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Introduction

This report is about intersection homology and perverse sheaves. Intersec-
tion homology is the subject of Chapter 1, which may be read independently
of the rest. This introduction will concern only perverse sheaves, which are
perhaps less well known at present.

The first thing to know about perverse sheaves is that they are neither
sheaves nor are they perverse !. They have in common with sheaves the fact
that you can take the cohomology of them, the fact that they form an abelian
category, and the fact that to construct one, it is enough to construct it locally
everywhere. The adjective “perverse” is a reference to certain vanishing condi-
tions that their cohomology satisfies, which are unfamiliar looking to someone
who is used to ordinary cohomology 2. -

The second thing to know is that Perverse sheaves are one of the most
natural and fundamental objects in topology. Their naturality may be seen
through their beautiful formal properties. Their fundamental importance is
clear from the list of problems in diverse areas of mathematics that have been
reformulated in terms of perverse sheaves and solved using them.

Although perverse sheaves are geometric objects, it has been difficult for
geometrically minded mathematicians to absorb the theory. There ate two
reasons for this. The first reason is a special case of a very general problem
of mathematical exposition: Geometry tends to be explained in a way that is
algebraically natural, rather than geometrically natural, since algebra is closer
to language than geometry is. The second reason is of a more technical nature:
Perverse sheaves are defined in terms of the derived category of the category
of ordinary sheaves. However, perverse sheaves are much simpler and more
natural ordinary sheaves, let alone their derived category. We know this from
their formal properties. Therefore, if we believe in the essential simplicity of
mathematics, the definition starting from ordinaty sheaves must not be the
most elegant one.

In these notes, we give a definition of perverse sheaves which relies on Morse

theory as its fundamental tool, rather than on ordinary sheaves or derived cat-
egories. Since Morse theory is very geometric in nature, the hope is that a

o] ey faisceaux pervers n'stant ni des faisceaux, ni pervers, la terminologie requiert une
explication.”{BBD] p. 10.

2 An example of such a vanishing condition is the following: Let P be a perverse sheal on
a complex vector space C". Suppose that the support of P is a complex subvariety V' of
complex dimension is &, (so its real dimension is 2k}, Then both the cohomology of P and
the compact support cohomology of P are zero cutside ranges of degrees of length k, just as if
1" had real dimension k. For ordinary constructible sheaves, this is true for the cohomology,
but not for the cohomology with compact supports. See section 1.8.2

Actually, the original meaning of perverse was a non-transversality property of the chains
for intersection homology [GM1], as explained in section 1.1 . This turns out to imply the
vanishing conditions just referred to.
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presentation of based on it will appeal to geometers.

~ The rest of this introduction will have the character of a New York Times
article rather than a piece of mathematics, I suggest that the reader go directly
to the definition of a perverse sheaf in sections 4.2 and 4.3 and see directly what
kind of a beast it is.

0.1 Formal properties

The perverse sheaves on a complex manifold X form an abelian category, i.e.
the notions of injections, surjections, kernels, cokernels, exact sequences, adding
maps between the same pair of perverse sheaves, and direct sums all make sense
and have the usual properties, The category is Artinian, i.e. every perverse
sheaf has a finite composition series whose successive quotients are irreducible
perverse sheaves,

The irreducible perverse sheaves are just the middle perversity intersection
homology sheaves of subvarieties of X. Also, intersection homology sheaves of
subvarieties with perversities “close to middle” are perverse, Therefore intersee-
tion homology theory and the theory of perverse sheaves are closely intertwined.

Perverse sheaves are closed under the vanishing cycle functor and the nearby
cycle functor, for a family of varieties parameterized by a curve. Irreducible
perverse sheaves have a remarkable closure property under complex analytic
maps (see section 1.7 ). Perverse sheaves arise from differential equations: The
category of holonomic D-modules with regular smguiantles on X is equivalent
to the category of perverse sheaves on X,

0.2 History

The whole theory came together during a few dramatic months of 1980. Intersec-
tion homology sheaves, due to Goresky and myself, had been around for several
years; they were topological in nature. Holonomic P-modules with regular sin-
gularities, due to Kashiwara and Kawai, had also been around for several years:
they obviously form an abelian category which was linked to topology by the
Riemann-Hilbert correspondence, due to Kashiwara and to Mebkhout. In 19980,
proof of the Kazhdan-Lusztig conjectures, due to Beilinson and Bernstein and
to Brylinski and Kashiwara, established that the Riemann- Hilbert correspon-
dence embedded intersection homology into holonomic D-modules with regular
singularities. Now that intersection homology sat inside an abelian category,
the identification of that category was immediately carried out by Beilinson,
Bernstein, Deligne, and Gabber. That category is perverse sheaves,
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This thumbnail sketch already shows that many mathematicians contributed
in an essential way to the creation of perverse sheaves. The detailed story has
many more nuances, and it has been written about in more detail a number of
times. Surveys with some historical material can be found in [K], [BBD], {M],
[Br], and [S].

0.3 Singularities

If the only spaces you are interested in are nonsingular manifolds and the only
maps you are interested in are fibrations, then perverse sheaves won’t matter
at all to you. Perverse sheaves involve singularities in an essential way. The
subspace Y of X that is the support of a perverse sheaf will usually be singular,
and even when it’s not, the perverse sheaf itself will usually have singularities.
(The theory of the exceptional perverse sheaves on a manifold without singular-
ities is carried in Chapter 2 as scholium, Its triviality illuminates the structure
of the general theory.)

The interest in singular spaces is itself a very important phenomenon in the
history of mathematics. Until approximately 1960, very few mathematicians
took singular spaces seriously. There had been a magnificent outpouring of topo- '
logical results about manifolds that was climaxing just about then: Lefschetz
theory, deRham cohomology, Hodge theory, characteristic numbers, cobordism,

Hirzebruch Riemann-Roch, multiple differentiable structures, surgery, handle-
bodies, Atiyah-Singer theory. It was one of the most exciting chains of devel-
opment in the whole history of mathematics. The standard orthodoxy of the

AN time was that if you had a singularity, you should resolve it and get a manifold.
During this time, only a few independent pioneers who had the fortune to be
ahead of their time (like Marie-Hélen Schwartz, and Istvan Fary) were looking
at singular spaces,

This is not the place for a history of singularity theory, but there has certainly
been a swing of the pendulum, Now there is even-a journal about singularity
theory. I would like to think that this swing is another magnificent story, and
that perverse sheaves are an important step of that story.

0.4 Applications of intersection homology and
perverse sheaves

There has been a renaissance of applications of topology, some of which can
be traced to the use intersection homology and perverse sheaves. The reason
is that many mathematical objects of interest in mathematics have singular
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spaces that are naturally associated to them. Then it often happens that the
perverse sheaves on the associated stratified space reflect the structure of the
object itself in a deep way. This report is not about the applications of perverse
sheaves, although an index of them some of them is included in chapter 6.
However, even the most skeptical observer would agree that algebraic geometry,
differential equations and analysis, and Lie group theory have all been affected
by perverse sheaves in an essential way. :

0.5 About this report

The goal here, as stated above, is to give an introduction to intersection homol-
ogy and perverse sheaves that is purely geometric and topological. An attempt
has been made to choose the definition for each object that has the most geo-
metric appeal.

The sheaf theoretic and algebraic languages have been slighted here. This
can perhaps be forgiven in light of the fact that there are rather many high
quality introductions to those aspects. Unfortunately for readers who prefer the
geometric approach, all of the applications of the theory have been written up
in the sheaf theoretic and algebraic language. A future version is planned to
contain a dictionary from the geometric version presented here to the language
that dominates all of the literature,

Proofs of many statements are not given. In many case, no proof is known
that proceeds entirely within the geometric framework of this report. In these
cases, the truth of the theorem is known because of the dictionary mentioned
above, In other cases, proofs were omitted which would not add to the concep-
tual framework developed here.

The format includes many exercises, interwoven into the text. of varying
levels of difficulty. They are an integral part of the text. It is strongly recom-
mended that the reader not skip them.

In those cases where proofs are given, they are’given in the exercises. The
main reason for this is that geometric proofs are usually much simpler than their
expression in terms of Ianguage So many readers will find it easier to read an
exercise that gives the main ideas of the proof than to read a proof with all of
the details and lots of notation.
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Chapter 1

Intersection Homology

Intersection homology is a topological homology theory of a topological space
Y with coeflicients in a local system L. In the event that Y is a nonsingular
manifold and L is a global nonsingular local system, then the intersection ho-
mology is just the ordinary homology ¥ with coefficients in L. So the interest
of intersection homology comes when Y or L has singularities. In this case, the
intersection homology continues to have desirable properties, such as Poincaré
duality and Hodge theory, that the ordinary homology of a manifold has.

The most important examples of perverse sheaves on a space X are intersec-
tion homology sheaves of the closure Y of a stratum of X. The middle perversity
intersection homology sheaves form the irreducible perverse sheaves. The loga-
rithmic and sublogarithmic intersection homology sheaves are perverse sheaves
that are not irreducible, but which are important in many applications.

Intersection homology is interesting in its own right, independent of its con-
nection with perverse sheaves. Therefore, in this section we will give its defini-
tion and properties in more generality than that which we need in the rest of
this report. In particular, we will use an arbitrary real stratification of X, not
just a complex analytic one.

1.1 Definition of Intersection Homology.

Notational conventions. We will let X be a Whitney stratified manifold,
and we will focus attention on a subspace ¥ of X which is the closure of a
single stratum of X. We denote the dense stratum in Y by ¥y and we call it
the nonsingular part of ¥ (even though Y may be nonsingular at points not in
o). We denote Y — ¥; by T and we call it the singular sef of Y. Since ¥ is the

10



closure of a single stratum, it has pure dimension, and we call that dimension n.
The strata of X contained in ¥ will be denoted Y,. The set of strata contained
in 3 will be denoted by Z. In other words ¥ is the set of all strata of Y except
for Yp. It is called the set of singular strata of Y. The (real) dimension of ¥
will be denoted by n. dWe define the codimension of a stratum Y, denoted
codimY, to be n = dimY,. If Y, € £, then codimY, > 0.

The closure ¥ of astratum Yo=Y - 5

We give ourselves a local system { : L —— Y3 over the nonsingular stratum
Yoof Y.

Further, we choose either the piecewise linear or the subanalytic good class
of subsets (see 7.3.2 } in X so that all of the strata of X are in this class. All
geometric chains will be defined with respect to this good class of subsets. By a
geometric chain £ in Y5, we mean a geometric chain with support that is closed
in Yp. However, just because the support is closed in Yy doesn’t mean that it
is closed in X, It may “run off the edge” of ¥y into &. Ve denote by {¢| the

11
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closure_ in X of the support of ¢ .

A geometric chain in ¥; that “runs off the edge” into T

DEFINITION. A perversity is a function p:% — Z from the set of singular
strata of ¥ to the integers.

We note that this is a more general definition of a perversity than that found
in [GM1]. Likewise, some of the other definitions have been generalized slightly.
However, the concepts introduced in [GM1] are always special cases of those
studied here.

DEFINITION. If i is an integer and p is a perversity, a subspace Z C Y is
called (p,) allowable if the dimension of Z is < iand, for each stratum Y, C &,
we have dim(Z NYy) < i ~ codimY, + p(Y,).

In this definition, saying that a set has negative dimension should be taken
as saying that the set is empty.

DEFINITION. A geometric i-chain £ in ¥ with coefficients in I is called
p-atlowable if the closure {¢{ in X of the support of £ is (p,?) allowable and the
closure |0¢] in X of the support of the boundary of & is (p,i— 1) allowable. The
space of p-allowable i-chains in Y, with coefficients in L is denoted by IPCi(Y, L).

DEFINITION. The Intersection Homology complez of Y with perversity p
and coefficients in L is the chain complex

v = PCia(Y, L) — PC{Y, L) — IPCiy (Y, L) — -

DEFINITION. The i*® Intersection Homology group of Y with perversity p
and coefficients in L, denoted IPH(Y;L) is the i** homology group of the
Intersection Homology complex of ¥ with perversity p and coefficients in L.

12
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So intersection homology is defined similarly to the way that ordinary he-
mology of Yp is, with the exception that “allowability” conditions are placed on
the dimensions in which the ¢losures of the chains can meet the singularities of
Y. If you find that the numerology of these allowability conditions is less than
transpatent, you are not alone. The first observation to make on them is the
following: If the perversity is zero, i.e. p(Y,) = 0 for all strata Y4 C X, then the
condition says that the codimension of Yo N |¢] in [¢] is at least the codimension
of Y, in Y and the codimension of Y, N|8¢| in |6¢| is also at least the codimen-
sion of Y, in Y. This looks like a transversality condition; it says that the cycles
dip into the singularities as little as can be expected. As the perversity p(Ya)
grows, this transversality condition is relaxed, and are allowed to go deeper into
the singularities. If you regard transversality as the nicest behavior that a cycle
can have with respect to a singularity, then lack of transversality can be thought
of as “perverse”. This was the original source of the word perversity.

+

1.2 Examples of intersection homology groups

The only way to get used to the effect of the allowability restrictions on the
intersection homology groups is to look at some examples. Four examples are
given here.

Example 1: The suspension of two circles. We consider two circles A4
and B and we let ¥ be the suspension of the disjoint union of A and B; Y =
Susp{A U B). The space Y can also be visualized as the result of taking two
spheres {or two bananas) SuspA and SuspB and joining them twice at points.

The suspension of two circles.

What is the usual homology of Susp(AU B)? We will try to understand
it geometrically. The zeroth homology group H o(Y) is just @, since Y is con-

13
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nected. The generating cycle may be thought of as either a point a lying on A4 or
a point b lying on B. These two points are homologous (i.e. they lie in the same
homology class) because of a 1-chain which connects them. We will call this
1-chain [ Conea] — [ Cone8}, since the cone on any subset of AU B is embedded
in the suspension of that subset, which is further embedded in Susp(A U B).
The minus sign indicates that the chain is oriented up on one side and down on
the other, so as not to have a boundary at the vertex in X,

A l-chain [ Conea] — [ Coneb] whose boundary is a — b.

The first homology group H(Y) is the Q, generated by a circle that goes
up on one sphere and down on the other. We call this cycle [ Suspa} - [ Susp)]

The generator of H{Y).

There are two other 1-cycles that one might be worried about, These are
the fundamental class [A] of the circle A and the fundamental class [B] of the

14
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circle B, However, [A] is zero since it is the boundary of [ ConeA), the chain
carried by the cone over A, Similarly for [B].

The class [A] is homologous to zero since it bounds [ ConeA].

Finally, Ho(Y) is Q @ Q generated by [ Susp Aland [ Susp B], the two lobes
of Y.

Now, in the same spirit, let’s see what the intersection homology of Y is.
First, we have to stratify ¥, We choose the stratification where ¥; = 2 is the
union of top point and the bottom point. So Yy = ¥ — I is the whole nonsingular
part of Y. Second, we have to choose a local sysiem over Yy. We choose the
trivial local system L = @. So we are calculating [P H;(Y; Q) or IPH(Y') for
short. Third, we have to choose a perversity. Since there is only one singular
stratum, the choice of a perversity p is simply the choice of an integer p(¥1).

Lets choose the perversity p(Y;) = 0 first for illustration. With this per-
versity, the allowability conditions come down to this: 2-chains may hit the
singular set (provided that their boundary doesn’t). One chains and zero chains
must miss the singular set, Now, I°Hy(Y) is @ & Q generated by [a] and [b].
These two (-cycles are not homologous now because the homology between them
{which was [ Conea] — [ Coned] and was illustrated in a picture above) is not
allowed. The first intersection homology group I°H(Y) is zero. The cycles
[ Suspa] and { Suspb] are not allowed, and the cycles {A] and [B] are boundaries
of [ ConeA] and [ ConeB], which are allowed. The second intersection homol-
ogy group I°H4(Y) is @ ® Q as before, generated by [ SuspA] and { SuspB],
both of which are allowed.

There are two other interesting perversities: p(Y1) = ~1 and p(¥;) = L.
Rather than following out the argument in detail for each group, we make a

15



chart of the generators,

i Hi(Y) I H;(Y) I°H(Y) I'Hy(Y)

2 [Susp4],{ SuspB] 0 [ SuspA],{ SuspB] [ SuspA],[ SuspB]
1 [Suspa]—[Susp] [A],[B] 0 [ Suspa), | Suspd]
0 [a] = 4] [a], 3] [a], 8] 0

Perhaps the only thing on this chart that needs comment is the entry for
D Hi(Y). The claim is, that this is two dimensional, and that the generators
are [ Suspa] and [ Suspb]. Let’s consider | Suspa].

The generator [ Suspa] of I' H,(Y).

Why is this a cycle? Doesn’t it have boundary at the top and the bottom?
To answer, remember the important point that the cycles are in Y, not in Y.
Only their support is in Y. So any boundary in & doesn’t count.

Example 2. The suspension of the three torus crossed with the circle.
Now, let’s consider an example with a singular set of dimension greater than
zero. We take ( SuspT?) x S where T2 is the three torus, We may imagine the

16



three torus as a cube with opposite faces identified.

The three torus T2,

Then we suspend it and cross the result with the circle to get a five dimen-
sional stratified space, Its singular set T is the top of the suspension crossed with
the circle and the bottom of the suspension crossed with the circle. We make
this one stratum Y) and we let Yy be the complement. This five dimensicnal
space admits the following pictorial representation:

( SuspT3) x &§*

First, we need names for the generators of the homology of the three torus
T3, The zeroth homology is generated by the fundamental class [p] of a point
p. The first homology is generated by the fundamental classes of three circles

17



ai, as, and ag, which we may picture as follows:

a fas]
t l]/ [ﬂz}: — -

b —— .
e ——— ey,

Generators [a,], [a2), and [as] for Hi(T%)

The second homology is generated by the fundamental classes of three 2-
tori A;, Ag, and Ag, which we may picture as follows:

/!

{A1]

_J [44] J [3] /J

™~

Generators (A1), [43), and [A3] for Hy(T)

Now in terms of these generators and their suspensions, we will give gen-
erators for the intersection homology with constant coefficients @, and with
perversities p(¥1} =0, p(Y1) =1, and p(¥}) = 2.

i I°H;(Y) INH(Y) PH{Y)

5 [( SuspT?) x 8] [( SuspT®) x SY] [( SuspT?) x S

4 [ SuspT?] [ SuspT3},[( SuspA;) x S'} [ SuspT?),[( Susp4;) x 5Y)
3 [4; x 1) [ Susp4;] [ Susp A;}, [( Suspa;) x ')
2 [Ai] fai x 8% [a; x 84 [ Suspa;]

1 [a:),[p x S$?] fai], [p x 8] [p x S

0 7] (] (]
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In each case, if 2 symbol is missing, the explanation is either that the cycle
is ot allowable or that the cycle is killed by the chain supported on a cone over
that cycle.

Exercise 1.1. Verify all of the entries in the table.

Example 3. A twisted local system over the sphere minus four points.
The next exapmle is chosen to illustrate that an twisted local system can make
intersection homology interesting even when the space Y is nonsingular. We
take Y to be the 2-sphere 5%, We choose & = Y; to be the union of four points
on the sphere.

The “singular” set Zon Y.

Now we take a local system L on Y whose fiber is just the rational numbers
Q and whose monodromy maps are multiplication by —1 on the loops that go
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once around any of the four points of ¥;.

The local system has monodromy —1 on each of these loops

In this case, although Y is smooth at the four points in I, the local system

has singularities at them. Let’s compute the intersection homology for the
perversity 0, i.e. p(¥;) =0.

First of all, I°H,(Y; L) = 0. An element of I°Ho(Y; L)would have to be a
point in the nonsingular part Y; together with an orientation (+ or —) and a lift
to the local system. We will call this data [p]. Now, build a 1-chain £ by taking
the lift and moving it by monodromy around one of the points in ¥; back to P
The following picture gives the support of £:

A 1-chain £ whose boundary is 2[p}

The boundary of € is 2{p]. (If the local system did not twist, the two bound-

ary terms of a chain of the shape of ¢ would cancel and give 0. The twisting
makes them add rather than subtract.)

20
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Next I°H,(Y;L) = 0. A geometric cycle representing a class in I°Hy(Y; L)
would have to be a 2—-cycle (with support on all of Y) with a global lift to L.
But L has no global lifts except 0.

Finally, I°H,(Y;L) = Q@ Q. To get a 1—cycle, we should have an oriented
circle in Yy together with a lift to the local system. To have a lift to the local
system, the circle should go around an even number of points in X. The two
generators can be chosen to be represented by these circles:

(B
;

Cycles giving generators for I°H,(Y; L)

(It is not so visually apparent that these cycles generate the homology group,
because our intuition for local systems is not so developed. The reader should
try to find some more 1—cycles.)

Exercise 1.2. Show that the result of this calculation is the same if we
choose any other perversity.

Exercise 1.3, Show that if we choose 2n points in X instead of 4 points
(and let the local systern have monodromy —1 around each of them}, then
IPH\(Y;L) = Q™ % and I°Ho(Y; L) = I°Hy(Y; L) = 0.

Example 4. A quadric 3-fold. As a final example, we choose an example
that is a complex algebraic variety, but has complex dimension more than 1.
Since it’s too big to draw, we will draw pictures of the same variety over the
reals and just translate into the complexes in our minds. First of all, we take
a nonsingular quadric surface H in complex projective 3—space, say z° + y° =
2% 4 w? in homogeneous coordinates, or z° + y% = 2% + 1 in Affine coordinates.
As is well known, this is a doubly ruled surface: it has two families of flat
projective lines on it. (The real picture is sometimes called the “hyperboloid of
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one sheet”.} -

The quadric surface H

Topologically, H is just 5% x S?, the product of two 2- spheres. The two
foliations by 2-spheres coming from the two projections are the two rulings
by straight projective lines. (To translate from the affine real picture to the
projective complex picture, every time you see a straight line you should-replace
it by a 2-sphere.) So H has a CW-decomposition with one 0-cell g, two 2-cells
A and B, and one 4-cell G = H —~ (AU B). These may be pictured as follows:

A CW decomposition for H

Now, we embed the complex projective 3-space into X =complex projective
4-space, and we choose a point p outside of it. We let ¥ be the projective cone,
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the union of all complex projective lines joining points in k to p.

Y is the projective cone over H

This example has two other descriptions. To a topologist, it is just the
Thom space of a complex line bundle over A with Chern class (1,1). It is
also the first singular Schubert variety: It is all planes in the Grassmannian
of complex 2-dimensional subspaces of C* which meet a given fixed 2-plane in
a subspace of dimension at least 1. (In this guise, this example has a lot of
historical importance as one of the main examples that led to the Kazhdan-
Lusztig conjectures.)

The ordinary homology of Y is easy to compute, since Y has a CW- de-
composition ¥ = pUCqUCAUCBUCG, where C denotes the open complex
projective cone, i.e. the cone without the point p. Therefore Ho(Y) = Q,
Ho{Y)=Q, Hi(Y)=Q & Q, Hs(Y) = Q, and all of the others are zero. One
might pause to consider why it is that H5(Y) = @ even though there are three
obvious 2-cycles, [4], {B), and [Cq]. This is because [A] is homologous to [Cq]
by a homology that “swings” it through CA; similarly for {B] and [Cq).

The variety Y has an obvicus stratification with Z =Yy =pand Yo =¥ —p.
Let’s compute the intersection homology with the perversity p(Y) = 1.

The answer is I'Ho(Y) = Q generated by [g], ' He(Y) = Q ® @ generated
by [A] and [B], I' H4(Y) = Q & Q generated by [CA) and [CB], I'Hs(Y) = Q
generated by [¥], and all of the others are zero. So the answer differs from
the ordinary homology calculation only in degree 2. Why are [4] and [B] not
homologous now when they were before? The answer lies in the fact that any
homology between them, like the one described above, must contain the singular
point p in its support, but the allowability conditions for perversity 1 won't

permit that,

Exercise 1.4, Compute I H;(Y) for the other perversities p. HINT: if
p{y1) = 2, you will get the same thing as the ordinary homology of ¥
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1.3 Theorems holding for all perversities

We begin here a fairly systematic account of the properties of intersection ho-
mology. In addition to the goal of providing an introduction to the subject, we
want to gather together in one place a number of statements that are scattered
throughout the literature.

We will organize the results according to what the required perversity re-
strictions are. One reason for this is the following: In [GM1] and [GM2], some
results were proved with unnecessary restrictions on the perversity, in order
not to have to constantsly switch assumptions, However, this has led to some
confusion on the matter, which we want to clear up here.

While assuming as little as possible on the perversities, we will assume as
much as possible on the coefficients: we are treating only local systems of mod-
ules over Q. Modules over other rings are very interesting, and lead to deep
torsion questions. There is already a full literature on this, for the interested
reader.

1.3.1 Poincaré duality

DEFINITION. Suppose that L and I’ are two local systems on Yy, We
say that L and L’ are dual if we are given 2 duality map of local systems
d:L@L — O that, when restricted to each fiber, is a perfect {nonsingular)
pairing of vector spaces. Here O is the orientation local system on Y.

DEFINITION. Suppose that £ and ¢ are two geometric cycles in Yy of di-
mensions i and j where i + j = k. (We call £ and £’ cycles of complimentary
dimension), Then £ and €’ are said to be {ransverse if

o [£1N [€'] consists of finitely many points, all of which are in the interior of
Yy (i.e. not in I)..

* At each point y of [¢|N |€], both [¢[ and |¢’] are nonsingulaf.
» At each point y of |£[N [€], T, |¢] & T, ¢ = T,Yo.

Let £ be a geometric cycle in Yy with coefficients in L, and let & be a
geometric cycle in Yy with coefficients in L’. Suppose & and &' are transverse
geometric cycles in Y5 of complimentary dimension, and suppose that L and
L’ are dual local systems. Then we can assign an infersection number I(£,&")
to £ and £’ by the following procedure. The rational number I(£,6) is a sum
over intersection points y € [£| N |€'| of local contributions Z,(¢,&'). To define
Zy(§.€'), we observe that over y we have two naturally determined elements of
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the stalk of (). The first is the multiplicity of y in £ tensored with the multiplicity
of yin &', moved to the stalk of @ by the pairing d. The second is the orientation
of Ty Yy ie. of Ty|¢}® Tylé'| constructed by taking the orientation of Ty |¢|from
¢ followed by the orientation of Ty |¢’| from &'(see the picture below). Since the
stalk of @ at y is one dimensional, the first element is some rational multiple of
the second element. That rational muitiple is Z,(¢,§'). -

The orientations of £ and of £’ {left) induce an orientation of Yy (right).

DEFINITION. Two perversities p and ¢ are said to be dualif for each stratum
Y, in I, we have p(Yy) + ¢(Yo) = £{(Ys) = codimY, — 2. We notate the duality
of p and g by writing p=¢* or ¢ = p”.

Now with these definitions, we can state the Poincaré Duality Theorem.

Theorem 1.1 ([GM1],[GM2],(GM3].) Suppose that p and q are dual perver-
sities, L and L' are dual local systems on Yy, and i and j are complemeniary
dimensions. Then there is a unigue intersection pairing

I:PH(Y;L)® FH{(Y;L) — Q

which, if € and &' are transverse cycles, takes [£]@[¢'] to T(£,€'). This pairing 1s
nonsingular, i.e. the two vector spaces I° Hy(Y;L) and I"H;(Y; L'} are veetor
space duals of each other with respect Lo this pairing.

This was historically the first serious result about intersection homology.

The reader should take the time to check that this theorem holds for each
of the examples in section 1.2. In the third example, the local system L is
dual to itself. In the other three examples, the local system is trivial and Yg is
orientable, so the local systems in those examples are also their own duals. In
each case, explicit cycles are given representing generators of each intersection
homology group, so the intersection pairing 7 can be actually computed.
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Exercise 1.5. Show that in each example, the actual bases given are dual
bases with respect to the pairing,

1.3.2 Relative intersection homology and the long exact
sequence

DEFINITION. A subset R of X is called smooihly enclosed if R is a sub-
manifold with boundary of the same dimension as X, and the boundary of R is
transverse to all of the strata X, of X. The subset R? is the interior of R; it is
an open subset of X. A subset U of Y is called smoothly enclosed if it is the
intersection with ¥ of a smoothly enclosed subset B of X. Then U° =Y N &Y
is the interior of /. :

Suppose that U is a smoothly enclosed subset of ¥. Then we define the
intersection chain complex IP Cy(U; L) to be the subcomplex of the intersection
chain complex I?C;(X; L) consisting of chains whose support lies in U°. The
i intersection homology group of U with coefficients in L, denoted IPH(U; L)
is the th homology group of the Intersection Homology complex IP Ci(U; L).

Suppose further that V is the intersection of I/ with another smoothly en-
closed subset of Y. Then we define the intersection chain complex PC{U, VL)
to be IPC{(U; L)/ IPCi(V; L). The ith intersection homology group of the pair
(U, V) with coefficients in L, denoted I? H;(U,V; L) is the i** homology group
of the Intersection Homology complex IPC;(U, V; L).

Exercise 1.6, Show that there is a long exact sequence

v PH(U; L) — IPHA{U,V; L) — PH;_y(V; L) — IPH; (U3 L) — -

Exercise 1.7. Show that excision holds: Suppose that W is a smoothly
enclosed subset of ¥ that is contained in V9 (so U — W0 is also & smoothly
enclosed subset}, then

FPH(U-W,V -W% L) = IPH(U,V; L)

is an isomorphism. ‘.

1.3.3 Simplicial intersection homology
Ordinary homology of a simplicial can be calculated from a small chain complex,

consisting of the simplicial chains. This is one of the oldest themes in topology,
dating from Poincaré, and it is the basis of combinatorial topology.
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DEFINITION. A triangulation T of Y with the property that every stratum
of ¥ is a union of interiors of simplices of T' is called a triangulation edapied fo

the stratifieation of Y.

Triangulations adapted to the stratification of Y always exist (see [G]). Con-
sider the following stratification of the plane of the page:

A stratification of the plane

The following is a triangulation adapted to it (The lines of the original
stratification are edges of triangles): ' :

/N _ \.l/

N "
o N
: / N
i f‘ ‘/‘ : J/";"\
| 4 : / a=

A triangulation adapted to the stratification

DEFINITION. Suppose that T is a stratification of ¥ adapted to the strat-
ification. A closed support simplicial i-chain of Yo is a simplicial chain with
respect to 7" such that every simplex A with nonzero coefficient in the chain

satisfies
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* the interior of A is contained in Y,

(Note that because of «, it makes sense to speak of & closed support simplicial
i-chain of Yy with coefficients in a local system L over Y5.) The closed support
simplicial chains form a chain complex, by neglecting all simplices of the bound-
ary which do not satisfy x. We denote this chain complex by CT(Yo; L). The
support of a chain in CF (Yp; L) is the union of all simplices of T satisfying *
which have nonzero coefficient in that chain. (The chain complex CT(Yy; L) is
isomorphic to the quotient chain complex CT(Y)}/CT (L), where CT represents
simplicial chains with respect to T.)

DEFINITION. A closed support simplicial #-chain & in Y, with coefficients in
L is called p-allowable if the support |£| of £ is (p, i) allowable and the support
JO€| of the boundary of £ is (p,i — 1) allowable. The space of p-allowable i-
chains in Y with coefficients in L is denoted by I?CF (Y, L). The simplicial
Intersection Homology complex of Y with perversity p and coefficients in L is
the chain complex

= PCL (Y, L) — PCT (Y, 1) — PCLy (Y, L) — -

One might expect that the intersection homology group I? Hy(Y'; L) can be
calculated as the homology of the complex IPCT (Y'; L), if the triangulation T is
adapted to the stratification of Y, This is false, However, with a mild restriction
on the triangulation, it becomes true. -

DEFINITION. A triangulation T adapted to the stratification of ¥ is called

flaglike if it satisfied the following condition: Let S be the closure of the union
of all of the {-dimensional strata Y. Then we require that the intersection of .
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any simplex A of T with S; is a single face of A, for each k.

L N7 N
/]
|

| HN
e

i
\. s \ | AN\ i

i/
\:;-/‘/
/
A flaglike triangulation of the same stratified space

N

Flaglike triangulations exist. For example, if T is any triangulation of ¥
which is adapted to the stratification, then the barycentric subdivision of 7" is
flaglike.

Theorem 1.2 ([GM4]) If the iriangulation T is flaglike, then the intersection
homology group IPH(Y; L) can be calculaied as the homology of the simplicial
infersection homology complez IPCF(Y; L).

Exercise 1.8. Find a space ¥ and a triangulation T such that the intersec-
tion homology group I? H;(Y; L) is not homology of the simplicial intersection
homology complex I?CF(Y; L).

Remark. There is also a version of singular homology that computes in-
tersection homology [Kin].

1.4 The extreme perversities.

The reader learning about intersection homology for the first time may want to
skip now to section 1.6 on theorems holding for the middle perversity.

The definition of intersection homology above gives a plethora of groups,
one for each perversity p. Many of these are really important. However, some
of them are not really different each other or from classical (= pre- intersection
homology) invariants. We explore this phenomenon in this section.
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1.4.1 Beyond the extremes

Example 5. Let Y be the torus T2 stratified with a zero dimensional stratum
Y1 = I consisting of two points.

Y with its stratification. ;. .

p where p(X) = 1. Then I" H(Y, Q) = Hi(Y,Q) and IlH,(Y Q) = Hi(Y -
Z, Q). The following figure shows 1-cycles that are nonzero in I~ Hi(Y, Q) and
I'Hi(Y, Q).

Let —1 be the perversity p where p(Z) = —1, and let 1 be the per:".'ersity X

/ /—\\ N /
‘f_/ / 3./'“\\ \ : // o TN
L Ly )

\ N /

LT
Cycles for I=1H,(Y, Q) (left) and I'H 1(Y,Q)\Pright)

Exercise 1.9. Fixa smgular stratum Y, in Y. Let p’ be the restriction of p
to 31— {¥,}. Define the group I*' H; (Y =Y, L). (Note that Y =¥, is often not
a locally compact space.) Show that if p(Y,) < 0, then IPH (Y ;L) =1*’ Hy(Y -
Yo; L) .
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Exercise 1.10. Again, fix a singular stratum Y, in Y, and let p’ be the
restriction of p to £ — {Ya}. Define the relative intersection homology group

r H;(Y Yy; L). Show that if p(Y,) > codimY,—2, then IPH;(Y; L) =I" Hi(Y,Y.; L)

These two exercises show that if the value of the perversity on a stratum y,
ia less than zero or more than codimY, —2, then the intersection homology group
IPH;(Y; L) has an alternative interpretation as the intersection homology of the
remainder of the space Y with Y, either deleted or moded out. Now consider
the case that Y, has codimension one. Then any value of p(S,) is either < 0 or
> codimS,—2 = —1. Therefore, the intersection homology group brings nothing
new to a codimension one stratum of Y. For this reason, one sometimes wants
to assume that ¥" has no codimension one strata.

DEFINITION. A stratification of Y is called a pseudomanifold stratification
if it has no codimension one strata. A closure Y of a stratum of X is called a
pseudomanifold if it admits a pseudomanifold stratification,

Note that all complex analytic stratifications of a complex analytic mani-
fold X are pseudomanifold stratifications, since in that case every stratum has
even real dimension. Therefore, every complex analytic subspace Y (of pure
dimension) of a complex analytlc manifold Xis a pseudomanifold.

A similar argument would seem to exclude the consideration of all perversi-
ties such that p(S,) is < 0 or p(S,) > codimS, —2. However, we will sometimes
find these perversities convenient for the study of perverse sheaves.

1.4.2 The zero perversity and the top perversity

What happens in the case of these two bounding perversities? This has a nice
answer, at least for local systems on Yy which are restrictions of local systems
on Y (for example, for the trivial local system Q).

DEFINITION. The zero perversity 0 is defined by 0(Y,) = 0 for all strata
Yo C Z. The fop perversity { is defined by #(Y,) = codimY, — 2 for all strata
Y, C Z.

DEFINITION. The space Y is normalif the link of every stratum Y, in Y is
connected. (If ¥ is also a pseudomanifold, then the property of being normal
turns out to be independent of the stratification.)

Theorem 1.3 ([GM1], section 4.3) Suppose that L is a local system on Y
and that L is ils resiriction 10 Yy. If Y is a normal pseudomanifold, then
I'HAY LY = H(Y;L). IfY is a normal pseudomanifold and , O is the orien-
tation sheaf on Yy, which is n- dimensional, then IPH;(Y;L®O) = Ho—i(Y; L).
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This theorem was proved in ({[GM1], section 4.3) for trivial coefficients and
oriented Yy, but the proof carries over to this generality.

According to this theorem, if Y} is oriented and L is the restriction of a local
system on Y, then the intersection homology with zero or top perversity is just
ordinary homology or cohomology. However, if L is not the restriction of a local
system on Y, then even in these extreme perversities the intersection homology
can be interesting,

1.5 The invariant range perversities

1.5.1 ‘Topological invariance

Now we come to the question of topological invariance of intersection homology.
The groups I? Hi(Y; L) are defined using a lot of non- topological baggage. First
of all, the geometric cycles themselves use an analytic structure on Y, Next, we
choose a stratification of Y. How much do these choices matter?

Example 5 is a case of a manifold whose intersection homology changes when
it is re-stratified, for an extreme perversity. However, Theorem 1.3 shows that
for the zero or top perversities and for appropriate local systems, the intersection
homology is just the ordinary homology or cohomology. These, of course, are
defined without reference to the choices made, so this establishes topological
invariance.

DEFINITION. A classical perversity is a function § from the integers greater
than one to the integers p: Z,y — Z with the properties that #(2) = 0 and
B(i+1) is either P} + 1 or B(i) for i > 2. Given a classical perversity, the
associated perversily p is defined by p(Y,) = p(codimY,) for Y, C X, for any
pseudomanifold stratification of ¥,

Theorem 1.4 ([GM2], section 4) Suppose that Y is a pseudomanifold, I is a
local system on' Y and that § is a classical perversity. Then for any pseudomani-
Jold stratification of Y, we get an intersection homology group IPH;(Y; L) where
p is the associaled perversity and L is the restriction of L to Yy. This group
IPH(Y: L) is independent of the siratification chosen, and in fact depends only
on 'Y as a topological space and L as a topological local system over Y.

1.5.2 ; Lack of homotopy invariance

Exercise 1.11, Let Y be the the space obtained from gluing a complex projec-
tive plane to a four-sphere along a two sphere. The two sphere is embedded in
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the complex projective plane as a complex projective line, and it is embedded
in the four sphere as an “equator”. Let Y’ be the one point join of two four
spheres. Show that ¥ and Y’ have the same homotopy type. Show, however,
that I™ H3(Y, Q) £I™ Ha(Y', @), where m is the middle perversity (which is in
the invariant range) defined in the next section.

Nevertheless, intersection homology is interesting from a homotopy point of
view. See the notion of stratified homotopy in {W], for instance.

1.5.3 Functoriality under placid maps

DEFINITION. ([GM5).) A placid mep f : Y — Y’ is a continuous map
for which there exist stratifications of ¥ and Y’ such that the inverse image
of a stratum of Y’ of codimension ¢ in ¥” is a union of strata in ¥ each of
codimension at least. cinY.

For example, any map to a manifold is a placid map. Fibrations in topology
and flat maps in algebraic geometry are placid maps.

Exercise 1.12. Show that for any invariant range perversity, I? H, (e, Q) is
both a covariant and a contravariant functor for placid maps. The contravariant
induced map will shift degrees. (You may want to assume that the map has
desirable geometric properties to do this exercise. To do it in the generahty
stated, one can use the techniques of [GM2].)

1.5.4 The Kunneth theorem

Theorem 1.5 ([CGL).) Suppose that p is a classical perversily such that p(a)+
p(b) < p(a+8) < p(a) + p(b) +2. Then

P rFEY; L@ PH(Y L) = PH(Y x YL@ L)

i+ji=k

1.6 The middle perversity and the Kahler pack-
age.

The Poincaré Duality theorem of the last section said that a general intersection

homology group is dually paired to another intersection homology group. For

many applications, however, one wants a group that is dually paired to itself.

When does this happen?

DEFINITION. The perversity m is a middle perversity for Y if the dual
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perversity to m is m itself, i.e. if m(Yy) + m(Yy) = codimY, — 2 for all strata
Y. in X.

Clearly, a middle perversity can exist only if codimY, is even all strata Y, in
. Then the middle perversity is unique and given by m(Y,) = (codim¥,)/2—-1.
In this case, the stratification is a pseudomanifold stratification. Note that
the middle perversity is associated to a classical perversity, so the topological
invariance theorem applies for the middle perversity.

Convention. The middle perversity is so important that if no perversity is
mentioned, then the middle perversity is assumed by default. So we have

IH,'(Y; L) = ImH.'(Y;L)
ICi(Y; L) = I™Ci(Y; L)

Corollary 1.6 (to Poincaré Duality) Suppose that m is a middle perversity
JorY, and thal Y is compact. Suppose further that L is dually paired to itself
(for example, suppose Yy is oriented and L is Q). Then if i+ j =k,

I:IH(Y; L)@ IH;(Y; L) — Q : )

is @ nonsingular dual pairing.

Exercise 1.13. Show that for ordinary rational homology of a compact
singular complex variety, the Betti numbers in complementary dimension don’t
even have to be equal.

This middle perversity intersection homology satisfies the same Poincaré
duality that the ordinary homology of a manifold does. This historically led to
the question of whether it satisfies other properties of ordinary homology. (See
[CGM] for an early paper in this direction.)

1.6.1 Complex manifolds and the Hodge decomposition

From the point of view of geometry, some of the most interesting theorems
satisfied by the ordinary homology of a smooth manifold are those that apply
to complex projective varieties. We will refer to these theorems collectively as
the Kdhler Package. Each theorem of this section represents a monumental
piece of mathematics, both as to its importance and as to its proof. We don't
want to go in to complete details. This section can be taken as an overview,
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Further assumptions, We assume for the rest of this section that X is a
smooth complex algebraic variety and that all stratifications are complex al-
gebraic. We denote the real dimension of In particular, Y will be complex
algebraic, Now is a good time to reiterate that someone interested only in con-
stant coeflicients can skip all mention of properties of the local system, because
all conditions will be satisfied for constant coefficients. (Since. Yy will be complex
analytic in what follows, it is oriented.)

Theorem 1.7 Conjectured in [CGM], proved in [S]

If L is a complex local system that is a polarized variation of Hodge Structure,
then there is a Hodge decomposiiion

IH(Y;L)= @ &P
pFy=n—~i

where p and g are positive inlegers, and - .

W = Hq'p

Exercise 1.14. Show that for ordinary homology of a compact singular
variety, the odd Betti numbers don’t have to be even (which they would be if
it had & Hodge decomposition). Hint: Use Example 1 of section 1.2, ~

1.6.2 'The Hard Lefschetz Theorem

For the next theorem, we suppose that X is a complex projective space. Then
there is a large family of complex hyperplanes H in X, which are themselves
complex projective spaces of one complex dimension less (therefore two real
dimensions less). Given a geometric i-cycle £ in Yy, we can always find a hyper-
plane H in this family that is {rensverse to [£], i.e. that is transverse in the usual
sense to each stratum of a stratification of [€}. In that case, there is a geometric
(i —2)-cycle called the intersection cycle, denoted [H]}N & supported on H N [£].
We refer to {G2] for the construction of [H]N£, noting only that the construction
hinges on the fact that both X and H are canonically oriented, since they are
complex analytic varieties. We observe the following two properties of [H] N§
from [G2]: .

Proposition 1.8 If ¢ is allowable with perversity p, then [H]NE is allowable
with perversily p. The class in IP H{(Y; L)represented by [H)NE is independent
of the trensverse hyperplane H chosen.

Theorem 1.9 Hard Lefschetz[BBD|} If L has geometric origin ({BBD], p.
162), then the map

((H)N) : IHpjoqi(Y; L) — IHpya-i(Y; L)
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i3 an isomorphism for all i,

Exercise 1.15. Show that the corresponding statement would be false for
ordinary homology. Hint: Use Example 1 of section 1.2. '

1.6.3 The L? cohomology

Another fundamental result about the ordinary homology is the deRham the-
orem. This says that the homology can be calculated using differential forms,
Now, if we want to generalize the deRham theorem to singular spaces, we are in

“trouble since it is not clear what a differential form on a singular space should

be. The reader will have noticed that the whole philosophy of intersection ho-
mology is to study a singular space Y using chains on the nonsingular part Yg,

~ where the singnlarities T enter only by putting a restriction on what chains we

should study. So, the proper analogue of a differential form on Y should be
a differential form on ¥y (which is a non-compact manifold) with some sort of
restriction,

The most natural restriction on a differential form on a noncompact mani-
fold, from the point of view of analysis, is that the differential form should be
square integrable, This is an old theme; it was already well developed by the
time of deRham’s book.

DEFINITION. A squere integrable, or L2, differential form on Yy is a form

such that
f WA R < 00
Yo

and also (in order to make the space of L2 differential forms into a complex) we
require that the same condition should hold for dw.

f dw A +{dw) < oo
Yo

(This definition resembles the definition of the p-allowable geometric chains, in
that there also the same condition is put on the chains and their boundaries. )

DEFINITION. The L? cohomology H(iz)(Ya) is the *# cohomology of the com-
plex of L? differential forms on Yj.
These definitions also make sense in the presence of a local system L on Yy,

proviced that L has a smoothly varying positive definite inner product on each
fiber. ‘

We could hope that under some assumptions, we have IH, n—i(Y;L) = H(i._,)(}’g; L),

(The dimension shift is because L? cohomology uses cohomology numbering of
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groups, whereas intersection homology is uses homology numbering.) There is
one problem: the definition of the Hodge star operator %, and therefore the def-
inition of L? cohomology, depends on the choice of a Riemannian metric on Y.
Easy examples show that the L? cohomology changes when the metric changes,
so long as Yy is non-compact). In fact, whether the L? eohomology is finite
dimensional or not depends on the metric. So we are led to the question:

Question. Are there naturally occurring classes of metrics on ¥ and on L for
which we have If (Y;L) = H(‘z)(Yg; Ly?

A geometrically minded person who wants to know what the two things
could possibly have to do with each other might consult [BGM] for a simplicial
version.

This question has been the subject of intensive work, an has been answered
positively in a number of cases. Both because of my own ignorance and because
of the complexity of the situation, and because the problem is somewhat tan-
gential to the aim of this report, it is not possible here to do more than sketch
the situation. (Also, the situation is constantly changing.)

o For a complete metric on a curve, the question was proved by Zucker [Z1]

o The existence of a (non-K&hler) metric for which the question has a pos-
itive answer was established by Cheeger [C}, who had already considered
the L? cohomology groups involved before he had ever heard of intersec-
tion homology.

s For the incomplete metric on Y} induced from its embedding in X, the
question was conjectured by Cheeger, Goresky, and MacPherson {CGM]
and was proved for two dimensional varieties by Hsiang and Pati.

o If Y is nonsingular and I is & divisor with normal crossings, the question
was proved for a complete metric by Cattani, Kaplan, and Schmid [CKS],
and by Kashiwara and Kawai [KK].

e If Y is the Baily-Borel compactification of a quotient of a Hermitian sym-
metric domain by an arithmetic subgroup of its automorphism group, the
metric is the usual metric induced from the Hermitian symmetric domain,
and L arises from a finite dimensional representation of the automorphism
group, then the question was conjectured by Zucker [22] and was proved
by Saper and Stern [SS] and by Looijenga [L}], after some special cases had
been established by Borel, Casselman, and Zucker.

o . If Y has only point singularities, for a nice class of complete Kahler
metries, the question was proved by Saper [Sal.

37



It is important to emphasize the difficulty of the problems involved in proving
theorems like those summarized briefly above.

1.8.4 The Lefschetz fixed point theorem

Proposition 1.10 Let f : Y — Y be a placid map. Then ihere exist unique
classes [f] € IH (Y xY,Q) and [A] € IH (Y x Y, Q) satisfying the properties:
1) [f} and [A] both project to the fundamental class Y] of Y, under projection
to the second factor (which is a placid map) and 2} [f] (resp. [A]) can be
represented by cycles that lie in an arbitrarily small neighborhood of the graph
of f (resp. the diagonal).

DEFINITION.  The Lefschetz number L{f) of f is
L(f) = 3 (~V)'trace (" IH'(Y, Q) — IH'(Y,Q))

.Theorem 1.11 ([GM3].)
I((71.{ah = L(S)

Consequently, if f has no fized poinis, then L(f) must be zero.

1.7 The Decomposition Theorem

Until here in our development, intersection homology has been useful only if we
are interested in singular spaces Y (or spaces with a local system with singular-
ities). However, the decomposition theorem shows that intersection homology
intervenes in an essential way for a map f: Z — Y even if both Zand Y are
nonsingular algebraic manifolds.

Theorem 1.12 The Decomposition Theorem. (Conjectured in [GeM], Conjec-
ture 2.10 and proved in [BBD], Theorems 6.2.5 and 6.2.10.)

Consider a proper algebraicmap f : 2 — X bf ;:omple:c algebreic varielies.
We assume that X is smooth, bui Z may be singular. Then there exists:

» A stratification X ={J, X, of X,

o A list of enriched sirala By = (X, Lg) where Xp is a siratum of X andt
Lg is a local system over Xz, and

o For each enriched stratum Eg, a polynomial in t, ¢° = i q')ftj
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such that for any pair of smoothly enclosed subsets A C B C X in X, we have

TH(f™'B,fA) =P P IH: (BNXp),(AnXp)Lg) 0 V)
B jtk=i

where Vjﬂ is a rational vector space of dimension qb? , i.e. VJP = Q"f .
The enriched strata may be chosen 1o be irreducible.

Ifihe map f is projective and every component of Z has the same dimension,
then all of the local systems Lg are self-dual, and all the polynomials ¢° =

Z:J- qS?tJ' satisfy the following properties (where dg is dim Z — dim Xp )

s Poincaré Duality ¢ = qsgﬁ P
o Hard Lefschetz If j > dp/2, then ¢ > 67,

Explanation of notations The enriched stratum Ep = (Xj, Lg) is said to
be irreducible if Lg is an irreducible local system, i.e. if it is zero on all but
one connected component Z of Xg, and on Z it corresponds to an irreducible
irreducible representation of the fundamental group of Z, Themap f: Z — X
is projective if it admits a factorization Z — X x CPY — X where the map
X x CPY — X is the projection onto the first factor.

Remark. Taking B = X and A =, we get a direct sum decomposition
of the intersection homology of Z. For each enriched stratum Ep, the sum-
mand of the decomposition theorem looks a lot like a Kunneth formula. So the
decomposition theorem has the following fanciful interpretation:

The intersection homology of Z looks like the intersection homology of a
disjoint union of varieties Dg, IH;(Z) = IH;(|J Dg. L) where Dg = Xp x Fp,
and L restricted to Dg is the pull-up of Lg from Xg. Here Fp is a fictitious
projective “fiber variety” such that JH;(F3) = Vjﬁ . The polynomials ¢* have
the interpretation of the intersection homology Poincaré polynomials of Fg. The
“fiber variety” has dimension dg, so every variety Dy has the same dimension as
Z. The “Poincaré Duality” and “Hard Lefschetz” relations on the polynomials
&° are the Poincaré duality theorem and the hard Lefschetz theorem for Fg.

To emphasize that these “fiber varieties” are really fictitious, note that ¢€
can be zero.

Exercise 1.16. Show that if Z = X, x F for some compact variety I and
if f:Z — X is projection on the first factor followed by inclusion, then the
decomposition theorem holds with only one enriched variety Eg = (X4, Q) and
&7 given by the intersection Poincaré polynomial of F. (So in this case, the
fiction of the remark is real.)
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Remark. At least one summand of the decomposition theorem will always
correspond to an enriched variety (X, Lo)where Xo is the image of f. The
other strata Xz occurring in summands of the decomposition theorem are, in
some sense, the strata over which £ is “singular”. The projection of a product
onto the first factor can be considered a nonsingular map this sense. See the

“exercises at the end of the section for examples,

1.7.1 Functoriality

The isomorphism between the two sides in the statement of the decomposition
theorem is natural, in that it commutes with maps induced by inclusions of
pairs of subsets of X, and with connecting homomorphisms:

Theorem 1.13 (Functoriality of the decomposition theorem.) Suppose that we
have two pairs of smoothly enclosed subsets A CBCXand ACBCXin
X, such that AC A’ and B C B'. Then the following diagram commutes:

IH‘(f_ltif_lA) = @ﬁ @j-}-k:i IH, ((B ﬂX_ﬁ),(A ﬂz); Lﬁ) ® V.f)9
1
TH(f B\ [ ) = @ @;40ei TH: (B NXp), (A NKp); gY@ V)

where the vertical maps on each side are given by the maps on iniersection
homology induced form the inclusion of pairs.

Suppose that we have a single pair of smoothly enclosed subsels ACBC X
in X. Then the following diagram commauies: : '

IH*‘(f-*g,f-lA) = @pBjsr=i [H: (BNFR), (ANT) Lg) @ Vf
18, 16, |
IH(f'A) = Dp By THy (W' 0 Xp); Lg) @ VF

where the vertical maps on each side are given by the connecting homomorphism
maps on inierseciion homology.

1.7.2 Uniqueness

-

‘The remarkable thing about the decomposition theorem is the existence. Unique-
ness of the set of enriched varieties Eg and the polynomials ¢# is very much
more elementary. The only complexity how to formulate uniqueness, given that
the choice of the stratification of X is somewhat arbitrary. (If one stratification
works, then any refinement of that stratification also works.) '

Theorem 1.14 Uniqueness. If the stratification X = Ua Xo of X is fized, then
the list of irreducible enriched strata Eg = (Xj,Lg) and the polynomials ° are
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determined uniguely by the conditions, If X = J, X4 and X =], X, are two

. different stratifications, and the decomposition thoeorm holds for each of them.
Then there will ezist a bijection between the irreducible enriched varieties Ep =
(Xp,Lg) and Efy = (X}, L) such that (Xg,Lg) corresponds to (X, L) if
and only if S(Lg) = S(Lly) and Lal(S{Lg) 0 S(Ljy) = L |(S(Lg) N S(Lp).
(Here, SL denotes the sel over which L is defined and nonzero.} The polyno- -
mials ¢ for the corresponding enriched subvarieties are equal.

Exercise 1.17. Prove this uniqueness statement.

1.7.3 Generalizations

One would like to replace the trivial local system @ in IH(Z5) by an arbitrary
local system. While there are no counterexamples known for any local system,
it is unknown at the moment just how general the theorem can be made. It is
proved for local systems of “geometric origin” {BBD].

Likewise, one would like to generalize the decomposition theorem to complex
analytic maps rather than complex algebraic maps. This has been carried out
by Morihiko Saito, again for local systems of “geometric origin”, as part of his
theory of mixed Hodge modules. '

1.7.4 Examples of the decomposition theorem

The force of the decomposition theorem is difficult to understand without seeing
its application in a number of special cases.

In the following series of exercises, we consider resolutions of singularities.
(A map f : Z — Y is a resolution of singularities if Z is nonsingular, f is
proper, and if there exists an open dense set Yy € Y such that the restriction
(f1F~H(Yo)) : 71 (Yo) — Yo is a homeomorphism.)

Exercise 1.18. Show that if f : 2 — X, is a resolution of singularities,
then one enriched stratum of the decomposition theorem for f is (X4, Q).

Exercise 1,19, Using the previous exercise‘,,éonclude that the intersec-
tion homology of any complex algebraic variety is a subspace of the ordinary
homology of any of its resolutions of singularities.

Exercise 1.20. Show that if the resolution of singulariies fiZ — Xa
is an isomorphism outside of a finite set of points zy in X, then in addi-
tion to (Xa, @), the only other possible enriched subvarieties in the decom-
position theorem are of the form Eg =(z,, Q). In this case, show that qbf =
bi (F=1(2y)) = ba-j(F}(zy)) if j > d/2. Here d is the dimension of X, and
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bi(F~(z,)) is the jtB ordinary homology Betti number of f~}(zy). Determine
qS_'? for the other values of § by Poincaré duality.
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4 - Exercise 1.21. Continue consideration of a resolution of singularities f :
Z — X4. The map [ is called small if for any point z € Xy C X, such that
Xy # Xa, the dimension of f~1(z) is strictly less than (dim X, ~ dim X,,) /2.
Show in this case that the only enriched stratum occurring in the decomposition

. theorem for f is (X,, @).

Exercise 1.22, Show that if an algebraic variety admits a small resolution,
then the intersection homology of the variety is the ordinary homology of the
resolution. Show that for such varieties, the statements of the Kahler package
are clear from the classical statements.

Exercise 1.23. Let X = Hom(G", C?) be the manifold of n x p matrices.
1t is stratified by the rank: X, is the set of matrices of rank k. We denote the
closure of X; by Xz. Calculate the intersection homology group [ H;(K) as a
function of n,p, k, and i. Hint: Suppose that n > p. Then let Z be the variety
a point of which consists of the data a k-plane £ in C? together with a linear
map fromC™ to £. Show that Z is a small resolution of X:.
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. Remark. There are other examples where intersection homolog} can be
{ calculated through small resolutions. See, for example, [Ze)].

1.7.5 Further material on the decomposition theorem

The decomposition theorem is considered further in section 8.2 , after Fary
functors have been introduced. The interested reader can jump to that section,
reading only the definition of Fary functors from section 4.3.2 . There, the
discussion focuses more on the role of the local systems.

1.8 Theorems that hold for close to middle per-
versities.

I would like to tell a piece of history here, since it serves as well for an intro-
duction to this section as anything else I could write. In 1978 and 1979, Mark
Goresky and 1 were immersed in the philosophy that this chapter has been
building so far: There are some nice theorems about intersection hornology, but
the best of them hold only for the middle perversity, The philosophy was that
the middle intersection homology group of a singular space was the true ana-
logue of the ordinary homology of a compact manifold. (We were particularly
happy about this, because when we first introduced intersection homology it
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was criticized because there were “too many groups”, one for each perversity.)
We were developing Stratified Morse Theory in those years, and we were ap-
plying it to prove the Lefschetz Hyperplane Theorem. What surprised us was
that our proof, indeed the whole theory, applied to a more general class of per-
versities just as well as it did to the middle one. This was totally unexpected
at the time. We were puzzled, and worse, we were disappointed. We didn’t
want lots of interesting groups, we wanted one very interesting group. I recall
this at length to explain to myself why we passed so close to a very important
discovery without seeing it. For, as we found in 1980, the more general class
of perversities give Perverse Sheaves. And it is Perverse Sheaves that represent
the natural generality of our proofs, That idea, to over- simplify, is the main
theme of this report, and it will be developed at length later. '

First, let’s define a class of perversities.

DEFINITION. A petversity p is close to middle if .

codimS, codimS,

for all strata S, C %,

DEFINITION. The logarithmic perversity is the perversity p(Sq) = (codimSa)/2,

and the sublogarithmic perversity is the perversity p(S,) = (codimS,)/2 — 2

Note that the middle perversity is close to middle, as is the logarithmic
perversity and the sublogarithmic perversity. There are plenty of classical per-
versities that are close to middle, but not all perversities close to the middle are
classical even if p(¥,) depends only on the codimension of Y,. For example, all
three perversities considered in example 1 were close to middle, whereas only
one of them was classical.

1.8.1 The Lefschetz Hyperplane Theorem

As for the Hard Lefschetz Theorem, we suppose that X is a complex projective
space. We say that the hyperplane H is transverse to.Y if it is transverse to every
stratum Y, of Y. Most hyperplanes in the family of all complex hyperplanes A
in X are transverse to Y. If H is transverse to Y, the space Y N H is stratified
by strata Y, N H, and we can take as its nonsingular set Yy N H. Call p the
inclusion of YNH into Y. Given a geometric i-chain £ in YoNH with coefficients
in LYo 1 H), we define p.£ to be that same chain considered as a cycle in Yj.

Proposition 1.15 If¢ is allowable with perversity p, then p.§ is allowable with
perversity p. Therefore p. induces a chain map, p. : IP Hy(YNH; L|(YoNH)} ~—
IPH(Y;L).
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Theorem 1.16 ([GM7),[GMS]) Ifp is close to middie perversily, then the map

pe : PH(Y N H; LYo N H)) — IPH,(Y; L)

is an isomorphism fori < nf2—1 and is a surjection fori=n/2-1.

1.8.2 Homology of Stein spaces

. A Stein space is a complex analytic space which admits a closed embedding in
¢ for some N. So we can let X be CV and we let ¥ be a Stein space.

Theorem 1.17 ([GMT],[GMS]) Let ¥ be a Siein space of (real) dimension k,
and let p be a perversity that is close to middle. Then the intersection homology
group IPH(Y'; L) vanishes for i > nf2. Also the intersection komology with
closed support IEH,(Y; L) vanishes fori < n/2. ’
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Exercise 1.24. Show that the vanishing result for the intersection homology
with closed support does not hold for the ordinary homology with closed support
of a Stein space. Consider the union of two transverse complex 2- planes in
i ct. '
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Chapter 2

Interlude: Perverse
Sheaves on Manifolds.

This chapter which is not logically necessary for the main results t.hat. we are
aiming at, is a preamble for the next chapter.

This preamble may serve as a paradigm of bad mathematics. We will give
a long and complicated definition, and then we will state a structure theorem
saying that the thing defined is really just a simple, well-known mathematical
object. The long and complicated definition is that of & perverse sheaf a manifold
X, stratified with only one stratum. The simple object that it turns out to be
equivalent to is a local system on X.

There are two reasons for having this preamble. The first reason is this:
While the definition of a perverse sheaf on a manifold is long and complicated,
it is very natural and familiar for someone for someone who knows a little
homology theory and a little Morse theory. However, the definition of a perverse
sheaf in general is a very straight-forward generalization of the definition of a
perverse sheaf on a manifold. Therefore, the reader familiar with the contents
of this preamble will find the definition of a perverse sheaf very natural, And
one of the points of this book is to give a definiticn of perverse sheaves which
makes them lock natural to begin with.

The second reason for having this preamble is that the proofs in the next
chapter are structurally the same as those here. However here they appear
without the necessity of a lot of techniques of stratification theory. Since strat-
ification theory appears rather technical until you are used to it, the essential
ideas are clearer in the preamble,

The reader who is interested in perverse sheaves and who wants to get at
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the heart of the matter quickly may skip this chapter and refer to it §s needed.

Notational conventions. Throughout this chapter, X will be a (real) ori-
ented smooth manifold (without boundary)., We will denote by n the dimension
of X. We will assume that n is even. This assumption is not necessary for the
theory we present, however the assumption makes the notations easier, This
assumption will not detract from the applications of perverse sheaves: Complex
analytic varieties, which are what we ultimately want to study, have even real
dimensions,

2.1 Classical Morse Theory

If f: X ~ R is a smooth real valued function on X, then a critical point of
f is a point p € X such that all of the partial derivatives of f vanish at p, i.e.
df(p) = 0. A critical value of f is a real number v € R such that v = f(p) for
some critical point p. For example, in the following picture, X is a torus and f
is the orthogonal projection to a vertical line. The critical points are py,... P4
and the critical values are vy ..., v4. : ' :

r

. .
5 .
\ N
” / [ 4
;
-

\g/
The critical points and critical values of a real valued function,

H ¢ € Ris any real number, we define the truncation of X by f at @, notated
Xy<e to be the subset of X' where f takes values less than e, ie. Xiee =



F7H{(=00,)).

The truncation of X by f at ¢

If ¢ is not a critical value of f, then X; . is the interior of a smooth manifold
with smooth boundary {by the implicit function theorem}.

The object of Classical Morse Theory (CMT) is to study how the homology
groups of Xy, changes as ¢ varies. (Of course, modern Morse theory also
studies how the diffeomorphism type of X<, changes as ¢ varies. However in
this report, we are interested mainly in homological invariants, The statement
as made is historically true of Morse theory as originally conceived by Morse,
incidentally.) The first result is this.

Theorem 2.1 (CMT Part A). As ¢ varies in the open interval between two
adjacent critical values, the homology groups of X;¢. remain consiani. More
specifically, if b < ¢ and if there is no critical value in the closed interval [b,c],
then

Hi(Xj<e: Xpas) =0

so, by the long exact sequence for homology, the map induced by inclusion
Hi(Xy<) — HilXj<e)

is an isomorphism.

To go further, we need some more definitions of Morse theory. Consider a

critical point p of a smooth function f : X — R. The Hessian % of f at
p is the quadratic form on T, X which is the second order Taylor expansion of

f(z) — f(p). Namely,
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Here (z1,+++,2,) are local coordinates about p in X and {Z1,:+-,,) are the
induced linear coordinates in T,X. As a quadratic form on TpX, the Hessian
is independent of the local coordinates chosen. The function f is said to have
a Morse singularily at p if the Hessian quadratic form is nondegenerate, i.e.
if the determinant of the matrix is nonzero. In this case, define an up space
Up at p to be a maximal vector subspace of the tangent space T, X on which
the Hessian is positive definite. Define a down space Dy at p to be 2 maximal
vector subspace on which it is negative definite. It is a result of the theory of
real quadratic forms that all up spaces have the same dimension; as do all down
spaces. Furthermore, the direct sum decomposition T,X = U, ® D, always
holds. Sylvester's Theorem of Inertia states that the only invariant of % as a
quadratic form is the information contained in the dimensions of U, and D,.
Given that the dimension of X is fixed (it’s n), we need only one integer to
express these two dimensions. There are two standard choices for that integer:

DEFINITION. The signature of the Hessian o(%), also called the signature
of f at p is the dimension of U/, minus the dimension of D,.

DEFINITION. The Morse Inder of the Hessian u({%), also called the Morse
indez of f at p is the dimension of D,.

The signature is more usual among algebraists and the Morse index is more
usual among geometers, Note that o and u determine each other, since ¢ =
dimU, — dim D, = (dim U, + dim D,) —2dim D, = n~2dim D, = n—2u. Or
# = (n —o)/2. Also, note that o is always even since n is even.

Theorem 2.2 (CMT Part B). If b < ¢ are not critical values, if there is only
one critical point p with critical value v in the closed interval [b,¢], and if f has
a Morse singularity at p with Morse indez p, then

0 ifi
Hi(Xj<e, X)) = Q ijfri _fﬁ
So, by the long ezact sequence for homology, we have the Morse alternative: as
a varies from b to ¢, Either the pﬂ; Betli number of Xj¢q is increased by one,
and all of the other Belti numbers are unchanged, Or the (p—l)“t Bettt number
of Xt<a is decreased by one, and all of the others are unchanged.

Exercise 2.1. Observe that for all four critical points in the torus example
above, the first Morse alternative occurs. Construct an example in which the
second Morse alternative occurs.

Remark. The reason for making a fuss about the difference between p and
o is that for perverse sheaves we will use & = ¢/2 in the place that x appears
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in the theorem above. In fact, that one substitution can be seen as engendering
the whole theory of perverse sheaves.

There is rmuch more than what we have said so far to Classical Morse the-
ory. Functions with only Morse singularities are called Morse funclions. There
is a very strong existence theorem for Morse functions: the form an open dense
set in the space of all real valued functions, with the appropriate topology, so
any function can be approximated by a Morse function, There is also beautiful
characterization of Morse functions with distinct critical values: They are the
structurally stable functions, i.e. the functions with the property that suffi-
ciently nearby functions have the same topological type. We won’t need these
facts here. '

2.2 Opposed Pairs of Smoothly Enclosed Sub-
sets. '

DEFINITION. A subset of X is called smoothly enclosed if it is of the form
X< for some smooth function f and for some value ¢ which is not a critical
value of f. In other words, a smoothly enclosed subset of X is the closure of
the truncation of X by some smooth function f at a number ¢ which is not a
critical value of f. If G = X<, is a smoothly enclosed subset of X, then the
interior of G is notated G°. It is X;<.. Smoothly enclosed subsets of X are just
n dimensional submanifolds with boundary whose boundary is smooth.

A smoothly enclosed subset R of X

If R is a smoothly enclosed subset of X, then we will often have occasion to
consider the closure of the complement of R, which we denote by ~ R and we
call the complimentary smoothly enclosed set. For example, if B = Xf<e, then
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~ R is the subset of X where f takes values greater than or equal to ¢, which we
denote by Xy».. The set ~ R is also smoothly enclosed, since ~R= X_;¢_..

The complementary smoothly enclosed subset ~ R.

DEFINITION. A smoothly varying family of smoothly enclosed subsets of
X is a family R(2) for t € R of subsets such that there is a smooth function
X x B — R notated (z,t) — f;() with no critical points having critical value
a, such that R(t) = fr!((~o0,4a]) = X},<..

The term “smoothly varying” is justified by the following version of Ehres-
mann’s theorem.

Proposition 2.3 Suppose R(t) is a smoothly varying family of smoothly en-
closed subsels of X. Then there is a one parameter family of diffeomorphisms
of X onlo itself Fy : X —+ X such that F1{R(0)) = R(t). '

DEFINITION. Twosmoothly enclosed subsets & and G are said to be opposed
under the following conditions:;

¢ Suppose R = X;<s and G = Xy<i. Then for no p € X does it happen
that f(p) = a, g(p) = b, and df(p) is a positive multiple of dg(p).

o The subset X —(ROUGP), called the support of the opposed pair, is compact.
For short, we will use the expression an opposed pair (R, G) in X for a pair
of smoothly enclosed subsets R and G of X which are opposed. We will call

the first subset R of an opposed pair (R,G) the red subset and the second
subset GG the green subset. Lacking the possibility of reproducing colors here,
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we will indicate the red subset in pictures by dots and the green subset by cross
hatching,

i
i
1

!
i
!
i

red green

The geometric meaning of the definition of an opposed pair is that at all
points where the boundary of R is tangent to the boundary of G, the sets R
and G must lie on opposite sides of the common tangent plane. In the following
pictures, you should think of the page you are reading as lying in a coordinate
chart in the 2-sphere. :

RN Yoy e

Nof An opposed pair st An opposed pair

Note that the statement that (R, G) is an opposed pair is symmetric in R
and G. If f: X — R is a proper map, then (Xy».Xs<s) is an opposed pair
whenever a and b are not critical values of f.

Ve want to put a put a partial order on the set of opposed pairs in X.

DEFINITION. Suppose that (R, G) and (R, G’) are two opposed pairs in X.



g Pt bt o,
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We say that (R,G) covers (R/,G") , and we write (R,G) 1 (R, @) if both

"R2 R and GC G

2 Proposition 2.4 Tke relation 1 satisfies

e Reflezivity: (R,G) 2 (R, G).
 Transitivity: if (R,G)} J (R',G") and (R/,G") 2 (R",G"), then (R,G) 3
(R”, G”). )
o If(R,G) J(R,G"), then (G',R") 2 (G,R).
» If(R,G) D (7, G"), then (”"R’:NG’) = (~Rr~G)'

DEFINITION. - A smoothly varying family of opposed pairs in X is a.family
(R(t),G(t)),t € R such that R(t) and G(t) separately are smoothly varying
families of smoothly enclosed subsets of .X and such that for all ¢, the pair
(R(t), G(t)) is opposed. -

DEFINITION.  Suppose that (R,G) and (R',G') are two opposed pairs in
X. We say that (R,G) covers (R',G') by deformation if there is a smoothly
varying family of opposed pairs in X is a family (R(t}, G(t)),t € R such that
gR, (fl) t=<(1;3(0),G(0))» (&', G") = (R(1),G(1)), and (R(t),G(¢)) T (R(1), G(1))
Oor a . : . ’

Proposition 2.5 The four stalements of proposition remain valid when the
relation “covers” is replaced by the relation “covers by deformation”,

2.3 The ordinary homology perverse sheaf.

DEFINITION (provisional), The homology perverse sheaf H is the rule which
assigns to any pair of opposed smoothly bounded subsets R and G of X and
to any integer ¢ the rational vector space H'(X, &), according to the following
rule:

HY(X, §) = Hapei(X - R,G°N(X - R);Q) (2.1)
= Hypi((X - RyUG, G Q) (2.2)

Here, I; is the usual homology group. The two expressions on the right are
equal to each other by excision.
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Remarks. By definition %! (X, &) is just a homology group of a subset of
X relative to another subset. But there are some strange looking changes from
the usual notation. The first is a shift in the numbering scheme, where the
zeroth homology group is placed in degree n, the top homology group is placed
in degree —n, and the middle homology group is placed in degree 0. This
numbering scheme is the standard one in perverse sheaf theory, so getting used
to it now will save effort in the long run. One merit of it is that duality has a
particularly appealing expression in this numbering scheme.

The other difference from ordinary homology notation is in the labeling of
the sets. The way to think of it is this: an element of %*(X, &) is represented
by an (n — i)-chain £ in X such that £ avoids the red set R (get it?), and it is
allowed to have boundary in the green set G.

A chain representing a class in H°(X, &).

One way of explaining the naturality of this notation is the following: In-
tersection Homology, which is the quintessential perverse sheaf, is neither co-
homology nor homology, but rather something in between. Ve want to use a
notation that favors neither cohomology nor homology conventions. In relative
cohomology H'(X, R), the cocycles representing classes are required to be zero
on the subspace R. In relative homology H;(S,G), the cycles are allowed to
go to G but may have boundary there. In other words, there is an analogy
“homology is to the green set as cohomology is to the red set”. To emphasize
this, we state the following proposition which shows that if we switch homology
and cohomology and we switch the roles of R and G, we get the same thing.

Proposition 2.8

ii

HM2H(X _ GLRN(X - G):Q) (2.3)
= H"((X -G)UR" R%;Q) (2.4)

MK, §)

53



PROOF. The equality with the definition of H(X, B) is just the Lefschetz
Duality Theorem (remember that X is oriented). The equality of the two ex-
pressions on the right is excision in cohomology.

We will call either of the two expressions on the right the cohomology defini-
tion of H. Justified by this proposition, we may say that the homology perverse
sheaf and the cohomology perverse sheaf are exactly the same thing,

*Remark. There is an analogy between the roles of the red set R and the
green set G on the one hand, and Diriclet and Neumann boundary conditions
. from P.D.E. on the other hand. {The analogy becomes exact if we represent
~ homology classes by harmonic forms.)

The following section contains a list of the defining properties of a perverse
sheaf P!(X, §) ona manifold X. The main example to keep in mind while
reading it is P*(X, &) = #'(x, B). '- '

2.3.1 Definition of a perverse sheaf on a manifold.

DEFINITION. A Perverse sheaf on a manifold on X is a device P which
does the following three things: : )

® P assigns to each opposed pair (R,G)in X and to each integer { a finite
dimensional vector space over the rationals PiX, B).

» Whenever (R, G) and (R, G") are two opposed pairs in X such that (R, G) -
(R',G"}, then P gives 2 map denoted R* ' '

Y PUX, By — Pi(x, R)

called the restriction map.

¢ Whenever (R,C) and (~C,G) are opposed subsets of X, P gives a map
denoted §* ' '
0" P, B — X, )

called the coboundary homomorphism.

The device P will qualify as a perverse sheaf if it satisfies the following
axioms called the modified Eilenberg - Steenrod azioms: :

* Functoriality. For any opposed pair (R, G), the map
R*:PUX, By — Pi(X, B
is an isomorphism. For any triple of opposed pairs (R, G), (R',G’), and
(R",G") such that (R,G) O (R',G') O (R",G"}, we have a diagram of
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restriction maps which commutes:

PiX, &)
n / . i1l
P‘(X, g) — 'P'(X, gu)
" o Naturality, Whenever (&,G), (~C,G), (R,&"), and (~C',G') are all

opposed pairs, and (R,C) J (R',C") and {~ C,G) 3 (~ C’, G )then the
following diagram commutes

PG S PO E)

PUX, B) o PHUX, &)
where the vertical arrows are restriction maps.
s Exactness. Whenever (R,(), (~C,G), and (R, G) are opposed subsets
of X with (R,G) 3 (R,C) and (~ C,G) J (R,G), then the following

sequence is exact:
e ‘_’-pl'-i-l(x’ g).._{PH'l(X" g) _‘?':’ pi(X! '&C)—'Pi“(x: g) —Fe

e Excision. Whenever (R, G) and (R, (") are two opposed paits in X such
that (R,G) 2 (R,G"), if GN ~ R = G'N ~ R, then R* : P}(X, &) —
PH(X, &) is a isomorphism. Dually, whenever (R, G) and (R/,G) are two
opposed pairs in X such that (R,G) 3 (R',G), if RN ~G = RN ~G,
then R* : PH(X, &) — P{X, &) is a isomorphism.

+ Homotopy. Suppose (R,G) covers (R',G’) by deformation. Then the
map R* : PHX, &) — Pi(X, &) is an isomorphism,

¢ Dimension. Let f : X — R is a smooth proper function with only one
critical point p € X with critical value in the interval [b,a], and assume

that f has a Morse singularity at p . Then P(X, §j 2°) = 0 for unless
i = —& where & is on half of the signature of the Hessian quadratic form

of F at p (see definitions in section 1).

DEFINITION. A Fary functor is a device that does the same three things

and satisfies all of the axioms for a perverse sheaf except for the last one, the
Dimension axiom, and which satisfies instead the following additional axiom:

o There exists a number N such that PI(X, &) = 0 unless ~N < i< N.

Thus a perverse sheaf is a Fary functor satisfying the dimension axiom.

DEFINITION. Given a Fary functor F, there is another Fary functor TF

translated Fary functor which defined by TF (X, &) = F*1(X, §).
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Exercise 2.2. Show that if Fis a Fary functor, then 7F is a Fary functor.
Show, however, that if F is a perverse sheaf, then TF is not necessarily a
perverse sheaf. (As a much harder exercise, show that F and T are both

perverse sheaves only if F is zero on every opposed pair. Hint: read the next
few sections first.)

2.4 The homology perverse sheaf satisfies the
axioms.

First of all, we should complete the definition of the homology perverse sheaf.

This may be done from either the homology point of view or the cohomology
point of view. '

The homology formulation.

DEFINITION. The homology perverse sheaf M, is the following:

* The vector space #'(X, §) = Hai(X — R,G°N(X ~ R); Q).
. The restriction map

R* 1 HA(X, By — Hi(x, B
is just the map
Hn_i(X - R,G°N(X - R)) — H._ (X - R',G° N (X - R")

- induced by the inclusion of pairs.
¢ The coboundary homomorphism

FHNX, By — wit (X, )
is just the homomorphism
Hpi(X = R.CN(X = R)) 2% Hoy y(CA (X = R) — Hpeir(C) =
= Hpeiot((X = ~C) ~ Hy_io 1 ((X— ~C),GN (X = ~C))

where the unlabeled maps are induced by inclusions of pairs.
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The cohomology formulation.

DEFINITION. The (co)homology perverse sheaf %, i.;s the following:
e The vector space H!(X, B) = H**(X - G, RN (X ~ G);Q).
s The restriction map
R*HI(X, By —H(X, &)
is the map
H"X - G,RN(X - G)) — H"™M(X -G, R'n(X -G

induced by the inclusion of pairs.

s The coboundary homomorphism
o HHX, &) — HHX, &
is the homomorphism

H™H(X - C,RO(X = C)) — H™ (X = C) 2 BrH+ (X, X — C) =
= (X ~C) — Hn+i+1(X - G,~C - G)

where the unlabeled maps are induced by the inclusions of pairs.

2.4.1 Verification of the axioms.

In order to establish that the ordinary homology perverse sheaf as defined above
is in fact a perverse sheaf, we must verify the Modified Eilenberg- Steenrod Ax-
ioms. From either the homology version or the cohomology version, all of the
axioms except the last two, Dimension and Homotopy, are immediate conse-
quences of the similarly named properties of homology (or cohomology). We
leave these as an exercise, Furthermore, the Dimension axiom for ordinary ho-
mology is just a restatement of the fundamental homological result of Morse
Theory, as formulated in Section 2.1. This leaves the homotopy axiom.

2.4.2 'The homotopy axiom.

The homotopy axiom asks us to consider two opposed pairs (R, G) = (R(0), G(0)),
and (R, G") = (R(1),G(1)) selected from a smoothly varying family of opposed
pairs (R(t), G(1)). Tt states that if (R(£),G{t)) 2 (R(1),G(1)) for all ¢ < 1
then the restriction map is an isomorphism. So, in order to prove it, we should
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investigate to what extent the opposed pairs in the family resemble each other.
Under an additional transversality condition, we will actually have tha.t all of
the opposed pairs in the family are homeomorphic.

DEFINITION.  Suppose that R and G, smoothly enclosed subsets of X, are
defined by B = Xj¢qs and G = X,<;. Then the pair (R, G) is said to be
transverse if for no p € X does it happen that f(p) = a , g(p) = ¢, and df(p) is

a real multiple (positive or negative) of dg(p).

So transverse pairs are opposed, but not vice versa.

Proposition 2.7 Let R(t) and G(t) be a smoothly varying families of smoothly
enclosed subsets of X. Suppose that for each t € R, R{t) is transverse {o
G(t). Then there is a one parameier family of diffeomorphisms of X onito itself
Fy: X — X such that F(R(0)) = R(t) and F,{G(0)) = G(2).

This is a slightly extended version of Eheresmann’s theorem and it is proved
in the same way: On X x R a vector field can be found (by partitions of unity)
which projects to the unit speed vector field on R and which is tangent to the
boundaries of Uy R(t) and U,G({} whenever it lies in them. Then the required
diffeomorphism is obtained by integrating this vector field. -

The proposition just stated would be false if we only assumed (R(), G(t))
is an opposed pair, rather than a transverse pair, as the following two examples
show: (In each case, R(t) remains constant, while G(2) is the part of the page
below a horizontal line which is rising as ¢ increases.)

A family of opposed subsets.

In both cases, the last picture is not homeomorphic to the first one. The
problem arises when the boundary of the set R becomes tangent to the boundary
of the set S, i.e. when transversality fails.
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Suppose that (R, G) = (R(0), G(0)), and (R, G") = (R(1), G(1))for a smoothly
varying family of pairs (R(2), G(t)), and suppose that if (R(t), G(t)) 3 (R(1), G(1)}
for all ¢ < 1. If (R(t), G(2)) is a transverse pair for each t then the proposition
above clearly shows that the restriction map

R*:Pi(X, By — PUX, &)

is an isomorphism. On the other hand, one may verify by hand that this is
also true for the two opposed but non-transverse families illustrated above.
In fact, in each of these two examples, the inclusion of the topological pair
(X — R,(X — R)NG) into (X — R',(X — R')NG') is a homotopy equivalence -
of pairs, The homotopy inverses can be viewed as follows:

Il l I ﬁi}ii\ihi;i;i

Inclusion of topological pairs.

The image of a homotopy inverse to the inclusion.
Exercise 2.3. Carry out the general proof of the homotopy axiom. HINT:

Replace the family of opposed pairs with a new family with the same begin-
ning and ending pair, sueh that the new family has the following property:
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The interval [0,1] can be broken up into subintervals on each of which either
the generalized Eheresman’s theorem holds or on which the deformation is a
generalization of the pictures above.

Exercise 2.4. Let p: 7 — ¥ be a fibration and let m be an integer. Show
that the following is a Fary functor:

FHX, §) = Hn-i(o™(X = R), " H (G N(X - R)); Q)

Exercise 2.5, Let p: Z — Y be a covering projection. Show that the

following is a perverse sheaf:

Fi (X, §) = Hapa-ilp™ (X — R),p™H G N(X - R); Q)

2.5 The dimension axiom

This section can be regarded as an extended exercise in the axioms of a perverse
sheaf, The idea developed here is key to the proofs of some of the main theorems.

We want to investigate what the dimension axiom is asserting about a Fary
functor. So let us assume that F is a Fary functor. Further, we consider, as in
the case of the dimension axiom, a smooth proper function f : X ——+ R with
only one critical point p € X with critical value in the interval {b,a], and we
assume that f has a Morse singularity at p with signature ¢ and Morse index

u. The dimension axiom is about the calculation of F¥{X, ﬁji:)

Theorem 2.8 For any Fary functor F,

i X12a { ~i
FHX, x_':i,,)=-7‘-‘(xﬁ 50-1y)

where B is ¢ n-ball embedded in X and S(k) is a tubular neighborhood of a
k-sphere embedded in B. '

This theorem says that, instead of the millions of possible topological types
of pairs (X;>a,Xy<s) we have only to consider one topological type for each
Morse index, namely (~ B, S5(n — 1)).

Let’s consider an example of this theorem. Take the first critical point on
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A pair (X34, X ;<) for the dimension axiom .

All of the action is in the lower half of the torus, so we may consider it alone.

The lower half of the last picture
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But this is just an annulus,

A covering by deformation of the previous picture
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A covering by deformation of the previous picture

We have arrived: This pair is {~ B, $(u — 1)), the outside of a 2-ball and a
tubular neighborhood of a zero sphere.

Exercise 2.6. Construct a proof of the theorem in general, following the
same sequence of steps as above. '

Theorem 2.9 For any Fary funcior F,
FiX, §0-0) = FHX, 3P)

Let’s prove this result in the situation where B is a 2-ball and p is 1. We
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use the exactness axiom. Consider the following pairs:

o (~5(0),G)

Exercise 2.7. Show that P*(X, 3F) = 0 for all i. Deduce the theorem
above in this case. ' '

Exercise 2.8. Prove the theorem above in general. Imitate the calculation
of the relative homomology of disk mod a sphere from topology.

Remark. One implication of the above development is that the axioms for a
perverse sheaf are not independent or minimal. It would have been possible to
replace the dimension axiom by a weaker axiom that requires the same statement
for a single value of &. (Perhaps the most elegant choice would be & = 0.
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Chapter 3

Monodromy and the
Homotopy Covermg
Category

In this chapter, we build up some of the most important ideas associated to
perverse sheaves (and Fary functors). These are the ideas related to monodromy.
Monodromy is a map induced by a continuous deformation. First we define the
monodromy maps associated to a smoothly varying family of opposed pairs.
Then, we define the homotopy covering categroy, we interpret perverse sheaf as
a functor on the homotopy covering category, and show that the monodromy
map is induced by a map in the homotopy covering category.

The ideas of this chapter wiil be used not only for perverse sheavse on a
manifold, but for perverse sheaves in general, The reason for introducing them
in the special case of perverse sheaves on a manifold is that the concepts and
proofs in general differ from the concepts and proofs in this specail case only by
some routine stratified technology.

3.1 Monodromy.

It is time to begin the theory of perverse sheaves on a manifold. Perhaps the
most important construction is that of monodromy maps.

Suppose that we are given any smoothly varying family of opposed pairs
(R(t),G(¥)). {We make no assumptions that any of the pairs in the family
covers any other.) Let us denote this parameterized family by the single symbol
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a. Suppose further that we are given any perverse sheaf P on X, not necessarily
the homology perverse sheaf In this section, we show that & induces a map

: PHX, B) — PHX, B) where (R,G) = (R(0),G(0)), and (R, G") =
(R(l) G(1)). We call this map the monodromy map.

3.1.1 The idea

First, let’s look at the infuitive idea. It is easier to visualize if we consider single
smoothly enclosed sets rather than pairs. Consider a disk D; that moves across
the page horizontally from left to right.

WA WEAR
\\J

£
NN \_/

Successive positions of a moving disk D,

We want to focus on the group #1(X, 32*) = Ho(D:). This is just generated
by a point in the disk. It is easy see the intuitive idea of the monodromy map
from the first disk to the last disk: just carry the point along as the disk moves.
However, the axioms don’t allow for this operation. Using the axioms, we can
only compare the homology of two disks when one of them contains the other,
and that doesn’t happen here in this family at all.

The idea of the solution is to replace the disks By a family of baloons which
alternately inflate and deflate as they move across the page. The motion looks
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like this:

70000 )
NS

The baloon inflates

{ 7))

The baloon deflates

Now in both the inflation and the deflation phases, there are maps between
successive baloons. (In inflation, the maps go forward with time and in deflation,
the maps go backward with time. Going backward doesn’t cause any problems,
because the maps are isomorphisms anyway.) In this way, we construct the
monodromy map using only the abilities of a perverse sheaf.

3.1.2 The general construction
In order to construct the monodromy map, we choose a some data:

DEFINITION. Monodromy data for the family of opposed subsets o = (R(t), G(1))
is the following:
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~ e Apartition of the interval [0, 1] into subintervals {t;,¢;+1] where § € {0,1,... k-
1} and 89 =0,% =1, and ¢; < tj49.
e Foreach j € {0,1,...,k—1}, an opposed pair of subsets (R;, G;)such that
for each ¢ € {t;,t541], (R(), G(t)) covers (R;,G;) by deformation.

Note that if for some & € [t;, %41}, (R(t), G(2)) covers (R;,G;) by deforma-
tion, then for each f € [t;,t;4.1], (R(t), G(2)) covers (R;,G;) by deformation.

Proposition 3.1 Monedromy data exists for any smooih family o of opposed
subsets of X.

Exercise 3.9. Prove this proposition.

DEFINITION. The monodromy map o* : PH{X, B(— Pi(X, S:) induced
by the smooth family of opposed subsets & and the monodromy data is the
composition from top to bottom in the following diagram:

P = PG

Pi(X’ Gn)
Rt 5
'p'(X, P -

. . ’ ?'(‘X’ Gl)
\ /z
o Rlon) e
PUX, Ginss)) N

PX, g

Ii

i Rt
PiX, B) PiX, GE)
Proposition 3.2 The monodromy map ¢* is independent of the choice of the
monodromy data, i.e. it depends only on the smooth family o,

The proof of this proposition will be deferred until some categorical devel-
opments are available, We want to define a category with the property that
perverse sheaves are functors on that category, and such that the monodromy
map is induced from a morphism in that category.
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3.2 A homotopy category

The Eilenberg-Steenrod axioms for ordinary homology explicitly state that ho-
mology is functorial on the topological category: the category of topological
spaces and continuous maps. However, one of the axioms is the homotopy ax-
iom. This axiom guarantees that homology passes to a functor on the homotopy
category, which is a sort of quotient category of the topological category.

In this section, we carry out a similar development for perverse sheaves, First
we describe the category of pairs on which they are defined. Then we define the
quotient category that the homotopy axiom guarantees that they pass to.

3.2.1 The category of opposed pairs and coverings

DEFINITION. ‘The caiegory of opposed pairs and coverings C(X) is the fol-
lowing:

¢ The objects are opposed pairs (R, G) in X.

e Given two objects (R,G) and (R',G"), there is either one morphism or
no morphisms from (R, G) to (R/,G'}). If (R,G} 3 (R',G’), there is one
morphism {called the covering); otherwise there are no morphisms,

The fact that Cxis a category is exactly the statement that J is a partial
order relation. The functoriality axiom asserts that for any perverse sheaf P,
the symbol Pi(X, !} is a functor from this category to finite dimensional vector
spaces and linear transformation.

3.2.2 The homotopy category of opposed pairs

Let D be the set of coverings by deformation. It is a subset of the set of
morphisms of Cx. The homotopy axiom says that coverings by deformation
induce invertible maps, i.e. that the functor P{(X, !) takes any element of D
to an invertible linear transformation. '

Proposition 3.3 There ezists a category Cx[D~!] with a functor F : Cx —
Cx[D~*] with the following universal property: For every funclor G :Cx ~— L
such that for every morphism f in D, G(f) is invertible, there ezisis a unique
functor E : Cx[D™'] — E such that Eo F = G.

This universal property for Cx[D~'] is just the definition of the localization
of the category Cx at the set of morphisms D. Its existence was proved, by
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actual construction, using the “calculus of fractions” by Gabriel and Zisman

[GZ] p. 6.

DEFINITION. The homotopy category of opposed pairsis the category Cx[D™Y],
i.e. the category of opposed pairs and coverings localized at the set of coverings
by deformation,

As usual, the homotopy category of opposed pairs is uniquely characterized
by its universal property, and therefore the definition above is complete. How-
ever, it will be useful to have the actual comstruction of it from Gabriel and
Zisman. We recall it (specialized to our case):

CONSTRUCTION. The homotopy category of pairs Cx[D~1] is constructed
‘as follows: The objects are opposed pairs (R,G) in X. For brevity in this
construction, we will notate such a pair by 4 or 4;. A morphism from A4 to A’
is an equivalence classes of strings of opposed pairs of the following type

p D ) p b
A=A JACACATDAJACAT DA CACAgddn=4

where for every two adjacent opposed pairs A; and A;4 in the string, either
A; covers A;yy {either by deformation or not), or else A;4; covers A; by defor-

D
mation (notated A; C A;yy. We don’t exclude that 4; = A;y (in which case
both are true). We also don’t exclude the case that the string has only one pair
A, and no coverings, in it.

The equivalence relation is generated by the following elementary equivalence
relations, which are to be applied on segments of the strings. (There is some
redundancy in this list.)

s The substring 4 = A is equivalent to the substring A.
D
» The substring A C 4; 3 A is equivalent to A = A.

D
¢ The substring A J A; C A is equivalent to A = A.
The substring A; J A» 3 Aj is equivalent to 4y J Az,

D D . D
The substring A1 C Az £ Aj is equivalent to' Ay € Aa.

D D
The substring Ay © A 3 A» is equivalent to 4; 2 A’ C A,.

The composition in the category is induced by gluing strings together.
D D D p D '
(AGEATQA8EA9§A102A11>° (AIQAEEA:iEAéQAsQAs) =
D D D D D
=4 JACAC A4 QA JAC A, T AL Ao C Ao An
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The identity of an object A in the category is the string A (or A = A} itself.

Proposition 3.4 The functor P (X, !) passes to a functor on the homotopy
category of opposed pairs.

This is true, of course, by the homotopy axiom and the universal property
of Oy [D—l}.

Exercise 3.10. Give an alternative proof of this proposition by showing
directly that the functor P*(X, !) induces a map on a string as in the construc-
tion of Cx{D~!], and that if two strings are equivalent, then the two induced
maps are equal.

The category of opposed pairs and coverings has at most one morphism
between two.given objects. This is not true for its localization, the homotopy
category of opposed pairs, as shown by the example studied in the next section.

3.3 Back to monodromy

Theorem 3.5 Any deformation o of opposed pairs induces a morphism ¢in
the homolopy category of opposed pairs. The map induced by & on the func-
tor PHX, ?) fs the monodromy homomorphism o*, The morphism & is an
isomorphism.

PROOF-CONSTRUCTION. In fact, the choice of monodromy data for &
gives the following morphism & in the homotopy category of opposed pairs

(R, G) = R{ta), G(to)) T (Ro, Go) T R(11),G(t1)) & (R1,Gy) T -+~

b
v T (Re—1,Gr—1) D R(1:), G{tx)) = (R',G")
The definition of the monoromy morphism was exactly the morphism induced
by &

We now come back to the proof of the independence of the monodromy map
form the choice of the monodromy data. This proof was postponed from the
last section. '

DEFINITION. A choice of monodromy data D refines another choice D))
under these conditions:

e Each subinterval S of [0,1] in the partition for D is contained entirely
within a single subinterval S} of the partition for D, .
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» The opposed pair of subspaces indexed by S given by D covers the opposed
pair indexed by S, given by D;.

Exercise 3.11. Show that if D refines Dy, then the lift #, of & to the
homotopy covering category induced by D is the same as the lift &4 of ¢ to the
homotopy covering category induced by D,

Exercise 3.12. Show that, given any two choices of monodromy data Dy
and D for o, there exists a choice of monodromy data D which refines both
Dy and Ds,

3.3.1 Composition of monodromy maps

If ¢ = (R(1),G(t)) and ¢’ = (R'(t),G'(t)) are two smooth families of op-
posed subsets of X, then we can define the composed family ¢ o ¢’ as usual
by executing first o then ¢/, Namely o oo’ = (R(2t),G(2t)) if t < 1/2 and
coo' = (R'(2 - 1),G'(2t — 1)) if t > 1/2. We define a constant famlly to be
the family (R(t), G(t)) = (R, G).

Proposition 3.6 (§00') = o’ 00 50 (0 o'y = o™ oo™ Ifo is a constant
Jamily, then & is the identity, so o* is the identily. ’

3.3.2 Homotopy invariance of monodromy.

A smoothly varying family ¢ of opposed pairs may be thought of intuitively
as a smooth paths in the “manifold” of all opposed pairs. We want to study
homotopies between two such paths with the same end points. Instead of at-
tempting to make the “manifold” of all opposed paths rigorous, we will proceed
as follows:

DEFINITION. An n-parameter smoothly varying family of smoothly enclosed
subsets of X is a family R(t) for ¢ € R" of subsets such that there is a smooth
function X x R" — R notated (z,%) — fi(z), with no eritical points having
critical value @, such that R(t) = f71((—oco,a]) = X, <q. An n-parameterfamtiy
of opposed pairs in X is a pair (R(t), G{t)} of n-parameter smoothly varying
families of smoothly enclosed subsets such that R(¢) and G(t) are opposed for
each value to ¢

Now suppose we have two (1-parameter) families ¢ = (R(?), G(t)) and o' =
(R'(t), G'(1)) of opposed pairs such that (R(0), G(0)) = (R(0),G(0)) = (R, G)
and (R(1), G(1)) = (R(1), G(1)) = (R, ).

DEFINITION. A homoiopy between ¢ and ¢’ is a 2—parameter family
(R(w)}, G(u)) of opposed pairs together with two maps f, f' : R — R? such that
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f0) = £1(0), f(1) = f'(1), (R(2), G®)) = (R(f ), G(f(8))), and (R'(t), G'(t)) =
(R(F'(2)), G{f'(£))). The families & and o’ are said to be homotopic if there ex-
ists a homotopy between them.

Proposition 8.7 If ¢ and ¢' are homotopic, then & = o' so o* = o™,

Exercise 3,13. Prove this proposition. HINT: The homotopy between
o and o’ may be regarded as a map from a two dimensional space into the
“manifold” of opposed pairs. Choose a fine cell decomposition of that two
dimensional space,

3.4 The local system associated to a perverse
sheaf on a manifold.

The"rﬁost‘ basic application of the monodromy map is the construction of a
local system L(’P) over X for any perverse sheaf P on X. We will carry out this
construction in this chapter.

3.4.1 The associated local system

First, we choose a family of balls B, one for each z € X such that “B; is
centered at &, and it varies smoothly with 7. The usual way to do this is to
choose a Riemannian metric on X and to choose a smooth function e{z} > 0.
Then B: is the set of all paints of X of distance < e(z) from ¢ as measured
by the metric. If e(#) is chosen small enough, then for any z € X, B, will be
homeomorphie to a ball; and for any smooth map f : R* — X, the family
B(t) = By will be a smooth family of smoothly enclosed subsets of X.

Next, we define a functor F from the fundamental groupoid of X to the
homotopy covering category of X as follows: For any smooth path f : R — X,
the functor 7' applied to f will be & where ¢ is the family (R(f),G{£)) = (~
Bj(1),¢), the pair consisting of the complement of the ball B(f) and the empty
set.

Exercise 3.14. Show that this is a functor, Show that if we choose two
different families of balls with the required properties, then the two functors
constructed using these two families are naturally equivalent. (If you want to
refresh your memory on what a natural equivalence of functors is, you may find
it in any category theory book.}

Recall from appendix 7.2 that a local system on X can be defined as functor
from the edge path groupoid of X to the category of finite dimensional vector
spaces.
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DEFINITION. If P is any perverse sheaf on a manifold X (of real dimen-
sion n), then the associated local system is the functor P2 o F' , where F is
the functor from the fundamental groupoid to the homotopy covering category
defined above,

Exercise 3.15. Show that the associated local system is functorial, i.e. that
. it is the map on objects of a functor F from the category of perverse sheaves to
. the category of local systems. ' .

3.4,2 A generalization

It will be convenient later to have a generalization of this construetion which
constructs local systems for more general families of opposed pairs in X.

. DEFINITION. A smooth family (R(s),G(s)), s € S of opposed pairs parameterized
- by a manifold Sis a palr (R,G) of smoothly enclosed subsets of Sx X such that
for each s in S, the pair (77H{s) N R, #71(s) N G) = (R(s),G(s)) is an opposed
pair in X, where 7 is projection on the first factor.
Now, we define a functor F from the fundamental groupoid of .S' to the

homeotopy covering category of X as follows: For any smooth path f: RrRE— S,
— the functor F' applied to f will be & where ¢ is the family (R(f(?)), G((f(1)))

Fxercise 3.16. Show that this is a functor.

DEFINITION. For each integer i, the ith Jocal system induced by the smooth
family (R(s), G(s})), s € S of opposed pairs parameterized by S is the functor
PioF , where F is the functor from the fundamental groupoid to the homotopy
covering category defined above.

The fiber of this local system of this local system over s € § is P¥(X, gg%)

3.4.3 The structure theorem for the category of perverse
sheaves on a manifold :

Recall the definition of homology with coefficients in a local system, from ap-
pendix 3.

DEFINITION. If L is a local system over X, then the ordinary homology
perverse sheaf wilh coefficients in L, notated £ is defined by the equation
X, B = HifX ~R,GN(X - RY; L).

Exercise 3.17. Show that is a functor G which associates to every local
system L the homology perverse sheaf £ with coefficients in L.
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As promised in the introduction to this chapter, the category of perverse
sheaves on a manifold is equivalent to an a priori much simpler category. In
fact, every perverse sheaf on a manifold is a homology perverse sheaf with
coefficients in some local system L.

" Theorem 3.8 The category of perverse sheaves on a manifold X is equivalent

1o the calegory of local sysiems on X. The functors F from perverse sheaves
1o local systems and G from local systems fo perverse sheaves {described above)
provide the equivalence.

PROOF: The following exercises,
Exercise 3.18, Show that ¥ o G is the identity.

So the essential point is to find a natural transformation from G o F to the
identity. (At first sight, G o F and the identity appear to have little to do with
each other.)

Exercise 3.19. Imitate the technique of section 2.5 to show the following:
Suppose f : X — R is a smooth proper function with only one critical point
p € X with critical value in the interval [b, a], and assume that f has a Morse
singularity at p . Then £77(X, ?g‘) may be canonically identified with L,
where & is on half of the signature of the Hessian quadrat.lc form of F' at p. (A
priori, the identification is only well defined up to sign. In order to fix the sign,
it is necessary to fix an “orientation” of the handle for f at p.)

Exercise 3.20. Now complete the proof, using the small complex defined
in section 4.7 of the next chapter,

3.5 *Some remarks on the homotopy covering
category.

In this section, we develop a little of the theory of the homotopy covering cate-
gory. This material will not be used elsewhere in these notes. The object is to
show that the homotopy covering category is a rlch structure, and perhaps that
it is worth being studied further.

3.5.1 Sets of small dimension.

DEFINITION. A smoothly enclosed subset A of X is said to have Morse
dimension < d if it is compact and there exists a Morse function f : X — R
with the property that A = X;<, and all of the critical points of f with critical
values < @ have Morse index < d.
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Exercise 3.21. Show, using Morse theory, that a smoothly enclosed subset
of Morse dimension < d has the homotopy type of a finite CW-complex of
dimension < d.

1 suggest that the reader who is not familiar with embedding techniques
for finite CW-complexes should assume that d = 1 in the following series of

_exercises. Then a CW-complex of dimension d is just a finite graph.

Let X be a manifold and let R be a fixed smoothly enclosed subset. Let
Ca(X, R) be the full subcategory of the homotopy covering category of X whose

“objects are {R,G) where G has Morse dimension d, and R and G are disjoint.

Exercise 3.22. Show that if the dimension of X is greater than 2d, and if
R is the complement of a disk in X, then Cy4(X, R) is equivalent to the category
of CW-complexes of dimension < d and homotopy classes of maps.

So, for X of large enough dimension, finite homotopy theory can be embed-
ded within the homotopy covering category. .

Exercise 3.23. Let X be a compact K(,1) manifold of dimension > 24,
and let G be a set of Morse dimension < d. Let .4 be the automorphism group
of (¢, G) considered as an object of the homotopy covering category of X - Let
A be the automorphism group of G in the category of finite CW-complexes and
homotopy classes of maps. Then we have a short exact sequence )

0 —A—A—r—0

Exercise 3.24. Show that if X is any compact manifold of dimension > d,
and G has Morse dimension < d, then the automorphism group of (¢,G) in
Ca(X, ) has a subgroup A which fits into an exact sequence as above, If X is
the 2-sphere and G is the annulus, show that .4 is not the whole automorphism
group of (¢, G) in Cy(X, ¢) by displaying an automorphism a not in A.

3.5.2 Fary functors

Exercise 3.25. Show that any for Fary functor ¥, F ‘passes to a functor on
the homotopy covering category.

Exercise 3.26. Take X to be the 2-sphere and G to be the annulus, as
above. Give an example of a Fary functor and an integer i so that the F* takes
every automorphism in A of (¢,G) to the identity automorphism, but it takes
that automorphism a to an element different from the identity, HINT: Use the
Fary functer that comes from the Hopf map from the 3-sphere to the 2-sphere.

Exercise 3.27. Show that the phenomenon of the last exercise cannot
happen if the Fary functor in question is a perverse sheaf. (In fact, every perverse
sheaf on X takes every autornorphism of (¢, G) to the identity automorphism.
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3.5.3 Further localization

The category that is of most fundamental interest for perverse sheaves and Fary
functors is not C[D~*), the homotopy covering category, but rather a further
localized category. :

Exercise 3.28, Show that for any Fary functor F, the functor F' passesto a
functor on C[D~1[[E~!] where E is the set of maps which induce isomorphisms
by reason of excision.

The most mathematically natural definition of a perverse sheaf would start
with the.notion of a functor on this category. 2
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Chapter 4
Perverse Sheaves

In this chapter, we finally come to the general definition of a perverse sheaf.
Organizationally, we will follow the structure of Chapter 2 . The reason is to
emphasize that the notion of a perverse sheaf is a very natural outgrowth of an
attempt to generalize Morse theory to stratified spaces.

Notational conventions. Throughout this chapter, X will be a complex
analytic manifold. We will denote by n the real dimension of X, so its complex
dimension is n/2. We will assume given a Whitney stratification X = {J X, of
X by complex analytic submanifolds. :

4.1 Stratified Morse Theory

There is a very natural extension of Classical Morse Theory on a manifold to a
theory on a stratified space. This extension is called Stratified Morse Theory.
It is treated in full in [GMS]. The following is 2 summary of some of the most
salient points.

4.1.1 What is a critical point?

DEFINITION. If f:X — R is a smooth real valued function on X, then a
critical point of f is a point 2 in a stratum X, € X such that all of the partial
derivatives of the restriction of f to X, vanish at z, i.e. d(f]X,)(x) = 0.
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This definition of a critical point depends on the stratification; if X is re-
stratified, then the set of critical points will change. For example, if we stratify
our torus by making a circle on it one stratum and making the rest of it the
other stratum, then we have six critical points. (This is a real stratification, not
a complex one, The definitions of critical points and Morse singularities work
equally well for real stratified spaces.)

Critical points of Stratified Morse Theory.

Also, any zero dimensional stratum of X is automatically a critical point by
this definition, no matter what we choose for f.

A critical value of f is a real number v € R such that v = f(x) for some
critical point z.

Just as in classical Morse theory, if ¢ € R is any real number, we define
the truncation of X by f at c, notated X;.. to be the subset of X where f
takes values less than or equal to ¢, ie. Xy¢o = f~}((—00,¢)). If cis not a
critical value of f, then X<, is the interior of a smooth manifold with smooth
boundary. The boundary lies in X in a way that is transverse to all of the strata
Xoof X.

4.1.2 What happens between the critical values?

As with classical Morse theory, we want to study how the homology groups of
X /<. changes as ¢ varies. Now, however, we are interested also in intersection
homology groups.

Theorem 4.1 (SMT Part A). Choose any stratum Xo of X, choose any local
system L over X,, and choose any perversily p. Let Y be the closure of Xq,
and let Yo = Xo. Suppose that f : X —— R is smooth and f]Y is proper. Asc
varies in the open interval between two adjacent crifical values, the inlersection
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homology groups of Xy NY with coefficients in L remain constant. More
specifically, if b < ¢ and if there is no critical value in the closed intervel [b,c],
then

PH(XtceNY, Xy NY;0) =0
So, by the long ezact sequence for homology, the map induced by inclusion
PH(XjsNY; L) — PHi(X ;<. NY; L)
is en isomorphism.

In fact, X;<p and X<, are homeomorphic by a stratum preserving homeo-
morphism, so this theorem follows from the topological invariance of intersection
homology This part of SMT holds for any Whitney stratified space, whether or
not it is complex analytic.

4.1.3 What is a Morse singularity?

Now we need the analogue of the Morse Index of a function. Consider a‘critical
point z € X, of a smooth function f : X — R. The Hessian # of f at z is
the Hessian of f|X,, the restriction of f to the stratum X,.

DEFINITION. The function f is said to have a Morse singularity at z ift

o The Hessian quadratic form of f at z is nondegenerate (in other words, if
fIX+ has a Morse singularity at z in the classical sense), and

e For any stratum Xp containing X, in its closure, and for any sequence
of points zy,22,23,... in Xg converging to z such that the limit of the
sequence of tangent spaces limy_., T, Xp = 7 C T X exists, we have that
the covector df does not annihilate 7, i.e. df|r # 0.

So the definition of a Morse singularity has two conditions, one restricting
the behavior of f along the stratum containing z and the other restricting the
behavior of f “normal to” the stratum containing z. This second condition
being less familiar, we illustrate it with a pair of pictures of a stratification of a
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real two dimensional manifold X represented by the plane of the page.

The singularity of this height function at the point stratum is not Morse

The singularity of this height function at the point stratum is Morse
4.1.4 'What happens at a critical value?

DEFINITION. The signature of f at z is the signature of the Hessian o =
o(H). The Morse Indez of f at z is the Morse index of the Hessian u = p(H)

 (see section 2.1 for the definitions of these). The signature & being even, we can
also define the half signature & = ¢ /2,

Theorem 4.2 (SMT Part B). Let p be a perversily that is close to middle.
Suppose that f : X —— R is smooth and f|Y is proper. If b < c are not critical
values, if there is only one critical point © with critical value v in the closed
interval [b, €], and if f has a Morse singularily ai z with signature o, then

PPH{(X<:NY, X3 NY; L) = 0if i # (dimY +o)/2
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So, by the long ezacl sequence for homology, we have that as a varies from b to
¢, the degree (dimY + 0)/2 intersection homology Betti number of XpcanY
may be increased, and the degree (dimY + 0)/2 — 1 Beiti number of XeaNY
may be decreased, and all of the others will be unchanged.

Remarks. The main content of the theorem is that there is only one degree {
in which 17 H;(X;<.NY, X; <3 NY; L) can be nonzero. This is a strict analogue
of classical Morse theory. This result would be false without the assumption
that the perversity p is close to middle. The degree in which it can be nonzero is
most conveniently expressed in terms of the signature o of the Hessian. It could,
of course, also be expressed in terms of the Morse index y since (dimY +¢)/2 =

(dimY ~ dim X,)/2 + u, however this expression is less elegant since it refers

explicitly to the dimension of the stratum X, containing .

The group I” Higimy 40y/2(X 1< NY, X< NY; L) may have any dimension
as a rational vector space. It is a very interesting invariant of the singularity of
Y at z (and the singularity of the local system). So in this way the theorem is
not an exact analogue of classical Morse theory.

Exercise 4.1. Show that part B of SMT is false for real algebraic stratified
spaces, even if they have a real algebraic stratification with only even codimen-
sional strata. Consider the example of the classical cone z2 + y* = 22 where
the function f is projection onto the z-axis. (Consider all three close to middle

perversities.)
\ /
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SMT Part B is false for this space and this Morse function

Exercise 4.2, The topological type of the singularity in the example of the
cone above is the same as the topological type of the singularity of Example 1 of
Chapter 1. Yet example 1 of Chapter ! is homeomorphic to a complex algebraie
subvariety of the complex projective plane (it is given by (z)(? + y* +w?) = 0
with respect to homogeneous coordinates). So SMT Part B should hold. How
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do you explain the discrepancy?

Exercise 4.3, Show that part B of SMT is false for perversities that are
not close to middle, even if ¥ is a complex algebraic variety. Consider the
example of a nonsingular algebraic surface Y (it has real dimension 4) and a
Morse function f which has no critical point at z € Y. Now restratify ¥ so
that £ = Y} = z, without changing the f. Use the perversities p(¥}) = —1 or
p(Y1) = 3, which are just beyond the close to middle range.

As with classical Morse theory, there is much more to be said. Functions
with only Morse singularities are called Morse functions. Morse functions in
this sense also form an open dense set in the space of all real valued functions,
with the appropriate topology, so any function can be approximated by a Morse
function. Again, Morse functions with distinct critical values are the structurally
stable functions, i.e. the functions with the property that sufficiently nearby
functions have the same topological type, where topological type mcludes data
about the stratification,

4.2 Opposed pairs of smoothly enclosed sub-
sets.

4.2.1 Smoothly enclosed subsets.

The reader interested in quickly finding out what a perverse sheaf is may begin
reading here (after reviewing the notational conventions at the beginning of the
chapter).

DEFINITION. A subset of X is called smoothly enclosed if it is of the form
Xy<e for some smooth function f and for some value ¢ which is not a critical
value of f. We will call the choice of such an f and such a ¢ a preseniation of
the smoothly enclesed set. G = X 1<c Is 2 smoothly enclosed subset of X,
then the interior of G is notated G® If G = Xj<, is a presentation of G, then
=X f<e, the truncation of X by f at ¢. Smoothly enclosed subsets of X are
just n dimensional submanifolds with boundary whose boundary is smooth and
is transverse to the all of the strata X, of X. In the following example, X is
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the plane of the page and the horizontal line is a stratum of X

A smoothly enclosed subset Not a smoothly enclosed’ subset

If R is a smoothly enclosed subset of X, then the closure of the complement
of R, is denoted by ~ R and called the complimentary smoothly enclosed set.
For example, if R = X<, then~ R is the subset of X where f takes values
greater than or equal to ¢, which we denote by X;».. The set ~ R is also
smoothly enclosed, since ~R = X fL e

DEFINITION. A smoothly varying family of smoothly enclosed subsets of
X is a family R(t} for t € R of subsets such that there is a smooth function

X x R — R notated (z,t) = fy(2) with no critical points having critical value
a, such that R(t) = f7{((~e0,a]) = X}, <q.

4.2.2 Opposed pairs

DEFINITION. Twosmoothly enclosed subsets R and G are said to be opposed
under the following conditions:

® Suppose R = Xj¢, and G = X,<;. Then for no p € X does it happen that

fip) = a, g(p) = b, and d(f.X:){p) is a positive multiple of d{g}Xq}p),
where X is the stratum of X containing p.

o The subset X —-(R"UG"), called the suppori of the opposed pair, is compact.
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In the following examples, we assume that the horizontal line is a stratum
Xgof X

.
\.. "
e

These sets R and G are not opposed

DEFINITION. Suppose that { R, G) and (R', G’) are two opposed pairs in X.
We say that (R,G) covers (R',G') , and we wiite (R,G) 2 (R, G’} if both
R2 R and GC G ~

DEFINITION. A smoothly varying family of opposed pairs in X is a family
(R(t),G(t)),t € R such that R(t) and G(t) separately are smoothly varying
families of smoothly enclosed subsets of X and such that for all ¢, the pair
(R(t), G(2)) is opposed.

DEFINITION. Suppose that (R,G) and (R',G’) are two opposed pairs in
X. We say that {R,G) covers (R',G') by deformation if there is a smoothly
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varying family of opposed pairs in X is a family (R(£), G(1)),t € R such that
t(‘R Cl;l)t <(i?(0) ,G(0)), (R, &) = (R(1),G(1)), and (R(2),G(t)) T (R(1),G(1))
or a

4.3 Definition of a perverse sheaf

.As always in this chapter, we have selected a stratification of X. The perverse

sheaves that we are defining here are usually called perverse sheaves on X con-
structible with respect to the siralification. This is the general perverse sheaf,
because every perverse sheaf is constructible with respect to some stratification.

4.3.1 The definition

DEFINITION. A Perverse sheaf on a stratified complex manifold X is a
device P which does the following three things:

o P assigns to each opposed pair (R, G) in X and to each integer { a finite
dimensional vector space over the rationals Pi(X, ).

e Whenever (R, G) and (R/, G’') are two opposed pairs in X such t.hat (R,G) d
(R, G"), then P gives a map denoted R*

R*:PUX, §) — PU(X, c-r)

called the restriction map.

¢ Whenever (R,C) and (~ C, () are opposed subsets of X, P gives & map
denoted J* _ .
& :PUX, &) —PHUX, &)

called the coboundary homomorphism,

The device P will qualify as a perverse sheaf if it satisfies the followmg
axioms called the modified Eilenbery - Steenrod azioms:

¢ Functoriality. For any opposed pair (R, G), the map
R*:PUX, &y —Pi(X, B

is an isomorphism, For any triple of opposed pairs (R, G), (R',G'), and
{R",G") such that (R,G) 2 (R',&’) 3 (R",G"), we have a diagram of
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restriction maps which commutes:

y Pi(X, &)
Pi(Xx, B — PHX, E)

Naturahty Whenever (R, G), (~C,G), (R',#), and (~ ', G") are all
opposed pairs, and (R,C) 2 (R',C’) and (~C G) 2 (~ ', G')then the
following diagram commutes

Pix, By L pii(x, )
! 1

Pix, 8) L X, &)

where the vertical arrows are restriction maps.

Exactness. Whenever (R,C), (~C,G), and (R, G) are opposed subsets
of X with (R,G) 3 (R,C) and (~ C,G) J (R,G), then the following
gequence is exact:

L —PHI(X, By —Piti(X, B) L (X, F)—PHX, B —

Excision. Whenever (R, G) and (R, G') are two opposed pairs in X such
that (R G) 3 (R,G"), if G ~ R = G'0 ~ R, then R* : PI(X, &) —
Pi(X, B)is a isomorphism. Dually, whenever (R, G) and (R, G) are two
opposed pairs in X such that (R G) J(R,G),{f Fn~CG = RN ~G,
then R* : PH(X, &) — PI(X, B)isa ‘isomorphism.

Homotopy. Suppose (R G) covers {R/,G') by deformation, Then the
map R* : P'(X, &) — P¥(X, &) is an isomorphism.

Dimension. Let f : X — R is a smooth proper function with only one
critical point p € X with critical value in the mterva.l [b, a], and assume
that f has a Morse singularity at p . Then P(X, x’ 22) = 0 for unless
i = —& where & is on half of the signature of the Hessnan quadratic form
of F' at p (see definitions in section 1).

Exercise 4.4. Show that, for any perverse sheal P, if RUG = X, then

PHX, By=0

4.3.2 Fary functors

DEFINITION. A Fary funcior is a device that does the same three things
and satisfies all of the axioms for a perverse sheaf except for the last one, the
Dimension axiom, and which satisfies instead the following additional axiom:
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o There exists a number N such that P*(X, &) = 0 unless ~-N <i< N.

Thus a perverse sheaf is a Fary functor satisfying the dimension axiom,

- 4.3.3 Verifying that a Fary functor is a perverse sheaf.

Suppose you have something that gives the three structures PI(X, &), R*, and
partial*, you suspect is a perverse sheaf, and you would like to check the axioms,
All of the axioms but the Dimension axiom, i.e. the Fary functor axioms, will
often be easy to check, because your “something” will probably be defined in
terms of a chain complex with some homotopy invariance property, The hard
axiom to check is likely to be the dimension axiom. The theorem below reduces
checking the dimension axiom to a finite amount of work.

DEFINITION. The opposed pair (R, G) has pure degree k if it has a presen-
tation (R, G) = (X;5,, Xs<,) for g < r with the property that all of the critical
points of f with critical values between g and r have half the signature # = —k.
Suppose (R, G) has pure degree, and . K is a connected component of a stra-
tum in X. Then we say that K is relevant for (R, G) if for some presentation
(R,G) = (Xy»r, Xj<q) as above, at least one of the critical points of f with
critical value between g and r lies in K. (It is a fact of Stratified Morse Theory,
which we won’t need here, that if such a critical point lies in K for some such
function f, then it is true for any function f such that (R, G) = (Xy>r, Xj<4).)

Exercise 4.5. Show from the axioms that if (R, G) has pure degree k, then
for any perverse sheaf P, we have the vanishing P*(X, &) = 0 unless i = &,

Theorem 4.3 Suppose thet P satisfies all of the azioms for e perverse sheaf
except (possibly) the last one, and so is a Fary funcior. Suppose that we have a
finite collection of opposed pairs (Ry,G1),(Ra, G2),(R3,G3), ... with pure degree
ki, ke, ks, ... such that every connected component K of every stratum in X is
refevant for at least one of the pairs (R;, G;). Then P is perverse if for each 7,
P (1, ) vanishes for i not equal to k;.

4.4 The category of perverse sheaves

The set of perverse sheaves on a fixed complex manifold X with a fixed stratifi-
cation forms a category P(X). The properties and applications of the category
structure of P{.X) is the most important aspect of perverse sheaf theory.
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4.4.1 The definition of the category structure
In order to define the category structure, we need to tell what a morphism is.

DEFINITION. Given two perverse sheaves P! and P, a morphism p from P’
to P also called a homomorphism or a map of perverse sheaves from P/ to P is
the following set of data;

e For each opposed pair (R, () in X, a vector space homomorphism
pe:PU(X, B) — PUX, §)
subject to the following requirements:

e Whenever (R,G) 3 (R',G"), then the following square commutes:

PP, By B pix, &)
lﬁ* lP*

PiX, B) B pix, &)

» Whenever (R,C) and (~C G) are opposed pairs in X then the foilowmg
diagram commutes:

P B 2 P )
1 px 1 P

Pix, 8y L pi-yx, )

4.4.2 Thefundamental theorem about the category of per-
verse sheaves, part I

Now we state the fundamental theorem about the category of perverse sheaves:

Theorem 4.4 Fundamental theorem on the category of perverse sheaves, part
I The morphisms defined above make the sei of perverse sheaves into a calegory.
This category is abelian.

Exercise 4.6, Prove that perverse sheaves with these morphisms a category,
and that the category is additive. {Now would be a good time to refresh your
memory on what an additive category is and what and abelian category is.)
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4.4.3 How to see the abelian category structure.

The fact that perverse sheaves form an abelian category is one of the great mys-
teries of nature. Perhaps the reason that perverse sheaves were not discovered
until 1980 is that this seems result so implausible.

How can we see the abelian category structure directly from the definition?
The most naive guess would be thai a sequence of perverse sheaves is exact if
and only if the sequence of induced maps on any opposed pair (R, G) is exact.
This is false. An example is given in an exercise in the next section. However,
there iz a true statement in this direction,

Theorem 4.5 The sequence
'P"L'»’P' __LP

is exact, in the abelian calegory of perverse sheaves if and only if for all integers
k and for ail opposed pairs (R, G) that have pure degree k, the following induced
sequence is eract:

X, By L pri(x, By Lupr(x, B

In facl, to guaranizce the exaciness of the sequence of perverse sheaves, it suffices
to check the exactiness of the induced sequence on a finite collection of opposed
pairs with pure degree (Ry,Gy),(Re, Ga),(R3,G3),... provided every connected
component K of every siratum in X is relevant for at least one of the pairs
(R;, Gj)-

Exercise 4.7. Show the “only if” part of this theorem directly from the ax-
ioms. (In the language of abelian categories, this is the statement that P*(X, &
is an exact functor if (R, G) has pure degree k.} Use the fact that a short exact
sequence of chain complexes gives rise to a Jong exact sequence on homology.

Exercise 4.8. Construct a nontrivial local system L over the circle $! with
the property that L fits into a short exact sequence

0—Q—L—Q—0

Show that neither Ho{S!, ) nor H;(S!, ) gives an exact sequence when applied
to this short exact sequence of local systems. For any continuous map m : X -—-
S of a complex manifold to §?, show that the short exact sequence of local
systems on S? induces a short exact of local systems on X and hence a short
exact sequence of perverse sheaves on . (Use the theorem above to check the
exactness of the sequence of perverse sheaves.) Finally, show that the functor
oldimXY2( X, %} applied to this short exact sequence of perverse sheaves does
not give a exact sequence of vector spaces.
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4.5 The intersection homology perverse sheaf

As remarked in the introduction to this report, the most important examples
of perverse sheaves are the intersection homology perverse sheaves,

4.5.1 Definition of the intersection homology perverse sheaf

DEFINITION. An enricked stratum is a pair (X, L) consisting of

1. A stratum X, of X.
2. A local system L on X,.

In the event that an enricned stratum has been chosen, we will denote X also
by the symbol Y3, and we will denote the closure of X, by Y.

DEFINITION Let (X4, L) be an enriched stratum and let p be a perversity.
The corresponding indersection homolegy perverse sheaf IPC = IPC(XQ,,L) is
the following:

o [PCassigns to any pair of opposed smoothly bounded subsets R and G of
X and to any integer i the rational vector space IPC*{X, B), according to
the following rule:

PCY(X, §) = IPHgmyy~i((X—R)NY,G°N(X -~ R)NY;L)
= IPHgimyy2-i(((X - R)UG)NY,G°nY;L)

The two expressions on the right are equal to each other by excision.
» The restriction map

R* IPCHX, By — IPC(X, B)
is the map
PHu (X -RG'N(X=-R)) — IPH,.;{{X - R,G°N(X - R))

induced by the inclusion of pairs.
¢ The coboundary homomorphism

o Irei(X, By — PtUX, F)
is just the homomorphism
PHa i(X=R,CN(X-R)) 2% IPHy i 1 (CON(X ~R) — IP Hys_1(C) =
= IPHpii((X = ~C) — PHp_iy((X- ~C),6° N (X~ ~C)

where the unlabeled maps are induced by inclusions of pairs.
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In the event that the perversity is the middle perversity m, then we will
abbreviate the notation I™C(X,, L) to IC(X4, L). In the event that the local
system [ is the trivial local system @, then we will abbreviate PC(Xq, L) to

IPC(Xa).

The proof that the intersection homology perverse sheaf, as defined above,

. -satisfies all the modified Eilenberg-Steenrod axioms but the last one {Dimen-

sion) is very similar to the proof that the ordinary homology perverse sheaf
satisfies them on a manifold. It uses stratification theory to produce isotopies

- and the topological invariance of intersection homology to show that intersection

homology is preserved by those isotopies. The reader familiar with {GM2] and
[GMT] will have no difficulty in constructing the proof; we will omit it. The fact
that it satisfies the Dimension axiom is, of course, essentially what was stated
as the theorem SMT part B in section 3.1, The proof, in [GMY], is difficult. We

will illustrate it in several examples.

4.5.2 The fundamental theorem on the category of per-
verse sheaves, part II

The enriched pair (X4, L) is said to be irreducible if L is an irreducible local

“system over X,. {Recall that an irreducible local system on X, must be zero

on all but one of the connected components of X o)

Theorem 4.6 (Fundamental theorem on the category of perverse sheaves, part
IT) The irreducible perverse sheaves, as defermined by the abelian category struc-
lure, are ezacily the intersection homology sheaves formed from data (X, L,p)
where L is an irreducible local system and p is the middle perversity. If X is
compact {or if there are finitely many strata in X) the category P(X) of per-
verse sheaves is Artinian, i.e. every object has a finite composilion series whese
successive quotients are irreducible.

4.5.3 Properties of intersection homology sheaves.

We give some properties of intersection homology sheaves that relate them to
the abelian category structure of the category of perverse sheaves.

The first exercise below shows that the intersection homology sheaf cannot
be irreducible unless the local system is irreducible. For middle perversity, this
is the only obstruction to irreducibility of the intersection homology sheaf, as
shown by the fundamental theorem above.

If we are given a map of the local system L to the local system L', we have an
induced map on intersection homology sheaves 7 C(Xa L) — IPC(X., L) in-
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duced by the map of chain complexes. This provides our first source of examples
of maps of perverse sheaves, :

Exercise 4.9. Suppose we fix a stratum X, and a perversity p that is
close to middle, Show that the funetor that takes a local system L on X,
to the intersection homology sheaf IPC(X,, L) associated the enricned stratum
(Xa, L) is an exact functor (i.e. it takes short exact sequences of local systems to
short exact sequences of perverse sheaves). You should use the characterization
of exact sequences of the last section,

If the perversity p is less than the perversity ¢, we have amap I?C(X,,L) —
I9C{X 4, L) induced by the inclusion of chain complexes. We call this the canon-
ical map. This provides our second source of examples of maps of perverse
sheaves.

Exercise. Show that if p is less than the middle perversity and if ¢ is
more than the middle perversity, then the image of the map IPC(X,, L) —
I9C(X 4, L) is I™C(Xq, L). Use the theorem above, and also the fact that any
local system has a composition series.

At the moment, these theorems and exercises {which are more exercises in
homological algebra than in geometry) are meant to intrigue the reader. There
is no way that these results could be geometrically clear or even plausible at
this stage, since the abelian category structure is itself obscure.

4.6 Examples.

The examples are the real stuff of the subject. It is strongly recommended that
the reader not skip the exercises in this section.

4.6.1 The Riemann sphere.

We may stratify X = the Riemann sphere (i.e. the complex projéctive line) by
a single point X; and the rest of it X3 = X — X;. This is a special case of
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example 5§ of chapter 1.

The Riernann sphere stratified with one point stratum

This is the simplest of all examples of stratified spaces, except for the case

that there is only one stratum. Nevertheless, it is interesting. By the Beilinson-

Bernstein correspondence, the category of perverse sheaves on this stratified

C space is equivalent to an important category in representation theory “the cat-
— egory (0, of Bernstein-Gelfand-Gelfand {see [Mi]).

There are two irreducible enriched strata for this stratification of X: {X;, Q)
and (X2,Q). These yield a supply of four interesting perverse sheaves on X
given by intersection homology sheaves: I=1¢( Xy, Q), I°C(X2, @), I'C(X2, Q,1),
and IPC(X,,Q). Here —1, 0, and 1 represent the close to middle perversities
for Y =X, whose value on T = X, is —1, 0, and 1 respectively. As usual, Q
represents the trivial local system with fiber the rationals, If Y = X, there is
only one perversity; we call it p,

Ve choose two opposed pairs that have pure degree: Let R and C be two
disjoint disks in X5.

Exercise 4.10. Show that the opposed pair (R,C) has pure degree 0, and
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that the pair (~C,$) has pure degree 1.

Two opposed pairs of pure degree

Exercise 4.11. Show that the values of the four perverse sheaves above on
(R,C) in degree 0 are @,0,Q, and Q respectively. Draw geometric cycles rep-
resenting the generators. Show that the values on (~C,¢) are @, @, Q, and 0
respectively. Therefore, by Theorem 4.3, we have verified (without recourse to
Theorem 4.2) that the intersection homology sheaves are perverse sheaves.

Now, according to Theorem 4.5, in order to check exactness of any sequence,
it suffices to check exactness of its value on these two opposed pairs.

Exercise 4.12. Show that the canonical maps I='C(X,, Q) — I°C(X3, Q)
is surjective, and the canonical map I°C(X,, Q) ~— I'C(X3, Q) is injective
(using Theorem 4.5 but without using Theorem 4.6).

The perverse sheaf IPC{X;, Q) is a rather simple one. If the point X is in
the support of (R, G) (which is X ~ (R°UG?), then its value on (R,G) is Q;
otherwise its value on (R, G) is 0. We would like now to define two maps

I'C(Xa, Q) -2 IPC(X1, Q) 22 I C( X2, Q)
To define p' we have only to say what p} does on a pair (R,G) where X is

contained neither in R nor in G. On such a pair (&, G), ¢, gives the element of
Z C Q which counts how (with multiplicities) how many cycles come in to the
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point, minus how many come out of the point.

Pl of this element is 2 € I°CO( Xy, Q) X, &) )

The map p on the pair (R, G) associates to 1 € Q the

class containing the cycle that runs once around the point X, counterclock-
wise. .

px(1)

Remark. If we identify 7-'H, with relative homology, as explained in
1.4.1 , the map pj is identified with the boundary map. After the appropriate
dualities, the map g, may be identified with the coboundary map (see [G2]).

Exercise 4.13. Show that p is injective and that p is surjective. Compute
the kernel and the cokernel of the composed map p' o p.

These maps and their multiples and compositions turn out to be all of the
maps between the objects that we have found so far. (Try to find more maps!)
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However, there is another perverse sheaf which is not a'direct sum of intersection
hornology sheaves, and which is very interesting.

DEFINITION. The largest indecomposable perverse sheaf P on X is con-
structed as follows; Take a closed 2-disk D, and let ¢ be a point on its boundary.
Map the disk to X by collapsing the boundary to the point X, and otherwise
mapping homeomorphically. Call this map v : D — X. Now define 7 by:

PUX, &) = Hi-i((D—y7'R),(qUr™H(G" - B))).

We need to check that this is a perverse sheaf.

Exercise 4,14, Show that P satisfies all of the axioms for a perverse sheaf
except the Dimension axiom. By Theorem 4.3, to complete the verification that
P is a perverse sheaf, it suffices to compute its values on (R,C) and (~C, ¢).
Let’s look at (R, C). By definition we need to compute the homology groups of
Hi{(D—7"'R),(gU7"1 (G’ = R))) = Hii((D = v"'R),(qU7™'G")). Here
is a picture of the disk D with y~1R, ¢, and y~'G® drawn in it.

Only the first homology group (i = 0) is nonzero, the that one is two dimen-
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-sional generated by the following two cycles:

B \\\_/ \.

Exercise 4.15. Complete the verification that P is a perverse sheaf,

Exercise 4.16. Construct nonzero maps of perverse sheaves as follows:

.IOC(XQ: Q)
; e
I-1C(X3,Q,) — P — I'C(X., Q)
AN 1l v '
IPC{Xy,Q) '

{The four diagonal arrows have already been constructed.)

Exercise 4.17. Show that the following sequences are exact:

00— IC(X3, Q) — I'C(X3,Q) — IPC(X1,Q) — 0
0 — IPC(X1, Q) ~ I"'C(Xe, Q) — I°C(X2,Q) — 0
0 —I7'C(X,,Q,) — P — IPC(X;,Q) — 0

0 — IPC(X1,Q) — P — I'C(X2,Q) — 0

Assertion (without proof). The diagram above gives the whole story on this
category in the following sense: Every perverse sheaf is a direct sum of objects
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selected from these five, and every map among these five is a multiple of one
of the maps in the diagram above or of their comnpositions. (In this case, we
were lucky that the strata were simply connected so we didn’t have any local
systemns to contend with. There aren’t many categories small enough to have
a finite list of indecomposables, This is rare even among categories of perverse
sheaves arising from a stratifications with simply connected strata.)

Exercise 4.18. Another perverse sheaf on X could be constructed similarly
to P but with a finite collection of points g1, ¢2,93,... in place of g. Verify the
assertion in this case by showing that this perverse sheaf is a direct sum of
copies of the five indecomposables above.

Exercise 4.19. Show that P is both projective and injective in this category.
What are the other indecomposable projectives and injectives?

4.6.2 Two Riemann spheres joined at two points

Recall Example 1 from Chapter 1. This example is an algebraic curve in the
complex projective plane. It can be given by the equation (2){(z? +y*—w?) =0
with respect to homogeneous coordinates z,y, w in the plane. (The real affine
picture is the unit circle cut by a vertical line: ¢.) Therefore, we can take X to
be the complex projective plane stratified by three strata: X1 is the two points
(0,1,1) and (0,—1,1), X3 is the rest of the curve z(z? + y* —w?) =0, and X3
is the rest of the complex projective plane. We are interested in ¥ = Xa.

Exercise 4.20. Show that the following four pairs of sets are intersections
of Y with pairs of pure degree, and that each one has one of the four connected
components of strata of ¥ as its relevant connected component. (This exercise
requires that you look at the definition of a Morse function carefully, and that
you write equations of the Morse function, unless you are adept at visualizing
the four dimensional space X. As an example of the subtlety, if we omitted one
of the two components of the green set in the degree 0 examples, it would not
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be of pure degree any longer.)

Two pairs of pure degree 0.

Examples of perverse sheaves are the three perversities of intersection ho-
mology from Example 1 of Chapter 1, and the intérsection homology sheaves
supported on the points. Further examples come from perverse sheaves on the
Riemann sphere stratified with one point, discussed at length in Example 1
above, considering the Riemann sphere as one of the spheres of Y. (The sheaf
will be zero on the other sphere.) Since the stratum X, is not simply con-
nected, further examples come from intersection homology with coefficients in
a nontrivial local system. But there are still other interesting examples:

Exercise 4.21. Show that the ordinary homology Fary functor is a perverse
sheaf here (even though Y is singular. In general, the ordinary homology Fary
functor is a perverse sheaf whenever Y is a complete intersection, which our ¥
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is since it is given by one equation. It is even enough that ¥ should be a local
complete intersection.)

Exercise 4.22. Here is another perverse sheaf: Take the 2-torus 7% with
two disjoint annuli on it.

The torus with two disjoint annuli

Map the torus onto Y by shrinking each annulus to a point. Call this map
v:T? — Y. Now define P by:

'Pi(X: g) = _H;-,‘((D - 'f—IR)x le(Go - R))

Exercise 4.23. Verify that this is a perverse sheaf,

{This perverse sheaf is an example of the “nearby cycles” or “R¥” perverse
sheaf from algebraic geometry, as in section 5.8 . Again, an analogue of it exists
whenever Y is a complete intersection.)

Exercise 4.24. . The perverse sheaf P has a beautiful automorphism given
by the Dehn twist. The Dehn twist D : T? — T2 is an automorphism of the
torus which is the identity everywhere except inside one of the two annuli, and
which, but which is not isotopic to the identity. The following picture shows
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the torus with a circle drawn on it both before and after the Dehn twist.

Before After
The Dehn twist

Now considered as an automorphism p of the perverse sheaf P, the Dehn
twist acts in this way:

PUX, B) = Hio{((D-9"'R),v"YG" - R))
Y 1D
PHX, &) = Hi((D—~7"'R),7"YG°®~ R))

Exercise 4.25. Show that p as defined here is indeed an invertible ho-
momorphism of perverse sheaves. Find the kernel and cokernel of the map
{Identity — p).

4.7 Self-indexing Morse functions and the small
chain complex

4,7.1 Disjoint pairs

A pair {R,G) of smoothly enclosed subsets of X is called disjointif ANB = é.
Clearly, any disjoint pair is opposed.

Proposition 4.7 Given any opposed pair (R,G) in X, there is an associated
disjoint pair (R, G") such that (R,G) 3 (R',G’) and, for any perverse sheaf P
on X, we have _

R PUX, §) —PUX, B

is an isomorphism.
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The point of disjoint pairs is this: By the above proposition, to know a
perverse sheaf completely it suffices to know it on all disjoint pairs. Qur goal in
this section is to give an explicit cochain complex whose cohomology computes
the value of a perverse sheaf on a disjoint pair,

4.7.2 Self indexing Morse functions

It is easy to see that any disjoint pair is of the form (Xs2r1 Xj<q) for some
smooth function f where r = (r+1)/2and g = ~(n+ 1)/2. (The reason for
this bizarre choice of » and ¢ will become apparent.} YWe want to show that we
can choose f to be of a very special form.

DEFINITION. A real valued function fon X is cailed self indezing and Morse
in [g,r] if g and » are not critical values, and for every critical point z whose
critical value is in [g.7], the eritical value of z is —&, where 7 is half of the
signature of the f at z,

Theorem 4.8 For any disjoint pairin X, there exists a funclion f which is self
indezing and Morse in fg, r] suck that the given disjoint pair is (NVyor, Xp<y).

This s a stratified analogue of a theorem of Smale, which asserts the same
thing on a manifold. This theorem is not as easy to prove as you might first
think: If you start naively deforming the critical values of critical points in a
random way, you are forced to add new critical points. The proof is similar to
the proof of Smale: If two critical points have critical values that are out of order
for this theorem. you must find “handle” going up from the lower critical point
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and a “handle” going down from the upper critical point. Then you must find
an isotopy to make these two handles disjoint. We will not give a proof here,
since it involves very heavy use of stratification theory. For Smale, this theorem
was the starting point of his work on classifying differentiable structures. For
us, it will provide a way to see that the category of perverse sheaves is abelian.

DEFINITION. Given a perverse sheaf P on X, a disjoint pair (R, G) in X, and

.afunction f which is self-indexing and Morse in [g, r], so that (R, G) =(X»r, Xj<4),

we define the associaied complez to be the chain complex

tor
PHX, EiT)
&
{ R(i
Pi(X, &8)
18

PX, §HT1) o
16 _

where R{({) = X;3i41/2 and G(i) = Xycio1ya.

Theorem 4.9 The associated complez is a chain compler. There is a canon-
ical isomorphism belween the ith cohomology of the associated compler and
PiX, B).

The proof of this theotem is essentially the same as the proof of the theo-
rem that the cohomology of a CW-complex is given by the cohomology of the
associated small algebraic chain complex, starting from the Eilenberg- Steenrod
axioms of cohomology.

The associated cochain complex is completely functorial in the perverse
sheaf. If we have a map of perverse sheaves p : P’ ~— P, then it clearly
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induces a map of associated chain complexes

1o 1o
PN, ST 2 pirx, DY

PUX, &) 2 P, &R
& &

T 1o
PN, Gam) S PN, GET)
1o 1o

Since this is a map of chain complexes, its kernel also forms chain complex
whose group at each degree is the kernel of p,. Similarly the cokernel forms a
chain complex,

DEFINITION. Given a map of perverse sheaves p : P! — P, the cokernel
perverse sheaf is the perverse sheaf that assigns to each disjoint pair (R, G) the
cohomology of the cokernel complex of the map of associated chain complex,
and the kernel perverse sheaf is the perverse sheaf that assigns to each disjoint
pair (R, G) the cohomology of the kernel complex of the map of associated chain
complex,

The hard part of proving that the category of perverse sheaves is abelian,
Theorem 4.4, is showing that the kernel and cokernel as defined above do in
fact satisfy the axioms for perverse sheaves. The fact that they are categoncal
kernels and cokernels is then easy to see.

4.8 Monodromy.

Just as in the last chapter, we have the following results about monodromy and
the homotopy covering chapter.

+ For any perverse sheaf P, the functor P*(X, $) on the category of opposed
pairs and coverings passes to a functor on the homotopy covering category.

. A deformation of opposed pairs ¢ = (R(t), G(t)),t € R induces a morphism

& : (R(0)}, G(G)) — (R(1),G(1)) in the homotopy covering category. The

morphlsm Pt (X, G(og) —Pi(X, G(l)) induced by & is called the mon-
odromy map ¢~

¢« Two deformatlons which are homotopic induce the same morphism in the
homotopy covering category, and hence the same monodromy.
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B

e A smooth family (R(s), G(s)) of opposed pairs parameterized by a mamfold
S induces a local system over S whose fiber at s € S is P¥(X, G(,))

The constructions and proofs of these staterments may be read from Chapter
3 with no changes.

There are two types of families of opposed pairs whose local systems are
particularly important.

4.8.1 Local systems on strata.

Let § = X4 be a stratumn of X, We choose a family of balls B, one for each
& € X, such that “B, is centered at s, it varies smoothly with 5, and its
boundary is always transverse to the stratification”, We do this by choosing a
Riemannian metric on X and choosing a smooth function €(s) > 0 on X, Then
B, is the set of all points of X of distance < ¢(s) from s € X, as measured
by the metric. If ¢(s) is chosen small enough, then for any s € &, B, will be
homeomorphic to a ball, and family B, will be a smooth family of smoothly
enclosed subsets of X. (These statements may be proved using the technique
of moving the wall from Stratified Morse Theory [GM6].)

DEFINITION The ith stalk homology of the perverse sheaf P on X at the
point s€ S C X is P* (X, 3 ) The it* costalk homology of the perverse

sheaf P on X at the point s E ScXisPX, ¢ -B,

Exercise 4.26. . Show that the i1 stalk homology and the th costalk
homology of P at s € X is independent of the choice of B, in its definition.

DEFINITION. Let P be a perverse sheaf over X, and let S = X, be a
stratum of X. The itR staik homology local system HLP over S is the local
system associated to the family of opposed pairs (~ By, ¢) parameterized by 5
whose fiber over s € § is the ¥ stalk homology of the perverse sheaf P at the
point 5. The ith costalk homology local system H} P over S is the local system
associated to the famlly of opposed pairs (¢,~B } parameterized by S whose
fiber over s € § is the i*" costalk homology of the perverse sheaf P at the point
5.

Exercise 4.27. . Show that the dimension of the ith stalk homology of P
at 5§ € X depends only on the connected component of the stratum that s lies
in. Similarly for the dimension of the it costalk homology.

Exercise 4,28, Show that the Grothendieck K-group of the category of
perverse sheaves on X is the same as the product over all strata X, of the
R-group of the category of local systems on X,. Show furthermore that two
perverse sheaves P and P’ give the same element in the K-group if and only if
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for each stratum X,,
D (~)HEP = (-1)'HEP

where the alternating sum is taken in the K group of the group of local systems
on §. HINT: Use the theorem describing the irreducible perverse sheaves.

4.8.2 Some ordinary sheaf theory

The point of this report is to remove ordinary sheaf theory form the subject of
perverse sheaves. However, it is only fair to point out here that the i*R stalk
homology of P forms a constructible sheaf, and the ith costalk homology of P
forms a constructible cosheaf,

DEFINITION. A restricted path in a stratified space X is a continuous path
¢ : [0,1] — X with the property that if ¢ < ¢’ then the stratum containing '
is in the closure of the stratum containing ¢.

In other words, restricted paths keep going deeper and deeper into the sin-
gularities of the stratification, -

DEFINITION. Two restricted paths are restricted homotopic if they are ho-
motopic through restricted paths.

DEFINITION. The restricted fundamental groupoid of X is the category that
has as its objects points # in X and as morphisms from z to 2’ the set of
homotopy classes of restricted paths from z to 2’. Composition is defined as
usual.

Note that even if X is connected, there will be objects with no morphisms
hetween them.

DEFINITION. A consiructible sheafon X is a contravariant functor form the
restricted fundamental groupoid of X to the category of vector spaces over Q. A
constructible cosheafon X is a covariant functor form the restricted fundamental
groupoid of X to the category of vector spaces.

Exercise 4.29. Determine the invertible morphisms in the restricted fun-
damental groupoid of X. Show that any constructible sheaf {or constructible
cosheaf) over X determines a local system over every stratum X, of X.

Exercise 4.30, Define a constructible sheaf over X whose local system over
5 = Xa is HyP. Define a constructible cosheaf over X whose local system over
5=X,is H'P.

Exercise 4.31. Find a stratified space X, a point x € X, an integer ¢ and
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an exact sequence of perverse sheaves over X such that the associated sequence
on the it stalk homology at z is not exact.

4.9 The microlocal stalks of a perverse sheaf

Now we come to a much more important class of local systems associated to a
perverse sheaf. The stalk homology local systems of the last section, however in-
teresting, are not exact functors on the category of perverse sheaves. Therefore,
they are not the true stalks of the perverse sheaf. In this section, we describe
some groups associated to a cotangent vector in X rather than a point in X,
These groups are the true stalks. We call them the microlocal sialks of P.

4.9.1 Some micro-local geometry

Micro-local geometry is, roughly speaking, geometry in the cotangent bundle
T*X of X.

Let V = X, be a stratum of X. The conormal bundle T X of V is the set of
covectors § € T™.X over points y in V' which annihilate the tangent space T,V
of V.

Exercise 4.32. Prove that T} X is a submanifold of T*X, and that the
dimension of Tj; X is always n = dim X, independent of the dimension of V.

DEFINITION. The regular part A} of the conormal bundle Ty X of V is the
part of the conormal bundle to ¥ that is not contained in the closure of the
conormal bundle to any other stratum Xz # X, of X.

Exercise 4.33. Let {df} be the section of the cotangent bundle to X which
associates the differential df(z) to every point z in X'. Show that a proper
function f : X' — reals is Morse if and only if {df} meets the conormal bundie
to each stratum only transversely and only in its regular part,

DEFINITION. Let S = Ay, the regular part of the conormal bundle T X of
V. A good family of opposed pairs parameterized by S is a disjoint smooth family
(R(s),G(s)),s € S that is disjoint and so that for each s € S, (R(s), G{(s)) =
(Xs,>r X, <g) for a family of functions f, ; X — R such that f, has only one
critical point p with critical value in [g,7], and df,(p) = s and the signature of
f+ at pis —d/2 where d is the (real) dimension of V (i.e. the Morse index of f,
at p is zero).

DEFINITION. The conormal stalk local sysiem of the perverse sheaf P at
the stratum V in X is the local system on § = A} whose fiber at s € S is
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PX, ggg)where (G(s), R(s}) is any good family. The stalkof P at s € S is
the fiber PY/2(X, ggﬁ)

Proposition 4.10 A good family of opposed pairs always ezists. The stalk local
system is canonically independent of the choice of the good family.

The proof used Stratified Morse Theory, and is contained in {GM6]. The
uniqueness part is a consequence of the fact that the Morse data is Normal
Morse Data cross Tangential Morse Data, but since the Morse index is zero, the
Tangential Morse Data has a canonical generator.

Exercise 4.34. Give the construction part of the proof.
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Chapter 5

Formal Properties of
Perverse Sheaves

In this chapter, we will summarize some of the formal properties of perverse
sheaves.

5.1 Pushforwards and direct sums of Fary func-
tors

As usual, X = {J X, will be a analytically Whitney stratified complex analytic
space. Suppose that Z = | ] Z, is another such stratified space,

DEFINITION. A Morse stratified map f from Z to X is a continnous map
f:Z — X which has the following properties:

e If (R,G) is any opposed pair in X, then (f~1(R), f~}(G)) is an opposed
pair in Z. )

o If (R, G;) is any deformation of opposed pairs in X, then (=1 (R,), f~(Gy))
is a deformation of opposed pairs in Z.

Proposition 5.1 If f i{s any proper complez analytic map from Z to X, then
there are refinements of 1he stratifications of X and Z so thai, with the refined
stratifications, the map f is Morse siratified.

PROOF. If f is proper and complex analytic, then a thecrem of Thom and
Mather shows that, after a refinement of the {wo stratifications, the map can
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be made “weakly stratified”. Weakly stratified maps are Morse stratified (see

- {GMG])

: 5.1.1 Pushforwards

DEF.INITION. If f: Z — X is Morse stratified, and F is a Fary functor on
Z (for exampIe F may be a perverse sheaf), then the pushfomard Fary functor
Rf.F is the Fary functor which assigns to the opposed pair (R,G) in X the
value

Rf*P(Xs G)=P(X; f—l

Exercise 5.1. Show that the pushforward Fary functor Rf,F is a Fary
functor on X, Give an example to show that even if F is a perverse sheaf,

- Rf.F need not be a perverse sheaf,

Exercise 5.2. Show that the Leray Spectral Sequence for the map f can
be defined solely in terms of the Fary functor Rf,H, where M is the ordinary
homology Fary functor on Z. In other words, show that for any Fary functor F,
there is a “Leray” spectral sequence abutting to (X, cﬁ) which. when applied
to Rf,H, gives the Leray spectral sequence for the map f. (This is the aspect of
Fary functors that Fary himself had in mind. Fary, a student of Leray, claimed
that this was close to the way Leray orlgmally concewed of the Leray spectral
sequence.) :

5.1.2 Direct sums

Suppose that F and G are two Fary functors. We define the direct sum F & G
of F and G by the

(FOOY(X, §)=FI(X, Bedi(x, B

where the restriction maps of the direct sum are simply the direct sums of the
respective restriction maps; likewise the coboundary maps of the direct sum are
the direct sums of the coboundary maps.

At the risk of over-stressing the point, we wish to emphasize that anything
constructed out of the direct sum Fary functor by an additive process is de-
termined by the two Fary functors separately. Thus, the stalk homology is
the direct sum of the stalk homologies; likewise for the costalk homology; like-
wise for the stalks. The monodromy maps are the direct sums of the separate
monodromy maps.

Exercise 5.3, Show that the whole Leray spectral sequence for the Fary
functor 7 @ G is the direct sum of the Leray spectral sequence for F and the
Leray spectral sequence for G,
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5.2 The decomposition theorem

We now return to the Decomposition Theorem, this time from the point of view
of Fary functors. The was treated in a more elementary way in section 1.7 .

Theorem 5.2 Lel f : Z — X be a proper complez algebraic mep which we
assume 1o be Morse siralified. Lel Z' be the closure of a stratum of Z. Then
there ezisis a unique finile list of irreducible enriched strata Eg = (X, Lg)
{Xp is a stratum of X, Lg is an irreducible local system over Xg) and for each
enriched siratum Ejp there is a unique Laurent polynomial ¢7(v) = J"--N ¢‘av~’

with non-negative coefficients (6? such that we have the direct sum decomposition
of Fary funclors

RAIC(Z',Q) = (D @ T IC(Xp, Lp) © Q% ;
B jeZ

urihermore if the map f zs prajcctwe, then each finite Lauren! series saiisfies
o -¢:_’- and, for j >0, ¢ >¢J+2

Explanation of notations Rf, and & are explained in the last section. 7
is the shift functor: (T/F)(X, &)= FHi(X, B).

Exercise 5.4. Show that a much stronger uniqueness statement holds:
Show that the list of enriched strata Ej and the finite Laurent series ¢7(v) (v) =
N N ¢?v7 are determined once we know the stalk homology local systems
of Rf*IC(Z’ Q). In fact, using the Artin-Schrier theorem for local systems,
show that for any Fary functor F, thereis a umque finite list of enriched strata
E3; = {Xg, Lg) where X is a stratum of X, Ly is an irreducible local system
over X,lpha, and there is a unique Laurent polynomial ¢#(v) = Z:]‘__N &P
such that F and the formal sum

35 $ITHC(X, L)
B jeZ

have the same stalk homology local systems for each stratum X, of X. (Here
the equality is to be taken in the free group generated by the irreducible lo-
cal systems.) What is the first miracle here is that the local systems are all
irreducible and the coefficients of ¢° are all non-negative.

Exercise 5.5. Consider the map from the Riemann Sphere (complex pro-
jective l-space) to itself which has degree 2 and which branches at four points.
(Show topologically that there is such a map.) Apply the decomposition theo-
rem to this map to verify the calculation of Example 2 in section 1.2 .
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Exercise 5.6. Prove Deligne’s theorem that if X and Z are nonsingular,
and if f : Z’ — X is a topological fibration, then the Leray-Serre spectrai
sequence for f collapses at E2,

5.3 Borel-Moore-Verdier Duality.

" DEFINITION. If P is a perverse shear on X, then the Borel-Moore- Verdier
duel DP of P is the perverse sheaf obtained from P as follows:

1. DPY(X, &) is the vector space dual of (P~H(X, §))
= 2. (R,G) and (R',G’) are two opposed pairs in X such that B D A and
G C G then R"PP : DP(X, E) — DP(X, &) is the adjoint of R*P
- PHX, §) — PHX, §)
3. If (R,C} and (~ C,G) are opposed subsets of X, 8PP : DP(X, c) —_
DPHFLX, o€) is the adjoint of #*P ; P-i-1(X, «c) — P-i(X, §)

In summary, the Borel-Moore-Verdier dual ’D'P"(X y 1) is defined by dualiz-
.ing the vector space, switching the roles of R and G, negating i, and taking the
adjoints of R* and &*.

Exercise 5.7. Check that DP is a perverse sheaf if P is, i.e. that the
modified Eilenberg-Steenrod axioms are self dual.

r;
|

Proposition 5.3 Ifp and p* are dual close {0 middle perversities for the closure
of the stratum X, and L and L* are dual local systems on X, then the Borel-
Moore-Verdier dual to IPC(X 4, L) is IP C(Xa, L*).

In particular, if L is self dual and m is the middle perversity, then the sheaf
IC(Xa, L} is Borel-Moore-Verdier self dual.

Exercise 5.8. Suppose that x is a point in X. Show that the ith stalk
homclogy at z of a perverse sheaf is the (~i)th costalk homology of the Borel-
Moore-Verdier dual perverse sheaf, :

Generalization. The Borel-Moore-Verdier dual is defined for a general Fary
functor by the same formulas, The formula for the dual of an intersection
homology with near middle perversity extends to intersection homology with
arhitrary perversity.

Exercise 5.9, Show that the dual of the pushforward of a Fary functor is
the pushforward of the dual.
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5.4 Perverse sheaves are locally defined

Perverse sheaves form something that is called a “stack”. This means that to
know a perverse sheaf locally everywhere is the same as to know it globally.
Rather than going through the formalism of stacks, we will give an equivalent
statement.

Let U = {U,} be an open cover of X. We call an opposed pair (R, G) in
X U small if for some ¥, ROUG'UU, = X, i.e. the support of (R,G) is
contained in a single set Uy of the open cover. Two oppcsed pairs (R, G1) and
{R2,G7) in X are U comparable if for some single v, both RSUGIUU, = X
and R§UGIUU, = X, i.e. their supports are contained in a single open set U,.

DEFINITION. A U small perverse sheaf on a stratified manifold on X is a
device P which does the following three things:

o P assigns to each U small opposed pair (R, G} in X and to each integer ¢
a finite dimensional vector space over the rationals P¥(X, ).

o Whenever (R, ) and (R', G'} are two U small opposed pairs in X that are
U comparable such that (R,G) 3 (R',G’}), then P gives a map R*-

R* :Pi(X, By — Pi(X, B)

¢ Whenever (R, C) and (~C, G) are U small opposed subsets of X that are
U comparable, P gives a map denoted &*

6% P(X, B) — PHIUX, &)

such that all of the modified Eilenberg-Steenrod axioms hold whenever they
make sense.

Exercise 5,10, Give a precise statement of the following, and prove it: “To
give a U7 small perverse sheaf on X is the same thing as to give a perverse sheaf
on each open set [/,, and to give an identification of the two perverse sheaves
on U7y NU,, subject to the condition that on U, N U, N Uy the identifications
are compatible.”

Obviously, to any perverse sheaf on X and to any open cover U, we can
assign a U small perverse sheaf by simply restricting the data. This gives us a
forgetful functor from perverse sheaves to I/ small perverse sheaves.

Theorem 5.4 The celegory of perverse sheaves is equivalent to the category of
U small perverse sheaves. The equivalence is given by the forgeiful functor.

Exercise 5.11. Prove the theorem, using the idea that the small complex
of the last chapter can always be reconstructed from a small perverse sheaf.
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Exercise 5.12. Define a I/ smal] Fary functor. Show that the statement
corresponding to the theorem above for Fary functors is faise. Hint: Use the
example of Rf,F where F is the constant perverse sheaf on the 3-gphere, and

- f is the Hopf fibration. ' '

LA R R LI L e LR S e

5.3 The logarithmic and sublogarithmic inter-
-] - section homology perverse sheaves

- 'So far, only the middle intersection homology perverse sheaf has had a special
role in the theory of perverse sheaves, However, the logarithmic and subloga-
rithmic ones are also very important.

DEFINITION. Let X, be a stratum of X. Then P(X, X.) is the full subcat-
i : egory of the category P(X) of perverse sheaves on X whose support lies on the
closure of X,.

IfP is in P(X, X,), then the restriction of P to X, is a perverse sheaf on a
manifold, so it is just a local system. We call this local system PlX..

L Theorem 5.5 For any perverse sheaf P in P(X,X,), there is a unigue map
Jrom I'C(Xa,PlXa) to P which induces the identily map on X,. Likewise,
there is a unigue map from P to I’C’(Xa,‘P]Xa) which induces the identity
map on X,.

Exercise 5.13. Rephrase this, showing that I*C(X,, P|X ) and I'C(Xa,P|Xa)
. give left and right adjoint functors to the functor that restricts an object in
> P(X,X.) to X..
Note that, by either part of this theorem, there is a unique map form
IO(Xa,PlXa) to I'C(Xa, P)Xa) which restricts to the identity map on X,.
We call this the canonical map.

Theorem 5.6 The image of the canonical map I'C(Xq, Pl Xa) —I'C(X,,P|Xa)
is the middle perversity intersection homology sheaf IC(Xq,PlXa).

- The proof of these statements will be omitted (although they could be done
within the present context). They are in [BBD].

Exercise 5.14. Show using, the theorem above, that the irreducible per-
verse sheaves are the middle perversity intersection homology sheaves (with
irreducible coefficients).

Exercise 5.15, Show further that every perverse sheaf has a finite compo-
sition series whose successive quotients are irreducible perverse sheaves. {Work
by induction, starting with the largest strata.)
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5.6 Perverse homology

The notion of a Fary functor is & lot more general than the notion of & perverse
sheaf. A number of exercises and a lot of theory have been devoted to showing
that perverse sheaves have some nice properties that a general Fary functor does
not have,

The idea of this section is to show that to an arbitrary Fary functor, we can
associate a sequence of perverse sheaves called the perverse homology sheaves of
the Fary functor,

Recall that to determine a perverse sheaf, it is enough to give its values on
disjoint pairs (R, G).

DEFINITION. Let F be a Fary functor. Then the j‘"h perverse cohomology
sheaf PHIF of F is the perverse sheaf that for each disjoint pair (R, G) i X the
value of PH/F (X, &) is the i* homology of the chain complex constructed
in the following way: Choose a function f which is self-indexing and Morse in
[g, 7], so that (R, G) =(Xy>r, Xy<y), and take the chain complex

to*
- . R :
Firiti(x, BEHD)
rex
Piti(x, X0
T &
3 0_- - R ‘__
piri=t(x, Ry
t o

where R(f) = xY!Z....;‘.}.j_/z and G(i) = XJS*f—lfﬂ'
We will omit the verification that this, in fact, gives a perverse sheaf, (At
least the dimension axiom is clear.) '

Exercise 5.16. Show that for any opposed pair (R, G), there is a spectral
sequence whose E? term is the direct sum over ¢ and j of all of the groups
PH/FH( X, B), and which abuts to the direct sum over & of F*(X, &).

*Remark. The notion of perverse homology was inspired by the following
analogy: A perverse sheaf is to a sheaf, as a Fary functor is to a complex of
sheaves, as the perverse homology sheaves are to the usual homology sheaves,
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5.7 Restrictions

Suppose that X is a complex Whitney stratified complex manifold, Let  : ¥ —
X be the inclusion of a complex submanifold of X.

DEFINITION., The inclusion 8 is normally nonsingular if ¥ is transverse to
each stratum X, of X,

In this case, the decomposition ¥ = {J (¥ N X,) is a complex Whitney
stratification of Y.

Y

+
.

A normally nonsingular inclusion

If8:Y — X is a normally nonsingular inclusion of a complex submanifold
of X, then there is a way of lifting opposed pairs (R,G) in Y to X. First, we
choose a differentiable tubular neighborhood 7 : T — Y of Y. (Note that
it is impossible in general to choose this in such a way that the projection =
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preserves strata, although the smallest counterexample is in three dimensions.)

A

YITTTIN T

, v
N

— \

|

A tubular neighborhood T

Then we choose a distance function p : 7 — R2® which measures the

distance away from Y.

DEFINITION. If (R,G) is an opposed pair in Y, then (R{e), G(¢)) is the pair
in X defined by the following pictures:

R

—

G

The opposed pair (B,G)inY
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‘The opposed pair (R{¢), G(¢)) in X ‘ ‘ .

Exercise 5.17. Make this definition precise. Show that for every opposed
pair (R, G) in Y, there exists an ¢ > 0 so that (R(e), G(¢)) is an opposed pair
in X. (The choice of ¢ will depend on (R, G). The danger is that the R{¢) or
G(e) will not be smoothly enclosed.) ’

DEFINITION. Suppose that F is a Fary functor on X .and that 6 : Y — X
is a normally nonsingular inciusion of a complex submanifold of X. Then 6*F
is the Fary functor on Y defined as follows: Given an opposed pair (R,G) on
Y,
FFY, By = P’-{-cod:mwz(x, g((g)
for small enough e,
Exercise 5.18. Complete the definition. Show that for small enough ¢, the

expression on the right hand side does not depend on ¢. Show how to define the
restriction maps and the coboundary maps.

Exercise 5.19. Show that if F is perverse, then 0*F is perverse.

5.8 Vanishing cycles and nearby cycles

In this section, we will consider the following situation: Suppose that f : X —
S is a flat map of nonsingular complex algebraic varieties. We think of it as a
family of algebraic varieties f~1(s) parameterized by points s € S, (We do not
assume f to be proper.) Suppose that P is a perverse sheaf on X, and that
so € S is a point. Assume that X and S are stratified so that f is a Morse
stratified mapping, so that P is constructible with respect to the stratification
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X = U,a Xp and that sg is a single stratum of 5. Let Sp be the largest stratum
of 5 and let By, be a small ball centered around sy, as in section 4.8.1.

The fiber f~1(s0) over sp is affectionately known as the singular fiber, and
the fiber over any point s € Sy is known as the general fiber. The following
picture of the situation has been serving algebraic geometers for years:

I tr

> 5
We will sketch the construction a perverse sheaf over f~1(sq): the “sheaf of

nearby cycles” RW(P), and an action of the fundamental group 71{(SoNG,,) on
it. .

5.8.1 The retraction r

To begin with, we will assume that f is proper. This assumption will be removed
later.

DETINITION. A normal slice to a stratum X, at £ € X, is a submanifold
N C X which intersects X, transversely at = ard at no other point. (It fol-
lows that dimX, + dim ¥ = dimX.) A round normal slice to X, at ¢ is the
intersection N N B, where B.. is a ball around centered at z, as in 4.8.1.

(Technical note; The limit on the size of the ball B, required in order for
the intersection to be considered “round” will depend on V. It must be small
enough that if we restratify a neighborhood of z in X so that & is a union of
strata, then B, is smoothly enclosed, and so is every round ball centered at «
that is smaller than B..) .

Proposition 5.7 ([GM6)) There is a stratum preserving homeomorphism be-
tween any two round normal slices through X, at x.
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' Round normal slices through two points in f~*(sq)

We refine the stratification of X if necessary so that the special fiber £~1(s5)
is a union of strata X, of X. Then, there is a map r from a neighborhood U
of f~(sa} to f~1(so) with the property that the inverse image of any point z
is a round normal slice through a point 2’ on the same stratum as 2. This map
is constructed rigorously in [G1] (see also [GM9]). The foIIowmg is the idea of
the construction.

First, choose the “smallest” stratum X of f~!(sq), L.e. let X; be any closed
stratum. Choose any differentiable tubular neighborhood # : 7} — X, of
X1. Its fibers will be normal slices. Let I/; be the points z in T such that the
distance from z to 71(z) is < ¢y, for very small ¢;.

i

The neighborhood Uy

Next, choose any stratum X, of f~!(sy) that has no stratum other than
XXy in its closure. Choose any differentiable tubular neighborhood 7o : T —

122



(X3 —UP) of X3 — U, where U? is the interior of ;. We demand the following
condition:

e If a point # € X lies in the boundary U; — U2 of Uy, then the whole fiber
w3 (z) lies in the boundary of Uy, and m projects the whole fiber 751(z)

to a single point ry(z).
~

-
The fibers of 7o

Just as before, the fibers of 7, will be normal slices to X,. Let U be the
points = in Ty such that the distance from of distance from z to m(z) is < e,
for €2 very much smaller than ¢;,

We proceed in a similar way, always insisting that the fiber T 1(z) be con-
tained in all of the boundaries of previous tubular neighborhoods U that contain
T.

Now, we define I/ to be the union of all of the I/;. We would like to define r
to be 7;, for whichever one applies. The only problem is that this map would
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not be continuous. In our example above, its image would look like this:

Image of the bad definition of r

which is disconnected, whereas U is connected. The solution, of course, is to
perform a stretching operation. For example, in our case we take a map my
from X, — U to X3 with the property that it maps points far away from Uy to
themselves, and it maps X, — U, diffeomorphically onto X,.

The map m»

Now, we define r to be m on U; and mo w3 on Uz. This map is continuous,
and it has the required properties. The general construction is similar {[G1]).

5.8.2 The perverse sheaves R¥{P)

Consider a point sin A = B,,NSy. If the ball B,, has been chosen small enough,
then the restriction (r|f~!(s)) : f~!(s) — f~!{sq) will be proper whenever s
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is in By, M So. Let us denote by r also the restriction r|f~!(s) and by 8 the
inclusion f~1(s) — X.

DEFINITION. RYP = Rr,0*P

Theorem 5.8 ([GM9]) The sheaf RYP is perverse.

- In the event that f is not proper, we can reduce to the case when f is proper
by factormg f by & composition X < X — S where X is dense in X and
X — X is proper. Then we carry out the construction of » for X — S.
We replace f~1(s) in the construction by the subset of it that maps to f~(sq)
under r.

Exercise 5.20. Extend this construction to give a perverse sheaf on A x
F~1(sq) whose restriction to s x f~1(sg) is the perverse sheaf R¥P constructed
above.

Exercise 5.21. Imitate the monodromy constructions of Chapter 3 to give
a monodromy map of (A4, s) on R¥P.
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Chapter 6

Applications of
Intersection I—Iomology and
Perverse Sheaves

Topolegy was originally meant to be applied to other domains of mathematics.
At the end of the introduction to the monumental 1895 paper that founded
modern algebraic topology (then called analysis situs), Poincaré describes why
he is doing it:

ilya
done unre Analysis situs 3 plus de trois dimensions. comme Fonl montré
Riemann et Betti,

Clette seience nous fern connailre ce genre de relations, hlt-u que cetie con-
naissance ne puisse plus étre intuitive, puisque nos sens nous font défaut, Elle
va ainsi, dans certains cas, nous rendre quelques-uns des services (ue nous
demandons d’ordinaire aux figures de Géométrie.” a

Je me bornerai & trois exemples,

La elassification des courbes ilgébriques en genves repose, uprds Ricmann,
sur la classification des surfievs fermdes véelles, faite uu Joint de vae de ' Aner-
{ysty situs, Une induction immédiate nous fait comprendre que la classification
dvs surfaces algébriques et la théorie de leurs transformations birationnelles
sunt intimement lices & ka classification des surfaces fermées réelles de Pespace
a eing dimensions uu point de vue de I'Anelysis situs. M. Picard, dans un
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Mémoire couronné par PAcadémie des Sciences, u ddja insisté sur ce point.

D'anire part, dnns une sorie de Mémoires insérss dans le Jowrnal de Livu-
ville, et intisulés @ Sur les courbes définivs par les équations différentiellos,
jai employé Polnalysis situs ordinaive a trois dimensions a Petude des équa-
tions dilférentielles. Les mémes recherches ont 616 poursuivies par M. Walther
Dyck. On voit aisément que U {aelysis sitis généralisée permettrait de traiter
the méme les dquations d'ordee supériear e, en purticulier, celles de In Méen-
nigre eéleste.

M. Jordan a délerming analytiquement les groupes d'ordree fini contenus dins
le groupe lindeive i 2 variables, M. Klein avait antéeienvement, pae une
méthode géomdtrique d'une rare éléganee, résolu le meme probltme pour le
groupe linduive a deux sariables. Ne pourrait-on pas étendre méthode e
M. Rlein an groupe d e saviables on menme i wn groupe eonting queleongue ?
Jo n'ni pu jusgu'ict y parvenir, mais j'ai beuncoup réfléchi & In question et il
me semble que Iu solution doit dépendre d'un probléme d'Analysis situs @t
que a généralisation du célébre théoréme Jd’Euler sur fes polyedees doit y jouer
un role.

Je ne crois done pas avoir it une wavee nutile en derivant le présent
Mémoire; jo regrette senlement il soit trop long; mais, guand j'ai voulw me
restreindre, je suis tombé daons Pobseurité: Jai prétiré pusser puur un pen

bhavard.

(The apology at the end is for taking nearly 100 pages to write the paper
which gave us the fundamental group, Poincaré duality, the topological invari-
ance of the Euler characteristic, the Poincaré conjecture, the first workable
version of Riemann and Betti’s homology, and a preview of DeRham cohomol-
ogy.) Poincaré’s assertion made through three examples, is that topology should
be applied to algebraic geometry, to differential equations and analysis, and to
Lie group theory. These are, in fact, the areas where intersection homology
and perverse sheaves have been successfully applied (just as earlier topological
techniques have bourn out Poincaré’s prediction).

The following is an “annotated bibliography” style summary of some of
the applications of intersection homology and perverse sheaves. Aside from the
traditional excuses for being so brief { “ignorance of the author”, “lack of space”),
I have the excuse that there have been recent and excellent survey articles on
many of these subjects. {See the items marked with a « in the bibliography).
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- Applications to algebraic geometry and number theory Intersection
homology and perverse sheaves, which have been defined here by clearly tran-
scendental methods (Morse theory ), have purely algebraic meanings. This is
because intersection homology can be constructed, and perverse sheaves can be
defined, using only sheaf theoretic operations. These operations make purely
algebraic sense for I-adic sheaves. (Recall from the introduction that we have
avoided this sheaf theoretic approach in this report, for various reasons.)

As a consequence of the fact that intersection homology has a purely alge-
braic definition, it makes sense for algebraic varieties in characteristic p. Several
of the applications of intersection homology hinge on this fact.

Zeta functions Suppose that a compact nonsingular algebraic variety Y
is defined over the integers. Then it has reductions Y, of ¥ mod p for every
prime p, which are algebraic varieties over GF,, the finite field with p elements.
The Frobenius automorphism acts on the l-adic cohomology of ¥, with certain
eigenvalues. The Hasse-Weil zeta function of Y is a way of encoding all these
eigenvalues into a complex analytic function. The Poincaré duality of ordinary
cohomology on Y translates into the functional equation of the Hasse-Weil zeta
function. For each k, there are a finite number of points of ¥, which are rational
over GFpx. The Weil conjectures, proved by Deligne, show that knowledge of
the Hasse-Weil zeta function of ¥ is equivalent to knowledge of these finite
numbers. A central problem of arithmetic algebraic geometry is understanding
these Hasse-Weil zeta functions.

Now suppose that ¥ is singular. Deligne in his proof of the Weil conjectures
had already isolated the properties of “sheaves” on Y that still make them give
good Hasse-Weil zeta functions on Y: He called these “punctually pure” sheaves
[D]. These turned out to be the intersection homology sheaves with coefficients
in a local system of geometric origin. Their Hasse-Weil zeta function, similarly
determined by the eigenvalues of the Frobenius automorphism, still satisfies the
functional equation. They still count points of ¥}, which are rational over GFyx,
although now they count them with multiplicities which depend on the singular-
ities. Therefore, a modernized generalization of the goal of arithmetic algebraic
geometry mentioned above is to understand the Hasse-Weil zeta functions of
intersection homology sheaves. ’

This generalization of the problem to singular spaces is especially useful for
the following reason: The varieties for which one has a chance understanding the
Zeta functions in the near future are Baily-Borel compactifications of modular
varieties. These varieties are singular. (In fact, if you will take the testimony of
someone who has spent many years studying singularities, they have the most
complicated and interesting singularities of any spaces that I have met.) It is
a major goal of the “Langlands school” to study the Hasse-Weil zeta functions
of the intersection homology of the Baily-Borel compactifications of modular
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varieties. See [BL] for the first result in this direction. (It is fortunate that
the proof {SS], [Lo] of the Zucker conjecture [Z2] relates these same intersection
homology groups, via L2-cohomelogy, to representation theory.)

Another relation between automorphic forms and perverse sheaves is con-
tained in some conjectural constructions of the Langlands correspondence in the
function field case [Lau],[Gi].

Other applications to algebraic geometry arise simply because perverse sheaves
have such nice algebraic properties, e.g. [Br2],[Ki2],Ki3],[Z4].

Applications to representation theory

Weyl groups The first application of intersection homology tc represen-
tation theory was to construct in a geometric way a basis for the Iwahori<Hecke
algebra, which is a g-analogue of the Wey! group [KL1], [KL2]. This can be seen
to arise from the Decomposition Theorem. The basis elements of the Hecke al-
gebra are intersection homology sheaves. The multiplication is by a convolution
which involves a pushforward, which preserves intersection homology sheaves by
the decomposition theorem {Sp]. This basis has many remarkable properties.

Another application to representations of the Weyl group arises because the
nearby cycle functor furnishes perverse sheaves, Take the adjoint quotient map
of the Lie algebra of a complex reductive Lie group. This is flat, so the theory
applies. Take nearby cycles of the constant sheaf at the most singular fiber.
The fundamental group that acts on this, as in section 5.8, acts through the
Weyl group. The nearby cycles sheaf turns out to be semisimple, and it has one
isotypical component for each irreducible representation of the Weyl group. In
this way, the irreducible representations of the Weyl group are parameterized
by intersection homology sheaves on the singular fiber. This is the Springer
parameterization, See [L6] and [BM].

Finite dimensional representations of algebraic Lie groups. Lusztig
and independently Kashiwara have recently found a canonical basis for any finite
dimensional representation of a comnplex algebraic Lie group. Lusztig’s proce-
dure goes by finding an intersection homology sheaf basis for the g-analogue
of the positive part of the universal enveloping aigebra. Here, multiplication
is given by convolution, which preserves intersection homology sheaves by the
decomposition theorem, just as for the Iwahori- Hecke algebra described above.
The canonical basis for the positive part of the universal enveloping algebra
projects to the desired basis in the finite dimensional representation. See [Lu5].
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Infinite dimensional representations of Lie algebras. Several inter-
esting categories of infinite dimensional representations of reductive Lie algebras
turn out to be equivalent to the category of perverse sheaves on the Flag man-
ifold of the group, stratified with a particular stratification, The first result in
this direction came from the proof [BK], {BB] of the Kazhdan-Lusatig conjecture
{KL1]. The proof in [BB] included many more cases, for example the case of
Harish-Chandra modules. With this equivalence of categories, questions about
the representations are reduced to questions in topology. See, for example,
[MirV]. : ' '

Representations of finite Chevalley groups. A finite Chevalley group
is the set of rational points of an algebraic variety over some finite field. There-
fore, it makes sense to talk about a perverse sheaf or an intersection homology
on it. Lusztig has found some intersection homology sheaves called Character
sheaves which are particularly interesting [L4], [L7), [MS]. They produce class
functions on the Chevalley group by the trace of the action of Frobenius on
their stalk cohomology. In some cases, these functions are the characters of
the group. In other cases, the matrix relating them to the characters is nearly
diagonal.

Quantum groups. The g-analogue of the positive part of the universal
enveloping algebra mentioned above is a quantum group. It would be nice to
find an intersection homology construction of the whole quantum group, not
just the positive part, This has been done for SL{n) in [BLM]

Applications to analysis In some sense, both intersection homology and
perverse sheaves grew out of analysis. In the case of intersection homology,
Cheeger and Zucker had already considered complexes of differential forms that
turn out to give intersection homology. This was for spaces with metrically
conical singularities in the case of Cheeger (all compact stratified spaces can be
realized in this way), and for curves with the Poincaré metric, in the case of
Zucker {C1],[C2],[Z1]. Now, the relations between L? cohomology and intersec-
tion homology is a central idea, as indicated in Chapter 1,

In the case of perverse sheaves, Kashiwara and Kawai had made a deep study
of the properties of “holonomic D-modules with regular singularities” which cor-
respond to maximally overdetermined systems of partial differential equations
(KK],[K1],[K2],[Me]. This is an Abelian category on a complex analytic mani-
fold X. This category is the same as the category of perverse sheaves on X. In
fact, in this case this category led to the discovery of perverse sheaves.

In both cases. the analytic object was already known to be interesting, but
it wasn't clear that it was a topological invariant.
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The relation of perverse sheaves to holonomic D-modules is a step of the
proof of the relation to infinite dimensional Lie algebra representations.

‘Applications to topology Perverse sheaves and intersection homology are
topology. Still, one can ask about their applications to more classical topology.

One application is to construct interesting bordism theories [GP], [Pa), [S].
In [Pa], the cobordism theory constructed can be used to prove the Hauptver-
mutung. Another subject is the classification of stratified spaces, in the spirit of
Surgery theory [CS2], [CW],[Qul], see [W]. One of the results of this is another
disproof of the integral Hodge conjecture. In this subject, the restriction to
- rational coefficients that we have taken here completely misses the point. Other
coefficient rings are important {GS], [CS].

An important theme in some of this work is the L class of a singular space
that was the very first application of intersection homology (in 1974, {GM3]),
and its generalizations.

Applications to combinatorics Any sufficiently rational polyhedron deter-
mines an algebraic variety called a “toric” variety. The fact that the Hard
Lefschetz Theorem holds for the intersection homology of the toric variety gwes
new results about the possible combinatorics of the polyhedra [St).
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Chapter 7

Appendices

7.1 Appendix 1: Stratified spaces.

7.1.1 'What should a singular space be?

This section is designed to give an introduction to stratification theory sufficient
for the purposes of these notes. A much more complete survey of stratification
theory is contained in [GM6)], Chapter 1.

We want to include singular spaces in the class of spaces in which we do ge-
ometry. As described in the Introduction, one reason to be interested in singular
spaces is that singular spaces are naturally associated to many mathematical
objects of central importance. Anlther reason is that it is natural to consider
topological spaces of “finite type”, i.e. topological spaces that require finitely
much data to specify them. Topological spaces of “finite type” include singular
spaces.
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One example of the type of singular‘ spaces that interest us is the cone

The cone z2 = y* = 22,

which has a point singularity, i.e. point at which it is not locally a manifold,
at the origin. Another example is the figure 8 crossed with the circle ST -
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8 x 5!

which has a singularity along a circle.

However we don't want to consider arbitrary topological spaces, because
they can be too complicated. For example, we don’t want to consider a cantor
set, since it has “infinite topological type®. Also, we don’t want to consider the
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- one point compactification of the surface of infinite genus

The one point compactification of the surface of infinite genus.

even though it has only one “singularity”, because it has “infinite topological
type” at that singularity. In sorme sense, the quest {or a definition of a stratified
space is the same as the quest for the definition of a space of “finite topological

type”.
One can see from these examples that a good definition of stratified spaces
is needed, and it is not obvious how to make one. In fact, giving a workable

definition was historically a very difficult problem, and it very possible that the
definitions we have today will not turn out to be the best ones. -

The first idea is not to define a singular space in the abstract, but rather to
define a singular subspace of a finite dimensional manifold X, This poses no
loss of generality, because if a space does not admit an embedding in a manifold,
we would declare it to be of “infinite topological type” and we would throw it
away.

The second idea is to explicitly give ourselves, as part of the definition,
a finite disjoint decomposition of our space into smooth manifolds of various
dimensions called sirata. (The singular of strata is strafum.) The decomposition
of X into the strata is called the stratification of X'. Certainly the two examples
given above have such a decomposition. The cone has a stratification which
consists of the origin, a zero dimensional manifold, union the rest, which is a
two dimensional manifold. The 8 x 5! has a stratification which is a circle, the
singularity set, union the rest, which is also a two dimensional manifold.

Why do we want to consider only spaces ¥V that admit a decomposition
into manifolds? The intuitive answer is found by considering the group of
all self homeomorphisms of V. Certainly if V is to be of “finite topological
type”, then this group should have finitely many orbits. It is these orbits that
should be the natural strata of V. That the orbits of this group should be

134



manifclds results from the meta-mathematical principle that a space of “finite
topological type” whose group of self-homeomorphisms acts transitively must
be a manifold. I don’t know a precise mathematical statement that realizes this
meta-mathematical principle, but I expect that there is one.

The third idea is this: Rather than defining a stratified subspace of X, we
will define a stratification of X itself. Then a stratified space will be any locally
closed union of strata of a stratification of a manifold X. To take the second
example of a stratified space above, the three sphere S can be stratified with
three strata: the two involved in the example itself and rest of and the rest of
53, which is a three dimensional stratum.

7.1.2 The definition of a Whitney stratified space.

So we want axioms to determine when a decomposition of a manifold X into
a disjoint union of finitely many submanifolds is a stratification. These axioms
are somewhat technical:

DEFINITION. A Whitney stratification of a manifold X is a disjoint decom-
position X = | J, X, of Xinto a submanifolds {which are not necessarily con-
nected, but which must each have a fixed dimension for all of their connected
components) that satisfies the following four axioms:

1. Local finiteness., The decomposition is locally finite, i.e. every point z € X
has a neighborhood U with the property that I/ N X, is empty for all bus
a finite number of strata X,.

2. The aziom of the frontier. If one stratum X, has a non-empty intersection
with the closure Xz of another stratum Xz, then X, lies entirely within

3. Whitney's condition A. Suppose that X, lies in the closure of X3, Suppose
that z1, 24,23, ... s a sequence of points in X which converges to a point y
in X,. Suppose further that the sequence of tangent spaces Ty, X, Tz, X,
Tz, Xp,... converges, as a sequence of subspaces of the tangent space T.X
to X, to a “limiting tangent space” r € T,X. Then the tangent space
Ty X« is contained in the limiting tangent space 7.

4, Whitney's condilion B, Suppose that X, lies in the closure of X3. Suppose
that 2y, 22,23,... I8 a sequence of points in X which converges to a point
¢ in X4, and that y,¥2,93,... I8 a sequence of points in X, which also
converge to y. Suppose as before that the sequence of tangent spaces
T2, Xg, Te, X, TpyXg, ... converges, as a sequence of subspaces of the
tangent space TX to X, to 7 € T, X. Suppose further that the sequence
of secant lines Z191, T243, Tada, - .. converges to a limiting line I C T, X,
Then the limiting line { is contained in the limiting tangent space r.
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To make sense of the secant lines Z;77 in Whitney’s condition B, choose a
local coordinate system around y. Also, the convergence of subspaces Tp, X
can be taken to be convergence in a Grassmannian manifold, after choosing
local coordinates. The truth or falsehood of the conditions is independent of
the local coordinate system chosen.

If X is a complex manifold, then a compler Whitney stratification is a de-
composition into complex submanifolds which satisfies the four conditions. In
this case, it doesn’t matter whether the tangent spaces and secant lines are
taken to be complex or real.

7.1.3 Examples

1t is not at all apparent at first glance why Whitney conditions are the right
ones. In fact, it doesn’t even seem to have even been apparent to Whitney
when he introduced them in 1965. It is only over the 25 intervening years that
it has become clear that Whitney stratifications are in fact a very natural thing,
However some intuition can be gained from considering some examples.

The reader can verify for himself, using mental pictures, that the cone and
the 8 x 5! satisfy the Whitney conditions. The one point compactification of the
surface of infinite genus satisfies the Whitney condition A, but not the Whitney
condition B. To see this, take y to be the point stratum X,, and take y; = y.
It is possible to find a sequence of points z; in the two dimensional stratum
Xp with the property that the secant line Z77; is always perpendicular to the
tangent space 7, X3. Then Whitney’s condition B fails for this choice, so the
stratification is not a Whitney stratification.

The first procedure that almost everybody thinks of for producing a decom-
position of a space Y into strata which are manifolds is the following. Let the
largest stratum be all points of ¥ at which it is nonsingular. Let Y] be what
is left when the largest stratum is deleted. Let the next stratum be the set of
points at which Yy is a manifold. Let ¥ be what is left when that stratum is
deleted from Y;. And so on. :

This procedure does give a decomposition into manifolds for all of the spaces
in which we are interested. The trouble is that this decomposition is too course.
The following example, due to Whitney himself, shows this. It is called the
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Whitney Cusp.

v
(

|

- B
K

:L\ \
VQ

The Whitney Cusp y? = z°(z — 2°)
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In this case, if we stratify it using procedure outlined above, we get is the
s-axis (= Yy} as one stratum, and the rest of it as the other stratum. For this
potential stratification, the Whitney condition B fails if we take the points 2;
and y; as pictured. The secant lines zy; are always parallel to the z-axis, so !
is the z-axis. However, 7 is the y — z plane.

=

i
I s
@
1 -
1

e

iy
T~

Failure of Whitney’s condition B

What we have learned is that this is not a Whitney stratification of the
Whitney Cusp. We wouldn’t want it to be a stratification either. The group
of self homeomorphisms is not transitive on the z-axis, since the origin looks
different from every other point.

It does have the following Whitney stratification, however. We take the
origin as one stratum, the rest of the z-axis as a second stratum, and the rest
of the Whitney cusp as a third stratum (in addition to the strata outside of
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the Whitney cusp itself), In other words, Whitney’s condition B forces us to
consider the point at the origin as a separate stratum. This is good, since
a neighborhood of that point looks different from neighborhoods of the other
points on the z-axis. In other words, the origin is a separate orbit of the group
of all homeomorphisms of the Whitney cusp.

- 7.1.4 Theorems about Whitney stratifications.

We will give without proof some of the standard results about Whitney strati-
fications. We will assume that X is a differentiable manifold.

Theorem 7.1 Transitivity of the homeomorphism group. Let X =X be a
Whitney siratification of X. Let ¢ and y be two points in the same connecled
component of a single stratum. Then there is a self homeomorphism h of X
which takes each stratum X, into itself and which {akes z 10 y.

Theorem 7.2 Tubular neighborhoods of strata. For each stralum X, there
exists a tubular neighborhood T, D X,, a distance function p : T, — RZ°
and a projection m : Ty — X, with following propertics

1. The projection m : Ty — X, is a projection of a fiber bundle, which
resiricts to the identily X, — Xo.

2. Themap p: Ty — BZ% Takes X, to 0 and takes Ty — Xo to R>%. The
restriclion Ty — Xo — R>is a projeciion of a fiker bundle.

3. For any B # a, the resiricted map (1 X p) : (Xp N Ty) = (Xq x R”?) is
e submersion.

The next theorem is a refinement of this picture: it gives a local picture,
near a point p in X, of what the data of the last theorem look like.

Before stating the next theorem, we note the following way to build Whitney
stratifications. Suppose we are given a Whitney stratification § =|_J Sa of the
(n — 1)-sphere S. We consider S to be embedded in R” in the usual way as
a sphere centered around the origin. Then R" has a Whitney stratification,
which we call the conical siratificalion , consisting of the following strata: For
each S, we take C'S,, set of all positive multiples of points in S,. In addition,
we take the origin. {(Our first example, the cone in B® was such an example.)

Theorem 7.3 Local Structure Theorem. Let p be a point of a k-dimensional
stratum Xo of a Whitney siratification X = |J X4 of X (which has dimension
n). Then there exisls a stratification S = |JSq of the (n — k— 1)-sphere S with
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the following property. Let R x R"~* be siratified by the product siratification,
where R is siratified as one siratum and R s straiified by the conical sirat-
Hfication, sterling with the siratification of 5. Then there is a homeomorphism
from R x R""¥10 a neighborhood of p in X, taking siraia to sirala, and iaking
(0,0) to p. The restriction of this homeomorphism to each siralum can be {aken
to be a diffeomorphism, Furthermore, this neighborhood can be chosen so thal
within it, the projection 7 is the projection of R* x R*™* onto the first factor
R:, and the distance function p is the distance in RF x R™* from the subspace
R

The stratification of the sphere S in this theorem is called the link stratifi-
cation at p.

Exercise 7.1, Describe the link stratification for each point p in each of the
three stratifications of B3 given as examples earlier.

Let’s see what the Local Structure Theorem 7.3 says about the neighborhood
of a k dimensional stratum B in a (k -+ 1}- dimensional stratum M. It says that
there is a finite set F' of points with the property that there is 2 homeomorphism
from R"~*x Cone Fto a neighborhood U of p in AR which is a diffeomorphism
on M and on B. This is the “pages of a book” picture. In the following picture,
kislandnis 3,

The “pages of a book” pfc'ture

Theorem 7.4 Triangulability. Assume that X is compact, Let X = |J X, be
a Whitney stratification of X. Then there is a conlinuous iriangulation of X
such thai each stratum X, is the union of interiors of simplices.

It follows that any closed union of strata is homeomorphic to a simplicial
complex. So, up to homeomorphism, compact Whitney stratified spaces are just
simplicial complexes. This shows that they are really spaces of “finite topological
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type”, i.e. spaces requiring finitely much information to encode their topology.
Conversely, every triangulated space is homeomorphic to a Whitney stratifie
space in some manifold, :

7.1.5 Subanalytic subsets

There is a class of subsets of real analytic manifolds that is clearly the most
beautiful one. This is the class of subanalytic subsets,

DEFINITION. The class of subanalytic subsets of analytic manifolds is the
smallest class of subsets containing the satisfying the following conditions:

s If X is an analytic manifold, then X itself is a subanalytic set.

s If f: X — Y is an analytic map of analytic manifolds, then the inverse
image of a subanalytic subset of Y is a subanalytic subset of X.

o If f: X — Y is a proper analytic map of analytic manifolds, then the
image of a subanalytic subset of X is a subanalytic subset of Y,

o The class of subanalytic subsets of X is closed under finite uniens, inter-
sections, and differences. :

If X has a locally finite cover by open sets U; such that VNU; is subanalytic
for each U, then V is subanalytic,

If V is locally (in X') cut out by a finite number of equations fi(z) = 0,
inequalities g;(x) > 0, and strict inequalities h;(z) > 0 for analytic real val-
ved functions f, g, h then V is subanalytic. (In fact, it satisfies the stronger
property of being semianalytic.) In particular, any analytic subvariety of X is
subanalytic. Osgood’s example is subanalytic. (Osgood’s example is the cone
in R® on a real analytic but not real algebraic curve ¢ in the sphere § ¢ R®.
Osgood’s example is not semianalytic.

Exercise 7.2, Verify that all of the examples in the previous paragraph are .
subanalytic, :

7.1.6 Existence of Whitney stratifications

Theorem 7.5 Existence of Whitney stratifications. Suppose that a V3, V5,.... 1%
is a finite collection of analylic (or subanalytic) subsets of X. Then there exists
a Whitney stratification X = |J X, of X such that each subsel V; is itself the
unton of some of the X.

If X is complez analytic and the Vi are complez analytic subvarielies, then
the stratification may be laken to be a complex Whitney stratification.
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The next theorem is useful in constructing the stratifications that actually
come up in the applications of perverse sheaves.

Theorem 7.6 Orbits of algebraic groups. Lel G be an algebraic group acling
algebraically on X with only finilely many orbils. Then the decomposilion X =
X« of X into orbits of G is a Whilney siralification.

7.2 Appendix 2. Local systems.

Local systems are an old and classical mathematical objects. They have many
guises. One guise from algebra is a locally trivial sheaf. Another guise from
differential geometry is a vector bundle with a flat connection. However, it may
be useful to review them in purely topoiogical language.

7.2.1 Local systems as covering spaces with extra alge-
braic structure

We fix a field K. For us, it will usually be the rational numbers, but sometimes
the real numbers or the complex numbers,

DEFINITION. An i-dimensional local sysiem on a topological space X is a
topological space L, a map ! : L — X, and, for each point p in X, a k vector
space structure on [~!(p) with the following property: Every point p € X has
a neighborhood U such that there is a homeomorphism & : I/ x Kt — [~1(U)
such that [ o k is projection on the first factor, and for each z € U/ the vector
space structure on {~1(x) is induced by h from the one on {z} x K'.

In this definition, the topology on K is taken to be the discrete topology.

So a local system is a covering space (with infinitely many sheets, one for
each point in K*) with some extra algebraic structure.

For example suppose that X is the circle S!, Fix a non-zero element m of
K. We consider X as the identification space obtained by gluing the two ends of
the closed interval [0, 1] to each other. The local system L is the identification
space obtained from K x [0, 1] by gliing {0} x a to {1} x ma for every a € K.
The projection is induced by the projection of X x {0, 1] on the first factor. This
is called the local system over S with monedromy m. In the event that m is
—1, it is sometimes called the Mobius local system.

The local systems over a given topological space X form a category. If
{:L— Xandl:L' — X are two local systems over X, then a morphism
m from L to L' is a continuous map m : L — L' with the following properties:
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lL.i=lom
2. For all points p in X, the restricted map I I(p) — I'"Y¢) is a linear
transformation.

If o :[0,1) — X is a path from one point p in X to another point g, then
there is a monodromy homomorphism pg : I"Y(p) — 1=1(g). This is defined
just as in covering space theory as follows: Given a € [~!(p), there is a unique
lifted map & : (0,1] — Lthat satisfies ¢ = [ o & and takes the value ¢ at 0.
Then pq{a) = (1), the value of that lifted map at 1 € [0, 1].

For example, if L is the local system over the circle S! with monodromy
m, and if p = ¢ and ¢ is the path that goes around the circle once, then g, is
multiplication by m.

Exercise 7.3. Show that, just as in ordinary ¢overing space thedry, the
monodromy map of ¢ depends only on the homotopy class of & conmdered asa
homotopy class of paths from p to q.

7.2.2 Local systems as representations of the fundamental
groupoid

We want to formalize the collection of all of these monodromy maps. We do
this as follows:

DEFINITION. The fundamental groupoid of X is the following category: It
has an object O, for every point p of X. If p and ¢ are points of X, there
is a morphism from O, to O, for every homotopy class of paths from p to ¢.
Composition of morphisms is compositions of paths, i.e. following first one path
then the second. The identity morphism on O, is the homotopy class containing
the path that stays constantly at p.

Exercise 7.4. Show that every morphism in the fundamental groupoid is an
isomorphism. How many isomorphism classes of ObJECtS does the fundamental
groupeid have?

DEFINITION. A representation of the fundamental groupoid of X is just a
functor F from the fundamental groupoid to the category of finite dimensional
K-vector spaces and linear transformations.

Note that for every morphism o of the fundamental groupoid, F({z)will au-
tomnatically be an invertible map of vector spaces. The set of representations of
the fundamental groupoid form a category. If F and F’ are two representations,
then a homomorphism from F to F' is a linear map &, : F(0,) — F'(0)
for each point p € X such that for each morphism o from O, to O, we have
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hy o F(c) = F'(c) o hy. (This is called a natural transformation between the
two functors.)

Given a local system | : L — X over X, we can associate to it a rep-
resentation of the fundamental groupoid of X in the following manner: The
vector space F(O,) is just {~!(p). The linear transformation F(c) is just the
monodromy p,. A morphism of local systems clearly induces a morphism of
representations of the fundamental groupoid.

Proposition 7.7 If X is locally simply connecled, then the funcior from lo-
cal systems 1o represeniations of the fundamenial groupoid is an equivalence of
calegories,

Exercise 7.5. Prove this,

Exercise 7.6. Suppose that X is locally simply connected. Let n'be the
category whose objects are sets with two elements and whose morphisms are
bijections. Show that there is & one to one correspondence between:

L. functors from the fundamental groupoid of X to the category n and

2. n-sheeted covering spaces of X.

All of the local systems that are of interest to us are local systems over
manifolds, which are all locally simply connected. We will speak of a local
system either in the language of representations of the fundamental groupoid or
in the language of spaces with extra structure mapping to X.

If we pick a base point p in X, then the full subcategory of the funda-
mental groupoid of X consisting of the object O, together with all of its self-
morphisms, is the fundamental group 7;{X,p). A representation of the funda-
mental groupoid clearly restricts to a representation of the fundamental group.
In this way, we obtain a functor from the category of all local systems on X to
the category of representations of the fundamental group of X.

Proposition 7.8 If X is locally simply connecled and connected, and a base
point p of X has been chosen, then the calegory of representations of the funda-
mental group m(X,p) of X is equivalent o the calegory of local systems over
X.

7.2.3 Orientations.

Let M be a differentiable manifold of dimension 7 and let p be a point in M. A
frame of M at pis an ordered basis for the tangent space Tp M, say v, ve, ...,
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where the v; are linearly independent. We can visualize a frame this way:

A frame at pin M .

Clearly the set of frames of M at p forms a differentiable manifold diffeo-
morphic to the manifold of all invertible { x i matrices. A connected component
of this manifold is called an orientation of M at p. (In the special case that M
is zero dimensional, then an orientation of M at p is, by definition, either the
symbol 4 or the symbol -.)

Exercise 7.7. Show that there are exactly two orientations of M at p, by
showing that the set of i x i matrices has exactly two connected components,
for each i > 1. '

T

_/ -

The two orientations of M at p

The orientation double cover If ¢ is a path from a point p to a point g in M,
then o induces a map G, from the set of orientations at p to the set of orientations
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at g as follows: Given an orientation O at p, pick a frame vy, v2,...,% € T, M
which represents that orientation (i.e. which lies in that connected component).
Then pick any continuous variable {moving) frame vy (2}, va(2),..., vt} in the
tangent space Ty(pyMior ¢ € [0, 1]. Then the frame v (1), v2(1),...,%(1) € T,M
represents G,{0).

Exercise 7.8. Let 2 be the category whose objects are sets with two ele-
ments and whose morphisms are bijections, Show that there is a functor from
the fundamental groupoid of M to the category 2 that takes p € M to the set
of orientations of M at p and takes & to G,.

DEFINITION. The covering space of M associated to the functor on the
fundamental groupoid constructed in the last exercise is called the orientation
double cover of M. We will denote it by w : M — M. Its fiber w=1(p) over p
consists of the two possible orientations of M at p,

7.3 Geometric chains

7.3.1 Introduction

The 1895 paper of Poincaré already contains a version of homology defined by
geometric cycles. A geometric i-cycle in a space X is some sort of i~dimensional
surface in X with an orientation. For example, the following is a geometric cycle
for H1{A) where A is the annulus in the plane.

A geometric cycle representing a generator of H {A)

Poincaré was rather vague about what kind of surfaces he was considering,
although we may assume from what he writes that he intended them to be
analytic.
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More recently, it has became standard to define homology using simplices,
either simplices in simplicial complexes or singular simplices in more general

spaces,
AV eV

‘/!/ /’J '//’

/ /‘ . i
s P -

< \‘i
N
N

/
/
s
o S o L '
: / \/:/ - I/ //
: S - -
/ yare /

A simplicial cycle

N

This trend is unfortunate from the point of view of developing intuition,
since homology theory looks like it hinges on special properties of simplices. (In
an alternative version cubes are used, but the impression still stands.) Perhaps
one reason for the ubiquity of topology based on simplices is that after Poincaré
that mathemnaticians started to worry about just what was meant by an i-
dimensional surface in X, It is not enough for the purposes of homology to define
an i-dimensional surface in X to be an submanifold, since using submanifolds
you get the wrong groups. (You get cobordism.) Some singularities have to be
allowed. But what singularities? Pathological examples of surfaces are known,
Simplices were used as a means of obtaining a rigorous theory.

Now, nearly 100 years later, it is possible finally to realize Poincaré’s original
intent, since the theory of subanalytic sets has been developed (see section 7.1.5
above). It is true, however, that this does not give a short-cut to horology
theory, since the development of subanalytic sets itself involves more technical
difficulties than the development of singular homology theory does. In this
appendix, we will assume that we are given a nice class of subsets of X, and we
will show how to develop a homology theory based on them. The construction
of such a class will be relegated to more technical treatises.

7.3.2 A good class of subsets
Let us fix a manifold X.

DEFINITION. A good class C of subsets of ¥ is a class of subsets with the
following properties:
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1. If asubset S of X isin C, then X has a Whitney stratification such that S is
a union of strata, and each stratum is in C. More generally, if 51, 55,..., 5
is a finite list of subsets of X that are in C, then there is a Whitney
stratification of X such that each set S; is a union of strata and each
stratum is in C.

2. The class C is closed under finite set theoretic operations: unions, intersec-
tions, and differences.

3. The closure of a subset in C is in £.

The main examples of good classes of subsets

Of the following list of examples, the first one may be the most intuitive whereas
the second one is the most useful. The third example is a scholium.

In the whole development of intersection homology and perverse sheaves in
this report, the reader has the choice of taking cycles in the first class or cycles
in the second class. All of the theorems are true in etther case.

The first class was used in [GM1]}, the original exposition of intersection
homology. The advantage of it is that the geometric results about it which are
needed can be proved fairly quickly by thinking about it. Most readers will have
to take theorems about the second class on faith, since their proofs are long and
hard.

The advantage of the second class is that it is canonical for the spaces that
we are most interested in: complex analytic manifolds. For the first class, one
must choose a triangulation in every stratified situation before proceeding,

1. First choose a smooth triangulation of X so that X has a piecewise linear
structure as well as a smooth structure. Let C be all piecewise linear subspaces
of X with respect to this piecewise linear structure. Then C is a good class of
subsets. (A subspace of X is piecewise linear if its restriction to each simplex
in X is a2 union of pieces each of which is cut out by finitely many equalities
fi(z) = 0 inequalities gj(z) > 0 where the functions f; and g; real valued linear
funections.)

2. Again fix a real analytic structure on X. Let C be all sub-analytic subsets
of X with respect to this real analytic structure. Then C Is a good class of
subsets. (See section 7.1.5.)

3. Choose a smooth triangulation of X. Let C be all unions of interiors of
simplices of X. Then C is a good class of subsets.

Unfortunately, if X is just endowed with a differentiable structure and no
other structure, there seems to be no useful good class of subsets.

DEFINITION. A set S C X has pure dimenston k if for some Whitney strat-
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ification of S, we have that § is the closure of the union of its k dimensional
strata.

Exercise 7.9. Show that the statement “S is the closure of the union of its
k dimensional strata” is independent of the stratification of § chosen,

7.3.83 Geometric chains

Geometric chains will be defined to be equivalence classes of geometric prechains,
relative to an equivalence relation.

Geometric prechains

We fix a manifold X, a good class of subsets € of X, and a local system [, over
X.

DEFINITION. A geometric degree k prechain C in X (relative lo C} with
coefficients in L is the following data: Co

.1. A closed subset 8 of X, called the presupport of C, which is in the class C
and has pure dimension k.

2. A Whitney stratification § = { ]S, of § such that each stratum is in C and
- S is a union of strata.

3. Over each k-dimensional stratum S, contained in C, amapc¢: Sy — L|S,
of the orientation cover S, to the restriction of L to S, with the following
property: The map ¢ takes the two orientations of S, at p, i.e. the two
points in w~1(p), to points in the fiber i~ (p} of L over p to a pair of elements
of the fiber of L over p which are negatives of each other. {It is not ruled
out that ¢ takes both points to zero.) The map c is called the multiplicity
map of C,

Remarks on the definition.

The key point of the definition is that the two orientations are taken by ¢ into
negatives of each other in L.

A useful way to represent the data provided by the map ¢ by the following
pair of choices: We may pick an orientation of S, at p, and also pick an element
an element of the fiber of L over p called the multiplicity of the chain. This pair
of choices determines c, at least on the connected component of S, containing p,
by the requirement that ¢ must map the chosen orientation to the multiplicity.
Such a pair of choices gives a useful way to draw geometric cycles. For example,
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if 54 is a plane and L is the trivial local system with fiber @, then this is a
picture of a geometric prechels:

A geometric prechain

The number 3 represents the multiplicity. (If the connected component of
S, containing p is not simply connected, then not all choices of an orientation
and multiplicity at p will work. The twisting of the orientation double cover {
must be compatible with the twisting of the local system.)

The fact that ¢ maps the two orientations into elements of the fiber of L
which are negatives of each other means, for example, that these two choices of
orientation and multiplicity are identified for the purposes of defining a prechain:

Choices of orientation and multiplicity that give the same prechain.

This corresponds to the usual idea in topology that chains with opposite
orientations should be considered as negatives of each other.
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The equivalence relation on geometric prechains

There are three reasons why two different prechains may give what we want to
consider as the same chain:

1. The multiplicity of a stratum might be zero (i.e. ¢ might map S, into
the zero section of L}. In this case, an equivalent chain could be obtained by
deleting the stratum S, from S,

Two geometric prechains that represent the same chain

2. The stratifications of S might differ. This breaks down into two subcases.
2a. First the stratifications might differ in a way that all of the - dimensional
strata are the same. ' :

T E
!
I
\‘.

[ ]
-
-

-/3 A \ 3

A : a
| g j \

.<. — P, < -7

. /‘-
5

Two more geometric prechains that represent the same chain

2b. Finally, the k-dimensional strata might be different. In this case, we
want to consider the chains to be the same if on the intersection of the k-
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dimensional strata of the first stratification and the k-dimensional strata of the
second stratification, the multiplicity maps ¢ agree.

/]
rd <1
.-'/ . 1
./ //

a ~ !
3 P !
% ‘\ \

. 3

A —>

—-.—3*5,/ ’_/-\\ " )’./_h\

Two more geometric prechains that represent the same chain

As usual in such situations in mathematics, there are two solutions to the
non-uniqueness problem. FEither we let a geometric chain be an equivalence
class of geometric prechains, or we can locate a canonical geometric chain in
each equivalence class, This gives two possible definitions of geometric chains.
As often happens, the one which is easier to visualize is the canonical choice,
but the one which is easier to deal with rigorously is the equivalence relation.

Suppose that we have two geometric prechains C and C’ (with presupports
S and &', stratifications | J So and |} S’ and multiplicity maps ¢ and ¢’). Form
a two new geometric prechains € and ' as follows: The presupport for each of
them is SUS’. The stratification for each of them is some common refinement
of the stratifications for C and for ¢’. The multiplicity map & for € on a k-
dimensional stratum 7' of the common refinement is defined in this way: If
T is contained in one of the strata S, for C, then it is the restriction of the
multiplicity map c for the stratum S,. Otherwise, & is zero. Likewise, the
multiplicity map ¢ for C is defined on T: If T is contained in one of the strata
S's for C', then it is the restriction of the multlpllmty map ¢ for the stratum
S's. Otherwise, ¢ is zero.

DEFINITION. The geometric prechains C and C' are said to be equivalent if
C and C’ as constructed above are equal.

Exercise 7.10. Show that this is an equivalence relation.
DEFINITION. A geometric chainis an equivalence class of geometric prechains.

DEFINITION. The support of a geometric k-chain C' is the closure in X of
the union of all of the & dimensional strata on which the multiplicity map is
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nonzero for any geometric prechain representing C.

 Exercise 7.11. Show that the support is well defined, i.e. it is the same
for all geometric prechains representing C.

Geometric chains form a vector space

DEFINITION. The sum C + C'of two geometric prechains C' and ¢’ (with
presupports S and §', stratifications { J S, and U 8’ and muitiplicity maps ¢
and ¢') is the geometric prechain constructed as follows: The presupport of
C+C’ is SUS". The stratification of C + ' is a common refinernent of the
stratifications for C and for C’. The multiplicity map & for C-+ ¢’ on a stratum
T of the common refinement is defined in this way: If T is contained in both
a stratum for C' and a stratum for ¢, then e = c+¢’. If T is contained in a
stratum for C but not in a stratum for C’, then & = ¢, If T is contained ina
stratum for ¢7 but not in a stratum for C, then & = ¢.

If r is a scaler in the field over which the local system { is defined, then
multiplication of a geometric chain by r simply multiplies all of the multiplicity
maps by r. ’

Exercise 7.12. Show that the equivalence class of C + ¢’ does not vary if
C or C' is changed to an equivalent prechain, so that the operation 4 passes to
an operation on geometric chains.

This makes the set of geometric chains into an abelian group. The zero
element of the group is the geometrie chain represented by the empty prechain
(or equivalently by any prechain all of whose multiplicities are zero).

7.3.4 The boundary of a geometric chain

A geometric k-chain C with coefficients in I, determines a geometric (k — 1)-
chaindC with coefficients in L called the boundary of C. In this section, we will
define the boundary. '

First, we need an auxiliary idea.

The induced orientation on a boundary Now suppose that we have a
stratified space X and that A is a i- dimensional stratum of X. Let’s consider
a stratum {7 — I)-dimensional stratum B in the closure of M. For any point
pin B, we have a neighborhood I/ of pin BUM with the property that U
has a “pages of a book” decomposition I = B! x ConeF for a finite set F,
as described just after Theorem 7.3. Then for each page B'~! x Conef where
f &€ F,an orientation O of that page determines an orientation ind® on B called
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the induced orientation, described as follows. Let 7 be the projection of the page
to ™! ¢ B. Choose a frame vy,v2,...,% in B! x Conef representing @
with the property that the differential dr(v;) = 0 and dp(v;) > 0. (Under these
conditions, we say that v; is outward pointing.) Then the induced orientation is

represented by the frame dr{v,),dn(vs),...,d={(v;_1).
| \“ A \\\

T

\.\‘ \\\\ \\\\ \‘\ “\\ N

An orientation of the page t The induced orientation.on B

{

et
————

Exercise 7.13. Show that the induced orientation from a page is well
defined.

DEFINITION., The boundary 8C of a k-dimensional geometric prechain C
is a (k — 1)-dimensional geometric prechain defined as follows:

o The presupport of 8C, is the closure of the union of all of the strata of C
of dimension less than & — 1.

o The stratification of 8C is the restriction of the stratification of C.

¢ Over each (k—1)-dimensional stratum S, contained in C), the multiplicity
map ¢ : Sq¢ — L|S, is obtained in this way: Given p in S, there is a
neighborhood I of p in X with the property that the presupport of C in
U looks like “pages of a book” (see the example after Theorem 7.3}, Fix
an otientation O’ of X, at p. For each page P;, choose the orientation O;
of P; that induces O on S, at p.Let m; € L be the multiplicity of the
page F; in the cycle C. Then the multiplicity of 8C at p with respect to
' is )] my. (The elements m; makes sense as elements in the stalk of L
over p because U/ is contractible, so we can uniquely compare elements in
the statks over different points.)

Exercise 7.14. Show that the definition of 8C is independent of the
choice of the prechain in the equivalence class. (The most interesting case
to consider is when the chain C is restratified by introducing new (k — 1)-
dimensional strata.
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7.3.5 Geometric homology.

Now we have constructed a chain complex of geometric chains,
8 § 8 8
o0 = Cpp1(X, L) — Co(X, L) — Cpy (X, L) — -

What we are interested in, for the purposes intersection homology, is a

“slight generalization of this. Take a stratification of X by strata that are

in the good class of subsets.. Pick one of these strata and call it Yy. Let
L be a local system over Y;. We now get a good class of subsets of Y,
Jjust by taking all sets in Yy which are in the good class of subsets of X.
Let Cp(Yo, L) be the geometric k-chains in ¥y constructed with respect to
this good class of subsets. (We do not rule out that Y may equal X, in
which case we get the previous definition back again.} Once more, we have
a chain complex ' ' :

N Cr41{Ys, L) 2, Cr(Yo, L) -2 Cy-1(Yo, L) =

Remark. There is an important point about geometric chains C in Y.
That is that the closure in X support of C will still be in teh good class.
(This is because the good class in Yy was taken as the restriction to Y,
of the good class in X.) For example, in the following picture, let ¥y be
the complement of the horizontal line. Then the chain shown will not be

a geometric chain in Yo, even though it looks like one everywhere in Y.

This is not a geometric chain in Yp
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Whereas, this one will,

This is a geometric chain in Y3
As usual in this situation, we want to take its homelogy.

DEFINITION. The geomeiric komology of ¥ with coefficients in L with
respect to the good class of subsets C is the homology of this complex.

Proposition 7.9 For all three good classes of subsels mentioned in 7.3.2
» the geometric homology of Yy is the usual homology of Yo with closed
support.

For the third example, geometric homology is just simplicial homology. For
the first example, it is the limit of simplicial homology under refinement
of the triangulation.

For the second example, which is the important one from our point of view,
the theorem is in [H].

Exercise 7.15. Construct a good class of subsets for which the geometric
homology is not the usual homology.

Exercise 7.16. Show that for any class of subsets, the geometric homology
maps to the usual homology.

Remark. There probably is no canonical good class of subsets on a dif-
ferentiable manifold that uses only the differentiable structure in its def-
inition, and such that geometric homology with respect to it gives the
ordinary homology. However, Goresky constructed a version of geometric
homology for a differentiable manifold {G2). He used Whitney stratified
sets. These are not closed under unions, unless the two sets satisfy some
sort of transversality. Therefore, addition, for example, is not defined for
geometric chains. He defined addition in homology by using transversality.
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