Chapter II

Monoid Complexes and Production of

_Sem_i~8‘impli cia’l Complexes.

In this chapter we shall conslder gpeclal properties
an complexes which have a multiplicative gstructure, and shall § F
m begln the considerallon of the problem of constructing new

~-gimplicial complexes from such a compleg.. .
' i . ‘ l:"u:'.i'

initio.n__l,.ﬂ A gemi.-simplicial complei:— r 1s a monold

1) [, 1s wonoid with identity for qe A |

are homomorphisms which send identity elements into identity

glement s, _ | | | - o
We will denote by e, the identity of (.
' is a group complex if (' 13 a monold complex and 5

each [, 1s & group. Whon-oach [y is apelian, [ will be called

an abellan monold co‘mplex , or an abelian group ‘complex_ ,ag the cage

may be. It xer'q, the inverse of x will be denoted 'by X,

Example 1: Iet ¢ be a topologlcal group, and let (' be the

total singular complex of G. If ‘u,v _;Aq‘ —=> G are singular

q-simplexes, define (u.v) :Aq -~ G by (u.v)(to,..‘.,tq) =
Tt is easlly verified that [ is a

u(to’ . .,:tq) V(to, CIEL S - ,tq) L]
group complex, and that [ {s abelian if and only if G 1is abellan.
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mple 2% Iet X be a topological space. A'path in X

AN
i 4

& pair (f, r) where r 13 a nonrnegativa real number, and
[0,vr]1 —> X is a map ( [0,r] denotes the closed interval
om 0 to r). A lggg is & path (f,r) such that f£(0) = ©{(r).
pologize the set-of all paﬁhs In X by using as a subbasisg
P the topology the sets W(C,V,U) defined as follows:.
| 1) C 13 a compact subget of IO 1} _

2) ¥V is an.open ﬂubbet of R* (the non-nagatbive fa&l nurher),
5)' U is an opsn Subset of X |

) W (C,V,U) = I(r, *) [ (f,r) is & path in X,
| J?e'V f(rC)c[]} o | ' o
i?ﬁwa 1et xeX, and let E(X x) be the space of paths in. X which
'begin at x. Define D E E(X x) —~%> X by p(f r) = f£(r) H

Then (E(X,x),p,X) is,& fibre space in the sense of Serre [11. -
1.e. the clovering homotdpy theorem holds for finite complexes.

The proof 1s the Samé'as that of Serrs, 1n which normallzed paths

£ (0,11 > X ‘are'used. Further the gpace 'E(X;x) 1s
contractible, and hag as fibre EZ(X,X),“tha space.ofvloops in{ X
baged . at x. Define (f,r)(g,s) = (h,ris) whers |
o) ot e -
~hit) = { ‘ - - 1L (f:I’)J(g,S)E‘R(X;X)-
g(t-r) r< t {r+s . _

It 15 easily verified that JS2(X,x) is a wonold with
'identity, and that if [T 1s the total singular complex of U, %),
then " 1s a monoid complsx when multiplicatlon 1s defined as,in

the preceding examples by polint-wlse multiplicatlon of ¢-simplexes.




om 2.2: If [ ig a group'complex, theh'f’ 18 a Kan

Proof: To prove the proposition it suffices to show
that [ satisfies the extension conditibn;l' Suppose o I
- theI’GfOI’e th?dt XO’ . v ,X’kﬁ.]_,xk_}_.l LI ,Xq"l"] 6 Pq’ a}_ld .

33 1% for 1 <‘j,.i,j + k-_ We mugt find -
an X€ f&+1 Such that d,;x = x; for 1 + k.
' We first show that there oxists u efh;1 : ‘|

~such th&t.aiu:: %y for 1 { k. This is trivial if '»I:- iﬁ
k=0; if k> 0 we define uréfa+l by induction on L
~r suoh that ju’ =x for 1 { r. First let B §f

up élgoxog‘ theﬂ,BéuO =.Xg- Now ifr r <‘k=T, i
;Aset ,yr = r+1( CB u13xr+f)’k‘r+1= uryr - rf‘
Now by an easy calculation it follows that 3 = o o ﬂf

t

for 1< r;, end anﬂy =(%w1ﬁﬁﬁwv’mh% the
fact that B-ur % x4 for 1 S r. Therefore we deduce |
“that D, r+1——'xi-'for~i {r+ 1. TFimally lot
u=u" ', and wo have d;u =x,, for 1 < k.

Now we shall show by induction on r that .
there,exists-an element ;sczel"q+ such that Bix = xi
for 1 { k and for 1 > g-r+l. For r = 0 1et X
Suppose  x* is- defined and PVS q - k. let |
z" = Bhep g (aq-rfiir)xq~r+1)’ T = xTz T A simple |
caloulatlon shows that 9,z" = e, 1f 1 { k and -]

q
- I’ = = I’ b . - 3
i,> a-r+1 and Eh-r+1 (thr+1x .)KQ*r+1f Tt follows

thet 9 x**! = x; for 1<k and for 1> q-r. Finally
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Akt e have

if we take for x the element X
VX = x; for 1 + k. ' Thus the proof of the theorem

1s complete.

' Definition.e 23 " Thé monoid.complex " 1s & monoid complex

with homotopy if it 18 & Kan.complex.

We shall denote'ﬂ (F,eo) by'ﬂ'(F)

'_Prondsitioﬁ'e'h*'- If f‘ is 8, monoid complex with homotopy and

,yé-rq are elements such’ that’aix ='3iy = Bqm for‘ 1= 0,..,q,

© then [X],[y}é‘ﬂhgﬂﬂ); and [x]lyl = [xyl. - | E
Eggggzh Considér'therelemeng 7 = sq; %q i -

_‘Now‘aiz=_eq_¢ for 1 < q;-1, Qq 1% -y,az:xy;
and 3 1% = X. In view of the definition of
addition.in.the homotopy groups, the result is

proved

Propogition 2.5: If [ 1is 8 monoid compiex with homotopy,
thenﬁﬂ}(r‘) 1s abellan, ) -
Proof: - Iet x,ye (f; be such that dx =YY = oy»
ﬂi=v0{1. Let w = Bpye X Then ’adw =Y, |
Ble= vX, ?gn== . Therefore I[x]lyl = [yxI;
but [yx] =[y]IXJ by the preceding proposition,
and the proof is complete.
The two preceding propositions are the analogues of the
clasgleal theorsms that the group operations in the homotopy

groups of & topologlecal group comey from the group operatlon in

(
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8=5 -

and that the fundamental group of & topological group -
eliaﬁ '.(cf‘.'e.g. [2]) | ) _ _

If [‘ ie e. group ccmplex, we wish to define the homotopy
p of r‘ in &n alternative fashion.

S nitlon 2:6 If o 15 8 group complex, define
- ) ' . ‘ 1

ﬁq,(f‘)_ = g\ kernel e >(‘q__1 , e’.pd

q
i = £, o
opositlon 2:7 It C is & group complex, then

1) gy g (P Ty (M

2) ?quT(TT ﬂ(r‘)) ls & normal subgroup of F

5) dmage Q. qH(r‘) > Ty () 15
. contained in kernel ‘ac'l : qu(r') -—->_ q-‘l‘ F-). for ¢ > O.

Proof': Le't Xeﬂ('lﬂ(m', Now’a 'Sqﬂ ‘aq‘ai;c._—_— © q-1
'for 1 < q andAthie implies 1) and 5),A

. Suppose zer;l; coneider sq q
Since'a(s REX :z.)_Bi sgl' =g, q: for r<a,

. Therefore - §.2X s Z“:Wqﬂ (l")

q _ _
Since 3 (s XS z) = 29 7z, 2) follows.

q+1 g+ 1X
The preceding proposition irripliee that "‘ﬁ'(r’) is &

chain complex (not necessarily e,belian) with respect to the,

1e.st f‘e.ce operator

Definition 2.8: If T‘ is a group complex, def'ine
(r‘) =H (TT(F) ).
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Proposition 2.9: If [* is a group complex,

L (
Proof: An olemer’ of T (r‘) 'is represented by
X € [y such that J,x = 8q- -1 for 1 =20,..., 4.

However, such an element x also represents an
element of ',n'-'([‘). Suppose 'c-[x] = [yaeﬂ' (.
Then there exlsts =ze f'qﬂ guch that '&iz = &y
for i(q,})z= aq”z"-y: Now

8% zeﬂqﬂ (f“}: anol GQH( X "7 = %y
Therefore [x] = {yleIT ({"), and there 1s a

natural map of TT (p) into Trq' (). Further
it 1s evident that this map 18 onto, and 1t is &
“homomorphism by propositio.n p.k: Suppose now

.th&t' [x] = Oéﬂ . V’i’hen there exists
7 € ﬁ(-lﬂ(m such th&t 3z = oq 1< a and
’aqﬂz = X.  Thls means tha_t [x] = OE'\T (r‘),

and the proof is complete
- Proposition 2.10: A group complex f‘ is minimal 1f and

onlj if aq-&-l :}Tq+1

Proof Suppose that r 1is minimal; t;hen ir

i) — IT (r) is ZeT0 for .8.1_1 q..

: J ,yer‘q_‘_i, &Ild? X ""'gi fO.'E i'—' O) o-,q,':‘
it follows that CPRES I 27 Now if
x € TI’Q+1(P); ‘then le = aieqﬂ f‘or. 1 < aj -

henoe, since T is minimal, Bqu = ‘g}qﬂeq+1 = eq,
and ‘6 q+1 M — ﬁ ('f‘) 13 gero.
Lo~ )
Suppose now that 'a 1'['q+I " —> Ii'q(r')r :
i1s zero for all g, and tha.t X,5€ r‘q+1 are slements




A

a=7

such that 9,x = dy for 1 '={= k. Then - : .

q
z—xT,ifk:—q, let z-*(s xy)(yX),'

for 14 k. If k=a+, let ek

while 1f .k < 4 let: z = (s ‘akxy) (sq T E ).

Then?i-#eq for 1+q+1, and? z—'akxy

"But  zem ”» (r}; therefore by hy‘pothesis "a =84y
g0 that ’Akx =3,y, and the proof is complete.

In order to define the expliclt cgmplexes, K{rr,n)
oft Eileﬁberg—Macmﬁe ([51,143,051) iﬁ is con- o
venlent to recall the definition of the standard 5
alﬁernﬁting cochain corﬁplex for the A}q—sim;-).le;c_ 7_ 1

A, with coefficients in the abelian group W . = ‘_

rThe. n-dimensional cochalin group Cn(Aq ;) 1s

the group of functions u defined on (n+1)-tuples. »

(mgy...ymy) of integers guch‘ that 0<my<, . .gm,{:'g_ m .

<.. < m < q with values in TU , such that

u (myy ... ,mn) =0 if my =m, for. gome ‘iSn.' i

5 AT Gn*‘(A 1) 4 dofined Dby

SU(mO, . ,mn+.[ Z . ) '-1( mO; . )m ...1? ,}'H"' H’h)+1 .

‘Therni 2™ Aq, ) ( the group of n—cooyc’les with,
coefficients in T ) 'is the kernel of .

§: 0% 5 —> (B T,

Notation: ILet )\1- (0,...,a] —> 10,...,q+1] be
dofined by Ny =4 for ";1 <1, and N(3) = j+1
for 3> 1. B Further, 161:‘7 {0,,..,q+1 }—> {O,;.;,ql

—_—
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bo defined by Y (;1) jror J<1, ¥ = g1
for - i>1. : '

]_g_e_ﬁ‘inifion 2,11 If T is aﬁ abellan group, def'i.'ne

‘K-(Tf’xi)' = Zn(bq,ﬂ) " Further, define Bi Q1 (T\',n) ——) K (n‘,n)
u(mo,.,.,mn) = u(?\ (11g), - --,)\(mn) ), and

si q(ﬂ",n) s KqH(TT;Il) by

syaling, eeym ) = wymg), e, o (m)y
Let K(Mn) = Ulgl(rr,n)

- ‘I'heore;'m' 2.121 If T is. an e.be_lian group, then

1) K(Tl',n) i an abelilan group complex,.
'_2.) qu(K(rr,n)) =0 for q+%n, -
3) T (K(m,n)) = o
%) K(W,n) is minimal
Proof: = The verification of u 1s routine, gg that
" only 2),3) and ) will be verified. First notice ‘that
Ké(ﬂ”,n) =0 for . g< n. ‘I‘i'z_er*efo_re, . _ :
ﬁq(K(Tl“,n)) = 0 for gq< n. Further since
ZMB, W) = ﬂ~_, we have that fl(K(T,n)) =
K_n(ﬂ',ri) =10 . Suppoge now u err (K(Tl‘,n)) and
| -q'> n. Then ’aOu J 1.0, u(m0+1""’mn+1_) = 0
_ Whenever (mg, . ..,mn) 18 a soquence of integers
such that 0 {my <. . My < a-1. This
- moans  ulmy, ... ,mn) 0 unless g = 0. ‘Therefore
iwe en'iy need congider sequences (O,m1, .o .‘,mn).

However, ‘aiu = 0, or in other words
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e=9

u(O,m1 +1, . ,mnﬂ-) = 0, but this implies that

,u(o’mw-“’mh) = 0. unless m, =~ I. Continulng - |

in this fasion we see that u(m_o,.. .,mn) = 0 ' i
uléss my =1, for i=0,...,n. Then since | "
u 1s a cocydle, Su(O,..;,nﬂ_) =

T . ' N _
}3j=0(—1 30, v vy 371, 341,000 ,mi1) = 03

ot

thus u =0, and Tt'q(r‘) =0 for g+ n. This i
implies 2) and 3). Sta.temenﬁ k) follows from Y

’ L " Proposition 2.10, and the proof 1s cofiplete. : e

: Definition 2.13%: A twigted Cartesian product 1s a triple i

(F,B,E) such that _
1) P,B, and E are seml-simpliclal complexes,

2) Eq-= i(a,b)la qu,bqu}, q20, :
3) 1 (a;0)€ By, d(a,b) = (3a,3b) for 10, '?'
W) Af (8,b)&Fy, 5,(a,b) = (s;8,8b), and - i)

5} 1if p:E —> B is the map defined by. B i
i)_(&,b) = b, then pao = Bop.' . | ' . i

¥ is ca}léd the fibre of the twlsted Carteslan product, [

B the base, and E the total complex., Usually, but not -
always, the mep p will be a fibre map. ' | :
E 13 the Cartesien product [6] of F and B if T

(F,B,E) 1s & twlsted Cartesian product and 3,(a,b) = (3,2,3p)
for (a,b)€E ,,, 81l q . ° In this cagse E 1g denoted by
FxB.  Also, the elements of E in any twisted Carteslan

product will sometimes be written a x b.

If (" is & monold complex, &nd 1f (IY,B,E) | is a




srding to the rule a'.(a,b) = (a'a,b) Ffor a,s'e Pq,béBq.

twisted Cartesian product is said to be compatible with

left action of © .if J,(a,b) = ’aloa.ao(eq“,b) for

3,b) € Eqﬂ . It will invariably be assumed that if & twisted
grtesian product has for fibre a monold complex ', then the

ructure iscdmpatible with the left actlon of r.

| Iet A,B be topological sb&ceé, S(A),S(B)

the total singular complexes of A apnd B respectively; Lat
AxB be the Cartesi&ﬂ produot of A and B as topologica1
spaces, ‘and let o tAXB — A,pQ:AxB —> B be the projections.

THen D, induces a seml-simplicial map which we shall still

denote p, i3 '

“ It 1s eagy, to verify that the map p 'o(AxB) —~> 3(A)x8(B)
‘defined by p (y) (p1(y),p2(y) ) is an momor*phi%m o‘r“ semi -
Slmpll_cj_al complexes '

_ 'me__af,m,g;eﬂg:_ . Let_ E be the toﬁ_s;l Vsrpa‘ce bf a principal fibre .

bﬁndl_e witfh fibre_a_topoldgicgl group G and bage space B.

Assume that G sots on the loft of E. Denote the total

singular complexes of E,B, and Gby AS.(E),S(B), and 8(G) res-

pectively, - Since ¢ acts on the loft of E, $(G) acts on the

left of S(E), Let (P S(B) “-> S(E) ve a pseudo cross section,

. (3 )'% 3¢ for 1> 0, and ¢s; = 5,4 . Define
\y S(G)x 5(B) —- ~> S(E) by Y(a,b) = a . &(b) for
ae S(G)q,beS(B) ' Now Yy is a 1:{ correspo_n;lance, 1s

ted Carteslan product, then [ acts on the left of E : =

S(A), and 'pe induces p,:8(AXB) —> S(B).
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mpatible with 9, for 1 > 0, and with s, for all i.
onsequently 1if () 1is -idenﬁ.ifi‘ed with S(G)XS('B)_,' as a

et by means of Y we see that (8(G),3(B),8(E)) is & twisted
arteéi&n produict. In other words, to make the tot&l sihgular'_
omplex of & principal fibre bundle into the total complex of a
wisted Cartesian product it suffices to choose & pseudo-

ross sectlion, and thls can be done for any fibre map.

Q@f‘inition 2.1k If 0 1s a monold complex, a twlsted

if
1) B, has one clement, and |
.' 2) the map q> of Bq+1 into. .Eq | defi_ned
by $(b) ﬁao(eqﬂ,b) “is a 1:1 correspondance.

'._'I‘heorem 2.15¢ -1f

!
1) r:r - are monold complexes,
2) f:0—> 11 is & map of monold complexes,
3) ((,B,E) and (™ ,,B',E‘) are twisted Cartesian
_products, the latter satisfylng the condition
(W), then there 1s a unique map g:E —> E'
“ such that |
43 g(equq)C.eq%ch; and
5) gla,b) =f(a).g (eq,b,) for (a,b)eEq.
Proof:  Suppose that we have such & map g. Denote

by Eq the induced map of Eq Into EZ} ‘Then

Cartesian product ({",B,E) is sald to gatisfy tho condition (W)




O(eo,b)e eoxBé; but B'o hag one element, so

that gy 15 uniquely determined. 'Let'-~

88’ :
R — eqﬂx _Bqﬂ denote.. the inverse of '3
Since  giaxB —> oy

|
we have gqﬂ(eq+-1,b) =

8(1&&14-1 sb) = qu 0("3@[%I ,b).  Consequently there

is‘ at most one such map g but the above formulas - ' ;
have defined a f‘unction 23 such that 'aog = gao ' I
and - g(e XB ) Ceqx Bq 1t 'remains to verify f
: - ’ K

.thq.t ‘Siﬂg = 891+1 and that 5,8 =8 51
If be BT; we obgerve that ‘ : ' k

38le,,b) = (a_'o,'b"), where b' is the unique

olement of Bé' . Fur‘the? g}}.}_(e{,b) = g(eo,%b)' =
(eo,b’). Suppose now that ’aig = ggi for i < jo . |

. - , i
Then for be qu, ’Bjﬂg(eq‘fz,b) = 3+1Sgao(e b) = (
: i

- I

g g3+1 (e,b). - il

Now Sie xB' --—--->_‘_eq.+1 1s 1:1 into; but since -

i

: a*"q ! g+ 1 |

g3 = identity, 8 1s equal to. ‘85, Therefore I

sg8(e,b) = 53gdy(e,b) = 55g3y(e,b) = Sgle,b) = |
83080(e,b) = gso(e:b)' _ . .

Finslly, s,,,889:(e,b) = 8s,g9,(e,b) =

Sgs; Iy (e,b) by inductive hypothesis, and

C |
S’gsi'ao(e,b) Sg?osiﬂ(e b) gsiﬂ(e,b).
This completes the proof,
Corollapy 2.16:  If (f,B,E) and ({',A,D) ave twlsted

Carﬁesi&n products satisfying the condition (W), and g:E —> D,
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: D _*->'E' are the maps of the preceding theorem, induced
y the. idontLty map. of r‘ ” then g'g and gg' are the
?dentity maps of E anﬁ D., ' '

- We have now - shown the esgential uniqueness of twigted

o prove existonce. ‘Thisg will he dono after the mamor- of

a.oLe\ine' [71.

Qef‘inition 2, 11 "let T be S,'.m'onoid éo‘inp'lex.'
of one. element, and Wqﬂ(r‘) {‘ +W (f‘)
. Now in W(Y‘) = U (f‘) def'ine

) ‘l) 90(8, b) = '30& b '3 (a b) = a, where a’en,bel"o;
2) Jolasp) = 30a b where 8e(y,q,
3) 91+1(a,b) @, 1a b)Y
:h) so(a b) = (sO ,Jqﬂ,b), noting tha’s‘wqw(r)l-:-
Cgast q+1+W (3 |
5) 51+1(8‘ b) (Si-ma 4 b)

Theorem 2.18: If' \"' is & monold complex, then (F‘,W(F) W(l"))

is & twlsted Cartesian produet satlsfylng.the conditlon (W).
‘The proof of thisg theorem is st-ra'ightforwafd, and is
lefti to the reader. : _
- We remark that the notation here 13 gomewhat dif‘ferent
from that of [5], in that we consider only semi-simpliclal -

complexes and ot FD oomplexes, and that W corresponds to

the W of [5]

artesis.n products satisfying the conditlon (W), but 1t remains -

(\“) rq+1+ W (r‘) WO(F‘) 8 set conﬁistlng o

bewq(-r‘), for g 05
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If X 1is a Kan complex, and x is & polnt of X,

wag shown 1n ohapter 1 that there is a f‘ibre gpace

(x x),p,X) with fibre SL(X,x) such that

: 'Tl'q(X x) >TT .(ﬂ.( X-X’) eo(x) ) 157 an isomofphiem

rq > 0.  If r" is a monoid complex with homotopy, we
‘fhail always ohoose the baee point to be ep¢ Mo and we ,
Jhall denote E(M, eo) by E(F),‘ and Q(P,eo) by 0. -

_ Suppose now that l" ‘Ls a group coumplex such that

oll =g =10 :  Then E (p) -r'qﬂ, and _

""'">Q-(|”)- 15 g g{m —-~>l‘ > 0. is exact; but the

homomorphiem SO P —> 0 Q1 i:oduces a homomorphl sm

r‘ —> E such.that pu 1is the ldentity. - Therefore

: Eq(r‘) 18 & e_pli’s extension of r‘q by Sl(r_‘)q. thig neans

that we may identify the set E(I) with the set SUP)xT,
the identif'icatlon being compatible with the degeneracy opsrators

8.

4» 8&nd aleo with the face operators ‘Bi,i > O Congequently

_-we- have the f‘ollowing

Theorem 2,19:  If (" 1is a group oomplex guch that ﬁo([‘)- =0
then. (D(M),NE{GY) ) 1s a twlsted Carteslan product satlsfy-

'ing the conditlon (W).

Proof': We need only verify that the twisted
'Cartesi&n product gatisfies the oonditlon (wy.

We have, however, that (“O = TYO(F‘) has ons element.
Fur_*ther' if S::hq([") —_ Eq+-1((‘) is the homomorphilsm
induced by s4:f q+1———-~> N q+2’ then I3 1s the
identity; dbut the image of S 18 just the subgroup

{

9l
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identified with eq+1™ \"qﬂ,' e.nd the I'esult is
proved I _
By"fhe preceding theorem We have, therefors,
© - that \" 15 in a natural 1:1 correspondence with
ﬁ(ﬂ({") ) . However [ 15 & group complex, and therefore
in general h&s more structure than W(SLL() ).

"Suppo_se now t;ha,t " is a commutative monotd complex.
Then the multiplication map of Ux" ——>{"is a map of morioid
' complexes. 'Thi'e_"iridmes_ by ‘the prededing theorem & map
WD) —> W(F).  However -W(Fx({) way be identified in
a natural'”menher"with W(r) xW(r). Now w g{f) = r'q+'..+r‘o,
and the map W(\")XW(F) —> W(")} 1ls glven by
(xq, . .,xo)x(yq, .,YQ) — (quq" "‘.‘ ,Xoy_o). ' Thus W(\") is
a commutative monold complex. Further, Wir) 1s also & com-
mutative monoid complex, and as a monoid, WQ(I"): r‘q+'ﬁq(r)-_
Therefore if ' is a commutative monold complex, we shall
always’-'mean" by W(r and W(r’) the cormfnuta.ﬁi\;e monold complexes
- whose structure has. Just been described. Notice that 1f T 18
an abelian group comp’lex, then W(I) and W) are abellan
group complexes. .

 Now if M 1s an abellan group complex and 71‘0((-*) = 0,
then E (r') 13 the direct sum E (r‘) = ,O. (ry «+ Pq Further,
the map E(N) xE({) —> E(r‘) given by the multipllcation is
Just the mep ihduced by ﬂ_(f‘) D) —> 000, Therefore, in.
this cage we may identify_r E(") and W(N(M ), and [° and
W(Q(r'). ), hot only as gemi-simplicial comﬁlexes, but ag abelian

group complexes.

- 82 |
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gorem 2.,20: If M is a minimal abelian group. complex

fsuch that 1Tq(|") = 0 for q 4 n, and T.(C) =17, then '

T 1s nd.tur*a,lly isomorphic to X(1T,n).

. Proof: Since ﬂl% M 1s an abelian group complex,
W(Q_n(f") ) 1s also;. we may thus iterate the W
construction, setting W1 W, = W(Wn Y.

' I__‘hen since rq =0 for gl n, |

| o= WR RN ). ,

'Now .Q.I_l(r‘) | ls a minimal-’ abslian group comﬁlax wlth
one. homotopy group T in dimension 0. Therefore if
we prove the theorem for dimension O, 1t ‘;nzill follow |

for dimension n by the above formula, slnce

K(r,n) = WAE(T,0) ).

Suppose that n = 0. Then since T is minimal, (
fg=1, and ﬁq(ﬁ)' =0 for q» 0, Further
- 2(  1s minimal, ami\ﬂq(ﬂ(r‘) )} =0 for all (.
Therefore ﬂ([.")q = 0 for all q. This means that

if Xér‘qﬂ ,’aox = 8y and 31.. . .-%HX- = &g, then

X = eq‘+,1i '
Y = x8,8,%, 2 = 5g9g%s Then yz = X, 9y =

©q2 9+ '3q+1y1 = Qg e Py 1 X (919097 + + 34967

= (-91 x)(B q x) = e4. Therefore v o= 1

. Suppoge then thab xer‘qﬂ, and let

and x = z. In other words Lf XerqH, then

X = soﬁox, and therefore QO'r‘qH —_— I"q ig an
{somorphism. Consequently Pq;s T for all g
and the mappings Tl ——> T induced by eitherf-
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SO. or ;‘30 are the 1dentity. However 9,845 1s

the identity, and thus the mapping TF ——> T in-
-d‘ﬁee'd.“t‘)y. 9, is the identity. Combinuing in this
m&nnér we see that the mappings T —>71  determined
by ei_ther a_i__:.rﬂq+1._ﬁ—'—>r1q c_ir .‘ si:r‘q — rciﬂ -, are
the ldentity. Thils proves the theorem,
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Chapter 2, Appendix A

Aoelian group complexes.

Abelian group complexes have very speclal -

properties, we have_alyeadb seen in the first part of this
- chapter that there_is a unique minimal ebelian-group complex:
wilth the abeiian group-'Tt for its n-th homotopy group,'
-and‘With all other ﬁomotopy groups zero. , Essentially'ell

. other abelian,group complexes aré products of such complexes.

' plexes, but it will be proved 1ater in etudying cohomology
’operations that thie is true in general. o '
Before dealing with minimal abelian group com—_
‘ p1exes, it will be convenient to elear up a smell point. in
chapter I, appendix C, 1t was shown that there was, up to
isomorphism, e'unique minimal complex with a single non zero
.homotopy group 1{ "in dimension . We know therefore that
such & complex is isomorphic ag a semi simplicial complex
with the expliclt complex K(.'{r, n)., We now see that the
_multiplication in K(T, n) 1is determined by the fact that
1t hag & single‘homotopy group TT -io'dimension:n, and that
1t 1s minimgl. ' B

 Theorem: If X 1is & minimal complex, M an abelian

kgmqh_neZ* am,ﬂaX)ro ﬁm a#n, T(X) =T ,
then;there is E“unique multiplication in X such that
X, = '[Tn(i{-), . and X is'_ 8 group oomp"iez.(.

- Proof': | qu has only one element 1f gq<n. Therefore

This will be proved here only for minimal abelian.group com- -
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g multiplicatlon 1s detéermined in dimensio'n .k, where
n. Suppose now that the multipllication is ‘giﬁen in
for gq < k, | k 2 n, and we want to define g mul-tiplicetion
-Xk+1 | Let x,yeXk+1, we want the product of x and Y

be an element z¢X . such that 'aiz = Yx. Biy, 1=0,..,kt1.
;ere 15 a unique such =z sgince M (X)) =0 and X 1is

inimal. | 'I‘herefore s we define x. 'y = z.._ It ie now oasy

0 verify the group axioms uging the uniqueness of =z.

Now let us turn to the decomposition of mihimal '

bellan group complexes.

;Theorem. ir t" iz 8 minimal abelian group complex, then

l"_'-’*- 'X K (1 ([")’ 2 ).

Proof: . Since T is‘minimel,_we have r‘o = rrO( ).

- Further recall that Kq( ), Or) = TTO( m, and that
under this isomorphlsm all face and degeneracy operators
correspond to t.he'identity homelﬁorphism_. Now define
bo M= KM (0),0) by dyt € —> K (my(p), 0)

185 the composite of aq ' r‘q —> ; and
sd () = Kol (), 0) =2 K (Mod,0). ¢ 1sa |
homomorphism; gince .30 and 8, are such, and’ we need_f.

~only show that 1t commutes with 3, and '.ei.' We have o

'aisg 33 - Sq—1aq for 1 < a, and Efg‘ﬂ%%ﬂ 9y = 54 Bq |
for 1< q-1, so that b X = dgx, 1<an1, Further
s%”ia 3q = %13 aq V', Now since i is minimal, Lf
x,x'€ [, and Jx = Jx, then 915{ = Jx'. ‘I‘hie means




s

3 X

wever that K (X = a e
r xe r‘q, sl 1aq 13
= 9 ¢ » and ¢ -is a map of group complexes.
‘zet A .K(ﬂo(p) 0) —> T be defined by
?\o K (Tr{,(n), 0)’ —-~> Iy 1s the identity, and
g sqel Bq
f group complexes, and ¢ A

3 X for xe{} > and that

q Henoe we also have

-1s 8 map

-~

' It 19 easily verified that A
ls the identity. ‘Consequently,
etting ' = kernsl ¢ , we havé o K{n (r) )x '
Now we are in g position to proceed:by'indUGtion.
© Frst, TW,(r) = o. = W(QAM) )
ﬁ.theorem 2.19. ~ However, by what we have already proved
QUM = K(1,(R),00x2 ", and p'e= K(m (1), 1) (@)
since Mo(R) = (1), and WEWL(),0) ) =K(w (r), 1).
The remalning details of the induction will be left to the

Therefore

reader, and the theorem is now coneidered proved.
| Although we are not yet ready to prove that every
ebelian group complex has the same homotopy type ag a pro-

duct. of K(17, n we will prove & key -fact in this

) s,
proof, namely that for abelian group complexes there 1g n

natural mgp of homologx into homotopg '

_Xerr(r'), ¥ X = €q-1» YEN
(-1),

Z = X.

If (7 1s an abelian group comolex,
and’ Tjr (A T

z<qu+1({"')

a+1’

where a(j) = then there exists

that 3

guch ‘

g+1

= V859,75 -

Proof&

.Iet .yo
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g+1 L S
XSOQD(J}:E ajyr(j-m)):}fsog (X Qoya Y)= Xe

Suppose now that r { q, and we hav'-"*'def'ined

bl so the.t 315" eq for- i< r, V'_an'd :;:?J—O
r y

Let - Y'. L Y Sr+1ar+13’ "It 1s not -dLPFLGULL to verify

that ?i ==eq fop * i<r+1, and - ql'l'(ajyr'“"’)q“(.])_x

Y et iz _.::._A(yq)ﬁq"”) © and the result follows.

Definition: If - T‘ is an a?elian group complex, define
_ e _ 11' W(j) -
9:0y —> Fq+1 by Ix o)

Define 'n' (r) to bekernel‘ 3 _-*-—> ["q_ modulo 1mage

RE r<121+1 m—f‘-> Fq

Let ¢ :T&( l") — ﬂé‘( ) be the n&tuml} map _

Pronoeition 77 If Y‘ 1s an abelie,n group complex, then
b: n(w) >rr (ry.

Proof': By the preceding lemma ¢ is monomorphiem. To
prove tha.t ¢ 1g an epimorphism euppose that X€ .ﬁq R

'-m_} j—- -(ajx)ﬂj) | q'ﬂ', | L?t y:-x.s'f???x.;;Q

o () L B I
Now go(ajy_)"‘ S UXCICR T SLAL -am_—..eq;g -

Y08q1- = jge BO(Bjx)r(j). Coneequently jﬂ (BY y () -

Djy )O‘(J) = X.




- PN 6 I
. Notice that 55; s(85%)
T ()
\ — . =0
qu 33_1:&_ vl= 5P = XY .

'eq-.1 1<q, and [x]= [y4]. -~ Then y% represents an

glement of qua( ™, and the proof 1is complete.

E i_Theorepg: CIP " 1s an abelian gr‘clp complex, then there

18 a map _ o | |

- A —> Ty such that if M () = Hy(m)
is the natural map of homology into homotopy, then A (w 1is
the identity. I

Proof': Z'Thlere 1s s natural map of cq(p) _— Fq- which

sends r.x into x° Ffor Xe Pq This gives rise to

& chaln map of C{[) — > ,r"ér" a hom'oﬁlbmhism'
. . :li . )
P\-#‘:-H(\'.’) —> (). We now have a commutative dlagram

M

> H(C)

l_/ A

%.
LAY

()

Letting A = ¢ 'a*  the proof is complete.

Errata: Do VIC—'T, Theorem (Poincaré):

\ 1 somorphism tf)':lrr1 (X,x)/I[ {T1(X,x), T, (X,x)] ——> H1 (X).




. The comtmcti'on FK.

- John Milnor

. §1,. Introductlion

‘The redut:ed‘produét con.strilctio_n of Toan Jame_sf Is1 - :
ssigns to gach Cw—complex a new CW-complex having -cthé ]
. 5ame - homotopy type B;S the loops in the suspenﬂion of the
riginal. This paper will describe an amlougous gon-
,_sltruction proceding from the category of semi—simplicia;l o
-,=_complexes to the ca.tegory of group complexes. : The p_zfgp.er—f '
,.:_ities of.' this construction FK.. are: studiad in §2. o E
R | A theorem off Pete:a Hilton Ih] aaseri:s that the [
gpace o;f‘ loops in & union ,S Vaieo vS . of spheres splii:s L &
into an 1nfinite direct product of loops spaces of spheres. : .

In §5 the construction of FK 1s applied to prove g general— : T
ization (Theorem h) of Hilton's i;heorem in which the spheres _J s
- may be repla.ced by the suspensig_n_s of arbitmryqonnected
(semi—ﬁimplicial) complexes . ; | | -
The author 1s indebted to many hslpful discussions

with John Moore .
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§2., The constructlon.

It will be understood that with every semi-simplici&l
pmplex there 1s to bs ‘assoclated a specified baae point. L
Iet X be a semi gimplicial complex with base point
Nsl _
o' Denote Sol%) by b, let FKn, denote t@e free.
~£Toup generated by the elements of K - ‘with the single
jrelation. bnf=1. Let the face and degener&cy operations -
ai’si in FK =‘UFKn_ be the Unique homomorphisms which
carry the generators kp, into 'aikn! gyky respectively.
Thus each complex K determineé‘a group complex FK, |

It will be shown that FK " is a 1oop gpace for EK
‘?'the suspension of K. (Definitions will be given presently )
. Alternatively let F*K CFK, be the free monoid
' (—associative gemi-group with unit) generated by X ,'with’

' the same relation ‘by=1-. .. Then the monoid complex F'K.

1 also a Lloop space for K. :--This constructian.is the

' direct generalization.oﬂ James’ construction4 (See”Lemﬁé k)

The susnension EK- of the semi-simplicial complex K -

1s defined as foIlows. ' For each simplex k., other than
bn! of K there 13 to be a sequence (Ek ), (= Egn), (s Ek ),... -
of . gimplexes of EK having dimensions n+l1, n+2,,.. . In

additlon there 18 to be a base polint . (b ) and 1ts degeneracies

(b Y. . The symbols (siEb ) 'wiil‘ﬁe {dentified with (bn+i+1)'

'The face and degeneracy operations in EK are given by

-1n

,a(Ek) (Eaj Ky f(:]>0n>o)

j1k) S PO S|

j(Ek )

¢




JolEe) = (b)), 3 (E,) = (bg)

_So(Ek:_rl) = -f'soEkn) *

#1100 - The face and degeneracy operations on the remaining simplexes

o~

séEk:n) = sé(E_kn) | are now detemined'by the 1dentities

sba, U
ajﬂi = R I
sé-i-'_ | -'(.’I;{_i_.'#ﬂ)
S (e )
sjsé =Y . '.
| it (3 < 1).

It 15 not hard to show that this defines e seml-
simplicial complex. | - The following lenma will jus,tify
oalling 1t ths suspension of " K. Recall that the suspension
of & topological gpace A with base point & 0' is the identi-
ficatlion space of AX I obtaining by collapsing |

(Axi)u'(&iox I} to a point.

Lemma. 1. The geometric_realizat_ion. JEK ] l}i

canonically. homeomorphic to _the suspensi’or‘r-ﬁf" 'kf'.

(For the definition of realizatioh see [6.] In
_fact the requiréd homeomo:rphism :Ls obtained by mapping. the _
point (lkn, S‘n] 1-t) of .the stispension of |K|, whers Sﬁ

_hl-—_-_




.5ary09ﬁtfic coordinates A(to,.._.,tﬁ) into the polnt _

_7_.7:;‘;)"’ 51,“;1 l€ IEK], . where _EJ'n-H | hgs _barfycentric coordiﬁaﬁes -
RANEEPPLLIOR L ) o

Next the space of loops on & semi-simplicial complex

i1l be discussed. CIf X s&tigfies the_ Kan extension

5 1tion then K ~can be defined as in [7]. Thig

‘féﬂnit;on hag two disadvantages: | | .

- (1) Many interesting complexes do not satisfy the

- gxtension condition. In'p_a.rtlicular EK does npt,

| (2) There is no natural way (end in some cages)
nb-possible way) of d_e_f_':'!.ning'a gx;éup st;,x;ucture in ,O.K
'The following will be more cdiiveniejnt. ' A-’gz-'oup céni-
plei G, or more generally a monoid'ééiﬁialex,_will be.called a
loop _sp_acé' for K If there exlists = (_semi-simplicial)-'
pfinqipal bundle witvh‘ base sgpace K, fibré G, and. witl.l'boxir-.
tragtible total spacs T |
(By & principal bundle 15 meant a projection p of‘
T onto K together with a left translation @x 'T' —_— 1
satisfylng 3 . ' | . ' |

(g By )ty = gn-_(:gr'l:tn)

where gn-tn = tn 1f and only 1if 'gn = 1 and where

}
) n
8y by =At1‘1 for some g, if and only if p(tn) = 'p(tl,'l).

A complex is called. contractible if its geometric realization’

is contractible. This is equivalent to reduiring that the
integral homology groups and the furndamental group be trivial.)
] let K be 'thé minimal coinplex of the n—sphere;. n>2. Then

1t can be shown that there is no group complex structire in
QK having the correct Pontrjagin ring. '

7%




The exlstence of such a loop space for any connected
somplex K. has been shown in recent wo,rk_ of Kan, =m:zhfi.ch
"éenﬁra.lizés the, present paper.' - The following Léma 1s

given to help justify the definition. | .

‘ . Lemma, 2, If K- gatlsfles the extension condition,
é,nd the grou;g 00@1 x G 1iga 1c_>on spage for X, then there
13 & homotomr egulvalence > G, |
 The proof 15 ba.sed on the following easily proven fact

(compare [7] p. 2~10): Every principa.l bundle can be given '
" the structure of a twlsted cartesian pnoduct - That 15 ons .
can find g ona-one function

7; @ x K -—-—-—> T

~satisfy1ng ‘6117 e )18 fo;n 1>0 and gy = vy  for
all i, where 307] is glven by an expression of the form

-

3 (Bpkg) = N ((3,8,) - (¥iy )y k).

(For thls assertion the fibre must be & monoid complex satis- ‘
fying' the extension conditi'ona)- Thus the bundle is completie-
1y described by G and K together with the "twlsting function" ,
¥: K, —>G,_,; where 7 satisfles the identitiés

= TEg Do, 9 = ¥y 121,
tagky = j1:3.’ . '(ég‘tkﬁy"(:t‘a‘aﬁhﬁ=Vi*‘a1'kn

, Now & map %_: 1’).]5{11__1 ’-—-~> Gy is definsd by
T(ky) = T(k,).  From the definifion of QK and the
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above identi_-tie'é it follows that T is & wmap. From the -
homotopy gequence - of the bundle it 1s easily verified that T
induces isomorphisms of the honﬁbtopy groups, which proves |
‘ Le_anm 2. | | | ' |
e defins & principal bundle with fibre FK and
base space EK 1t 1s sufficlent to define twisting functions

’cf::}?&{_‘rl+1 ~—> FK,.  These will be given by
T(Bk,) =k, 'c(séEkn_i) = ln (1> 0).

* Theorem 1. ' FK is a loop space for FK. In
- fact the twigted cartesisn 'orod:u_ct. {FK;EK, T | has a con- |

-' tractible total Space.
Itr_ 18 easy to verify that 7  satisfies the conditions
‘for a twisting function. Hence we have defined a twisted |
cartesian ﬁroduqt, and thé;-@fdfé a principal bundle. Iet T
denote 1ts to_tai space.:. . Note that T may be identified

with FK X FK excoept that 9. iz given by

O
%8s (Blyy 4)) "= (38« kg (b g))

3(g, (sl B )) = (3,8, (st (EK ) Sy,
0'Bn2 Vo B et -y 0fn’ V8o n-i-1 2 ! ).
It will first be shown that the homology groups of T

are trivial. This will be done by glving a contracting
homotopy S for the chain éo;nplex C(T).

Lemms, 3., let O be the free group on gensrators

> TR Then the integral group ring ZG has_as basls
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over Z) the elements gxg - &, where -8 _,s_.,r_ug______es Qver
ii eiements of G;  together with the element Te

- The proof 1 not ,diff.icult." _Now. define_ S by

R
o
s
iae
I

'{o | | (n._ev'eii) |
L, B (moda)

sugn ks (0n)) = (g (b, ni

Mrs

| (-4 1 sign,(s Ea ko)) - (sign, Il+1))]

sr(gn, sy Bk ) - (gn,(b ))J

_ Z (~1.)‘j[.(sj‘gn,(‘ngég—%kn r))‘_(sjgll,(bn+1‘))l_

: ~where g, ranges over all elements of the gfoup_ FK,.

' ' Tt follows es._sily‘from Lemma, §.thét the elements
for which S has been defined form & basis for Q(T), pro~
‘viding that kol r. are restricted i_:o elements other than
b,b, ...  However the above rules reduce to the 1dentity

0 =0 1f we substitute k= bnA or kn-r = Db

n-r* This

sh_ows that S is well define'd

‘I'he necessary iden:tity Sd +dS = 1-¢ , -whAerle
Z( -1yt 9 x rl and where ¢ :C(T) —> C(T) tg-

the augmentation (ﬁZo(i(go,b ) = Zdi(lo,b ) can

now be verified by direct computation. Since this computa-

tion is rather long 1t will not be- given here.
Prodf that ]T_l ia simply connected . A'me.xi_mal_




'cénfbe congidered as the group with ong. generator correspond-

ing to each 1~simplex not in the trée, and one relation corres-

ponding to each é-simplex;
B Ag maximal tree take all 1-simplexes of the form

glements (gT,(Ek ))  such that g, 1s honrdegenerate. The

relation X = (3,x )+ (3 x) where. x = (s 1815 s ok ))
,-asserts that | B

| -(51,‘(3%))-—e-_‘<g1,<-b'>) (s BOgl,(Ek )
= (81:(13 ))
- From the 2-gimplex (sogi,(Ek )) IWG obtain
(g, (B 9k, )) = (5,38, (®3 1))» (gk,, ()]
Combining these two relations we h&vgl
from which 1t follows easily that
for all g,. - In view of the first relation, this shows that

T 1s simply ponnecfed,fand'complefes the proof of thebrem-i{f
The following theorem shows that FK 1is essentially -

uniqué.

tree in the CW-complex |T| will be chosen. Then HiflTl)

(sogo,(Eko)).' Then as generators of T, (|T|) we haye all




99
—9 —

Theorem 2. Any principal bundle ovor' EK Wiﬁh},z (.

‘gny group comolex G gag filbre 13 induced from the a.bove

> G.
Proof': We may asgsume that this bundle 1is & twlsted

'-'.bundle by & homomorphlsm FK

cartesian produot with twisting function T : (]i}K)m1 -—-> G

. Define the homomorphism % FK —> @ by Tk, )-— T (Bk).

Since 'Z:(b ) = ‘t’(E’o ) = t'(a (b )) '11'1 this dozines a

'homomorphism. | It 1s eagy to verif‘y that t commutes with the

face and degeneracy oper'ations__, and ind_uces 8 map betweg_n the |

- two twisted oortesian-producto. o ST .
“ B Corollary. | If ¢ is 'a'il.s'or a_loop_space for FK

- > G inducing an 1so= |

then there 18 s homomorphism FK —

3 .y;g;mhism“between the ’Pontrja_.gin rings.
- This‘follows easlly using [7], IV Theorem B.
. Analogues of theorems 1 and 2 for the-constructi‘on-
F*(K) can be proved using exactly the same formilas, The
f'ollowing shows theé rel&tionship between F+(K) and the cons-

- struction of James. 'i

Lemma 4. If K is countable then the rodlization

IF'K| is homeomorfohio to the reduced ‘oroc'iuot of K},
kppeer) T2 Ky k: X
maps KirooxK into FK. Taking roalizations we obtain

¢ In fact. the product (ky,»

g map’ -{le.i. X |K| fw—-’> |F+K,| . From these maps it isg easy to
. dofine a map of the:reduced product of |K| into |[F'K|, and

to show that 1t '13 a homeomorphism.
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$§3. A theorem of Hilton

If A B 8re semi-simplicial complexes with base

o.’bo let AvB denote the subcomplex

"Ax[bylula J®*B of AxXxB., let AX B denote the com-

" polnts a

" plex obtalned from AX B by collapsing A v B to a polnt.
The notation AK) WL11 be used for the k-fold "collapsed
product" A)K N ¢ A
_ The free product G ¥ H of two group complexes 18
defined by (GXH), = G ¥ Hn Thers is clea.rly a ca.nonica.,l'
A isomol"phism between the group complexes F(Av B) and FAXFB,
Lemma, 5, The complex F(AVB) ig iso;gop_ghic _' A
(ip:norirm; group structure) to FAX F(Bv (BXFA))) , |

In fact we will show that F(AvB) i.s a spli't

extenslion:- _
I—> F(Bv (BXFA) —> F(AvB) —> FA—> I,

The collapsing map AvB > A 1nduces a homomorphism
¢! of F(AvB) onto FA.. Denotg the kernel of of by F!,
> AvB . induces a homomorphism

'I‘he 1nclusion A_
11:FA > F(Av B),  Since c'i! 15 the ildentity it
follows that F(AvB) 1s & split extension of F' by FA,

We will determine this kernel F) for some fixed
dimension n. Lot a, b, qb range over the n~simplexes
other than the base poilnt of A, B, _and_ “FA resp'ectively.
Then F(AvB)nl is- the free group ié.,bl. and F! 1s the
normal subgroup generatéd by the b. - By the Réidsmeiéter-
Schreier theorem (see [8]) FY o 18 fréely generated by the




Bt I Rl

E},he free group {af = FA . Thus

Fl = {b, ¢bo '},

Fow setting [b,¢] = b¢b ¢~  and making a simple Tietze.
transfomation {see for example [1]) we obtain -

CFL = {b,[b,¢1 ]

1dentif§ [b,¢] with the simplex bX¢ of BXF(A)., Then
we can ldentify F! with F(Bv (BXFA)). Since this
1dentification commutes with face and degeneracy opsrations 3

this proves Lemma, 5

eméiits W(&)bW(&)-1 where w(a) ranges over all_eleméht_é :

F((BXA) v (BXA X FA)).

F(B X A) —> F(B X FA). |
A homomorphism S | -
| F(B ¥ A X FA) —> F(BX FA) -

is defined by

b X aX e '—-—--> <b>x<a)(bm< ¢a)-1(b%¢ ).

(This 1s motivated by the group identity Ilb,al, ¢ ] =
[b,a]ib, ¢a1“* b, ¢ 1. |

Combint ng these we obtain a homomorphism

CF(BX A) X2F(B X A X FA) — F(B X FA)

' V-Lemma. 6. ’l‘he group_complex F(BXFA) 1g lsomorphic

The inclusion A ~———> FA induces a homomorphism

fon




o

h 1s asgserted torbe an i—somorphism.-

Using the same notatlon as in ILemma 5 and ideﬁtif
b XaXd - with [[b,al, ¢ I- 1t is evidently suffi-
it to prove tlﬁe«folilowing. | '

Lomma, "(.'- In the free group f{a,bl the subgroup,

1y p:e_neratéd by the elementg I[b,¢] 1is also fréelv gener—

ed by the elements -[b,a] and [Ib,al; ¢ 1.

The proof conslsts of a series of Tletze transforma-

Deta;ils will not be glven.

' As g} consequence of lema 6 we have*

Lemmg 8.  For each m the group comnlex F(B X FA)

FBX A) % F(B X A XAK - xFBXA™)) % 5B % AWy 7).
. Proof by induction‘ on- m. For m=1 this is
just lemma 6- Given thls a.ssertion for the 1nteger m-1
it 15 only necessary to show that F(B%A(m'ﬂ)‘&FA) ig
tomorphic to F(BXAM)) ¥ FEXAMYF).  But this rollows
1mn:ie_d'ia,tely from Lemma 6 by s'dbsi:ituting,‘; B%A(m‘” in place

Theorem 3. If A and B are semi-simplicial

complexes with A comnected, then there 1s an Inclusion

homomorphi sm

PV, B¥At) —— FRXFA))

which 18 & homobopy equivalence.

(13)

. : o
Proof.  Eyery element of F(\/  BXA

=1




_' ‘7'.”..?3!.;

13 'alrea;dy contained in'_. j
_ F(\/i 1 B%&A(i)) F(BX((A)X..{ (B,;((A'(I_I!))_-'

m. Hence by Lemma 8 1t may be 1dentified with an-

plement of F(BXFA).  Since A 1is comnected, the remaimer'

perm" B %A 1) % FA  has trivial homology groups in dimensions
. ' | From this At follows easily Lhat the above |
inclusion 1nduoes isomorphlsms of i:he homoj:.opy groups in all
dimensions. ' | '

B "_ Remark._‘- The complex B may be eliminated from
Theorem 5 by taking B a8 the- sphere : SO and noting the
'_dontit}r 305’(1{ = K, R P '.: -

| o Combining theorem 5 with Lemma 5 we obtain the .

" following |

Corollary Lf A lp commected then there is a

'homot omr equivalence
F(A) 'E(\/i:_;.__o xalth)y crave).

Thls corollary will be the b&sis for the following.

Theorem 4, Let A.,... -,A be. connected complexes

n
 Then ﬁF(A VEes VA ') has the _game_homobopy Lype as s weak .

infinite oartesian D?’oduct TTi ; F(AL) where each A;;1) 1,

has the form

n, | {ny)
AT(13X( a\-- )XAP T

The numher of facbtors of 8, given form 1g_edual to the Witt

humber




o els ey |
._::_‘i)(‘ﬂp :I’r) %IS (}’H/d)’ _.,_.E nrfd)' | |

: ere n.,-' "ltoa-E-n 5 GCD(D )’ooo, )

| Proof. | Foif’ n=1 2,3‘,... 'defi'ne uomplé}tes Ay
to be called "basic. products of* weight n" as follows, by -
L5

inductlon on n. 'I‘he glven complexes A1 P 'Ar ar*e the

‘pasle prgduqt'.s-z o;‘.‘_‘weigh%; 14  ‘ Suppcse tha,t

‘ ‘.-A‘l’oc_u}Ar‘}’i“}Ad."__..

are the basic products of weight less than s P To ‘egch
' assums we h&ve defined a number e(i)( 1

whe‘re ' e(?) = -'°==e(:c') = 0. Then a8 basic products of

we'ight n take all expresmons Ai% Aj where welght A, +
weigh’s AJ =3 n a.nd e(i)( 3 ( 1, 08.11 these new complexes

A ERERE "AF ' in a.ny order.: I Ah—- Ai‘x Aj \define ,
g(h) = j (For' this disugsion we must consider complexes guch
ag (A)XB))KO and A)S’((Bﬁ& C) to be distinct') This completes
'the_construc;tiox_l of the Ai‘ ' o

For each m Z 1 define | : '_ R .
Ry = F(NGis o Apde .
lThus, R1 = F(ATV ---'vAr'); 1j‘i

Lemma 9. There ls a homotopy egulvalence

F(Ay) X Ry,q C Ry




i —_r-l‘.5_

Note that 'Igﬂ_——J.F‘(Am"V'-B;)T, where B = \/35(112133< Ak'l.
R R - elh)w

gﬁa-coroilary to theorem § thefe;is;& homotopy equiva1ence'

F(Am)xF(\]i:; B_?X-Aé ))_ C F(A,v B) = Ry -+

(Av B) % C (A%C) v (B‘Z’&C),

;he second factor of the first expresaion.becomes

(1)
N:Lm\/ hmm AL X % ).

 But (f11ling in parentheses_correcﬁly) this 1s just

i which proves Lomms, 9.

Now it follows by induction.th&t thers 18 a homotopy

equlvalence

F(A, )xF(AE)-'x-f *x F(A )x R CRy = F(Av +ov VA, ).

1+ 1

This defines an inclusion of the weak infinite carteslan

product e F(Ai) inte R,. Since A,,...,A_ are con-
11 L 1 o T

nected, 1t follows easily that the "remainder terms” ‘R

i are k—connected where k —> ¢ ag m—> @ . From thig

1t follows that the above inclusion_map Inducog lsomorphlsms

of the homotopy groups‘in.all dimensiohs. Thig proves the

first. part of theoren. 4.

;pétituting in the definition of B and using the distributive




- ..,16,_ .

Let <$> (n1 PRERYE W denote the number of '_._A-h,
the form A(n1 ) X cee )XA(DT) To compute i:heee

Rt rs consider the free Lie ring g on generators o {reees e( .

)y spording %o ee.ch "be.sic pre duet” Ah = Ay K A define : '\
ement o( Idi, o(j of L, for h = v+ r+2,... .
1 the elements oLy obtained in this way are exaotly the
.ard monomials of M. Hall f2] and P. Hall [3]. M.He,ll has
ed that these 'element-e forin an edditive basis for. L.

The number of 1inee,rZLy independent elements of L
h involVe eech of ‘the generetors o£1 yrany o( a given
ber n1 gooo ,nI, of‘ timee he.s been computed by Witt I9] _
_ ’his formula ie the eeme es the.t in theorem 1;, thisg com- - L
pletee the ‘proof’, | o |
_ In oonclusion we mention one more intereeting con-
sequence of theorem 3. ‘

Theorem 5. If A ie co'nne'oted then the complex

EFA has the shme homoto*ov tvpe as’ \/ E AL)

The proof is beeed on the following lemna, which
depends on Theorem 1. _ Lo '

Lemma 10.  Lf A 1is_cornected. there 1s &

homotopy equivalence

' In fact the inclusion is defined by

i

(B Ea q) > e (e seerrlg)e It is ee,sily verified

n’in-?-i

that thie 19 a map, and that it induces & mep of the twisted




i 's'ian product T into the tWisted éaftesian'product W,

éorem A that the homology groups of‘ EA map :Lsomorphicly

Y ae 1s completes the “proof of Lenuna 104
1Bl Now from Theorem 3 we have a homotopy equlvalence

i WF(V1=1 A.(i)') C WFFA .

n view of Temma 10, and the identity

E(AVB) EA'JEB

it o ioten he pheorl. 1

ce both total spaces are acyclic, it follows from {7},_ v

£0 those of WFA Sinoe both spaoes are simply connected 5,
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Chapter 3. Acyclic Models

LRt S

ects of @, we shall denote by Gl, .the set of mapplngs

a. with domain in ’Jﬁ‘&

i 5.1+ T The quadruple(a. m, oA, p } will be called
| caterory. with models if CL is & categ)ory, M a certain
ubset of the ob;tects of a, called the set of models, and
s P are functions of 03“ into 1tself such that

) o (0 ..(M)) p (1 (Ni)) 1), Mem

1) ,8 (u) «(u) = U ' ;

2). ol (/3(11)) w’é(o((u)) 1{M)- where M = c’tomain‘ls(u) “

= range « (u).

3) /BIL(f u) = ﬁ(ffl(u)) where - £ is a mapping of A such
that domain £ = range u. ' _

1) A (F u) o((f/$ (u)) o (u), where [ means _thé,._s’ams_asﬁ -
in 5), '

where u € a:m throughout . .

‘Notlce that 3) 1mplies P([& (u)) —(3 (u) - and - 1)
and 2) imply o{(oL(ll)) = ol (u). o

Aggumptlon: For the rest of this section, (a,, <4 fs )
15 a Plxed category with models; it will usually be denoted
by L ; "object" will mean "object of @, and "mapping”,

"mapping of A M.

P JUR.

1 YThe theory ofacyllc models was introduced by Eilenberg
and Maclane [11. The version given here 1is a part of [2].

i
L
i




tion 3.2: . For any object A, S(A) will denote the
meppings u : M —> A with Ment, such that «(u) =

tlon 3.3: For the rest of this paper, A will denote
jfce'd‘ commutative ring with unit element; '_CJA the category
A -modules and N\ -homomorphisms., - |

nitiong 3.4: If K :&—> G, 13 a covariant functonrn,
u:M~—->A an element of gl » we shall denote by

theelements of K(M, u) will bé denoted by (k, u),
re keK(M); (k, u) + (k', u) = (k + k', u), Ak, u) =
Nk, u) if AeA\, We define the natural isomorphisms

1(u)

K (M) = 2 K(M, u)
- d(w)

by 1(u)k = (k , u);  J(u) k,u) =k . _

' We now define g new functor K P A —> %A as follows:
K(A) ZueS(A) K(M, u) for any ob,}ect A,

K(£) | K(M,u) = 1(8 (fu)) K (« (fu));;(u) for any
map £ i A~ B; thus K(f) [ K(M, u):X(M, u) —-—~—>

K (M1, B (fu)) where M' = domain B{fu); clearly
p(fu) € S{B), as required. |

Next, we define a natural trahsformation of
~
functors [: K—> K by |
Tg(A) [ K(M, u) = K (u) j(u) Ffor any object A; the
necessary'naturality condltion 1s easlly verlified.

Y

1(M).

e AKR

HO




3-3

- The functor K 15 sald to be renresentable if_‘

here s & natural tranﬂfomation of functors

i-

');CK : ¥ —> K ‘such’ that I"K XK K> K is ‘the identity.

otations and Conventiogs j 5 - Let dCJA denote the category
f differential A -modules a.nd ‘admissible homomorphisms; 1in
ther words, an’ obJect of‘ AN is a palr (G , dg.) such .
that G = Zn)O Gy & direct sum of A --modules, dy. 1s &

:_'I\.—endomorphism of G “such th&t dg dg = 0, a 6, C Gy
for- n> 0 and dg GO = 0. A mapping f : (G, dG)—~>
‘(F dF) of d(@lA ig-a [\-homomorphism £ 16— F suci_q
. that dpf = fdg.  Usually we shall denote (G, dg) simply
by G, and dg, indiscriminately, by d. The elements of

G, "will be called n-dimensional. For every object (G, d)
we define the k-skeleton (G‘k d), 1tself an object of d(JA 5
by setting k =G for n<k apd Gk.m 0 for n> k,

s!
and using for 4 :_the‘ nat_ural re’stri_-cf_c_io_n._  In the category

d%ﬁ » homology 1s quined as usual; we write Z{G) =

kernel dn, B(G) = image dg, H(G) = Z(G)/ B(G},2,(G) =

Z(6)N 6y, BL(G) = BAIN Gy, Ey(G) = Z,(G)/B, (@) so0. that

H(G) n >0 Hn(G) Note that H anﬁ Hn can be regard-.

ed ag covariant functors d%ﬂ_‘ —> %1\. ; the def‘inition of -

H(f), Hn(f) belng evident. : The natural transformation _
— H wil’l be 1ndiscriminately danoted by € |

Definition 3.6: I_f K= a f—-> dg,\__ | is & covarlant functor,
define K" :@d—> dgt‘» by K™(A) = (K (A))I;1 for any object




tva
3\...]4, o

| gnd Kn(f) = K{(f) | Kn(A) for any map f : A —> B.
urther, define K : @& —>. Gr by K (A) = (K(A))n,Kn(Fj |
n(A) = K(F) | Kn(A). We say that K 1is representable 1if

" isg representable for every n }_ 0; this is the same as

‘gaying that K 18 representable when regarded as a functor

it -~
 Notatlioms 3.7: By Wt we denote the subcategory of A the

objects of which are those of W , and the maps all maps of
. the type & (u), or compositlions of such maps. -

Lot K, L : & —> an bé two functors and
U: KIt —> LIfit a natural transformation; then U deter-
mines a natural transformation G . X A ’]E: by QIK(M , ) =
1(u) U(M)'j(u)' H '(éf 1.4); so that 0 [ KM , u) : KM, u)
3> L(M, u). If U 1s the restriction of T : K —> L, i.e.

~

= T 13&, we shall write U= ‘i‘\ ; and in this case we have
Ty = T
This lagt remark is applied, for a functor
K : 4~ dg,\, tod.: XK — K; we thﬁsl obtéin d : K ——'-}/I\{
such that a° = g, d rI‘{ = FKT a; and accordingly we can (and
> 49 .

Definltion 3.8: A covariant functor K :d-—> dgz\, will

shall) regard X as a functor A -

be sald to be a cyclle on models 1f there exist natural
transformations of functors. o

y : Hy KIR—> K, |8 U: K | —> K |

1) Note that we use 1(u), J(u) indiscriminately. In this
formula J(u) 1s related to K, i(u) to L.

2) Here .dg, 1s consldered only as a category of A -modules;
i.e.yM) ts a homomorphism of A -modules, but does not pre-
serve gradation nor commute with d.




that Ugmazgﬂmwmwmmmtj,wmgmL 
' 1lowing afer satisfied '
4 u0 — e
dL?n +U = R (K 1#®) for n >0
| Uo 1 =0 |

reA ?Z : K '—'—) HOK 15 the natural transformation.
gtice that for Mem’ s any element ‘he HO (M) i3 of
e form £k where kEKO(M) Now, by the above
zrlsk 2(1-dU0)k—Ek

that coﬁdition (1) implies a -

(&) . 217'= 1

Lemms %.9: If K a,——> d?A 15 acyclic on models, there

are ﬁatural tremsformations of functors )7 HOK — KO’

U K -—~>K guch thatUKn CKnH and, writing

= Ul K,

[CR i0g = 1 -7¢
(?)30n+un‘_1d= 1 if n)>o0
(3) Ugh = 0

&y €1 = 1,
' Thig 1s immediate from 1.8,

Notation 3.10: By ¢ denote the sub-category of (L the

objects of which are all those of WY, and the mappings all
mapplngs having models as- domain and range. ’m& and ¢ have

the same objects, but ’mf has mors mappings

e
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11 let XK, L : (I.'_““) dngbe -covaria‘ﬁtl'functors.
T: HOKlIﬁE —> HoL | ¢ “be a natural transformation r ':
1t°fs5 let. K be representablo and L acyclic on models. |
there is a natural transformation of functors o : —> L

that O | (Ko IW) inducos T; O will be called 'an' al

slon of TV,

T A oA ~ . :
Proof:+ T induces T : HOK,-“—} Hals. olnce L i

1s acyclic, we have trangsformations 0 L'-=—->

A . A
N i HL —> Ly satisfying the conditions of

151 We define Q)O : } Ly by (DO =
%VE?EK'AS’M (DJ £ —“> L, by b, =
LU 99dXg « (ef. t.7). Then 4 0, = i
ST < A _ ‘A A A A - :
d r‘L UO @0 Ar ?EK = FL d UQ (D,Q 'de = | . , o _e,j‘jhs

oA

0, d, since £Qd = 0; in fact 205 d = 0. i
For restricting everythl ng to the category wm o, S
we havs E(DOd—~ ZF‘LanJde-« (“H[Ja-]'l‘zﬁKd = I

We ‘proceed by induetion if‘ (Dk 15 defined,

s 1s (Dk , and we write (Dkﬂ FLUK(DK dXK, and

verify d0, . = dr‘L kmk dXK
= r‘Ldukfb d?CK L
M O Uk -1 d)ED de

_\"_HL

I

= 0 M A

= ( d, as required.
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Further notice that on Uﬂ‘ﬁwe have
%®OmZFL17TaK }m’e‘f]‘“ CHL’@ExK |
. Tr‘Hst TY.PK?V;_:— Ti. ,' and so ¢ 1s

- an extension of T. e

Lat K L CL_——-—-} dgA bé covariant
tors and let d), ()R K —-——> L be natural transforma- |

ng. A homotogz' V between o a.nd ot l1ls a natural

ansformation of f‘unctors V K -——-~> L. such that VK Cl.h+1
n_d av +va=190 - ¢ |
If K, L: & —> d’%‘;\ “are covariant

' :functors, T : HOK l m —_— HOL Im:ts & natural transforma—-

tion of functor's, K 1g vepresentable and L geycllc on

models, end 1f 0, ¢' are extensions of T (cf. 1.7), then

there 1s & homotopy - V. between ¢ anda 0.

are botl_l. extenslons of T,

‘We define

Proof: Since 0, _4)'
W muet have - 2 ‘DO = 7 (DO @ %: .
| Vo= MpU (% 00) Xg
wher'e U, % again are the functors appropriate to L.
 Then AV, = Ty, d UO(Q)O Q)O)XK
= r‘L (1 - 58 (B - mOmK

= Ty, (rbo 0! )xK

= 05~ 00
as required. 'Now—, we proceed inductively. Let

Vs oo ’Vlt with sll the nocessary properties be
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defined. Then, in particular
d{ q)'i{.ﬂ_'_q)kﬂ i 'de_) | = dq)kﬂ - dmkﬂ

e

'.“'"i—ﬂvk1dd30
_— A~ _ A' . ~ _ - - .
whence d((DkH G)kﬂ -V, d) = 0. Now we define
. ~ ~ _ -~ A
VKH r\L Uk+1 ((Dkﬂ . ‘me ‘ Vk d)xK
Then _
Wiy =g d Uk+1(®k N ‘Dk+1 Ve DXy,

~

= [, 0 T_Uk _d,)___(q’.mr“_ ‘pmfﬁkd)xK'

’ ) A, Ay ~
o rL (Opq = Beyq ~ Ve DXy
“ Py T TN

' &.s required.
Combining 1.11 and 1.13 we get

_' Tﬁ'eéram 3.1k If K, L.: &—> dal\' are covariant repres-
| sitanie functors which are acyclic on modeis, and 1f T : HOKIﬁ
—> HyL [ is a mtur&l equivalence, then there is a
mique natural equivalence @, : HK —> HL such that |

Now et (I be the category of semi-simplicial com-

plexe-s‘ and maps. The model objects a're_ to be the gemi -
éimplicial- complexes _A,q ‘(cf..rapp_endf%x_l_f\); az__ld o and /8 gre
defined as follows, Ir s Aq —--> X, let x = u(o, ..l.,q)e Xq.
If x 13 non-degonerate, deflne &(u): Aq —> Dy toDbe

bl (HKI M) = T,and such that o, 18 1nduced by an extension of T




entity, and. £ (u) = Aq —> X, Suppo.se that x 1is
erate; then X ="Si1;""3i1y'~, where 'y 18 non-degénerate
TP I - | |
(1) Defihe 8 (u): A ' _—-’~> X " to be the map deter-
mined by f3(u)(0,.'..,q r) =y. Then
P(u) (Si ve81.(0, .0 0,q7T) )
(2) Define wlu): -Aq“*“> Aq—r to be the map deter-
" mined by o{u){(0;...,q) = T ,',511 (0,...,40-1).
s easily verified ﬁhat}_ o« and F satisfy the axiems and
uniquely defined, so that (1l 1is a category with models.
Let d% be the category oi‘ differential modules over
he integers (taking A as the ring of 1ntegers in 3.5). We
efine functors G0yt t—> d% ag followsg. ILet Cq(X) be

4

: :t;he free abelian group having the elemente of‘ Xq as generators}

and set C(X) = ECq(X) a The homomorphism 79: Jq 1(X) - Cq(K)

ig vdetermi’ned by 9x = 2 (- 1) 94X 5 xqu TLet D (X) " De
I the free sbellan group having the degenerate elements of‘ Xq

{ as generators, and set © (X)N = C (X)/D (X}, C(X)N zC (X)N
| row (0 (X)) € Dy (X);  for

1+1
Vo x = 2- asx+(1)asx+(1)
1 j{i( R i 1L P>is
= T (1) x + = f
j(i( 1) 91y -‘;j X o+ Sie1 siaj_} X, |
since the two middle terms are equal. -T_heref‘ore 9 induces &

homomorphism < 04 Xy —> 0 (X)y. Tt follows in the

ugual manner that _.3,’3;— 0 in both cases, which completea the

definition of C and CN' C 1g called the chaln functor,

41 91% 7 2N CITEN 9; X




e nor*malized chalin functor.

| o now wish to show that C ‘and Cy give the same
ogy - There 1s ‘a natural transformation of functors
> _C " such tha.t 8 (X)-C(X) S C(X)N 18 the pro-
on onto the factor group. | In. order to obtain a homotopy
roe for i we shall ‘ghow that both C and CN are |
psentable and racyclic _on models, ‘and shall then - apply '
oms 3.11 and 3.13. | o | o

To show that C._ 1is feprésohté‘b'lo , we defing a natural
sf‘ormatiori X,O Ko ---> 6 a3 follows. Recall that Cq(X) |
free abélian,_ and let x¢ Xq be & gensrator. Thére 18
unique map  u: 'Aq —> X guch that . w(0,...,q) = Let
q-r ‘be the dozﬁaih of 'F(u) Then 'X {(XHx) = |
(u)(0, . ..,q), p(u) ) € (08 gp)s plu)) C B, " Stnce
r‘xc = :Ldentity, ¢ 1s representable. ' B

Now the homomorphism X(X):C(X) —> E(X) carries

f D(X) into the subgroup gensrated by degenerate simplexes s
and hence induces a homomorphism VA(X): C(X)N —> (C(X)N)

formatlon of functors, and that (X' = identity, so that Cy

1s also representable. To show that C and CN- are acycllc
on models, define

S:(B o)y = (Bgdpy bY Slug,ewomy) = (Oumg, weesmy)e
Then © has the properties '

381y, + v 5mm,) = (g, e esmy,) B

Vg8 = Sgi
Si+18 = 5 81
SOS =‘82

‘It 1s easy to verify that x' CN — (CN) is a ns,tural trans-




X € (A )r,r)O. Thern

4+l ' T+

Z( 1)1‘3 Sx= x + Z (-'1)1331_1?(:

X + S'ax =x. If xe (Aq)o, then 33 x = x ~(0).

"~ g0 that

Now suppose that h: A | T A i3 a2 map in the

gory ‘m, . Since h 1is a simplicial map onto Aq, we
ed only def‘ine it on the Vertices, and 1t has the form

4y =3 for j< i) - for some 1 { q. Then clearly
{3-1 for § > 1} |

h=nh 3. Since any map in {?\1 is a composition of maﬁs of
e form of h, B8 conmutes with'the maps of ’ﬁL .

We define a natural transformstion of functors

U :C IM— ~— G l‘m, as follows. The homomorphism

U( Dq)- C( Aq) ——> C( Aq) is determined by

| U(Ag) () =8(x) for xeX,x+4(0);U(8y) (0) =

' The fact that S commutes with the maps of M implies that
U 1is a natural transformaticlgn.of functors. = Define

7+ B/
gidered in a nstural inamer ag a free group on the generator
(0), and W (8,):Hy(B,) —> Cy(B,) 1s dotermined by
716;5;\_4-3(0) = (0) eCO( Aq). % 1s clearly a natural transfor-

> 00/1/?1,‘ ag follows: H-O(Aq) may be ‘con-

mation of functors. .
The conditions gatisfied by 8 insure that U satisfles
the conditions of (3.8), and hence c 1s acyclic on models.
Since 8 carries degenorate simplexes into degenerate
sirﬁple?};.es, it induces & homomorphisml S:Cr(aq)l\'{ > G ](A Iy s

——

1

of modules; U(A_.) does not preserve gradation nor commute (
with 4. Cf, foothote on p. 3-h
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:he transformation. U Can@ Dy CNﬂﬂL in which

\ ) = 8:C(D )N—> C(A )N 18 a patural transformation
;hctors. . The conditions on & insure that U' satls-
the conditions of (3.8), and hence Cy 1s also acyolio
bdels' . Iet H denoté the homology functor obtained |

gorem %.15 % ﬁ: C *—f—> Cx induoes a natural equiva—

Holm = (HN)Olm, so that in theorems (3.11) and
U 13) we may take T to be the 1dentity | By 3 11 We have _

natur&l transformations of functors:

¢ >"0N

S ¢

which induce the identity on Hol#i= (Hy)oT~ The composition §¢ -
is a natural transformation of C into 1tself which’ induces
the identity on Hyl W ; therefore by“(B.TB),' $o is
homotopic to the identity tr&nsform&tion.of C. Similarly

b 1s homotopio to the identity transformation of Cy.
Honce ¢ induces a.natural equivalence §' H — Hy.
But by (3.13) & is.homotopio to ¢ , and hence also induces

1
@:. This completes the proof of the theoren,

Conglider the category CL.X CL having as objects
palrs (X,L) of semi-simplicial complexes, and as maps palrs




K,L) —> (P,Q), where {:K — P,g:-L —> Q N
155- ~ The models are to be palrs (Ap, Aq ) of models
. We give three methods for defining degemsracy . - I8

1x a , and thus turning 1t into a category with models.

fu,v):(Ap, Aq') —> (K,L) beramap in @ x @
(1) ("Tensor product”): oL(u,v) = (&u, Lv); p(u,v) = (@u,pv).

(11) ("Cartesian product") «(u,v)={1,1) plu,v) =(u,v),
unless p = q; in this case, let  u(0,...,p) = ' | i
a€kK, v(0,...,p) =belL, Then axb= "~ - o
81p...81,{a’ x b'), where 1p2...>1, and a'xb' L

la non—degener*éte 1in KXL; furthermore, this de-

" gomposition 1s unlque. Define af{u,v) =
(a,v )_1 (Ap :Ap)

> (Ap-—r’ Ap-r)’ where 'A'
U =¥ 13 determined by T(0,...,p) = ;
8g,0+-81,(0,..,pr), and fluw)= | 1

t 1y, RO, . 4

(u',v )'_(ﬂp.-r,ﬁp—r-) >_(I_{,L), whoere, |

u' and v' are determined by u'(0,...,p-r) =
a', v'(O,.o.,p-r):b'-_. _

(ii_i) If neither of the above 'sysi';ems of degeneracy )

1= postulated, we agssume that Qxa has no

degeneracy; f.e. o(u,v) = (1,1), plu,v) = (u,v).
We wish to determine the-relation between the
two functors C?, CP}I:' :axqr —— dg defined by

@
Oy(K,L) = C(K)y® C(Lyy

Cy (K, L) = .C(KxL)N‘




. . N e i
- 2

CI‘? 18 represertable using tensor produc't degeneracies. _\ 
Fox‘,__C(K),N@ C(L)N‘_ 18 free abellan, and a typical generator V

o ®7, where "<_'r'e.Kp‘,- zel, are non-degenerate. Let

—~;> L be the unique maps determined by

. Ap_———._> K,v: Aq
(0,.+.50) =, v(0,...,q) =2,  Define a matural transforms-
ifon of functors . : C-l? — ’E%} by . L X 5

early [MX = identity, so that X 1s a representation.

) | C§ is rep‘r'esentable. uging Cartesian product : i
Zdegeneracies 0 G(K,L)yy 1s a free abelian group, and a typical
éenerator 1s a non-degenerate slmplex ¢x ¢ , where .
Te K, feLp Let u,w be the maps corresponding to ' H ‘. )
¢, f respectively. Define a natural transformatlion of -
- functors T C§ —_—> gﬁ by XAK,L)(¢xp) = .

0,00 ,p)x(0,. P, (uw)) € (CUAX ALy, (1,w)) € Cr(K, L)

Then T = ldentity, so that A 1s a representation.

Q@ : .
(3) Cy 1is acyclic on models, using either system of
degeneracy. Consider first the tensor degeneracies.
HO(C(AP)N® C(-Aq)-N is an infinlte cyclic group cyclic group,

for which we may take as generator the clasgs of (0)@ (0).

B Hy C%lﬁbf) ('Cﬁ )O!‘r?b 1s then def‘ined by
| (0,040 ((0)@(0) ) = (0) ® (0). Rocall that we defined

a contracting homotopy U' :C(AQ)N"-%& 'C(D{q)N; we may also
define a contracting 'hOmoto'py'U':C(BI')')N@C('Aq)N——} C(AP)N®C(&Q)N :




5215 e
_U(a~®t)='U‘§'@t + 75(0')@(.!'1: . (O
men 3U + U = 1-7¢, and UQ" 0. U commutes A ”

with the homomorphisms 1nduced by maps of ’Wb , and thus de-
.fines a natural _transfomation of functors. Hence, by de—
intion (5:8), O 0@ 15 acyolic on models. |

: | Using cartesian product degeneracles, the correspond—
E ing éate-gory "ﬁ\t 19 a subcategory of that obtalned from tensor'
product degeneracies ; hence U commutes with the indices -

B homomorphisms in this ‘cade aiso, and CI‘? ig.agaln .acycllc

| on models .

(W) ) C§ s -'aéyélj.c on models, using elther system of
degeneracy . HO(C(A X A )N) is cyelic infinite, generated

by the class of (O)X(O) }, and 7 HOC?Ié [L— )(CX}OI ’WL is
defined by 7X(A o ) ((O)x (0) ) = ((0)x(0)) . Defibe

| S8, %080, (bpxaq)w by 8. (md,-...,mr-)x(f.o...ﬂr) =
B _(O,mo,..f,mr)x(0,1?,0,...,9,11_), 5, induces |
UGl ppx & q N D Cpg L ApX A o)y sueh _that JppUx =
Ugdp for 1'*21 Hence SU + U 9—_ 1-%y &y, and

o

ny—ix = 0, Using temor product degeneracies, it is clear
that U commutes with the homomorphisms induced by maps

of M by the argument of the previous paragrap‘n the same
holds true using Cartegslan product degeneracies Hence CN

18 acyclic on models in either cage.

Now, using tensor product degenera.cies go that C

is representable, we apply theorem 3.11 with
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c%.l m —> HOCIJE | wL the natural equivalencev defined
T(8,,84)((0)x (0)) = ({0)x (0)), to obtain a natural -

nasformation of functors

R . A
v : & —>cf

Similarly, using Carteslan product degeneracles and
, equivalence T' :HOC}I\(I | WL > HOC‘I’E {m defined by
Ap,ﬁq) ((0) x (0)) = ( (0) ® (0) ), we obtaln a natural

nsformation of functors
OF
f'.CN > C‘If\@

Thus Vv 18 s natural transformstion of the functor

X
N

egeneracies, then 'Cﬁ 1s representable; and since VI in-

Into itgelf. If we use the system of Ca,rt‘esian product

uces the trensformation TT' =1 in HOCEHT{ s by theorem

' 515 there 13 a homotopy betwéen \7 f and the 1denﬁity
Afransfomatibn of’ 'Cl}é. The fact that such g homotopy is
{(by definltion) natural will be used 1n lalter proof's. By &
completely simllar argument, using tensor product degeneraciles,
we see that 'y 1s homotopic to the ldentlty trans}fomation
of (¥ ,- go that V¥V and f are equivalences. |

Woe now wish to find the explielt formulee for ¥

end f, as determined by (3.11). Throughout let u be
the map corresponding to ae kr’ v the map corresponding to
beLg. We flrst conslder ©V .

Dimension 0: Let a€K,, b €Ly,  Then :
(a®b) = T 3T £X(a@b) = [7,T £( (0)®(0), (u,v) )
= Ty ((0)x(0), (w,v)) =axb.
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ension 1: cage 1: let ae.K" be non-degenerate, and let

A;\A

v(‘a@_b):r-’fﬁ v r(axb)-r 93 (0,18 (0), (u,1))

uxvm)@(cn -(0)6(0), (uv))= G0 (D00 (0), (1))

—~f‘ ((OT)X(OO) (u,v) )—axs b.

0
case 9 Let aEKO, and let béL be non degene,rate
hen in a similar fashion

v{a®b) = _s-oaxb .

Dimengion 2: cage 1: Let av&Kﬁ1 ,beL be non*-degenerate. . Then | ”'

Wa®b)= VI xlapb)= ng_{v_a ((Q1)©(0,1), (w,v)) :|
= r O 6((1)@10n)—m)@(on)-«u)®(n+4Q1mmoLmﬂn1 _E
= (1T)ﬂoﬂngom(mnmmJMUnyﬂQWHamdwﬂﬁ_ﬁ

= F( wa01)(oomﬂouﬂ(uw) (

= sqax sob o X8, b.
Similarly we have
cage 2: Iet & éKD,beL be non-degenerate. Then. .
| V(afgb)-ssoaxb, , ) i
case 3: Ilet aeKE,bELO be non—degenerate. Then l|
V(a@b) = a X 8,8qb. i‘

The general formula, which we shall not prove, is the

following. If (m,r)1s a (p,q)-shuffle (cf.appendix 1A),. let
:‘Dq) 'fif}
of the integers (0,1,...,p+q=1). I

r(;&,v) be the sign of the’pe‘amutatiqn 9u1,.. "J“p’V1"f;

‘Then for ac Kp,b eK('1 both non-degenerate,

_ 2 , . .. ‘ ) K
(3.16) Q(a®b) (/”’V) U-(/"‘,V)syq...sp1ax s/\41...s,/«41 b, S
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the sum being taken over all (p,q)-shuffles.

We now congider f: C(Ex L)N A C(K)NQQC{L)N,.

Dimension 0: 1let 'a,'eKO,be‘LOI. Then, with the appropriuate l|

‘meanings of the functors in this case, ' " |
£(axb) = PR TEX(axb) = PLTE ((O)x(0)iny)= MOB(0), (wr))=adb
" Dimension 1: Let axb (Kx L), be non-degeherate.  Then '
£axb)= Y‘Uf’c) A, (axD) —I’"Ufa (€0,1)x(0,0),(u,v)) _
= T‘Uf((i)x(ﬂ ~(0)x(0) ,(u,v)= c0t(me (1)- (O)Q(O'} (u v)) - |
'=P((01)®(1)v(0)®(01)(uv)) ' ' ' i
= (0, 1)©35(0,1) + (3,(0,1))®(0,1),(u,v) )
= a®90b+(a 8)®b.

Dlmension 2: Let axbe (Kx L) be non~degenerate. Then
f(axb) F'Ufa 'xx(axb)ml'“Ufa ({0,1,2)x(0,1,2),(u,v)) "
-ﬂ\"Uf( (1,2)%(1,2)-(0, 2)x(0 2)+(O 1)x(0,1), (u,v) )
= T‘U(U 2)@(2) +(1)®(1 2) (0 2)®(2) (0)®(0,2)+(0,1)@(1)+
| (0)8(0,1),(u,v))
r( (0,1, 2)®(2)+(0 1)@(1 2) +( 0)8(0,1,2), {u,v))

= (0,1, 2)®a (0,1 2)+3,(0,1 2)@90(012){89 (01 Q001,27 u v))
a@b.

i

= a®3%b + Pra®dyb pt Ao,

The ‘general formula for f, which we shall not prove is the ”
following, where 9 denotes the last face operator in ai’ly
gituation: let axbe(KxL )p; then o
| . y

G.17)-  flaxb) =  Z (31 a0 (3P b,

: - i=0 _




3-19

NOte that this 1s the formula for the Alexander-

Lech~Whitney cup, product .1t 1is not symmetric with respect

to permuting K and L. It 1s routine to verify that

=
4
N

identity

"~

- References

(C(K)RC ML) )x C(M)NY,—@L>. G(KxLW C(M)y

I

G0 ® (C(1)®C (M) 18T5 ¢ (k) @C(LxM)N/

.19 V 1s assoclative; 1.e. the following

lagram commutes, where the isomorphism is the natural one:

C(Kx LXM)N

[1] 5. Eilenberg and 8. Maclane, Acyclic models, Am, J. Math

75(1953), 189=199.

[e] V. Gugenheim and J. C. Moore, Acyclic models and fibre

gpaces, to appear.

- I31 8. Eilenberg and J. C. Zilber, On products of coleexes,

Am, J. Math 75 (3953), 200-20%,

t

12




