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1. SEMI-SIMPLICIAL COMPLEXES

In classical algebraic topology one studies

VSimplicial complexes.‘ waever, modern.developments'have

shOWn.that these are inadequate, parﬁlcularly for problems_
V in homotopy theory In recent years there hasg been a

tendency to study the total singular complex of a space

{cf. example 2 below) Instead of simplicial compleres; butAl:
ﬁ:,- : this method 1s also Inconvenient from the point of view of’
'ﬁf - homotopy A more useful procedure seems to be the study

’ of abstract semi simplicial complexes, introduced by
lEllenberg and Z1lber [l], and of the sub-clags consisting

- of gemi- simplicial complexes satisfying the extension con-

dltion.of Kan (cf. definition 1.2 below).
Let 27 denote the set of non~negat1ve 1nteger5

‘Definition 1.71: A semi-simplicial comnlex con-

‘gists of the following: A
(1) A et x= G x |
where the X are disjolnt sets (an element
of Xq 1s called a g-simplex of‘ X);

(11) functions ? XQ+1 —> Xq > 1 =0,...,q+1,

called face operators;

1=20,...,q,

'functions ei; X -—> XQ+1 s |
called deaeneract_onerators, satisfying the relations |
0195 YO0y 1<, - |
o ' : |

. .
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Vl .-": L) l- = d tt
.faJs3 ®J+1SJ = identity
R B 1> 5+ 1
We shall usually denote a gemi- simplicial complex'by '

its set X of simplexes. _
A simplex xesX 1 is called depenerate 1f there exlsts

y—eXﬁ_ and a degeneracy operator Sj such that x = Sjy 5 other-~

wise X 1s called non-degenerate.
Bxample 1: Recall that = simplicial complex K is & set whose
elements are finite subsets of a given set K, subJect to the Q
condition that if xeK and y ls a nonfempty subset of X, then’
yeK. Bets with n+l elements are called n.31mplexes, and the
gset of n-gimplexes of K 1s denoted by K

We now define & gemi-gimplicial complex X(K) whlch
arises from K 1in a natural mamner. An n-glmplex of X(K) is .
}a sequence (ao,...,an) of elements of Ki guch that_the get

fao,...,anf ig an r-simplex of X for some r‘é n. Define
"a.i(aoj...,an) = (aO"'f’ai‘—l’ai-{-l".' o’an)’
si(ao,...,a ) = (ao,...,ai,ai,ai+1,;..,an).

Example 2: Let Am_denote the standard nrsimplex; so that a
point of A is an (n+1)—tuplel(t0?{..,tn) of real numbers such
that 0 < ty S 1, 1'= 0,...,n, and £ty = 1. Let A be a

- ﬁopological-space. A singular n~simplex of A 1s a map*

u:An —~>—A. ‘Let S'(A) be the set of Singular,n~simplex‘in

*by "map"” we shall always mean a continuous function, provided
both the domain and image are topologlcal spaces.

-+




A, and set S3(A) = U _ & (A). Define
nez n }

ﬁi 1 8 (A) — 5,1 (A) ‘ ' (
BY By ulbgseeasty i) = lbgseen sty g,0,ty e it 1),
and define , | |
| 85y : 8 (A)—> sml(A)‘
by g WEgsee ety q) = ““”0"'"’ti;ifti+ti+1’t1+e’“’tml)"

It 15 easy to verify that S(A) is a semi-simplicial complex,

‘. the total gingular Qomple}c‘ of the space A, [2].

In the examples we have ueen two ways in which semi-
gimpliclial complexes arise; henceforth we shall consider abstract
s_emi'—simplicial complexes. For problems in homotopy theory. it
1s conveﬁient_ to restrlict attentlon to_semihsimpliqial complexes

- satlsfying the following condition:

Definiticon Lé .. semi-simplicial_ complex X is said to satisfy ('_

: the extensign condltion if given Xgs .k,_)xi{ﬂ greesXy 4 € Xn éuch

J J
such that aix = Xy, 1 # k. Such a complex will be called a

that ’aix- =-’b-_1xi, i < j_, i1j= + k, th'er_l theres Qxists xe.Xm‘i

Ken complex.

- Propogition 1.3: IIf ‘A i & topélogical space,. then the total

‘gingular complex S('_A) gatisfles the extenslon condition.
The proposition follows from the fact that the union

of n+1 faces of & 1s a retract of & thué a gilven map

+1 n+1 i
“defined on the union of the n+1 faces can always be extended to

Byt
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Although 1t has long been realized that the total

gingular complex eatlisf‘ies the exteneion condition, it was only
. recently that D.M Kan pointed out that the extension condition
ig sufficient for- the definition of homotopy groups.

: Defini-t-ion 1;&.- Iet ‘X be a semi-slmplicial complex. A point -

of X 1s a O-slmplex, 1i.e. an element of Xp; end & path in X 1ig
- & 1-simplex, i.e. an element of X ~If x 1s a path in X,

then B x 15 the initial point or origin of x, and aox is the
i,i__lg_%_l or terminal point of x.

Note that if A is a topological space, thon a path
in A is amap -u : AT—-—-> A, and thercfore & path In . 5(A). Further,
_ the initial and final points of the path considered as an element
of S(A) are the same as when considered as the map u :‘61 -—> A,

Let X be a_Kan complex, The point aéX 1ig gaid

to be in.the. same path component &s the point beéX 1f there

oxists a path with initial polnt . a and final point b.

Proposition 1.5: The relation "to be-in the eanie path component™ ,
is-an equivalence relation, -' |
Proof: (1) To show that the relation ls symmetric, 1et Xy
be a pa.th'f‘rom & to b, and let x, = sya. Now 51:{2 =8 =
D88 =0 (Xq e Consequenfly'thefe exists xeX, such that
Bix = Xy, 1=1,2. Let Xn = aox. Then QOXO = .BOBO_X =
9% = dpX; = Jgsga = a, and 31:&0 ~ 9,9 =9 0% =9 gx, = b

Therefore'xo_ _i's a path from b o a.
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(11) To show that the relation ig transitive, let ,C-m
X5 Xg bé paths from ato b and b to ¢ regpectively. |
© . Thendyx, = b =B1x0. Let x be a 2-simplex such that

j; QX = Xgs 9% = x,, and let X, =9,x. _Then X1 is a patﬁ in

X from a ﬁo c. |

(iii) That the relation is reflexive is clear.

Iet L (X) denote the set of path components of X.
X 1g called connected if,ﬂb(X) has only one element.

Definition 1.6: If X 1s a seml- simplicial complex, and

x*e Xy, definesd(X; x ¥y as follows:
1) jl,(X,X ) = x!xezxn+1,'aox-= sg x*,'aie"“ainx =_x*}

where O < 1 < n+1, k= 0,.;.,nhz

i1) 04 n-n_H(X 5 x%) ““) n-(X;X )} 18 the function
. {
-determined by"’c)i+1 : n+2 — Xn*m’ 1=0,...,n+ 1

114) sy = ), LKx*) n+1(x?x ) '1s the function

1=20,...,n

determined by Si+f : X —— XH*Q’ L

n+1

iV) Q(XSX*) = Ig’e}z"'"ﬂn(x’ "X)

Theorem 1;7:f If X is a semi~simplicia1 complex, and x:eXb, then

1) Jl(X x*) 15 a semlosimplcial complex
ii) If X satisfies the extension.condition, then so
does Jl(X x" ). '

The proof of this theorem i1s gtraightforward,
and will be left to the reader.




Proposition 1.8: If X 1g a Ken complex, and 'x2;x3é X,

are such that ’aox5 = ’boxe, ’2)2:;5 éfdexe, then there exists
x, € X, such that ’c)ox1 = —-5030%-_03(2’@13( ?)1;:2, -’a X, = QX 5

Froof: LG?XO = s{&éxz. Then ’60}(3 = ’80}(2 =’BEX-Q,_
D%y =04%g, 8&nd there exists xe X5 such that

? x= x L4 1. Lot x; =2.x.  Then
Op%,

= g% = D2k = D873, = 835 %, »

BCIE o &?)’Bx =’c§’3 oX = ’813;'2,

D 2% —’6'%_3{»—/3,3 X=_ ’bTh
. o _

th_ation and Conventlon: If X 1s a geil~gemplicial complex,
and x* is a polnt of X, let Jf(_X,x*) = X, and let P (X,x7) =

,n,(S)_n(X,.x*),r s'g x*), The point sg X*e.rL O(X,x*)' {(here 5

denoteé the degeneracy operator in X) is_the natural base polnt . .

for OM(X,x*).

Definition 1, 9.' If X is a Kan complex, and x is a point of X,

_ define Mn (Xx ) to beﬂ'(.ﬂ,n (X,x*)). '
Now 1T, (X,x*) 15 the set we wish to make into the

n—dimensiona;l homotopy group of X. Therefore 1t remains to

deflne a multiplication in ﬂ'n(x,x*) for n > 0. However, to do




—"(‘_.

' this 1t 1s sufficlent to define a multiplication in 71' (X )i*‘ _____ :
' n;

| e.ince T (X,x") = 1T, (Y (X, X505 SO * ),
-let X be a Kan complex and x*e XO -According to

the preceding proposition there is & map of

ﬂo(X:x ) XD-O(X:X > T, CNUX,x*)) defined as follows:
' 1if -x,ye;(’lo(‘X,x*)CX, then-there exigts
. We&X, and Z¢8(X,x") such that
D W = x’BO = ¥s9W =2, Let
[Z] denote the image of Z in rrO(Ji(X,x* 1),
Although % 1s not unique, [ 2] is so, according
fo the precedingA'propesit-ion.. We therefore denote
{Z] by x:y, and the desired map is given by
(x,y) —> x5+ o
Pr'onosition 1.,10: If’ X :g,y e.nO(X,x ), and x,x* represent |

| the same element of ITQ(.Q_(X,X )Y, then x-y = x ;-y

 Proof: Since x] = [x! I, there exlsts ze XE such
‘th&t ’612.~.: = XJ ; ’0 Z = X,'@‘Oz = BOX » By the e,xf-'
tension condition, there exlsts an such that .

'aoﬁ—y,’aa %, ’Bamxy, and - there exists bEX

such that Dgb = 50 ’%113 = g, 0 b =2 . Setting
c—r’bb, we have o | -
e =330, b w’aT‘ao'b =gy =y,
9,0 = Vb =005 D =,z = xo
theref‘ore?) ¢ =X .-y;butQ 0 =7 19 b= e 1940 = 9,8 = x’y,
and the proposition follows.




Proposition 1.11: If x,j,Y%Eﬂo (X,x%),_. and Iyl = Iy'l,
then X+y = xeyt. '
Proof': Byﬁ,ﬁypothesis there exist a,b,ze Xe such that
D08 = Ay,’bea. = -x,"a1a = Xy
Bob - y.','bgb = x,’bl_b = xy!’
-'BOZ = SOXO,?TZ = y','c)gz =y
Then by the extenslon condltion there exists
cex3 _such that | . o
%Oc = z,'aec = b,330 = a,
Let d = %10; then
30,0 =0,9¢

B =290 = 99,0

I
e
o
il

i

2,4 =

!
&,
o
il

dgd =00,¢ = aoraoc, = "()Qz‘ = Qy3g%y = Xg-
Therefo‘r'e-. Xy = Xyt

According to propositionsi .j'.o, i1 there 1s a rﬁap

T (%X Jx Ty (0 (X, x* D)= T A(X,x*) )

given by [x]+{yl = x.y .




et' previously defined together with this multiplication ‘We
hall uge Qreek 1etters to denote the elements of T (X X )

“Theorem 1.12: If X 'is a Kan complex, xexo, then Trn(X,x')
.1sagroup for n 1. h
Proof: Iet &, B, ¥ e T (X,x*) =T, (07X, x*) ) =
Mot (x,5%))). -
. have representatives X,'y,z:e.ﬂ_ (_(ﬁlﬂ(X %)) -Cﬂn_1 (X,x*)
1} Associativity: There exist ao,a1,a3e.ﬂ. 1(X *3
such that Ja, = '5‘ &g = ¥, 98, = yz
’aoa1 = Z,32&1 = XY, ‘313.1‘ = (yx)z
QB5 = Y,32&5 = ;x:,‘aia5 = Xy |
By the extension condition there exists
be N2 (X,x*) such that - N
b =a;,i = 0,1,3. Set -.a, = I,b. ‘I'hen.
e = p%b = 39gP = Y2y = yz
8, = ‘egaéb = 9,9%b = J,a, = x |
. and therefore 31 a, = x{yz). But . 7
Cx(yz) = 9,8, :_313213 =73, 3 b = 8 a, = (xy)z.
11) A left identity is furnished by SqXg 3 for

sOer§"1 (X,x*) has as faces dp8p% = x,_agsox =
5031x = SOXQ,B1 5gX = X
and hence (sox)x = X.
111) ILeft inverse:
By theo extension condition there exists

ae ﬂg"1 (X,x*) such that 'aoa = x,aia, = 80%g \
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then by definiton
(aga)x = 85%g»

so that aga is a left inverse for x.

In order to see the connection between the homotopy
groups of & Xan complex X and homotopy groups as clagsically
defined 1t 1s convenient to define N™(X,x*) directiy, instead
of inductively. We thereforé write down the explicit definition
of A(X,x*) using elements of X, and face and d.egener’acy
operators of X. | | '

,ﬂ_n (X,x7) = xlxeX q,’ax:. 8+q1* for
1 {n, and ’b 0" 01 & = 507'%"}.  Tuis derimition Ls easily
_ seen to coincide with that orliginally given., Now '

' .QF‘O(X,X ) = [x|xeXn, '-D..x = sg Ix* for 1 < n, and |
_-?,.Ox = 58 x *1. Therefore an element of _D?O (X, x* Y 1s
an n-simplex of X all of whose faces are at the bhase’ point
and an elemeént of My(X,x*) 15 an equiva_lence class of such

. SimpieXGSa . Two such 'si.rnp_'lexes x,x! are equivalent if there
exlsts zéX such that Q .z = x ;9 7= x', and’b = sox
'?f'or; 1 {n. . Futher, if‘ x,x' are two n-simplexes all o;f‘ whose
faces are at the base polnt, the_n [x-x'] 1s represented as
follows: | By the extension condition there exi_sts' z€X .-
guch that ‘Dnﬂz = x,?n_1z = x!', and Biz = sgx* for 1 < n.

[x+x7 18 represented by R

Definition 1.13: If X,Y¥ are semi-simplicial complexes, then

f 1 X —>Y 1s a geml-gimplicial map 1f




| l
~11- 2

1) f(Xq) CY,,

2)  £9 = ¥f, all 1, and

3) 5,f = fg; , all 1 .

We shall often denote leq by .fq .

Definitlon 1.1%:.  If X, Y.are Kan complexes .;a,nd f1:X—> X
is a semi—simpliéial map, then,_f‘or.every‘.q. 2 0. £ induces a
function o |
# * ' * :
fq : rrq(‘X,x )—> TTq(Y,f(X ‘) ) .

| o e N9k ¥y
by. £y x1= {qu], for xe ﬂO(X._;_X ).

Propogition 1.15:  The function f:q'% is a homomorphism for g > O.

"The proof 1s evident from the definition. -

Propogsition 1.16: Let A, B, C be Kan complexes

1) If £: A —>B, g :B —>C, are semi-simpliclal {
. maps , and a;*e,Ab, then |
(gf‘)i1L = g;lé!;:f‘ﬁ : ﬂq(X.,a*) —> Trq(“?},-gf(a,*) .
11) If 1 is the identity mep of A, then iﬁ 15 the
identity automorphism of TT(i,(A 8. ‘
Tt 18 convenlent to derlve some of the relations
botween the faces of & 3-simplex.  For the following five

propositions let X be a Kan complex, xeX.

Proposition 1.17: Let X3 be 3-gsimplex such that ‘ai‘ajx5 = 8g%, .

5

~all i, j. Tet the faces of x
Then [a] [c] = [bl. .

be a, b, c, sgx, in order,
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Proof: It-1s stralghtforward to check ‘that the

following four 3-simplexes satlsfy the extsnsion -

condition:
B R
: s - _ - .
x, hes faces Ppx, = 55X, J,x, = b,a%x1.— a, and is

then obtained by the extension condition. Set w =3 x,.
 X5 as giﬁen
Xy, = 80,
Therefore there exlsts a h-simplex z such ttrat
o 2 2
Then Jpnx,, = 5% O %, = W,0.%, = 0',735:{2 = 8 X.
Therefore, by.the rule for addition, [w] = [c]. But
-we have [a]llw]l = [bl; therefore [allc] = [b].

frdm.'x]
Propogitlon 1.18: Let X, be a 3-simplex such that
‘ - . s - L
313jX2 = 8%, all 1, J. Let the faces of X, be a,sox,c,u, in

order. -

Then [c][al = [d]. "

Proofl: The following four 3-simplexesg satisfy the

extensloh condition: T
Xy = soa
o

- x; has faces Jx, = a,dx, = Béx] = 50X,

-amiisomﬂhwdbyeﬁmmﬂmL Lﬂ;y:?QXT;

2

X, a3 glven

Therefore there exlsts & hk-gimplex 2 such that

Q7 =Xy, 1#3. Set Xy m‘35z
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= o= = - -
Then 30x5_— sox;a1X5 = ¥y, 32X3 = 0,35x3 = d. Therefore

[dllyl = [el. From x,

and 1.17 we have [y] = [a] " {?T
Therefore [d] = [c]lal. -

pogition 1.19: Lot x) be & 3-simplex such that Biajx4 =

6x,@11:L;L Let the faces of x), be a,b,c¢,d in order. Then
1[pllal "= [el. ,
g . ' four o
Proof: The followlng/3-gimplexes satlsfy the extension
coﬁdition: ' '
X has Faces 9 Xq = 32XO = SOX,E%XO = a, and ig
obtained by extension.
set v = BOX_O .
b's

]
obtalned by extension.

has facesaox1 = v{31x1 = sox,33xo= b, and is

set w :'32x1.
X, = §,C
Xy as glven. _ 7
Therefore there exists a Lk-slmplex z such that
0y m o= xy,143. Set Xy = BEZ."
"By 1.18, [v] = fal, and [w] = Ibllvl™! = [blial™’.

Xy hag faces 90X3 = sgx,31x5 = W,32X3 =,c,33x = d.

Therefore [c] = [dllw] = [dl(p]lal™’.

Setting d = s5x in 1.19, x, then has faces
a,b,c,sgx, in order, and the relation [c] = (blla]”!
holds. But 1.17 applies to the slimplex Xy, to give
the relation [c] = {a]u1[b1. Therefore, for
arbitrary [a] and [b], [blla]l”! = [aluj[b], or




Proposition
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'[a][b} [b]{a], and Tl' 1s therefore abelian.

Since the higher homotopy groups were defined

| by iteration, we have

Corollary 1.20: _‘rfn(X,x) is abelian for np 2.

We shall henceforth write T -additively for n ) 2.

1.21: - Let ;'zquH »4.2 2, be such that

(1) 9,z = a,am;z = b, Og‘_réqi

(2) aiz = s%x, 141, r+1

(3) Bj'c)kz = 83—13{; 911 ik

Then [a] = [bl. '

Proof:. If r ='q, the proposltion follows from

the definition of homotopy classes. Suppose r< q;
then the folloWing get of -q+1  (g+1) — simplexes
satisfles the extension condition: |

yi‘-=_ q’”x for 1 < r and 1>r+53

_ S0
Tps1 = SpgqP
Ypig = .
_ ‘yr+5 =-8,b - ' |
' Then there exigts ye Xq such that 'Biy_ = ¥i, 17,
¥p = o »y  has faces ’aiyr = a%x, i=|=r}+1,i-+2; |
¥ = 8 ar+2y = b. o

~If we 1terate this process ¢-r times we obtain a

(g+1)-simplex y' such that

815” = ngr »1 < q, qy = &, aq,HY' = Db, |
" Hence [a] = [b]. | '

o
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?ronositi'on 1.22: Tet X be & Kan complex xeXO.' ‘Let
T gk 00 022, e such that (1) 3, ;2 = 8,32 = b,z - ¢
~where 1< r g_q, (2) 'Biz = s%x, i#r-1,r,v+1.  (3) Bjakz = sgﬂx,
all j’k- o - l |
' Then Ib] = [c]lal = {allecl.

Proof': Hypothesis (3) ‘iiﬁplies that a,b,c represent

‘elements of T_(X,x); and since thls group is abelian,

- q o
[ella] = [allc]. . If r=q,[b]l = [cl[al 1p just the

| definitlon of the group operation. If r'{ q, then

the followlng set of g+1 (q+i)-simplexes satigfies . |

the‘ exte,nsion’ condition!

Vi = %Hx for 1< r and 1)>r+l -
V1 T py0f o _ | -

Yppp h88 faces 9y, ., = ng, Ari1,r42,3, 1y, =,
© and is obtained by extension. Tet w= 3 i1 Y pen.

yr+§ %

Tpgl = BpBe "
Then there exists yqu+2- such that' 3 1T =7, slfret.

Trep = Opgq¥ ,haslfaces IR sox 1<r+ 1 or

L4353, Q0 Tpey = Ws Opyp¥pyy = 0,3, +39pp T B
By the previous proposition, [w] = [c].

It 15 easy to see -that by lterating thls process
g-r-1 times we obtaln a (q+1)-simplex v' such that

’aiY' = ﬂox: 1<q- q- -EY = w!,

‘aqyi_'= b, 3 Hy! = W"’
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- and such that either [w'] = [a], [w"] [c], or
[w'] = [cl, [W"} = {a] )
| In either cage [b] [c][a] [_a,][c].
~ Definition 1.2_5: A semi-simplicial fiber gspace 1s a triple

(E, pB) where E,B are gem!-simplicial rpomplexea, and piE—> B

s & semi—_simpiiciai map," satlsfylng the followlng condition:
if x €Byyps Tgoe oo ’,YKH-’ TS AT By are_‘suchrt_hat
‘p’_(yi) =3, x for Ik, and ‘aiyj =aj__1' yi,' for 1< 3, 1,j4k,
then there exists yeE

.the function Induced by ai ; EqJr1 > Eq, and 8y 0 Fq'--*-> F‘qu1
. to be the function induced by sy B Eq+1 Now F 13-

8 Semi simplicia.l complex called the fibre over b.

Propogition 1.24: F 18 a Kan complex.

'mg_;:_ Suppose xo, "Xk 1,Jc.'kﬂ,,.,:»cqﬂeFq
‘&I;G such that Xg = 'c)j 1}:1 tor 1< 3,4, Hk.
Then p(x‘i) = sob, and since (E,p,B) 13 & fibre
?pace,' there exists xe Eqﬁ -such that p{x)} =
88”1},. andr Six = x; for i=!=1.' Since p(x) =
é'g*lbf XquH, which proves the proposition.

© Now let (%,p,B) be & semi-simplicial flbre

- space In which ¥ and B are Kaﬁ complexes, and
let F  Dbe the fibre over & polnt b of B. Ist

a be a point of F, which we assume to be non-empty.

. g+ Such that p(y) = x, and O,y = i
for igk. ' '
 Let b ‘be a polnt of B, 'and let Fq = [x|x AP p(x) =
égb fi. Iet F = UF_ , and defines 3 W ?Fq t0 be




_I T..'

For q 2 we define a homomorphism | —
F ey — Mo @®a)

| e.s fol?_.owe. - Recall 'the.t an element otge q(JB,,b)

1s represented by xe Bq' such that 3; = s§™'p ror

all i . Bince p 1s a fibre mep, there exists

such that o{y) = x and —aiy"r—* sgfié for 1> 0.

, and represents an

yeEq

Then ‘aoy 13 contained in Fq .

element of‘ ﬂ' (F,a). Suppose x'qu also represents’
. Then there exists 'z-quH such that A

aiz =-sgb, 1<q, aqz = K, 3q+1z =._x'  Let .')T-’eEfq' '

be such that; p(y) = x' and 3,y = sd 'a for 15 0.

Since - p 1= a Tibre map, there exists WGEq such |
tha.t plw) = z, qw = soa, 0<1<q, 3w~— ,Bqﬂw:ryl. (_-

Now p('aow) qb t anaaiaow- 90 fqW = sga, ;L<_q-1_,
"Sq_IBOW = /‘)OY’ ‘aanW = Jgy!. Therefore [3gy1 = [94y71
in Tl" (F a). Since in particulev we may take x' = x,
the element ['aoy] ig independent of both the cholce of
‘ '_x representing [x] and the cHolce of vy We set

: 8’”& y] ‘ ‘

We now show that ‘a"* is 8 hOIIlOTﬂOl"phlsm. Let

A pe "{Tq(B b) have representativee X, :xr' respectively.

' _Let zZe Bq+1 ha._ve faces
‘aiz = egb, 1<q-1, ngpjz = x!, 8q;r1z = X,
Then 'qu repregents ol+f3 . Lot ve Eq+1 be guch

- that p(v)=z|,"c)iv=_sga,0<i<q—1, and
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gia Vo= 84 Ta for j = q—_t,-q,q+l, and 1 >0,

Then 'aov € Fq ’ a.nd
| 31_’?)0" = 3‘8—18._ fc_ir 1<{qg-2, 3 -5 OV 309(1 Vs
9q-1907 = 3037, 3,37 =3, v

Since J 79 (Vo 3 3 g a 3 11V Tepresent

3““[3 3**(0“[3 ), S#d respectively, from their
rela.tionship ag f&ces of BOV it follows that o

(Ol-lrﬂ) =t ¥ e
Theorem 1 253 Let (E,p,B) be a seml-glmplicial Fibre gpace 1n

which E and B are Kan complefes Let; b€B,, F the flhre
’:'over b, aéFO ( we assume F non-empty). ILet 1. : F—>8
~be the incluslon m&p. Then the following sequence 1s exact:

DMy Ea) B (e B MyB.0) o (ma) — .

Proof:  Ilet x. ‘repregsents oL&TT‘ (F,a). Then pix = qb

and consequently p# i = 0, If x represents

d\eTr (E,a}, then‘a X = sgﬂa represents ‘B#p A and
3# 4* = 0. Again, let ¥ rept’esent de T&(B b).

Lot y€E, be such that = g ]a., 0<41, and p(y) =

Then 9,y represents L*S*o( j but as an element or
1(E a), by proposition 1.21, r&oy] = [E}iy] =

rsg"al =0, anai*d - o,

If x represents o(s'(E(F,a) and 1#(0{) =
g1 such that Ay = sga', 1<q+1,
and Bqﬂy = X. Therefore 3 p(y) gb, 1<q+1,

then there exists yeE




__—19_ |

and 3 [p(y)] = .

Suppose that x represents gLeTrq(_E,B.) guch
that p“)dtc(_= 0 . Then we may assume that x_é'Fq,
and thus 1¥[x] =o. |
: Finally sﬁppose .,thaft X represgnts .o(eTTq(P;,‘b)

auch that 'a,’“a( = O " Then there exlsts yeEq such’

“that ply) = x,9¥ = g a, 0 <1, and [3oy] =

‘isgﬂa] in ‘ITq_1 (F,a). 'I'herefore, since P is a

. fibre wep, there exists yeEq such that p(y') =

and d,y' = sg"‘a, all 1. Then p'ly'l =K.
Thié_'oomplétefs'the proof. of t'he' the'b'rem.
' Pr'onosition 1. 26 Let ( ,p,B) be a f‘ibr'e spa.ce, pitE —> B

be onto, xqu, and let yio...,yi eEq 1,0( 10<...<i {a,

bhe SuCh that ’31 yi_h ’31_1Y1 fOI’ g <t, {io,--.;i ] + !O’oo-,Q!, {

and p(yis) 31 X; then there exlgts yeEfq such that ply) = %,
&Ildgiy—*yi,s-v—o,..-,l".‘

_Ezggi}l If g= I, then the proposition follows
1mmed1ately from the definition of fibre gpace.
Consequently guppose that the proposition 1s true
for q < n, and that q = n+1. = If the set
!io,...,iri has q.lelements, the result follows _
1mmediately from the'dafinition of fibre space.

In this case f = q~i. Suppose then that the

propositlon 18 true for r >m,m < q-1, and
that r =m-1>0. TLet te{0:,..,q} be the least
integer such that t%iio, .. "ir" Dofine

2
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I =1, for 1. { t.Iet s be the largest integer s

auch that 1,{ t. Define

is -1
Vi ‘such th&t

—

aszt gt Tyj 5< g ,-a TYt -3tYJ S>S'+2

The get {JO,---’Jsl _:jsl+2:"'-"3r+1! has at most

(g-1) 'elemén_ts. Therefore, using' the inductive

hypothegis, we may choose Vg = yj » such thatb
) ' ' g+ -

¥ o ' = 1

stsft_,_ 3t~1_733 5 < s ,.Bjs_iyt Qtyjs s_}_s +:2,

. am p(y)'=’atx. Now the _set .

oo .f,,jmi | has m elements; therefore by
ihductive hypothesis there exists 'yeEq guch that
p(Y)=X, &ndaj Y= ¥y 8= 0peen, T Then

p(y) = %, 8ndd y= T3 1=0,...,7

Proposition 1.27: If v(E,p,B) is a fibre gpacs, and p 1§

onto, then B 13 & Kan cbmplex if and only 1f E 1is a Kan

complex .

. '.-XO,...,Xk 1,Xk+1,.. ,Xq
thatd,x ;= aj e i(j, i jk. Choose YoeBy
- guch that p(yo) = Xgs choose yfeEq__1 guch that

Pr-oof: Let E be a Kan complex; é.nd let

bhe elements of Bq -1 such

1
manner unbtll MAYER "yk;i.’ykﬂ 3eresg have bsen

| chosen such that 'aiyj = ‘aj_'lyi,i< J, 1,i4+ k, and
plyg) =% 1 + k, This procedure ls possible

p(y,) = x, and *aoyi, = BgVp, and continue in this

by the preceding propositlon., Now choose yeEq

‘fof's' +1<=8 g_ r’-}l = N, We now wish to define

%
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such that 3y = y; for 1 +k, and let x = p(y).
~ Then 9yx = x; . for. 4 +k, and B s a'Ka;n complex
Now let B be a Kan complex, and let

R/ TERREY RN [T yq be elements of Eq -such

~that aiyj = aj 193 2 i< i, 1,54k Let £y = p(yi);

Tand let X € Bq be an element such that Qix = Xy
for 14k. Since p 1is & fibre map, there exists
.yeEq guch that p(y) = x and Biy = ¥y for 1k.

Therefore B ,is' a Kan cumplex.

ofinition 1.28: Let X be a seml-simplicial complex.

T X, x‘e Xq jand n 13 a8 non—:riegative integer then x & x!

$71f and only if '81 Qi x=3 ...9; x' for every iterated
: L 1p '

| face operator 31 . .31 such that n+1=2q .

Lemma, 1'._29: IF x,x',x”qu , then

1) A is an equivalence relation

2) If xXx, then 31x~3 and -
n g}

3) Iff x~x', then six'vsix".

Definition 1 150' Let X be & semi-simplicial complex. :

Define s semi*simp’licial complex X(n) ag followg:

1) An element of Xén) 1s an equivalence class of

qjsimplexes of X;'%‘x'e}{q belng equiv&lent if

xAx,
x(n)__~ x(n) ' ¥ g
2) 9 X a1 > er is induced by I, : Ky > K g B0d
| ,x(n)___ 5 »(n) ‘ N
5)_ 8y Xq > Xq+1 is induged by 8y ¢ }gl >,._Xq~1
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Let X{®) — %, and 1et pp ot X W 3 pe the matural

map-for n»k, where o >k, for every k. When there is

_ no danger of _c_onfusion, pllg will be sbbreviated by p.

Theorem 1.31: If X 15 a Kan complex, then (X(n) ; X(k))

is a flbre space f‘or n 2 ks and X(n) is a Kan complex

Proof: We will first prove tha.t (X(OO) ?{0 (k).) ',

- 1s a flbre sp&ce Suppose that x ex(?é, and
'that yo, SRS ’ykﬂ PP leq -4 @are such that
giyj = aj‘“'iyi" i, J4K, 1 < 3_: and p(yi) = giX.

Now 1f q <k, then x{) - X, and -y, = x.
Therefore if we chaose ¥ = x, then yqu,Biy Yy
and p(y) X. Assume ther'efore that g > k.

- Since X ig a XKan complex there exlsts yeXy

such that Qiy— vy for i k. Purther any face

of dlmension <n ofy is alqo a face of soue

Yy . Therefore pl(y) = x, and p 18 a fibre map.

Now X(®) =% 354 Kan complex, and pk 18 &

fibre map. Therefore, X(k) ls & Kan complex.

The fact that (X(n) rll Xy 45 8 ribre space

f‘ollows similavly, and the details will be loft to

the reader. | '
_The fibre spaces (X,p,X(n)) are closely

related to the construction ‘(f]i_) of Ca_rtan and

Serre [2], |

Notation: " If X 4s a Kan complex, xeX,, let

E_(X,x) denotes the fibre of p : X — x{n=1),




The complex E (X x) 1s the n-th Eilenberg
subcomplex of X baged at- x.031.

Theorem 1.32. Let X be a Kan complex, xeX,, and

En+1(X,X)A*‘““> X +the hatural inclusion map. Then

?). P '“Q(X x) >-TT(X (M) %) for q < n,

2) Trq(x(n),x) =0 f'or' q >,
 5) EJ%H#XJLX)_—>HWXX) for q > n.
13 TT(E (X,x), x) =0 for ¢ < n.

n+1

'Proof; Notice that E (X’x) has & single element

T+ 1
for g {n. This implies(k), and (&) implies (1)

~since (X,p,X™)Y 15 & fibre space with fibre \

n&1(X x). |

Let ¥y represent dAaT%ﬂX(n),x); thenfaiy - s%_Tx for

- all 1., Now y 1s an eqqivalence clegs of simplexes zexq,

and the above condition on the faces of y 1implies that all

faces of dimension . r S n of =z are sgx. Therefore sgx is

in the class y, and A= 0, This proves (2), which-implies (33, .

using the exact séquence of the fibre space.

Definition 1.55: If X 1is & Kan complex, let 3% = (x(+1) x(n)).
The sequence ¥ = ()L;}L,.. ;X? ..) 1s defined to be the natural
Postnikov gystem of X. [4]. ‘

Theorem 1.3k. If X 1is a Kan complex, ¥ 1s the natural Postnikov

gystem of X, "x 15 a part of X, and if F(n+1) is the flbre over (




“gh_

in the fibre space ]ﬁp, then
(FH*T),X) = for q % n+1

(Ff‘“” ,X) = (X,x).

The proof which folloWs easlily from the previous theorems,

111 be omltted.

éi@ﬁinition 1.35: If X 1is a comnected Kan complex,. n is

< 'a positive integer, _‘n‘q‘(x,x) =0 for q+mn, and T (X,x)=T;

‘then X will be cslled an Eilenberg-MacLane complex of type
Thus what we have shown 1s that, in some sense, any

Ksn complex X can be constructed from Ellenberg-Maclene complexes,

and that this 1s dons by means of the nabural Postnlkov system
of X, o |
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Chapter 1. Appendix A,

In Chapter 1, no general definition was_givén of

homot opy between‘maps_of'_qx_le gemi-simplicigl 'complex into
another. The purpose of this appendix 1s to rectify that
situation, and further to prbvé' after the mamer of Eilenberg-
Zilbe:ré ([11), that every Kan complex 1s equivalent to a

minimal éubcomplex .

Definition: If X and Y ary seml-gimplicial complexes,

the Cartesisan Droduct of X and Y 1s the seml-simpliclal

complex X x Y glven by = R
R 1)'_(XXY) { (a b) | ae q,be Yqi,

2) if (a,b) e'(XX'Y)Q+_1, then 3, (a,b) = (J8,34b)
for -1 = 0,...,q+1, and |
3) if _(a-,'b_) 6'(XXY)('1‘,‘ then Vsi(a,b.? = (sia,sib)

Nota'tion' and Convéntioﬁ: . et »A?q denote the semi-simplicial

;complex defined by the following

1) an n~simplex 1s an, (n-H )-tuple (8‘0" ..,an) of integers
| &i such that. 0&30 <---<a- <8‘1+}<“"--<- a'ng_ q,’

2) ’ai (a.o,...,a ) = (a.o,.. ,ai_vaiﬂ,...,a ), and
) 3) Si(aO’ .-,a ) (ao,.--,ai 1,&1,&1,341_'-1,.- ,E )

The semiusimplicial complex A ig .the__standard q—sim"olex,

and itgelf has a canonical ele_ment' of dimension ¢, namely




7_1A\-2

(0, ;;.;q) If X 1ig ény semi~simblicia1 complex, and (

xexq, there is a unique semi-—simplicial map f A —> X
guch that f( (0 ...,q) ) = x, The semi-51mp1icia1 complex

| LS will also be denoted byi I.

Definition: If X Y are seonit- simplicial complexes,

fos f,+ X =—> Y are homotopilc 1f there exists F : XXI —> ¢
such that for any simplex € of X, -

.1_) F(ch(O,_...,O) ) = fola®), and

2) 'F(trX_(i",..;.,n)_) = f(e)
The map F Vis-aihomoi.:onv from fgy to f00 If A i@
'subcomplex of X, and fylA= f |A, then 'fo 1s sald to be

‘homotobic to f relative to A if ther-e oxists & homotopy

F  from f‘o to. £y sueh that F(ext) = fy(¢) for ce A.l
The subcomplex A is a. def‘ormation retract of X, if the
identity map of' X—>X is homotoplc relative to. A -to a
map of - X iInto A.

- .'Probosition': 13 If X and Y ar'e semi-simplicial com-

plexes, then f‘o, f‘ X -—~—~> Y -arg homotpic if and only if
there exist functions ky Xq ———-> Y Q1 defined for
1=20,...,4, and all 4. such that '
| 1)30150 = f1:

Ej Ye1¥q = Los |

5) ) kg =kj_191 EREh

vl*) 3j+1 Jvt 7 g;]+1kj .

6)‘sikj = kjﬂsi f‘or_ 1< i, and
7) kg = kysg4  for .1 > 1
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If A 1s a subcomplex of X, and
~f0 1s homotopic to f

—‘ki(c-) fo(si(c') ) for te A,

. Proof; Suppose that F

- ting f4 and f1.

- F(siw X 84
-G e Xﬁ, 1= 0,.,:;q,' The
the ki g sabisfy relation

routins matter.

30

folA f IA then

relative to A 1f and only if

1s & homotopy connect-

Dofine k (cr) =
'...Si+181_1...80(0,1)-) for
verification that

1) = 7) 18 now a

Suppoge that there exlst functions ki

satisfying

1) ~7).
F(Gdcaq Ly '51+151—1"'80(0 1) )
‘for e X

@ =
and F(rx 8d(1) )

_1)~; 7), one sees readlly

gimplicisl map, and hence

Notation and Convention:

7\i= V!Oéo--,q‘—_—> 10,--:,q+1 ; be

1=0,...,q0-1, Flox 8§
= f1(a~).

For 1

Define .

31+1i (T)
gtoyy = fo(v')
Using relatlons
that F is a semi-

8 homotpy from f, to f,.

_

0,..,;q+1, let

the function defined by

A =g 1<1, and
| A?(j) =3 ER W
Similarly let y o”. ,q+1 z—-> ,...,q]- be definsd by
7 (J) =] J < 1, and
7 M) = g §Y 4 fori=0,...,d
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Further denote by al :Aq — llq+1 the semi- simplicial
map defined by the function hi, and by )? 1~—> A'q

.the map defined by'vi

, We now wigh to tfanslate these definitions into a

slightly different framework. In ordinary topology, 1f A
and B are spaces, & map of A into B 1s a point in the
function-gspace of m&ps of A into B, and this functlon-space
18 usgually denoted by BA. Following an ldea of A. Heller,

we shall now define the_éemi-simplicial analogue of a function-

space.

'Definition If ‘X and Y are semi simplicial complexes, then

YX

18 the semi—simplicial complex defined as follows:
1) _(Y ) ig the set of semi-gimplicial maps
fiXx a, *—~> Y, and

2) if £ & XxBg —> ¥, then AL P XXB L —> Y
1a defined by - o
Ur= £t xal), where 1 : X —> X 1is the 1dentity map,

_ o | N .
and s,f : XX Aqﬂ —> Y 1is defined.by_ 8= (1 xy).

Now, as ih.the geometric caae,'a homotopﬁ batween

between fo,f, : X —> Y 1s just a path in YXwhich starbs

at the polnt If‘o and ends at the pgint f1. Congequently,
for homotopy to be an equlvalence relation it would suffice
for YX to be a Kan complex. (cf. definition.of Ty in

Chapter 1).  Thils 1s indeed the case éf Y i¢ a Kan com-

plex; The next few pages wlll therefore be devoted to. the

proof of this theorem

u-IIIiiIIl--i--ﬁ-—---—-—-kg— . : "-.-:- : | .

3l
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‘Definition: A (p,g) "shuffie" 1is a partition (m527)

of the ‘set {(L;.;,p+q—§i of integers into two disjoint
sets such that ‘ﬂ%j<;.;{ <fdp and 'Vy<...<'Vq. The
(p,q) ‘shuffle ig determi_ned by mor .

The reason for introducing (p,q)-shuffles is
the following' If T is a nonrdegenerate p-simplex‘of K,A
let £ denote the smallest subcomplex of X -containing = .
Then the non——degenerate {p+q)~gimplexes of ’r:xA are of
the form

g ;.._s X 8, «.e8, (0,...,q)
ZHRR IR S L A

where ()u,y) is a..(p,q_)jshuffla_; and the set of such simplex

1s thus in s natq’ral 1-1 correépondence with the get of
(-p,q_)-shtif‘fles -
o Lot ie {0 ,,..,p+qi The (p q) shuf'fle (/u,v) is
- of type I relative to 1 if either |
11 </"1 , or
B) 1,116 {—yl,...',yq_l,orrr
3) - p+q, -1 = Vg

It 1is of type II relative to i ir either
' 1) 1 <1/1 , or '
2) i,i-1e {/41,...,/\41) I, or
- 3) 1= peq, 1-1 = My
Irf th.e" (p,(i)- shuf‘fie (/»(,v') is not Aof"ty’pé I or IT relative
to 1, then 1t 1s sald to be of type III relative to 1.




In this case max /-«1 » Y l( 1 ( p+q and either

1) ié!f'i,../u
:2) 16{

pl and i~1e'§‘v1,7.f,1/q],' on

1,...{Vq1.and i-—iélf*],.'..,ftpi

Now we wish to define a new shuffle (M%)
gagoclated wi’ch (#s ) and i -
If {m,v) 18 of type I relatlve to i, then (}“,p) 1s a
(p,g-1) shuffile. Let k be the integer such that. v =1
in case 1 or cagse 2, and let k = g in case 3, Letl- "7:/‘}. = yj'
for 3 <k, pj vj+1 -1 for k< J<a-1 (m¥) 18 the

- corresponding (p,q 1) shuffle. There 1s an lnteger r ,

called the index of 1 1in (M), such that Fj = A
for 'j {r, and /':j =/“j -1 for <j£p.

If (#,¥) 1s of type II relatlve to’ i,_thon' (F_,?/") 1s a
(p-1,q) shuffle. Let Xk be the integer such that Ko = 1
in case T or case 2 and let k= p 1n case 3. lLet
/-'F‘:J‘f”;x for § < k; My= Myt for k< J<pm1; (p9)
_is the corresponding (p-1,q) shuffle. There ls an integer
r, called the index of 1 in (Mm, ») such that ;j = v
r j<m, &m'd‘;jx,i/jﬂ for r<j<q. A

Ir (/«L,V) s of type III relative to 1, then in
11 =v o Let /"‘,j“,/“j for Jfr, p = 1-1,
and let (3 ;%) be the corroéponding (p,q) shuffle. In -

cagse 1, 1 _,M

cage 1,i-1 =/VL1,:L=1?. Tet f:j =M for J¢r, ﬁi-ﬁi,
and let (/u V) be the corresponding (p,q) shuffle.

Now the associated shuffile (/M,‘V) of (,A,?) relative

33
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+to 1 11 def‘ined for all (/u.,v) and 1. However, we want

a gecond assoclated shuffle (j4,%) relative to 1i; 1t is to
be a (p+1,q) shuffle, defined as follows. .If r 1s the 3
' 1&rgest 1nteger such that M <“L f‘or j<{r, then l"‘j /“3
for j“<‘r_'_ /"r = ., and /”3 /uJ : 1 f‘or _J?r. The
gecond index of 1 1in (/M,‘V) ig the m.unber of v, such that

J
Loy

Definition: let X and Y be gseml-gimpliclal complexes,

cand F @ XX Aq —> Y agonl simplicial map. If ) (mov) 1s
a (p,q) _shuffle, define '

P Xp--%_ﬂpm by

(/&,v)a q.'.,;s?ﬁ ax.s . /‘(1(0,... »Q) .

Further define
1 _
Pl : X S Y
_ .‘F(/u-’,fy' ) | XP o ,> p+a-1
1 o o o
F' ‘s & X S [P
by (i 218" ‘qu ' 1/'1“ /41
where (/Lv',‘q/') i_s a {p,qa~1) shuf‘fle, and” 1= 0;:..,q."

(O,.--,i i 1+I,--~)Q)

Propogition 2: Ir ¥ X % Bq —> ¥ is a semi simplicial
map, then =~ = | - 7  ' | |

) ATy P Qe 18 (o)
1s é, (p,q) sht:_tf'fle of type IT relative to i, r is the indox
of 1 1in (/A;Vj ,. and ()T, ) is the.‘ _associatéd gshuffle of
(M, 9) relative to 1, | o |

2) ¥ Flrp) =3 i)

is a (p,q) shuffle of type III relative to 1, and

e
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'(fA, V) 15 the associated shuffle of (/%, ?) relative to i,

_ - _ is t
3) ) F(#,?) 8 the second, associated

'i (}“"J

shuf‘fle of (/u,r) relafive to i | and r 1s the second .

index of i in (/&,v’), and
u) A T ‘ 1~r

T R i) o

shuffle of type I relative to i, (#,1f) 1s the assoclabed

1f (M, 7) 15 8 (p,a)

(p,q 1) shuffle, and 1 1s the index of 1 in (/A,V)

Further, a 9et {I‘( } of funotions

o Ma?) |
B : —> Y indexed on the shuf‘f‘les for
(oo v) Xy T2 Yhug (p,a)

fixed ¢, and satisfying conditioﬁs 1)~3) above determine

aump F :X Xl} —> Y.

The pr-oof 1g entirely similsr to the proof of the |

first proposition of this appendix » but more tedious It
will be omitted

Theorem 3 If X is a geml-glmpllcial complex,'-an{i Y
is a Kan complex, then ¥* 15 & Kan complex.

o ‘ _ o ' X ﬁ
‘be such ‘that ‘aij--g F1,1<j,1,j+k‘.

Ry |
the (p,q-~1) shuffles determined by F for

‘be the functions indexed on

14k, . We wish to produtce a set of functions
F , indexed on the (p,q) shuffles, and
(f":'V)
satisfylng relation 1)-1;). Order the shufflg
as follows: an (r,q) shuffle precedes a (p,q)

ghuffle if r { p. A (p,q) shuffle
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_ (/u-, v) precedes a (p,d) shuffile (;f, ;;}*) ir

My Mi for 1 ( j, and M (/uj The
first shuffle 1s a (0,q) shuffle, and thig
unique. Therefore » 1f a ¢ XO we must find

en element beY  such that b —_-_TF%O,“_,'q_] o
for 1 4 k; and we can do so gince Y is a

Kan complex, Define F(O q)a = b
- , LI I ,

Suppose now that F(/“ v) 13 defined for
>

(/A,V)( (p, 3.
Cage 1: (ﬁ*, ¥*) 1s the first (p,q) shuffle;.

1. Ay =i-1 for 1 =1, cesD, F5=14p-1. Thig
Shuffle g of type III with regpect to p, and (m, V)

the associated (p,q) ghuffle relative to P, 18 given by
/“i =1-1 "for 1 <{p, /“p D, 1/1 p-1, vi— L+p-1 for
1>, Therefore (}A,}’.) precedes (m,»). Consequent-
1y if aéX_p, GPF(/**, 58 1s not specified. ~ Therefore
1If a8 1is non»-_degenerate we may use the extension condition
to defins F(ﬂ*’v*)a ; while if a .' Z‘ILS degenerate we may

condltion 3) of the propogition tb make the definition.
Cage 2: VFor gome integer _ i, -and for some

T e H,.‘.._,p faei Tyenesd l, we have /‘(; =-1-1, and

V*s= 1. Now (fi*, %) precedes (F, _;), the asgociated

(p,q) shuffile rolative to 1, and UF (4, 4%y 19 not
speclifled. ' The proof for this case 1ig then compLeted asg

in case 1.7
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| Case 3¢ Mf =1+q-1, v =1-1,k<q. In * (-
this casejwe_' must ha{re 'BkF(/“*’ *) = Fl({/—&, ?) where |
(M,v) 1s assoclated with (/“*_, +*) relative to k. But
o 1g undefined, so that F % *. 1is free, and
- -'(/‘-,‘V) k()-" sV ) ’
we may proceed as before,

If k¥ < g, cases 1,2,3 are exhaustive. Therefors

1t remains to pr'ove‘ rthe extenslon conditlion in case k= q.
To do thig' we reorder the F(/“:V) 's by simply reversing
the ordlering Qf' the (p,q)-shuffles for each fixed p.

7; - Now in the inductive step, /,a{ =1+q-1, 12; = 1-1
1s the first case to be considered, and this may be carried
thrdugh. The réversé of’ thé -pr'eviou_s. Vcra,sé 2) is now‘cvase 2)',
i,e. for some. 1,r,s, ré {1,...,p}, sé M,c0.,9}
/\4”;= i, ?s* = -1-1,- and we proceed as 1n.case 2. Thevlast.
~case 1y now ;4*{ = 1'-1. 5 wf{ = 1+ p-1, -and by the relations

we gee that "3 2*) 1s uns_pe_cified ;, and the proof

F
prg T (p
may be completed.
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Theorem 4: ~ If X 1is a seml simplicial complex, A 1s

a .sub'complex of‘- X, and Y 1s a Kan c‘:omplex , then the map
p : Y% -———} N glven by p(f) = flAx A where frXx Aq-*—"> Y,
1s a fibre map. ‘ ' '

Proof:  The probf of this . theorem 1s éssentially'
i} the same as the proof of the ppeceding theor-em.

Corolf_Lam[ 5: (Homotopy Extension Theorem)‘ Iet (X,A) be a
geml-simplicial pair, Y a Kan complex., Iet f : X — ¥,
> Y be a homotopy such that

cend let F t Ax I
Flrx (00,.._.01,.) = f(T) for zeA,, all r. Then there
-exlsts a homotopy F:iXx1I —> Y which agrees with F (')n-
Ax I and suc__;,h that F(0 x '(OO"""OP) = (@) for oe Xf,' .
Now f’ollowing Eilenberg and Zilber (-'[1 1} we shall -
show the ‘ex.i“stenoe‘ of a minimal subcomplex of any Kan complex
which 1s equivalen‘t; to that Kan comple‘sc up to homotop'y:. We

first give gome preliminary definitions and lemmas.

Definition: If X 1s 8, semi simplicial complex, then
X, Ve Xq are combat_ible_a- 1f yx = 'aiy for £ = 0,...,q9. = Now
x defines a umique map X : Aq“;“>. X, ‘determlned by x(0,...,q)

= x, and similarly for y.  The simplexes x and y are

said to be homotople i X ‘and y are homotoplc rel Ay

Lemma, 6: If X 18 a Kan complex, then X 1is minimal if and
only if for each compatible palr x,anq' such that x is

homotoplic to. y, we have X = y.
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giﬂki(o,...,-q) =X for all 1. Hence x =

Akel0s e es@) = kp(0,0 eyl =2,1,000,0) = E(5y(0,...,1-2,1,...,q) )
='8031ffix = 85X | for 1> 1.

- Proof': Suppose first that X 1s minimal, and

generating & homotopy from X to Y rel Aq.

a3 does SoX . Since X is minimal, we have therefore

'-?}1k1(Q)."j,_Q) = .&11.(0(0;;-"‘:(1) ==‘B.IEJOX = X

g+17q

The conversge is proved in a similar manner.

X,7 € Xq with x howmotoplc to y.  Let ky (Aq)r-——-)
: Xr+3 be functions satisfying the conditions of Proposition 1
Therefors kO(O,. ++,9) has the same faces, other than the first,

By an inductlve argument of this nature it is ‘easy to show that
-9 k(o,.oo,q)zyn

Lenﬁa 7 | I'f“;}( ‘1s a‘semi—'simplicial éomplex, x,ye_xq, .and
X and y are compatible and degenerate, then X = .y.
Proof: ,Le't X = S.%, ¥ - snz’. ‘Then either |
m = n, in which case me =z and amy = g :meiies 7 = z',
or m4 n. In this latter cage suppose m<{n. Now
Z =z = I X = ‘Gm_y =38 2! = 8y-1 dp%'s Therefors
X= sys, 2,2 = .83 2, and ¥, x = g 3 z'. Since
! =‘3ny = 'an': ém’&mZ', "z"= ‘-sm’c»\mz't . Then x =
snsmgmz' = g§.' =7, o
Now let X be a Kan complex, and define a new
‘Seim-si'mplicia,l co’mﬁlex M as follows. : For each component

%
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of X choose g repregentative point. These ane to be the
elements of MO-' Suppose now that M 18 13 defined with
' face operators for ( n, so that Mr C X, and the face
operators agree. Consider the homofopy ciaséés-of (n}1)~
simplexes of X, each simplex h&ving all its faces in M Ws
choogse one representative from each such clags, always choosing
8 degenenate representative 1f suoh exists, these ars to be
' the elements of M | Bi and ' i are induced by the corres-
ponding operators in. X. Thus we obtaln by induction.a semi- ,
gimpliclal complex MCJX which 13 clearly minimal we now
define by induction.a set of functlons |

- 'k-i X > X PR 0,:..,m
for sach diménsion n =0,1,. «+, satlsfying the relatilons of

~ propoaltion 1, and such that Oko(x) = X, 'c) (x)eM for

n+1 n
xeX " and k:i(x) = si(x) if XéM
1) Ie erXO, kQ(x) is to be a path such thatrgbko - .
X, 9 kO(X)eBJ | o |
Further, if xeMO, we take ko(x} = so(x)
2) Suppose that. the functlona ki have been. defined for
X, Tor n<{r, satisfylng the above conditions. Lst
X€X 40 If x 18 degsnerate, then ko(x) 1g de-
fined by the-relations, while if xeaMr+1 ws get
ko(x) =.so(x).‘ Otherwise WG.must find an element
= ko(x) guch that ‘éoy = x and‘Eiy = ko(31~1x)
for 1>1. We may chooge such‘a“ vy using the ex-

tennibn,condition;
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3} Suppose further that ki : Xr 1 P2
defined for 1< j. Then for xe€X, . we must find
y = k.(x) guch that '

aiy 4X for i<;j,?}k (x)= 3 J,]‘l

1 j(X) te= kj'éi_1x for i>,]+1o. If x 1is dogen-

(x), and
erate, define kj(x) using the relations. If xe M, .5
get kj(x) = sj_(x). Otherwlise apply the extension
condition and chooss ch(x) arbibrarily, provided .

JEr+t. It j = D ; we muat have the further condition

RPN - re (x)eM, ..  First choose y =k, , (x) by the
‘extension :Qondition to satisfy all the above conditions
except that on CI £ . '

Then _ |
o = l‘.
13 paebrst (K) = FpPdpi ey (x) = arﬂgmqkr(x)

. 3r+13r+2k (x) = Ju kK Dy X) €M

Thus "é soF haq all 1ty faces in Mq, ‘and there ls therelors a

unique z¢€ MI'-H whi ch is comwatible with and homotoplc to

'af s Then by an ‘obvious modification of the homotopy exRlLen-
sion theorem, -t_her’*e 'exists y’e X such that 94y = ‘aLy , 1lran,

and ‘DI@QY,‘ = g7, Wn, finally defino k. (x)=1y'., Thig com-

Biak )|

]

- pletes the induction.

Theorem 8: If X is a Kan complex,” then there exlsts a minimal
aubeomplax M of X which 18 a deformatlon retract of X.

Further, 1f M :Ls another such subcomplex, then M 1is igomorphic
:

to M'.

4

—> X has been .
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Proof: The exlstence of M has already been proved, so

suppose that M' 1s another such complex

et »*: X —>M, v' : X ;——-—> M' be deformatlon retractions.
Then We have maps ‘ |

: 1
M—tsx —Zlsw | amg

it r
M_ - > X > M

whe:re_ 1 and 1' are inclusions.

The map 1or is homotople to the identity map of X, and hence
‘r'olorolar'ol' = 1. . One verifies readily that the iden{;ity
- 1s the only map of a _minimai complex into 1tself which 1s homo-
topic to thé -igientity, and hence r'oloroi! = 1,

Similarly .rn':)i' or’-b 1= 1,  and hence ‘r'ol 1s an isomorphism.

This completes the proof.

Reference

[11 8. Eilenberg' and J. A, Zilber, 'Semi‘éiniplicial complexeg
and singular homology, Amnals of Math. 51 (1950), :
pp. k99-513.. T Coh
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A Annéndix 1 B, Defi;nition of Homo't'onv Groups
' ' bv MB.‘DD.’LIIP{S of Spheres

W Barcus

et A q denote the semi—-simpiicial complex on
“the standard g-slmplex; sn r-simplex of A 18 a sequence
(10,;;.,1 ) with 0 < 1, <...g 1, < 9 the 1; being

_ ‘the vertices of the simplex. We shall slso denote the

complex A, by I. Similarly, Tet Aq denote the

1
usual seml~simpliclal complex on the boundary of “the standard
g-simplex, so that A 1s a gubcomplex of A Aqﬂ is

the analogue of a ¢- sphere R f‘or semi—simplici&l theory. Let

T, denote the glmplex (0,...,1-1 i+1,...,q+1) of A

q+1
and let aiaqﬂ ‘denote the subcomplex of A RIE congigting
of simplsxes which do not comtain the vertex 1, We may
embed ﬁq inA as aqﬂ A

Iet X be & Kan complex, x*eXO It 1s clear
that Wq(X,x*_) , the gbth homotopy group of . X baged at x*,
a8 previously defined, may be considered ag the set of
equivalence clasées of'mapST h:( L& ) —_ (X X*)
two maps h, k being equivalent ("simplicially homotopic™)

1f bhere exists g map F: & ————) X such that

q-+1
1 .
F3;ay) = 'sg x*, all 1,]; F(o,) = sgx*, 144, grl;

F(Tg)=h(0,...,q) F(0y,q) = k(0,...,q).

Fof any simplex ¥eX, let ‘( denote the smallest subcomplex
of X contalning ¥ .

- 43
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et T q(X,J‘!*_) denote the set whose elements

are the homotopy st:lzsa.ﬂsnaé's1

I (Aq-n {q+1)) —> (X X*), (q+1) being the O-gimplex

rel(qg+1 ) of maps

consisting of Just the vertex q+1 .

Lomma 1B.1:  Any map g:( A q+1,(q+1))—~*—> (X,x*) 1s
homotopic rel (g+1) to a map a(AqH,(qH)i > (X,x*)

guch that g (‘iri) = sgx* for 1 < g+1.

Lemma_1B,2: Let h,k: (AQ+1,@+1))“""‘”>(XX ) be maps

such that h(ry) = k(7)) = 0

h~ak 1rvel (q+1) Then h-~k -rel G‘OU... UG‘q

Tha proofs of the above two lemmas are straight—-
forward; one need only extend maps defined on subcomplexes of

A q+1_xI .and Aqﬂx IxI. Details will be omitt_ed.

- Lemma,_1B.3: Iet h,k:(A ,n. ) ’———*> (X X*)., Then h~k

rel llq Af and only if h 3 k.

'Egoof Suppose that h -~k rel A under a

homotopy F: AqxI ——> X. 'The non—degenerate (g+1 )-simplexes

of AqXI are
(O,.nn,i 1 i 1 i+1,--u;Q)X(OO,.--,O

For each 1,Bkaj 1€ Aq_x I forall k, j, and 'le’!ie Aq-X I

for J+41,1 +1. -Applying lemma (1.21), from t’o' we have

Vo the senge of Appendix tA. Homotopy in this sense will
- be -denoted ~; 1in the -gimplicial sense, ¥ .

* 1 { q+1, and suppose that

17 1+1""’1q+1)

_44
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k wFI3,Ty; from ¥, we have Flza1 o = ialqra—maér},;_
hence by the transitivity of ¥ ; k-7 : FHE‘C] . Proceeding |
mducﬁiyeliy? kng'l Dqﬂ’tq . -
Conversely, let h-g"k. Then we define
‘> X as follows. F'q = F(t’ ) _is to have fe.ces ‘
darpa = B0 0), 300 = k(0, . . ,q), aipq= sdx%,1¢ q.
Let Pi = F('ti)——-sik(O,...,q) i(q. F 135 then determined,
a.nd is a homotopy from h to k. rel A
| Befine a function Y A > Tr ag follows:
_ 'l—’[l)] 19 represented by the map h' (Aqﬂ,(QH)) ""'} (X,x* )

F:A x7I-

Theoremn 1B.h: ‘P 1s 1-1.

A group structure N .therefore 1nduced in 'zrq guch.

that tP 1s an 1somorphism.

Proof of iB.k: - To show that ¥ 1s single-valued,

suppose that h*gk. _ " Then by (1B 3), h~k rel Aq If the
—> X, then F. can be extended to

homotopy i'e{ FA- xI
F: Z\q«m —> X' by setting F (uJ ) = SO x* for any sim-
plex o, of _1‘_\ X I -—ﬂqxI ._ F 15 then a homotopy from
h' o k! , ' '

Def__ine : 'F{_'q—-> rté by $igl = Ig], where

g Ay Ag) —D (X,3*) 15 the restriction of the map
g of (1B.1). ¢ 15 single-valued by (1B.2),(iB.3). Tt ..
is clear that ¢¥ = identity, anl by (1B.1) ¢ 1is onto.

Therefore W 13 1~1, which proves (1B-0i+).
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(- - Using the representation of the elements of T q
as homotopy classes of mappings of Agyqs 1t 18 easy to
. 1 o
define the isomorphism induced by a path A in X from
Xq to x1 :
A 4 ﬁq(X,xo). -——> ™ (X%,

1ot ¥ e"rrq(x,xo) have representative mp fO:(IS,Q+-1, (q+1)) -—>(X,.xo).
Define F:i:b  ,x1 —> X by F(tx (04, ""Or)) =

q-+ , :
folt), e (A )y &all r; F( (g+1,q+1)x (0,1) )=« ; . and

_ g+1
extend by the homotopy extension theorem.  Deflne

then d‘ﬂk} _—."[f‘1 J. That dy 18 an isomorphism follows by
applylng the homotopy extenslon theorem. The usual properties

o’ the 1nduced_ isom_orphism may also be demonstrated.

1) It iz more convenlent to defline this isomorphism rather
than its inverse, as is usually done.




Cha_nter 1. Appendex C.

- In the preceding pe.rte of chapter 1, a good deal

of’ elementary homotopy theory he.e been developed, but some

_ et_endard and necessary properties have not yet been stated.
Thie.eection will first take up a fow of these, and then

pass on to a proof of the Hurewlcz Theorem.

T__I;_Qg_r_@: If X,Y are Kan complexes, and fgX —> Y
are semi-simplicial maps hemotopic relative to [x]- (the
s‘ubc'emplex of X generated by xe Jto) , then -
e g ) — gee).

Proofs The theorem follows imedie.tely from the fact
that elements ef ‘(T (X, x) correspond to homotopy classes of
maps dﬂ(Aq, Aq)- ._._____> (X,x) (see appendix B); since 'f,g
are homotople relative to [x], fo¢, god: (Aq,dq) —> (Y,f(x)

are homotopic.

-Definit‘ion: Two Kan complexee X and Y are sgald to have
the same homotopy type 1f and only if there exlst maps

f:X —-———-) Y and g:Y > X such that  fg 1s homotoplc to
the 1dentity map of Y and gf' 15 homotopic to the identity

. map of X,

« " Proposition: - If X and Y are connected minimal XKan.

complexes such that T (X,x) = rrq(Y,y') = 0 for g+n, and
$: (X, x) ‘ _
unlque semi-gimplicial map f£:X ——> Y such that

> . (Y,y) 1is a homomorphism, then there is a
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J‘E‘q'*—-= ¢ 'ﬂn(X,x)

> T (Y,y).
Prooft  ®Bince X and Y are minimal they both have

exactly one simplex in each dimension < n. Further there
1s a ‘mtural 131 correspondence between Tr (X,x) and X,
and between " (Y,y) ‘and Y Therefore f 18 defined and
1s unique in dimension { n.  Suppose fow that £ 1g
defined in dimension < q, 'wherg g2 n, and let ¢e Xq+1 .
Then f( 'aic') 19 defined for 1 = 0,...,q+1, and thers ig
8 lmique element 7 of Yq_*1
1 =0,...,q. - Set fod)=1. Thus £ 1is defined in-

~‘such that - = f(?iq‘) for

- ‘ductively and satisfies the condition J,f=7r19,. Suppose
i 1 )

that 8,f = f8, in dimension €4 (we may suppose that
q)n); and Te Kq“ .  Then 'ajsif( T)= 5.1_1 ajf(f,-)_ = ‘
B f0y0) = ey 3500 = £ 35y ) = ¥e(s,0 ) for
i<, 98, f(d) = f(qg) = F(l4m,0) = 'Bif.‘(sic‘), 41948 0) =
flg) = f_(_31+1ﬂia‘) = Bi”f(ﬂiﬂ‘- s Bjsif(‘r) = 8133-'_1f( T ) f"k
si"f('aj_}(r)tsz(si Vg o) = 'Dj flayo) for 15 141,
Consequently sif( v ) and f(si(r) hayve the same faces,

and since q+1>n, and ‘rl'q+1

sif((r); This last assertion completes the Inductive step

(Y,y) = 0, we have f(sicr ) =

in the proof.

C'orollarx: ir X a.nd Y are connscted minimal Ka.n com-
plexes such that TTq(X,x) T (Y,y) =0 for g+ n, and
Trn(X,x) :rrn(Y,y), then X and Y are 1somorphic.




1C-3

Theorem: If X and Y are connected minimal Kan complexes,

and £:X —> Y 1s a semi-simpliclal map such that _'
fﬂ: qu(X.,x_)‘ —6_’:*.—? .T_Tq(Y,y) . for all q, then f 1s an iso-

morphlsm,

Proof: Let %% = (x™1) 5 %™ b6 the n'th temm in

the matural Postnikov system of X, and Y = (B ),p',Y(n)) |
that for Y (Chapter 1, p. 23). Now it 1s evident that all
the terms in the Postnikov gystem of a minimal complex are
minimal. ‘Using the preceding corollary, we may make the
inductive hypothesis that £(®):x(1) 5 y(n) 4o .

isomorphism, There is a commutative diagram : '
| jp o e |
xR f( ) > Y(n)

Suppose that @, TeX ™), and that £(M1)(g) = 1) (4,
Then p'e'™ )(e) = pe(™1)(2), amd  p(e) = p(¢). There-
fore 0 =1t if q < n. Suppose we have proved that

plmt ) (pryn p(mb1) oy implies ¢'= 7' when dim ¢' =

dim 7' < q. We then have 73,0 = aiz:‘, i=20,...,9, and

¢ = T unless g = n+l. ir q'= .n+1. we recall that the
‘simplexes of dimension '(ﬁ+1‘)_w1th a giv.sjn boundary in s
mirﬁn‘nal‘compléx areliri a nﬂ_,tural 1:1 correspondence with 1T

n+1"’

corrasponding to —

Let [¢]l, [T]  be the element of ‘n’nH ‘
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@ and ¢ respectively. Since f(¢) = f(), by
naturallty f""‘.[cr] = fa;[ﬂ; gsince f'* 1s an isomorphism,
_' [G’j = fﬂ, ~and hence ¢ is homotopic to ¢ . Since g and
 are compatible. (lA 11) and homotople, ¢ = ¢ .
‘ The fact that £(OF ) 18 onto.may be proved

simila.rly. . It then follows that  1is an isomorphism,
- (n) ‘
alnce Xq Xq. for q < n.
Theorem" et X and Y Dbe comnected Ke.n complexes. Then |

'the f‘ollowing oonditione are equiva.lent
| ' 1) X and Y have the same homotopy type,
2) . there 15 amap £:X—> Y such that =
ot m(X,x) - > Ty(¥, f‘(x)) for all a,
where xeX;, and

©3) X and Y have isomorphic minimal subcomplexes.

~ The proof is etraightforwerd, using the earlier
theorems of the appendlx. and the fact that evory’Kah complex
" has a mihimalgsubcomplex which is & deformation retract of the
- original- complex (tA-14 Theorem 8). B
| The fact that 1)and 2)1n.the preceding theorem
are equivalent is in the topological cage a theorem of

J. H. C. Wnitehead [1].

Corollary: If X is a cormscted Kan complex, | x €X,,
| H'q(X,x) =0 for qg<mn, and. En(x,x) is the n-th Eilenberg

subcomplex of X based at x, then the inclusion map




Definitions and Notations: 1If X is a seml-simplicig]

complex, then C (X), the group of n-chains of X, 1s the

free abelian group generated by the elements of X « C(X) =

gc (X) 18 the chainﬂroun of ' X. let 3: C —> C (X)
be the homomorphism defined by 3J3x = Znﬂ (-1 )i 31X for
: i=0
: x‘eJ{nH.' C(X), together with the endomorphism , 1s

- the chain complex of _X. , Let Z (X) be the ker'nel of
3 1€ (X)) —— C, -1 (X), B n(X)} the image of 9 i (X) = ¢ A (X)),
The. group Zn(X) 1s the g_r-oun of n-cjcles of X, and Bn(X) |

13 the group of n~dimensgional boundaries of X. The endo~
morphism 9 of C(X) has the property that 39 = 0. There-
fore B (X)CZ- n{X), and the n-dimengional homology group of X )
is H n (X} = Z (X)/B (X). The homology ,qnonn of X 1s

HX) = 5, 5 o Hy(X).

Theorem: Ir X and Y gre semi-~ simplicial complexes » and
,g X ———> Y are homotopic maps, then fy = get H(X) ——> H(Y).
Proof; Let ky Xq —> Yq +i .
homotopy between f and g (1A- ~2, proposition 2), and def'ine
ki0q(X) = Cypy (1) by k(x) = s q Ne -0 1 (%) for
XEXq. Now Jk(x) + k?(x) = f(x) - g(x), and the

be functions determinihg g

- result follows.
The preceding theorem 1is the usual gtatement that
homology 1s an Invariant or homotopy type.
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Theorem: If X 18 a Kan complex, then Hy(X) = Z(TTO(X)),

he free abellan groub generated by TTO(X).

| ‘Proof: There is a natural map XO —_— .ﬁo(x) , which
induces & homomorphism Cq(X) —— Z(T;(X)). Clearly this
- map 18 an epimorphism (homomorphism onto). Suppose that .
Jxexi 5 then 3yx and 9,x are -1n the same component of X,
' go that the above epimorphism induces an epimorphism
' ¢:HO(X) > Z(ITO(X))- Fopr xeTTO(XI), let x bs an element
A

_of XO which represents x. Suppose that ¥ also represents

x, then there exlsts ze¢ X, such that Jyz = X, 3z = ¥,
- and _x_, yeBo(X). Consequently x —> X induces 8
hoinombrphism Yy =Z(1T0(X)) - HO(X)._ Since ¢¢ -and' P¢
~are fhe respective identitles, ¢ is an isomorphism. :

Definition: Tet X be a Kan complex, xeX., and deflns a
homomorphism - ' . '
¢: T, (X, X)

> H (X,x) . for. n)> 0
a8 followss?, _ o : ' A
| Let X e ﬁn(X,x) have representative ae X, such

o n-1 , , |
48 = 85 x for 1=0,...,n. Now if n 1g odd, 3s = O,

while 1f n 1s even, 3a = sgﬂ:x. Therefore‘we may take
¢{d) to have representa:tive a  if h 1is odd and a—so
if n 1s even. '

To ghow that ¢ 1is single-valued, suppose that

a'e Xﬁ also representﬂ o« .  Then there exists weX,
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guch that

I
e = a',. 31W = 5,% for 1<n.

W = a, 3
Then _if- n 1s even, ow = a~a', while if n 1s od_d, .
W = sgx - asa'; and since slolx is & boundary, in either
cage &' 1s homologous to a.

To ghow that $. 13 homomorphism, suppose that
a,beX, represent %, s e, (X,x). There exlsts veX ..
guch that _ : '

F ¥V = 8y 9p-qV = b, and Gf‘v = sgx for 1<n-1,
and ?nv then represents dt P If n 1s odd, ¢(9(+F)
is represented by 9 v; but since 9v = b-3Jv+a, Jv . 1s

homologous to & +b, whilch represents dJ-(ol) + qé( F Yo  Similarp~ -

ly if n 1s even, ¢(4+p) 1s represented by ‘;nv -sgx;

n
0

and since dv =8 _-x~ D +9n{r- a8, thls 1s homologous to a-+b,_-

which repi'esents G ol )+ .rp"(/a Ve

Theorem (Poincaré): Ir X 1s 8 connected Kan complex
and xeXg, then $: TT1 (X,x) —> H_1 (X} 1induces an iso~ -
morphism ' TT1'( X,x)/1 , (X,x), , (X,x)1. ’

'Ezcof;, We may asgsume that X = E1 (X,x). Then thers 18 a
natural map 7] :Z1 (X) = Cl(X) r— TT;/HT“T'(‘1 1 -, and as |
© matural mep n :Z,(X) —> H, (X). We thus have a diagrsm
z,(X)

I

W, (X, %)/ [0, %), T ( X,%) ]

Tt

H, (X)
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¥ and we know that- Trl/ [Tq, ™ 1 —_—— H, (X) 18 an
" gpimorpht sm. |

‘1P a«sB1 (X), a = 3D, ‘béXE, then a 1s represented by
‘aob-— 81b +3,b, which is already 0 1in T (X,x); hence
-'?(Bl (X)) = 0, and 17 induces -a hompmorphism

yH (X) —> W/ (W, 1.  Clearly ¢'y' and ' ¢
are the respective ldentitles, and the result follows.

Definition: A Kan complex X 1is n-commegted 1if for

xeX,, rrq(X,x) =0 for (¢ S_ n.

- Theorem (Huréi}vicz): ‘Let X be a Xan complex, xeXO.

If X 1s (n~-1) comnected, n ') 2, then Hq(X) =0 for
0<qg<n, and ¢ :Trn(X,x) “}’Hn(X).
A | The proof of this theorem ls similar to that of

* the preceding theorem. Here it may be assumed that

X = En—1 (X,x) so that X has only one simplex in each |
dimension < n. '
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errata:
1A-7 line 7 y should be 15 Vj inﬂtead of 1> m j
1A-8 line 2, should start

((u,v) F(5,%) “’_i—r

inﬂte&d Of HiF(P(J.V) -‘F(,u,v)
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The geometric realization of a seml -glmplicial complex

John Milnor

Cofresponding to each (comple.te) gemi-gimplicial com-~
plex X, a topologlcal space K} will be definad.. This con-
gtruction will be different from thak use:i by Giever [4] and
Hu [5] in that the degenerac'y opera.tLonJ of‘ 'K are uged. This
difference is Important when dealing with px-o@uct complexes.

If K éﬁd K' are countable 1t 1s ghown that IK'xK’Iv
tg canonically homéomorphic' to [K|xIK'|, It follows that if
K is a countable group complex then |K| 1s a topological group.
In pa.r-ticular IK(‘rr,n)f is an a,belian gr'oup

The terminology for semi- Simplicial complexes will
follow John Moore [71.

S

1. The definition
As standard n-simplex A take the set of all
.y ) soblafylng O = t0<t ookt = -
The face and degeneracy maps ’“3 A’n T D- and
i An+1 _ are deflned by | _
’ai(to,...,t ) = (to,...,ti,tl, Lt)

(n+2)~tuples (to,,..,t

'S__i(tO"'_" f.H"Q) = (to,_. ti’ti-i-E"'.’tn)

Let K = U:L)O Ki be a semi- simpllcia'l complax. Giving
K- the d;!.screte topology, form the topological sum
(Kox%)+(K1J(A1 )+ '+(K xA D E

These notes sponbnped by Princeton Unlvereslty under Alr Force
Contract No, AF 18(600) ~ 1hoh
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Thus K 1s a disjoint union of open gets k, XA An - {
equivalence relation in K 1is generated by the relations

?k ~

( i‘ 'n’ Sn 1) ( '3 S'
5‘,

n+1

sk ) ~ (kn,sig

i n” n+1 )
for 1=10,1,...,n.  The ldentification space |K| = K/(~)
willl be c&lled the geometric r'ealiz&tion of K. The equiv.uenee

clags Of, ('k;n’gri),' will be .denoted by ‘kn’snl.’

" Theorem_1. [K| is a CW-coimplex
having one n-cell covresmnding to each

non-degenevate n~eimp1ex of K.
For the definition of C(W-complex see Wnitehead [8], t

lemma 1.  Every _eimp_—lejc | k € K can
be expressed in one and only one way as
ki = sjp.. 831k.n_p where 'k _ -p 18 non- |
degenerate and 0( Jy Cona ( J {n. The
indices j, which oceur are precleely those

J for which k E sJKn -1

The proof 1s mot difficult. See [3] 8.3. Similavly
1t can be shown that every 5 e A, can be written in exactly
one way asg 8 =’éi . S - where ‘5 n-q ie'an interior

point ( that 1g t0<t < <fh-q+1 cand 01 <.../iq§_n.




By & non-degenerate point-éf K will be meant a

polnt (kh)5£) with kh non-degenerate and 55_ inte?ior.-

lemma 2. Each (k,8 )€K s

equivalent to a unique nonrdegenérate point.

Define the map )\ K —> K as follows. Given k)

choose ji%""ﬂp’ Knrp as in lemna 1 and set
NI%S ) = (1{" ._.1:)’83 l-sSj 8:0.)
Define the discontlnuous function,f’ :K ~—~> K by ohoosing

-e(k:n’ﬁll) = (ai .o 3-1 kl'l’ Sn_q)
1 q o

Now the compesition A : K —-> K carries each point into
an equivalsnt, non-degenerate polnt. It can be verlfied that
if vaXt then AP(x) = ,Af(x'); which proves lemma 2.

Take as n~cells of |K| the images of the non.aegsnpcnbp
simplexes of K. By lemma 2 the interiors of these colls
_pavtition.lK!. Since the remaining‘conﬁitions for a CW-complex

are eaéily verified, this proﬁes theorem 1.

demms 3. A seml-gimplical map
£:K —> K' induces a continuous map

K| —> IK'|

In fact the map |[f] definsd by’ IknfsnI —— ff(kn),ﬁhj'

ig clearly well defined and contlnous.
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m&gﬁg@mglg of the geometric realization, let C
be an ordered simplicial complex -with space IC!.. (Seé [2]
% pg. 56 and 67); From C._ we can define a semi—simplicial
- gomplex K, where Kn is the set of all (n+1)-tuples
(ao, .o .,a,n) of vertices of C which (1) all lie in a comion
simplex, and (2) satlsfy a0“<_a1§_ NS a_ . The operations
33594 are defined in the usual way. |
Agsertion The 'spacs |C| 1s homeomorphic to the
geometric 1=eaiization IK]. In fact the point
| l(ab, Ve ,'an); (to,-. ’tn+1 Y| of K| cor_reéponﬁs tQ the point
of |C] whose .a-th baryce'ntx;ic' coordina.te, a being a vertex of"_
C, is the sum, over all i for which ay = a, of (TR
The proof 1s easily glven. S . ey
| | o 2. Product complexes. _
_ Let XxK' be the cartes-iafn product of two semi-
- simplicial complexes (that 1 (KxX! )n =3 KnXK}l ).  The pro-
| jectlon maps §: KX’K' —> K and e' 1 Kx K' *——*—>K' induce

cmaps [¢] and [p'] of the goometric reallzations. A map

B Kx K| —> [KIx[K'[ 18 defined by W = lfil'x le'l.
Theorem 2, % is a onc-one map of

[KxK'| onto [K|x|K'|.  If either (a)
K and K' are countable, or (5) one of
the two CW-complexes IKI_,{K']‘ is locally
finlte; .then % 1 a homeomorphism,




The restrictions (a) or (b) are necessary in order

to prové that IK.[:{IK"-I. ig & CW~complex. For thg prool in
sage (b) sce [8] and for cagse (&) see [6]. |

Proof (-Compare [2] pg.58). If x" is a point of

[Kx 1 K' ‘[ with nénwleaenerate répresentative (k ~ kn,g ) vie will
;;“;,first determine the non~degencrate repregentative of

Ifl(‘f") == 'I 8 I Since 8 18 an lnter*ior poJ nt of‘ LS

| this 11apresent&tive has the form '

(IL

n-p’ 514 'Sipsn)‘ where k

= .9, K
Ees Sip' Si1 n-p
(8ee proof of lemma 2).— Similarly |¢'[(x") 1s represented
3 s 18 8 \ﬁThOTG ‘k‘ = . .-u " [3 k 't . S I
-7, ) i 331 neqe  The in
duces 1,,{ and ,}f must be distinct for if 1y = JP f'or

by (kf !

‘gome &,/1 -then %c X k' would be an element of SM(K-Q_. ::1& _1)

Ho,vever the point x" can be completely determined

by its imave. - _

: ’ . S b i
In fact glven any pa'tr (x, X‘)e(ﬂl [K']  define #(x,x')elKxK'|
as follows. Iset (kd,ﬁ ) and. Sb ) be the non—dtﬁpncr@ie
" 'represéntatives; where S == (to, cessbpgiq)s 3‘ (uo, - ,ub+1 ).
let 0= wo< ‘e <Wn+1 1 ba the distant numbers by and uy
arranged in order'. Set 5 = (Wg, - ,,Wn'+1 .  Then if

-}11<"-'4<'/""n~;'a are the indices M such that L is not ome

i

DJ'f' the t;, we havs | o, = SM B &, Similarly
S - g o S BT L o
n V‘I"'SVn—b Sb where the setd {ﬁi! and | Vj} ars

dlgjolint.

b




Now deflne
11(1( xf) = ;( ...s/,,, g )x(s, | vee8y k00, 81
Clsarly _ , | |
™ ! = .‘, . 2 = N ,1' TR ]
| f:f__pz(x,x_. ): -I S/‘n-a 5}‘7 -ka‘- Sx_l.l (k“' qﬁ ] ﬂ/un__&ﬁ‘n’

= lk&’ gal = X
Ve ! ' -
and |¢ lrL(X,X ) = x, whlch proves that 47 1s the identity
map of |[K]xjK'l. On t'h-e' other hand, taking x" ag above we

| h&Ve':L'fi (xﬂ) = ’l(llﬁl“'p’si ...Si gnl’ I n“Q’Ej --:aqun')

To corplete the proof it is only necessary to show
that ¥ ié conﬁinuous.ﬂ However 1t 1s eagily v‘er*ifi'ed that {
Y 1s bbntiﬁous on each product cell of 'IK_Lle' [. Since we
‘are agsuming that this product 1s a GW-:»complex, this completes
" the proof; | ' | '
An importa.nt special case 1s the followlng. Lat I
~denote the semi»-simplicial complex consisting of a 1-simplex -

and its faces and degeneracles,

Corollary. A seml-gimplicial

—> K induces an ordinary
> K.

homotopy hiKx I

homotopy |K| x[ 0,1]

In fact the interval [0,1] may be identified with
|Z]. The homotopy 15 now glven by the composition
K| x [T] =y K5I | —— s K]
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3. Product operainns

N ~ Now let K be a countable complex. Any semi- simplicial
map - p: K x K ——-} K induges by 1emma 3 and theorem 2 a con-
. timdous product - ' - D
| Iply « IKix K] —> IZ].

If there 1s an e’lement eg 1n K, such that 556 15 a two-sided
identity in each X ,» then it : follows that l0g,Tp! 1 & two-
sided- identity in |K|3; so that [K| is an H-space. If the

| product operation p 1s assoclative or commuts,tive then it is -
easlly verified that Ipln, 1s associ&tive or commutative.

Henoe we ha,ve the following.

Theorem 3, If K 'is a oounte.ble
‘group complex (countahle abelian group co;nplex),
_' then |K| isa topological group (a.belian
_ topological group)

'Let K(Tt,n) denote the Eilenberg MacL&ne semi-—simplicial

| '-complex (see [1])

corollarg. If T is a countable- abelian
group, then for n) 0 the geometric realization

IK(TT,n)I is an abelian topological group.

It will be shown in thé nex't'sec'tion that K (Tr,n)I.
actually is a space with one non-vanishing hon:u:atop;vr group.

| The above construction can also be epplied to other
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'> Kll

tween countable group complexes induces a pairing between

gebraic operations., For example a palring KxKl

eir realiz&tions. If' K 18 & semi- gimplicial complex of
-modules, where A 15 a discrete ring, then |K| 1is a
opologleal A-moduls.

k. The _fopology of |K].
- For'any space X let S(X) be the total singular
omplex. For any semi-simplicial complex X a ‘one-one .
?gemi-simplicia_l map 1 : K > S([K]) 18 defined by
k) (8 = Ik, 8,
Let H (K} denote homology with integer coefficients.

.. lepma 4, The inclusion K ——> 8(IK|)
induces an iaomor'phism Hy (K)NH (SIK]) of
homology groups.

| By the n—skéleton x{n) of K 1s meant the sub--
| complex consisting of all Ki,1< n and their degeneracies.,
Thus IK(n)l ia just the n—skeleton of | IKI considsred as
a CW-complex. The filtration
' K('c)CK(i) C
givés' risé to a spéctral sequence -, {E;qf; where IECO is
the graded group corresponding to Hy(K) under the induced
filtration; and o
' - Hp+q(K_(p) fiod K'(P"? ?)‘

It is eastly verified that E o = 0 for q+0, and that
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E;d 1s the free abelian generated by the non-degener&te

p—simplexes of K. From the: first asgertion it follows th&t
o = BS = B0 | o
On the other hand the filtration
Csr®)y csr(My oL
gives rise to a spectr&l-sequencs {E;a] where Eﬁolis' .
the graded group corresponding to H,(8(|K|) ). Since 1t 1s
‘easlly verified that the induced map Bl —> El, tsan
1gomorphism, it follows that the rest of the spectral sequenge_r
is also mapped 1somorphicly; which completes the §PQQf. o
Now suppose that K satisfies the Ken extension
jcondition., go that fITCK,EO) caﬁ be defined. |

~ lemma 3. If K 1s & Kan complex then
“the inclusion 1 induces‘an isomorphism of

ﬂr( k@) onto m (S(IKI) 1(k0) ) = ﬂ'(lK!,lko,S 1y

. _ Lot K be the subcomplex conaisting of all simpllces
of K whose vertices are all at ko. . Then na(K ko) can be
chonsidered as a group with one- generator f'or each element off
."K;' and one relation for eath element of K

| | The space IK'| 15 a CW-complex with one vertex. For
such & spéce the group T, is kniown to havé one generator for
each edge and one relation for each face. Thus the homomorphism
TG(K) =-ﬂi(K!) -—-9‘ﬂ](ij ) 1s an.igomorﬁhism. |

We may.assume thatl,K ig comnected. Then it ls

known (gee IT] ) ‘that there is a aemi~simplicia1




formation.retraction r: Kx I———>'K of K ontO‘.K'. B&L :
6 corollary to theorem 2 thls proves that |K'| 1s a
jeformation retract of K] which completes the proof.
| Remark 1. From lemmas 4 and 5 1t can be proved,
'sing a relative Hurvewlcz theorem, that the homomorphisms
T (K, kg) —> T (KI, 1kg,500) -

re 1lsomorphisms for all n.

~ Remark 2. The space |K(w,n)| has n-th homotopy
roup T, and other homotopy grouns trivial. = Thils clearly
follows from the preceéoing reﬁark. ‘Alternatively the proof
given by VHo ([51) mayabe used without essentlal ohaoge.
Now let X Dbe any topological space.. -There‘is'a_v

" canonical jmep

3o 1)

| >x
defined by = Jj(Ik,,8, 1) = k_n(‘Sn)A. |

Theorem 4. -~ The map jo: IS(X)I—~> X
. iInduces isomorphisms of the singular homology
~and homotopy groups . |

(Thiﬂ result is eSsentiaily due to Glever [L]),

The maﬁ. k| ‘iﬁduees a semi~simplicialhmop j#'S('IS(x)l) w4> Sr
a map 1 in.the opposite direction.was defined at the begin-
-ning of this section. The compoaition L&i S(X) — (X))

18 the ldentity map.' Together with lemma % this 1mplies that

j# 1nduoes isomorphisms of the singular homology groups of

[8(x)| onto those of X, By lemma 5, the fundamental group
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also mapped ilsomorphicly. Using the relative Hurewlcz

“heoreri, thisncompletes‘theAproof.
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