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§0 Introduction

in this paper, we describe a new form of K-theory which is
intermediate between the K-theories based on the orthogonal and the
‘unitary groups. We shail further show that this theory has finite
dimensional approximations to its classifying space which are
differeﬁciable manifolds; in fact they are differentiable fiber
bundles over the complex Grassman anifolds with fiber and structure
group unitary groups. In this paper, we shall not go in;o either
the question of characteristic classes for the new theory, nor that
of internal cohomology opera:ioﬁs. We shall rather concera ourselves
'Qith relations between the new theory and the older Ketheories, .
These relations will have the form of long exact sequences, aﬁd can
be used to obtain information about the real X-theory KQ*(X) of a
ISpace from the comp;gx K-theory Ku¥(X). .In particular, we shall
use this technique to prove a new theorex about KO*(BG), wherg B

G
is the classifying space of a compact Lie group G.

In defining our new theory, we do not use the Grotheadieck - -

construction as in [2], but take the concept of stable equivalence
clas;es of bundles as the basis of our description . This is done
to more 2asily establish the exact sequeﬁca of a pair. We assume
that the reader is familiar with such a description of <U*(X); if

not he can easily infer it from what follows.in this paper.



§1 - The Theory KC*

It X is a finite CWecomplex, the group KC(X) will Se defined
in terms of complex vector bundles over X, together with equivalgncgg
between such bundles. In order that these equivalences may be
differentiated from oneranother, our fiber bundles will be taken to
be coordinate bundles in the sensz of Steenrod [7]. All bundle maps
will be coordinate bundle maps. Two bundle equivalences fo and f1
wili be said to be homotopic as bundle equivalences if there is an
extention of fo and f1 to a continuous family f: of bundle equiv-
alences defined for 0 <t <.

~ By a real, complex, or quaternionic vecto:kbundle, we shall

mean & fiber bundle with fiber a real, complex, or quaterioaic

vector space, and structure group an orthogonal, unitary, or sym-

plectic group, respectively. _ B _ o

It is well known that a complex vector bundle in odur seanse

can be thought of as a real bundle E, together with an automor=

2

phism JiE «==> E such that J" = -I, where I is the identity

automorphism. A quaternionic vector bundle. is given by a real

2 2
192 such that Jl - J2 - 'If

The complex conjugate to a complex bundle E with

bundle E with two automorphisms J,,J

and JIJZ - -Jle.
complex structure J is the same underlying reallbundle with éomplex

‘structure given by =J. (Clearly, quatermionic bundles'give rise to

three types of qudtefnionic conjugates.



iIf E, E' are two complex vector bundles with complex structures
given by J, J' respectively, a map of the real underlying bundles
£3E —> E' {s a map of complex bundles iff £J = J'f. A selfeconjue

-,

gacy of a complex bundle E is an automo:phiém € such that eJ = «Je,

A bundle admits a self-conjugacy iff it is equivalent to its
conjugate. L )

If E is & real bundle, the complexification Eﬁbci of E i5 self~
conjugate. C1 is the trivial one dimensional complex line bundle.
The complex structure on SU(E) - E@Cl is given by IéJ, where J is

'the complex structure of Cl, and the self-conjugacy of EU(E) is
given by lﬁnl, where ¢y is the cénjuga:iun of complex.numbers. This
is called the canonical self=-conjugacy 6f aU(E).L'If E is a quaterne
fonic bundle wit§ quaternionic structure givea by J, and J,, €, (E)
is the complex bundle with the samé underlying real structure as E,
with the complex structure given by Iy and with canonical self-
conjugacy given by Jz.

I£EEis a cem?iex bundle, and ¢ is a selfwconjugacy, we might
be led to conjecture that E could be split into a difect sum of theAu_
form E = E*QE", e » e'©e”, where E* is the complexification of a P
real bundle, and E comes from a symplectic bundle in such a way |
that €' and e" are tﬁe canonical self-conjugacies. We will eventually
see that there,is a counterexample to this conjecture on the three

dimetééﬁnal sphere, even if e is allowed to vary by a homotopy.

Definition 1.1 A C-pair {(E,e) on a finite CW-complex X is a pair

whose first element is a self-conjugate complex vecter bundla on X,

and whose s2cond element is5 a self-conjugacy of this bundle.



*

Definition 1.2 1If E,F are complex vector bundles, and fiE wmw—> F

is a map of complex vector bundles, fi:E =——> F is the map which
agrees with f on the underlying bundles, where E, F denote the
complex conjugates of the bundles E and T respectively.

Definition 1.3 Two C-pairs (E,e) and (E',e') over a space X are

equivalent if there exists a bundle equivalénce f:tE ~—> E' such
that e'f and Te are homotopié as bundle equivalences.

I:fis clear that givgn two Cepairs (E,e) and (F,f) over a
space, we can form their direct sum by defining (E,e)® (F,f) =
(E®@F,e®f). The trivial n-dimensjonal Cepair (Cn,cn) over a

space X is the pair consisting of the trivial n-dimensional complex

bundle Cn over X, together with the automorphism <, given by the

conjugation of complek-vec:ors. Two C~pairs will be called stably
equivaleat if they become equivalent when suitable trivial C-pairs
are added to each of them. The stable equivalence class of (E,e)
-s denoted by {E,e}.

—~

Definition 1.4 If X is a finite CWecomplex, XC{X) is the abelian

semigroup of stable equivalence classes of C-pairs over X. If A
& subcomplex of X, and TA is the cone on A, KC’n(X,A) - EC(E“(X,TA)),
where L° denotes reduced suspension (TA is noﬁ the reduced cone, s0
its vertex serves as a basepoint for X_TA).

For general facts about cohomology theories defined in this
way, we refer the reader to [3] and [5].

- Reeall that KU(X) is the semigroup of stable equivalence classes

of complex bundles over X. We can define a cohomology operation

£::RCTH(K,A) —> KUTR(X,4) by ¢{E,e} = {E}. The image of (




is the kernel of another cohomology operation #:KU““{X,A) —> KUTP(X,A)
given by ¢(x) = x - x. In Adams's notation, § = #l - ¢-1. From Adams
[1] we see that if ﬁu:KU'n(X,A) —~> KUTPT2(X,A) 15 the periodicity
i somorphism, nti - zueoﬂu, and ﬂuze - ﬁ(nh)z. EO deontes the |
operation which takes the real underlying bundle of a complex
bghdle, and EU is the complexification as before.

There is another oﬁer;tion which will be of intere#t to us.
wlx) - [X,U]. If £:X —> U(n), £ determines an automorphism
a(f) of C . We define y(f) to be {Cn,cna(f)} € Kc(X). It is clear
that every selfe-conjugacy of the trivial bundle is of the form
¢ a(f) for some £, so the image of y is the kernel of (.
Lerma 1.1 The sequence

Rutex) —Y> ROy —Ss w0y —ts &%)
is exact. Thus ﬁCO(x) is an abelian group.
Theorem 1.1 In those dimensions in which KC™ is defined, XKC s
satisfies all the Eilenberg-Steenrod axioms for a cohomology theory
except the dimension axiom. . T
proof: All that need§ verification is that there is an exact
sequence for a pair. From the work of-DoLd [Sj, it suffices to
show that for every CWepair (X,A) the sequence RC(X_TA) -3 XC(X)
" -——> KC(A) 1s exact. Suppose that (E,e) is a Cepair én X such
that its restriction to A is trivial. Then on A there exists-a
complex bundle equivalence f:E —~——> Cn such that cgf and.?é are

homotopic as bundle equivalences. Let F be the bundle over X.TA

waich results from identifying E on X with Ca on TA along A by means



of £. In the coordinate system of Cn on TA e becomes ?éf-l. 'Hawever,
cnf and fe are homotopic as bundle equivalences, so cy and ?éftl are.
Using this homotopy and the paramater along the cone, we have an
equivalence which agrees with e at the X end of the cone, and ¢, at
the vertex. Thus {E,e} extends to X,TA.

For our next theorem, we need to know one additional fact
- about the homotopy commutativity of the unitary groups in one another. I
We can define two maps of U(n) XU{n) into U(2a) by sendiﬁg {a,b) into
either 28b or (ab)@In, where In is the nXn unit matrix. Notice that
ab 0 a o\b o\ ao/oxzo[oz

- n n n
o 1 0 I f0 1 / 0 I \I 0 0 bji L 0
n . nfl n e/l™n \*n

U(2n) is arcwise connected, so any matrix is homotopic to any othert I,

_ Thus, the;multiplication given by (ab)@ln is homotopic to that
given by sending (a,b) to

a o{:cn o\ a 0

_ - = adb.

0 In \ o b) 0 ,
Thus we can represent sums in EU‘I(X) = [X,U] either by direct sums
or by matrix products, and negatives by javerses.
‘Iheroem 1.2 For any finite CWe-com iplex X, the sequence ' .

Ruml(x) —ts ool ) —L> R x)

i{s exact. Thus for any finite CWepair we have a 1ongrexact sequance

et TPl x,0) —Y s ke x,A) s WNK,A) —Lo, s 10k, a).

Thus the groups XC~ {point) are given by: ' .

An(point) -2 t&n 2

w&ﬂ 1

({point) = @

Kc-énn3

(poin:) - “2 (yainz) -z

and szc'anCpoinz} — Kﬁ_ (poiat) is an isomorphism all n > 0.



proef:  Suppose that £iX «—i> U(n). The condition that-y(£f) = 0
is that there exist a map g:X —> U(n) (increasing n if necessary)
such that cna(g) and ZTETCna(f) are homotopic as bundle equivalences.
However, as may easily be seen by looking at complex vegtors, ET&T -
cnafg)zg, so this is the same as requiring that cna(é) and cna(g);(‘)
- cna(gf) be hcﬁonopic as bundle equivalences. This is the same,
however, &s the condition that g be homotopic to g £, or, equivalently,
that £ be homotopic to g™ Ly - t(g) .
The second part of the argument follows from the f£irst par?,
together with lemma 1.1 and the fact that ¢ﬁu - ﬂUEUEO’ t(nk)z -

2
(ﬂb) ¥

Cup Producgts in KC

We have just seen that the groups KC'n(point) are periodie
with period four. This will continue to be true if a point is
replaced by any finite CW-ccmplex. To show this, we must intro-
duce cup products iﬁtn our theory. We defint the products in
KC(X) for any X, and then by the usual constructions {see, for
example, [3] and [5]) we obtain cup products taking Kcﬁp(X,A)QKC'q(X,B)
. into KC™PTY(x,ALB) for every CWetriad (X;A,B).

If X is 2 space with a basepoint x, then ﬁcOCX) is by def-
inition Kco(x;x) = RC(X). However, whilethe group structure of ECO(K)
does not depend on the choice of basepoint, the ring structure does
depend on the basepoint. If E is a bundle over X, we define

¢im({E) to be the dimansion of the fiber of E over tha bazsepoint x.



Definition 1.5 If {Z,e) and (E',e') are C-pairs cn a space X

which has a basepoint, then we define:
{Ese}  {E'ye*} = {EQE",eqe'} - dim(E){E',e'} - dim(E'){E,e}.
It is clear that this definition is independent of the
choice of representatives for the stable classes;
Theorem 1.3 Let X be a finjite CW-complex with subcemplexes
A» B, C, and D, and let a € XC™P(X,4), b € kC™Y(x,B), ¢ € ku~F(x,0),
and d € KU"(X,D). Then
{(a.b) = C{a), {(b)
§(Ca)v @) = gla) o v(c)
vi€{aloe) = a _vy(e)
yledoy{d) = ¢
Therefore, there exiszs a cohcmology operation ﬂt:KC-n(X,A) —n
KC'n-a(X,A} vhich is an isemorphism for all n and (X,A), given by
ﬂb(a)'w a\,g‘l(ﬂgz(l}}, whers 1 denotes the ;nit of KUO(poina).
If the isomorphism m

c
groups KCR(X,A), KC* becomes 2 cohomology theory satisfying all the
Yy

is usaed to define the positive dimensional

axicms of ZilenbergeSteenrod except the dimension axjiom, and the
eéxact sequence of Theroem 1.2 oxtends to all dimensions, giving

an exact triangle for all (X,A):

R (X,A) > RU%(X,A)

N

KC*(X,A)

proof: The first twe equalities follow from the fact that the



complex conjugation is a ring aucamorphfsm on XU%*. The fourth
identity follows from the thirdby noticing that €y - 0, so
vie) o v(d) = y({y(c).d) = y(0) = 0. The rest follows from these
three initial equalities and Theorem 1.2, together with the five
lemma an& the perioaicitf of XU¥ [3]. Therefore, the only part
which needs proof is the equality y({(a).e) = a_vy(c).

By the usual sort of argument with smash products, suspensions,

and diagornal maps, it suffices to consider the case when A and C

are points, a € ﬁCO(x), c € ﬁu“l(x), vhere X is a finite CWe- e e

complex with basepoint. The oparation v has been defined in terms
of the identification of EU'I(X) with [X,U], and cup products are
defined in terms of the identification of BUT*{X) = KU~ (X) with
Ru(x xs!,X), where X is included in XxS' in the usual fashion.
The first thing which we must do is to relate these two descriptions
so0 :ﬁac we may relate y to cup products. To simplifly this somee
waat, notice that the projection of xx st onto X splits the
exact sequence for XU¥* of the pair (X)(SI,X), so that we u@y
id.enufy Ruxxsh,X) with kernel (RUX X S1) —> BUCX)), 1. e. with
the stable equivalence classes of bundles on Xxs1 which are trivial.
along X. e
| The identification of these two descriptions will be given
by a twisting function t which assigns to every bundle E over X

1

and automorplism £ of E a bundle t(E,f) over X xS*. Explicitly,

this is done by taking the projection of Xx[0,1] onto X, and
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taking the induced bundile nx*(z) over Xx{0,1]. The restriction

of this bundle along X X 0] is identified with the restriction to

Xx[1] by means of £. The resulting bundle on XXS}' is denoted by
:(E,f),.add is called E twisted by f. If E is a cemplex bundie, —————
and £ i{s an autcmoréhiSm of complex bundles, t(E,f) is clearly a

éomplex bundle. The twisting function t clearly satisfies the

following proparties:

1) t(E@E',£G£f') = t(E,£) ® t(E',£')
1) t(E®G,fQ1) = t(E,£) @ *(G)
iii) if fo and fl are homotopic as bundle automorphisms,
1)

We can now identify [X,U] with kernel(XZo(XxS!) — RU(X)) as

then t(E,fo) is equivalent to t(E,f

follows: if f:X ——> U(n) , and a(f) is the automorphism of Cn
which is indgced by £, then £ corresponds to{z(cn,a(f))k It is an
elementary matter to see that this correspondence 4s well definmed T T
and is bijective. It is not hard to show that tﬁis is the usual
identificaticn.

To make our arg#ment proceed more smoo:hi&,rwewﬁsuld like
an explicit formula for v({t(E,£)} -'{t(E,i)}) in the case when E
is a self~conjugate but not necessarily triviai bundle. Since E is
self-conjugate, there exists a self-conjugacy e of E. Since‘ﬁc(X)
is a group, there exists a C-;air (E',e') and an equivalence for some
‘m of the form hMiEQE! > Cm such that cmh and h(e®e') are homo-

topic as bundle equivalences. y({t(E,£)} « {t(E,1)}) =

v{{c(E@E*,fa1)}) = y({t(Cm,h(f@ DE"HY) - {c_,enifo DnL.
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. ' my ==l
This, however, is the same zs {E@E',h

c_h(f® DR 'h) =
{Eg@ E',Tr;'lcmh(f@ 1}}. Since cm‘n and n{e@e') are hemotopic, this
is the same as {E@E',(e@c")(f51)]} = {E@E',(ef)@(e')‘}. Therefore.
y{E(E,D) - {eE, 0] = {E,e7) - (E,e].

We are now im a2 position to finish the proof of our theorem.
Let a be {E,e}, and let ¢ be {t(cn,f)}. Then we have
{(aluc = {TTX*(E)@t(Cn,f)} - n{ﬁx*(E)} - dim(E){t(Cn,f)}. Now
: n{nk*(E)} = {nx*(E)éat(Cn,l)}. By properties i and ii of the
twisting operation, we see that ‘ ) -
((a)dec = {t(wcn.mf)} - {t(F-@Cn,l@}.)} - dim(E){:(Cn,f)}.
Applying vy, we see from our formula zbove that:
vig(ad.e) = {E®Cn,e®(cnf)} - {£8C ;2@ } - dim(E)y(e).

However, this is just a_vy{c).

Cohomology Operations Relating K~theozies
There are a number of cohcmology operations relating the
theories XO%, KSp¥, KU¥, and KC*. In order that we may fix notation,
we will describe some of these operaticns in this section. Since
there are so many operations to keep track of, some of our notation
wiil do double duty, with subscripts describing the range of the
operation, while the domain is understood. This should cause no
serious difficulty, since the domain of the operations is usually
clear {rom the context.
A concept which will bz of use to us later is that Qf an

operation which is a KC*-module map. For each of the theories



¥ b

¥ = KO*, RSp¥, KU®, or XC¥%, there is a well defined way in which

K*(X,A) is a module over ¥O%(X) for all (X,A), since the tensor

L 53]

preduct of a real bundle with & symplectic bundle, a complex

bundle, or a self-conjugate complex bundle ie again a symplectic,

complex, or self-conjugate bundle, respectively. If X,* and Kz* S e

are two of these theories, a cohomology coseration o from K.* to K.*
8Y ©F 1 2

is said to be a KO*~module map is for every (X,A) the homomorphism

a:Kl*(X,A) —_— Kz*(X,A) is 2 KO*(X)~-module map. If K.* = KO*, there

1

is a one-one correspondence bitween K{%-module m2ps and the elements

of Kz*(poin:) which is given by evaluating the operatijon on the

unit 1 € KOo(point); if Kl* = XSp*, there is a one-one correspondence

between the KC*e-module maps to KZ* and the elements of Kz*{pcint)

given by evaluating the operatica on the element lspé KSp-é(point)
which corresponds to IIunder the isomorphism KOT(X) = KSpn'a(X) of
the Bott periodiéity.

Definition 1.6 The two cohemclogy operations

:ROM(X, ) —> KCTHK,A)

“c
EC:KSpn(X;A) —> KC™(X,A)

are the X0%e-module maps such tzav gac's &> vwhere.i:
g,tK0%(X,4) > XC{X,A)

is the complexification of real bundles described previously, and
€,3KSp"(X,4) —> KU™(x,A)

is the operation which takes the first of the two quaternionic

Iy

automorphisms of a symplectic bundle as the complex structure.

Remark: It is easy to see thot the seif-conjugacy part of EC(E) is



the canonical self-conjugacy described earlier.

Definition 1.7 The operations

sKUT (K, A) > K0T (X, A)

o
£4:KSP (X,4) — KO (X,A)
are both defined by taking the underlying real bundles of the
complex or symplectic bundles involved.

Definition 1.8 The operations

sSP:KQn(X,A) —— KSpT(X,A)
SSP:I{Un(X,A) 2 KSp" (X,4)
are defined by:
“a) if E is a real bundle, and Q; is the trivial ocme
dimensional quaternjoanic bundle, aS?(E) = E®Q1’ where
the quaternionic¢ structure is that induced by Ql'
b) if E is & complex bundle, £SD(E) has the same underlying
real structure as EGE. If J defines the complex structure
of E, Jl(a,b) = (5(a),-J(b)), Jz(a,b) = (b,a), where (a,b)

are elements of the underlying zreal bundle of EQE, which is

the same as that of EOE.

These oparations enjoy certain well known properties, scme of
which we give here:
i) i§ Ejs»real, EOEU(E) = EDE
- eoesp(:»:) =~ EOEDEQE
ii) if E is complex sUe:OCE) = EQE

. \ - 5
eUeS?(z; E®E



In addition to these standzwd onerations, we shall nced zncther
operation which is based on the idea of 2 twisted bundle, as intros
duced in the proof of Theorem 1.3, We repeat t

Dafinicvicn 1.9 If F is & veal bundle over 2 space X, znd £ is

rt

an automorphism of F, t{F,f) is the bugdle over XX§
taking the bundle nk*{?) over Xx[0,1] induced by the projection

oato X, and‘identifying the restriction to XX [0] with the

restriction to XX (1] by means of £. If (E,e) is a Cepair over X,

we define 7({E,e}) to be {t(Z,e)} - {c(Z,1)} ¢ ﬁO(X:iSl), vhere e 7

and the identity 1 are thought of as automorphisms of the real

underlying bundle of E.

The operation ¢ defined gbove is a hsmoﬁoféhism‘from Kex)
to EO(X:(SI). It is clear {rom the definition that for azny C-paix
(E,e) over X, v{{E,e}) is zero when rast:iczed to either X or Sl.
Therefore, the image of v lies in kernel(?G(X:<Sl) — ﬁO(X\'Sl)),
which is the same as RO(XA SY) = R0™H(x). By the usual sort of
suspension argument,.wé obtain a cohomology operation T:KCn(X,A) —
KOn-I(X,A) for all (X,A) and all a < 0. Since ?-is‘g KC¥e-zodule
map, and the pefiodicity in KO*(X,A) is defined by cup product
with the generator of KO"S(pcint), T ¢an be ex;ended to positive
dimensions. From the discussion of the fwisting bundle in the
proof'of Theoreﬁ‘Z.B, it-is immediate that ?y - so:Kug(K,A)'-wub '
xon(x.a>. From this fact and a knqwleége,cf;s

and £, on the

0 U
groups of a poiat, we can determine tha. cetion nE'T and &, on

the groups of a point. R



Lemma 1.2 The homomorphism 7:KC“(point) ——> Kcn'l(point) is

as follows:

no@od(8) 1 0 el a2 =3 4 =5 w6 a7

KC™(poins) 2z 2 z, © z° z 2z, O z

_ l‘r . X2 onto = ] = 0 0 0 X2 .
k™ lpoint) 2z, 2z, o z o o o 2z

.2
The homomorphism tczxon(point) — Kcn(point) is as followss

B wod(8) 0. =1 =2 o3 <4 . <5 6 =7 8

Ko™ (point) ' Z z

n

lfc_ = = -0 0 X2 0 0 0

KC™(point) z z

proofi The action of ¥ is immediate from the relation Ty = ¢ SN

o
and the usual information about £5» except for the case a = 0.
This, howeveg, follows from the fact that if we take the trivial
A line bundle C, over a point, t(C; ;) is the Mobius band plus ome
trivial bundle,

The action of €. can be deduced from :ge fact that Csc =€
except in the case when n = =1, Let t be the generator of KO'I(point)e
Then it suffices :orshow that Ec(c) # 0. Both T and €, are KO%*=modile
maps, s0 ‘Esc(t) - c,tsc(x) -t t % 0, {t, of course, is the

"desuspension™ of the stable class of the Hsbius bundle on SI.)

¥
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"Grassman Manifolds" for KCw o

Since KC* isg a cohﬁmlogy theory defined for all finite _
CWe-complexes, and since= KC¥(point) is a countable group, by a
result of E. Brown [4] there exists an (-spectrum _g'-'-'-f'{_c_(n}}
and a natural equivalence _Kc”{x) - [X,_C_(n)]. Similarly, the
theory KU is representabié by an {J-spectrum U, and the cohomolagy
operations vy, {, anqlt can be ?eprésented by spectrum maps.

The classifying space Bu of the infinite unitary group

is the connected component of the identity of the O-dimensional

element of the spectrum Y. The space BU can be represented as

the direct limit of Grassman manifolds Gy q ™ Um+ n)/U{m) x U(n).
]

Let L™ aad R denote the meplane and n-plane bundles associated to

the two obvious U(m) and U{n) bundles over Gm n The manifolid

Gm a is a classifying space for KI.I0 for spaces of dimension less
b}

than twice the minimum of m and n; the bundle L® defines a map

AHG — B,, which induces an isomorphism on homotopy gTroups
C man U _

up to dimension equal to twice the minimum of m and . We can

likewise produce "Grassman manifolds" for KCO.

Let Co.n be the toral space of the principal U(m+ n) bundle
k] ¢ —
over G whose associated (m+ n)-plane bundle is LP@R". C is
m,n w0
. and is a

& principal U(m+n) bundle with base space Gm a®
»y

differentiable fiber bundle. The space f:m n has defined on it
¥

4 canonical Cepair which takes the place of the ¢lassifying bundle L™,
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s Gm'n is the projection, the bundle (L e ") is

4

If n’:Cm
trivial, since the principal bundle to which it is associated has
a section = the "diagonal™ section. Dropping superscripts, we
have an equivalence 7w (LG R) ¥ w(LOR). These bundles are
trivial, s0 we may take conjugates on either side. Thus, we see
that ﬂ*(;;@ R) & (L& R), sc we have an equivalence

T™(LoReL) = w(LaR6L) ¥ w(LeraL) = m(LARGL).
Taking the bundle m*{L®R® L) together with this self-conjugacy,

we obtain a C-pair over C_ _, which defines a map of C into the
@m0 M0

*

classifying space for ﬁco({:m n>' The proof that this map induces

an isomorphism on homotopy groups up to dimension equal to twice
the minimum of m and n is left to the reader. It proceeds by comparing

the fibration of Cm over Gm n with the fibration associated te the

k4 ]

cohomology operation {, and applying the £iber exact aequénce for

homotopy groups and the five lemma.



§2 Wood's Description of B and Bott's Exact Sequence

U

*

- In his proof of the periodicity of the homotopy groups of
the infinite orthogonal group O, Bott established a number of
homotopy equivalences between the higher icop spaces of the
infinite orthogonal group {or, rather, its classifying space), and
certain well known homogeneous spaces. The inclusions of O(n) in
U{a), U(n) in Sp(n), Sp{a) in U{zn), and U{n) in 0(2n) give rise
to inclusions of the correspcnding infinite groups 0 in U, U in Sp,
Spin U, and U in 0. Likewise, these inclusions define homogeneous
- U/0, Sp/U, U/Sp, and 0/U. Bott's description of the higher loop

spaces of Bo is as folliows:

1 A2,
0 Bo -0 ) A £ 30 o/u
Q%5 = u/o 0% wzxB. o

0 0 Sp
5 6
- { -

Q 30 Sp BO _ Sp/u

7 vy e 8
Q'B, ='U/sp Q.Bo-zxac

This last equality, of course, expresses the periodicity of the
-

Lroups X0™(X) for any finite complex X. In the usual fashion,

there is a seéﬁence of fibrations U = O > 0/U o BU —— Bo.

The above identifications give an exact sequence for any X

KU-I(X) —s k0" (x) —> K0"2(x) —> xs°<x) — x0°%(x).

This exact sequence has been used to compute KO¥(X) from KU*(X) and

the usual spectr§1 sequence. By replac@ng X by its various suspensions,

we get a sequence which extends to arbitrary negative dimensional

K*group;, and this sequence is compatible with the periodicity,



and so extends to all dimensicans. This compatibility is not elementary.
It is possible to identify all the cohomoloéy operations which oceour
in this sequence, though this is not easy, either.

Recently, Iﬁ some unpublished work, R. Wood has established
a homotopy equivalence between the classifying space for the infinite.
unitary group and the component of the basepoiant of the space of maps
of the complex projective plane into the classifying space of the
infinite orthogonal group. This equivalence is most easily-expreséeq;mm
in terms of the K-theories, and this is the form whidh we shall
consider. It will turn out that the classifying space for KCO bears
a similar relatioﬂship to BQ, and from this we shall be able to prove
the existence of many exact sequences rglating the four forms of
K-theory. We reproduce Wood's proof in its entirecy. From his
result, we shall be able to easily establish the existence of an
exact sequance which looks very much like Bott's. It can actually
be éroven to be the same as Bott's, but we shall not need this fact.

We denote by n:s3 e—3n S2 the Hopf map. The complex projective

‘'plane is denoted by P, and has cell structure P = Szv ea. The inclue

T S

sion map‘izsz ~=3 P induces in the usual fashion a sequence o
52 w-i~> P ——1—9 S4 2n> 53 Ei> Zp -ugia... of ‘cofibrations, .. ...

where L denotes suspension. We shall refer to this as the cofib=

ration sequence of P.
We shall not want to have to work with reduced cohomology
groups, s0 we musi describe the suspension in terms of relative

groups. I. X is a space, x* denotes the topological sum of X and



L0

a disjoint base point. The smash product (X+)AY is equal to the
iden;ific&tion space (XX Y)/X, Therefore, we see that the sus=
pension isomorphism for gbsoiute groups is of the form

FikoP(x) ® k™K xx sk ).
Further, if Y is a finite CW-ccmplex, we ¢an define a new cchomology
theory by setting K_’gn{}i.} - K{)“(xx&',x).' It is clear that the
classifying space for KY* in any given dimension is the space of
maps of Y into the appropriate higher loop space of Bo. Wood's
theorem gives us an identificatiog of K_Ijn(x) with KUn-é(X}.

Definition 2.1 Let H be the (complex) Hopf bundle over P, and let

ho=H- 1. Define WrKU™(X) ——> K2*"4(x) = KO™%(xx 2,X) by
-2
w({x) -: eo(ﬂu (x)&h)_.

Theorem 2.1 (Wood) W is an {somerphism for all X.

Coxollzry 2.1 TFor any space X, we have an exact sequence

£y

TE . €

—e KO (X) s> XU (X)) wmz», ,
proof: TFor the proof of the theorem, we need only know that W
induces an isomorphiism when wé take X to be a point, since W is
a transformation of cohomology theories. FS] The corellary will
then follow by simple computations from the cofibration sequence
of P. Wz take up the theorem.first‘

KU-ZR(P) is free on the two generators 1y ®(h) and 1y (h ).
Since H@E is trivial, (h+1)(R+1) = 1, so h-= (l+h)" -1 - 1. Since

3

h” = 0, h = =h + hz. Thus ‘K'U-zn(P) is free on two generators,

ﬁUn(h) and its complex conjugate. Therefore, the image of the map



L]

£ :§U'2n(P) ——— R0 2“{?) 15 a torsion free group on the ocne

o

generator &, (7 ®(h)) (here we use the fact that 5%

Since & Zn “(P) = 0, Wwill be an isomorphism iff ¢

(x) = x + x).
O:QU*(P) o
Row(p) is surjective, for if ] denoctes the generator of KUO(point),
W(1) = £,(n), and moxe gemerally, W(m (1)) = ¢ (m (1) @ h) =

g, (n)).

The spectral sequence of [3] can be gemeralized to any
cohomology theory, and is nétural with respect to stable cohomology
operations between the two theories involved. If k* is a cohomelogy
- theory, for & space X, the E2 term is given by Ezp’q - Hp(x;kq(point)),
wheré #? denotes the ordinary (singular) cohomology group of dimension
- p. If h* is another such theory, and a:h*(X) -—-—#‘k*(x) is a
stabié cohomology operation, ¢ induces o, :'E R "E P*9 guch
that @, sHP(X; hq{poinc)) — Hp(x kq(point)) is induced by the
coefficient homomorphism a.hq(pozn:) —n &q(point) ('E refers
to the spectral sequence associated to h*(X), "E_ to that associated
to k¥(X)). We now take X to be P, h* to be KU¥, k¥ to be XO0*, and
@ to be €.. The spectral sequence 'E_ collapses, i.e. "E,= ' E

¢

since there is no torsion [3]. There is one nonwzero differential

m?

in the sequence "Er. According to Thomas tB],ldzlw qu or d2 ~ qupz,
where Py is.redﬁctiaa of integral classes mod 2. These descriptions
of d2 are wvalid, ;f caurse,_ogly where they”make se#se; the other
actions of d2 must be zero since either the image or range group
vsnishes. The action of g 173, —i» "ESIin those cases when not

0" 73

S2.h ef the groups in questica are zero is as zollews'



q mod{8) 0 -1
g, 20 2 0

lso onto o]
vg_ 254 z )
'E;“’q z 0

lfo X2 | ¢
HE 4,q z 0

L3-S | 1] - I : 3 g .
.Since £q Eoo and EB Eoo’ from the surjection pavrt o

-2

onte

=4 «5
z 0
onto 0
A ¢
Z 0
onto 0
z 0

-5

0

&

da

-7

the

"£ive lemma, we see that EO:EUR(P) ——n §On(P) is surjective if

n is not congruent to 4 mod{8).

It is easy to see that 'E

4‘-4
<o

has its genératcr represeated by ﬂé(hz) - ﬂg(hd-ﬁ). From the

spectral sequence above, Eo(ﬁg(hz)) generates a subgroup of §0'4(?)
. 2,2 2 - S, 2
of index 2. FHowever, eo(nﬁ(h 1) = so(ﬂu(ha-h)) - Zao(ﬁu(h}). Thus,

Eo(ﬁé{h}) generates R0™%(P). Thus €

:Rur (P) ———> RO*(P) is 2

surjection, s¢ W is an isomorphism on the groups of a point, and

§Q our theorasm is proved,

To prove the corollary, the cofibration sequence of P gives

us an exact sequence of the form

S iy 54 xy SIXE onvh iy o ?,X)

(1xi)§ X0

n+4

Combining this sequence with suspension isomorphisms and the

isomorxphism W, we obtain a sequence in which the groups are the

same as in the corollary. Further, it is clear that all the maps

22

(xxs?,x) —...



in .c’na scquence are KO¥-module maps, since W is a composite of
KO#-module maps, and suspensions are XO*-module maps, as are
wmaps induced by topological maps. Taking X to be a point,

we have an exact sequence Koo(point) — KO-I(pOint) —>
KU'I(point} = 0. Thus, the map from KO'(X) to ko™ } (%) agrees
with 't'ec on Koe(point), and since theY.are both KO%*-module maps,
they are therefore the same. Similarly, the map KO¥(X) w——>

Ku#(X) is +¢ Taking the plus sign does not affect the exactness

U-

of the sequence,.in either case.

The map KU BURY e X (X) is equal to (¢ )"1(1xi)*W.

Now (%) (1% 1)%W(x) = (o2)" l(lxi)*t (ni 2(x)@h) =

Fog

g (U) (1“ (x)@i*(h)) However, i*{(h) is the usual generator of
Ry %325, and T, is defined by -rru(y)' - (5! (y®i*(h)), so we see
that (J)'I(;Xi)*w - eo(ﬁu'l). This completes the proof of the

corol 1a‘r3': .



§3 The KC¥ Analogue of Wood's Theorem and Applications.

RC* is related to XO* in much the way that KU* is, and this
relationship will allow use to derive exact se@uences relating the
various K-theories. In the next section we shall show the useful=-
ness of one of these sequence in the problem of determining KO% of
the classifying space for a cﬁmpact iie gxdup.

Tne cofibration sequence of a map a:A ~——> B {s the sequence

A=ds B s ¢ —Ssypa 22,5y 2B 50 Ec>...,where€is

the mapping cone on B of a. Any composite of two successive maps in

this sequence is a cofibration. This sequence is often called the

"Puppe Sequence", We need one simple fact about this construction.

Lerma 3.1 If A -——1-—>B'
a H

jr ¥

Ar—toy 3t

is a commutative diagram of maps of finite CW-complexes, and if
C is the mapping cone of 3, C* is the mapping cone of i, A" is

the mapping cone of a, B is the mapping cone of b, with induced

maps ¢:C ?———9 Cr, imiAw >- B, then the mapping cones of ¢ and
of i" both have the homotopy type of the same space C", Further,
the identifications of these two spaces with C" can be done in such
a fashion that there is a homotopy commutative diagram of spaces and

maps with rows and columns equivalent to the cofibration sequences

of their first maps:

L



e

LI L
proof: The.mapping gone of i" is equal to B“,i“TA", which is equal
to (kabTB)vi,T(A'vaTA). The mapging cone of ¢ is equal to C'VCC,
which is equal to (B'vi,IA')ch(BviTA). Since all of these spaces
are finite CW-complexes, there is a natural identification of these

two spaces with B'“bTB“i'TA'“(i:<a)T2A'

The composition square ﬂ2:54 — S2 is, by definjtion, the
ccmposi*':icn af the Hopf wap T with its suspension. The mapping cone -
of "ﬂz is de;noted by P'. P' will play a role for XC* similar to
that which P p}ays for Xu®, If we construct the commutative square

s 20, 3
J}dentity’!ﬂ
2 W
st T 5 52,
the mapping ﬁone of the identity map on 34 is coﬁtractable. Therefore,
from the last lemms, we see that there exists a map uilP —3> P°*
whose mapping cone has the howotbpy type of P, and such that thers

is a commuting (up to homotopy) diagram of spaces and maps with rows

the cofibration sequences of their first maps:
el g Lo pdy ¢ BT, 3 B

~ e we

Zi ia } _ Za
N TN q\ w ¥
- u o v o w2 Tu o PRy
b S PY = B S L P owa

where the vertical map from P to itself is the identity, and i, j,

and a are as defined earlier,



v

¥

J

We now need an element in §C2(?'} which will replace the
reduced Hopi bundle h € §UO(P). The following lemma describes an
element with exactly those two properties which we shall need.
Lemma 3.2 There exists an element k € ECZCP') such that:

i) u¥(k) = oy (h)
1) L = ve (T w))
proof: Since ﬁCB(SS) - Kcz(point) = O, from the exact sequence

\{for the pair (P',Sz), there exists an element k € ECZ(P') such
g

¥
x

that a¥{k) = 02(1).€ Eczcsz), where 1 € KCO(point) is the unit.

needf

We first show that {(k) = v*(nb-l(h)). Now Euz(ss) = 0, so
" : —~ K - L
& & from the exact sequence Ru%(s%) —> &t (zn) ~5 RP(sh, i
Ok
Ay

<

.

- suffices to show that a%{(k) = a*v*(nu'l(h)). Fowever, from the
i é?.\diagram which preceads this theorem, we see that a%v® = i%, Thus
we need only show that [(a%(k)) = nb-l(i*(h)). From the definition
of the periodicity of XKu%, nvﬁl(i*(h)) = 62(1), wheréml € Kuo(point)
is the unit. Since { commuces with suspensions, and since [ maps
the unit in Kce(poin;) to the unit in KUO(point}, we see that
these two expressions are equal, so [(k) = v*(ﬁh'l(h)).

The element oy(h) lies in RC2(SP) & Rcl(P). Since Rul(p) = o,
‘we know that ﬁCICP) = EUOCP)/¢t§UO(P)). Since we may take as
generators for RUO(P) the elements h and h - h, and $(h) = h - k&,
and ¥(h = B) = 2(h - h), we see tﬁat ﬁc;(?) is a free abelian group
on the generator y(h). In view of the exact sequence
Re2(s®) {25, gelizpy) CE 262(s3) —Ts 2c2(s%) = 0, 2nd the

fact that §52<sz} - 22, to show that u¥(k) = +oy(h), it suffices to



show that (Li)*u¥(k) # C. Since we showed above that (Tij%u¥ = Tra%,

it suffices to show that T¥a*(k) # 0. We have a commuting diagram

z = 80%(s?) 5 50253y =z

e I

Re2(s?y —Ls 2c2(s3)

2

From the results of Lemma 1.1, and the fact that EC commutes with
Suspensions, the two wertical maps are iscmorphisms, In the proof

of Wood's theorem, we saw thz: the Upper map was ﬁhe usual surjection
of Z onto 22, By the defimition of k, a%(k) is the generator of
§c2(52), sa we see that TM¥a*(k) # 0. This finishes the proof of

the 1émma.

n+3

Definition 3.1 w-:xc“{X} S KO (XX P'.X) is defined by

Vi) . vl ) ek
Thecrem 3.1 For zll X, W' is an isomorphism.

e o ————— i

Corolizrv 3.1 For all X, the sequence

-1 e 2
£ Igd A £
e REP(R) R xRSy ) k0™ Ry =S ke l(x) —s. ..

is exacr.

This thecrem and its corollgry are the KC* analogues of Weod's
theorem and the exact sequence of Bott.

proof of the thecrem: From the results of theoreﬁs 1.3 and 2.1, it
will suffice to show that the following diagram is commutative

up to signs:



KU™(x) L > KUK s ™ (x) s k0™ 0
W - w(nu"l} W W,
g+ < (1><w) v n+b o"l(mu); petS
(xx9 x) SAABUZ o™ xxp x) s koME (xxprxy TL1Xu)E (XXP )

Since w = (Ezi)j, 02(IXw}*W-- dzw(wrl)(;Xj)*(l)(Ezi)*W. From

-

’!

the proof of Wood's theorem (or, more precisely, the proof of i

cofollary) we know that (1;<221)*w - e (ﬁ '1), and that (W'l)(lxj)* -
-l 2 2 -2 -1
. e - - - -
@ &y Thus o (1XW)*We= U e,c e.G( ) WEUeO(n J. Since the
ccmplex conjugation anticommutes with T 1, euso(n 1) - ﬂu'lé.

Thus we see‘that‘:he first square commutes. _
If x € l(Un(X), {}.Xv)*W(ﬁg-l(K)) - (1XV)*eG(ﬂU-z(x)®ﬁU'1(h)) -

oty )@ v THR)) = gyl 20 @ LK) = Tyl 2(x) @ (1)) =

o’y
{wc'l(y(x)}§§k) = W'y(x). Therefore the second square is commutative.

If x € xe*HL

Xy, FHIx W (x) = c"l‘r(wc'l(x)®u*(k)) -
i?(nc"l(x}c@\f(h))'- f_’i‘y(wu"zm(x»@h) = +W;(x). Thus the right
hand square commutes up to sign.

From here, the proof of the corollary proceeds just as the

proof of Boti's exact sequence did, and is left to the reader.

The natgral thing to try at thié-point.is to look at the
maping cone P" of the compesition cube T 'SS iy S2 of the Hopf
map 7. The resulting cohomology theory Furns out not to be new,
but the space P" allows us to derive some exact sequences amohg

the various K~theories by finding cofibrations relating P, P', and

P, Two of these seem to be the most useful, and we shall describe

them here.




First, we notice that from the cofibration sequence

3
b3l P
¢S I, g2ty L 6 e
of ﬂ3 we obtain an exact seguence
3, . 3,
O by L EE gotieny 2 2os?y LS 207 1(s8) —...

- "2
From our earlier work, we kncw that cﬂ3* = GB(tec)Bc' . However,
since (“ﬁsc)3 is a XO*-module map, it is clear that it is zero,

since KO'B(point) = 0. Thus we have short exact sequences for all a:

£ ew

~.n,.b P s PP PP A
0 > To™(s°) —— KO (P¥) ——> KO(587) —> G. If 1 denotas

the unit in Koo(point), we define r; = £ (a"(1)), and choose T, s0

that e*(fz) = dz(i).

n+2

Sefinition 3.2 WKOM(X) & xGVHEX) — x0PFE(X x PU,X) is defined

by W'(x,y) = (x®r,) + (y@r,).
Since W" induces an isomorphism cn the groupé of a point, W" is an
{somorphism for all finite CW-complexes X.

From the commuting square

3

§5 I g%

l;zn l}dentiay
2

gh M 5 g2

we obtzin a2 sequence of cofibrations

- > Pt > 7P > Tpw > TPt >,

Applying the various isomorphisms W, W', and W", we obtain
Theorsm 3.2 For any finite (W-complex X, there is an exact saquencs

KC# (X) ===z KO*(X) ® KSp* (X)
KU# ()

where the maps are given by:



> KC(X) is iy

11 KCP) ——> 07T ) is -7

i) RUC OO

> KSpnul(X) is the composition .

111y ke QO

n e awd, v n=5 = n-1
KCW(X) = X" 7(X) — KO "(X) ==~z KSp “(X)
iv) ko™ Hx) > k0BT s ﬂu-lsg
v kSPPTHR) ——s k0™ H) s ﬁu-‘}'au.

Since we have already investigated some of these maps in the
twoe forms of the Bott sequence, and since all of the maps here are
KC*-module maps, the proof is nouv straightforward and easy, and is

left te the reader, as are the prosfs of the next two theorems. The

most useful sequence, for the purposes of our next section; is the
exagt sequence which arises from the commutative square:
. 3 .
53 — L5 52
1
e |

53 T 52

This square gives us a cofibraticn sequance of the form:

pn > P > £2pt > LPM D LP e, ..
From this we can deduce another exact sequence.

Theorem 3.3 For any finite CW-ccmplex X, there is an exact sequence

of the form: . KU* (X) > KO¥ (X) @ KSp¥ (X)

~~

KC*{X)
wherse the maps are given by:

i) RKU™R) ——s KOV (X) is £

11) KUB(X) ——> KSpTX) is o

111) KO™(X) ——> K€D is ¢

. n,. N - PR
iv) Ksp" (X > XC(H) is ¢

c
-
v) KCR(X) ——> o™i 1575,



We couid continue en in this fzshiocn and exhibit several
mOYé exact sequences, but fhese other suquences are somewhat
complicated, and we shall not have use for them here. Using the
fact that stabdly 27} = 0, one can also derive sequences which involve
the mod 2 theories.

There is some uﬁcerta:nty as to the proper manner of
exten&iag a cohomology theory frem the category of finite CW-pairs
to the category of arbitrary CWepairs. However, if we use the
results of [4], we know that KC% is a representable theory, and
furthér, that the operation W' is representable by a map from the

: Furs o~ - . pt . .
classifying space of XKC ste tie function sgace (BO) - Since this

induces an isomorphism on.the groups of a point, and the spaces
involved all have the homoton: type of a CWecomplex, it is a
homotopy equivalence. Likewise, (B ) is 2 classifying space for

A , P - I o
KU 7, and (3 }*  is a classi’ yznc Space for X0 "®KSp ©. From the

“work cf Borsuk we know that a co:;bra:i01 A > B > { induces

a Hurewicz fibration YC S YB —a YA for any Y. ‘Howaver,
this means that the maps which occur in our exact sequences can be
eéxtended to all CW-complexes, and the sequences will remain exact.
This removes the unpleasantness which arises form the fact that

the inverse limit functor is not exact, in general.




§4 The X-theorxy of Classifying Spaces

If G is a countable CW-group, and p:6 —> U{n) i3 an

n-dimensional representation of G, from the Milnor construction of
classifying spaces we see that there is a map a(p):BG —— BU(n)

whose loop map is i3, ——> QBU(n)' Furthey, if Py and p, are

G
homotopic as representations, a(pi) is hemotopic to a(pz). Since
the unitary groups are connected, any two equivaleat representations

are hcmotopic as representations. Thus to every equivalence class

» _of reprasentations we have assigned an element of KUO(BG), where
KU* is extended to all CW~-complexes by KUOCX) = [X,ZJ(BU], etc, by
composing «{p) with the inclusion of BU(n) in the component [n])(ﬁu.
If p is a representation, we write g(p) for the element of KUO(BG)
corresponding to the equivalence class of o

| The representations of G form 2 semiring under direct sum
znd tensor zroduct. The representation ring RU(G) is defined to be
the ring obtained by applying the Grothendieck construction to the
semiring formed by the equivalence classes of representations of
G into finite dimensional unitary groups. Since the diresct sum
addition and thg loop additiqn are homotopic in Bﬁ‘ we se2 that
@ can be regarded as a homomorphism wiRU(G) ——> KUO(BG). In general,
@ 1s neither injective nor=uTrjective, However, if G is a compact
Lie group, then in the proper topology, the image of o is dense., If

G is also connected, & is an injection. These results are due to

Atiyah and Hirzebruch [27, [3]. In this section we shall prove



G), and XSp {3 Y, and in fact, we
shall completely determine XO~{B8.). This will sll be deone, however,
under the restriction that G is either 2 compact connected Lie
group oz 2 finite group. These zre the oanly two cases where there
are published proofs that ¢ has 25 its imzzge 2 dense subset of KUoféés.
It seems likely that our results can be extended to the case where
G is an arbitrary compact Lie group. From our techniques, the
reader can easily see thét cur results hold for the product of a
finite group and a c¢ompact ¢onnected Lie group.
The first thing which we must do to formulats our theorem is
to describe the topology on KU*(BG). If we let k¥ stand f£or any
cohomology theory defined on the category of CWecomplexes, and if

X is a CW~-complex with n=skeleton Xn, k*(X) cazn be given the

structure ¢f a topological group if we take as the fundamental

system of neighbofhoods of zaro the groups, kernel(k*(X) > K (X7)).
The resulting tepology will be called the inverse limit topology

on k*{X). We denote the inversé limit functor by iimo. There is

one non=zere right derived functor 11w1 vhen we worxk in the catogdry
of azbelian groups, and 1im0 is left exact. The relatioaship

betwezen k¥(X) and limo(k*(xn)} has been described by Milnor for a
¢lass of theories k*.which satisfy one more axiom than the Eilenbearge
Steenrod axioms. This axiom is called “additivity™” by Milror, and
says that when applied to topological sums, k¥ gives the dzrect pro-
duct of the k¥'s of the individual components. Any :epreséntable

theory clearly satisfies this condition, and any additive theory is

=

¥
s

. £ s34 - ] TLT cwawmme g} &
representable 14]. HMilnor®s result (6] states thaft for an addd



theory k% and a CWe-complex X, there is for all p an exact seguence’

0 — 11m1<kp'1(x“)) = kP(X) > limo(kp(}(n)) e )

For a representable theory, of course, the surjectiveness of the
map K¥{X) 2 limo(k*(xn)) follows from the homotopy extention

property for CWepairs. The follewing is implicit in §3,4 [2]:

Proposition 4.1 A sufficient condition that liml(k*(xn}) = 0 is

that in the spectral sequence [5] which connects E*(X;k*(point))

with k*(X}, for all (p,q) there exists zn r such that Erp’q = ch’q.

If both H*(X;Z) and Kk*{point) are of finite type, it is clear
from this proposition that a sufficient condition that Iiml(k*(xn))

. - D, . O . .
= O is that every element of :?P,q = H¥(X;k*(point)) have some
multiple which is an infinite cycle in tre spagtrzl sequence.

If k* = XU¥, we know from [3] that this will happen if chPixUr () e Q.

D co - -
-——> HY(X;Q) is onto for every p. If we take X to be the classifying

= ' : . P :
space of a cempact Lie group.G, then ch?:RU(G)é;Q > h‘(BG;Q) is
surjective for all p (see [3] for the case whea G is comnected, znd
use this to conclude the same result for any compact Lie group).

Oxue (8 ).

Thus, we see that for a compact Lie group G, Ku*(BG) = 1im
From Milnor's thaorem, we can conclude that if k¥(¥) =

l;ma(k*(xn)), then k¥ (X) is Hausdorff. If W* is another cohomolegy

theory, and A:k*(X) > h¥(X) is a cohomology operation, \ is

continuous, and if h¥(X) is Hausdorff, the kernel of this map A
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is a closed subgroup of K¥(X) . We shall need this fact later.
The results of Atiyah znd Hirzedbruch on KU*(BG) can be
summarized as follows:

i) If RU(G)™ denotes the com ;lcticﬂ of RU(G) in the

inverse limit topology, then «:RU{(G)™ > KU_(BG) is e
an isomorphism.
1) xwley) =0
i11) If I(G) is the zugmentation ideal of RU(G), where
the augmentation assigns to every representation its
dimension, the I(u)-ad;c topology on RU{(G) agrees ‘ ' ;
with the inverse limit topology
To use these results to determine KC*(BG) and KG*{BG), we must know

one purely algebraic fact about RU{G).

Lemmmz 4.1 Let RC{G) be the subring of RU(G) which is fixed under

complex conjugation, and let ¢:RU(G) ~——> RU(G) by ¢(x) = x - X. o

Then the sequence e

’ sUaD
0 == RC{(G) =——3 RU(G) — RU(GY ——=> RU(G)

proofilat Rl be the subring oﬁ RU{G) generated by the irreducible
representations which are self-conjugate. Partition the remaining
irreducible representation s into two sets so that if a2 represeatation
lies in one of the sets, its ;onjugate lies in the other. Leat Rz

be the subgroup generated by one of‘:hese sets. -Thén §2 is the
subgroup generated by the other, and RU{G) = R eRzeqz . Any ele«

ment x of RU(G) is of the ferm x = a2 - 5, where a and & are res-
¥
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resentations. Let a = 2y *a, * 33’ and b = b1 + %2 + b3, wnere
a;5b; € Ry, 2,50, € Ry, and 2 P

£y 0(x) = 0, wa have a

3.b3 < E . Since X + x = SUEO(x), ig . -

= bl, and a, + a, = bz - 33 = 0. This is

1 2 3

true because RU(G) is the free zbelian group generated by the
irreducible representations ¢f G. Frem these equalities, we see

that x = 28, + 8, - B. = b

37Dy by may ag-lay +ag - by) - by = ylag +by).

Lexma 4.2 Let G be either a compact connected Lﬁe group or a

finite group, and let I(G) be the augmentation idezl of.RU(G). Then,
if RU(G) is given the I{G)-adic topology, and RC(G) is given the
induced topology, the completion of the sequence of the last lemsma

> RULC) "—Les RUCE)™ %, RU(G)™

0wz RC(G)™
is exact ., where  denotes ccmpletion.
proof: RC(G) is a subring of RU{G), so RW(G) is an RC(G)-module;
further, both ¢ and £,8, are #C{G)emoduls maps. Since completion
is an exact functor on finitely zeneratsd modules over topological
Noetherizn rings, it suffices zo show that RC{G) i$ Noetherian,
that RU{G) is finitely generzted over RC{G), aad that if IC(Q) =
I(G)r‘RC(G), that the I{G)-adic topology is the same as the IC{G)-
adic topology on RU(G) and RC{G).

£ G is‘finite; RU(G) is of fimite rank, and therefore a
finitely generated ring over Z. RC(G) is the subring fixed by 22
which acts on RU{(G) by complex conjugation. Thus we are in the

situation descrived in §4.1 of [3], and the cen d;c;ons described

zbove hold.



If G is a compact cornccted group with meximal torus T and
Weyl group W(G), the inclusion ¢l T in G induces an iscmorphisam

W{G)

-
cfL

ol

RUCGY = RU(T) where the superscrist denotes the subrinsg 1
? Fy [~

fixed by the group W(G}. If Z, acts cn RU(T) by complex conjugation,

the actions of Z, and W(G) comrmute with one another, since Z. acts

2 2
25 autemerphisms of the unitary grouss, and W(G) by autemorphisms
of T. Thus RC(G) & Rﬁ(?)w(cjcjz2, co byd4.1 of {3] we see that RU(T),

and therefore RU{(G), is a finitely generated RC(G)-module, and the
IC(G)~adic topology agrees with the I(T)-adic topclogy. However,
on RU(G), the I(G)-adic topology and the I(T)-adic topology agree,
so the E(G)-ad;c topology agrees with the IC(G)~adic topolozy.
Also, we have ;hat RC(G) is Noetherian, so we have saﬁisfied the

conditions of the first paragraph of the proef.

v

Frem what follows, it will be seen that all we need are the

results of Atiyah and Hirzsbruch on KU*(BG) and the conclusicn of

the previous lemma. For example, the previous lemma is ezsily

seen to be true for the product of a compact connected Lie grou

0Q
o

and 2 fipite group. ¥From new ca, we shall assume that ¢ is sueh
hat the above lemma is true.for G.

0

Theorem 4.1 Q:KCO(BG) > KUT(3

g} is en injection, and « maps
RC{G)" iscmorphically onto the image of {. Thus KCO{BG) = ’U{G)".
Further, KCICBG) = Rb(@)“fv;»(auic)“) Zs Kc2(3G) :i‘ and KCB(BG) S
RU(GY /5,2, (RUG)™). (Q'L(@‘,& ~ 1{‘/(‘2‘&(63)) x g

- R 1 . , —
nroof: Since KU (BG) = 0, from the exact sequence between XU¥ and



KC*, we have exagch szoueneces:
» g

0 —— !\LO\QG) —fs %% B > 1wl Qo — xcl(s » > 0
2>
0 — ke’ ) —E wi ) — wie QO —xe 3 Qo —>0
. S o foliens fe |
Since Ty €8 0, the theorem follows f£rom thg last lexma.

Corollary: KOI(BG) = 0 and KSPI(BG) = O

procf: From theorem 3.3, we have an exact seguence
1 T T
0 —> %0 (8 )@ xSpi(a ) —— KC*(3,) ————— RU“(3 ).
G G G G

1
RU(G) “—<> RU(G) -—3"3—-—_-—~> KT (3,) > 0
I I My
Y T"“u-laeﬂsf‘ VZU -
RU{G) === RU(C}"™ = KU (BG)

X . . . . .. . 1 s L
Thus, the vertical line is an injection, so X0 (BG)EakSp (BG} = 0,

e :KS;:O(B )

G

are boun injections, FLrt%er, these groups are injected so .that

Corollarv: 2 "’0 {B ) —e F3 (S ) and 2., S E{UG(SG}

4
their images are closed subgroups.
proofs From the Bott sequence, we have exact sequences

te £,,

0 -‘xo_l(BG) — 5 %% & —_— KUG(BC_} —_— K02(5G3

g

0 = KSpl(BG) —_— KSpO(BG) Yo xu® > Ksz(BG)
Taus, we see that the maps are injections, and their images will be

closed if KO?(BGE) and ¥ Sp {S ?) have th ezr-liml equal to 0. Singe

€ RU* (point) ®Q — KO*{poiat)&Q and 2, _:XU%(point)@Q—= XSp*{point)8Q

P
are both onto, from our earlicr discussion, we see that liml does

vanish on these segquences.



Definition 4.1 RO(G) is thaz suoring of RU(G) zenerated by those

représentations piG —— Uli) whose image lies in the subgroup O(n).

R3p(G) is the subgroup of RU{G) generzted by those representations

> U(2n) whose image lie in the subgroup Sp{n). RO(G) and
RSp{G) =rz both given the topology induced from the inverse limir
topology on RU(G). Their closures (that is, their completions) in
this topology are denoted by RG(G)™ and RSp(G)™ respectively.

Lemma 4.3 @:RU(G)Y" s KJO(BG) carries RO(G)™ into the subgroup
KGO(BG) and RSp(G) into the subgroup KSo(G).

proof: Given a representation piG ——> 0(n), we cbtain 2 map of
BG inte BG<3), and thus an element of KOO(BG). Since €5 injec:s
KOO(BG} into KHO(BG}, @ carries 20(G) iznto KGG(BG). Since KOO(Beé
is closed in KUO(BG), o carries the closure of RO(Q) into KOO(BG}.

. : . RN P . . ;
Similarly, o caerries RSp(G) inte KSp7(B,), and thus carries the
I

clesure into KSpO(BG).

Lemma .4 o maps RO(G)”™ iscmorphically onto QOO(BG) angd RSp{G)~
isomorzaically onto KSpO(BG).

proof: Let RU{G) = R165R265§2 be the decomposition described in
the proof of lemm2 4.1. Let D = {x + X|x € Ry} Then RC{G) =
X,9D. Both RO(G) and RSp(G) zre subgroups of RC(C}. D is clearly
a subgroup of both RO(G) 2z¢ 253(G). An irreducible regresextation
which Is self-conjugate is either real or symplectic. Thus R, is
2 subgrous of RO(G)+RSp(G). Therefore, RC(G) = RO(GY+RSn(C). Simce

20 irrecucible representation is both rezl and symplectic, we have

(s



g E_,eE E. 3
0*" e
RU(G) s 222 RO @ RSS(C) ——> RECG) > 0.

Completing, we have a sequence of order two. However, the map

RO(G) s RSp{G)™ > RC(G)™ is = surjection. To see this, let

N, o= kernel(RU{G) “;EL) KUOCBGH)} be the fundamental system of
neighborhocds of 0, and let M= se;c(c;}nrzn. If S = (RC(GY~M ) (Rsp(c),\.‘
according to §3 of[2] we have & surjecticn RO( 2 RSp{G)" ——>
limo(RC(G)/Sn). We have an exact seguance lim (RC(G)/Sn} ——

RC(GY" ———> 1iml(Mnqu) ceming from the exact sequences

-

o]

. . , L . |
0 > Mnfsn > RC{G)/S > RC(G)/Mn > 0.

s

Since RU(G)/Z\-’Zl is 2 subgroup of XU (BG,, it is a finitely generated
abelian group. Thus RO(G }/mOCG)qy and RSp(G)/Rﬁp(G}nMn are
finitely generated, so their image RC{G;/ is finitely generated,:
Thus Mnlsn is finitely generated. However, if x € M., 2% = x + %
lies in S,» Thus Hn/Sn is finite. Howaver, from ¢3 of [2] we have

1 . . . i c o=xos
Lim™ (¥ /Sﬁ} = 0, since 1im~ is exact on inverse sequences of finmite

groups. Thus, w2 see that RC{GI)"& RSp(GY” is oato.

From theorem 3.3, we have 2 commuting diagram S
RU(G" > RC(G) @ RSp(G)™ > RC(G)"
é, N 2

- om0 - .

x0%8 ) — x0%G: ) oxsp¥s) > xc9¢s ) > 0
W G G 1%

where the bottom row is exact. The left hand and the zight hand

vertical maps are isomorphisms, so the center map is cnto. We

already know that it is injective, so it is an igomorphism.

Corollarv: The topolegy on RG(G) induced from RU(G) is the same as
i{:‘
the inverse iimit topology induged by XU {EG:” & similarly for RSp{&).

’
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orem 4 Let G be 2 compoct Lie group which satisfias the

cencluzion of lemmz 4.2 The: o induces igcxorpshisms:

KOO(BG) = RC{(G)" xs'a(sc} RSp(G)"™

KG'lCBG) RO(G) /e (RU(G)™) xo™ (3

KO'Z(SG) = RU{GY/RSp(G)" zo'a(sc)

L
1

RS5(C) /e (RU(E)™)

RU(GY™/RC(G)"

i

%" (5 ) = -7
K07 (8,) = 0 X6 (B, = 0

proof:This now follows immediarely frow the Bott sequence, which gives

-~

UE eXact saquences:

= e e i

0 ———> xoo(sc) s s 3

-6 -ty
Ku (BG) — KO {B

l
o

-, - -
0 —= 0778, —= B,y —> o™ %3

xu=?

(8

\l/
O

G) — AO (DG>

Since there are eight groups hers, it is scmewhat tedious to
cescribe the ring structure of Xow( J, though this can be fairly
easily donz by knowing the ring structure of RO(G) 2nd the module

structure of RSp(G) over RC(G), together with a complete descristion:

fe ring structure of XKC¥(point). To see how the eler

#
o]
!
"
0n
o}
"

KO*(poinz) act on répresentations, one can simply take G to ba the
trivial group, so that BG ig a point. This g;ves an unusuzl descripe
tion of XC*(point).

While the exact sequences deser ibed here will probably never.

replace spiciral sequence arguments for the purpose of computing

KC*(X}, it would seem from the results of this section thoet

taey
could be quite 2 help, especially in proving theorems about the rzal

b1 g B = T~ F oo . =
R-tihzory of whole claszas of
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