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Introduction. One of the main problems of algebraic topology

is that of classifying spaces and clasgifying continuous trans-
formations of onc¢ space into a second. The spaces with which we
shall deal are '"nice" spaces; they often are manifolds or spaces
which can be triangulated (l.e., can be broken up into a finite

number of arcs, triangles, tetrahedra, etc... Two spaces will be

.put in the same clase if they are homeomorphic, or, morse generally,

if they have the same homotopy type, in the sense described in §2
below. Two transformations of one space into another will be put
in the same¢ class if they are homotopic; that is, if the first
transformation can be continuously deformed into the second.

| Actually, one develops two methods of classification--homotopy

and homology. . Let, for instance, Cl and 02 be two continuous

images of a circle in a space Y. Then C1 and 02 are homotoplc if

Cz (regarded as a rubbor-band) can be slipped continuously through

the space to the position of Cl; while Cl and CP are homologous if

Cl and 02 are together the "“boundary" of a two-dimensional pilece

of the space Y. After the concepts are developed, we will be able

to attach to each space X a homotopy group‘ﬂé(x) in every dimension




qQ=1, 2, +.. and a homology group Hq(x) in every dimension O, 1,
2, «.. FPFurthermore, to each transformation f of X into ¥ we shall
agsociate a definite homomorphism-

.2 T (x)—>T (Y)

e q q
between the corresponding homotopy groups, and a similar induced

homoniorphism

2

f,: HA(X)—>H (Y
ot By =B ()
for the homology groups in each dimension. These groups and homo-
morphisms are thus algebraic invariants associated with topological
objects; their study and exploration is the maln objJect of this

CoUIrsc.




Chapter 1

THE FUNDAMENTAL GROUP

1. Homotopy. The classification of the continuous trans-
formations of a space X into a space Y depends egsentially upon
the notion of homotopy. Intultively speaking, two continuous maps
of X into ¥ &re said to be homotopie if it is possible to contin-
ucusly deform the first into the second. 7To formulate this
precisély, we lImagine that this deformation takes place in a unit
time intérval. The deformatlion can then be regarded as a contin-
uous map defined in the cartesian product XxI of the space X and
the unit interval I, O gts<l on the real t-axis,

DEFINITION: Two continuous maps fo, fl; X= Y are
homotopic (in symbols, fo Y fl) if and only if there is a contin-

uous map Fi: XxI-—Y of the carteslan product of X by the unit

interval I = [0,1] on the t-axis into the space Y such that
(1e1) F(x,0) = fo(x} F(x,1) = fl(x).

The condition (1.1) states that the homotopy F(x,t) & Y starts,
for ¢t = O, with the initial map fo and ends, for t = 1, with the

final mep fl.
To illustrate, it is convenient to use the identity map i = iX
of any space X on itself (with i(x) = x for x¢ X), and the constant

maps ¢y XA— Y, which carr; every point of X into one and the same .
point of Y. If XA is the unit interval 0 g x < 1, the ildentity map
1: X~ % 1s homotopic to the constant map c¢: X—>X with c¢(x) = 0
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for x € X, the requisites for g homotopy F: AxI— X being defined

as

F(x,t) = (1-t)x, 0 <x <1, 0.

A
A
WA

t < 1.

1

Then F(x,0) = x, F(x,1) O. This homotopy deforms each point of
X at uniform vclocity toward the point x = 0. 4 similar argument
shows that the identity map cof an open Interval, as of the whole

real axls, is homotopic to a constant map, Spaces X for which the

ldentity map iX: XX is homotopic to g constant map of X into X

are said to be contractible. Thus intervals on the real axis are

contractible spaces.

If 8' is the circle, regarded as the set of complex numbers
E.of absolute value 1, then for gach integer n the function f (z)
= zn defines a continuous map of £' on S' whiich ”wraps St n tlmes
around itself". It is intuitively clear that two such maps of fn
and fm with diffcrent integers m and n cannot be homotopic. This
will g& subsequently proved, together with the fact that any map
g: S'—3 8! isg homotopic to exactly one of the maps f n’ This means
that we can associate with any g the number n of times which g
wraps the circle around itself; this number is known és the Brouwesp
degree of g+ A similar result holds for thc maps of the n-sphere

on itsclf,

THEOHOM 1.1. The relation of homotopy between maps

fv 47 is reflexive, symmetric and transitive.

PROOF: The relation is reflexive; for any f1 A-— Y is homotopic

to 1tself under the umae anifestly continuous homology F defined by



F(x,t) = £(x), 0<t <1, x & X.

A

The relation is symmetric, for if Fi £ % f., then G fl:! £

where G is the homotopy defined by
Glx,t) = F(x, 1-t), 0<t < 1.

Here G 1is continuous, for it is the composite Foh, where h is the
continuous map

hix,t) = (x, 1-t), xc X, 0

A
ct

IA
[

of XxI into itself.
The relation is transitive, for if F: r % fl and Gs flg f'2

then we can define a homotopy H: f05! f2 by the scheme indicated in

the diagram (for A the unit interval): the bottom edge of axI is

mapped by fo, the top by f the middle segment by £ and the two

2’ l’
fq
HG
I £y
. )F
£

sy
halves by the given homotopics F and G, squeezed down. Formally,

we define H by

11

H(x,t) 1/2,

< 1.

F(x,2t), x€ X, - 0 <

ct
{HA

it

G(x,2t-1), =x¢€ X, 1/2

1)
ot

H(x,t)

The two definitions agrec at the common points with t = 1/2, for
F(x, 2.1/2) = F(x,1) = fl(x) = ¢(x,0) = G(x,2.1/2 - 1). Also
H(x,0) = F(x%,0) = fo(x); H(x,1) = 6(x,1) = fg(x), and H is contin-

uwous, by the prcevious continuity theorem, since it is compounded
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from two continuous functions on the two closed subsets Xx[0,1/2]

and xx[1/2,1] of ixI.

THEQFEM 1.2. If £ % £ : x—7Y and géﬂ’— g+ Y— 2, then

-

the composite maps gofo and glfl of X into Z are homotopic.

PROOF: In vicw of the transitivity of the relation of hormotopy,
C A

f -

1 1

o
glfl. For the first of these, we are given a homotopy F3 foﬁi f 3

the composite H = gooF 1s a continuous map of AxI to Z, and H(x,0)

it will suffics to prove the special cases gofog gof and g

= g (F(x,0)) = g,f (%), H(x,1) = g8 (F(x,1)) = gOfl(x). Hence

Hi £ ¥ g f . For the second, we are given a homotopv G: X
,go - o s¢ s are g a homotopy 8.~ 8

Y— 4. Define a continuous map K of XxI to Z b: setting

t 1.

HA

K(x,t) = 6(f (x), t), x€ X, 0

1A

Then K(x,0) = G(f (x), 0) =g (f (x)) and K(x,1) = G(f (x), 1) =
1 o 1 1

N < glfl; A—Y%, as requircd.

gl(fl(};)). Hence K gof

CORQLLARY 1.3.- If Y is contractible, then any two maps

fo, fl: X—Y are homotopic,

PROOF: By the assumed contractibility, the identity map 1i: ¥Y— Y

£y

ls homotopic to a constant map c: Y—3Y. By the theorem fo = if v
o
cfo". X—7Y, and similarly fli'- cfl: Y. But cfo and cfl will
map all points of A into one and the samc¢ point of Y, hence cfo =
cf_ and, by transitivity, £ X f_.
1 o 1
If 3 XY and £': X'-—Y', we denote by £xf' the map of
XxX' into YxY' defined by

(£xf£1)(x,x') = (f(x), £'(x")), X € X, x' e a'.




THEQKZM 1.4. If £ % £2 %> Y and £ Y £13 X'— Y' then
. o 1
:.' ﬁ f‘ A-‘t": A Nt 'c

foyfo lx 1 AXAY -3 VXY
PROOFy We are given homotopies Fs foﬁ‘-x £, and F': £1 2 f1, Thes
required homotopy H, as a mapping of (AxX')xI onto YxY', is defined
Dy

H(x,x',t) = (F(x,t), Ft(x',t)), C<t<l, x¢ X, x'¢ X',
Clearly H(x,x',0) =(F¥(x,0), ¥ (x',0)) = (fo(x)& fé(x')) =
(foxf')(x,x') with a similar result at t = 1. The same thcorem

)

holds for carteslian products of more than two spaces.

COROLLAKY 1.5. The cartesian product of two contract-

ible spaces 1s contractible.

PROOF: By assumption, the identity maps i, i' of X and i!, res-
pectively; are homotopic to constent maps ¢, c'. By the Theorem,
ixi' ¥ cxe'y XxX'—3 axX'. Bub ixi! is the identity map of Xxk!',
and cxc' ig a constant map, carrying all of AxA' into the point
(c(X), c'(x")).

From the example above it now follows that Luclidean n-space,

and any (open or closed) n-dimensional cubc Ix...xI is contractible.

Example 1.6. Let X be ths unlt circular disc with its center

point removed and di X-— X the mapping which carries each point of
X radiallﬁ onto a point on the ciroumferenoe C of the disc. Then
d is homotopic to the identity map. Indeed, if the points of X
are labelled by polar coordinates (r,9), then X is homeomorphic to
the cartesian product (0,1]xS! of the half-open interval J;

O <r <1 with the circle S'. The identity map of (0,1] is hono=
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toplc to the constant map ¢ with c(r) = 1. Hence by the theorem,
the identity map is 1 = iniS" and cxis' is exactly the map d.
The homotopy F: 1% 4 is given explicitly by

F(r,z,t) = ((1-t)r+t, z), 0O<rgl, z & St.

Note that during the whole homotopy, the points on the circum-
ference (r = 1) stay fixed.
More generally, let S be a subspace of X. A mapping f3 2—)X

with £(X)C 5 and f(s) = s for s € S is called a retraction of A

onto S!'. The subspace is said to bec a deformastion retract of X if

there is a map (a "deformation rectraction”) Fi: XxI—=X with
(1.2) F(x,0) = x, P(x,1) € S, F(s,t) =8, (ses, Ost<l).

These equations statc that F establishes a homotopy of the identity
iX with a retraction f(x) = F(x,1l) of X onto S, and that the points
of S are not moved by the homotopy. Thus in particular the cir-
cunference of a circular disc with center removcd is a deformstion
retract.

One may also show that a circular ring (the set of points
betwécn one or two concentric circles in the plane) has either of
these circles as a deformation retract. Ve cite without proof the

formal results

THZOKEM 1.7. If T is a deformation retract of § and S a

deformation retract of X, then T is & deformation retract of X.

THZOREM 1.8. If S, &' are déformation retracts of X, X!,

respectively, then SxS' is a deformation retract of XxX'.




2. Homotopy Type. Two spacecs which are homeomorphic are

topologically indistinguishable. For the purposes of algebraic
topology, 1t is convenient to have a still wider classification of

spaces.

DEFINITION: Two spaces X and Y are of the same homotopy
type 1f there are maps fi x—Y, gt ¥—rX such that both the
compositions fog and gof are homotopic to identlty maps; i.e., such

that

(2.1) iy’—"- fogs ¥ Y, 1}{1 gofs x— X.

A map £ for which there exists such a g is called a homotopy

equivalence (of A to ¥), and g is homotoplc inverse of f.

A homeomorphism fi X—Y is trivially a homotopy equivalence,
-1
with as a homotopy inverss; hencc homcomorphic spaces have the
same homdibe type. That the concept ig much wider than homeco-

morphism 1s i1llustrated by the

THEOREM 2.1, If 5 C X is a deformation retract of A,

then S and X have ths same homotopy type.

In particulsar, the punched circular disc (Example 1.6) has

the same homotopy type as 1ts circumference.

PROQF: We shall show that the injection ki S— & with k(s) = s is
a homotopy equivalence. By hypothesis, there exists a deformation
retraction Fi: axI—>X with properties (1l.2). Lefine f3 X— 5 by
f(x) = ¥(x,1). Since ¥(s,1) = s for s € &, (fok)(s) = s, hence

fok is trivially homotopic to the identity. The other composlte




2. Homotopy Type. Two spaccs which are homeomorphic are

topologically indistinguishable., For ths purposes of algebrailc
topology, 1t is convenient to have a still wider classification of

spaces.
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DEFINITION: Two spaces X and Y are of the same homotopy

type if there are maps fi x—>Y, gt Y——éX such that both the
compositions fog and gof are homotopic to identlity maps; 1l.e., such
that

-t

y = fogr Y Y, 1% gofs Xx—) X.

(2.1) i

A map £ for which there exists such a g 1 called a homotopy

]

equivalence (of A to Y), and g 1s homotopic inverse of f.

A homeomorphism fi X—Y 1s trivially a homotopy equivalence,
-1 .
with f as a homotopy inverse; hencc homcomorphic spaces have the
same homology type. That the concept 1s much wider than homeo-

morphism is illustrated by the

THEOREM 2.1. If S C X is a deformation retract of 4,

then S and X have the same homotopy type.

In particular, the punched cilrcular disc (Example 1.6) has

the same homotopy type as its circumferencs.

PROOF: We shall show that the injection ki S— XA with k(s) = s 1is
a2 homotopy equivalendo. By hypothesis, there exists a deformation
retraction Fi axI-—Xx with properties (1.2). Lefine f3 X—5 by
f(x) = F(x,1). Since F(s,l) = s for s € &, (fok)(s) = s, hence

fok is trivially homotopic to the identlity. The other composite




kof has (kof)(x) = kF(x,1) = F(x,1), and ¥ is a homotopy ix’l’ Kof .
We thus have botn helves of (2.1), g.e.d.

The relation "X has the same ﬁomotopy type as Y" is manifestly
reflexive and symmetric. For the transitivity of this relation

consider spaces X, Y, Z and maps .

b h
f,z,h,kz X»;é*? 4 —ﬁ_.k Z

”~\/

with iyiy fog, i. % gof, iyfz koh, 1, = hok, Then using Theorems

X
(1.1) and (1.2),

‘ v,
- J’r‘r
A

(hof)o(gok) = ho(fog)ok ¥ hoi ok = hok

with a similar argument for the other composite.
The invariants of a topological space defined in algebrailc
topology are invariants of the homotopy type, in ths sense that

they turn out to be the same for twe spaces of the same homotopy

type.

3¢ Arcwise Conncctivity. W¢ now turn to the definition of

the fundamental group of a space, as perhaps the simplest example
of & group assoclated with a space.
Y'¢ denoty the unit interval on the s-axis, by

IS = {.all real s, 0 < 8 g l}

with a similar notation for It' A path (2lso callcd an ggg) in
the topological spuce A is a contlnuous map f A I§~9'X of thc unit
interal into the spsce. Wdotu that a path is Qgg'the s¢t of poilnts
'? (IS) in tho¢ space A, but is the mapping which associates each

value of tho paramcter s between O and 1 in u continuous fashion

with the point&?(s) of this setc{(Is)——in other words, a path is
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not a curvs, but u parametrical curve. We call the point ?(O) =p
the start of the path and the poixn:?(l) = g ths end of the path,
and speuk of ? a8 a path from p to q.

ir f is a path from p to q and‘q is a path from q to a third
point r, then the producthY is the path from p to r obtained by
traversing first the puth ? then the path)z . Formally, the map

Y. I—~ﬂ X 1s defined by the conditions

1/2,
1;

p
FMr(s) = (29) 0'<
Fite) ="(es-1)  1/2 ¢

w
A

(3.1)

A
6]
HA

in other words, the first helf of the interval I is mapped by

? (squeezed down to a shorter interval) and the sccond half of I
is mapped by)l « The product j’{oi two paths f’undvv is defined
~only when the ¢nd of the flPSu_p&th.? oolncldes with the start of
the sccond path (as in the definition above).

In manipulating this product, 1t is convenicnt to replgce the

unit interval IS by other closcd intervels J = [81’82] on tﬁe
s-axis. Jq is homeomorphlc to Is under the explicit (affine)

[

sapping 9 : — I defined by
mepping JII',JS —> 5 C 5

5

(8.2) 8(s) = (s-8,)/(s 85" 1 s,

A
w®

A

2’

and we say that the path.?’: I§»~>X can be "shrunk" to the mep

o

the path

[ 44

l o
-.Jé-—-—>X glven cs ?l =?9. Tho productf)] 1s then described as
\

ey . 5 X

e} f, R 7' 1

obtaincd by "hitching together" the paths é ,~? , and shrinking
/
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“ach to an interval of length 1/2,

- >
The inversef of a path )49 is the original path traverscd
o~ -
bacl{wards; thus ifjd is a pcth from p to a, thenf 1 is the path

from g to P defincd by

(3.3) _l(s) :—.Jg(l_s), 0 < s < 1.
Une proves casily that ()-@’)Z)'l :?'l?'l.

A space X ig ssid to be arcwisc connected if, for each palir

of points p ang Q@ in X there is & path joining p to 4. A spacc X
which is not arcwisc conncected may be decomposed uniquely into
arcwise connccted components, os follows. The relation "there
¢xlsts a path from D to g" on ths points p, q of X is 8 reflexive,
symmétr'ic, and transitive rclation. It isg rc:—flexive bicause the
constunt path ig 4 path from P to p, symmctric because if? joins

p to q, thc—n?“:L joins q to p; ang transitive bicause if jg joins

P to g and )Z jolins q to r, thn;nf”)z Jjoins p to p. Subdivide the
Space X into its ¢ouivalenee classcs C with respsct to thisg relation;
in othor words, place two points p und q of A in the soame class ¢

if and only if thorce is « path in 2 from p to 4. Then each subspace
C is an arcwise connceted Spuec, for svery pPoint on a path ffr‘om

P to q is clcarly Joincd by = path (n&anely, purt or the path ?) to
P, hence the path ]g in X is also & path in the subspace (. Call

the sets ¢ the are-componcnts of X

6 heve broved




PHOPOSITION 3.1. Anmy spacc X is the union of its (dis-

joint) arc-components, Any arc-componunt of 4 i1s arcwise connucted,
and any arcwisc connccted subspace of 4 is contained in an are-

componcnt of X,

The requircment of arcwisc conncctivity is strongcr than that
of conncetivity, defincd as usual in terms of a deccomposition of X

(262, B12).

PROPOSITION 3.2. An arcwisc coﬁnuctad gpacec X is

connceted,

PEQOF: - If X is not conncetcd, thorc is a dccomposition & = UU Vv
of A into disjoint non-void subscts VU and V both open in i (and
hence both closed in X). Choosc points p ¢ U and q & V. By
assumption, thecre 1s a path ? H Ié-)X joining p to gq. Sincc ? is
continuous, thce inverss images ?’I(U) mui?-lfvd arc open subscts
of thc interval I , which arc disjoint and which yicld a deccompos-
ition IS==?_1(U)\J ?‘l(V). lhis cohtradicts the fact that the
interval Is is connccted (262, Theorem 12,3). '

The conversc of Proposition 3.1 1s not truc, however.

PROPOSITION 3.3. A conncctcd open subsct U of Euclidean

n-space 1s arcwisc conncected,

PHOOF: %e first show that any arc-component C of U is opsn. Lot

p bc a point of C. Since U is open in En, thore 1s for any pe U

a positive E}such that U contains the sect & of all points q of En
at distonce loss than ¢ from p. The straight linc scgment from p

to any such point g lics cntirely in 5, hencc in U; it may be
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rogardcd as o path from p to g in U. Its presence shows that g
lics in the samc wre-componcnt C of U as dous pe Thus this arc-
component C contains the whole of &, shoving that C is opcn in Bn,
and honce in U.

If now the conncctcd open sct U is not arewisc connccted, it
has two or morc arc-componints. Let C be onc, and & the union of
all the other componcnts. By the statcment just proved, C and D
arc both open in ﬁ, end U = ¢ U D is a dccomposition of U, con-

trary to the assurcd conncctivity of U.
1E,
An n-dimensional manifold M ig defincd to be a topological ikﬁwﬁj%
» -1(( a4

space in which svery point p hes an opun ncighborhood V homeomor-
phic to the intorior of the unit n-sphere (in Euclidecan spacc). The
arguncnt of Propositlon 3.3 will also show thet & connccted manifold
is arcwisc conncctod.

The propertics of conncetivity arc rclavent to algcbrailc
topology becausc the higher homology and homotopy groups of &.
spacc may be regarded as measurcs of the "highcr-dimensional

conncetivity of that space.

PiOPOSITION 3.4. Any contractible space a 1s srcwilsc

conncctcd,

PROOF: Sincce X is contrsctible, there is by dofinition a map

e e— s

F: xxIy—>X such that F(x,0) = x, end F(x,1) = q , a fixed point

' 0
of . Lct p be any point of X, The function F(p,t), with p fixed,
thus doefincs a path in X from p to qO, It follows that any two

points of & arc connccted by a path, as rcquircd.
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4. The Algcbra of Paths. Two paths éo’ f;: I§—$2X‘in A arc
/

said to bc homotopic (relative to 0,1 ¢ IS) if the first path can

bc doformed continuously into the sceond, lcaving the ond pointe

fixed during thc deformation. In othor words, therc must c¢xist o

(=%

continuous mepping

(4.1) Ps stIt~~§X, such that
(¢.2) (5,00 = § (e),  F(s,1) = £ (s, 0<s<l,
(4.3) F(0,t) = F(0,0), F(1,t) = £(1,0), 0<t <1,

~/ .
We then write P fz‘* fa.(rcl 0,1), although we shall froquently
drop thz addoendum "rilative to O and 17, Clearly, two such homo-
topic paths must start at thc same point p, &nd c¢nd at the s

£y %
clides

point q. Notsc in purticular that thisa typc of relative homotopy

(during which the imeges of 8 = 0 and s = 1 stay put) is more

restrictive than tho frec homotopy of the meps ?2, fi: Ié->X
defincd as in 81,

If we consider thet the doformation tokes place in unit time
t, w¢ may regard F(s,t), for fixed t, as the doformed position of
the path at timc t. Thus condition (4.2) statos that the deform-
ation starts with the path ?; anég cnds with ?;, while (4.2) statcs
that cach path during the dcformation is o path from p to q. The
homotopy ¥ may be picturcd in the following way as a map'of the

unit squarc I _xI_ into Az
(=} -

t t-axis

T ¢

o
>

»>S~axis

¥

£
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whoere the letters indicate that the lof't cdge 1s mapped by the
(constont mupping) into p, the right edge into g, and the top and
bottom uzrc mapped according to the given paths ?l and f;, rcspect-
ivelye

Sincc the unit interval It is homcomorphic to any othor closed

intcrval J fall t, to t

A
HA

tl} , we may in the definition (4.2)
rcplacce It by any such intcrval Jt’ replacing t = 0 by t = to and
t =1byt = tie
For paths ? ¢. in X thc rclation " ¢ Y6 pol (0,1)" 1is
of )1 J’o )1’ 4
refloxive, symmectric and transitivce; the proof is glven exactly as

in Theorem 1, kucuping onc c¢ye pecled for the fixcd end points. A

path=elass x ={f} 1z an oquivalecnoe class of paths runder this homo=-
topy relation; fhat is, 1t consists of &ll paths f homotopic to a
fixed path ?o (rel 0,1). Lach path class x has a definite starting
point p and a definite end point g (namcly; the start and the end
of any path ?é X)e

The multiplication of paths induces a multiplication of path-
classes, Indeed, if fo and ? are homotopic paths from p to g,
and 7 71 homotopic paths from g to r, then the products‘f ?

)l 71 are homotoplc pathe from p to r; for the given homotopiles

, .. :11 I" hval £ )V' ""’ =3 . l
’_fo fi, 3 70 Zl vicld a homotopy H: ? ? described
by the figure N f(/ -
A ™
J, ~
p F q G r
v ‘ I./D
7 7
.?O 79
or the (equivalent) equations (c.f. (3,1))
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H(s,t) = #(2s,t) 0<s g 1/2, 0

A
A

t <1l
H(s,t) = G(2s-1, t) 1/2

liA

s g 1, 0

A

t < 1.
Without ambigulity we may define the product x.y of two path classes
x and y as thoe class containing the productlfﬁ of any representative

V4
f of x by any representative)z of y; i.e.,

i

) R
%&1=2§7i
Similarly, for the inverse, we observe that bey ?1 implies
f;lly f;l, hence that the inverse of a class x may be definedAas
the class of the inverse of any reprcsentative of =x.
For sach point p in X, we define the unit path EpAas the
constant path at p; i.c., as the path Ep: Ié«+>X with E%(s) = p

~ for all.s. The unit path class ep at p is the class of all paths

homotopic to Ep (rel 0,1).

THEOKEM 4.1, The homotopy classes x of paths in a top-
ological space X, under thc operations of forming the product XY,
the inverse x_l, and the units ep for p & X, constitute an algeb-
raic system with the following properties:

i) Each path~class x has a start p and an end q in A, and

(4.4) € X = X = Xe
Y q

1i) Zach path-class ep starts and emds at p
1i1) The product xy is defined If and only if the end of
x 1s thc start of y; the product then starts where x

does, and snds wherec y does.

iv) Given x from p to q, y from g to r and z from r to p'

(4.5) x(yz) = (xy)z.

- 17 -
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1

v) If x starts at p and ends at g, then x
and ends at p, and

starts at q
(4.6) "l

These properties are reminlscent of the group axioms; they

assert that the classes of paths form a somewhat more gencral type

of algebraic system known as a groupoid,

The only point of interest 1s the demonstration of the homo-

topies implied by the equations (4.4), (4.5) and (4.8).
For (4.4), teke paths _?6 x, ¢

o & ep; we must then show that
the product Epf is homot{opic tojﬂ” « The homotopy H, pictured by
. ;;-. f .
’ "\“ -

P N f F

> S
7
5})

is defincd ecxplicitly by specifying that H maps all the lower left
triangle into p,

H(s,t) = p, 2s ¢ 1-t,

and that each horizontal line in the remainder of the square is
2
mapped by the mapping f’, sultably shrunk:

H(s,t) = ?(2s-1+t/1+t)

2223
The two definitions agree when 28 = 1-t;

v

l-tn

gince eamch partisl H is
clearly continuous, the whole H is continuous (e.g., the plecewisc-
continuity theorem).

To prove (4.5), choose¢ psths ?C— X, )Zé v, S & z. Then the
product x(yz) 1s represented by the path ?(Vfg), which by defin-
ition consiste of f‘ (shrunk to 0 g s g 1/2),

?' (shrunk to

- 18 -
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1/2 ¢ s g 3/4) and ' (shrunk to 3/4 ¢ s < 1). The other product

is represented by (%?_ﬁ;,,with ? shrunk to 0 g s ¢ 1/4, ete. Ve

require the homotopy pictured by

£
T A B
"""" _.}, % ./),’. "\' )‘.:J
? >
. f \\_ b \\ P’ 5 X
YN e 7
¢ A B 57

and described (preciscly) as follows: subdivide the unit (s,t)-

square by lines AOAl and BoBl’ whore

A, = (0, 1/2) B, = (0, 8/4),
A = (1, 1/4), Bl = (1, 1/2).
Map AoAl into q, BoBl into r. Mup ecach horizontal interval of the

7
section to the left of AOA by %-($uitably shrunk), map each horiz-

1

ontal intervel in the middle scction by Q', and ezch interval in
the right section byﬁ.

The ¢xplicit formula 1s sasily obtainablc and entirely un-
intercsting.

o

For the first half of (4.€) we glve only the pilcturc of the

homotopy H as T K ey
P : \\\ P
’ N
T 1~ A N\, —
b SN Y F 7
._l\ -j ) /‘ \.‘\ ./. \\.. ""'"'—‘“--'—-——'"*E} )‘L
/‘-.\ \\ } e - ')\\
g - . VA AN
s NS /L AN
/ N ~
< .- > L 4 e
y PPy
1 §

in which cach indicated dirccted sogment 1s mapped by a (shrunken)

?’into X, while the remaining points are mapped into p. Ve may

- 19 -
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also dcscribe H as the composite H =:§oh, where h is a mapping of

the square into the interval, dcfined so that

A A A
y BN \ n
/}, ‘ // ’ : \\\ ~> ,,1 1!-')
' // \\\ QL $ & 1
A B A

each point A' (or B') is mapped on A (or B), each scgment A'B!' (or
AAY) 1s mapped linearly on AB (or on 4), with the triangles approp-
riately collapsed (sce chap 2).

Lk JIR o

ny map i1 A—>Y induccs a corrcsponding homomorphism of the

groupold of path classes of X into the groupold of path classes in

X 18 a2 path in X, thc composite map fo 6:

Y. Indecd, if ? I

S
2 7 e 2 2 L & /U @ E ] J
Ié~e>Y is & path in Y, while if F: = 71 (rel 0,1) is a homotopy
J .
< ) e
between paths in X, the composite foF is a homotopy fooﬁi-}foo?g
between the corresponding paths in Y. Thus, if x = f{ is any
‘ /

homotopy class of paths in X, wo may define a homotopy class f (x)

ly
x4

2

of paths in ¥ unambiguously by the cquation

-

(4.7) f_::_(g)‘;?s) = %fo?% sfa path in X, f: X—>Y.

¢ call f“(x) the class-composition of £ and the class x.

-

THOOREM 4.2. A continuous map fi X—>Y induces by the

"composition" (4.7) a transformation z-—3f x) ol path classes in

$e

A Into path classes in ¥, which is a homomorphism in thc sense that
the following propertisvs all hold,
(4.8) £ (xy) = (£,x)(f,y) if xy is defined,

- " o

(4.9) f (x

- 20 -




(4.10) fe =e¢ pE X
If also g3 Y—>Z, then (fog) = f og,.

PRUOF: The asscrtions (4.8), (4.9) and (4.10) follow at oncc from
the 1ldentitics

(4.81) fo(f)z) = <fof (roh), fex, e,
-1

(4.9') fo (fO s ?C— X.
4,10 fc = 9E— = »
(4.10") o&p ()’ p&e X

for representative paths in the given path classes. FEach of these
identities is proved dircctly by the rclovant definitions. Thus,
in (4.9'), by the definition (3.7) of‘)@-l,

H

£[¢ 7o) = [ F(1-9)]
(£ €)(1-5) = (£ §) (s,

s,

[fo§—l](s)

it

for all s in the unit intorval IS. The f'inal asscrtion of the
theorem is immediate, by the definition (4.7).

The algebraic system of homotopy classcs of paths is "too big"
--it contains a unit ¢lemsnt ep for e¢och point p & X, and many
other elcments besides. %o now rcduce this system to a smaller one,

Ehe Fundamental group of A--glsc called the Poincard group of X.

5. The Fundamental Group. Assume now that A 1s an arcwise

connccted space, and choose a point pO & A, to be called the base
point of X. Thoorem (4.1) thon shows that the homotopy class x
of those paths which both start und c¢nd at po is a group, with

. . -1 .
ep = 1 as identity, and x - as inversc.
O .




o0

Sae b

DEFINITION 5.1. The fundamental group'ﬂl(x,po) of an
arcwise connected space X rclative to & chosen base point poéi X
is the group of homotopy classes of paths in X starting and cnding
at P.s undcr the mﬁltiplication induced by the product f)z of two

paths.

Psraphrasing the definition, we may say that zan clement of
TE(X,pO) is a closged path ? in X, starting and cnding at pO; that
two such paths are equal (as clements of the fundamental group) if
one cen be dcformed continuously into the other, holding the end
points at pO during this deformetion, and that the product f%?of

two paths is the path obtained by following first ? , Then ? .

THEOREZM 5.2. If p and q, arc two points in an arcwise
o

connected space X, the fundamental groups-jl(x,po) and‘ﬂ;(x,qo)

with base points at po and qo, rospeebively, are isomorphic.

Specifically, cach homotopy class u of paths from 9 to P, vields

an isomorphism
(5.1) C,* Tﬂ}k,po)-?TE(X,qo)
given by the formula ("conjugation")

(5.2) Cu(x) =u xu X & 7E(X,po)

PROOF: If x 1s a path class from IS to Dys UXQ is = path class

from g to qo; hence Cu does map TTI(X,pO) into 77;(X,qo). By the

laws for thc algebra of classes of paths,

N N -1 _ -1 -1
Gu(xlxz) = u(hlzg)u = uxlopxzu = (uxlu )(uxzu )

= L'U.XZL][GU.XZL




Hence Cu is a group homomorphism. If u-l le the path class inverse

to u, then Cu_l is & homomorphism of WZ(x,qO) into_ﬂz(Y,po), and
Cu_l(Cux) = Cu_l(uxu—l) = u-luxu-lu = x,

Therceforc C oG, and likcwise C oC _ is the identity homomor-
w1 u u u L’
phism, so that Cu is an isomorphism onto, as assertcd in (5.1).
If u, v arc two paths in X with uv defined, one readily shows

that
(5.3) CoC =¢ .

Because the isomorphism Cu may depend upon the choice of the
class(ﬁ}mat is usually unsatisfactory to speak of "the" fundamental
group of a spacc, without speccifying the basc point to be uscd
in its definition° Bceecauso this isomorphiem Cu cannot be defincd
unless there is at least one path from pO to qo, the fundamcntal
group of a space » is not defined unless the space is arcwisc
connccted--indeed, the various arc compononts of & general spacc
will usually have sssentilally funuemental groups.

e arc not yet in a position to ¢ffcetively dctermine the
fundamental groups of‘sample spaccs, but we may state without proof
thet the fundamental group of the circle is an infinite cycelic
group, with gencrator the path detcrmined by the mapping s~m?62ﬂi8
of the intecrval onto the cirels (regarded as the set of complex
numbers of gbsolute value 1). The fundamentzl group of the torus

is the frce abglian group with two gincrators a ond b, given by

paths shown below.
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.

In gonoral the fundamental group is not abelian; this is the casy,
for instancc with the fundamontal group of the space obtained by
Joining two circles at a point

e

{
o\ ~
C “g‘ x

° ]

The pathSG{,(ng not conmmutc.

THLOKIM §6.3. If o and Y arc arcwise connccted spaces

and P, @ point of X, cach continucus £: A~—>Y induccs a homomorphism

(5.3) £,3 ‘T«'”l(x,po)~-~a'7i’l<Y‘,§g)O\E)

of the fundumentzl group of A at po onto the fundamental group of
Y, at f(po). Hore f, is dofined, for cach class x of paths at x,
by class composition as in (4.7). If two maps fo’ fl: X—>Y with
fo(po) = fl(po) arce homotopes in such a way that fo(po) is left

fixed during the homotopy, the induced homomorphisms fo" and fl“
. o -«

arc ldenticel.

PROQF: Thuorem (4.2) yivlds the homomorphism (5.3) at onceo. As
for the sscond esscrtion, we arc given a homotopy F: foiy fl; that
is, a mepping P kxIt-§Y with

F(p,0) = £ (o) F(p,1) = £ (p), P Ea
with the spccial property that fo(po) stays fixed during the¢ homo-

+ topy; i.¢., that F(po,t) = fO(po) = fl(po), 0O<t gl

- 24 -
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Lot‘f be eny path from p to p_ in X, in a path-class x. Then

fo%(x) is by the dofinition (4.7) the class of thc path f OF in

3 o

Y, and fl‘,(x) is the clags of the path flo? in Y. Ve need show
-« /

only that thesc psths in ¥ are homotopic (rel 0,1); the requisite

homotopy is the map G stltw———)Y Gefined by the equations

G(s,t) =B"(?(s),t), 0<s <1, 0<ct<l.

Indecd, G(s,0) = F(? (s),0) = fo( ?(s'}) = (foof)(s), so the homo=-
topy G starts with the path foof, and for similar rcasons cnds
with the path flo‘(f,. Luring the homotopy the starting point (s = 0)

stays put, for G(0,t) = F( ’F(O),t) = F(p ,t) = fo(po), with a
. o)

similar result for s = 1. Hence G foof?"-!flo?, rel (0,1).
7

6. ‘I‘hck‘f‘«fandering Base Point. Ve wish to extend Theorem (5.3)

to homotopics P which do not leave the basc point fo(po) fixed in

Y. Thils requircs a lemma on the "frcee" homotopy of paths.

e 6.1, I F f Y F T

between ths paths )60, fl in A, and if the paths traced out in X

~——>X 1s a frcc homotopy

by the ond polnts of the interval Is under the homotopy arc donoted

by"z 7 + I —»X, then the product )’} ‘?)Z-l 1s defined, and
o’ 1 S ’ (o1 (1 !

r—.’) A ) < - 1 ¢

s ?o Eal‘}zl (rel 0,1).

-

PROOF: The paths 70, )'(71 arc defined by the cquations

I
9]
A
.

M) = F(o,s), 7 (s) = E(1,8), 0z




-~ 75 -
The given homotopy F 1s a mapping of I_xI, onte X rcpresentcd as

~
5
N

7/

h oA /\Y —_—> X

o |

t
D

a2
) Jo

The pathsWYO and hl are thc paths reprcsentcd by the mep F cut
down to the vertical sides of thc¢ sguare, while fo’ fi
paths represented by F on bottom and top, respoctively. We wish

are the

to construct a now homotopy H represented by a figure

b ¥
lp i f oo {5
7% A<

S’j

where p and g denote the start and the ond of fo, respoctively.
This can be done by defining H as the composite Fo?a, where ?7

is a continugous map Q?: ISxI-_> ISXIt of the square onto itself

t
which carrics the bottom identically onto the bottom, each side
onto the corresponding cnd point . of the bottom, and the top onto
the top and sides. Such & map ¥ mey be constructed as indicated

in the figure.

C DI F D!
YA "
“\\Qé/// N
(6.1) @; . —
/ .\\\ |
A B C'=AT

Bach labcelled vertox is mopposd onto the corresponding primed vertex,

cach segment is shrunk to the cecrrcsponding primcd segment, snd
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each triangle is mapped (in an affine manner) on the triangle
with the corresponding vertices. In particular, the triangle ACQ
is to bc collapsed upon the segment A'C'0' = 4'Q'., The general
principles underlying the construction of such affine maps will
be discussed in the next cheapter.

Ve also need a classification of the homomorphisms of one

group G onto another group. Each (fixed) clement g € G dctermines

the Inner automorphism Cg: G--> G dcfined by the formula
(6.2) C_(x) = gxg —, xe G,

If 1 is the identity element of g, "iG the idsntity zutomorphism of

G, one readily provecs that
-1
)

(6.3) C, =1 C _1 = (C =C_ oC .
1 G’ g1 g '’ 8182 8 82

Furthermore, for any homomorphism f%: G—>H one has

6.4 oC_ =2¢ i G—H

(6.4) b e (Yg)ok P

for (Xo0,)(x) =¥(Cx) = ¥axe™ ) = () trx)(Fa) ™
= 'x) = (C oX & a.
Cb’g(Kx) ( (ygo? ) (x), x & @

Two homomorphisms }}”O, .}’1: G- H are =said to be conjugates if

there 1s en inner automorphism Ck of H such that 2” =C 1 3’ sG—>H.

The formulas (6.3) show at onece that this relation ”)’ is conjugate

to }’1" 1s reflexive, symmetric and transitive. Honce we may say

that ’\fo and )’1 belong to the same homomorphism class gyg of &

into H) if 2(0 and }1 arc conjugate, in this sense. If Cg and Ch

are inner automorphisms of G and H, respoctively, then any X G-—>H

i1s conjugete to the composite Cho\g‘(ng, for
- X, N

C.od oC =¢C oC C.,. .o

h g (Jg) h(¥g)
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by (6.4) and (6.3). 1If 0" is an isomorphism of G onto H, so is any
onc of its conjugsves. In particular, the conjugates of an auto-
morphisnle G— G of U are also sutomorphisms, so that we may speak
of sn automorphism class of G.

. - 2 7
]T'XO,'Xl: G-- H arc conjugates, while ﬁb’ ﬁ : H—=> K ars also,

: 1
. . N F \x’ (? \-}’" o . . "
the commwaites ggouo, 3104;1: G —>K arc also conjugate homomorphisms
of G into ». Hence we may form the oomnositefg‘zo{)"? ={E y |
S ) : ,)l R & |8 (\ OS ? 05 f, o d o )

of the homomorphism classss.,

THIOFEM 6.2, If po and q, are twe points in an arcwilse
connected space i, then the isomorphisms Cu:‘ﬂi(k,po)~¥§ﬂ1(y,qo)
between the fundamental groups of X at these two base points by

classes u of paths from qQ, to 1 arg all conjugate.

PHOOF: Let u,v be two classes of paths from aq, to S The product
Vu-l is & path class from qg to q_, hence an element of’ﬂi(x,qo).
Using the definition (5.2) of the isomorphism Cv one has, for each
x & Wi(k,Po):

1

Cv(x) = vxv_1 = yu “uxu’

-1.-1

1 )

uv'I = (vu_l)(uxu“l)(Vu
=C_ -1(C x).
This cosserts thuot Cv = Cvu“locu is conjugate to Cu’ g.c.d.
Now, if X and Y zre arcwisc connected spasces with basc points
Pos 9, respectively, oanch f3 X-27Y znd ecach path class uw in ¥ from

g to fpo determines homomorphisms

© - £, Cy o
My (x,p ) —%> T (7,0 ) - =% T (¥,q. ).

The compositc homomorphisms

(8.5) ¢ = Cuof*:'ﬁi(k,po)w97%ﬂY,qo) defined by
(6.6) Q?(x) = u(f*x)u_l, X& ‘ﬁi(K,PO)




27
- 29

is called 2 homomorphism induced by £ on the fundumental groups.
By Theorem 6.2, differcent classes of u yicld conjugatc homomorphisms
Qf. Hence f induccs a uniquc class of homomorphisms'ﬂi(x,po)-*_~?

T1(7,a,) -

THEONEM 6.3, If X snd ¥ are arcwise connscted spaces

with basc points Pos 9 respectively, then (freely) homotoonic maps
fo,fl: X—> Y induce the same class of homomorphisms of T

into-ﬁi(Y,qo).

l(X,po)

ﬁ_ﬁ'Y be a (frec) homotopy Fi fofg fl, so that

(6.7) F(p,0) = fo(p), F(p,1) = fl(p). pé X.

PROOFs Lot Fri axl

. . )]
Choose a path from g  to fo(po) in ¥, with psth class u =§/a%.
e ) “ 1 oy = inouce 5 3 fing o .
The nomomocphlsmufo GuOfo* induced by fo is defincd as in (6.8),

for the class of any path‘” from P, to po in X, by
) A ¢ | "12

: ({(jg ::},/a @ /”{ e
(6.3) £if 1 (L o7 ) {
As before, we compound the homotopy © with the map f'to get &

homotopy G: ISXIt»~>Y by

G(s,t) = }:({-\? (s),t) 0gs<l, O 1.

A
o
HA

This homotopy starts «t t = 0, with the path foo§7, and wnue with
the path f.‘lofZ ; for
6(s,0) = ¥(F(s),0) = £ (f(s)), Gls,1) = £ (F(s)).

1
= 1, trace out

m

During the homotopy G the c¢nd points, s = O and
identical paths J, = )/ =¥,
Vi(s) = F(f(o),s) F(p_,s), 0
yi(s) = F(F(1),s)
In fact } is a peth from fo(po) to fl(po). Thercfor@; by Lomma 6,1

il

A
w0
N
=

il
H

F(po,s}.
Y

V4 o 23y ;=]
£of )/(floj’);/
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Hehcc, by associativity

- , -1y -
/a(foof)j,k 1.'.‘! (/aj/)(flof )4 //L 1

The left side ylelds Q?ogffg, as in (6.8). Since/Lgbjdetermines a

path class.w from a5 through fo(po), to T the right side

1Py’
vields the homomorphism
0l - oay PIIICED) (¢l
L= 4 - A - =
GiE) = L™ <o e, (6

which 1s the homomorphism Cwof one of the homomorphisms induced

1%

by fl' Th@nQ? '"Ql, hence they do lie in the same homomorphism

class.

COROLLAKY 6.4. If A,Y,z are arcwise connected spaces

with base points Pos Gy Ty respectively, with maps f: A—>Y,

g: ¥Y—> 4 inducing homomorphisms
i’ 5
TH(%,p, )5 111(’,qo)-~-> TE(A,I'O)

on the fundamental groups, then the composite @’o?ﬁ is one of the

homomorphisms induced by gof.

PROCF: By definition (6.5), Q?axﬁﬂﬂ are given by formulas

@x) = ulrxu x& (%)

-1
Y (y) = vig,y)v ve Tl(Y,qO),
where u,v are path classes in Y,Z frow q, to fpo"xﬁ'ro to g(qo),

respectively. Then

(¥ (x)) = V(g_x_ [u(f_;,\‘X)udJ\/v—l = [’»*(g_x_u)J(g*f,*X) [V(g*u)]‘l,
where g,.u is a path class in Z from g(qo) to gfpo. The product
v(g*u) is thus a path class in = from ro to gfp 5 since4g*(f*x) =
(gf)*x, this formula states precisely that g/o’” is one of the
homomorphisms inauced by gof, q.e.d.
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THEOREM 6.5. If the arcwise connected spaces X and Y

have the same homotopy type, their fundamental groups are isomorphic.

PROOF: The assumption that A and Y have the same homotopy type
means that there are continuous maps

f: X—7Y, g: ¥Y—X
w;th homotopies fog v iy’ gof-2 iX. Choose base points in X and Y,
anc iﬁduced homomorphismsfﬁ,g/ on the corresponding fundsmental
groups. By Coroliary 6.4,§?o¢’is one of the homomorphisms induced
by the identity map; hence (Theorem 6.3),{90W is conjugate to the
idenéity homomorohism i ﬂ;(k,po)m5>ﬂ1(x,po). Therefore Q7<>W
is an isomorphism onto. 7The same holds for ¢/o§9 . It follows

that both%gand.gjare isomorphisms onto.

7. Alternative Description of the Fundamental Groups. 4n

element x of the fundamental group'ﬁ;(K,po) is represented by a
closged path in A, starting and ending at 1 Instead of regarding
this path as a continuous image of a unit segment, in which both
vend points are mapped into po, we can regard 1t as a continuous
image of a cilrcle Sl, in which some fixed point on the circle is
mapped into po. This process yields a second explicit definition
of the fundamental group of a space.

Specifically, take the circle S1 as the set of complex numbers
z = 620 of absolute value 1, and take the fixed point (north pole)
on the circle to be the point z = 1, and consider maps
c}\ : Elme}.. withc)\(l) = po.

We use homotoples F: d Y d_ which keep this north pole z =1
Y O ‘l

fixed; i.e., mapping I': SlxI€~$ A with
=51 -




F(z,0) =d (z), F¥(z,1) =9 _(z2), F(1,t)
o 1 o)
1 . ’ :
for z& S and 9 g t £ 1. This relation of homotopy is reflexive,
symmetric and transitive, so tnat we may speak of the homotopy

]
classes a = {03% of such maps.

The product cﬁ.(g of two such "circular" paths & and ﬁ)in X

at P, 1s defined as indicated oy the figure
A
~
> e —— ){
P
¢

which is to indicate that the upper half of the circle is mapped
”bygA ", the lower half of the circle "by 6’". Fxplicitly, & .ﬁ?

1 _ '

1s the continuous map of S into X defined by

(03 ) (%) = O (218, oce T
7. esal

- (J(ezlom) T<o 277
Then & | -a}\ and()"‘ @) implies o}\ (3’ v s
1 l )
define the product of two homotopy classes:i.ana (‘33§%§°§ @? =

HA

so that one may

59\(7€, wlthout ambiguity. It can then be proved directly that

these homotopy classes form a group under this composition. !

PROPOSITION 7.1. The group of homotopy classes of cir-

cular paths in a4 at po, as described above, is isomorphic to the

fundamental group-nl(k,po).

iie shall exhibit an explicit "canonical isomorphism”, and
henceforth use this particular isomorphism to identify the fundam-
ental group with the group of "ecircular®" paths defined above, This

isomorphism is obtained by taking a standard map m of the unit




interval into the circle, with both end points sent to the pole
of the circle, as follows

m: I st with m(s) = 62718
Then any circular pathd i sl~e-x, C*(l) = p , determines in com-
position a "linear' path f:lg——) A as f =gyom. Furthermore, any
pathf: Is~——> X starting and ending at the point po has the for’mf:
c.om for some @ . Explicitly, defineék(eig) = f(g/zTr) for 0 < ©
< 2ﬂ'3 since f(o) = f(l) = po, there is no ambiguity at the point

A . ;
po. Thus o —> Hom = f defines a one-one correspondence between

oy

linear paths at P and circular paths at po. Two paths c{;,c%l
are homotopio'if and only if the corresponding ?o’ ?1 are homotopic,
for every homotopy F: IsXIE—a X {leaving the end points fixed at po)
can be represented uniquely as
Fo=Fro(mxi ), F': st x I-— %
with a homotopy I'', in terms of the map
min: ISXI£~4)SlXIt.

This correspondenceDk—?f.y&elds the desired i1somorphism.

This argument depends essentially upon the fact that the space
obtained by identifying the end points of the interval IS is homeo-
morphic to the circle; or, more exactly, that the mappings m and

min are identification mappings. (sce appendix).

A useful special case 1s the following.

1
PROFOSITION 7.2. A circular pathd : S —>X withol(1) =

P, & X represents the identity element 1 of Wi(x,po) if and only

rfCK is freely homotopic to a constant map (cf Sl into X).
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PROOF: Ifc\ represents the identity of T, it is homotopic to
the constant map of Sl onto Py by the definition of the fundamental
group of circular paths.
Conversely, supposeCﬂ is freely homotopic to the constant
map 5/of Sl into some point g of 4, and that F: Slxlg—%.x ieg this
homotopy. Then
-1

F(z,0) =3 (z), ¥(z,1) =q, z€ S .
h‘epresento\\ by & linear path , so that o'\om =fﬁ Is— 4. We then
have continuous mappings 4

ISXItE}’Lj;:) Slx_[% X |
Their composite G = bko(mxi), given by the formula G(s,t) = F(m(s),t),
is a free homotopy. It starts, at t = O, with the path f,, for

G(s,0) = F(m(s),0) =c§-\(m(s)) = f(s),
since}?‘g =gyom. It ends with the constant path ‘Eq, for

G(s,1) = Flm(s),1) = q.

Puring the homctopy, the end points of Is both trace out the same
path }Z(from p to q), for

G(O,t) = ¥{m(0),t) = v (m(l),t) = G(1,t}.
Hence by the wanaering base point Lemma 6.1,

é - -

)yﬁgqnlg)”l Lugp'
‘l‘hereforef (andd\ ) repressnt the ildentity in77—1.

1 . s
- The unit circle £ may be considered as the boundary of the

circular disc, D = {all complex numbers, z; |z]| < l% in the complex

plane. An alternative version of the last resualt is

. 1
PROPOSITION 7,3. A circular patha\: 5 — & represents

the identity element of the fundamental group of » if and only if




a\ can be extended to a continuous map hi L-—X.

By the previous result,cﬂ represents 1 if and only if there
is a homotopy I Slxlg——)x with r(z,0) =06 (z) and F(z,1) constant.
Thus F 1s in effect a mapplng into A of the space obtained by
identifying all the points (with t = 1) on the top circumference
of the cylindrical segment SlxIt. This identification space 1is
just the disc L. Epecifically, we may use the map

n: SlxIE——>D with n{(z,t) = (1l-t)z

cerrying the top circumfarenbe into 0, the bottom into the boundary

of s Then any extension hi D—3X ofck to the disc yields a

homotopy ¥ = hon, and any homotopy F has this form, f'or some h.

8. Simply Connected Lpaces. Throughout this section, &

is an arcwise connected svace. Huch a space is sald to be simply
connected if 1ts fundamental group (taken at any base point po)

reduces to the identity. ‘Thus X will e simply connected 1if every
pathA? starting and ending at P, 1s homotopic to the constant path

at DO--holding both endpoints fixed during the homotopy, This

condition can be formulated more liberally.

THEOKEM 8.1, X is simply connected if and only if every

circular path s Sl » is freely homotopic to a constant map.

The proof is immodiate, by Proposition 7.2, A similar applic-

ation of Proposition 7.5 yields

THEQREM B8.3. A contractible space is {arcwise connected

and) simply connected.




X: X—y 4 is

. 1
homotopic to & constant map c. IICK P 8T X is any circular path

PROOF: X 1s contractible, hence the identity map 1

in A, then the composites*% = iXdﬂ\ and cod\ are'freely homotopic.
Bince coé\ is a . constant map of Sl to X, the result follows by
Theorem 7.1.

In particular, it follows that any Zuclidean space is simply

connected. One may also show that a cartesian product of simply

connected spaces is simply connected,

9. (Appendix) Identification Maps. Given a reflexive, sym-

metric and transitive rslation k on the points of a space X, the
quotient space a/k is formed by identification; its points are the
n-equivalence classes { P g of points p in A, the canonical projec~
tion 6?1& the function carrying each point p into its equivalencs
class {p} , and a set V is open in X/k i1f and only if<3—1(V) is
open i; X. we call this map an ldentification map., More gener-

ally any continuous fi: X—)Y is sald to be an identification map

if (&) =Y and if a set V in Y is open in Y if and only if f'l(V)
is open in X.

One has the following "factorization” thecorem.

THEOREM 9.1. If i1 A-3Y is an identification map, and

~

g: X— Z 1is any continucus map into a third gpace z such that

(9.1) f(xl) = f(xg) implies g(xl) = g(xz), X1 Xg & X

1
then there is one and only one continuous map h: Y—¥ 2 such that

g = hof.




PROQF: dince f(i) =Y, any y& Y has the form y = f(xl) for some
X;e We may define h(y) = g(xl); condition (9.1) states that there
will be no ambiguity arising from the choice of x. Also g = hof. B

To prove h continuous, let W be an open set in Zfﬁ éﬁaw§7¥“ﬁh“>rk\“"
h-l(W) 1ts inverse image in Y. Then by the definition of an iden-
tificatiocn space, V is open in Y if and only if

e tw)) = (hof) " H(w) = g'l(W)

is open in A. But g is continuous, so g_l(W) is indeed open in X,
g.e.d.

The mapping m: Ié—% Sl of the llne segment on the circle is
an ldentification map (as used in 8§7). This, and many similar

results, may be derived from the following general theorem.

THEORTHM 9.2. A continuous mapping f: A—>Y of a compact

space X onto a Hausdorif space Y is an ldentificatlion mapping. WHore
generélly, if 1 A—Y, with ¥ Hausdorff, and if there is a compact
subset S of A with f(S) =Y, then f is an identification map.

This result is a generalization of the femiliar theorems that
a one-one continuous map of compact space onto a Hausdorff space
is a homeomorphism.
PROOF: Ve need only show that 1f A is a subset of Y such that
f-l(A) 1s open in X, then A is open In Y. Take any point a € A,
and some polnt x & X with f(x) = a. For each point 8 in S with
f(s) )’é A there are disjoint open sets Vs Wy in Y with{lg € Vs’
a.é'WE. The f'l(VS) are open sets of X; these sets, together with
the open set f'l(A), cover S. Therefore S is covered by a finite
number of them, say £ 1(A) and r“l(vsj),‘j =1,...,n. The set
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Wo= Ws/\ ...ﬂ\l‘fsn i1s open in Y, and a& W. 1If we can show that
WC A, it will follow that A is open in Y. But if W< A fails,
there is a point y in W and not A. &Since f(8) = Y, there is a
point s of € with f(s) =y. Clearly y ¢ i’—l(A); hence s must lie
in one of the sets f*l(VS.); Therefore y = £(s) 1is in one of thé

J :
sets Vg , & contradiction to the fact that y& W W

J J

|
{ - 38 -
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Chapter 2

POLYHEDRA

10. Affine Geometry. For the purposes of algebraic top-

ology, it is convenient to consiaer spaces which can be built up
from a finite number of points, intervals, triangles, tetrahedra,
etc. Such a space wlll be called a polyhedron, and the triangles,
tetrahedra, ... from which it is constructed will be termed
simplices.

Let E be a Euclidean space; that is, a vector space over the
field KR of real numbers in which each pair of vectors p, q deter-

minesa real number (p,q) as inner product, with the usual proper-

ties
Symmnetry: (pya) = (q,p)
Linearity: (xp + yq, r) = x(p,r) + y(q,r) =x,y€ R, p,q,re E

Definiteness: (p,p) 2 O, (p,p) = O if and only if p = O.

/2

The number |[p| = (p,p)1 is the norm of p, and T 1s a metric
space with respect to the distance function f%p,q) = |p-qf. In
particular, L may be the n-dimensional space with n-tuples

p = (ag, ., a,), aq= (bl’ coe, bn) of numbers a.

i bi in K as

its vectors, and with inner preduct
Alternatively, E may be a Hilbert space.
Yie wish to study the affine geometry of B; that is, the

geometry in which the position of the origin is neglected. More
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exactly, if Z and E' are two Zuclidean spaces, r' a vector in
E', and T a linear transformation of & into T! then the trans-

2

formation At E-—) E' defined by
(10.1) Afp) = T(p) + r', p & E

is called an affine transformation. Thus an affine transformation
1s a linear transformation T, of £ into E', followed by a trans-
lation in E', by the fixed vector r. The composite of two affine
transformations is again an affine transformation. The trans-
formation A is non-singular if it is a one-one transformation of
B onto L'; this will be the case if and only if the linear trans-
formation T is non-singular. when thls is the case, the trans-
formation inverse to 4 is also an affine transformation. In
particular, the non-singular affine transformations of E onto E

constitute a group, the affine group of F. The affine geometry

of & 1s the study of properties invariant under the affine group.
If © is finite dimensional, any affine transformation A
B—3' 1s continuous, for A is the composite of a linear trans-
formation T and a translation p'—-——Dp' + r', and each of these
functions is continuous.
The midpoint of the segment Joining two distinct points
Pys Py of L is the point q = (l/2)po + (1/2)pl. The operation of
forming the midpoint is invariant under affine transformations
A, since A(q) i1s the midpoint of the segment A(po), A(pl). More
generally, the point g dividing the segmént Pos Py in the ratio

(1-t):t is the point q = ¢ p, + (1~t)pl. As t varies through the
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real numbers, g traces out the line joining pO to pl. In other
words, any point on the line has a unique representation as
q = xopo + xlpl, with scalars Xy Xy such that X, + xl =1, We
call the scalars (xo, X1) the barycentric coordinates of q relative
to pO’ pl o

A line, plane, hyperplane of E (not necesgsarily peassing

through the origin) is called an arffine subspace of E. MNore

exactly, a subset § of & is an affine subspace if it contains

with any two points the line Joining those points; that is, if
po,pl<§ S implies tpo + (1-t)pl ¢ S5, for any real t. Ir Pos +oes

R, are m+l polnts of E, the intersection of all subspaces con-

m

taining DPys svey 1 1s an affine subspace, culled the subspace

.

T s

spanned by po’ “res By

For two points po, pl‘of % the Segment joining P, to pl is
the set of all points tpo + (l-t)p1 for each t with O stzgl.

A subset C of L is convex if it contains with any two points

s

p p. &ll points of the segment joining P to pl. The inter-

o’ 1
section of convex subsets of & is & convex subset, hence we may
agaln speak of the convex subset of & spanned by m+l given points

po, c ey pm.

PROPOSITION 10.1. The affine subspace & of & spanned

by m+l points Pys +++, By consists exactly of those points p of
& which can be represented as linear combinations of the form
(10.5) p :xolao + * e +)$rl}':;n’ xo +X1 + s e +Xm = l'

The convex subset C spanned oy Pos +ee, Rn consists of «ll points
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X, 29, 1 =0 ..., m.

Both results are proved by the same argument. We first show
by induction on m that every such point ¢ lies in S (or C, if all
Xy 20). Form=0, p= p,€ £ =C. Form =1, ,pis in S (or
C), by the definition of a subspace (convex set). For m > 1, set
t = Xg t oo Xm—l
Otherwies X, = 1-t, and the point

. If t =0, then q = 1.pm is in € and C.

| / ’
(10.3) p (xo/t)pO + ... + (Xm~l/t)pm—1

lies in S (or in C) by the induction assumption. HFurthermore

i = 1 - = -
(10.4) p tp! + (1 t)pm, % 1-t.

Hence p lies in S (or C) by-definitaon.
Secondly, the set of all points p of the form (10.2) con-

stitutes an affine subspace. For if

(lo.b) r = yopo + ... + ympm yo+y1+...+ym = 1

1s a second such point, and t is any real number, then
RLC
tp + (1-t)r = = [tx, + (1-t)y.]p.,
= 1 T
where the sum of the coefficients is wrain 1. The same argument

applies, mutatis mutandis, to show that the p's with Vi 2 O con-

TN A
stitute a convex subset. 0T e

/

If & i1s an affine transformation of & onto o', then for each

point p of the form (10.Z2) one has
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=
\a2

1

. = X (A +0'o
(10.5) A(p) koApO * X AD) + xmApm

Indeed, this result is immediate for a linear transformation,
while for a translation A(p) = p+r by a fixed vector r in the

space E one hses

A(p).= (z__ x3p3) + 1 = (2 xyp,) + (=7 xy)r

S o mn e

> Xi(pi"'r) = Z____ XiA(pi)

————

as required. It follows that an affine transformation carries
affine subspaces and convex subsets of E onto affine subspaces
and convex subsets of L', resprectively, a conclusion which can
also be deduced directly from the definitions.

The sequence p , ..., Py of m+l points in E 1s said to be
o

affine independent if the vectonzpl—po, ooy pm—pO are linearly
independent. For an affine transformation A as in (10.1) one
has Aps-Ap = Tp.-Tp = T(p -p ); hence & non singular affine

o i 0 i o
trensformation carries affine indepencent points into affine

independent points.

PROPOSITIQN 10,2. The sequence Pos *o» pm is affine

independent in E if and only if every point in the subspace
spanned by p_, ..., P has a dnique representation (10.2) in

terms of sesy P
PO, s Py

PROOF: Suppose first that the points are Independent, but that

some point p in the subspace has two representations p = E: Xipi

N

> x'p., both with > x; = 1= > x!'. Then x'=-x = (x

- i1 e - i o o

«os + (xm-x'), and the zero vector has a representation
m

-x') +
1%
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o m
O =3 (x-x1)p, = 5 (x_-x)p. - (x'-x )p
=0 i1 i=T i 0 o0 "o

Since the vecton;pi-po re independent, we conclude that xi = x!,

for 1 =1, ..., m. Eince Xo =3 - (xl+...+xm), we also have

Xy = Xé’ The representation (10.2) is thus unigue.

Secondly, suppose that the points po, ceay pm are affine

dependent. Then there is a linear relation > ci(pi-p ) = 0 with
— o

some coefficient, say C1» not zero. By division, we can assume
¢, = 1. Then
Py = “CoPom nn —cmpm + (c2 + ... + cm—l)po,

a representation in which the sum of the coefficients is 1. But
pl has a second representation as pl = l.pl, hence the represent-
ation (10.2) is indeed not unique.

In the definition of affine independence, the first point
p_ played a special role. Since however the criterion for incep-
endence stated in Proposition (10.2) is independent of the order
o' the points pi, it follows that the cencept of independence does
not depend on the order.

Vhen the points po’ ooy pm are affine independent the
scalars Ko ooy X appearing in the representation (10.2) of

points in the subspace spanned b- po, <oss P, aTe calle d the

barycentric coordinates of q relutive to Do vy pm. Note that

any m of these coordinates determine the remaining coordinate,

in virtus of XO+.,.+x = 1,

Jal




An inductive criterion for affine independence may be given

as follows.

PROPOSITION 10.5. If points p ,...,p are affine
' o m
independent, and q is an additional point, then Pgsre+sP ,q &re
affine independent if and only if q docs not 1lie in the affine

spece spanned by po,...,pm.

PROOF: If g lies in the affine spece spanned by Pos++esb s then
q = E: xipi; thus, with g = 1.q gives two representations of q
in terms of po,...,pm,q; hence these points are dependent. Con-

versely, if the points p ..,pm,q are dependcnt, the vectors

o*"*
- - - l Xe 1Y ) E;“ S

Py=Pgs +ees Py po’ o} p, are linearly dependent. ince the first

m vectors here are indenendent, there 1s a relation q~po =

xl(pl—po) + .. xm(pm-po), which gives a representation of q

as q = (1 - > X;)pg + > X,4p,, With i = 1,...,mi Since the sum

of all coefficients is 1, tnis states that q lies in the affine

space spanned by po,pl,...,pm.

THEOREM 10.4. If the affins independent points Pys+eeD

an affine m
span / subspace & of E, then for any m+l polnts qo,...,qm in a

second Luclidean space E! there is one und only one affine trans-
formation A of S into E! with'A(pi) =q;, 1 =o0,...,m. This
transformation A: S-—E' isg dontinuous, end maps & onto the sub-
space S!' of E' sgpanned by PRI Ir qo,.,.,qm are also affine

independent, A is a homeomorphism of S to S'.

PrOOF: Because of the explicit formula (10:5), there can be at

most one such transformation. To show that one exists, let L be
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the linear subspace (of dimension e¢ither m or m+l) of E spamned
by the vectors po,...,pm of é. Since pl-po, e, pm—po are
independent vectors of L, there exists a linear transformation

Ty L—L' with T(pi—po) =d;-q . Let r be the fixed vector
0

qO-TpO in E', and define the affine transformation 4:i L-——L!' by

the eguation Ap = Tp + r, for any p in L. Then, for i > 1
D, = ¢ -0 + +r = .- + + =
Apy = T(py-p *p )*r = (q;-q ) + Tp +71 = q,
while Apo = Tpo + r = TpO + qO - Tpo = qo, so that A is the
desired transformation. Bscause L is a finite dimensional vector

space, T and hence A (cut down to S) is a continuous transformation.
If the q's are also affine independent, there is a second contin- .
uous affine transformation B: £'—3 S with B(qi) = pi. The com-
poslte AeB 1s then the unique affine transformation £'—>S' with

(AeB)q, = qi,‘hence AoB, and likewisec Boh, is the identity.

i
Hence A asnd B are homeomorphlsms, and A—l = B.

COROLLARY 10.5. If p is a point in the affine subspace

S spanned by mtl affine independent points Pos*+sPps then the
assignment to p of its i-th barycentric coordinate (%(p) = X is

a continuous mapping Ga of 5 into the reals.

PROOF: The maoping Ei is identical with the atfine mapping A of
S into the reals with A(py) = 1, A(pj) =0 for j # i.

By using the mapping A into Luclidean m space with A(po) the
zero vector and A(pi) the i-th unit vector (0, ..., 1, ..., 0)

we also prove
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CONMOLLAKY 10.6. The affine space S spanned by m+l affine

independent points Pgs +e0s P 1s homeomorphic to the m-dimensional

m

™

Huclidean space E under an affine transformation f(37 x3p;) =

(xl, ooy xm). Consequently the topology of S is determined by
the metric
C(> XD, ;moy p;) = [(xl—yl)z + ool + (xm-ym)zjl/z-

e have chosen to develop affine geometry, assuming vector
geometry. It 1s possible to give an indevendent definition of
an afiine space S over the real number;n?or that matter, as over
any field F. One procedure would be to assume in the space & as
primitive operation the formation of the welghted mean xopo+x1pl,
with x +xl = 1, of any two points P, and Py s subjecting this
opération to the appropriate algebraic laws. In this sense any
affine subspace S of a Euclidean space L is (taken by itself) an
affine space. An affine space S spanned by mtl affine independent
points has dimension m; as in the case of a vector space, this

dimension does not depend on the particular choice of a basis

po’ * ey, pm-

1l. Simplices. An m-dimensional affine simplex 1s a set

determined by m+l affine independent points po, eesy, P in a
m

Zuclidean space E. The open affine simplex

(11.1) S = < Py erey B >

consists of all points of E which have positive barycentric
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coordinates relative to Pys +e0, D

s i.6., all points p of E of

the form

It

P = xopo+...+xmpm, Xy > 0, xo+...+x 1.

The closed affine simplex

(11.2) 5 = [P s +ees p I

is the convex subset of E spanned by Pos eves S it consists of
all points of the form

= +vc'+ .
p XoPo mem’ X5

v

+. .0 = 1l
o, X, +xm 1

In particular, a zero dimension simplex (closed or open) is a
point, a l-dimensional simplex is a line segment, and a 2-dimen-
slonal simplex is the interior of a triangie (with the boundary,
1f the simplex is to be closed).

Since the function ({(p) = X, asslgningtop its i-th bary-
centric coordinate is a continuous function on the affine
space S spanned by the pi,vthe set of points of & with x> 0

(x;

1 2 0) is an open (closed) subset of &3 therefore s, as the

intersection of a finite number of open sets, is open in &, and
s is likewise closed in S. If we regard S as a Ruclidean space,
as in Corollary (10.6), S is contained in the bounded subset of
5with O £ %, <1, 1 =1,...,m. Hence any closed simplex § is
a compact (metric) spuce. Note that an open simplex s is open

in?its space S but not necessarily in the whole Euclidean space;

for example, a point is an "open" simplex.
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The closed simplex 8 is the closure of s in 8, &and the open
simplex s is the interior of & (1.e,, is the largest open set of
S contained in . Indeed, any closed subset of S containing s
clearly contains s. On the other hand, 1f V is an open subset
of & contained in E, and if some point p of V has éi(p) = 0, then
V must contain the inverse image under G% of some neighborhood of
z6ro, hence must contain points with negative i-th barycentric
coordinate. Therefore V open and VC s implies V¢ s, and s is
the interior of s.

The simplex s or s, given in a subset of an affine space,
determines uniquely the set {po, ceey pm} of its vertices. Indeesd
a point q of s is onc of the vertices if‘and only 1f, for every
pair of points Ty ry of 5, the line segment joining Ty to rl
contains q if and only if q = roor g = rl (proof as exercise).,

Any subset of the vertices Pos wovs P determines an (open)
simplex t called an open face of s = < po,,..,pm >. Thus s itself
i1s one of the faccs, and the remaining faces have lower dimensions.

A face t of dimension n is thus a simplex

t = < pio’ pil, ¢ 00y pin>, io’ il’ * 40y in distinct;
1t consists of all points > X3Py with x; > 0, k = J,...,n and
——— K .

the remaining ¥y = O. The closed simplex s is thus the union of
all the open faces of s. Closed faces are similarly defined.

e repeatedly use alfine maps of one simplex into another.
Given two closed simplices

s=1p, «voy |, B =la, ..., o]
0 m o} n
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in the same or different Spaces, and a function f which maps each

vertex pi of s to one of the vertiGCS/q;\F f(pi) of s', we may é

construct, by Theorenm 10.3, the affiné‘ﬁap of the space spanncd
by the p;y into the space spanned by, the % with A(pi) = f(p,y).
This map induces g continuous transformation

foi s —3 3!
of the first closed simplex into the second. If £ maps the
vertices p onto the vertices q, then f* also carrios the open

simplex s into the opeén sglmplex s'; in general f

22,
"

maps the open
simplex s onto an open face of s', FPor ¢xample, one may in this
fashion construct s map "collapsing" an n dimensional simplex
upon one of lower dimension. On the other hand if m=n and f is

& one-one mapping, then £+ is defined, (f'l) = (f,) 7, and f,

!,
s
ot

is a homeomorphism. Hence any two closed m-simplices are homeo-

morphic. The same result holds for open simplices.

A polyhedron P is a finite set of open simplices S1s Sg, e
all in the same affine space, such that
(1) s # sy € P iﬁplies 84 /¥82 =g (the simplices ares disjoint;
(ii) if s € P and t is an open face of s, then t ¢ P.

The topological space assgociated with the polyhedron is the union

[p| = L_J s

Se P
of all the simplices of P. By (1) every point p of |P| belongs
to exactly one of the simplices 83 we call this simplex the
carrier of p.

If s € P, we say that § is one of the closed simplices of P.

Since each closed simplex s is the union of the open faces of S,
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and all these are included amongst the simplices of P, we may

[P =L” B

s¢é P

also write

Thus |P|, as the union of a finite number of compact sets s, is
& compact set (and is closed in the affine space in which P lies).
The dimension of P is the largest dimension of any one of its
faces.

If two simplices s and t of P have two common faces u and v,
then every vertex of u and every vertex of v is a vertex of s;
hence these vertices taken together span a simplex w which is a
face of s (and of t), and which hés u and v as faces. Thus if
s and t have any common faces, they have a "largest" common face
w, of which all other common faces u are faces. 8ince each closed
simplex s is the union of the faces of s, the intersection of two
closed simplices s and T of P must be the union of their common

Taces; i.e., the closure of the largest common face. Hence

(1') The intersection of two closed simplices sy, 52 of P is

void or a closed simplex of P which is a facc of both El and EZ'

In the presence of condition (11), the requirement is equi-
valent to condition (i) of the definition of a polyhedron.

Indeed, given (i'), disjoint simplices sy and s, are such that

2
51N 85 1s a common face W. Unless th:s face is identical with
El and Ez, it 1s a proper face of one of them; so that the open
simplices sy and S5 are disjoint, as required by (i).

Lach simplex s deturmines by itself a polyhedron P{s) con-

sisting of all faces of s. Clearly [P(s)] = 5.




1l2. Barycentric Subdivision.. The barycentric subdivision

of a line segment 1s obtained by dividing it at its midpoint;
the barycentric subdivision of a triangle is the set of six

triangles into which the triangle is cut by its medians.

i \\ '
ge%»/// o ON\kla)
(Sl \\ \3 lo x;)/,/\\
~ = N
Y ,/’///i‘\\\\\_ \\\
S 1, N\
o h(e1) 1

Here ©(01) denotes the midpoint of the segment joining the point
O to the point 1, and similarly b(012) denotes the centroid of

the triangle 012. In terms of the barycentric coordinates, the

medians have the equations x = x X = X, and x. = x_ in barv-
© q o 17 % 2 1 2 J

centric coordinates, so that the six 3-simplices of the subdivision

are determined as follows.

< 0,b{(01), b(012) > , Xo > X > X5 > 0,
< 0,b(02), b(012) > P Xy > X5 7 Xy > 0,
< 1,b(01), b(01l2) > , Xp > X, > X5 > 0,
< 1,b{(12), b(012) » , Xy > x> ox > 0,
< 2,b(02), b(o12) > , Xg > X > %9 > 0,
< 2,b(12), b(012) » | Ky > Xq > x> Q.

Lach point of the original triangle is either a point of one of
hese open 3-simplices, or a point of one of the 12 open 2-

simpllces in the subdivision, or a vertex of the subdivision.
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We may describe the simplices appearing in this subdivisiorn
inductively as (i) all the simplices t appearing in the subdivision
of the three edges, (ii) all the simplices obtained by adjoining
the vertex b(012) to the simplices t, (iii) the O-dimensional
simplex b(012). |

In general, let

1 + ...+ 1
(12.1) b(po, teey, D ) = ﬁ;ipo E;Tpm

m

denotc the barycenter (= center of gravity) of the m+l affine

independsnt points Pos +oes pm. Tlils barycenter does not depend
on the order of the by, SO that we may also call it the barycenter
b(s) of the simplex s spanncd by Pos s pm. In particular,
the barycenter of a vertex is that vertex.

Every point p of the open simplex s liss on the segment
joining thc barycenter b(s) to some point g on one of the (proper)

faces of s; that is, any p & < Pgs +++s P > is e¢ither b(s), or

can be uniguely rcpresented in the form
{12.2) p =yq + (1-y)b(s) s 0= vy<1,

with q on some proper face of s. Indeed, lst p = > x,p,, pick

i71
the smallest (or one of the smallest) barycentric ccordinates X

set y =3 (Xi'xk)' Then, since > x, =1, y =1 - (m+l)x ,

1
i y 3 o Q = { -
and since X, is positive, O <y < 1. B8et zi VX4 Xk)/y, for
each 1 = 0, ..., m. Then >_ z; =1 and
P =z XDy TV 2 23D, ¢4 > Dy

]

— — 1
y(zZ zyp,) + (1-y) 7w P1 = ya + (1-y)(s)

S N U




k, L pm>'

spanned by the vertices Py» with p1 omitted. ‘he representation
<

where q = > z,p, belongs to the face < Bgs +vvs D
i

1s unique, because q and y determine the 24 and hence ths X -
If P(s) is the polyhedron consisting of all the faces of

an m-dimcnsional simplex s, we define the first barycentric sub-

division P(s)' as a polyhedron with [P(s)'| = [P(s)]| = s, by

induction on the dimension m, as follows. If s = < Py > is a

vertex, P(s)' = P(s) consists only of that vertex. If s =

< po, rees B>, with m > O, then P(s)' consists o: the following

simplices

(1) The barycenter b{s) (a O-dimensional simplex)

(11) Every simplex t appcaring in the barycentric subdivision
of any proper face of s

(1ii) The simplices < t, b(s) > obtained by adjoining the vcrtex
b(s) to any simplex t obtained in (i1).

In other words, the subaivizion is madec by subdividing the
boundary and joining all these simplices to the barycenter.

To justify step (ili)‘of this construction, observe that t
1s contained in the affine space spanned by one of the (m-1l) faces
< po, caas ﬁk, vees P> of s, while the¢ barycenter b(s) has a
positive coordinate in pk, hence is not in this space. Thus b(s)
and the vertices of t are affinc independent, according to
Proposition 10.3, =0 that the simplex is well defined.

lBy the construction, it is clear that any face of P(s)' is
1tself one of the simplices of P(s)'. t.e must also show that
[P(s)'] =8. Since § is convex, any segment jolning a point q

of a simplex t to the baryccnter b(s) is contained in 's; hence




1
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i

[P(g)'] C 5. Conversely, any point p of & either is a point of
some propef face of s, hence lies in one of the simplices t of
(ii), or is a point of s. In the latter case either p = b(s),
or there is a unique repressntation (12.2), in which q must be a
point of some simplex t in the barycentric subdivision of the
boundary. Then g lies in the corresponding simplex < t, b(s) >
of (1ii) above. The simplex of P(s)' to which q belongs is thus
uniquely determined, and hence the simplices of P(s)! are dis-
joint. It follows that P(s)' is a polyhedron.

mach simplex t of the baryecsntric subdivision P(s)? is con-

fained in a simplex s, of P(s), of dimension at least that of tf
This is immediate for the simpiices (i) and (11i) above. If the
simplex t of (1ii) is contained in the simplex 84 of the sub-
division of the boundary, then the new simplex < t, b(s) > is
clearly contained in the simplex < sy, b(s) > of P(s)!,

By induction we also observe that the n-dimensional simplices
of P(s)' can be described explicitly as follows. Taire simplices
Sgs »ees 8, OF P(s), each a proper face of the next, and form

the simplex
(12.3) t = < b(so), b(sl), caey b(sn) >

This is an n-dimensional simplex of P(s)', contained in Sp» and
all simplices of P(s)!' havs this form. In pvarticular, it follows
that all the (n+l) ! m-simplices of P(s)! may be found as follows.
Take any permutation oy e+ % of the vertices Pys +ees P of
s, and form the simplex




- EE .
919 ggtaita, Q HGy e u ok
(12.4) u = < s 5 , ...9._3...1.._2 1Ty Fe - o¥q .

2 .no’ m+l

Alternatively, we may say that the vertices v of P(s)!' are all
barycenters b(sl) of faces 81 of s, that these vertices are
partially ordered by the relation b(sl) < b(sz) if and only if
81 is a proper face of Sos and that <« Vos Vis e, v, > is a
simplex of P(s)! if and only if Vo < Vy < ... < v, in the partial
order.

Since 8 lies in a metric space, we may define the mesh of §

to be fts diameter, and the mesh of the subdivision P(s)' to be

the maximum diamcter of any onc of 1ts simplices. A basic result is

THEOKEM 12.1, If s is an m-dimensional simplex, then

mesh (P(s)!') §_ﬁ§1 mesh (s).
The proof depends on a Lemma.

LoMMA 12.2. The diameter of a(closed) simplex

8 = lpo, oy pm} 1s the diamester of the set of its m+l vertices

—~

r -,
Y Doy eney pm‘f.

PROOF: If p and q are points of s, with p = > XiPs the dis-
) .
tance ( (p,a) is given by the nomm |p-q] of the vector p-q. By

the triangle law

lp=al = [ 3" x40, -~ q] = | 5T %3Py - (2 %4 )a
= 122 x3(pi-a) | & (%, (py~a)|
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Using a similar expression q = >_ yjpj we find [pi~qf < Hax|p
J
Hence |p-q| = Hax [pi-pjf. This maximum is by definition the
l:j )
diameter of the sct of m+l points po, sees Do Since the maximum

(

is attained for some pair of points p, q of E, the result is
established.

To compute the mesh of P(s)' we thus nced only determine the
maximgm diameter of the set of vertices Qg s (qo+q1)/2, .y

(qo+...+qm)/(m+1) of one of the simplices (3). WNow, for example,

lay = (agtay)/2] = (1/2) l2q, - (a +q )| = (1/2) |a,-q,]

lag = (ag*a;+ay)/3] = (1/8) [3q, - (qgta;+a,) |

1
< (1/3) (lag-aq| *+ la,-a 1) = (2/3) Mix {qo~qil-

In general, for the i-th and j-th vertices of (3), with O < i

HA

j < m, onc has

[(1/141) (g +...+qy) - <1/3+1>(q0+.-'+qj>!

- 1 ~ - ceata) |
= T (3+1) (ap*eatay) = (141) (qgt. . otay) |

The first sum involves (j+1)(i+l) terms Ggs v e sy of these,

q, occurs i+l times in the secend sum , and these terms cancel.
Thers remain j(i+l) differences, and Dy the triangle law, the
result is then

J(1+1) Max -Qe | = e Mesh
= IFD(3+0) x4 qu QXJ ( J+1 ) M SICVYRERPL ERE

Since j g m, the factor j/(j+l) is at most w/(m+l), q.e.d.
The barycentric subdivision P' of any polyhedron P is defined

to be the sct of all simplices occurring in the barycentric sub-

i'pj".
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divisions of simplices of P. The mesh of a polyhedron is the

lurgest mesh of any one of its sinplices.,

THEOREM 12.3. The barycentric subdivision of 2 poly-
hedron P is a polyhedron P' with [P'| = |P| °nd of the same
dimension m zs P. Each simplex of P! is contained in & unique
simplex of P, of the same or larger dimension. If P has dimension

m,

mesh P' <« I mesh P.
= m+l

The only item requiring explicit proof is the stutement that
distinct simplices ty, t2 of P! ure disjoint (required if Pt is
to be o polyhedron). But tl, t2 occur in the subdivision of
simplices 815 85 of P, und a?e therefpre contained in faces
Ty ry of S1s 8o, Teéspectively. If ry # LA they are disjoint,
hence tl C r, «nd t2Cr2 cre disjoint., If ry = r,, then both
tl ond t2 occur in the subdivision P(r)! of the scame simplex
r = ry of P, hence they ure disjbint, by the faucts 2lready estub-
lishcd for P(s)'. '

The n-th barycentric subdivision p(n) is formed by iteration.
Because of Theorem 12.1, we c:n 2lways find, for given P, o bary-
centric subdi#ision with mesh less than any prescribed positive &€ .

Ve presently necd the followingigeometric fuet.

LoviA 12.4. Let t be sn (m-1)-simplex in a barycentric

subdivision of P(s)(R) o an m-simplex s. Then eithon

(1) tC s, and ¢t is = f.cc of exactly two m-simplices of P(s)(n)
or |

(11) t C:sl, where 8y is an (m-l)‘fuce of s, :nd t is o frce of

exactly one m-simplex of P(s){(n),




‘n
>
t

Geometrically, it is clear that a simplex t will either be
"inside" s, in which case (i) obtains, or on the boundary of s,
in which case (ii) holds.

In any ¢vent, t is contained in Some face of s of at least
dimension m-1, so that we have either t < s or t C sl. The other
agsertion we prove by induction on n. For the case n = 1 of the
first barycentric subdivision, the (m-1)-dimensional simplex t
of P(s)' is dctermined as in (12.3) by m simplices s, 51C: -
< Sy of P(s), cach properly contained in the ncxt. If Eﬁ-l
does not contain all vertices of s, it omits exadtly one vertex
dpps and §

t = < aqg, (qo+ql)/2, veey (qo+...+qm_l)/m > C 8p-1
is & face of exactly one m-simplex of P(s)!, naxnely, of the
simplex foracd by adjoining the vertex (qo+...+qm)/m+l to t.
we thus have case (ii) of thce Lemma. On the othsr hand, if Em—l
contains all vertices of s, then tC ¢ and exactly one of the
sir'ripliceslsk has two verticecs more than its predecessor, so that,

after suitable labelling of verticos

84 T < Qg, eeey qi > i=0,...,k-1,
Sj = < qo, LY qj+1> j =‘k{,-.-,rﬂ’ll

In particular the (k-1)st and the k-th vertices of t are
LLC P LICPPERETL NET L HPL NIy
If t is a face of some m-simplex t' of P(s)!', then t' must be
obtained by adding exactly one new vertex to those of t. This
vertex can be cither
b(qo,...,qk) or. b(qo,...,qk_l, o}

k+1’°
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Thus t € g, and t is & face of exactly two m-simplices of P(s)!',
s assertecd in case (i) above.

Suppose now that the result has bsesen estgblishcd for

P(s)cn'l), and let Uy, «+. be the m-~simplices in P(s)(n_l).

(n)

o9
Zach (m=1)-simplex t of the next subdivision P(s) occurs in
one or more of the subdivisionsP(uk)'. Then, by the rcesult already
establb§pcd for a single baryccntric subdivision, we have either
Case 11 ﬂ% C:uk, and t is a facc of two m-simplices of ?(uk)'
Case 2: t contained in some (m-1)-Tface Wy of uk, and t is a

face of exactly onc m-simplex of P(uk)'.
If the first casc occurs, U is the unicue opcn simplex of P(s)(n‘l)
containing t. Since Uy is m-dimcnsional, uKCZ s, hence t C s,
and we have case (i) of the Lemma, with t on two m-simplices of

P(s)(n);)P(uk)'. In the second casc, the (m-1)-simplex Wy of

containing t is uniquely determincd. By the induction
(n-1)
Ed

P(s)(n_l)

assumption, w, may be a facc of two m-simplices W, u of P(s)

1 %
or of just ong, u - Under the first slternative, t is a facc of

onc m-simplex of P(uk)’ and of one m-simplex of P(ql)', and thus

(n)

is a face of two m-simplices of P(s) . PFurthcrmore, t Clwl,

ch: s, hence t < s and we have case (1) of the Lemma., Under

the sscond clternative, t C w, and wlCL an (m-1)-face of s, and

1
we have case (ii) of the Lemma. ‘.e¢ mnust only obsecrve that whencver
t is a face of some m-simplcx v of P(s)(n), then this m—simplexf,
will occur in one of Cascs 1 or 2 above. DBut v must then arisec
from the first subdivision of somsc uk; sincc 211 the faces of v

also occur in thoe subdivision, t must occur amongst them.
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13. The Brouwer fixed point Theorem. Any topological space

which, llke the carteslan product of m closed intervals, is

homeomorphic to a closed m-simplex s is called a closed m-cell.

To illustrate the utility of the barycentric subdivision, we
shell establish the Brouwer fixed point theorem for such cells.

THEQRZM 13.1. Any continuous map £ of the closed m-

cell into 1tself has at least one fixed point p, with f(p) = p.
The proof depends upon the Sperner Lemma.

LCMMA 13.2. Let s be an m-simplex, and g a funetion

mapping each vertex v of the barycentric subdivision P(s)(n)
into a vertex g(v) of s, in such a fashion that, for each face

s. of s,

1
v ¢ s, implies g(v) = a vertex of s_.
(n)

Then there is an m-simplex < Vs wees V. > of P(s=) such

that g(vo), ceo, g(vm) are the vertices of s, in some order.

For the proof, we will say that a k-chain in any polyhedron
P is a formal linear combinsation
c = tl + tz t ..t Yy
of k-dimensional simplices ti of P, with coefficients integers

mod 2. The bounuary of a k-simplex is the (k-1)-dimensional

chain given by the formula

(15.1) ®<qo, . o0y, qk>=_?~—-<q0’ LU '] ai’ v 08y qk >’
1

where the @i indicates that Qy is to be omitted.
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(n) to those

The given function g on the vertices of P(s)
of P(s) determines a mapping (also called g) of the k-chains of
P(s)(n) into those of P(s). This mapvoing is defined for a
simplex of P(s)(n) as

B < Vs evey V> = < Y, BV s ees gv, > or O

according as the vertices Vs eoey gv, _are distinct or not.-
k

The mapping g is extended to chains by linsarity. The property
(13.2) ag c = g&c

1s basic. 8Since bothfa and g arec lincar, it suffices to prove
this for the case in which the chein ¢ is a simplex t =
SV, o Ve >. If gt #0, the pfqof is immediate by the def-
Inition of the boundary operator. If gt = 0, thon two vertices
gvy and gvj of s are identical; in this case the terma i and b
in gd t caﬁcel, and the remaining terms are zero.

Now let c = tl + ... + P@ be the m-dimecnsionsl chain of
P(s)(n) congisting of all the m-simplices in this polyhedron.

Then gc is en m-dimensional chain in P(s); since there is only

one m-simplex here, we must have
13.3) c = &< ceesp >
(13. g pO’ .vt?m

whe re E is O or 1. If we can prove that E,= 1, we are done,

(n)

because then at least one m-simplex ti of P(s) must have
gti # 0, and in fact gti = 8.
The proof that & = 1 is by induction on m. Form = 0 it

is trivial. Assume it truec for(é:g:ib and observe that

<
t \

e\
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de =btl+3t2+ “.+BQ*
consists of (m-1)-simplices u of P(s)(n). The numbosr of times
a simplex u appears herc is exactly the number of m~simplices
of which u is a face. By Lemma 12.4, this number 1s 2 (= 0)
if wC s, and is 1 when U is contained in one of the (m-1)-
dimensional faces of s. Thereforc oc is exactly the formal sum
of all the (m-1l)-simplices occurring on the faces <po,,..;§i,...pn>

of s. Thersfcrc, by the induction assumption we have

E

g dc =

N

A
< v v ¢ s >
po’ ,pi, ’pm

e
O

On the other hand, by (13.3), (13.2) and the definition of the

boundary, we have
m

e aand
oot

"

- -~
gd c=2gc=£€5  <p RS JREEN IS
1=0 © m

Hence & = 1, q.¢.d.
Now to prove the Brouwer Theorem, consider any continuous
map fi s-—8, and write, in barycentric coordinates
f(xopo+. . .+xmpm} = YoPg +., .+ympm.
Then T3 is a continuous function of the point p = E: X41Py of s.
Let Ai denote the closed set of all points p of the simplex for

which y; £ %x,. Since >y, =3 'z

i = 1, every point p belongs

i

to at least one of these closed sets Ai. It will suffic< to

prove that
(13.7) BgNVA LA A O,

for any common point p all 4; must have ¥; £ %X, for all 1, hence

i
Vi = X3, SO that p is fixed under the mapping f.
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We have

(13’8) < piO’ pil,lau, Pik > < Aiou Ailu .'.. UAj’-k,

for if p is any point of the simplex here displayed, then its

coordinates satisfy

so that at least one of the coordinatéé"wﬁj of f(p) 1s not larger

than the corresponding Xy e
J

Now assign to each vertex v of P(s)” a vertex gl{v) = Pys
in such fashion that the cérresponding set Ai contains v In
particular, if v is containéd in a proper face (13.8) of s, we
take care to choose pi as one of the vertices of that face.

Then g satisfies the hypothesis of the Lemma. The conclusion

asserts that there is an m-simplex t = < v ..., Vm > such

O,

that g(vo), ‘oo, g(vm) are the vertices p,, «.., P,+ Thus each

set Ai contains at least one point of the closed simplex ¥, and

for each point r of t we have

f%r,Ai) < Mesh p(s) (™) , 1=o0,...,m.

Fecall that Mesh P(s){?) -0 as n—wm.

For each barycentric subdivision we can have such a point
r; in the corresponding t. If en infinite number of the points
r  are equal (say to ro) tlien the distance from r, to the
closed sets Ai is less than any pfescribed £ > O,'henbe r, & Ai
for each 1 and (13.7) holds. If there are an infinite number
of distinét points r » 8ll in the ccﬁpact'metric spacé s, they
have & limit point r_, end for this limit point the same result

obtains.
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The same argument proves the following Lemma, due to

Knaster, Kuratowski and Mazurkiewiczs

LEMMA (K, R&M). If Fo’ «es, P are m+l closed sets
covering the closed m-simplex § in such fashion that for each

face

then F NV ...NF_# #.

14. Simplicial ilaps. The advantage of using simplices

rather than cubes or other types of convex cells as building
blocks for polyhedral spaces lies in the fact that a simplex is
determined by the set of its vertices, and that every affine
map of a simplex is determined by the images of the vertices
under that map.

DEFINITION: If P and § are (affine} polyhedra, a continuous

map f: [P|—>|G] is sald to be simplicial if £, restricted to

each closed simplex s of |P|, is an affine map of S onto some
closed simplex of Q.

In order to formulate the sense in which such maps f are
determined by the images of vertices, it is convenilent to
replace a polyhedron P by i1ts schema V(P), which is the combin-
atorlal object consisting of the set V(P) of all vertices of
(simplices of) P, in which a set of vertices {po,...,gng is
called a frame of V(P) if and only if they are the vertices cof
8 simplex < Pys +++s Py > of V. The schema of V(P) is an absts

ract simplicial complex, in the sense of the following definition.

e BB -
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DEFINITION: An gbstract simplicial complex (ask) V is a

finite set of objects v, w, called the vertices of V, together
with a co;iection of sets S =_{vo, ooy Vm% of these vertices,
called the frames of V, subject to the conditions

(1) Any subset of a frame of V is a frame of V

(1i) The set{:vg consisting of any vertex v of V, taken by

itself, is a frame of V.

If 8, T are frames of V, the inclusion relation S < T may
be read "S is a piece of T".

The schema of a polyhedron is always an ask; conversely,
every ask V is isomorphic to the schema of some affine poly-
hedron P. Indeed, we may replace the finite number of inde-
pendent vertices v of V by the sare number of points p in a
suitable affine space so chosen that all the points p are affine
independent. Then whenever S = {vo,...,vH;% is a frame of V,
the corresponding points {po"'°’pm§ are affine independent,
and thus span a simplex s = < DosereaPy >» The set of all
| these simplices constitute a polyhedron P, for by condition (ii)
above any face of such a simplex is again a simplex of P, while
each point of the affine space has at most one representation
Xfpj by barycentric coordinates in the given independent

J
ints, hence belongs to at most one simplex of P. Thus P

S’

satlsfies both conditions in the definition of a polyhedron;
its schema 1s manifestly isomorphlic to the given ask V.
i A somewhat sharper result can be obtained. If we define

the dimension of V to be the largest integer n such that V has
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a frame with n+l points, then we may choose the polyhedron‘P
sbove to lie in an affine space of dimension 2n+l. Ior example,
a graph (polyhedron or ask of dimension 1) can always be realized
by rectilinear sezments in 3-dimensional space, although it is
known that 2-dimensional space does not always suffice, as in

the case of the graph consisting of all the edges jolning five
distinct points in all possible ways.

in (abstract) simplicial map @ : V—>W of one ask into

another is simply a homomorphism of the algebraic system V

into the system ¥W; that is, it is a correspondence which assigns
to each vertex v of V a vertex @@ (v) of W in such a fashion

that any frame of V is mapped into a frame of %W. Also, @ is an
isomorphism if it is & ons-one map of V into W, and its inverse
is a simplicial map. [he composite of simplicial maps is
simpliclal,

The main result on =simplicial maps 1is

THEOREM 14.1. Any abstract simplicial map @:

V(P)—>V(Q) on the schema of two polyhedra induces a unique
simplicial map @3 |P|-—>[Q] for which Qg*(p) ={0 (p) for
every vertex p of P. Lvery simplicial map f: [P|-—>}q| has the

form £ = Q?* for some (unique) abstract simplicial map Q?.

Wwe have already employed a few simple such meaps Q?* in
the construction of homotopies; e.g., 1in proving the lemma
about the wandering base point.
PHOOF: For each simpleX § = < Pg,...,p, > of P the vertices

Q?po, eo ey prm of G are the vertices of some simplex T of G,
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possibly with repetitions. There is a unigue affine map
4 5% with A(py) = Q?(pi) i=o0,...,m. Define @i [P|—2]Q|
by putting together these various affine maps; i.e., set Q?*(p)
= A(p) whenever the point p lies in the closed simplex s of P.
No ambiguity 1s induced, for if p liles in two closed simplices
8 and Ez, it lies in their (greatest) common face and the two
affine maps 4y in El end A, in 85 agree on this common face,
since they have the same effect upon the vertices of the face,
Thus Py carries the set |P| into |Q|, and it 1s continuous in
each of the closed sets s, which together cover |P|. By the
previous continuity theorem (262 notes, Theorem 10.1), it
follows that QQ* is continuous.

Consider now an arbitrary simplicial mep f: |P]—>]%].
By definition f carries each vertex (O-simplex) of P onto a
vertex of Q, hence induces a map @?in the verticea of V(P) to
those of V(§). Each closed simplex 5 = |p_, ..., p,| of P is
by assumption mapped onto some closed simplex T = {qo,...,qnf
of Q. Since the q_j are the only vertices of Q lving in E, cach
one of the vertices p

5 must be carried by f iInto some qj; hence
Q)carries the vertices of a simplex s of P onto vertices of a
simplex of C. Thus(? is an (abstract) simplicial map of the
schema of P to that of Q. The continuous map ¢y induced by &

is affine on each simplex of G, and agrecs with f on the vertices;

hence (7, = f.

COROLLAKRY 14.2. If two polyhedra P and Q have iso-

morphic schema, their spaces are homeomorphic, under a simplic-

ial homomorphism.

e N e = B8




PROOF: The isomorphism Q?aV(P) """""" >V(g) between the schena
and its inverse Q?-la V(¢) —3V(P), induce. continuous maps

@ 4i 12l—>1al, (@ M), |9l—> [P, and @u (@Y, = 1dentity
= (\':L-l

h&q?;y by the unigqueness assertion of ths theorcm.

The last argument here depsnds implicitly on the proposit-
ion that abstract simplicial mappings Q?: V(P)-->»V(g) and
%’: V(&)—>V(R) on the schema of polyha:dra P, &, R induce

simplicial meps with (¢@) ':'t{)-:e' ff%.

15, Nerves of Covcrings. hs snother example of an abstract
rves of ple

7
simplicial complex, consider any covering5q of a topological

space X by a finite number of non-empty sets Ai,

i

X o= AU U

1
(The case of a finlte open covering will be especially useful).
By thenerve N(CIZ) of the covering(yzwe mean the ask in which
the vertices are the sets Ai of the covering, and in which the
vertices A~i‘o, cony Aim belong o a frame ofN(U?) if and only if
the Intersection of the corresponding sets is non-empty
Aioﬂ ...fiAim # gD .

Any subset of these A's then has a non-void intersection, hence
a subset of a frame is indeed a frame, as required in the def-
inition of an ask.

If £ X—Y is a continuocus map, cach coveringijzof Y by
sets Ai determines a éovering f‘lCQz of X by the inverse image
gsets f-l(Ai),'which will be open 1f the sets A, are open. If

f 1s a map of A onto Y, intersecting families of sets on Y are
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carried backwards into such on X, hence in this case f iqduces
an abstract simplicial map Q?: N(J7) —4>N(f-1(02)) on the nerves,

An important instance arises~ﬁith polyhedra P. If p is any
vertex of P, the star of p is the union

St{p) =>_ s, P a vertex of s

of all the open simplices of P which have p as vertex. The Star
of p is an open set in P, although the open simplices s need not
be open in P. 1Indeed, the complement of St(p) 1s the union of all
cpen simplices t of which p is not a vertex. iwith each such t, |
every face of t 1s also one in which p is not a vertex. Thus the
complement P - St(p) is the union of the closed simplices T, which

are closed in P, hence is closed. Therefors St(p) is open in P.

THEOREM 15.1. The nerve of the. covering of a polyhedron

[P| by the stars of its vertices is an abestract simplicial complex
isomorphic to the schema of P, under the correspondence sending

sach St(p) into the vertex p.

PROOF 3 By the definitions, the conéluslon amounts to the

asserﬁion that, for distinct vertices PosesesDPys
St(py) f'.../7“t (P ) A¢ ir and only if <p,,...,p > € P,

If the starsdisplayed have a point p in common, the simplex s of
P containing this point must lie in each St(py), hence must have
each p; as one of its vertices, The vertices_po,,,.,pm are thus
those of some face of s..

Conversely, if t = < po,...,pm > 1s a simplex of P, this
simplex is contained in cach.St(pi) hence these stars have a

nonvv01d 1nte”sectlon.
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A similar closed covering of a polyhedron may be defined by

the barycentric stars. If p is a vertex of P, the barycenpric
star Bst(p) 1s the set defined as the u#ion of all those closed
simplices t of the first barycentric subaivision P! such that p is
one of the vertices of t. This star Bst(p) is therefore a closed

subset of [P],

THEQOIEM 15.2. Ths barycentric stars of the vertices p

of a polyhedron P constitute a closged covering of the space |P}.
The nerve of this covering is isomorphic to the schema of P, under

the correspondence p-abst(p).

PROOF: Every point x of |P| is contained in one of the open

simplices
t = < b(so), ...,b(sn) >
of P', where s,,...,s, are simplices of P with EOCLn..CZEn.
Either So 1s a single vertex p of P, and in this case the closed
simplex T appears in the barycentric star of this vertsx P, or we
may choose p to be onc of thc vertices of So» and form the (larger)
closed simplex
u= < p, b(so), coegy b(sn) >
of P'. Then x € t C u, and U is part of the barycentric star of
p. Hence these stars cover |P].
To show the asserted isomorphism on the nerve of this cover-

ing, we nevd only prove, for any vertlces Pos ++e, Py of P, that

Boplng) 1 .o ﬂast(pn) £ @ if and only if < Pose+++sPp > € P,
Indeed, if < Pyse++yPp > = 8 1s a simplcex of P, then its bary-

center b(s) is a poinbt on sach closed simplex Ipi, b(s)] of P,
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and this simplex is contaiﬁed in the barycentric star of p;.  Hence
these barycentric stars have the point b(s) in common.

Conversely, it will suffice to prove that B st(p )C: St(p) for
then a collection of barycentric stars has a non- void 1ntefsectlon
only if the corresponding open stars do. To prove Bst(p)C: St(p),

consider any simplex

Ip, b(sl), voey b(sn)f
in the barycentric star of P:. Any point x of T is covered by some
open face u of t, with last vertex b(si), and this open face is
contained in the open simplex 84 with p as one of its vertices.
Then x & u < s; € £t(p), q.e.d.

16. The Plaster Theoren. We now turn to some additional

theorems proved by the generul type of method used for the prouwer
fixed point theorem. P"irst some properties of coverings of compact

metric spaces.,

Lok 16.1. If F), ..., F_ arc closed sets in a compact
metric space X, with
COEN AR =y
(16.1) FLOF, F,o=#
then there is a positive number ¢ > J such that any point of X has

distance at least ¢ from some one of the sets Fi.

PROOF: For each i and each integer m let U, ¢ be the open
H
subget of X conslisting of all points x of X with distance from
Fi greatcr than 1/m (the set Um 5 i1s open because the distance
1

function ( (X,Fi) is continuous), Since the intersection (16.1) 1is

empty; e¢very point x of A has positive distance from at least one



of the closed sets Fi’ henee must lie in at least one of the sets
Um,i' In other words, these sets constitute an open covering of
X. Because X is compact, a finite number of scts Um,i will then
cover A. Let ¢ be the minimum value of 1/m occuring in any index

of this finite covering., This ¢ has the required property.

LEMMA 16.2. If Fl’ oy Fn are closed sets in a compact
metric space X, then there is g poglitive number 4 > 0 such that,
for any point x ¢ X and any subcollection Fel,...,Fem of the ¥'s,

F(XfFej) <d, jJ=1,...,m implies Felf7 v f?Fem £ d.
Also, if a subset A of A of diameter less than d mecets each of

I«el,...,Fem, then F 71 ... A For £ 2.

PROOF: For gach list Fhl,...,th of sets Fi with an empty

intersection I f?th = @ we may choos¢ a positive number
1 .
¢ > 0 with the property stated in Lerma 16.1, for this list. There

are but a finite number of such lists; choose d as the minimum of

’ D
the c's which arise. Then if ('(X,Fe,) < d the sets Fy_,...,F
' J 1 ®m

cannot be one of theses 1isté, hence have a non-void intersection.

The alternative conclusion is immediate, for any point x of A is

at distance le¢ss than d from a point of 4 in Fej, J=1,...,m.
These lemmas lead up to

0,
THEOIEM 16.3, If M = ?(Ul,...,Un % is a finite covering

of a compact metric space X by open séts-Ui, there is a positive
number d > 0 such thsat Gvery subset of X of diameter lcss than d
is containecd entirely within one of the sets Uy .

The conclusion of-this Lewma asserts, in a preciss fashion,

that the open sets Uy must "overlap" if they are to coverp X,



PHROQF: Let Fi =X - Ui be the complements of the sets Uy

of the covering. Since ths U] cover X, it follows that Fl/1 Ve

e Fn = #. Choose ¢ as in Lemna 16.1. If a set AC A has dia-

meter less than ¢, and is contained in no one set U, of the

i

covering, then A meets every sct T and a point x¢ A is at

i’
distance less than ¢ from every Fi’ in contradiction to the con-
clusion of Lemma 16.1.

The least upper bound of all the numbers ad having the

property expressed in this theorcm also -has this property. This

y
number is known as the Lebesgus number of the coveringii~.

COROLLARY 16.4. If 4 is the Lebesguc number of the

0
open coveringﬁ( » then for each point x £ X we may choose UiéEZ(

/’\

such that x # Ui and ﬁf(x, A-Ty) 2 a/2.

@
s

js :
LV N

P

& Rt Lo
('a o X

The order of a finite covering (L = Gl""’cng

P

,}\ = Cl !_/ * e &..j Cn
of a space A is defined to be the maximum number k such that
some k+1 se¢ts Ci have & common point. Thus the order of @ is

exactly the dimension of the neorve of 6?.

THEOREL 16.8. (The Lebgsgue Plaster Theorem). If P

is an n-dimensional affine complex, there cxists a number d > 0
such that any closed covering of |P| by scts of diameter less

than @ has at lcast the order n (= dimension of P).

PROOI':t Since P consists of a finite number of gimplices,
of which at lsast onec is of dimension n, it suffices to prove

the theorem for tho case of an n-simplex S. For the (n-1l)-dimen-

T



sional closed faces T, ..., T of § choose & number d as in
. °
Leuwma 16.2. Now let‘i

Ciy evey C be any closed covering of

{
r)
s, with each C, of diameter less than d. The (n-1)~dimensional
faces of s have no point in common; hence, by. the choice of d,

no sect Ci can meget every closed face t,. Let A, be the union
: : ' J

3
of all thc sets Ck which do not mest Ej’ but which meet every
Ei’ for 1 < j. Then the closed sets AO, oy An contain all the

sets C, and hence cover s. -Since no point of T, is contained in
' ' . J

(EE} we must have

.8 A U see VAU ov UA .
I Yo j n

Let u = < p; , cen, Py > be any face of 5, and j any index
o : ' »

diffcrent from all the subscripts 1 appsaring here. Then u is

contained in T,, hence cannot mest Aj; for each such j. Theresfore

J .

el BRI

< p e s 0 p,-> - o U ¢ v 0 UIX‘. .
o7 77 iy o 1y

This 1s the hypothesis of the KK¥ Lemma. Wwe conclude that

Aofq - fon # J. Any common point hsre is a point. common to
n+l distinct sets C of the given covering, q.e.d.

A converse assertion is

LEMMA 16.6. If,P:is an n-dimensional affine complex,
then for cach positive-E there exists g closed (or an opcn)
finite covering of P of order n in which each sct has diameter

less than &

o

PROOF: Take a sufficiently fine barycentric subdivision of

P. The covering by open stars of vertices In this subdivision

’P(m) 1s then an open covering with the required property, while
(m)

the covering by closcd barycentric stars of verticcs of P is




a closed covering with this same pronerty, for the nerve of

(m)

¢ither covering is isomorphic to the schema of P » and hence

of dimension n.

THEOREM 16.7. (Brouwecr dimension thecrem). If m s n,
then buclidean n~-space contains no topological image of a closed

m-gsimplex,

PROOF: GLuppose to the contrary that f 1s a homeomorphism

of the m-simplex s to a subset of E_ . The image f(s) is a com-

pact and heince bounded subset of En; it is thsrefore contained
in a sgultably large closed n-simplex T of E . &ince fx 5%
and its inversc are uniformly continuous, we may choose for each
£ >0 a 5-> 0 such that cvery set of diameter less than é.in t
has its inverso image of diemeter less thsn £ in s. Take in
particular a closed covering of T (say that by suitable closed
barycentric stars, Lemma 16.6) in which the sets have diameter
¢s8s than(ft. The inverse images of the scts of this covering

cover E, have diameter less than &€ , and form a covering of order

n < m. This contradicts the plaster theorcm.

The dimension of a compact metric space X is defined by
the asssrtion that dim(X) < n if and only if X has closed cover-
'ings of arbitrarily small mesh and order < n. Lemma 16.6 and
Theorem 16.5 asscrt that a polyhedron P with dimension n (defined
as the maximum dimension of the simpliccs of P) has topological

dimension n in the sense Just defined.
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17. £ESimplicial 4Approximetion. The reduction of the study

of continuous maps to the study of abstract maps depocnds upnon

the following definition of approximation.

EFINITION: If P and Q are polyhedra, and f: [P|—>|G] is
a continuous nép, then an (gbstract) simplicial map QV: V(P)—>v(Q)

is called a simpliclal approximation of £ if and only if, for

sach vertex p of P,
(17.1) £et(p)) € L6(€ (p)),

Note that the continuous wmap f between the spaces of the
polyhedra is "approximatcd" by the abstract homomorphism & between
the gchema of the polyhedra. Wwe may replace this dcoscription

by one in terms of the simplicial mapQ&<~ induced by Q’.

CLEMMA 17.1. The map @ is a simplicial avproximation

to f if and only if, for each point r ¢ |2] and cach{open) sim-

plex t of @
(17.2) f(r) & t  dmplics (¢ (r) £ T.

In other words, thc two continuous maps f, Q?*: [P} —> %]
must be such that any clossd simplcx oi  containing the f-imagc
of a2 polnt &lso contains the Q?% image of that point. In par-
ticular, the distance from f(r) to Q?*(r) is less than the mesh

of g, and in this sense the two maps are not far apart.

PROOF: For each point r of |[P| we have simpliccs s in P,

"t in ¢ with
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(17.3) ré€ s = < Pos tevy Pp > f(r)é ¢t =< Ags +oes Q >

Also r & St(pi), i=o,.+.,m and f(r) ¢ St(qj), j=o0, +ve,n, and
these are the only stars in G containing f(r). The mapping @7
must carry the vertices P,s +-+» P Of 5 to the vertices Q?pog
""C?pm which are (possibly with repetitions) vertices of a

simplex of Q. If r 1s expressed by barycentric coordinates, then .

ME

r = >=O Xipi’ > Xy = 1, X > 0, i1 =0,...,m.

l,-l

Since the simplicial map (éﬂ, is linear on s, we have
3

- m >
(17.4) Yooy =3 5, s,

3 z
i=o

Now suppose that @ is a simplicial approximation to f, as
in (17.1). For each r &€ |FP|, as abéve, r & St(py), hence by
(17.1) f(r) € L,t(Q?(p ) Since St(qi) are the only sgtars con-
taining £(r), by (17.3), each @(p;) is one of the qj, and (17.4)
assserts thst Qa*(r) lies in the convex set spanned by Gosesesqys
ie., ?9*(r)t5 T, as required in (17.2).

Conversely, suppose that (17.2) holds. If p is any vertex
of P, and r» & £t(p), then p is one of the py of (17.3), say P
By (17.4), the open simplex u of § carrying Q?*(r) has the vertices
Q? Pglssee Cp(p )s By (17.2), u must be a face of T, Lence the
vertices Q?(pi) must be among the qj. In particular, Qo(po) is
some qj, and therefore f(r) € t C St(qj) = St(Q?(po)), as required
in (17.1).

From the definitions one may rsadily show that if maps

s+ |[P|—>]a] and g: [G])-—>|k| have simplicial approximations
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-~ 7c
@ w(r)—>v(Q), VV: V(C¢) —>V(R), then the composite e, is
a simplicial appreoximation to gof.
As an 1llustration we cite the following instance of =

simplicial &approximation to the identity.

LEMMA 17.2. If P' is the first barycentric subdivision

of a polyhedron P, and_QVEV(P')w~§V(P) maps each barycenter b(s)
of a simplex s of P into one of the vertices p of s, then.q7iﬁ

a simplicial approximetion to the identity map of |P'| to |P].

PRKOOF: We must first observe that & is indeed an abstract
simplicial map. Any open simplex of P' has the form

P

e ™

t =< bls,), b(sy), «.0y b(s ) >, sS4 a face of sﬁgigm S

n

and 1s contained in the'open simplex 8, of P, Under ¥7the vertices

of t are all mapped into vertlces of s hence—@7is simplicial,

n,
Furthermore, the star of the vertex b(s) in P! is the union of
all simplices t above in which b(s) occurs, and each of these
simplices t < Sn is contained in the star (in P) of every vertex

of s. Hence

st(b(s)) C St(@(n(s)).

This asserts, according to the definition (17.1),,that(?7is a
simplicial approximation to the identity.
Yie now spccify more carefully the sense in which the

. "mr 1)
"affine" map ¢, approximates to f.
Ed

THEOREM 17.4. If @ v(P)—>v(Q) is a simplicial

approximation to fi [P|-->]|Q|, then there is a homotopy F: fG!C?L:

o

S . DLy £ O
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|[P| -—>|Q}. For each point r & |P| with £(r) in an open simplex
t of @, the image of r moves durihg the homotopy in the closed

simplex t.

PROOF: we must define a mapping I'i |P|xI —|%|. For cach
[P| the points f{r) and Q?*(r) lie in one and thc samc closed
simplex t of . For cach value of the parameter u, 0 < u g 1,
we then set
F(r,u) = (1-w)fir) + ud (x), e Fn
in other words the limage oxff(r) mnove s at unlfOPm speed along

the segment joining f(r) to H?*(r » at the start of the homo-

topy F(r,u) = f(r); at the <nd, i(r,1) Q?"(r) Fufthermore,

'F is continuous because £ and Q?* are, and the process of forming

the welghted average is continuous. ‘[his homotopy satisfies
all the stated conditions.

fie now turn to the construction of simplicial spproximations.
It is convinient to speak of an ordercd polyhedron P--a polyhedron
in which the vertices have been so partially ordered that the
vertices of any one simplex are lincarly ordered. (Any lincar

order of the vertices will do this.)

THEOREY 17.5. If P anu & are polyhedra and f a map

of |P| to [g], then £ has a simplicial approx lmatlon*t V(P)

»V(g) if and only if the image under f of c¢ach star of P is
contained in at least one star of . when this is the case, and
Q is ordercd, there is a unilgue approximation & satisfying the
condition that, for each vertcex p of P, Q?(p) is the first vertex
of ¢ such that

(17.5) £(st{p)) C st(F(p))
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PROOF: By the definition (17.1), the condition cited is
necessary. oSuppose conversely that this conclusion holds. Then
the description by (17.5) above defines Q?(p) uniguely for each
vertex p of P, This map @ will be an approximation if it is
simplicial. ' But if p,,...,p, &rc vertices of an mrsimplex of
P, then ’

St(po)/7 St(p;) ... /?St(pm) f ?.
& point X in this intersection must by (17.5) lie in every
St(Q?(pi)). Hence the intersection of ths latter stérs is
‘non-empty, and the vertices Qy(pi) must therefore be vertices of
& simplex of ¢ (possibly with repetitions). Therefore @ is
indesd simplicial.

Using the order in §, we may specak as in Theorem 17.5 of the
simplicial approximationﬂ¢7to £, when it exists. . If R is a sub-
polyhedron of G, and f cut down to |i] already has its unique
simplicial approximation %/; V(K)—>»V(g), the approxihation f on
V(P) must therafore be an extension ol the approximationi# .

A simplicial approximation can always be found by subdivision,

as follows

THEOREM 17.6. If P ana § are polyhedra, and f: ||

—3|%] is continuous, therc exists 3 repeated barycentric sub-
. (n) . . . s .
division P( )of P such that f has a simplicial approximation

@ s vy v,

PKOOF's Let ¢ range over the vertices of . Then the open
sets St(qg) cover |Gf; hence thelr inverse images f'l(St(q)) are

open sets covering |P|. Let £ > 0 be the Lebesgue number of




3

this covering of the compact metric space |[Pl. By repeated
barycentric subdivisiqn, we can find P(n) with mesh less than
£/2. fThen the diametor of any star of p(n) is less than § ,
hence any St(p) in p(n) is containsd in some f'l(St(q)). This
gives at once the necessary condition of Theorem 17.5.
One may also verify easily that if
£ Pl laf, & |al-—>|8]
have simplicial auproximstions :
@ vip) (), Wi V(q)—>V(R),
then the composite %’%7 ie a simplicial approximation of the

composite gf.

18. Calculation of the Fundamental Group. Simplicial

approximations rcduce the determination of the fundamental group of
the space of a (connected) polyhedron P to a strictly algebraic
problem, dcaling with (@ finite number off "¢dge paths" in P.
An edge in the polyhedron P is a symbol E = {(pa), whefc
P = q is a vertex of P, or p and g are the verticos of a l-simplex
of P. Call p the start of E, q the gnd of Z. An edgc path L
in P is any finitc formal product (or string) of edges El,...,E

k

in P such that the cnd of cach Ei 1s the start of Ei+l’ for

i=1,...,k-1. Then L has the form
(18.1) L = El...nk = (popl)<p1p2)°"(pk—lpk)’ Py ve?tlces of P.
This cdge path L starts et Pys ths start of El, and ends at Py

the end of Ek. Tho product Lit of two ©dge paths ig formed by
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juxtaposltion (string the ¢dges of M behind those of L) and is
defined if and only if M starts where L ends. Two edge paths
L, L' are ggual if and only if L' can be obtained from L by a

finite numbsr of certain rational moves; sach move consists in

replacing the edge path on either side of the following

equation by the cdge path on the other sidec:
(18.2) L{pg) (gr)il = L(pr)M

provided p, g, r are (not necessarily distinct) vertices of =
simplex of P, Hore L end I denote arbitrary edge paths in P,
which may be various; the move can be applied only when the
product exhibited on one side of this cguation is known to be
defined, and this insures that the product on the other gide is
defined, The single rule (18.2) can be sent into second cases,

according to possible egualities botwesn p, g and r, thus

Eogit )

(18.53) L{pq) (gr)¥ = L{pr)u, .<par > € P,
(18.4) L(pg)(qp)i = L(pp)i, < pg > ¢E P,
(18.5) L(pp) (pa)¥ = L(pq)i, <pq>€P,
(18.8) - L(pa)(ga)¥ = L{pqg)u, <pq>¢€Pp,
(18.7) L{pp)(pp)M = P.

L(pp)M! <po> £

If L = L' and ¥ = M', an¢ LM is defin.d, then LM = L'M', hence
the prodﬁct of c¢dge paths 1s well defined under this equality.
It is trivial to verifly, with this multiplication and ¢quality,
that the edgc paths in P form a groupnoid In particular, the

edge paths starting and cnding st a fixed vertox Py of P form a
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group, the cdge path group é(P,po).

The samc definition will yicld the edge path group ff(V,po)

of an abstract simplicial complcx V. Ixactly as in the case of

the fundamental group, any edgc path.N from P, to a sccond vertex

1 of E(V,po) onto

q  of V will yield an isomorphism L'——>NL‘N_
E_(V,qo), and the isomorphism i1s unique up to conjugates.

If Q?;v-waw is a simplicial map, the definition @ (pq) =
(Q?p,i?q) yields & map which carriss cach cdge of V into an edge

of W; since & carrics framcs of V into framcs of VW, this induces
’ .

2 homomorphism
(18.8) @ v EV,p ) (4, @p )

on the appropriate edge pat@ groups.

mech edge path L from Ps to pk in a polyhecdron P determines
an ordinary or continuous path class ?hL in |{P| from po to Py
This path class may be describcd as that homotopy class which
contains the path which follows the edges (l-simplices) of I in
succcssion. ZIZxplicitly, let & = (pgq) be an edge in P, rcegard
the unit interval I as (tho spacc of) a polyhedron I with its
¢nds O and 1 as the two verticssy construct the simplicial map
A 3 I—?P with A(Q) = p, A (1) = q and thu corsrcsponding affine
map Ags |I]—>]P|. Then A, 1s a path in [P| from p to g, and
7&(:) is defin.d as the class of paths homotopic (rel 0,1) to

c%%- For s product of edgcs, define ,&(31...Ek) as /l(El),..

N
Ihis mapping /. carries c¢cgual odze. paths into the samec

(continuous) path classes, for if p,q,r arec the vertices of a




r

A

5
struct that simplicial map (F, : IxI —>[P| which carries the
vertices of this triangulation intc the labelled vertices of P.

This map is clearly a homotopy of 7\(pr) to )x(pQ);k(qr), corres-

b P

V4

2 homomorphism of

ponding to the cdge path eguality (pr) = (pq)(qr) of - (18.2).

By its vsry definltion, the mapping A.is
the edge path group of P at By into the fundamental group at po.

The bpasic rcsult is

THEORSM 18.1. The mapping A described above is an

isomorphism of the cdge path group of P at P, onto the fundamental

group of the space [P| at the base point p_:

N e -
ki Z(P,p )e— TP, po )e

The proof depsnds ﬁpon simplicial approximations, and uses
an auxiliary result. Let I be the unit interval, regarded as
a polyhedron, I, the polyhcdron obtained by subdividing I inte

k equal intervals. Lot the vertices of the polyhedron P be

partially ordercd.
3
LEMMA 18.2. If G 2 V(I)-?V(F) then

Cg 2 |I]—>|P| has a simplicizl approximation ?7: V(Ik)**>V(P),

is simplicial,

7 . (3
and %7* represents the same ¢dge path as Ci=° In particular,

so is Qpﬂ.

if cg* is a constant mapping,
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PKCOF: The given (%maps the ends 0, 1 of I into vcrtices
p, g of P. If p # q, we may assume (say) that p < q in the
order of the vertices of P. The interval I is subdivided by
points i/x, i=o,...,k. Since {2% carrics I linearly onto |pql,

the star of each intorval subdivision point i/k in I, is the

k
open intcrval for (i-1)/k to (1+1)/k, hence is contained in the
star of p in |P|. Thus the unique simplicial approximation Q?

must map 1/k into p, for 1 < k, and 1 into g, and rcpresents

ads
<

v

k-1
the cdge path {(pp) (pa) = (pg). If p = q, qycarries gach

vertex of Ik into p.

Return now to the prcof of the theorem. e first show

that R,is a homomorphism onto ‘Ui( o1, p. ). Let & I—|P]

o
be any path at the basc point Po in the spacec |[P|. Regard I

as the space of a polyhedron with verticus O, 1 and l-simplcex

< 0,1 >. By the simplicial approximation thecorem, there is a

m)

(2 .
subdivision I of I and a simplicial approximation Q7 s V(I

(m))

.+ The end

-8

-—»V(P) toch ; furthermorc, <\ is homotopic to q?%
point O of I has image c%(O) = po contained in the O-simplex

< Py > of P; during thc homotopy it does not leave the closure
]pol = < pg > of this simplux; hence it stays fixed during the
homotopy. The same argument applics tec the endpoint 1. Hence

o) ¥ Q?* (rel 0,1). The path class of o, is thus the path class
of Q?.

x» and the latter is clearly the A_-image of an cdge path
(composed of o edges arising from the 2" intcrvals in the

subdivision I(m))

\‘
Next we show that A is an isomorphism into. Let L be an

cdge path with ;L(L) the identity clsss. If L = Eq...E., )\(L)
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is by definition representcd by a path A in |P| which ariées
from a simplicial mapping of the subdivision of Ik into k equal
intervals Into P. Hence there is a homotopy F: I, = IV"“%IP[
which starts (v = 0) with the path & and which onds (v=1) with
the constant map into po. e now subdividc the square Iu X Iv
first by (k-1) ecqually spaced horizontal and vertical linss into
smallcr squarcs (this to match the subdivision already given on
the base Iu) and then into morc cqual smaller squares, so small
that the diameter of the 1mage of any such sqﬁare under F ois
less than half the Lobesgue number of the covering of |P| by
its barycentric stars. If cach such squarc is cut into two

triangles by a diagonal (sue figure) we can regard the saguare

AN it it it . Y

A gl gl

| 4 N
Al___ ™R ~.C ) Sl

Iu b4 Iv as the spscc of a polyhudron § with all the trianglces

(end their facess) as simplices of 4. 1ho given homotopy b3

v

f«| —>|P| then has & simplicial approximation.?pz V(L) —>V(P).

On sach:of the four sidvs of the square the map /. must, by

Lemma 18,2, represent the same cdge path as did ¥F. In particular,

~
sincc F maps top and leteral sides to P,» SO does Q?un and Qﬂ

on the bottom must ropresent the given cdge path.
The given edge path L, represented by the simplicial map-

ping on the bottom of the squarc, can now be eltcred successively




over each triangle of the square (figurc above) as follows
ABCDH —?A'BCDH-—— L'B'BCDH—> A'B'CDH ...
—> A'BIC'D'H! — AWBIC'D'H! —> ..,

nach of thuse alterations rceplaces one edge of a simplex (pgr)

of P by the other two cdges, or vice-versa. Henece, carricd out

-1n succession, they show that the given edge path L is cqual,

in th¢ combinatorial scnsc, to the idontity path (popo)ﬂ This
complctes the procf of the Thoorem,

If P is a polyhedron, we 1ot Pk dcndte its k-dimcnsional
skelcton, that is,” the polyhedron whose vertices azre the vertices
of P, and whose simplices ape 21l simplicos of dimension at most

k in P. A simplc argument will show

THEOKEM 18.3. The space of a polyhedron P is.connestcd

if and only if the onc-dimcnsional skeleton P1 of P has thc
following property: any two vertices of Pl can be joincd by an
¢dge path in Pl.

To definc the cdgoe path group one necd only know which
pairs of vertices in P belong to l-simplices; to define cquality
wo must also know which triples of vertices belong to tWo sim-
plices. The cdge path group of P, and hence the fundamental
group of |P|, thus depend only on the two-dimensional skeloton
P2. %“ithout using the «dge path group, onc can prove dircctly,”

by the techniquc of simplicial approximation:

THEOHSM 18.4. Lot P be a connueted polyhedron, Pl and

P2 one- 4nd two-dimensional skeletons, i3 [Pl[-wa[P{ and 1513 ]P2{-9
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|P| ths continuous maps given by the ldentity transformations.

Then, for any vertex Py of P, i induccs a homomorphism of

1
771( fPll,.po ) onto 7Ti( [P}, 1 ), and 15 induccs an isomor-
phism of

TR B0 ) T T (2l b, )

The cdgo path group E:(P?po) gctually dcpends only upon
the schema V(P). Much as in ths case of thc fundamental group,
one can prove algebralcally that the edee path groups at two
vertices arc lsomorphilc, the i1s omorphism bsing dcetermined up
to an inncr sutomorphism. Also eny simplicial map Q?: V(P)
—>V(&) induccs a homomorphism of C‘: (P,po) into & (G, ‘?po) in
the obvious mamncr (map each c¢dge (p,q) onto the cdge (f?p,QVq)).
This can bc uscd to compute, not only the fundamental groups of
[P| and |Q[, but the homomorphism betweon them inauccd by a
continuous map f: [P|—s]q|. Lndeed, we Khow that the induced
map may be obtained from any fl homotoplc to f, so we may replace
f by a simplicial approximiction 47: V(P)—>V(Q), if possiblc.
The induced map is thon ¢ssgentially the map induced by‘?jon the
«dge peth groups. Iﬁ this process it may be ncccssary to sub-
divide P, but from Thoorcm 18.1 1t follows rcadily thut P and
P(m) havc isomorphic edge path groups. This fact can also be

¢etablishcd dircetly (i.¢., algebraically).

-“-89-
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19. Dogrees.

THEOREM 19.,1. The fundamental group of the circle is

an infinite cyclic group, with the (class of) identity map of

the circle on itsclf as goncrator.

PROOr: The circle is homeomorphic to the boundary of the
two-simplex, hence may be regarcdod . as a polyhedron 252 with
three vertices p,q,r anc the two-simplices < pg >, < qr >, < pr >,
Wc show that the edge path group E = ‘E( Z’lz,p) is infinito
cyclic, with generator the cdge path
L, = (pq){(gr)(rp).
To this ¢nd, dsfince a homomorphism f3 é-'*?J, with J the
additive group of intcgoers, by satting
f{qr) =1, f(rqf = -]
and £(L) = O for any other cdge L of Z§2. The value of f on
an cdge path is then dcfined as
f(El...Ek) = f(El) + .. + f(Ek}.
Ve must show first that f 1s well dcfinced under the equality
(18.2) of cdge paths. Sincc there arc no 2-simpliccs in Z&z,
this equallty can removc an cdge (qr) or (rq) only in the casc
(qr)(rg) = (qg); in this casc f rcmains unaltcred. By its
very definition £ 1s a homomorphism of‘g into J; since f(Ll) =1,
it is 2 homomorphism onto J, with L1 mapped on the gencrator of
J.

It remains only to calculatc the kerncl of £, to prove that

f(L) =0 impliecs L = (pp), the identity ofg . To this end
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represont an cdge path L as a product of cdges El...Ek; and ceoll
this represcntation, rcduced if it containe no edge (bb), for
b a vertex of 1&2 end no pair of cdges (be)(ceb) in succession,
for b and ¢ verticcs of Az. By tho rules (18.2) for cquality,
and by induction on the number of c¢dges k in a rcpressntation,
cviry udge peth not (pp) clcarly has a rcduced represcntation,
El...Ek. The path starts et p, honce the initial edge must be
either (pq) or (pr). In the first casc, the noxt cdge cannot
be (gp), by the 'rcduccedV condition, honce must be (gr), and
the third cdge must likewisc be (rp). Thus L = LlE4"°Ek’
where 34 must be (pg), and Wltimetely L = L; for some c¢xponcnt ‘
8. In this cas¢ (L) = sf(Ll) # 0. In the sccond caso, when
L starte in its rcduced reprosontation with‘(pr), we obtain
L = L;S. Thus any reduccd path 1s cither (pp) or & power of
Ll’ g.c.4.

Any continuous mapping fi S!'—sI' of the eirele onto itsclf
Induces a homomorphism
iy :77‘1(51)-~-——>7.7;(sl).

ae
rly

Since the fundsmental group is abclian, there is o canonical
isomorphism between the fundimental pfoups at any two base points,
SC we may neglect the base point. e orivnt the circle Sl by
choosing onc of tho two generators of the fundamental group.

The induccd homomorphism f, 1s the¢n a homomorphism of an infinite
cyclic group‘with'genurator 1 into 1tse¢lf; such a homomorphism

1s completely dotoermined by the map n.l of the generator 1. We

cell n the degrue of the continuous map f. Intuitively, the
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degree reprcesents the number of times tho map wraps the circle
around itsclf, and is negative when it is wrapped around itself

in the opposite dircction.

THEOREM 19.2. Two continuous maps fo, fl: Sl——>81 of

an oricnted circle into itsclf are homotopic if snd only 1f they

have the same degrec.

PROOF: VWi¢c already know from Chaptor 1 that homotopic maps
have the same cffect upon the (abelian) fundamental groups,
hence have the same degrec. Convofsely, we may construct to
cach degres n a map £ of that degrce; for cxample, the map
corresponding to the edge path L? discﬁssed cbove. It will
then sufficc to show thut any f: S;w@ 81 is homotopic to onc of
these standard maps (which will nccoessarily have the same degree)

L 'A | . By'rotating all

Let p be chosen as the base point on S
imeges f(x) on Sl, one can make f homotopic to a map carrying p
into p. Then f rcprosents an element of the fundarental group
of Sl; hcnee, by Theorem 19.1, is horiotopile to the map repres-
cnting one of the ¢dgc paths Li,
This notion of dcgrec can be uscd to prove the fundamental

g.e.d.

theorcm of algcbra,
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Chapter 3

HOMOLOCY THEORY

20. The singular complex of a space. Among the various

methods of defining the homology groups of a topological space

we choose the "singular" theory. For each dimension q z 0 pick
a "standard" closed g-simplex f[kq |. For example, it 1s con-

venient to let O denote'the origin in an (infinite dimensional)
Hilbert space H, and 1,2,... orthogonal unit vectors in H. Let
[Xq denote the polyhﬁdron with vertices all points 0,1,...,9

and simplices all facss of < O,...,q > Then

is the standard closed g-simplex. We regard Zﬁq as an ordered
polyhedron, with vertices O, 1, ..., g in their natural order.
Now let X be an arbitréry topological space. A singular
g-simplex or a g-cell of x 1is defined to be a continuous map
T: llxq | ~——> X. The abelian group Cq(S(x)) of singular q-
chains of X is now defined as the free abelian group with the

g-cells of A as its generators; in other words, a g-chain in X

ig a2 formal linear combination

(20.1) Cq = ngl + .00 ghTh, Tk a g-cell, g, an integer

of a finite number of g-cells with integral cocfficlents g, s and




the sum of two g-chains is obtained by adding the coefficients
of corresponding cells (a cell which does not appear has coef-
ficient zero).

If f1 X > Y is any continuous map, cach singular g-simplex
T in X determines a singular g-simplex fT: }[&q | —> Y in v;
we write Sq(f)T = fT for this correspondence; This induces a

R Tt S My T e 8T
unique homomorphism ' IR i

(20.2) S (f)i C (2(4)) =—> C (&(Y))
q q Q

of the chains of X into the chains of Y, according to the formula
aq(f) (> e,T;) ==2_ g, [Eq(I)Ii].

If also gi ¥ ~—> %, 1t follows at once that

Sq(gf) = Sq(g)Sq(f): Cq(E(X)) —_— Cq(&(Z)).
In particular, i1f X = i is a subset of an affine space,
and As | Aq | =—> M 1s a continuous map given by an affine map
of ‘ZXq | onto a closed simplcx contained in M, then A is com-
pletely determined by the images A(1) = p; € I, and we write the

symbol
(20-3) A = (pos A pQ)M

for these "aifine" singular simplices in M. The symbol
(po,...,pq)M i1s defined whenever M 1s a subset of affine space
containing the convex set (closed simplex of dimensions < q)

nnd b s » Il’l a tioular @ = O .1 « o
spanng ypO" pq par ’ . q ( 5> ’q)‘Aq [
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thus denotes the "baslce" singular simplex determined by the
identity map of [Z&q | onto itself; thus any singuler simplex

T f[ﬁq | ——> X can be represented uniquely as

(20.4) T = s(T)(0, 1,

<o q)IAq |

The boundary of a g-simplex T in X, with dimension q > O,

is the g~1 chain in X defincd by the formula

g 1 A
(20.5) aqT = S(T) 5 (-1) (0,e.e i, uu,q)

a— . s
A =0 | AT
wherc the symbol 1 indicates that the vertex 1 1s to be omitted.
More intuitively, the g-simplex Zﬁq has g+l facts of dimension
g-l, which may be obtaincd by omitting in succession the vertices
0, 1, vvvy &, vuu, g of Aq. The mapping Tt 1Aq | ——> X,
when cut down to the i-th such face, will determine a singular
(q-1)-simplex in a; indeed the symbol S(T) (9,...,1,...,aq)
represents this simplex. The boundary is the chain formed by
taking the alternating sums of these "faceg" of T.

The boundary of any g-chaln 1s defined by additivity as

Bq< 8Ty ) =20 830 9,T,)-

Hence the boundary operation is a homomorphism

(20.6) dyt C (5(X)) —>C__ (S8(x)).

A

In the definition of the boundary, the symbols (0,...,1i,

;..,q),A | stand for the affinc maps 51’Aq-1 | —> lAq |
q
which carry the vertices 9,...,9-1 of Zﬁq—l in order upon the

L




0

vertices 0, ..., g of qu’ with 1 omitted. Thus quT =

S(T) =

i=o
ful formula for the boundary of an affine singular simplex:

i
(-1) Ei" From this we derive the following very use-

R q_ i A
20.7) ( DR ) = > ("1) (p ¢« s e . LRI ) .
( <3q Pose+esPyl, Z o2ttt Pyo ,pq q

Tndesd, if A is the affine map of (20.3), theé definition of the

boundary yieclds

= . i, 2. i
coe = A =5(3) > (-1 = > -1 AC,).
OqPgreesiPg)y = Ok = 8(8) E_(-1)7 &y =2 _(-1)7(AE)
¥ : A M \ ’ o 1 31 &l
But the composite Af;i. I Z;q-l ‘ > Il is an affinc map

carrying O,...,q-1 in order upon thc¢ points po,...:Bi,...,p in

M. Hence Af, is represented by the symbols (p sevesDasenesD )y
i o i q M

which gives the formulz (20.7).

The most important property of the boundary formula is

(20.8) Y =0 cq(s(x)) —> Cy_(8(X)), q > 2;

q-104

v

in words: thc boundary of the boundary of any chain is zero.
Since the boundary is a homomorphism, it will suffice to prove
thet E)q-l zqu = Q0 for any singular g-ccll in x. Now by ths

definition (20.5)

-

e i A
D q19oF = £(T) = (-1) aq-l(o"”’l""’g)!Aql"

The boundaries on the right mey be calculated by the rule (20.7),
for the case M = f[ﬁq | . Upon splitting the resulting sum into

two parts we have
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_q  i-1 i+] ~ ~
\ } = 54 . . - o o 0 i « e e v e
Oq-lqu (T) -,z---— %--— (-1) (0, s Js s 1, :Q)’Aq,

A

i+j-1 a
(O, eueydi,eeeydyene,q)
| 44 |

+ > > : (-1)

for to omit vertex number j-1 z 1 in (O,...,?,...,q) is to omit
vertex number j from the original list of vertices. But the
interchange of the letters 1 and J in the swcond double sum
makes this sum equal to the first double sum, except for sign.
The whole 1s thus zero.

Another usseful rule is

C PY = @ N - .
(20.9) Qg8 (1) = 8 1 (£)Q 2 0 (S(a)) —> O (S(¥))

for any continuous f: X =—> Y. It again suffices to consider

the effect of each homomorphism upon a singular simplex T in X.

But
P! s (£)T =9 (£T) = S(£T) == (-1 Yo 1 )
a4 Jq = == R Vs W
= (O T (-1, ..., a) Ay = S(£)D.T.
= : R AT Bq

The algobraic system S(X) consisting of the groups of
singulare chains and the boundary homomorphisms in all dimensions

is known as the singular complex of thoe space X

8(x)s O (5(X)) < C (E(X)) <= Oy(8(A)) <— 0o .

Vie shall often omit the subscript g in the symbol zaq for the

boundary homomorphisms.
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The homology groups of a space X arc determined by this

singular complex, in the fashion to be described below (B22),

21, Homology groups of a complex. By a complex (more

amanatt

fully, an abstract chain complex) K we mean any doubly infinite

sequence of (additive) abelian groups C, = Cq(K) for all integral

q
"dimensions" q, together with a sequence of homomorphisms
Vgt Cq —> Cq.y such that P/‘q_laq = 0. Thus

K = { N <-—a- Cq_1<——5~ Cq <-—a- Cq+l <—a—- ...} .
Such a sequencc which terminates (at either or both ends) wmay
be extended to a doubly infinitc sequence by the convention of

adding £ll the rcmaining groups C_ as groups consisting of. 0

q
alons and all the remaining homomorphisms as ths zero homomor-
phisms. Thus, for example, the singular complex S(X) of a space
1s extended by defining the chain groups C_n(S(L)) to be zero
for n > 0; in particular, the boundary of a zero-dimensional
chain is tho zero chain of dimcnsion -1,

A g-cycle Zg is & g-chain with boundary zcrozca Zq = Je
ithe cycles constitutec a subgroup Zq(K) of Cq(K); in fact this

subgroup is the kernsl of E)q: Cq — Cq—l'

A g-boundary bq_iswa'qrcbﬂin.which is ths bounaary bq =

:5°q+1 of somc g+l chailn °q+1' Any boundary is a cycle, for -

~
Zjbq = <9250q+l = 0, The g-boundarics constitute a subgroup

By(K) of Cq(E), in fact this subgroup is the image of the homo-

morphism 2)q+1? Cq+l —> Cq.
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The rule b;>= O shows tunat the group Bq of boundaries is a

-

subgroup of thc group Aq of cyclecs. The g-th homology group is

defincd as the factor group
H(K) =z (K)/B (K),
q q()/q()

In more detail, we may say that two g-chailns Cq and cé are

homologous if their diffcronce is a boundary; in symbols

N\
cq/xlc‘ if and only if ¢ - ¢! = ¢
q

q q Cqe+1s SOmE c_

g+l

A chain homologous to a cycle is itself a cycle, cnd an clement

of Hq(K) is a homology class or coset z + Bq, consisting of all
cycles homologous to some fixed g-cycle z.

The singular homology groups of a space X are the homology
groups Hq(k) = Hq(S(X)) of thc singular complex. By the conven-
tions above, these groups cre all zero in dimensions g < 0. In
gencral, these groups are measurcs of the connectivity of the
space. To illustratc this in o simple casec, we examine the zero-
dimensional homology group of X. By our convcntion about adding
zero chain groups in dimensions less than O, any zero-dimcnsional
chain of X is automatically & cycle; the zero-dimensional homology
group 1s then |

Ho(a) = C (8(X))/Bo(a(X)).

THEOREM 21l.1. If the space X has exactly m arc-components

then H (X) is isomorphic to the dircct sum of m infinite cyclic

groups.
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PROOF: Let xl,...,xm b the m arc-components of X. Lach
O-simplex T of X is a mapping of & standard |/l | into X, hence
is determincd by the point p =T (| A, |) of X, which must then
belong to one of the m components of X. Break each O-chain s

up into the parts belonging to these components, so that

m

0p =3

+.l‘
o I=m Br1Ti1

.
gknkank)

where each Tkj is a O-simplex in Xk. Then define the homomor-
phimnckof Co(X} into the direct sum of m copics of the additive

group J of integers by setting

c{co = (gll + ...+ glnl, cen gml + ...+ gmln )

In other words, add all the coefficients belonging to cells
in any one componeént. Then <A is clcarly a homomorphism onto
J+ ... +J, m times. To complete the.proof wc necd only show
that the kcrnel ofCﬂ 1s exactly the group Bo(k) of boundarics,
for thencﬁ\induccs an isomorphism of CO/BO to the direct sum in
guestion.,

First, any boundary lies in the kernel of ol . For a l-cell

of X is a map T: jzﬂl | —> X; sincc Zﬁl is an intérv&l, T is

‘an arc in X, which must then lie in somc one of the arc compon-

\‘ .
ents., The boundery OT consists of the two ¢nd points of this
arc (regarded as O-cells); thus has the cﬁ-image ZETrOo.

Conversely, it sufflccs to show that if ¢ = ng + ... + g T

1 nn
is a O-chain with simplices Tk 21l in the same component and

g1 t oo ¥ gn = 0, then ¢ 1is a boundary. But choose any O-simplex
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T in this componsnt, join the point T to the point Ty by an arc,
represent each of thesc arcs as a l-csll Si’ and calculate
N =
0(g151+...+gn5n) = ngl+...+gnTn - (gl+"ﬂ+gn)T = ¢, g.c.d.
The argument is also valid for any (infinite) number of
arc components; HO(A) is then a wocak direct sum of the samse
number of copies of J. In such cases, howsver, the singular
homology groups of X are not of great intercst. The group of
singulzr cheins of a spsce X 1s very "oig"; the cssential fact
is that the homology groups for a decent space will be small; 1n
fact, for the space of a polyhedron P, the homology groups are
finitely generated, as will appcar prosently.
The argument of Theorem 21.1 will also prove that when X
has m arc-components Kl,...,km, then
Hq(x) = Hq(xl) + 0. F Hq(xml)
for 21l dimensions q. o
If K = 52 0yl 2 cq&’} and K!' = {C'q_l S c‘q§
are chain complexes, & chain transformation )\: K —~—> KXK' is, Dby
definition, a sequence of homomorphisms

>\q=Cq — (J'q s

such that
(21.1) Yahg = Ag1da g —> Uy -

The situation is illustratcd by the dizgrom
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{3 C 3 C <-Q- 2

I O & e l 2 K C PR
. ) )\ l
(21.L) J,ko 3 Jz N /' .
K's o CY ~Z ot 2 o <—i o1 2. ;

the condition (21.2) statcs that the two paths in each square of
this diugrai., from upper right to lower leit, have the same
rcsult. If we regard a chaln complex as a single algebrailc
system (composecd of groups and homomopphisms between them), then
a chain transformation .l; K —> K' 1is simply a homomorphism of
the first system K into the sccond; the condition (21.1) is

just the requirement thet this homomorphism prcserve the basic
boundary operation in the system.

Each chein transformation k t ¥ ——> X' induces for cvery

 diménsion g & homomorphism
H(A): B (K) —> B _(X')
q q q

onlthe corresponding homology groups; we denote this induced

hombmorphism by Hq()~) or by )du when thore is no ambiguity.

oz

Speeifically, if z_ is & g-cycle of K, then Az =
Specifically, q 9-cy ’ Jq Ag?q A aq

. q-1
= A,q_;o = 0; hcnce k.carrius ecycles into cycles. Also, if bq
is a g- boundary of K, then b = a c for some g+l-chain c s
q+1 g+l
and /1 bq’ = \bc = B\/\ Cq+1” hence /1 carrics boundarics into

bounderies. The inauccd homomouihism on homology groups thore-

fore 1s delincd, for any homology class zq + Bq(K), as

Nalog * By(K)) = N+ B (K1) € B (K');
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the definition is independent of the choice of the cycle Zq used to

represent the coset z_ + Bq(K).

q
If /\: K —> K! and /{'{ { k! —=> K" are chain transformations, their
composite //(k K—> K" is a chain transformation, and one readily proves
i "
that Hq(}LX) =1 (OH (A ).
Specifically, if X and Y are spaces, any continuous map f: X —> Y
induces the transformation Sq(f) of singular g-chains of X into those of
Y, as described in 820. The condition (20.@) asserts that the family of
all Sq(f) is a chain transformation S(f): S(X) —> S(Y). Hence we may
speak of the induced homomorphisms Hq(f) = £ Hq(X) —_— Hq(Y) on the
homology groups. These homomorphisms provide an important tool for the

algebraic classification of continuous maps.

) 22. The complex of a polyhedron. Our objective is to show that the
singular homology groups of the space |P| of a polyhedron P can be effec-
tively computed, The idea is thaﬂ of using simplicial approximations to
replace the arbitrary continuous maps T: | Aq | —> |P| by simplicial
maps. There will result but a finite number of these simplicial singular
simplices. The group of chains fomed from such simplices is then a
finitely gencrated abelian group, wnd the same will be true for the corres-
ponding group of cycles, boundaries, and homology classes. The structurc
of thé hemology groups can thus be given by the fundamental theorem on
finitely zenerated abelian greups.

Specifically ,hif P is a polyhedron, a g-cell of P will mean a singular

g-simplex determined by a simplicial map T: | A q | — IP . Any such
singular simplex may be written, in the notation of 820, as (G '

(Pgs vees pq)l pls we drop the subscript |P|. A g-chain of P is any chain

1N




- L(AL' -

containing only the cells U’q; thus the group Cq(P) of these q-chains

is the free abelian group with generators the symbols U’(’1 = (po,..., pq),

where po,...,pq is any ordered list of vertices (with possible repetitions)

of a frame of P, The boundary of a cell is given by the formulas of 8§20 as
Y 4. 1 ~

(22.1) a (Pos'“:Pq) = ;% (-1) (po’“"pi"“’pq)’

and is again a g-chain, Hence we have assoclated with the polyhedron P

a complex

Y

b 2 p

K(P) = { CO(P) <——; Cq(P) <== Cy(P) <= ... %

in which the groups of chains are finitely generated free groups. This
complex is a subcomplex of the singular complex S( P ]).

The homology groups of this complex are the simplicial homology groups
H(P) «

If @§: P —> Q is an abstract simplicial map (vertices to vertices,

frames to frames), then the definition

€)ooy eespg) = (B 5 woes )

J

determines a homomorphism ef Cq(P)' into Cq(Q); by the boundary formula
it follows that these homomorphisms commute with the boundary homomorphisms
and hence yield a chain transformation K(#): X(P) —> K(Q). If 2.
denotes the continuous simplicial map ¢_x_: |P| —> |0| induced by #, it
follows from the definition that K(@) is identical with S(Qf_x_) , cut down te
apply only to simplicial chains.

A still smaller complex may be formed by using a partial order of

the vertices of P. Indeed, let P° be an ordered polyhedron in this sense.
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Usg only the ordered cells CTQ.= (po, ...; pq) ip which the vertices
Doy o*> pq arc abstract vertices of a frame of P, in the linear order
given in P°., The boundary (22.1) of such an ordered cell then consists
again of such ordered cells; using the chains generated by such cells we
again obtain a complex K(P%).

fie shall prove that for any ordered polyhedron P° the homology groups
of K(P°), of K(P), and of S(|P|) in dimension q are all isomorphic. In
particular, since Cq(P) is a finitely gencrated abelian group, so is Hq(P).
It can therefore be written aé the direct sum of finite and infinite cyclic

groups, say in the form

A

H(P) =3 J3 +>
q i: j::

(J/m_J),
J
where Ji is a group isomorphic to J, énd each J/ij is a cyclic group of
order m.. The orders m, can be so shown that each m, divides m, 5,
3 J " J Jti
j=21, eee, r=l. ¥With this choice the number Lh of infinite cyclic
summands and the orders my are invariants of the group Hq(P). e call

7
3 the g-th Betti numbers of P and the my, »+.s m_, the g-th torsion
q Betti 12 r Lors.on

coefficients of P.

23. The complexes of a schema. These definitions of the complexes

associated with P no longer depend upon the space |P\, but only upon the
vertices of P and.the arrangement eof thesc vertices into ffames. Hence
the same formulas will define complexes and homology groups for an abstract
simplicial complex V.

Specifically, a g-cell of V is a symbol (j’§ = (Pys ove> pq) con-
sisting cf ¢ + 1 vertices of a frame of V, in some order but with possible



duplications. The grogp Cq(V) of g-chains is the free abelian group with
the 0 q as generators, and the boundary homomorphism is againdetermined
by the formula (22.1). The fact that 33 = 0 is again proved by the same
formal calculation as before; hence we have a complex K(V) associated
with each ask V.

Similarly, let v° be an ordered ask. For each g-dimensional frame of

e]

V¥’ we introduce a g-cell Q"q = (po, vy pq)o consisting of the vertices

of the frame in order. If V has n, fromes of dimension q, there are then

ng such ells O:l.-i » 1= 1,000y
of g-dimensional chains will then be the free group with these generators,

in dimension g, the groups Cq(Vo)

and tren with clements

q gqul vee + gn{')qn, n = nq.

Q-

The boundary homomorphism : Gq(VO) —_— Cq+l(V°), for q > 0 is again

determined by setting

, q -
Q ——— 1 A Q
(2301) (ﬁ’ (Poa veey D ) == (-1) (pos"':Pi:"';p ) .

~,
N,

As before ()() = 0, as is shown for example in low cases by

5(pop1p2p3)° = 9 E(p1p2p3 - p2p3) (poplp3) pz> ]
= (pp0y)° = (pyp3)° * (pyp))" - (ppy)" + (pop3)°
- (pgpy)° + (plp3)° - (pop3)° + (polpl)o - (plpz)O
+(pp,)° - (pp) =0
We thus have a complex K(V°) = ga C (V ) — Cq 1(V°) g 3 its

homology groups are the groups H (VO) of the ordered ask V°. If P’ is an
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ordered polyhedron and v° its schema, with the same order, then our con-
struction is such that the complexes K(P°) and K(VO), and hence the

corresponding homology groups, are isomorphic. Ve have also

THEOREM 23.l. The homology groups of K(Vo) are independent of

the chosen order of vertices in the ask V.,

To prove this theorem, it is convenient to introduce symbols for
certain g-chains in K(Vo)f Specifically, with any sequence I , s.s, rq
of q + 1 vertices of V, distinct or not, which all bélong to a frame of V,
we define a g-chain (ro, aeey rq)o. If the v, +vs) Tq 8re not all distinct,

set

(23.2) (ro, cees rq)o =0, some T, = rj, i# J.

If the Tys ety rq are distinct, they can be placed in the standard order

of V° by a suitable permutation; we set

o _ ) (o]
(23'3) (Pn_o:v evey Pn.q) = (sgn 77") (PO: veay Pq) )

where sgn 7T = + 1 according as 77 is an even or an odd permutation. We
assert that the boundary formula (23.1) is still valid for any symbol

o .
(ro, sevs rq) 3 1.4,

O___.g_ . A O
(23.1) D(rs s r” = (Mg e By e r )
Case 1., ("Degenerate" cclls). Some ry = T for j < k. The left

hand side is then zero. On the right, all terms except possibly the j-th
and the k-th are zero, since they have two entries the same. Terms j and
k differ only in the fact that r = rj = r occurs in the first at position

k
k, in the sccond at position j. But (k-j-1) transpositions will then
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bring them to agreement. According to the definition (23.3), these trans-

k=31 -1
= (-1)77.

positions will alter the sign of the k-th term to (—l)k. (-1)
Therefore the two terms cancel.

Case 2. ("Non-degenerate! cells). Since any permutation can be
offected by successive transpositions of adjacent lefters, it suffices
to prove that if (23.L) holds, then it still holds after interchange of

rj with r, This follows by a simple calculation.

3L’
The group Cq(VO) has as its free gencrators those g-chains (ro,...,rq)o

in which the Tos s rq are distinct and occur in the order of v°. Since

a genérator may be replaced by itself or its negative, to give a ncw set

of generators for the same free group, we may replace any one generator

(po, ceny pq)o by the g-chain (p7ro’ eees D )o of (23.3). In particular,

e
q
given a new partial order of the vertices of V, we may choose each permut-

=

ation TJ so that the new symbol (pTTO’ ey p77q)0 has its vertices in the
now order. Then since the boundary fommula (23.Lh) for these new generators
has the standard form, the complex K(VO) with these new gencrators is
clearly isomorphic to the complex K(Vor) derived directly from V' in its
now order. This proves Theorem 23.1. |

This symbolism also allows us to associate to cach abstract simplicial
map @: V ——> ¥ a chain trensformation Ko(¢): K(V®) —> K(WO). For any

cell of K(V°), we set

o - o " e
LCOLCIPIRERE pq)c = (Bpys +-es ¢Dq) € S K.

Since the some boundary formula (23.L4) holds for all the symbols, it
follows that KZ(ﬁ) commutes with the boundary homomorphisms. Hence Ko(ﬁ)
is o chain transfommation, and thus induces homomorphisms on the homology

groups.
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The homelogy groups of V may also be defined without choosing any

~

one order of the vertices of V. TFor each g-freme i:ro, seey rqlf of V
we choose an order of those vertices. Ve say that two orders detemine
the same oricntation of the frame if the one can be obtained from the
other by an even permutation; otherwisc e have the opposite orientntion.

Now choose for cach g-frame of V, onec orientation determined py an order

T , e.es T , and associnte with each frame g-r cosy T ! a g-cell
0 qs

{ 7o’
{ Tos sees I};g', The boundery then is

~,

’ 3 4 1 A
(23.5) O {ro, SR L (~1)172i§r s eees Ty aees T ?S',

156 °

whcre ’Zi = +1 or -1 according as the order Tys sees rq of the original
FaN
cell will induce an order Tos wees Ty wees rq'which agrces with or is
opposite to the chosen orientation on the (g-1)=~cell determined by
~

T . wese Pes vweu, T o This approach using oricntations is the classical
O’ 2 i? 2 q i - (=3

o
onc, and gives n complex iseomorphic to K(V ).

2l,. Groups of Simpliccs and spheres, If P is any polyhedron lying

in an affine snazce A, and t is a point not in that affine svtace, we may
form the cone over P with vertex t as the set of all points on line seg-
ments joining t to a noint of P. This cone is clearly also the space of

a polyhedron Q, in which the simplices are (i) the simplices of P; (ii) the
O-simplex t; (iii) the simplices formed by adjoining thé wrtex t to any
simplex of 2., In particular, if P is the polyhedron determined by a q-
simplex and its faces, then a conc over P is the polyhcdron determined

by a (g + 1)-simplex,
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The same applies for an ask; if t is not a vertex of the ask V, the

cone over V with vertex t is the sbstract simplicial complex (V;t) with

vortices t and the vertices of V, and with fromes: (i) a1l frames of V;
(ii) the O-frame {tl ; (iii) the frame found by adding the vertex t to any

~ frome of V.

THEOREM 2}.1. The integral homology groups of & cone (Vit)
vanish in diménsions greater than O, and the zero~-dimensional homology

group is infinite cyclic. This holds for both complexes K(V;t) and K(V;t)o.

Geometrically, this is plausible, becausc any cycle on the cone bounds
the chain of dimension one higher formed by "joining" the cycle to the
vortex of the cone. To give an algebraic proof in the complex K(V;t)o,

ordor the vertices of (V;t) with t first., For any cell (po, eess pq)o of

the cone; set
. 4 0O _ 4. (o}
(2h.1) D(po: "'f Pq) = (t, po: LA RN Pq)

(the result is zero if t is one of the vertices Pgs toes pq). This def-
o
inition of D for each of the frce gencraotors (po, vous pq} of the group

Cq(V;t)o of integral chains determines a homomorphism

Furthermore , from the definition (23.1), if ¢ >0

2.
-

(-2 (6spysnve By e rs0)
- sP_seeeaDsisevesD )
= 0 1 q

aD(po, sees Pg) T APgs e Py) -
The sum on the right is exactly D of the boundory of (po, ceey pq). Hence

ch + Dac = c, ¢ any g-chain, q > Q.
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In particular, if ¢ is a g-cycle, then 2 c=0ondc*= 2 Dc is in fact a
boundary. Hence Hq(‘«.»’ st) = 0 for q > O.
If g =0,

D) = O, p) = - (£).

~

N .
‘ie define a homomorphism /. of Co to the integers by setting /l (p) = 1.

This equation then states that
aDc =c - (Ac) (), ¢ a O-chain,

Clearly k is a homomorphism O ——> J mapping BO to 0; if >\c = 0, the

. : -2 . : s
equation gives ¢ = ¢ Dc, so that ¢ 1s a boundary. Thus A induces an
isomorphism of Hj to J.

Since any simplex is a conc over a simplex of dimension onc lower we

have

COROLLARY 2h.2. The simplicial integrel homology groups of an

nbstract simplex s are

H (s) = J, H(s) =0, q> 0.

An n-dimensionsl sphere may be so triangulated as to be homeomorphic
to the polyhedron obtained from an (n+l)-dimensional simplex s by decleting
the simplex s itself from P(s). The homology groups of dimension less than
n arc not thereby altered. In dimension n the cycles of P(s) are exactly
the boundaries of P(s). Since there is exactly onc cell of dimension (n+l),
and this cell is not a cycle, the cycles of‘ P(s) form an infinite cyclic
group, gencrated by the boundary of this onc celi. Upon removal of the

(n+l)-dimensional simplex s, these cycles can no longer bound. Hence
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COROLLARY 2L.3. The simplicinl integral homology groups of an

n-sphere s? (triangulated 2s the boundary of en (ntl)-simplex) are

H_(S7) =, B (s") =7, Hq(Sn) =0, 0<q<n.

The same arguments apply to the complex K(V;t); simply define DG~ for
any cell T = (p, +vs pq) of K(V;t), with the p; vertices of a frame in
any order, by the same formula (24.1) with the superscript O's crased.

Since the formula for boundary romains the same, all the conclusions follow,

We can now prove

THEOREM 24.L. If V is any ask, with any ordcr of vertices, then

the homology groups of L(V) and K(VO) are isomorphic.

This will justify the use of these two constructions; the first, K(Vj,
is closer to the singular theory; the sccond is smaller and hence better
for computations,

Given any order of the verticeé of V, Ainne homomorphisms

' -
): cq(v) — Gq(v°), A :.cq(v") —_— Cq(V)

by sctting, for the generators of the respective groups,

3 0 0
A Pos seey Pq) = (PO: seey Pq)S k'(ro: ) rq) = (I'o: eees rq) s

Wwhere Pg, eees pq are the vertices of a frome, in order; while Tos eees T,

4

are the vertices (with possible repetitions) of some frame. Becausc of the

character of the boundary formulas
3
= . oy __.
DA =A0: o (1) —> g (M,
- N
DA =N Dt 0y (1) —> 6,1 (V).
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Thus /\ s ;(}’ induce homomorphisms in the corresponding homology groups.
Furthermore )\3 )\: Cq(Vo) —_— Cq(Vo) is the identity mep. To treat the
other composition 1L' )_it will suffice (sce below) to construct a homo-
morphism

in each dimension g = 0, 1, ..., in such a fashion that
(2L.L) Dby + 1 =\te - o

for any g~-chain ¢ of Cq(V).

We now construct thc homomorphism Dq by ind@ction on the dimension q,
and subject to the side condition that D(ro, ceas rq) shall.always be a
chain involving only thecse vertices Ty eees rq, In dimension O we inter-
pret (24.]}) to moan that aDoc =>L).1c ~ ¢ (Jc is zero). But for any
O-cell (r),~k:k'(r) = (r); hence we set Do = 0, Supposc now that D has
been defined for m < q to satisfy (2L.L4) and the side condition. TFor each

g-oell T = (I, «.ss 1)) consider the g-chain
c.:=1l“3“ -Dq_lBO' - g .
Its boundary is, by (2L k) for -1
IR TET)OTE Dq_l(c\)c}) - oa
=M_sbb’- AN+ D_,3 (30) + 0T - 20” = o.

Hence ¢ is a cycle. Furthermore it involves only the vertices Tos sees rq.

Hence ¢ is a g-cycle on the (abstract) simplex with these vertices and is

consequently the boundary of some (g+l)-chain c shich involves only

g’
these vertices. If we set




DT =0y s

we again have the desircd cquation (2L .L4), and the side condition on D.
Now the chain tronsformations R: K(V°) ——> K(V) and Rl: (V)

K(VO) inducc homomorphisms

(@) H(R(T) —> H(KM), ) 1 B () —> By(x(V*))

upon the homology groups. Since >\ ! 1 is the identity, so is the induced

homomorphism )J‘) : Hq(K(VO)) — Hq(K(VO)). Consider the action of .

N
3¢

the homomorphisms )( /\L: upon the homology class of a g-cycle z. By (2h.h),
and Bz = 0 we have ')L/l'z -2 = 5 qu. This states that ‘/r;\'z is homologous
to z, and hence that 17&'2 ond z determine the same homology class. Thus
the induced homomorphism >\ % 1' = (;L?U)* is the identity mep of Hq(K(V))
on itself. It now follows that both /\ s and ,7["( in (2L4.5) arc iso-

morphisms onto,

25. Computation of homology groups. A cell complex K is a chain
complex in which the groups CCl of chains are the zero groups in negative
dimensions q, and in which, for cach dimension q = O, therc is given a set
{T; T, } of g-chains (called cells) which are froe generators of the
abelian group Cq of g-chains. A cell complex is thus detcrmined by giving
the cells in each dimension, nnd for each cell a boundary formule for a()’”
as a lincar combinntion of thc cells of dimension one lower; the condition
b bo—= 0 must be satisfied. The éingular complex S(X) of a space is a
cell complex, with cells all T: ] '/*\q ] > X, The simplicial complex

: o
K(V°) of an ordered sk VO is o cell complex, with cells all (po, cees pq) ,
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for Py the vertices of a frame in prope? ordgxu The complex K(V) is a
cell complex with cells all symbols (rO s eeoy rq) determined by any ordered
list of vertices from a frame of V.

In a cell complex K one may choose differcnt cells (i.ec., frec gener-
ators) in Cq vd thout altering the groups Cq of chains. Moreover, one may
cndeavor to obiain a simpler complex (vith smaller chain groups) which will
still have the same homology groups as K. 4 subcomplex L of K is a set
ﬁsmmwmcgchm,q=o,L.”.mthtgéqgcc&r The
subcomplex will be celled adequate if, for a1l dimensions g,

(i) every g-cycle in C

q
(i1) every g-cycle of C:—l which is the boundary of a chain of Cq+l is

is homologous (in K) to a g-cycle in C:le

also the boundary of a chain of Cc’l’l'
These two conditions clearly imply that the homology group Hq(L) is isomorphic
to the homology group Hq(K) , under the correspondence mapping each coset
2! + Bt of Z'/B! into the coset z! + B of Z /B =H .
q q a q a q qa q q

For a cell complex K we give two simple rules for obtaining an adequate

subcomplex.

RULE 1. If ¢ is a g-cell of K which is the boundary of a (gl)-

N e
cell T(with 0T =T ), and which does not appear in the boundary of any
other (g+l)-cell, then one may remove the cells T , T~ to obtain an

adequnte subcomplex.,

PROCF: There can not be a (gt+2)-cell (J for vhich the boundery formula
~ Pl ) )
is O(C = 'nl + ¢, where ¢ is a chain not involving the cell 7', unless n = O.
For 335 = na""f + 2’ c =nd + Q ¢. And by assumption 2 ¢ cannot
<
~N '~

-
involve G . Since Oﬂ{. = 0, then n = 0. Hence deletion of the cells g and

T vwill leave a subcomplex L, which will have the same groups of cycles
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and. boundarics as XK, except perhaps in dimensions g and q + 1.
In dimension g + 1 a cycle of K cannot involve the cell -T , since
QT = 0 and does not appear in other boundaries. Hence the (g+l)-cycles of
K are exactly those of L; (i) and (ii) above hold in this dimension.
A g-chein of K can be written in the fom ¢ = nT + ¢!, where c! is
a g-chein of L. Since B c = nao”r B ct = 3 c', ¢ is o cycle if and
only if ¢! is a cycle, nd ¢ - c! =n T = n?S"Z-J, honce ¢ ~c! in K, and
(1) holds. If a g-cycle ¢! of L is the boundary of a (¢ + 1)~chain d of K,
this chain d cannot inwolve T, hence lies in L. Thus (ii) holds, and the

rule is established,

RULE 2., Ifd is a g-cell of K which appears on the boundary of
exactly 2 (q + 1)-cells ’771, "72, of X, in the form
’E.’V'lzﬂ"-& ¢y s }"6"2-:_.!5’ + oy s

where ¢, and ¢, are chuins not involving g~ , then one may replace the

12 2 ’

T T T . T 2 -
cells “y and ’/2 by ¥q % 5 and suppress the ccll J to obtain an adequate
subcomplex.

PROOF: ie introduce a2 new set of free gencrators in Cq-**l and Cq’

— 4 i~

: T ona T vy ¥ T ana Vi . i
replacing the cells 1 and 5 by 1 + LQ and ‘1 in Cq+l’ and replacing

0" in dimension q by g! = ¢+ Cq The new boundary formula reads

D+ T =e tey 2T =a
By Rule 1 we may then delete ¢ ' and ’[?1, q.e.ds
To illustrate these rules we calculate the homology groups of the two-
dimensional manifolds Mz. Such a manifold is represented by a polygon P
with 2 sides with affine identification of pairs of sides in such fashion

that all the vertices are identified. First we triangulate this polygon,
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say as follows. Imsert a vertex at the center of the polygon, subdivide
cach side by two new points, and join the center to all wvertices on the

periphery. Then subdivide each of the triangles thus formed as below:

A

bl

One réadily verifies that this triangulstion represents the manifold as a
two-dimensional polyhedron. Ve compute the group of ordered simplicial
chains; there being 18m 2-cells (9 for cach of the 2m triangles above) and
a large number of O and l-cclls. Note that each edge of the boundary
appears twice, so that 2B, for exemple, will appear on the triangle above,
and on the othef triangle. Orient cach two cell (vertices always in clock-
wise order). |

We now apply Rule 2 in each triangle, as above, to remove in succes-
sion the l-cells corresponding to OF, 0G, BE, BF, CF, CG, DG, The O-cells
(vertices), F, G, B, C noﬁ appear on exactly two boundarics, hence may
also be removed by rule 2. The three l-cells HG, GF, FE, are théreby
combined into a single l-cell, which is on the boundary

R Fad
~_k

t /
]
of exactly two 2-cells, with opposite signs. By rule 2, this one-cell may
be removed (consolidating the two adjacent 2-cells). We now have a polygon

with cells as indicabed. A1l but two of the l-cells joining 0 to the




- -

boundary may be removed by Rule 2. Then Rule 2 removes O, and then the
two remaining such cells.

We are left with an adequate subcomplex containing

(1) one O-cell (the single vertex).

(ii) m l-cells (the edges of the original polygon, cach appearing twice).

(iii) one 2-cell T -~-the polygon.
For an orientable surface of genus p, represented by the symbol
alb a'lb-l cee 8D a_lb—l we have m = 2p, and there are 2m l-cells, which

171 71 PpP P '
we denote by a5 bl s soes ap s bp. The boundary formulos are

N _? L N, L o
l-cells oai—(—()—-o, obi-\ _(_o
— \I; = a4 — - + + 5 -+ - s - o
2-cells C 29 bl 2 bl ors ap bp :',Lp bp Oo

The two cycles arc n’} , for any integer n; the one cycles are all 8y s bi’
and their combinations, and the O-cycles are nf . Thus no torsion is

prescnt and the Bettli numbers are

(30 = 1’ 61 = 2P, @12 =1,

For a non-oricentable surface in the standard form 398y oo AP, W have

boundary formulas

Bai= (C— €=O,
O

il

a1+al+ ees T am+am=2(al+ cos +am).

Change the one-cells t0 29, «eey 8y 75 8 T <. + . These are all cycles,
and twice the latter is homologous to O. Hence

B, =1, B =, G, <o,

; o
and there is one torsion coefficient ¥ = 2 in dimension 1.




26, Chain Homotopies. ILet K and XK' be chain complexes,

and A , b1 K ==> K! chain transformations. A chain homotopy

D: AL J-is a family D of homomorphisms

. !
(26.1) Dgt Co(R) ==—> G g (KY) all gq
(raising dimensions by 11!), such that
2 ) oD + D C = -
(R6+2) ch q_'la q )\Cq /J-Cq

for every °q in Cq(K). We have already had two examplesi in
§ 24, P« 110, we defined for the complex of a come, a chain hom -
otopy between the identity and the zero chain transformation.
At the end of é 24 we defined a chain homotopy D between
A At 2 R(V) > K(V) and the identity., In the second instance,

we used a special case of the following general result,

THEQREM 28.1, TIf D: A_'1)LHK=u~> K', then the induced
homomorphisms X _, Hy(K) w—=> H (K') are identical.
#? My Tq q .
In other words, chain homotopic mappings have the same effect
upon homology groups.
PROOF: Let 2z, be any g-cycle in K. Then, by (26.2),

q

3Dz +D S 7, = 3D z = A - UZ .
q7q © Tg-1%%g ““q9% Zq "M

The cycles )—zq and )&zq are thus homologous in X'; in

%

Py

other words, the A and /L* images of the homology class
of zq are lidentical.
A chain transformation Ai K eee= K! is called a chain

cgquivalence (and K and K! are called chain equivalent), if

there 1s a second chain transformation A ! § K! wee> K such
that A A' 1is homotopic to the identity map of K' and MA
homotopic to the identity map of XKe The transformation pu

is then called a homotopy inverse of A .,
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COROLLARY 26.2« A chain equivalence A § K ww=> K!

induces isomorphisms At Hq(K) > Hq(K') of the homology
groups of X onto those of K!,
Indeed, by the theorem, both X A,' and AL A, 8are

the appropriate identity maps.

COROLLARY 26,2+ If K is a chain complex with Cq(K)

=0 for g < 0, and if Dyt Cq(K) > Cq+1(K) 1s a family of

homomorphisms such that

(26.3) Doy + Dy 43 Cy = Cq 2 a>0,
then Hq(K) =0, for gq > O.

PROOF: Let cq in (26.3) be a aycle; since bcq = 0, this
equation then asserts that cq is a boundary of chq. We may

also apply the Theorem directly, showing that X is chain equi-

valent to the subcomplex with the group bDOC on its only

(¢]

(non-trivial) chain groupe.

It 1s convenient to have a composition theorem for homotopies:

THEOREM 26.4s If A L K ==> K' and A\! &0
/
K! wm—> K'', then MX 282 41je 1 K wee> KU1,
PROOF: We have given homotopies D: }\Ci/L and D': X' & 40,

with B
3D + Dy = )\../u/, AD! + D13 = )! = MY e

Then since A' and 44+ are chain transformations (comutes withd )
we have

D+ ADy = Lt - Moo,

3DV 4, = IH/L6_== Al - ,Aﬂ%b .
We thus obtain the requisite homotopy E: A'X <= My by sete

ting

= ! ! . { ——t V 11
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27. Prisms. Our aim is to reduce geometric homotopies
to algebraic chain homotopies. We must first subdivide prisms;
that is, cartesian products  |/\ qi><I of a 'q-simplex'by an
intervals Typical subdivisions of 'karlI‘xI into two triangles

and of |A 2[><I into three tetrahedra are pictured below.

0! it

This process can be carried out for any _Z§ ¢’ and may be
described inductively as follows: subdivide all the lateral faces
of |/ q[x I by the previous step, and then subdivide le.qf X1
itself by joining the leading vertex O of the base to the sub-
divisions of the lateral sides. This process, which may be des-
cribed as that of‘ "viewing" the previous subdivisions from the
leading vertex O, clearly yields the subdivision shown above for
I/A 5| xI. It also means that the subdivision process has a con-

sistency property: the subdivision of VAN q]><I on each lateral

face is precisely that used fbr a prism [/\ q»llﬂ(I of one dim-
ension lower.
In the subdivision of |A\ 1[X I the 2-3implices are O 1 1!
and 0 0! 1'; for |A 2]X’I the B3-simplices are
o122', 0 11'2t, ooriter .
Similarly the simplices of maximum dimension in [/\ q}><I have

the form 01 2 «oe 1 i' (+1)' 444 q's Consider the chain formed
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by the alternating sum of these simplices of the subdilvision,
(27.1) (0 1 2 see q) = i (=1)1(p 1 2 oo 1 it (141)1, svafd ')
Since these simplices "filll;%" the interior of the prism {Aq} I
it is plausible to conjecture that the boundary of L should
consist of the (i) the top os the prism; (ii) the base of the
prism; (1ii) the lateral sides of the prism, subdivided as by L,
In other words

DL 01 2 eoe @) = (O 1' 400 g') = (O 1 4ee @) = L2(0 1 oeeq)e
This homotopy L may be called the prismatic homotopys

To establish the properties, we need not prove the (true)
fact that the process of subdivision actually cuts the prism up
into the simplices of a polyhedron. Instead, we may just regard
the simplices (O see 1 i' ¢ee gq) appearing in L as affine sing-
ular simplices in the space M = ,Zk,qf><l’ regarded as a convex
subset of a suitable affine space.

In manipulating the formula for L, it is convenient to us?
a join notation for affine simplices in M. Let 0= (po PRPI pq)
be an affine g simplex of M and r a point of ¥, Then the
join 0 Vr is the affine (gq+1) simplex
(27.2) (pg eee pq) V 7 = (pg ees pqr)«
The join ¢ \/ r, where ¢ 1is a linear combination of affine
simplices, is defined by linearity. It is easy to verify that
(27.5) eV r) = (3¢ ) Vo + (-7 0,

Now let |/\ gl xI be a prism. The base b and the top ¢
of the prism are the continuous maps b,t:[/\ q, —_— 1\ q]x I
obtained by the affine mappings carrying each vertex 1 of

into the corresponding vertices (i,0) or (i,l) on the
q 3
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prism. The prismatic homotopy L 1is a sct of homomorphisms

LaiCy (KA ) == Cp g (SUIA [ T)
defined by recursion on n by the eqguations Lo(p) = (bp,tp),

Y = o~ +1 \

(27.4) Lysa (TV¥R) = (L )V b+ («1)% e\ or \/ tr,
This recursive definition agrees with the previous explicit formula
(27.1), for it describes L{(O «ss 9+1l) as the simplices of
(O see Q) with the new vertex (g+1)! ad joined, plus a new
simplex (O «es g, q+l, (g+1)?),

A
TEMMA 27.1. For each AAq the associated prismatic

homotopy satisfies
2

Lt S(%) &= 8(v) : KA q) m—> S/ gl >
PROOF: We show  [2L + Ly - 3(t) + S(b)] ¢ = 0, by induction
in the dimension of ¢ + For dim ¢ = O
L(p) = 2(bp, tp) = tp - bp, L3(p) =0,
and the result is immediate. Now agssume the result for a simplex
G of dimension g. Then by (27.4) |
dL(a¥r) = (3L ) V tr + (=1)3°1 ¢ + (~1)3*Lapr\ vrV tr
+baV tr - bV br.
Apply the induction assumptlion to the first term, which then becomes
to\/ tr - bo V tr - L3c V tr; so that
21( V) = tleV 1) = beVir » (Log) Vitr + (-1)3PL &
+ (-9 3p \/ vr V tr + beV tr - b\ ).
But I;b(G‘\/ r) may be calculated from (27.3) and the defini-
tion (27.4) as
L a(cVer) = (L3c)V tr + (-1)%oc\/br Vir + (-1)%F1 o
Adding these two equations, and cancelling, gives the desired

result.
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The prismatic homotopy 1L has a consistency property which
is an analogue for the consistency property of the subdivision

process:

LEMMA 27.2. If Y A\ b > Ay q 1o @ simplicial
map, ¥ .: | A\ 5 } — |\ qI " the induced continuous map and i
I == T the identity, then the prismatic homotopies L(p) and

pla) belonging to /\ 0 and Z& q satisfy

s(Y . x1) LP) = 19 g(y),
PROOF: We have the diagram
CoECA ) » > Cnay SCUIA L1xT)
K( V) : . { S(\l)’x_x 1)
!
L(Q) l
Cn(RIA ) > Chep(BUIA ¢ x1)s

The required commutativity for the diagram follows directly by
applying the appropriate definitions; it is just a reflection of
the fact that we have used the same “formula'" to define I in

21l prisms.
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28+ The Cylinder Homotopy. The precise relation of geometric

to algebriac homotopy may now be stated,

THEOREM 28.1l. If fofy fl: X =Y are homotopic continuous
mappings, then the induced chain transformations S(fo), S(fl):
S(X)*%*S(Y) are chain homotopic,

This theorem will imply for example that two spaces of the
same homotopy types have isomorphic homology groups. |

We first reduce this theorem to a special case, that of the
cylinder XxI (I the unit interval) constructed over a space X
The continuous maps bX’ tX: X=2>XxI given by

b (x) = (x, 0), t(x) = (x, 1)

may be called the base and top of the cylinder, Clearly b and
t are homotopic (as continuous mappings of X into XXI).

LEMMA 27.2 TFor any cylinder XXI, with base b and top ¢
there is a chain homotoby

E:S(t). ¥ S(b). :8(X)~>8(X=I),

This lemma implies the Theorem. For let F:XXI—>Y be a

(continuous) homotopy between fo’ f13X—>Y, Then F at the start

gives f so Fb = fo; likewise Ft = f Define

l'
((x))  q=0, 1

O’
D0y (S(X)) >0,y |
by setting Dpc = S(F)EC, where E 1is the "eylinder homotopy" of
the Lemma. Then since BE + Ed= 3(t) - 3(b), we have

AS(IME + S(FIE D

1l

S
BDF -+ DF¢

IH
i

S(F)QXE + EQ) = S(F)(S(t) = S(b))
= 3(Ft) - S(Fb) = s(fl) - S(fo).

This asserts DF="'S(fl)(3 S(fo), as required.
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We now construct the cylinder homotopy of the Lemma. Let
T: | gﬂq [~2X be any singular g-simplex of X, i:I->1 the

identity map, Txi: [/\ | XI—>XxI their product., We define the

cylinder homotopy B og T as
(28.1) ET = S(Txi)L(0 1°*°q),
where L = L(Q) is the prismatic homotopy of A q° If Wy =
(0 1*°*q) is the "basic™ q-cell in..ﬁkq, we may express T as the
image of Luq under the mapping T, so that our definition takes
the form ES(T)uh = S(Txi)Luh. Wile assert that the same formula holds
for any chain c¢ in K(zﬁ&q):
(28.2) BS(T)c = S(T x 1) Lec.
Tt will suffice to prove this for any r-cell ¢ = (io, °t ir)
of X( A&q). Let %):;£:r~4%lﬂq be the simplicial map with
4)(3) = ij’ j=0, **', r, and w, the basic r~cell in 4Lr.
Then

¢ = K( ¥ oy, s(Te = s(TE(Y ), = S(TY ),
so that S(T)c is the singular cell of i given by the mapping
¥, | L, |~>X. By the definition (28.1)

ES(T)e = 8(T ¥, ¥ 1)Dw, = SUTX 1NV x 1))Duw .
Hence, by the consistency property of L(Lemma 27.2)

28(T)e = S(TX 1)IK(F hu, = S(Tx 1)Le,
as stated in (28.2).

We now prove that E 1s the homotopy required in Leuma 28.2.

For any cell T = S(T)wq of S(X) we have

(aE + E(})S(T)L\)q = S(T Xi)qu + ES(T):)EMq

li

S(Tx i) qu + S(Tx i)waq

1l

s(rx1)(8)t,) = 8(b . ))w,
A L7 7g

where t,, q; are base and top maps for llﬁ‘q | x I« But clearly

LA A
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(Tyi)t,= T2 ’Zﬁ | - XxI, and similarly for the base. Hence

(3F + E3)S(T )wq = fs(tX) - S(bX)ES(T)wq
This asserts that E:S(tXYE S(bx), as desired.

The method of proof of this Lemma is typical for the con-
struction of homotopies. Instead of constructing the homotopy E
in the space X, the homotopy is first constructed in the simplex
Zl q and then carried into an arbitrary singular simplex T of X
by the simplex T, considered as a mapping T3 Iiflq | X The /'
original construction of the prismatic homotopy L in I;;gq }/XI
can actually be carried out without the exnlioit formula of gZVj

indeed the construction really depends merely upon the fact tha*
I,f‘q | xI, as a convex set in affine space, has banishing homology
groups in dimensions > Q.

THEOREM 28.2. The singular homology groups of a topological
space X = %x} consisting of a single point are
(28.3)  H_ (x%) = 7, B ({x}) =0, a> o

Proof. The space {i& regarded as a subset of affine space, 1s
a convex subset; all its singular simplices T are thus affine
simplices & . Define a homotopy D

D = (,1)m+1(§\/;; m = dim &

Then by the join boundary formula of s2v

3D + Do = W; (dimae > 0).

The conclusion follows by Corollary 2€.3 (for HO the result 1is
already known).

Much the same argument can be used to prove that the homology
groups of any convex subset of affine space have the same values (28,3,
One can also argue: the convex subset is contractible, hence has
the homotopy type of a point, hence by Theorem 28,1, has the same

homology groups as a pointe.
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29, Barycentric subdivision. Let X = | P | be the space of

a polyhedron P. The singular complex S(X) and its homology groups
are already invariants of X, because they are defined directly
in terms of the space X, without using the "triangulation" of
X given by the polyhedron. The compleXx K(P) determined by P
is not an invariant, since it is constructed from the particular
triangulation of X given by P, but on the other hand the groups
of chains of XK(P) are finitely generated, and sc the homology
groups of ¥(P) are computable. Our next main objective is to show
that the simplicial homology groups of X(P) are isomorphic to the
sihgular homology groups of the space | P |. This will show, on
the one hand, that the homology growps of K(P) are invariants of
the space | P |, and, on the other hand, that the singular homo-
logy groups of the space of a polyhedron are computables The proof
of this basic theorem uges barycentric subdivisione

et P be a polyhedron, and X(P) the associated simplicial
complex, defined as on page. 104, in which the g-cells are

» 98 @

a ° s Pg the vertices of a frame

s of P. Let b(G”q) denote the barycenter of that frame, The

o =(p, °°°, pq)" with the P,

first barycentric subdivision P' of P (p.55) has all these
(<) as vertices.

Parallel to the geometric operation of barycentric subdivision
we assign an algebraic operation, which maps each g-cell &~ of
K(P) into the g~-chain of X(P!) which consists of the cells of
dimension q appearing in the geometric subdivision of the sime

plex of & o Formally, we define a homomorphism

\ == A ° u— 4
& Ly Cq(K(P)) %Cq(K(P ))
by induction on ¢, setting
(29.1) Eolp, ) = plp,)
29.2) ﬁh(a“) = (-l)q(gbq_ljiﬁﬁ Vb)), dim S = q.
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(provided this join makes sense). This formula corresponds exactly
to the geometric plan of subdividing <~ by joining the barycenter
of 75 to the subdivision {536? on the boundary of ¢ + Expli-
citly, for g =1 the formula glves |
(20:3)  (3,(p.p)) == P Lp) = (pIV B(p p))

= = {b(py) - B(p, )]V blp p,)

= (b(p_)s blpypy)) = (blpy)s blp py))e

This states that the barycentric subdivision of an "edge' (popl)
consists precisely of the two edges into which it is cut by

ﬁ‘(p p.pP,) from
2 707172

(29.2) and (29,3), and observe that this result is the sum with

b(popl). The reader should similary compute

signs of six terms like the six simplices displayed on page 52

1% ! .
TIOREM 29.1 [0 4s @ ohein trensformation (s K(P) -5 K(PT).

By induction on \q, we prove simultaneouslys: (i)b{?q
= %}q-lé> and (ii)??&j‘ is a g~chain on the barycentric subdivi-

sion of the sub=polyhedron < of P. For q = 0, these facts

are immediate. Given these results for gq - 1, we first observe

that Sﬁq_ibmw, by (ii), is a g = 1 chain, each cell of which is

\

a cell in the subdivision of some face of T ; hence the cell formed
by joining it with (") 1lies in P', and indeed in the subdivi-
sion of & ., This proves (ii) for gq. To prove (1), apply to

(29.2) the boundary formula (27.3) for the join giving

N Gt = N e\ )4 (B N
© \—) q\‘) - (-1)qb©ci_] '>‘~" VS (-’(’J-—;’ d )

(I

- - 1 N , - :'* -’\,
- ("l)q kb -5 E < 3 \‘v'/,f./)' T '\.:k]_ —ésl &= \( ‘ 3} oo
¢ \ L i c&- |

by induction.

(5 = Gbp is defined for every polyhedron.

f oy b '?L.: — i ~
© k\./Q"‘ 1 “\) g- 20

The transformation ¥

Y

Let ¢ @ P-->(¢ De an (abstract) simplicial map of one polyhedron

into a second. The definition @'b(p, ‘s Py) = bldp,, °*%» ¢pq)
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J

then yields a similar map ¢! = P'—>Q'. On the other hand, ¢
and ¢' then induce chain tfansformati&ns X(9), K(0') on the
complexes, and we have a diagram

K(P) £(9) -a>K(Q3

0\

 E (Q

P i

i I/

}’é( L I 5 (LD N QT | )

THEOREM 29.2.

[aY
E(Qr)S =
4 )\ P
The proof
K(Q')%W“

v

f
'2904: ! K
(29:4) O
is again by induc
(-1)9K(¢1){baer
= (-l)q(¥)K(¢)o@

E(P)

By definition, and X(P!')

lar complex S( | P | ), so that

Commutativity holds in this diagram:

Kk | ’
¢ SN Th

\/,7\ = -l)qEK((bi)\‘?cD{T{\/’( \:J;K((b){y)
- / i

A d N
v (ﬁ)i $eri = E(P)

tion on

are both subcomplexes of the singu=-

> may be regarded as a chain

transformation %ﬁ: K(P)—>s( | P~’ )o We show now that %
is a chain homotopic to the identity 1 ¢ K(P)—>s8( | P | ), by
defining a suitable homotopy

g 8 G2 =20 (80 [ B | )
by recursion, sctting
(29.5) y\. (p,) =0 |
(29.6) =) = (-1 —KT‘E“ﬂﬁﬁgiNﬁ dim3™ = g

For example, t\ (p 1 )==(p :Pi:
THEOREM 29930
b Q

N\ i,
6: i -‘;

¢ s

(p pl)) + (pgs P(p_pq))e

K(P)~=8( | P | ), and if

is a gimplicial map, then

in l X ] .
If they are given for

are both affine

‘X‘ 7e = ¥

(29.6a) DE(9) = 6(¢*) N

Proof. We show, by induction on ¢, that

. N 1% N : Qx

( l) i \!q = =\ q-l ot 1l - \‘\-‘/ q
(1i) :ﬁqdf‘ is an affine g-chain

For q = 0, these results are immediate.

- R— \ /

q - 1, then <J7 and Sq 1FXT“

(q = 1l)=chains
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on the convex set |G|, so that the join involved in the definiw

tion (29.6) makes sense, and proves (ii) for g. Also, using

(i) for the subscript q - 1,

A

. 7 _ ..'.1 — " Ry . 1 ) " e —
25 3‘q‘3" = (-1)q { (\J 37 - {-’\\64"‘ b@"“g\f/,'{c’.(; R Cc:S“‘~_ Aq '\,})\.§ 5
+l s D . - -
= (-1)% 3 ‘_ﬁ*_.x; AY L B & i-vmf\a | LN
Zk<¥‘ LN 7 N
=" (?7? T ST iy (BT Qeeede

)

The proof of condition (29.6) is much like that in Theorem

2902,
Y

We now. transfer the operations {b and 3  to the singu-

N

lar theory. Any singular g-cell T in X a space X has the

q
~and  S(T) : S( lg&q [)->8(X)e Define

form T = S(T)uoq, where W is the basic g=-cell in Zlq

~

BT = S(T)I?\uq e 0y (8(x))
Mro=s(m) Swy e Cypy(8(X)).
THEOREM 29,4, The mapping B & S(x)~>8(X) 41is a chain
1
transformation, and | is a chain homotopy
LT .
(290‘7) C‘)f +‘ ’:\j‘ = 1 = B,

where 1 is the identity map 1 ¢ S(X)-—»S(X). Also, if
f + X—» Y, then
- = 1
(29.8)  B,S(F) =s(£)B, | _s(r) =s()l',
where BX BY denote the maps B for the spaces X, Y respec-
t
tively.

Proof. The proof of (29.8) is immediate., We next show

™y

S : :
~ , whenever > 1s defined. In other

that B agrees with \

,\n
words, if P 1s a polyhedron, sand <~ a cell of P, then‘EGMS’,
regarded as a singular chain in Cq( | P | ), is identical with

BJ. Indeed o = (pys °"pq), regarded as a singular cell

-4
Tz Iﬁlq

simplicial map ¢ : /) <> P | with ¢(i) =p,. Therefore

[~=] P [, is just the cell T = ¢, given by the
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7= §(¢,)vry and the definiflon of B gives
- Y , o
B O =‘S((p%) & qu. - 152 .
Now 8(¢,) on the simplicial chain &9Mv of Zl is identi-
cal with K(0¢'), hence by Theorem 29.2

; : ,
B = K(Q! th Y = (9 K y = (5 S
as asserted,
Now compute

F\BT =D S(T)?* o= S(T)XQBtJ =’S(T)Ofﬁnh
VBT = 08Iy vy = SIMER Q8w

By the fact just observed %ﬁ&;mq is Bw\b u)q; hence by
(292.8)
OBT = S(T)Bdﬁ'dﬁq = BXS(T)QULE

= By¢ S(T);uq = BXE>T.
The proof of (29.7) is similar and again depends on the
fact that ;7 agrees with X» whenever %, is defined.
COROLLARY. 29.5. For any integer n, B : 8(X)-> S(X)
is chain homotopic to the identity, and hence induces isomor=
phisms onto (Bn)% : Hq(X)“G (HQ(X) on the homology groups.

Proof. B® 1s clearly a chain ﬁransformation. By Theorem

—
26e4, Bt < i, and the explicit homotopy | , can be written as
% M -1
(20.8a) | _ = Ceplla, e, wBL
i .
Since ! nt B" 21, (Bn)% is an isomorphism onto, by Theorem 26.1.

The advantage of B® is that B"T can be made to have
an arbitrarily small diameter. This may be illustrated as follows.
Ir ?f is eny collection of open sets covering a space X,
we call a singular simplex T of X,-Q_-small 1 T( | Zlq | )
is contained in one of the sets U of the coverinngJ « Since
any face of a "small" simplex is small, the singular chains of
X which involve only'uhg-small simplices clearly constitute a

subcomplex 814<X)° The homology groups of X can be computed
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from this complex, in the following sense: T

THEOREM 29.6. If 1{4 is any open covering of X, then the
identity injection 1 1 SlL(X)-‘?S(X) induces an isomorphism
of the homology groups of SU(K onto those of S(X).

orooF. We first observe that if T is Ul -small, so ave

r o \

BT and | T. Indeed ﬁﬁj’ and %S’ are chains lying on the
il

set | O |, hence BT and [T are, by their definitions, sing-

ular chains lying on the set T( | ixl }; thus if this set is
e

"tsmall®, so are the chalns BT and | 7, and, for that matter,

so are BT and {7nTa

Now a continuous map T 2 ] ﬁ}q | > X carries the cover-
ing W by open sets U back into a covering of quﬁq |
by the open sets Yy, But | qu | is a compact space, hence
1s covered by a finite number of these sets, say T'lUl, e
"T-lUln‘ Also | fiq | is a metric space, hence this finite

open covering has a Lebesgue number € > O such that any sub-
set of | ;} | os diameter less then € 1lies entirely in one
of the sets T"lUi. By the refinement property of barycentric
subdivision (Theorem 12.3), there is therefore an integer n
such that each simplex of the n-th barycentric subdivision
£ﬁ= (n) has diameter less than € o Since g?nuﬁq is a chain
in K( Zlq(n)), gach cell of i? n\uq 1ies in one of the sets
T-lUi° Hence each cell of BPT = S(T)iﬁntmq lies in one of
the sets Uy of the covering 1L, 1In other words, we have
found for each T an n such that B T is zx,-smalla Since
a singular chain ¢ involves only a.finite number of cells T,
we can find for ¢ an integer n (the maximum of the integers
appropriate to its cells) such that B is Ei,asmall.

In particular, let z Dbe a ecycle of S(X), and choose
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n
n so that Bz 1is in S'IL(X)’ Then

el R
z-an=?:’} z + | ‘5:z=1>)rz. - 134 -
n n n
This equation asserts that the cycle 2 1is homologous to the
small cycle an, in other words
¢ 34, (X)—>
i u'( ) —>8(X)

is a homomorphism onto for homology groups.

Now let 2z be a U =-small cycle which become a boundary
in 8(X), so that 2z = Dce As before, pick n so that B

3s W -small. Then
n B o

c=8B%+ Qi ¢+ | Oe¢

n n

and

N, -

™ 1
~ o i
z =Oc =08"% + E‘)'Q/nc-l- o

4

s, - n

3 = <

e 2(B% «+ {nZ),

which states that 2z 1s already the boundary of the small chain
} 1 :

B® + [nz (note that 2z=small implies [ nZ small)s This means

that 1 above is an isomorphism into for the homology groups,

and completes the theorems
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CHAPTER IV S e .

The Axioms for Homology

30, Relative Homology groups. Let K be a chain complex; a set

of subgroups G'qc. Cq(K), one for each dimension, constitutes a sub-

complex K! of K if each boundary homomorphism o Cq —_— Cq-l carries

¢t into Gt :
q g-1
B A

as e C = C(. "—‘. <~—~—~£—-——'-- oee
q-2 4=1 Cq
L - J - J

.o 0t | e O, G (! coo
q-2 q-1 q

The identity function i with i(c') = cl¢ Cq for each ct€ G('1 is then a
chain transformation i : X! —————> K, hence induces a homomorphism
(30.1) i, ¢ Hq(K') SN & Hq(K)

on the homology groups in each dimension. We wish to determine the
kernel and the image of this homomorphism. The kernel consists of the
homology classes of those.cycles in X! Which become boundaries of chains
in the larger com>lex K; the imaze consists of the homology classes of
those cycles % in K which are homologous (in¥) to cycles lying in the
subcomplex K'. These groups will be determined by using as auxiliaries
the homology groups of the factor comylex K/K'_and certain '"relative!
homology groups of K modulo K'.

The factor complex K/K' is defined to be a chain complexywith chain

groups Cq(K/K') = Cq(K)/Cq(K'); since D:Gq >0, maps Cc!{ into

g-1

C! ., it induces a homomorphism

q-1
0 :Cq(K/K')

> Cqop (KRN

defined on the coset ¢ + C,('1 of each cqu by

~ 1 = \
L 2 (¢ + cq(x Y ) =2c + Eg‘l(K‘) .
Clearly <<= 0, so that K/K', with this boundary o, is again a chain

comnlex, and thus has homology groups Hq(K/Ki) in each dimension. If we




denote the canonical homomorphism ¢ =—~—>C + Cq(K') by j:Cq(K)

> Cq(K/K'), then the definition of the boundary O reads zﬁc = j dea

This asserts that j is a chain transformation j:K > K/K', and hence

that j induces homomorphisms

(30.42) Iy Hq(K) > Hq(K/Kt) .
The groups Hq(K/K') may also b: described in terms of "relative! ¢

cycles and boundaries. A relative g-cycle of K modulo K!' is a chain

¢ 20, such that ?’C"'—'Gc'l-l (i.e., such that joc = 0). The set of all
relative g-cycles is a subgroups Zq(K,K') of Cq(K). A relative
g-boundary of K modilo K!' is a chain oY Cq which can be written in
the form
c =c! +<b, c'va(K'), bg,cq+l(1<) .
The set of all such relative boundaries is a subgroup Bq(K,K') of Cq(K),
and is indeed the subgroup
By(KK') = cq(K') + B(K) |
spanned by all g-chains of K!' and all g~boundaries of K. Since
Jd(ct + 2b) = Zct + 2% = et a‘Cq_l(K'), every relative boundary is
a relative cycle, so that Bq(K,K')C:Zq(K,K'). The relative homology
group of K modulo K' is then defined as
(3063) Hq(K',K')’E" Zq(K,K')/Bq(K,K') .
Lemma 30s1. The map j(¢) = ¢ + Ca induces an isomorphism onto

H (K,K'") = H k')
q(, ) q(K/ )

Proof. Consider the map j:Cq > Cq(K/K'). By definition,
¢ is a rclative cycle if and only if jec is a cycle in K/K', and ¢ is a
relative boundary if and only if jc is a boundary in K/K'. Hence J

induces an isomorphism

j:Zq(K/K')/Eq(K/K') -

as asserted in our lemma.

> Zq(K/K’)/Bq(K/K')’
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We shall usé this isomorphism to identify the relative homology
groups of K modulo K! with the homology groups of K/K'.

Tf ¢ is a rolative cycle, then@c is a -1 chain of X! which is
surely a cycle in K', since ode = 0. (Indeed,Zc is a boundary in X,
but need not be a boundary in K'; recall our aim of studying those
cycles of K' which bocome boundaries in K'), Thus 9:Gq — Cq-l
induces a homomorphism

DK ———> 2y (K1)
Under this homomorphism, a relative boundary ¢ = ¢! +72b is carried to
Jo = Jet + APb = Jet, a boundary in K!'e In other words, 2 maps

Bq(K,K’) into Bq_l(K’), and thus induccs a map

(3041) D B (K1)

> Hq_l(K') .
Upon combining thc homomorphisms (30.3), (30.2), and (30.4) we

have a sequence of homology groups and homomorpliisms

. ’!L... apa e - . ’ '_x_ j‘)(' 2‘}*' —————
(30.5) o> Hq(K') — Hq(fi) > Hq(KsK’) —> Hq-l(K') > oo

which we call the rclative homology scyuence of KbK'e Its basic
property is
Theorem 30.2. The rclative homology scguence (30.5) of a complex K
and a subcomplex K! is eXacte
- Here we usc the

Definition. A seyuence

ess O (4 a
i3 p-1
A
Z “%p

—> 6 80

> A,y —> Ay s

P+l
of groups and homomorphisms is exact if for each p the kernel of

. —— . . D) . " £ . ——, .
ap.Ap >-Ap_1 is equal to the image of ap+l°Ap+1 > Ap

In other words, for cach.a.aAp, apa = 0 if and only if a = a_ .b
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(i) TImage 1,

for some b E'Ap+l' Note that the requirement kernel apg age ap+l by

itself means that ap+lap: A e > qul is zero. Hence we could

P+l
equally well say that an exact sequence is a chain complex with all
its homology groupsg zero.

The proof of Theorcm 30.2 breaks up into three parts:

Kernel j, in Hq(K) s

(ii) Image j, = Kernel @, in Hq(K,K') P

1}

(iii) Image &, Kernal i, in Hq_l(K') .
Tor example, in (ii) we first prove that image < kernel; i.e.,
that Q*j% = 0, For, take a cyclc z in zq(K). Then j 2 is the same
cycle, considered now modulo Bq(K, K'), and E;)*maps it onto the homology
class of dz = 0 in X's On the oiher hand, image O kernele. For let c be
a relative cycle with a homology class {c} =c + Bq(K,K"). If <>.ch= 0,
then ¢ ¢ must be a boundary in K', hence Jde = dpr for some blz K'.
But Ob! is a relative boundary, and hence c, regarded as a relative
cycle, is homologous to z = ¢ = b!, with 2 = Zc -t = 0. In other
words, the homology class of ¢ in Hq(K,K') is that of 2, the image
j_x_izi of a homology class from Hq(K).

The proofs of the other parts (i) and (iii) above are similar.

It will be convenient to record the effect of chain transformetion
and chain homotopies upon the relative groups.

Theoremn 30.3. Let KoK!, LoL! be chain complexcs. Then any

chain transformation A:K ——> L such that )\Cq(K' - Cq(L') for each g

induces a chain transformation

>

KK > L/L' ,

>1

with [C + Cq(K') ] =\ + Cq(L') .

In the diagram for the two relative homology sequences
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ooo“"——"‘.H K
> q(h)

( 3 0 * 6) )".\c )\‘.v. -):.\L )"_V.
N/ i j s (::'}.\:_

@90 m——> Hq(Ll)

commutativity holds in each square; for example

(30+7) Dy M, = N G Hq(KlK') —_— Hq_l(L') .

Any chain homotopy D: A lvpu K ———> I between two such chain transfor-

mations, and such that DC (K')Q.Cq+1(L') induces a chain homotopy

(30.8) D: x My K/KY ———> L/LY o
The proof is immediate, by the various definitions. Tor example,

to establish the commutativity (30.7), let ¢ be any relative cycle of

N e
LG =
*L ¢

X

K modulo K' and %diits rclative homology classe. Then XM13M§C§= A

. Y 7 ~T e - 3 . m~
ékﬁch and va‘w§=5gﬂcs=§mkﬂ;snmek;u=om,tMemmMis
3 * ¥ 3 : 1

are equal. Similarly in (30.8) we define B[C + Cq(K') ] to be Dc + CQ+1(L') .

31. The #¥ive Lemma, In the manipulation of exact sequences, we

frequently consider diagrams of groups and homomorphisms such as

al a2 a3 ah'

Ay —=—> A, >rA3 >'Ah > AS
(3L.1) Yli L i By Ysiy A, Yul A, *Sl
——> > 3

Lerma 31,1 (Five Lemma)e In the diagram (31.1), assume that
cach row is an exact seyuence (at Aps Ag, ALL and at By, By, Bh) and

that commutativity holds in each rectangle (ieea, Yooy =‘£1Y1’ etce)e If

(1) YZ(AE) = BE’ Yh(Ah) = Bh and YS has kernel O,
then YB(AB) = BB. If

(i) Yl(Al) = Bl’ Y2 and Yh have kernel O

‘then Y3 has kernel _ero.

The conclusion is often quoted in the weaker but snappier form:
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L3 j.):. (;.).\'.
> Hq(K) m—> Hq(K,i{’) —“>Hq_l(K') —> Y

> H oL — a Hq(L,L') — Hy g (L) ——> e



If Y15 Yoo )t g arc isomorphisms, so is Y3
The proof of (i) is accomplished by the mcthod of ndiagram chasing'e
We first show that Y3A3 includes the kernel of 53. Starting with

k. in the kerncl, we construct elements

3

P, 3

as follows. 3ince ﬂ3k3 = 0, cxactness at B3 gives an element b2 in B,

>k

with ﬁzbz = k3. Since YZ(A2) = By, there is then an a, in A, with

Yoy = b2. et aq = Gy Then Yqag = Y30g2y =ﬂ2¥2a2 = k3, and thus
o< 3 20 o

k3 ‘“'YBAB" a5 asscerted

Now et b3 be any clement in B3° Je construct elements

33 > a}.l. >

as follows. Let by = /33b3 . Then by exactness at By, Ahbh = /314 /33b3- = 0.

Oe——D

since Yh(Ah) = Bh’ there is an clement 3y in Ah with Y3y, = bh"
Then Ysaha)-l- = /Bthah = ﬁ)—lbh = Do Since YS has kernel O, U.hah = O,
By exactness at Ah" there is an element aq with ajdy = ah. Then
ﬁ3y3a3 = Y),8333 = M@ bh = ﬁBbB. Hence /33(’03 - YBaB) = 0, s0
that b3 - Y335 is in kernel (/33), hence in YB(AB) by the previous resulte
Therefore b3 = Tqag t (b3 - Y3a3) is in YB(AB), QeCole
To prove (ii), start with an a, in Aq with ToRy = 0 and construct
elements

> 0
0

YhGBaB = 0, But Yb, has kernel zero,

""f
0

>

1

as follows. Since Yjag = Oy /33Y3a3

Lo



hence 5333 = Qs By exactness at AB’ thers is an a, with Updy = aB;

set by = Yploe Then ﬁzbe =/32Y2a2 = Y308, = 0, so by exactness at

L]

B,, there is a b, with B by = bye Since v1(4)) = By, there is an

ay with Y2y = bl' Then Yoo 3y =/31Y1a1 = ﬁlbl b2 = Y52,,0T YE(Glal - 32)=O'

a2a2 = a2alal = 0,

Since ¥, has kernel 0, a, = Gy8;¢ Therefore aq
by exactness at Age

The result applies at once to the situation in Theorem 3043,
wherc we have chain complexes KoK'; Lo L' and a chain transformation

A: K > 1 with MK!')< L', with the corresponding induced homomorphisms

on the homology groups

1.2) s —_ A: H (K1) — 0y, A, s 0.
(31.2) M, Hq(K) Hq(L), N Hq(K) >Hq(L )s X, Hq(KlK‘) >Hq(LlL)

The five Lemma for the diagram (30.6) yields
Corollary 3l.2. If two. of the three homomorphisms of (31.2) are
isomorphisms for all g, 30 is the third.

32, The homotopy axioms Let X! be a subspace of the topological

space Y. The singular complex 3(X') is then subcomplex of s(x). Hence
we obtain as in 830 the relaﬁive singular homology groups Hq(S(X), S(X')
which we write more simply as Hq(X,X'). The basic geometric picture is
given by the observation that a relative cycle of X modulo X! is just a
chain of X whose boundary lies in the sutspace ', In particular if
gt is the cmpty subset O, Hq(X,O) is simply Hq(X).

Iet Yo Y' be a sccond pair (space + subspace) amd f: X ——> ¥
a continuous ma> with £(X{')c.¥'s Then f induces the usual chain trans-
formation 5(f): 5(X) ——> S(Y), which carries s(X') into S(Y'). There-

forc Theorem 30.3 applies to yileld a diagram

11



i j 2

* 3 ey %
o0 mmm———3 Hq(X') e > Hq(X) — Hq(—i,x') —— Hq‘_l(X') ——2 e
(32’1) |f.v \f.v. ‘f_v. \f-“-
v “ \I" ” 'V" “ \“. “
ces ——> Hq(Y‘) — Hq(Y) —_ Hq(Y,Y') - Hq_l(Y') —> eee

for the relative homology sequences of X, X' and of ¥, ¥'s Commutativity
holds in cac.t s uare of this diagram.

Theorem 32.1 (Homotopy axiom). If £, g: X ——> Y are continuous
maps and X', Y' arc subspaces of X, ¥ respectively with f(X')< ¥t and
g(x)c ¥, while #: X X I —> Y is a homotopy betwcen f and g such
that F(x', t)¢ Y! for cvery xte¢ X! and t #I, then

(32.2) f =z,

N 3L
v "w

: Hq(X,X‘) —_— Hq(Y,Y').

We already know, using the cylinder homotopy (Theorem 28,1) that

")

gt(f) and 3(g): 3(4) —> $(Y) are chain homotopic and hence by Theorem 26.1

o

that

£, = : H (X) =———>H_ (Y} .
. = 8y Hy(X) > Hy (1)

ki3

The same results apply to £, = &.: Hq(X') -> Hq(Y‘). The current
theorem extends this result to the rclative homology groups. The esscntial
hypothesis is the asscrtion that during the homotopy, images of points
in the subspacc X' of X.are moved only through the subspaco y' of Y.
Proof. Use the cylindor homotopy of 8 28 :
Dy s(g) = sS(f): s(X) —> S(Y) »

If T: d&q ——> X! is a singular si plex of the subspace X!, then S(f)T
and S{g)T are singular simplices of Y', by the hyoothesis that fixre Yy,
| g(X") e Y's Furthermore DFT’ by its construction, lius in s(Yt). Hence

the hypothcses of Theorcem 30.3 apply, and DF induces a chain homotopy

between the two chain transformations f and g of S(X)/s(x") into‘S(Y)/S(Y').

33, The excision axiom. The determination of singular homology
groups by small simpliccs, as discusscd in Theorem 29.6, also applics
to the relative groups as foliows.

|
g 142



- 13 -
Lemma 33.1. If 9{ is a covering of the space X by open sets U,
then the collection U of open sets Un X', for Uell, is an open

9

covering of the subspace X' of X, and a singular simplex of X' is [-small

’

precisely when t is %/ -small, The identity injection S (X) ——> S(X

induces an isomorphism.
(33.1) 5ot Hq(.s;_(: A)/b (,x') ) = H (S(X)/a(
Proof. The statements of the first sentence are immediate con-
sequences of thu definition of "small! simplicies. We therefore have
the sifmaton of Theorem 30.3, with complexes w (X);;s (X') and. d(X):JS(X')
and a chain transformation .t of the flrstApalr into the second. Further-
more the basic result (Theorem 29,6) on the sufficiency of small simplices
shows that
syt B (6 (X)) —> 18 (8(E) )y gty B oS (x1) ) —> 1 o(3(XY) )
are 1somorphlsmg. The 5- Lemna , in the final Corollary 31.2, then gives
the conclusion.
Tntuitively, the relative homology of a space X modulo a subspace X!
should not depend on what happens inside! the subspace X's. This will
be expressed by a theorem which discusses the effect of lexcisingh a
.subset inside X'.
Theoreﬁ 33.2 (Excision axiom). Let XZX'DA be spaces, with the
closurc of A contained in the interior of X', and let X-ADX!-A denote
the subspaces obtained by removing all poinis of A from X and X!
respectively. Then the identity mapping k of X-A into X induccs
isomorphisms on the relative homology groups
(33.2) k,: Hq(X—-A, X1-4) = Hq(X,X') .
Proof. The hypothesis on the closure of A insures that X has
an open covering i¢ = %U, V% by the two sets
U = interior X', V = X~k »

1L3
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Using simplices small with respect to this covering for X and each of
jts subspaces, the apsropriate identity injections yield a diagram of
quotient complexes

S (X - a)/s,, (Xt - &) £ 3(X - 4)/5(X)

‘t"t‘/ e
(33.3) |50 |00

\-..l *‘\ ¥

s, (0/5. (x) —4E > 5(X)/5(x1)

b

clearly commutativeLy holds in this diagram (ffS;I(k) = (k) ) o
Therc is a corresponding diagram for the homology‘groups of these
quotient complexcs, which is again commutative. Our conclusion is
to be that the right hand map k% is an isomorphism for homology. By
Lemma 33.1 the top and bottom maps ., arc isomorphisms for the homology
‘diagram, hence the conclusion will follow if we show that S(k) induces
an isomorphism for homology groupss

de shall prove a little more; to wit, that
(33.1) 5, () 5 (X =8)/5 (X - 8) = 5 (/5 (X1)
is an isomorphism for chain complexes (and hence certainly induces an
isomorphism for homology groups)s Now if L and M are subcomplexes of
a chain complex K, we can define their intersection i L~ M to be the
subcomolex of K with chain groups Cq(LfaM) = dq(L)fva(M) in each
dimension q, and we can also define their union to be the subcomplex
L. M of K with chain groups Cq(L;JM) = Cq(L);:Cq(M), thé subgrouvp of
Cq(K) spanned by Cq(L) and Cq(M . Onc of the basic isomorphism theorcms
for groups asserts that for subgroups L and ¥ of an abelian group the
identity injection provides an isomorphism
(3345) K : L/L-AM= (LuM)/M .
Exactly the same isomorphism is wvalid for subcomplexes L and M of a
chain complex; indecd, the identity injection is clearly a chain trans-
formation, and in cach dimension it 15 an isomorphism for thc chain

X :U-LLL
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groups, by the group. theorctic theorem. e shall show‘that the
derived isomorphism (33.4) is a special case of the isomorphism
theorem (33.5).

Indeed Slﬁ(X|) is a subcomplex of S(X) which is yenerated by
certain of the free penerators (singular simplices) of s(x), and
Lemma 33.1 asserts that

S?L(X') = Sw,(X)fzS(X'), SU{(X - A) = S%E(X)f‘S(X - A)e
Furthermore the subcomplexes S(X!') and E(X - A) are free groups with
generators the singular simplices T in X! and X - A, respectively;

a little consideration shows that their interscction is exactly the
subcomplex with gencrators the singular simplices T in X' - A, hence
the subcomplex S(X' - A). Therafore

(33.6) s‘ (X1) - .s, (x - 4) = (X') 28X = A) = S(X' = A).

On the other hand thc union S (X')~‘S (A - A) is spanned by
the %{ -small singular simplices of X which llO either in X' or in X - A;
but by the choice of ¥i above every ! -small simplex is either in
U=X' or VoX - A, so that
(33.7) SQ( X‘)*"S?E(X -A) = S!{(X)

In view of (33.6) and (33.7), the projected isomorphism of (33.4)
bacomes exactly

s (A A)/(S (X!)m.s.] ’(X -A) ) —> (8 ,(x')x..zs,;;t(x-A)/S,\,(x')

<4

which is indeed a special casc of the isomorschism theorem 33.5, qec.ds



