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‘i T  In these notes, we give an expository account of the construction
3 of Wall's Surgery Ob struction Groups [i3). -Our account toeches on
R ¢ selected fopics in the theor_\- o! piecewisze iinear and differentiable
1
H manifolds; we refer the reader to [4], [6].
A
3 . . . s . .
&, Ve may take s our stariing point the following problem: When is 2
i eimple homotopy eg ur'a.lence of closed smocth nmmfo tM— M
! homotopic to 2 diffeornorplism? Tho ;onowmg condition is nec.ess.—..ry:
1
4 3 . the two targcni tundles TM and TM' zheuld be indistinguishable; that is,
“_ ‘* - a -
3.5 Ve § TM' and TM should bc equivalent bundles,
-
9 Ty .
i ! . '\Iow suppose we are given 2 simple homctopy ezuivalence f such .
i TR
;' H that f TM' = TM; in ;a:ticular, therc is an equivalence of vhe stable
v . ) , - N N s e . .
L normal bundles »{MT E) and ¥{M! Cb } which covers f. For simplicity,
i N, L ~
- IR we will suppose v(3' (8 ) is trivial.
[} ’ y .
: The equivalence of stable normaz! bundles then defines a map of a2
H . N I\z-rn . .
3 bu}au nezghbur‘uoﬁ Fiof Min § to M'XE which sends fibres
¥
j diffeomorphiczily to nbrr:s. vhere m = di..? .?'.I. 1t iollows thar this
N N-m . .
. cquiv e.'lercc induces a map h : S —» 161 = M'XS /M X o« with
"y
3 h (5 -?}\)-— *, the bzsepoint of M {Figure 1), .
I
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Sirnilarly, the identity on M!' induces a map h1 :.SN —> M'.

We now make one further assu.mptmn, we suppose h0 and h1 are

homotopic, say by h: SN x[0,1] — M' X [0,1]. It is not hard to see

that hO and h1 are,transverse [7] along M' and sc we may apply the

Relative Transversality Theorem to obtam h sN x [0,1} —> M X [0, 1}

" transverse along M'X [0,1]. Thus, ¥ wWE = B (M‘ X [0,1]) is a cobordism

'between M and M!'. Note that the map h]W is covered by abundle map:
Cs % [0,1)) —> viM' % [0, 11C Mt X [0, = M X [0, 1]Cs x [0, 1]).

We thus obtain 2 cobordzsm w, a proper map @ = h|W w—> M' X][C
and an equivalence F : wwC E x[0,1]} —> (p v{M' X [0, 1]CE P [0 1])
of stable normal bundles. :
Remarks:

(a) @|aw is a simple homotopy equivalence.

(b} W is compact. |

(¢) @ has degreel, asin $3.

-

We now attempt to simplify (W. & F) by a series of steps {surgeries)

a0 a5 to obtain (W', ¢, F') say, with @' : W' —> M X [0.1] a simple

bomotopy eq;zivalence. @ = ¢ on QW's= aw. W' would then be an
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5-cobordlsm, and M and M' diffeomorphic.

toE " We will see that there is a geometric obstruction to making this reduction;

a‘surgery problem (W, @, ¥) determines an element of an abelian group

('n' M!, wM') called the Wall Surgery Obstruction Group. If the element so

i determmed is zero, we may reduce W to an s-cobordism. The group

L’ ’(ﬂ M, wM') depends only on the fundamental group Qf M' and the orzentatmn

2. The Surgery Problem

In what follows, we will consider the surgery problem in the piecewise
linear category; we are given (W, ¢, F), W' oa compact piecewise linear
cobordism between two (possibly empty) piecewise linear manifolds, ¢ 2
degree 1 proper map to another such cobordism X" with quaW a simple
homotopy equivalence (see §4) aW——-> .aX, and F an e;quivalence of the
sta.ble normal bundles yW and qo vX.

Let us describe this last condition more fully, A paecew:se linear
bundle over W is thought of as an RN bundie in the sense of Steenrod [12],
whose fibres are glued together by piece';.vise linear homeomorphisms
RN—-> R..l\_I p::ese'x"v{ng the origin (There are in fact some technical problems
here, Whif.-'.':il we suppress). Equivalence of such bundles is the usual equivalence
in the senye of Steenrod. ‘

In the smooth category, we single out the tangent bundle and stable
normal bundle of a manifold W, We may représent the tangent bundle TW
(W smooth, closed) by a tubular neighborhood of the diagonal AW C W x W
in a natural way; introduce a Riemannian metric on ‘I‘W- and send
(x, v)] ¢ TW to (x, exp_ v) for sufficiently small v, The stable normal
bupdle W is represented similarly, by a tubular neighborhood of an
embedding M cEN i

We now construct the tangent bundle of a piecewise linear manifold

_ by taking a neighborhood U of the diagonal AW C W X W, together with

the O.section A: W—> U 2nd bundle projection T, U— W, Itica
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theorem of Kuiper and Lashof [ 5 Jthat U contains in a natural way a piece-
wise linear R® bundle called the tangent bundle of W. We construct the
gtable normal bundie of W by considering the interior of a regular neighbor-
hood of M in RN; this can be shown to contain a piecewise linear RI\ -0
bundle [2 ]
Remark: In what follows, we could replace (X, 3X) by a Poincar¢ pair,
that is, a pair of {finite complexes satisfying Poincaré Duality in the
dimension of W, see §3. The stable normal bundle yX is obtained in
this case from a construction of Spivak [11].

Let us now turn to the problem of dimplifying (W, ¢, F) ‘as hinted at
in §1, by the method of surgery.

The effect of surgery on W is to remove an embedded Sk x D" n-k irom

the interior of W and glue in its place Dk."1 s"" ~k-1 = a(D X D ) - Sk x Int D

k- k -k -k
along Sk e Sn k-1 = (S an )r}(Dk‘!b1 X Sn k 1), thus obtaining W', see

figure 2.

W -2 - w

The selection of the embedding Sk X Dﬂ-k C W and the effect of surgery

on the map ¢ are vest describedin terms of the homotopy groups of ¢ which

we now define,

An element of 1rk+1(¢p) is represented by a pair (f, g) as follows:

Sk c Dk+1 -
T E
w 4> X (the diagram commutes),

1!



T wo such define the same element of ﬂk_“(qo) if they are homotopic by
snotop es which preserve the commutativity of the diagram, We will speak

—_—

"loing :surgery on a class in rrk_{_l(qo) as in the following theorem,

Theorem 1: Let oerT (¢) with 2k< n. a determines a regular

k+l
=—=_'° hnmotopy class of immersions Sk X Dn"k in Int W', We can do surgery on a
. T==% 50 a5 to obtain (W, o' ¥') if this class contains an embedding, -&
-k n.k n ' j
Remark, f:5 xD —> W is an immersion.if it is locally an embedding!’

Two immersions lie in the same regular homotopy class if they are homotopic

— thiough immersions,

Proof of Theorem 1: Let (f, g) represent o, thus g is a nullhomotoupy

of of; £ Sk-—v‘* W. We may extend (f, g) to (f, g) defined on Sk an‘k,

-4 k -k . .. .
D + > Dn respectively, using the natural projections, By hypothesis we

%
have a bundle equivalence F : yW —> o pX. Then

k : n+N

ko pt¥fer

( ) Pyw — £ 5% = §hx — N — s )

ie 2 bundle equivalence; the nullhomotopy g determines the equivalence wit
the trivial bundle sN.

Combining this with the equivalence
k -k 3 - %
2y 76 xD" Y@ f TW = 1(s* x 0"5) @ 'rw

and noting that for any manifold Q, TR® »(QC EN) = TEN[Q = cN, we obtain

the equivalence represented by the horizontal arrow in

(3) T(8* x pP e M—sttwe eM

|

TW & ¢

¢ —————
s

The vertical arrow in (3) is a bundle monomorphism (fibres are

( 1napped homeomorphitally onto fibres) and is obtained from the constructicn
i
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of the induced bundle [12].

Thus the diagonal arrow in {3) is a bundle monomorphism, Itis a result
of bundle theory [ 2] that this monomorphism is homotop1c through bundle

snonomorphisms 1o the surn of a monomorphism T\S X D" )-—-9- TW and the

identity sM —>E 4

We now appeal to the Immersion Classification Theorem of Haefliger and
Poenaru | 1], This theorem states that a bundle monon‘;orphism '
o T(Sk X Dn-k) —> TW determines a regular homotopy class of jmmersions of
Sk pes .‘Dn_k in W. Any representative immersion T détermines a monomorphism
af : T(S x D" )——-9 TW which is homotopic through monomorphisms to &.

df can be represented 2s the map T x{f restrictedtoa neighborhood of the

diagonal in (S xD ) ® (S b4 D ).

Thus (f, g) determines 2 regular homotopy class of immersions of

k -k
S X p" in Int W; it can be shown that this class is independent of the

representative (f, g) of ac Tht l(q;). If this class contains an embedding {,

we can do surgery as described on page 4 50 25 to obtain
-k k+1 -k
wio=w-Es xD™ )uf-m’r 5"kt s
Since (Pf is nullhomotopic, - IW - I(S % D" ) extends to ¢ Wi —> X,

Finally, one can check that the bundle eqmvalence F|Im T corresponds under df

i.
to the standard equivalence y(b}‘ b e D -k E - EN n)-——> eN. It is not hard

to see that this last equivalence, when restricted to Sk % s n-k-1 extends to an

equivalence 1;(Dk+1 ® st k-1 cCE C EN+n)'-——> :N (Both equivalences are

.
restrictions of St %D n-k, c E“*l pentl, o Ny
k+1 n-k-1

We now define F' :vW!' —> o"yX by F on yW'|W -ID xS )
and by 1;(12)k+1 Sn'k 1)—-) N> (o' le+1 X S -k'l)* X; the first arrow is
the equivalence described above, the second is obtained from the nullhomotopy
of ¢ |Dk'H Sn'k“1 as constructed. One can check that F' is a well

defined bundle eguivalence; this completes the proof of Theorem 1,
Corollary: If 2k «n, we can do surgery on o ¢ ﬂk“(W).

We appeal to the nGeneral Position Theorem! [ 4); we can move the
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vertices of .f-(Sk % 0) by a small ambient isotopy of w" so that the singular
set of ?[Sk % 0 has dimension ﬁequal to the dimension of k-planes in n.space
in general position, namely 2k-n< 0, Thus f can be chosen in the given
regular homotopy class so that f is an embedding on Sk % 0. f must then

embed some neighborhood [ 8], and we obtain an embedding of s X p" ¥ in

the regular homotopy class of T by shrinking the factor Dn-k.

Theorem 2: If 2k< n we can make ¢ k-connected by a finite number

of surgeries on homotopy classes a in dimension < k.

Proof of Theorem 2:- We replace X by the mapping cylinder of ¢ and
¢ by an i.nclusion.. Attach the simplexes of X - W to W one at a time so as to
obtain 2 sequence of sﬁbcomplexes of X, Let XO C Xl be a typical pair of
successive subcomplexes, which differ by an r-simplex, r<k,

Now suppose (W', o', F') is obtained from (W, ¢, F) by a finite
number of sﬁrgeries. It follows frem the definition of surgery that W' is
cobordant to W (we construct a cobordism /e by adding handles

IDH-1 «D" to Wx1CWxI along st x Dn-l, see figure 3),

D'xD

w
e
We will suppose in‘ductively that we have obtained &/ by adding a
finite number of handles of index < k, together with a homatopy equivalence

o: W'—> Xo. Then 7%/ is obtained from W' by adding handles of index

>nsl-k > kil > r+l,
Hence. W' C 2/ is r-connected, Now let ¢ = G|W s W > X, s0

(4). ATRERALES! U¢,?{, W) sn W/ x1UX, W)= m(X, X)) der .

N
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Choose a ¢ nr((p') corresponding to the element of ﬂr(X, XO) determined by

the r-simplex of Xl - XO' Since 2{r-1)< n, we can do surgery on a §02aS

n-

to obtain (W", @', F") together with a cobordism r778%; D’ x D T oof W

with W', and a homotopy equivalence %/ U p’ xp" T — X, extending &.

This completes the indu

ctive step; to complete the proof of the theorem

we take XO = W U (k-skeleton of X) so0 that XO C X is k-connected, Using

{4) with r = k, we see that ¢

is k.connected.

3. Poincaré Duality

We define duality with respect to a fundamental class [X] in homology

‘the orlentatlon homomorphism

1

-1 otherwise, _

~with tvnsted integer coefficients H (X oxX; Z ), X a manifold, We first define

w ! -rrlx —> {+1} as follows: An element of

X maps to +1 if transport along a representative loop preserves orientation,

W

H (X oX; Z ) is defined as the nth homology of the chain complex of

ordmary sn’nphmal chains on X with special boundary operator a

(390" = £ _lo' : olulvlo, o WMo .

of o. [¢' : o] is the incidence

"Here, { is the usual functional notation for chains; fg is an integral multiple

number, and the loop y[g, ¢'] is defincd as in

figure 4; we suppose that each simplex ¢ of X is joined to the basepoint #
\ .

by a prescribed path from the barycentre ¢ of o.

Now choose an orientation of a neighborhood of *. Note that when ¢

is an n-simplex, we may trans

port the orientation at * along the prescribed

2



path so ac to orient g¢. Using 'this orientation we define a relative n-chain
n ¢ = the sum of all the n-simplexes of X so oriented,

It is not hard to check that n representsa reiative cycle
[X]e I; (A ox; .Z ); in fact [X] generates H (X a}. /Z ) =Z, We now show
that 7 induces, by cap product, an 1somorph1s*‘n C (X)—> C (X oX) of the
cochains on X with the relative chains on (X, gX).

] .
Y We interpret C (X) as ordinary simplicial cochains on the natural

o'MU-W o

triangulation of the universal cover X of X. 171X acts on X as a transfor-
mation group, hence the group ring A: = Z.wl}{ acts on C {X). Thus C#(X)
is a finitely generated free A-module with prescribed basis; the basis ¢lements
are determined by using the prescribed paths above to select lifts of the
cgimplexes of X to X.

~J We interpret C, (X oX) as the chain complex on the relative chains on

\ X modulo = loX{n : X —> X is the natural projection), con-ndered as a

A-mcdule as above, bui now the simplicial chains are taken with respect to the
dual cell decomposition of .

To define the dual cell decomposition, we pass to the first derived, }‘f‘
A typical simplex of X' can be written (&‘0, 61, oo 8k>' + = the simplex
epanned by the barycentres 80, 8-1, ey &. of simplexes o, of X with
o, < o, < iae o - Note that this expression defines a natural orientation for
this simplex, Mow let ¢ be a simplex of X. The dual cell 1{g) corresponding

to o is defined as the subcomplex of X generated by all simplexes of the

~ .S ~ s
form <g, Gyr vnes an>. <o) <... <0, see figure 5,

(o) (az-diz% )

Www LNy
dul wlly 7 << -
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It is clear that dim g + dim Tlo) = 1t can be shown [ 4] that (o)

nd U -1-(0) gives a cell decomposition of X.
e cap product nN: C (X)-—'? C (X 3X)., For con-

sistency of notation, we will represent the elements of C (X), C*(X, aX) by
) be a

triangulates a ball a

We now define th

simplexes in the first derived and M by n. Let <co. e

typical simplex of 7', ¢ an elementary p-cochain correspond*ng to the

- p-simplex © of X. We defme

(1) By +er 8 N =K oo S PRI > -

Here, (cro .., © >, ') denotes the value of o on <UO’ e op)
Observe that th1s expression is non zero precisely when <co, RN €p>

s a simplex of ¢, that is, when ap = & (figure 6).

A
o .
By +rer B

O.!

-6 -

But then (Gp, vens 0 Y is a prmc1pa1 simplex of (o). Thus the (n-p)-

s c s> N o are precmely those which make up r{o).

. 1 . -~ e
simplexes in <o’0 ake

On the other hand, it follows from general principles [10] that the
ells of ;( can be oriented 50 that the homology H*(X oX) of

_module can be calculated from the homology of the

dual ¢
~  _1
(X, X) as a A

complex C (X §X). We can obtain this orientation geometrically as

jollows, for the basis elements of C (X 2X) as a A-module given by

the cells T{o) o a basis element of C (X) chosen previously:
at the join g&- T{g) is an D- dimensional ball in X. 1if
ion at the base point of X (a lift of the orientation

(o) by transport along a lift of the

Observe th
we choose an orientat

at *) we obtain an orientation of o

prescribed path from * to ng. The orientzation of T{o) is determined

by the condition that the orientation of ¢ followed by the orientation of
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each principal simplex of 7(o) gives the orientation of o (o) (figure 7).

o rlo) "7~

We now look at the effect of m N on the oriented elementary cochain ?;.
First note that we may orient the simplex <&‘0. eens 8n> of n' concordant with
the n-simplex of 7w in which it lies, say by a(’&o, cens a-n> , a = +1, Similarly,
we orient each simplex <€0, . ey 3p> of o' concordant with ¢, say by

ﬁ(&o. ceen 6p> . The formula (1) above gives
A ~ - - -~ Y
a(Uo! s+ 0y O'n> n (02 uB <GP| .4 e) Un> )

and B<Gy, ..., o> followed by 0BG, .0 GO BIVeS al5p .o, G
so that n' Ng' is the sum of the principal simplexes of (o) oriented as

above, that is, the oriented cell T(o).

%*
Thus, nnN:C (X)—> C*(X, 9X) is a correspondence between oriented
basis elements, and extends A-linearly to an isomorphism, A calculation [10]

shows that

n.-pt+l

3(n' N o) = (-1) (n' Néo')

and so n N preserves cycles and boundaries; similarly for (n ﬂ)-l. Hence,
n N induces A-isomorphisms [X]n: Hp(X) e Hn p(X, 2X); the Poincaré€

Duality Isomorphisms,

*

Remark: The bases of C (X) and C*(X, 9X) set into correspondence
by n N may also be obtained as follows: Consider the triangulation of X,
together with the dual cell decomposition of X. A choice of prescribed

paths from the basepoint ¥ of X to the barycentres ¢ of simplexes of X
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gives 2 prescribed 1ift of each simplex o and each dual cell T(g) to S{'; note

that o ¢ Int (o). These lifts determine the bases described above.

A map ¢ (W, aw) —> (X, 3X) has degree 1 afit preserves the
twisted integer coefficients and fundamental classes defined above, We will

now give the form in which the Poincaré Duality Isomorphisms are used,

Theorem 3: Let ¢ (W, aW) —> (X, oX) have degree 1. Then the
exact homology and cohomology sequences for (W, 3aW) split as direct sums of
the corresponding sequences for (X, 3X) and seguences K* = Ker (p*(t_'p* onto)

* C
and K = Coker ¢ (g 1-1) respectively. Further, the duality map (win

induces jisomorphisrng

K¥ow) — K (W, aW) and K (W, aW)—> K (W) .

proof of Theorem 3: Write Hk(H'k) for the cohomology of
W or (W, aW) (X or (X, 3¥X)) and I—In k(H‘n k) for the homology of
w or (W, aw) (X or (X, X)) resﬁectively. The following diagram commaiuties

by naturality of cap products [10]:

*
k
0<—-—-Kk <-————Hk LI T\ 0

h/"lp‘_\- )
win |\ . /| i
A/
—_— — —_—Hu -7
0 Kn-k Hn-k @y Hn-k 0

* * ) )
Now @V, = ] and ¢y ¢ =1 so W€ obtain the desired splitting in each

k k

k #
dimension; H =K &9 H

. Hn-k = Kn-ke "D*H'n-k' It ;s not hard to show
that [WIN preserves the splitting. Finally, note that ¢ and ¢, BT€

homomorphisms of exact sequences, t{Lat is, the sequence operations preserve

k¥ and X
an *c
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4. Some Algebraic Results

A A-module P is called projective if the diagram

k/

v
A > B > 0

can be completed, that is, if for any A-modules A and B as in the diagram,

the map denoted by the diagonal arrow exists 50 as to make the diagram

commute,

Lemma: P is projéctive if and only if P is a direct summand of a

free module,

Proof of the Lemma: Suppose P projective, let F be a free module

mapping onto P. Then the sequence

0 —> Ker { >F£>P > 0

splits, and so P @ Ker { = F.
Conversely, let P @ P' = F, Then

P PP =1

l A

A——>B —> 0. extends to A-——> B——>0

and we may restrict to P the map given by the diagonal arro@.

‘Now let A, B, be chain complexes of projective modules and
f: A* —_ B* a chain map which induces homology isomorphisms, We will
ghow that f is a chain homotopy equivalence, hence { also induces
isomorphisms in cohomology. To see this, write C_ for the chain complex
of the mapping cylinder of f; Cn = An-l @ Bn with boundary operator
a(C) = C_ —> C_; 3(C)a, B) = 3(A)a + (-1)fa + 3(B)p. C, is then an
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for all 1, Z0 = CO. By induction,

will exh1b1t a cham homotopy o
1t then follows that f

acyclic compl&x 1 proje'chve modules We

equivalence of C with’ the tnwal chain complex 0 oo ]

is 2 chain homotopy equivalence.

Since H*(C*) is trivial, we have short exact sequences

(1) 0——-:»21——->c:i—--—>zi1-——>0

the definition, and the Lemma above, Z.i is

projective for all i, and the sequences split, giving for C,

— — — —_—— 7 —>
(2) Zk & Z.k.1 Zk-l & kaz v ZO 0

jous compositions of projections and inclusions.

where the maps are the obvi
G the map which sends

Now let F be the map which sends C to 0*
0, to C,- Clearly, FG =0, the identity on 0, Also, GF = 0, We now

define a boundary operator &2 such that a(C)ﬂ + ﬁa(C) =1-GF = <. Such

an operator L is given by composition of projections and inclusions:

— ’
Zk @ z;k-l Zk+1 ® Zk

We will call the A-module S stably free if it ie the direct summand

of a {ree module, with free complement. 1f S is finitely generated, we will

ment also be finitely generated.

require that the free module and the comple

Let ¢ (W oWy —> (X, 8X). Suppose. with
-0 for ifk; and H (,;p;L):O for
generated stebly free A-module.

Theorem 4:
A= 2.111)( as coefficients, H, ((p)
any A-module L. Then H (¢) is a finitely

Proof of Theorem 4: We re'place (X, 9X) by the mapping cylinder

of ¢ and ¢ by the inclusion, We then calculate the homology of ¢ from

the chain complex C* : = C*(X, W U aX).
For i< k we have the short exact sequences (1), with ZO = CO'

'i"hus, by jnduction, Z, is projective and these sequences split for i< k.
! 1 -
-1t follows that Hk((‘o) is finitely generated; it is the image
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Ck——:» zk——:» Hk(qp) of a finitely generated A-module,

Now observe that the inclusion ¢ C'* C C*

vy, — _ = > > >
Cx Cri2 Cyt1 Zy 0 0

induces isomorphisms in homology, By the remarks above, U induces

isomorphisms in cohomology; in particular, for any A-module L, Hk+l(C‘*; L)y=0,

Let us regard g : Ck-l—l — Bk as a cochain on C'*. Since
{c, 63) = (3¢, ) =99c =0, itisa cocycle, But now, with L above set equal to
Bk' HkH(C' ' Bk) = 0 and so the cocycle is a coboundary, say
g
—_ > >
> Ckr2 Cenn T > 0 4

N, |
]
L 4
By

thus 0~—> B, — Z, —> Hk(qp) —> 0 splits, Z = Bk @ Hk(¢) and. Hk(¢) is

k k k
projective, We zalso have ‘_:) - -
(3) Bk @Hk((p) & zk-l = Zk & Zk-l = Ck .

Now consider the acyclic complexes C;;, Cy:
no, —_— —
Cy teee —>Cpp ™ G T Bk 0

C::: ves —>0 ———)Zk_‘l-—-?Ck_l—}Ck'z———}...

C; & Cl is of course also an acyclic complex of projective modules, hence ﬂ//z/

by (2) the sum of the odd terms equals the sum of the even terms, Thus, (
l_}M

(4) Bkezk-lgclﬂzsck-ze'”:CRHGCk-le'”

and adding H.k(;p) to both sides of {4) we have, using (3),"

Cke}cl&z@.Ck-z@“' =Hk(¢)®Ck+1 ®Ck_19... .
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1t follows that Hk((p) is stably free.

A stable basis of a stably free A-module S with free complement ¥, is

a basis for the free module ¥' = SO F.

Theorem 4, continued: Hk((p) has a preferred equivalence class of

stable bases.

In order to select this equivalence class, We sketch the definition of the
torsion of the chain complex Cui for precise information, see€ [ 4]. Note that
C* has a preferred base as in §3. Now choose some stable basis for Hk(‘P)'
as well as bases for Zi' Bi'
For i<k, the short exact sequences in (1) split and we can compare the
bases of C with the bases of Z.i & Zi-l' and so obtain matrices Q.. For
=k, we obtam a matrix o, from (3) which expresses the basis for Ck in
terms of the basis for Bk e H (q)) & Z Rt Also by (3), Bk is projective,
( thus Cy ., = Zyiy ! & B, and we get @ corresponding matrix o),y We obtain
matrices a. ;> k+l as for i< k.
The matrices &, are of different sizes, but they all are nonsingular
and so determine element* [a ] in GL(A) = 1:.m GL (A) (... C GL (A) C GLrH(A
We now consider the subgroup of GL{A) generated by all the elementa.ry matrice
which could reasonably be considered in this context, bearing in mind that A 18 ¢
group ring. The factor group of GL(A) bY this subgrouvp is called the Whitehead
(Moup Wh(-:rIX). The class of

{’GL (/[:]‘) cue [ni+1]-]i[ni][oi_1]-1[ni'-2] ven [no] ¢« GL{A)

in Wh{w X is called the torsion T{C of C..
(7, X) (C,) w‘]
-r(C )} is jndependent of the choice of bases for 2. B . but it does
depend on the choice of bases for G, H.k(q;)) In fact, 1£ we choose another
stable base for H (cp) whose matrix with respect to the first base Tep¥ esents

T, an arbitrary element of W’h(-n X), the new and old torsions are related

by the formula:

’ k
Tnew(c") - Told(c#) -1 .

- S P e S

.



,..-A We may thus choose a stable basis for Hk((p) so that T(C*) = 0, This
s - defines an eguivalence class of preferred bases for Hk((p); two representative

stable bases differ by the elementary transformations referred to above.

Remarks:

{a)If C, is the chain complex of the mapping cylinder of a homotopy
equivalence ¢, and T(C*) = 0, we saythat ¢ isa simple homotopy
equivalence,

(b} An isomorphism L —> L' of stably free A-modules with prescribed
bases is called simple if the image of the prescribed base for L differs from

the prescribed base for L' by the above elementary transformations, that is,

£

e
if the difference is expressed by a matrix which represents 0 ¢ Wh(rrl}().
5. The Even-Dimensional Wall Groups
In this section, we will consider the surgery problem (W, ¢, F), with
_ W a manifold of dimension n = 2k. By Theorem 2, we mayA suppose that ¢
{ is k.connected. Thus, ¢ is homclogically and cohomologically k-connected,
(A On the other hand, we have an exact sequence
1
ee > H. (W, W) 25 H_ (X, 3X) —> H s HL(W, 3W) % 1.(X, 2X) —>
ead in which eaéh T is onto, by Theorem 3. Hence, H. ((p) = K,(W, oWy for
all i, a.nd so K, (W W} = 0 for i< k. Again by Theorern 3, KI(W) and
hence K (W, aW) 0 for i>n-k (qglaw is a hornotopy equivalence), Using
: %
i a similar sequence involving ¢ , we have that K (W, aW) =0 for
; i<k, Ki(W, aW) = 0 for i>n-k,
') = n) = i = =
Thus, K(W, aW)=H, (¢)=0 for i/k, K (W, 8W)=H_ (p) = m (o)
by the Hurewicz Theorem [ 3]. A similar argument shows that
k
i +2(¢, L) = 0 for any A-module L. Hence, by Theorem 4,
. = . v, aW) i ini
G wk+1(¢) k+1(¢) Kk{\ aW) is a finitely generated stably frce
A-module with a preferred equivalence class of bases.
N We now describe the elements of G as representative immersions T
% A .
{ /
. < . A
’ G4 7(2-“@) 5 oi) s
'E ." (w% 1} ,n
!
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ijn the regular homotopy classcs given by Theorem™ 1, 1 s* % Z{Z)n“k —> W, As
we now regard ‘these classes as elements of 2 A-module, We prescribe also a
1ift S‘k e Dn-k ——5 W for each such representati\'e; alternatively, @ path
jeading from the basepoint of T{Sk X Dn'k) to the basepoint % of W,

We add two jmmersed gpheres by taking their connected sum along an

_embedded arc tracing out the prescribed paths in & natural way {figure B).

{1
e — %
s " ‘% '-—’
. — = . . k n-k .
Let fo, { denote two such rep-resentatwe jmmersions of § %D in
{
4! _ _ x
(' w, {0 = fO\Sk v 0, fl = fl 8™ x 0. By ngeneral position' We may suppose that
S, := Im--fo and S1 ;= Im fl intersect like hyperplanes of dimension k in
: « _
general position in EZ ., That is, We suppose that each point of S. NS .has a
k :k 2k 0 1

neighborhood U piecewise linearly equivalent t0 Ay Ay CE so that
SO nU maps to A}; C Ek % 0, Sl nu to Al: C Ox IZ:k under this equivalence.
We say that £0 and fl intersect transversely.

The jntersection number MSO, Sl} is now defined as an element of As
at each point P of intersection W€ assign an element 'gP € 1r1X, EP = _+_1. gp
ijs the class of the loop leading from * to tbe pasepoint of S1 by the
prescribed path, along & path in S} to P, along S0 to its basepoint and

4 ~back along the prescribed path to *.

To define EP we orient W at ¥ and trunsport this orientation along
the prescribed path to the basepoint of S0 and along So to P. tp ig 1 if
¢he orientation of S‘0 {followed by that of S1 agrees with the orientation at

(_ P, -1 otherwise. We define NS Sl) as the sum of £o8p over all

points PeSoﬂal. ‘
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Similarly, we define the self-intersection number p.{So) of an immersed

sphere S§_ with transverse self-intersections, p{SO} takes values in the

0
factor group A/l which we define as follows: Let a —> a be the involution

on A givenby: a-= }_‘,agg —>ac= Eugw(g)g-l. The subgroup 1 is deﬁned as

- (-0 e, Y

Now if SO is immersed with transverse sélf—intersections, then two

branches cross at each point P of self-intersection. If we order these branches

arbitrarily, we can compute Ep ‘and gp 25 above. On interchanging the order,

k
we obtain {-1) m(gp)eP and Ep respectively, Thus the difference

. -1 er——
chP - ('1) w(gP)EPgP = EPgP - (-1) EPgP
in A/1 does not depend on the ordering of the branches,

is an element of I, ang so the

class p.(SO) o£~2:PgP

Theorem 5: The above intersection numbers define a map
%:GxG—> A such that -

(1) Mx, yB +y'B') = Mx, VIB+ Mx, y')B'; B, BeA

(2) My, %) = (-1 N, y).

Self.intersections define a map p : G —> A/l such that

(3) Ak, %) = u) + (-1)5i(x)

(4) M, y) = plxty) - plx) - pnly)

(5) p(xa) = :p(x)u; ael

Proof of Theorem 5; We must first show that A defined above is an
invariant of the regulay homotopy classes, -To this end, let SO' S1 be
transversely intersecting representatives, regularly homotopic to S|, S‘l
respectively. We now place the regular homotopies, regarded as level
presexving maps of Sk x1 in WZI'< x 1, in general position-.

The set of points of intersection then kas dimension 2(k+l) - (2k+1} = 1,
It can be shown that the free faces of this set which do not meet W x gl can
be removed by further perturbations, It follows that we can choose the
regular hom:;topies so that they intzrsect only in circles and intervals

(figure 9).
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1

Thus the intersection number A as a function of 1 is constant except
at a finite number of critical points where paired intersections appear OT
disappear together. Thus A is constant; 7\(50, Sl) = MS', S‘l). Similarly,

p(SO) is a regular homotopy invariant {figure 10).

\\é, - )
-16 -

We now prove (1). Note first of all that the form X 1is bilinear over
the integers; we simﬁly choose the connecting tubes (figure B) so as to contain
no points of intersection. In replacing S1 by Slg, we replace Ep by BpE
at each jntersection point, Thus, L(S s g) = MS , S )g and (1) follows.

To prove (2}, we argue as in the deﬁmtwn of p. given above; on

jnterchanging S0 and Sl, tp

To establish (3). we compute A\x, x) by taking two representatives

k
for x, say SO =f (S )- T (S % 0) and S' = fD(S % 1) (figure 1),

gP is replaced by (- 1} [ gp
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Each self-intersection of S0 gives rise to two intersections of SO and S'O, in
which each ordering of the branches occurs once, Thus, with pu(x) = EngP,

Ep] = ulx) + (1K) (mod 1,

As to (4), the self-intersections of 56#51 are those of SO’ those of Sl’

(T

k
Mx, x) = Ele g+ (-1) €

and the mutual intersections of S and S_.

0 1

i
We show (5) for a=ge -n'lX. As in the proof of (1}, ePgP becomes

-1 - . . . .
= nant
m(g)epg gpt chPng. The case in which a is an arbitrary element of A
is proved by a lengthy computation, which we omit,

Theorem 5, continued: The adjoint map A} : G —> HomA(G, A) defined
17,

by sending x to the map y —> A%, y) isa sifr'xp e isomorphism of G with

its preferred stable basis and I-IomA(G, A) with a preferred stable basis
which we describe below,

We give HomA(G, A) a right A-module structure by defining a left

A-module structure on G as follows: Mx = xx, With respect to this

structure, A\ as defined above is a A-homomorphism by (1) and (2). To

show A) is a simple isomorphism, we consider the following diagram:

i

K (W, oW) - K (W) <—m , Kk(W. aW)

R
(6) AX l lj
ek

U kil
Hom , (K, (W, 3W), A)<— Hom,(H_, (), A)<——H""(g)

Here, i* is an isomorphism, for the extreme terms in the exact

geguence
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i*
— W)y —> y —> d 7y —> ry —>
K (aW) —> K W) K (W, gW) —> Ky (oW
%
vanish, j isan ;somorphism by an argument sirnilar to that on page 17,
L3 B *
and j is the jsomorphism algebraically induced by J§ . U is the
ijsomorphism given by the Universal Coefficient Theorem [ 10}, Since (win
js an isomorphism, it follows that AX will be an isomorphism if the diagram
(6) commutes.
We now prove commutativity; first proceed clockwise around the

diagram starting at X ¢ Kk(W, W), We obtain

x————:vx—-—é([w]n) x———>[h——e»(h s((wWin~ x)]—-—>

—> [ph —> (b, s({WIN 1 = (ah, (IWINY 10y = [y —> (v qwin’ ) .

Represent X, ¥ by smmersed spheres SO’ S1 respectively, which
jintersect transversely. In order 1o calculate ’ ( , (v n) ) where we
regard S'o and S‘1 as k-chains in the first derwed we 11£t S0 and S1 to
W using the prescribed paths from %, Note that SO‘ S1 are not neces sarily
simply connected,

" Let o be2 typical simplex of SO' g e 'rrl'W. Then {0 ﬂ)"ls'1
evaluated on ¢'g is 2z€ro, unless a principal simplex of the dual cell T{og)

lies in S'1 that is, when oE « S1 see page 10.

In this case, with Als, AI; as in the definition of transversality,
-1 K ok -1k : , i
(c'g, (n'N) S') is equal to (A (AO- Al n A )g where the orientations Ot
A};, A1; C Alga AI; C Ezk are obtained from those of SO' Sl cC W at &

It is not hard to see that the dual cell of A}S is the second derived
k k k

k
neighborhood 5§ of 0= A nAk in Al; where AO' AIC Ao Al have the

usual onentatzons Thus, mth the usual orientations,

(AO, A‘S AN 'a )-(A.{A A - 1g) = 1. It follows that (o'g, (v M) 1511} =4

according as the ov1entatmn of ¢ at & obtained from S followed by that of

..“.v1 at § agrees or not with the orientation of W at 0.
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Summing over all the points of intersection of S1 and translates of S{’)
by elements of -nlW, we obtain

(7) Mx, ¥) = (v, (W) T%)

thus the diagram (6) is commutative, and A\ is an isomorphism,

To define the preferred stable basis for Hom, (G, A) we first observe

A
(qo) is stably free with a preferred

stable basis which makes the torsion of C (q;) vanish, C{ sends this basis

that the arguments of §4 :u‘nply that Hk

to the desired stable basis for Hom (G A)., It can be shown that this is
exactly the image under AX of the preferred stable basis of K (W aw). Thus,

with this convention, A\ is a simple isomorphism, and Theorem 5 is pr oved

Theorem 6: Let x¢G., If k>3, x is represented by an embedding
if and only if p(x) =

Proof of Theorem 6: An embedded sphere has seli-intersection number
zero. Conversely, by hypothesis, for some ordering of the branches at each
self-intersection point of a representative immersed sphere SO' ZaP p¢ 1.
Let eg be a typical term in this sum; then the term -{- l)kw(g)zg e must

also appear, If cg is associated with the self-intersection P, (-1} w(g)sg
with P!, then by reordering the branches at P', we obtain eg and -eg

respectively,

With this ordering, the loop in S0 defined by paths =, 7 chosen as

2nd bra%—»:o\lst braneh ﬁdg}\

P! P

— N -
lst branch\ *6‘/

2nd branch *0 is the basepoint of S

in figure 12 is the difference gg  and so nullhomotopic

00

By "gencral position" we rnay represent this loop by an embedded

2 H
circle S1 bounding an embedded disc D2 C W such that D N 50 =S

(figure 13); this requires dim W >4,



<[5

24

We may now pass 2 ne1ghborhood of . m in S0 across D Dbyan jsotopy fixed
outside 2 ne1ghborhood of D so that the new qt misses T. The effect of this

procedure ;s to remove the gelf-intersections P and P'. For details, see

[4]or [6]). Thus, wWe may remove the sel- mtersectmns inductively in pairs

so as to obtain an embedding representing *.

Remark: - Similarly, if Mx, V) = 0 we can remove the mutual intersecticns cf

x and vy, if k>3,

We now show how the algebraic structure given in Theorem 5 is connected
with the surgery problem. Wwe call (G, N p) asin Theorem 5 2a Special
Hermitian Form. In what follows, We€ will need to assumeé that G is iree with
an actual preferred class of bases, Wecan make G free by adding a finite
number of free summands; but we must at the samé time extend A and p.

This can all be done geometrically in a natural way by doing surgery

on the trivial element of 'ﬂk((p). We represent this element by 2 nullhomotopic

- + X
jmmersed Sk ! X Dk 1. By “general position" applied to the nullhomotopy, Wwe

k-
may assume S ! % 0 is embedded, and is isotopic to 2 (k-1)-sphere inside

an n-disc DZk C W. By Zeeman's Unknotting Theorem [ 4 ] we may suppose

that this (k- 1) - sphere 18 the standard Sk 1 ¢ Dzk.

k- 2
Now observe that surgery on the standard S les X g:ves S x Sk,

k k k+l '3
for S xSR=S ankH -6) UDk\xa kH'{B(D_XD ¥ )-aD_xD ]UK’

- k
2k Sk ! x D +1]UD xSk (figure 14).-
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It follows that surgeryon Oew (cp) replaces W by the connected sum
Wt Sk X Sk G by G & Ae & Af where e, { are the classes of Sk ¥ 1 and
lek respectively, Further, \e, €)= AME, £) = 0, ANe, {) =1, )\(f e) = (- 1) .

p(e) = p{f) = 0 with the usual orientations on Sk x1, 1% Sk C Sk X S “(figure 15).

-5-
The Special Hermitian Form given by (Ae ® Af, A, ) where ) is

described by.the matrix

0 1
1% o

with respect to the basis e, £; p(e) = p(f) = 0, is called a standard plane,
and the orthogonal direct sum of standard planes is called a kernel,
We now show that the orthogonal dircct sum (G, A ») ® (G, -\ -p)

is a kernel, First, we prove the following lemma.

Lemma 7: Let (E. -i, ;_1) be a Special Hermitian Form in which G
has a free submodule H with A(H x H) = 0, k(H) = 0, Also suppose the map

G/————9~ Homn (H A) induced by A is a simple is‘omorphism with respect

toa preferred basis {or G/H and the basis dual to a preferred basis for H.



26

Then (_(3 -}-\ ;) is a kernel,

Proof of Lemnma 7: Let {e } be the preferred basis for H. It follows
that the dual basis {ei} induces, by 3, a preferred base of G/H,
N aT Ty = - -
{?i}' Me,, fj) 615' If K, € p(fi) and

— k-1 -—
T, =T+ (-1 e, + Ty MG Blegd
johr el o U i)

one can check that ;(:?) = 0, '{(Zi, -‘.(-j) = Bij' M?i, -f:i) = 0 and so the basis
{e , f } gives (G, % B) the structure of a kernel, This proves Lemma 7.
Now write (G ;\, p.) = (G, h, p} ® (G, -\ T H for the submedule of
‘G generated by {e } = {(e , e, )} It is not hard to see that MH x H) =
p(H) = 0, Also, the map G/H-—->Hom (H A) induced by )\ is a simple
isomorphism, for with respect to the basis {{0, e, )} of G/H and the dual
basis {_*} of Hom (G, A), the matrix of this transformatnon has (i, j)th
place (0, e, ), (e v e Y) = -?\(e , j). That is, this matrix is the negative of
the matrix of t}w 1somorph1srn A'Jx with respect to the preferred bases. Hence,
by the Lemma, (G, A 1) ®(G, -\, -p) isa kernel,
We introduce an equivalence relation on Special Hermitian Forms by

jdentifying two forms (G, A\ #) and (G', M, ') if there are kernels K, r

so that
(G, A P)ex: (G, M, P’t)eKi .

Since the sum of kernels is a kernel, this equivalence relation respects
addition and so defines an associative, commutative addition on the egquivalence
classes of forms. Note that a kernel represents an identity element, and that
we have demonstrated above the existence of inverses. Thus, the equivalence

classes of forms form an abelian group, the wall Surgery Obstruction Group

sz(n‘l}(, wX).

Theorem 8: Let (WZk, Q@ F) be a surgery problem, © the class of
(G, N\ p) given by Theorem 5 in LZk('vrIX. wX), If 8=0 wecan do surgery
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to make ¢ a simple homotopy equivalence, provided k >3,

Proof of Theorem 8: After a finite number of surgeries on the trivial

K (W) = K.k(W, OW) is a kernel, with
standard basis ¢ ...e , f .. { Me,, j) = Mf,, fj) =0, Me, ) =8

element of 'nk(qp), we may suppose K

ple,) = p.(fj) =0, lsmce ,1(ei) =0, theclass e ¢ K(W)=m  (p) is K _
represented by an embedded sphere S (Theorem 6) on which we can do surgery
(‘Theorem 1), obtaining, sa‘y, {W‘, ¢'s F'). Let 7/ denote the union of W x I
with a (k+1)-handle whose attaching sphere is S, so that 3%/ = WU W' U W x L.
Then, in the following commutative diagram of exact sequences, the groups not

listed vanish since ¢ is k-connected:

/NS TN SN NN
0 KW Km(?f/‘w) K (W) K @0W) o)
NN/ N NS \/" \/
}r+1(M LS 1(‘/3"4 K, (@) X (sz :
\/ NUVZAVIRNVIRN

K, (W)

AN f\ / \ /\.-../

We now show that a is 1-1 and B is onto. In fact, the homomorphism
- k+1 .
a: Kk+l(a/: W) —> Kk(W) takes e {the core of the attached handle) to its
k+l

attaching sphere aekﬂ = 8. Note that Kk-t»lm/: W) is generated by e

. k+ .
since Zf‘:-’WUe 1. Since S represents er, a generator, a is 1.]

(figure 16},
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k+1

'Y

7/, W') takes X to

We will show that g: K (W)y—>H (2N —>H {
k k k K+l
in the attached

k is the k-cell dual to e

k(er, x)[ek, aek], where €

" handle, Note that W= w ue . ,
rsed sphere

"Let x, a generator of ILK(W). be represented by an imme
WwWrite h = ek ® ek“, h = ek xS, Under
h, h),

ts S t¢ransversely.
Nnh, S nfx) in.the homology of (

g which mee
st CWxl represents (S

excision,
k k
(e, e )- Since S an

a & intersect transversely,

which is generated by
k .
oe ) according as

to :t-_(ek,

Nnh, & nfx) js homologous
PeSNS is +1

each component of (S
the orientation sign tp at the corresponding point

(figure 17 ).
’ k
e‘k-l-l e
------
!” by
g "‘ “\
* r b Y
7 ' ~
7 /,,-"'"- ..‘.‘: \n
I'/’ A7 e Y
' »” . Y
(G 1)
. \\~ ’f +
St R - pt S

W

Summiing over the points of sn S, we have the desired result for generators,

hence generally.
ir) =1, p i= onto. Now from the commutative exact

Since ).(er,
=0, 50 @'

diagram, Kk I(W‘) and I{k+l(W') is k.connected. Also,
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Kk+i(w' 4%/) = Ker § = the submodule generated by e, ... e, £,... £y
Further, Kk(\”) = th(Z/. p%)/imy, and Imy = Ae . So Kk(w') is

generated by SRR Y fl .o fr X and moreover these elements can be

represented by spheres disjoint from S in (Wx1l)nw,

Also, the preferred base of Kk(W) is chosen so that the torsion of
C*(qp) vanishes. Inductively, the same holds for Kk(W'). Hence, finally, we
obtain (W', ¢', ¥') with Kk(W') = 0 and the torsion of C*((p') = 0, Hence,
@' isa simple homotopy equivalence, and Theorem 8 is proved.

Let us make some calculations, for wlx = 1. In this case, w=1, A=4Z,
the involution on A is the identity, and Wh(w) = 0. In particular, every
isomorphism of a Z module is simple, - Now consider Special Hermitizn Forms
(G, \, p) as given by Theorem 5, There are fwo cases:

Case 1: k even: = 25, Here, (-i)k =1, and 1=0, G is a finitely

generated free abelian group, A is a nondegenerate symmetric bilinear form

over the integers, with associated quadratic form u. )\ is even, thatis,
Az, x) is even for ail X,
We define a homomorphism L, (1, 1)—>Z by o/8: (G, A\ k) —> o(r)./8;
o{)\) is the signature of ), that is, the number of positive terms less the
numbc:; of negative terms after \ is diagonalized over Q.

Note that ¢/8 is additive, Also,

-1
i 1 !01

1 -1 \1 0 2 0 -1

ol
LY )
oy
[ ]

-

so that ¢/8 vanishes on kernels, It is known [ 9 ] that the signature of’a non-

form over the integers is divisible by 8,

thus g/8 is a well defined homomorphism,

We now show that ¢/8 is 1-1, If g{A) =0, itisknown[?9 ] that A

has a2 nontrivial zero, say Mﬁ!' Bl) = 0 with [3}l ;f 0; we may as well

assume that {31 is indivisible, that is, pl is not a proper integral multiple
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of some other element of G. Since ) is nondegenerate, A\ is an isomorphism
and there is an a with )\([31., a) ;10. Choose o 80 that Mpl' a) > 0 is as
small as possible, then, by the division algorithm, for any Y, Mﬁl, y) is a
multiple of \B,, a). Again since A) is an isomorphism, B, is divisible
by h({sl, a), so that 7\({31, a) = 1.

Now let B, = a - (Ma, a)/2)[31; note that A a, a) is divisible by 2. It

follows that MBy. B,) = 1 MBy By) = O and p(p,) = u(p,) = 0. Thus

Z.ﬁ1 ®£62 is a kernel, Let H denote the set of a ¢ G with )\.([31, a) = 7\({32, a) :
Then a - e, {32){31 - Ma, {31}[32 ¢eH and so G = Zpl & Zp, +H., If

Y el.ﬁl @ Z[32 A H, then AMY) vanishes on H and on Zf, 62.[32. Thus the
last sum is direct, and by inductior G is 2 kernel.

To see that ¢/8 is onto, consider the 8 x 8 symmetric matrix (aij)

T s P 1 for

i< 6, as’ g~ as’ 5 = 1 and all other entries zero. (ai'j) represents a non-
degenerate even symmetric bilinear form X\ :/Z8 X ZS —»> Z with signature §&.
Case 2: k odd: = 2s+l, In this case, G is again a finitely generated
free abelian group, A isa nondegenerate antisymmetric bilinear form over
the integers, and p has values in Z/2Z.
Note that A(x, x) - 0 for all x, Proceeding as in Case 1 we can find
a symplectic basis e v e fl fr for G, thatis, a basis such that
Mei. ej) = Mfi’ fj) = 0, R(ei. fj) = 61" We Adefine a homomorphism
c: L4s+2(l, 1) —> Z/2Z by c{p) = Ep(ei)p(fi), the Arf Invariant of p.
c(p) is independent of the choice of symplectic base.

Now c is 1-1, For, if c(p) = 0 it follows that the number of

values of i for which p.(ei) = p(fi) =1 is even. Group these generators in

consecutive pairs. Then the transformation

e‘l --—¢=1+ez :f‘1 :i1
e‘z = e, i'z = fl + fz

gives a new decomposition of Ae, 14 Afl @ Ae, @ Af2 into two planes with
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Me'i e') = l(f‘ f') =0, Me'. f'.) = 6... p(e' ) = p(f') = 0.

By mductmn we obtam a set of generators e‘1 oo e'r, f'l e f'r and
a submodule H generated by t*:1 , '2, ceey € 1 f’ such that MH xH) = 0,
w(H) = 0, It is not hard to see that the map G/H —> Hom(H, Z) is a simple
isomorphism, and now G is a kernel by Lemma 7.

To see that ¢ is onto, take G = Ze ® Zf with p(e) = p(f) =
Me, e) = £, ) =0, Ne, f} =

We now show that each element of LZk(-:r, w), ™ finitely presented,
w:wT—> ZZ, is a surgery 9bstruction.. First observe that, given w, w WwWe can
find a closed manifold X of dimension 2k-1>5 such that wlx =, and w is
the orientation homomorphism for X.

'I‘c; gee this, consider a wedge of circles, one for each generator of m,
with 2-discs attached by the prescribed relations. The resulting 2-complex

K has n1K=1r. We now realize m:w—>zz by a map K : K —> RP(c«) = K‘,uz 1},

" By ''general position' we may as well suppose that x is an embedding of K in

RP(2k). .

Let X be the boundary of a regular neighborhood of kK in RP(2k),
It is not har@ to see, using ""general position' that Ky ﬁlK-—> -rrlX is an
isomorphism, Hence 'rrlx = ., Also, since p(X C RP(2k)) is trivial, it is
not hard to show that the first Stiefel-Whitney Class of X is induced by w,

Hence w is the orientation homomorphism for X,

Remarks:
(a) If w=1, we could simply take g an embedding of K in- EZk.
(b} We obtain even diménsional exarﬁples from X x 83.'

Theorem 9: Let %251 pea compact manifold with fundamental

group w and orientation homomorphiem w, 2k-1> 5, Then we can find a
cobordism W and a map ¢ : (W, 8. w, a W) —> (X xI, XxO UaXxI, Xxl1)
of degree one, together with an equwalence F:yW—>¢ y(X % 1) such that
(8) ¢ |a_W is the identity
(9) ¢|a+w is a simple homotopy equivalence
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(10) the surgery obstruction & for (W, o, F) isa prescribed element

of LZk('n. w).

Proof of Theorem 9: Represent the prescribed element of L,,}'(Tr, w)

49 8
by a Special Hermitian Form (G, A\, 1) with preferred base eyr ve e e of G,
Choose r disjoint (Zk-'l)-discs Di in Int X, and let fl' cees fr be T

standard embeddings, I-i : Sk"1 % Dk —_ D..

Now extend { to a regular homotopy .fi' regarded as an immersion of
Sk ! ka wx1—>X ><I so that f' F |Sk -1 kax 1] is also an embedding. As
in Theorem 5, we can compute the self intersections and mutual intersections of
Fi = fi(sk'l w0 x1). Wecanin fact choose R(F, ) = ple; ) and MF,, F. ) Me,, ¢

To see this, itis sufficient to introduce a single 1-1tersect1on or sel‘
intersection with intersection number +g, g ¢T, since intersection and self-
intersection numbers are additive under composition of fegular homotopies.
We join Pef, (Sk ! % 0) to Plefl (S -1 % 0) by a path obtained by composing a
representative for g on the left and right with the prescribed paths for
fi(Sk ! x 0) and I (S -1 x 0), and deform a neighborhood of P along this path
and across a disc transverse to § (S k-1 w 0) centered at P'., We may change

the sign +1 as neces sary by reversing the orientation along thls path (figure 18).

{, f,
J J ) J
£, £
ANG f/ i

Now use the attaching maps f'i to attach k-handles to X X 1 along

Xx1; let W be the resulting manifold (figure 19).
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The nullhemotopy of fi in Di can :e .used to define an extension ¢ : W —> 3 »1
of the identity on X x I, sothat @ »(X XI) is equivalent to yW,

It is clear that (8) holds. To prove (10), note that ¢ is k-connected and
that Kk(W) = Kk(W, a-W) has a preferred class of bases represented by spheres,
each obtained by gluing together the core of an attached handle with an .F.‘i' and
spanning fi(Sk'l % 0) by a k-disc in Di' It follows that the (G, i, p) of
Theorem 5 are as prescribed,

To show (9), refer to the diagram (6) on page 21, Here, we assume AN
is 2 simple isomorphism, hence so is i*, and irom the exact sequernce,
Ki(aW) = Ki(a+W) = 0 for all i, Note that W is obtained from a+W by adding
handles of index greater than 2, so ﬂla+W = v, Thus, ¢!3+W is a simgle

homotopy equivalence, and Theorem 9 is proved.

6, The Odd-Dimensional Wall Groups

We now consider the surgery problem (W, ¢, F) with W a manifold
of dimension n = 2k+1, We may suppose that surgery has already been done

to make ¢ k-connected, by Theorem 2, From the exact sequence
-—> H W, oW —(p—*B»H X,3X)—>H, (¢g)—> H(W W&}HX"'-—?

and Theorem 3, it follows, as on page 17, that Ki(W, a\:V) =0 for i #k, k+ 1.
Further, Kk(w,‘ awW) = Kk(W) = Trk+1(¢).

" By “general position, " we may describe the generators of Kk(W) by disjoint
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k k
embeddings B, * S xD s W,i=1, cees T in the regular homotopy classes

of immersions given by Theoremn 1. As in the even-dimensional case, we

regard these classes 25 elernents of a A-module, thus we prescribe paths
k k

leading from the basepoints of gi(S x D +1) to the basepoint * of W, We

will suppose that each such path is an embedding 1—> w, and that different

paths meet only in *.
k
in what follows, gi(Sk % Dk+1] will denote the gi—image of Sk x D +1

together with a regular neighbérhood of the préscribed path (figure 20).

k k
Let U= U:-l gi(S %D +1). 1t will be convenient to replace ¢ by a Lomeatopic

map so that

(1) U = D, @aU = 2D
for a 2k+1 dise DC ¥. We obtain this map by first noting that we can replace
¢ dy2 homotopic map SC that U C D, and approximating this map by one
which is an embedding near an snterior point of Ui then deforming the image

of U along radii-in D.

Now write 'Wo =W -1Int U and consider the following commutative
diagram of exact seguences in which xk(w. U) = Kk(Wo, aU) =0 by

construction: ) : Lo
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SN TN N N

0 Ky (We Wo = K (U, 30 K (W) 0
N/ NSNS
(2) K, (W K (0) KW
4 \ /NN
0 K (W, U) =K (W, aU) ka) J

A e S

Note that Kk-i-l(w' U) is the single nonvanisiir;g group in
H (C((p). W U (U x 1j). Itis nothardto show that H  “(C(g), WU(UX n) =
so that Kk+1(“ U) is a finitely generated stably free A-module with a
preferred class of stable bases, by Theorem 4.

We may in fact suppose K_k“(w U) is free and based, To see this,
represent 0 ¢ K (W) b*,' a standard embedding of Sk X Dk *1 ina 2k+l discin W
whose image, say UO’ satisfies condition (1) above. We also suppose U0

contains a regular neighborhood of a prescribed path to %, We write W as

Wt SZk+1' with U C sak-i—l
0

' 2k+1

I\owH 1(S ,U)—H(S)-—O in dimensions 1 < i< 2Kk, ik, and
Hk+1(52k+1, = A. Apply excision to the mapping cylinder; it follows that

2k+1 2k+1
Kk+}(s . Uo) = Hk+l(s , Uo), and so Kk+1(w, U UUO) =

2k+1

Kk+1(w U) & Kk-l—l(s . UO} = Kk+1(W. U) @ A. Thus we may take

Kk I(W U) free and based by adding a finite number of copies of U0 to U,
Again by excision, we have that Kk+1(U aU) = le+1(U oU),

K.k(aU) = Hk(aU) and lSC(U) = k(U). Each of these modules has a preferred

class of bases, which we now describe. Let €1r sees e&r represent the

claeses (g (l X .‘Dk ) B, (1 xS H in (U, aU), we will also write SURERY e.

for the corresponumg classes of g (1 ><S } in gU. Let fl, cens fr represent

the classes gi(S x 1} in 3U; we also write fl, ceen fr for the corresponding
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q
k . .
classes gi(S % 0} in U (figure 21).

Thus, the sequense from upper 1eft to lower right in (2) becomes

) > K (50) —> B0V 0

el...eril.. .fr £1.. .fr

3y 0> K (U 2

el".er
at Me , £y =6, Of
) 13

s have been chosen 0 th
{8U) the structure of

pose the orientation
choice of basis gives Kk

where we sup
so this

C _ COurse, p(e.l) = p.(fi) = 0,
a kernel. _

\ Now coneider the module Kk(W ). Replacing W by Wo
in (6) of §5, and proceedmg clockwise from Kk(W ), we have that
; | K_k(W )y = Ho*nA(Kkﬂ(W aW ), A Thus, Kk(w ) is

* . free A-module, with pre‘erred basis dual to the prefexred basis for

Ky 1(W W) = ESG(W pU) (3W, = aU U W, plaW is2 homotopy equivalence).

- gt follows that the segquenc er right in (2) splits,

ferred basis {e] for K, 1(W
‘Kk (Wo) forms a basis for I&(BU)

a finitcly gep erated

e from 1ower left to upP

20) together with the preferred

and the pre

basis {e:} for

i
(4) 0o — Kh«kl(wo’ au) —> Kk(aU) — Kk(wo) — 0
e‘ L] .e' e L e e*til * e*. e*
. ) R < | 10" 1" r
Fﬁrt‘ner, the segquence (4) is the exact homology sequence associated
1exes of the mapping cylinders

sequence of chain comp
} have

with the short_exact
u—> Wo-——b (W aU), and the bases {e‘} {e

corresponding to 0
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been chosen to make the torsions of the two associated chain complexes vanish,

Now with the basis e €. f fr of Kk(aU) from (3), the torsion of

1 s v e 1 L AN )
the associated chain complex corresponding to gU also vanishes,

A standard formula for Whitehead Torsion [ 4 ] now shows that the
torsion of '

(5 0 — K (W

(W 3U) —> K (30) —> K

(WO) ~— 0

0 k

e']L...e'r el"'erfl"'fr ey,

vanishes; it is a linear combination of the torsions of the associated chain com-
plexes, " Thus the transformation defined by e, —> ei, fi — ef is a simple.
isomorphism of Kk(aU).

We will now show that the submodule H of Kk(BU) generated by
e'1 o > ;
obtain basis elements f'l, ceos f'r from € .o oy e, by an elementary

transformation so that {e;, f.’]} also gives Kk(BU) the structure of a kernel,
We need only show that AMH x H) = 0, p(H) = 0. Now a generator oe'i of

e;_ satisfies the hypotheses of Lemma 7. It then follows that we can

H, as a linear comﬁination of SURERE er, fl’ ens ir, is represented by a
h _ si T . . ' 4 . o
sphere. Since e lies in the image of K'k+l(W0 U}, it bounds in WO in

fact, by the Relative Hurewicz Theorem [ 3], the representative sphere is
k+1 k+1
L}

nullhomotopic in WO. We therefore obtain maps di : (D 8D ) —> (Wo, aU)

k+1

so that the restriction gD —> gU of di represents e'i.
1 : . "
We may suppose diD}c-"1 and dek+ meet transversely in a finite set
of circles and arcs with both ends representing intersections of diaDk+1 and

d aDkH with opposite sign (figure 22). It follows that Me'i, e:].) = 0.

j
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e'

k
Similarly, we may suppose diD 1 has transverse self-intersections;

the self-intersections of d, aDk +! then occur in pairs 88 endpoints of arcs of

seli'»interseéﬁons of dka 1. 1t follows as above that p(e‘) = 0. Thus,
aMH xH) = 0, #(H) = 0 and we obtain a basis {e*i f'} from Lemma 7 which
gives Kk(BU) the structure of a kernel:

(6) 0 —> Kk_‘_l(wo. auy —> IﬁklaU) —— Kk(Wo) —_ 0

¢=:‘1...e:r e'l...e‘rf'l...f'r ill"-'f'r

Now the ¢ransformation of Kk(BU) defined by e —_ e‘ f — f‘. is
an element o of SU (A), the group of automorphisms of the standard kernel,
that is, the group of srmple jsomorphisms of the standard kernel which presexrv:
% and M. )

a depends on the choice of the fl'. oo fr given by Lemma 7. If g
i an automorphism corresponding to another choice of :fl. vend ir' pa”
lies in TU:‘(A)’ the subgroup of automorphisms of SUr(A) which leave H
jnvariant and induce 2 simple jsomorphism of H.

a alsc ‘depends on the choice of embeddings B, representing regular
homotopy classes corresponding to generators of Kk(W). We will show that
making a new choice of embeddings g, in the given regular homotopy
classes has the effect of replacing ¢ by cY. where Yy liesina subgroup

of TUr(A). In particular, the double coset TUr(A)nTUr(A) does not
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depend on the choices in Lemma 7, or on the choice of representative em-
beddings in the regular homotopy classes,
To see this, choose embeddings g of Sk X Dk + in W, regularly

homotopic to g.; let G be the restriction to Sk x1 of a regular homotopy
k
S ka+1 wx]—>WxI between B and gi Let 0= U k kaH),
ﬁ*o = W - U. Then the seguence (3) is isomorphic, by
'g‘:.lg;1 to the Sequenoe

3 0 —> 4, p0) —> §) —s K (0) —> P
) X, (G, 20) X, (30) X, (0)

4 s....88...F f..f
eloo-er el..'erl".r 1...1'

. . s o’\ T
Also, thereisa natural isomorphism § of Kk+1(W0, sU) @ K.K(Wo)
with Kk+l(w0’ aﬁ) & K {W ), which sends the preferred basis

FaY
t t 1 1 T 1 t
el ceer € fl....,fr toapreferred‘oaszs el,...,er I""'fr' We
" will show that # sends the basis el, s € fl. coen I t0 the basis
e ar - IMF;, F )e, vees I - m(F F_)e,; é‘ ! as in'(3), It

1[ ey r J

follows that the automorp}nsm a correspondmg to g , gwen by e — eE

f —_ f' i the composition ay of a with a transformation ye 'I'U (A)
In order to prove the above formula for the effect of g on

1. eeey € . fl' s ey fr' we give an explicit description of the isomorphism

Kk+1(W0, aU)--—>Kk+1(W0, aU) induced by restricting £, Let 0 bea

typical relative cycle representing an element of Kk+1 , 9U); we have
seen that we may represent € by an immersion
6: (D k+1, 3Dk+1) —_— (WO, aU). Thus, 6 is a linear combination of the

standard generators of Kk(aU),
08 = Eciei + Bq}ifi .

Now. Gl" PN Gr induce regular homotopies Ei of gi(l xSk)
representing e, i’ and Fi of g(Skxl) representing fi in Kk(aU). By

the covering homotopy property for immersions [1], we can find a regular
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homotopy () : DkJrl X]—> W X1 {from 6 to say, which covers the

regulaﬁr homotopy of 89 induced by El' ce o

A
0,
E , Fl, cea Fr (figure 23).

”
U

. We may suppose E. is an isotopy, whose image lies in 2 neighborhood

is a path from gi(l X 0) to

of g(lXD )Ug(l)’D )U-;r where 7.
Bgi (figure 29).

_1(1><0), T, disjoint. Thus, E bounds, say E

e

i

€.
1\

We now calculate 88. 1f n represents the fundamental class in

w x1, n|wx{0, 1} = m - My TEP¥E
Thus,

sents the difference of the fundamental

class of W X1 and that ci W X 0.
15N ® = (m )o@ = (n M) (B84 B, + TOF) =

REN Y 4 63 (n N e+ zo O Fi.

(n, M)
1t follows, using (7) of §5, that

MEF TF,) = EFy zg,(n n)“lr.> = - <ZF, "‘1 m6 + (no e =

(.‘BBF. (nln) 6+(n0m lgy = = - <g(S X 0), (nln) 18> +

<e; (S X 0), (m N’ loy -m(gj(s "% 0), 8.
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' PN
We may assume that Fi and Fj meet transversely, thus Int enaU
consists of spheres of the form lek (figure 23), one for each intersection
of g';v"j(sk % 0) with Int 6 Hence,
26 = $e.8. + Do + EME(S  x 0), 8)
= HES T A0 Bjls X Fh B
_ a ’ a A
= Eciei + E(pi(fi - Ek(Fj, Fi)ej)
as was to be proved,

Now let ¢ e SUZ(A) denote the automorphism of the standard plane

whose matrix with respect to the standard basis is given by:

0 1
(7)
(-])k 0 .
Let SU(A) be the direct limit of ... SUr(A) C SUr-{»l(A-) C... and TU(A)

the limit of ... TUr(A) C TUr+1(A) C ... . Define RU(A) as the subgroup
of SU(A) generated by ¢ and TU{A).

1t can be shown algebraically that ’I‘U(A) C SU‘(A} C RU(A), where
SU'(A) is the commutator subgroup of SU(A) [13] Hence, RU(A) is .
normal, and the quotient SU(A)/RU(A) is an abelian group, the Wall Surgery
Obstruction Group LZk 1(11' X, wX}).

Note that the double coset TV {A)aTU (A) determined above by the
gsurgery problem (W, ¢, F) defines a left coset aRU(A) of the normal sub-
group RU(A) and hence an element of L2k+1{1r1X, wX).

Theorem 10: Let (\F‘-f’:ak."1

element of szH(le, wX) determined by cRU{A). If 6= 0, we cando

surgery so as to make ¢ a simple homotopy equivalence, provided k> 2.

@ F) be a surgery problem, 6 the

Proof of Theorem 10: cRU{A)} represents O when
: - -1 -1
[+ B 0‘...1’... G s 0 Tlcco ‘RU(A)c Thus’ -oo‘-r') ses O ..."I'

*
It can also be shown that RU(A) is generated by SU'(A) and g.
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We first show how to realize mulhphcatmn by elements ‘r-l, g'l geometrically,

Now multiplication by o= (- 1) c -1 rreqponds to a surgery on an

k

embedding g'l : 5 ka+1 —> W chosen so that g (1 xS ) represents
k

e' g‘l(S % 1} represents 1'1, in K (aU) We obtam g1 by choosing an

1!
. k k+1
embedding S XD —3> W whose core represents f‘ € Kk(U), expressed as

a linear cornbination of the standard basis elements fl, e fr. The forrnula
for the intersection numbers A(e., {. ), )\(e' f‘} shows that g (1 xS )

represents ). Since st x k+1) . g* ka“ Ut « sk the effect of thit

surgery is to replace e".l by (-1} f' f‘l by e!, thatis, to multiply by o
. On the other hand, T ¢ TU(A) is the product of elementary transformation
of the type represented by
(8) a permutation matrix
(9) 2 matrix which sends e'1 to ieig, f'l to _-l;m(g}{fi'g
(10) a matrix which sends e‘1 to e‘1 + e‘z, e'2 to e‘z, f‘1 to £'], i;a to f‘z - £|1
The transformstion (B) may be obtained by interchanging the order of the
g‘i. (9; corresponds to choosing a new prescribed path for g'1 and a new
orientation along that path. To obtain (10), we replace gl, gz by g'l# g'z, g'z.
it follows that we can reduce a to 1 bya finite number of surgeries.
By further surgeries, we can replace 1 by o ®... ®c (r copies). The effect
of the corresponding automorphism of ’Kk(aU) is as follows: .
ei—-? (-l)kfi, Ii-—f’ e This means that (6) has the form

(6") 0-—> Kk'l.rl(WO' ) — Kk(aU) _ Kk(wo) —> 0

k k :
SRR (-1) fl...(-n £ ey £l .1}

Now by the commutativity of the diagram (2), the map
Kk+1(w' U)-—-—>K (U) is a simple 1somorp"nsm, and so KkH{W) = Kk(W) =
Hence, ¢ i8 2 homotopy equivalence. Since the stable bases at each stage
were chosen to make the torsion of C*((p) vanish, ¢ is8 simple homotopy

equivalence. This proves Theorem 10,
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We now show that each element of L.zk“('n', w), 7 finitely presented,

wiT—> Z.z, is a surgery obstruction, As in §5, we can find a closed

manifold XZk such that' 1r1X -7 and o is the orientation homomorphism for X.
Theorem 11: Let XZk be a compact manifold with fundamental group =

and orientation hoﬁomorphism w, 2k > 6. Then we can find a cobordism W and
amap (W 0 W, a wy— (X xI XxOUBXxI X x 1) of degree one,
together with an equivalence F : vW—>¢ y(X » I} such that

(11) @ |a W is the identity

(12) ¢ Ia W is a simple homotopy equlvalence

(13) the surgery obstruction & for (W, ¢, F) is a prescribed element

of sz+1(tr, w).

Proof of Theorem 11: Represent the prescribed element of
2k+1(“' w) by ae¢SU (A) Now do surgery on r copies of the trivial element
of n (1 ), by the rernarl-:s preceding figures 3 and 14 we obtain a cobordism W’
by attachmg ¢ handles of index k to X xI along X x1 so that a W' is the
connected sum of X with r copies of Sk X Sk. We also obtain
@' W' —> X %1 of degree one, F':pW' —> ¢'*v(x x 1) an equivalence, with
¢' |a_W' = lx.

Write Byr reeo g for the embeddings of Sk ><Sk in a+W' obtained

above. Let {e,, f_} be the generators of Kk(a W') represented by

B; (1 xS b B; (S % 1) respectively. Then {e .y f} gives a W' the structure
of a kernel, Let e} = ae, £ = af; then {e‘ ;} also gives 3 W' the
structure of a kernel. '
It follows by Theorem 8 that we can do surgery on

(a LLAP la w', F! Iva Wt') corresponding to the class of (G, A\, p) determined
by {e, :['1} We thus obtain (W", ", F") w1th d_ A ALIE a we,
tp" : Wi —3 X %1 of degree one, and Fio:p W —> " v(X % I) an equivalence,
such that " |3 W' = ¢' Ia W' and " |a W is a simple homotopy equivalence,

* We can now obtain (W, ¢, F} by puttmg together (W', o', F') and
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(W, @' ¥y, Itis clear that (11) and {12) hold. To prove (13), note that
the surgeries of Theorem B correspond to handles of index k+l attached

Thus, the generators of

of Skka+1 in W' extending By, «-¢? g,

Kk(W) are represented by embeddings

along a+w'.
El’ ey Er in a natural way
(figure 23).
k k+1, k k

gi(S x D gj(S xS )

3, %o

f. cees fr in Kk(U),

generators correspond to 1,

Skka 1)

Also, these

where U = L lg
On the other hand, the preferred bas

classes of the cores of the bhan

is of K (W, Uy = Ky (W 3U)

is given by the dles of mctey k+1 attached to
yem 8, These were chosen so that their boundaries represent

a+W‘ as in Theo
g the surgery obstruction for

go the automorphism definin
1t is not hard to show

e' e'
1’ T

(W, ¢ F) sends e to e'i.
hence it represents the presc

that this autcmorphism

‘also sends fi to ii, ribed element of

L (m, w).

2k+1

7. Some Further Properties of the Groups Ln('ﬂ. w)

We now mention some further resuits without giving proofs. Observe
that, with n = 2k or 2k+1 k ocecurs in the definition of Ln(ﬂ, w) exactly
Thus, on replacing k by k+Z2 we obtain the

Group. That is, Ln+4(1r. w)
generated by multiplication by GCP(2).

in the form of factors {- 1)
= Ln(ﬂ. w)

ame Wall Surgery Obstruction
* Further, this periodicity is
This means the following: Given the surgery problem (W, ¢, F) we

obtain an element 0« Ln(-n, w). On the other hand, the surgery problem

(W CP(2), ¢ X lﬁZP(Z)' F X IUGP(Z)’ determines a.n- element
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o' ¢ Ln+4(1r, w) = Ln(‘IT, w). The first sentence of this paragraph states that
e = 6. LT

Anotﬁer useful fact is the following: If we have a commutative diagram

of homomorphisms

- - R S l -J/“f‘z'z i+ =% ¢t e s n = m o emee e en
. Tt

we get a homomorphism (h) : Ln('n', w) —> Ln('rr‘. w'), and it can be checked

that (L 1 ) 1sa£unctor.

We now reformulate the results of the preceding sections, Define thé

L e it
B

]

bordism classes B (X) as the set of equivalence classes of triples (W ¢, F)

3 as in the surgery problem, two such, say (W ¢ F) and (W', @', F') 2ve
equivalent if there is a triple (W, &, F) &: wW— X >< 1, F /(X xI)

A | " an equivalence, such that 3%/ = W - W', OlW =g, 8|W' =o' F lyW = F, -

c g,]vW' =¥, Of course,‘ (W, ¢ F) and (W', ¢', F') are equivalent if and

only if (W', o', F') can be obtained from (W, ¢, F) by surgery.

‘ We can define a map (& @ Bn('X) —> Ln(-lrlx, wX) by sendinhg a repre-
i  gentative element (W, @ F) to its surgery obstruction €. It turns out that
the element & does not depend upon the choice of representative, It follows

that (H) is a homomorphism, where addition in Bn(X) is defined using

~ 4
4

connected sum.,
By Theorems 8 and 10, for n> 6 Ker @ is the subset of Bn(X)

. e
N

sy ol

with representatives (W, ¢, F} satisfying: ¢ 'is 2 simple homotopy
equivalence, By Theorems 9 and 11 and the additivity of @, Ln(tr, w) is
the (H-image of the subset of Bn(X) with representatives (W, ¢, F)

i

s

lat{sfying: ¢|aw is a simple homotopy equivalence,
We now give a brief description of the form in which the results on

surgery are usually applied. For convenience, we give this formulation

[ ﬁ L A YT P

in the smooth case; all the preceding theorems carry over to this'case

H
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using the theory of smooth manifolds rather than the piecewise linear theory.
Let us first define Fk as the set of basepoint preserving homotopy

equivalences of Sk. Note that a proper homotopy eguivalence of Ek extends

to the one point compa_ctification and so defines an element of F,. In

particular, the orthogonal group Ok lies in Fk. Passing to the limit

by suspension), O C F. We may then form F/O; this turns out

kil
to be the fibre of a2 fibration:

F/O —> BO—> BF .

,Now a homotopy class of maps M—>F/O, M a closed, smooth manifeld,
determines a class of maps into BO, the clas'siiying space for vector bundles
over M, sothata representative classifying map becomes trivial in BF, Thus,
M—> F/O determines an equivalence class of fibre homotopy triviali.zations
of vector bundles over M. Conversely, such an equivalence class determines
a homotopy clas s M—> F/O.

| We will now see that a simple homotopy equivalence b : K—>M de-
termines an element of M, F/O]. Let g be a homotopy inverse of h,

Then for N sufficiently large we can approximate g : M—>»KC KX RN by
an embedding é‘, with normal bundle v. Let E(y) be the total space of v;

then the total space of the unit disc bundle is diffeomorphic to the interior of

a tubular neighborhood 7] of the image of g (figure 26).
N N
—

M

MxRN

E(v)

. 1t can be shown that the region between K x (a large disc in RN)
and 7 is an h-cobordism. By the method of proof of the Weak

*
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h-cobordism Theor'em, we may conclude that K X RN - 70 is a product
e x [0, w}, and so obtain a diffeomorphism E(y) —> K X RN. Composing
this with hx 1 1 K x RN —3> M % RN, we obtain a fibre homotopy
trivialization of E{y), thatis, an element of [M, F/O].

It turns out that this correspondence induces a map hS(M) —> [M, F/0],
where hS(M) is the set of equivalence classes of simple homotopy equivalences

h:K—>M defined as follows: h: XK—> M and h' : K' — M are identified

when h is homotopic to the composition of h' with a diffeomorphism K—> K':

K \h
L oM
?
K! “n
We will now define a map [M, F/O0]—> L (m M, wM). Choose a repre-

sentative fibre homotopy trivialization H: E(y) —> M xR, y a vector bundle

over M, We may approxunate H by a map ﬁ transverse regular along

Mx 0, Then K= - (MxO) is a smooth manifold, ¢ : K——)E(u)-—:»MxO-—)\I

is 2 emooth map, and the framing of the normal bundle y(Mx 0 C M x R ) induces
a framing of the normal bundle p(K C E(v)). This framing can be used to define
an equivalence F : p(KC RN) — Qo*v(M C RN); then (K, ¢, F) determines
an element of Ln(wIM, wM) (figure 27). '

" m
L \_/

k
K E(y) . MxR

Finally, we have 2 map L 1(11 M, oM} — hS(M), as follows:
Given B¢ L (1: M, wM) there is a cobordism W, a map

s (W, aW) ——) {M xI, Mx 31) and an equivalence F : yW—> ¢ v(X x I)
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&

C{' ' with 5 W the identify, 3 W a simple homotopy equivalence, 80O that the
@yio_ pio, :

surgery problem (W, ¢, F) determines 6. Then ¢|3+W : a+W—-—>M

determines an element of hS(M}.
It turns out that all the above maps are well defined, A theorem of

Sullivan states that the sequence of pointed sets:

Lnﬂ(nlM.‘ M) —> hS(M) —> M, F/O]—> L (M M, M) — oo

is exact.
Here is a selected list of calculations; p an odd prime:

. Ul _ )
. L (v, 1) N 1 Z, £ || odd
1 o 0 ] 4L (7, 1) = O
(p-1)/2
2 z, Z, Z,®F 2,029..0Z
3 0 =z, 0 0o
C i z zez zozPl? 1reze..e0Z
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