& tubular neighborhood Tys of X° and that this famlly of tubular Casal. If g(¥Y’) and g(X°) arein the same strstum of .
nelghborhoods satisfies conditions (a) and (b) above.

then the construction is carried out in the same way as the corresponding
T'
By shrinking the Txo ifnecessary, we mey suppose that if construction in the proof of Proposition 7.1. In this way we define P
&} hold.
X° and Y’ are strata of dimenalon < k which are not comparabie, on 'TT"I 1 X° 9o that the commutation relations {

then |Txo| n 'Ty-l = @. To construct the T on the strata (Note that condition (b) follows frem (a) in this case.)

x'
of dimension k, we may da it one stratum at » time, since the Case 2, Inthe case g(Y’) and g(X°) are notin the same stratum
relations (a) end (b) impose no conditions on pairs of strata of the of $ , the proof must be modified. Let X be the stratum which

ssme dimension. Let X° bea stratumof 3° of dimension k. contalns g(X°) andlet Y be the stratum which containa g (Y.

ose that
Ve construct the tubular nelghborhood Ty- intwo steps 20 Then Y < X . By shrinking 'TY'I If necessary, we may supp
follows. Foreach £<k, welet Ul' denote the union of all IT,I.I | [TY'“ = |T7| - Let

V = (|TY| n X)x Y



»

k(A
where the fiber product is taken with respect to the mappings
"yt |-rY| nx—Y
£: Y — Y '
Then the mapping
G = (g, vy.) ¢ ITY,I n XxX°—> vy

ie defined because the following dagram commutes:

¥, e
lTy.I nx —L—» y*

L
It | 0 x —Et— v

by the inductive hypothesis that (b} fe satisfled for those tubular

neighborhooda which are already defined.

LEMMA 1ll.4. There exists 3 neighborhood N of Y’ in lry,{ such that
GINN X’ : NA X’ —> V

l? s submersion.

Proof: Let L be the set of points in ITYol N X* where the

differential of G 1is not onto. It suffices to show that Y’ N L = @ .

mn

Let x* € ITY.I nx, x=glx’),y’ = v,.lx’), and

Yy = z{v" = 'Y(x)- Then
L - rl L
del a (d('lellxl ' d(‘lx '!J) : Txx; —_— TVG{K.’ = "l'xxxTY’TYy.
By definition, x’ € £ if and only if this mapping is not onto. Since
dlg]x o P TRl = TX_
{s onto (by hypothesis), it follows that this mapping 1s onto Lf and only if
: ker(d(ﬂx')x.) - ker (d(g|"l'lyo)

dl'Y *x o’xa

{s onto., From condition l' , it follows that Y’ does not meet the

closure L of the set of points where this mapping is oot onto., Q.E.D.

Now we extend T; over ITY" N X’ in sucha way that (a)
holds (the weak (a)!)and (b} bolds. We may do thig by the generalised

existence theorem for tubuiar neighborhoods and Lemma . 4.
This completes the Inductive step.

Now the second step (extension of T" from Ua over all of X’)

s carried out in exactly the same way s in the proof of Proposition 7.1. Q. E

The rest of the proof of Proposition 11. 2 will be carried out in

three steps. First, we define the notion of & controlled vector field
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sndif g(X°) and g(Y’) arein the same stratumof % then we have
gver another controlled vector fleld. (WARNING: this is not a special

case of the notion of a controlled vector field.) Then we prove & lifting f’x‘ pY‘x"“, " .
theorem for contralled vector flelds, Finally, we show that every

(Note that condition b is weaker than the condition that we Imposed

contr
olled vector fleld over another controlled vector fleld generates Ned tor fleld in Section 9 In th (¥r’) 4 g(x)
on & controlled vector fle ction 9 In the case ¢ and g

& local one parameter group,
are not in the same stratum of 8 .)

Now we suppose g 1s s Tho
™ mapping. Ve suppose that w
e pre PROPOSITION 11,5, There exists a controlled vector fleld on 5’

given a system {T} of control data for S anda system {T°}
over 7.

of control data ’
for S® over {T}. Laet n = {”X}XES be a

controlled vactor fleld on 5. The proof is completely analogous to the proof of Proposition 9.1,

and we omit it.

DE :
FINITION: Bya controlied vector fleld on S* over 15, we

will mean & collection

{f]xo}x *cq ' where . isa vector fiel PROPOSITION 11. 6. 1 ] ls & controlled vector fleld on S
] x d o -

over 17, then 1" generates & local one parameter group, which

commutes with the one-parameter groupon S generatedby 1.

on X*

+ such that the following conditions are satiefied,.

{a) Forany X*¢ 38° and x" €X’, we have

The proof of this is essentially the same as the proof of Proposition 10.1.
(glX’), n, . (x*) = .
e x* Tix (atx"D . The only additional remark to be made is that if X° and Y’ are

(b’ F * » » . » r » »
orany X', Y’¢ 8’ with Y <x’, there is a neighborhood strataof 8 with Y  <X°, sand g(Y") lesin Y wend g{X’)

N of Y~* . » r
o in ITYoI such that for y'€ ,TY" AX*, wehave r lHesin X, then, inthe case Y < X, & trajectory vy of g

starting at a point of X° cennot approach Y’ because the image of

(mg o o) n_ . ix") . .
YX7 % : ﬂY'hY x (=) ¥° ie a trajectory of 1 and therefore cannot approach & point of Y .

We omit the proof.



Proof of Proposition 11,2, To prove that g is locally trivial over

P, it suffices to consider the case P = RP and prove that g is

trivial over P in this case. By Proposition 7.1 we can find a system

{T} of control dnta for 8 compatible with ¢ » and by Proposition 11. 3

there exists a system {T*} of control data for 8° over ({T}.

Let bl. ‘e 'ap be the coordinate vector flelds on WP . By

Proposition 9.1, we can lift al to a controlled vector fleld 51 on S,

and by Proposition 11,5 we can 1ift Si to a controlled vector field 'a'i

on $° over Si .
By Propositions 10.1 and 11. 6 the vector flelds Si and 'a'l generate

local one paramater groups Fi and ;l . Since the mappings f and

8 are proper and al generates a {global) one parameter group P

it follows that 6! and 'Fl are (global) one parameter groups,

Let S, (resp. 56) denote the fiber of S (resp. 5°) over 0.

0
To complete the proof, it is enough to construct local homeomorphiamas

h and h* such that the following dimgram commutes.

h* are homeomorphisma.

75.

N
N

5’ ———— G lnp .
‘oxid 0

Wedefine h and h® as follows.

{x), t) where t = (tl."'.tp) = {egix)

W)= Py
&p. tp '1

here t-(tl,---.t)-l(xl .
hix) = IR ).t) w 2
x (Pp, tp .l

h and
1t is easily verified that the above diagram commutes and that

Q. E.D.
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