
Complex Analysis

Sketches of Solutions to Selected Exercises

Homework 1

2.1.a (
√

2− i)− i(1−
√

2i) =
√

2− i− i+ i2
√

2 =
√

2− i− i−
√

2 = −2i

2.1.b (2,−3)(−2, 1) = (2(−2)− (−3)1, 2(1) + (−3)(−2)) = (−1, 8)

2.2.a Re(iz) = Re(i(x+ iy)) = Re(ix− y) = −y = −Im(z)

2.2.b Im(iz) = Im(i(x+ iy)) = Im(ix− i) = x = Re(z)

2.4 (1 + i)2 − 2(1 + i) + 2 = 1 + 2i + i2 − 2 − 2i + 2 = 0, (1 − i)2 − 2(1 − i) + 2 =

1− 2i+ i2 − 2 + 2i+ 2 = 0

2.5 (x+ iy)(a+ ib) = xa− yb+ i(xb+ ya) = (az − by) + i(bx+ ay) = (a+ ib)(x+ iy). The

middle = uses commutativity of real numbers.

2.8.a If (u, v) is an additive identity, i.e. a complex number such that (x, y)+(u, v) = (x, y),

then we can subtract (x, y) from both sides to get (u, v) = (0, 0).

2.8.b We know that (1, 0) is a multiplicative identity and that if (x, y) 6= (0, 0) then there

is some (x, y)−1 so that (x, y)−1(x, y) = (1, 0). If (u, v) is also a multiplicative identity,

then (x, y)(u, v) = (x, y) for all (x, y). So we can suppose (x, y) 6= (0, 0) and multiply

by (x, y)−1. This results in (u, v) = (1, 0).

2.11 z2+z+1 = (x+iy)2+(x+iy)+1 = x2−y2+2xyi+x+iy+1 = x2−y2+x+1+i(2xy+y).

If this is 0 then x2 − y2 + x + 1 = 0 and 2xy + y = 0. Using the hint, we can divide

the second equation by y to get 2x + 1 = 0 so x = −1/2. Plugging in to the other

equation results in y = ±
√

3/2

3.1a 1+2i
3−4i

+ 2−i
5i

= (1+2i)(3+4i)
(3−4i)(3+4i)

− i2−i
5

= −5+10i
25

+ −2i−1
5

= −1+2i−2i−1
5

= −2/5

3.5 Just multiply and simplify

5.1.a Picture problem

5.1.d Picture problem

5.5.a Circle of radius 1 centered at 1− i

5.5.b Closed disk of radius 3 centered at −i

5.5.c Exterior of the open disk of radius 4 centered at 4i

5.8 Multiply out the left side then factor.
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5.9 Base case: |z1| = |z| = |z|1. Induction step: Suppose |zn| = |z|n up to some n ≥ 1.

Then |zn+1| = |znz| = |zn||z| = |z|n|z| = |z|n+1. The second = is Exercise 8. The third

is the induction hypothesis.

6.1.a z̄ + 3i =¯̄z + 3i = z − 3i

6.1.b iz = ix− y = −y + ix = −y − ix = −i(x− iy) = −iz̄

6.1.c (2 + i)2 = 3 + 4i = 3− 4i

6.2.a Re(z̄ − i) = Re(x− iy − i) = Re(x− i(y + 1)) = x = Re(z). So this is the line x = 2

6.2.b |2z̄ + i| = 2|z̄ + i/2| = 2|z̄ + i/2| = 2|z − i/2|. So the equation is the same as

|z − i/2| = 2. So this is a circle of radius 2 centered at i/2.

6.3 Write out

6.10.a If z is real then z = x+ i0 = x− i0 = z̄. If z̄ = z, then x− iy = x+ iy, so 2iy = 0,

so y = 0, so z is real.

6.10.b If z is real then z̄2 = x2 = z2. If z is pure imaginary then z̄2 = (−iy)2 = (iy)2 = z2.

Conversely, if z̄2 = z2 then (x+ iy)2 = (x− iy)2 so x2− y2 + i(2xy) = x2− iy2− i2xy.

So 2xy = −2xy or 4xy = 0. This implies that either x or y is 0, so z is real or pure

imaginary.

9.2.a |eiθ| = | cos θ + i sin θ| =
√

cos2 θ + sin2 θ = 1

9.2.b eiθ = cos θ + i sin θ = cos θ − i sin θ = cos(−θ) + i sin(−θ) = e−iθ

Homework 2

9.1.a −2
1+
√

3i
= −2+2

√
3i

4
, so tan θ = −

√
3. Therefore θ has the form −π/3 + kπ for some k.

Since z is in quadrant II, Arg(z) = 2π/3

9.1.b (
√

3− i)6 = (4e−iπ/6)6 = 46e−πi. So Arg(z) = π.

9.10a By de Moivre’s formula, cos(3θ) = Re((cos θ + i sin θ)3). But

(cos θ + i sin θ)3 = (cos θ + i sin θ)(cos2 θ − sin2 θ + i2 cos θ sin θ)

= cos3 θ − cos θ sin2 θ − 2 cos θ sin2 θ + i[· · · ]
= cos3 θ − 3 cos θ sin2 θ + i[· · · ]
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11.1.a z = 2i = 2eiπ/2, so the square roots are
√

2eiπ/4 =
√

2(
√

2/2 + i
√

2/2) = 1 + i and

−(1 + i) = −1− i

11.1.b z = 1−
√

3i = 2e−iπ/3, so the square roots are ±
√

2e−iπ/6 = ±(
√

2(
√

3/2− i/2)) =

±(
√

3− i)/
√

2

11.2 z = −8i = 8e−iπ/2. So |z1/3| = 2 and arg(z1/3) = −π/6 + k2π/3. These are 2e−iπ/6 =√
3− i, 2eiπ/2 = 3i and 2ei7π/6 = 2(−

√
3/2 +−i/2) = −

√
3− i.

11.3 −8− 8
√

3i = 16e−i2π/3. So |z1/4| = 2 and arg(z1/4) = −π/6 + k2π/4 = −π/6 + kπ/2.

Converting back to rectangular coordinates gives (working counterclockwise
√

3 − i,

1 +
√

3i, −
√

3 + i,−1−
√

3i

11.4.a (−1) = 1eiπ, so (−1)1/3 = eiπ/3+ik2π/3. In rectangular coordinates, these are eiπ/3 =

1/2 + i
√

3/2, eiπ = −1, and ei5pi/3 = e−iπ/3 = 1/2− i
√

3/2

11.4.b 81/6 = (8ei0)1/6 =
√

2eik2π/6. These are
√

2(1/2 ± i
√

3/2),
√

2(−1/2 ± i
√

3/2),
√

2,

and −
√

2.

5.2 x ≤ |x| is true for all real numbers, so Re(z) ≤ |Re(z)| and Im(z) ≤ |Im(z)|. For the

others, 0 ≤ x2 ≤ x2 + y2, so, taking square roots, |x| ≤
√
x2 + y2, so Re(z) ≤ |z|, and

similarly for Im

5.3 Using the preceding exercise and the triangle inequality, Re(z1 + z2) ≤ |z1 + z2| ≤
|z1|+ |z2|. From the alternative form of the triangle inequality, |x3 + z4| ≥ ||z3| − |z4||.
Since |z3| 6= |z4|, neither of these values is 0 (WHY?!). So 1/|x3 + z4| ≤ 1/||z3| − |z4||.
No multiply the two inequalities.

Show that a set is closed according to the book definition if and only if it is

the complement of an open set. Let S ⊂ C. Let I be the interior points of S, E

the exterior points, and B the boundary points. From the book definitions, I ⊂ S and

E ⊂ C− S, so I and E are disjoint. Furthermore, B is defined to be C− (E ∪ I). So

E, I, and B form a partition of C (they are pairwise disjoint and their union is C).

We also observe that boundary points are those points such that every ε-neighborhood

intersects both S and C − S. So, by symmetry, the boundary points of S are also

the boundary points of C − S. Furthermore, by the definition of E, if z ∈ E then z

contains a neighborhood in C − S = E. So the points of E are the interior points of

C− S and similarly the points of I are the exterior points of C− S.

Putting this all together, we see that B ⊂ S if and only if C − S = E if and only if

C− S contains none of its boundary points if and only if C− S is open (by the book

definition).

Note that this discussion also demonstrates the claim from class that a set S is open if

and only if every point z ∈ S has an ε-neighborhood also contained in S: The points

that have this property are exactly the interior points of S, and so saying that every

point of S has this property is the same as saying that S = I, which is the same as

saying that S contains no boundary points, which is the book’s definition of open.
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12.1 a. Closed disk of radius 1 centered at 2− i, not a domain; b. points outside of circle of

radius 2 centered at −3/2, is a domain; c. Half play y > 1, is a domain; d. line y = 1,

not a domain; e. 45 degree wedge from the origin, origin not included; not a domain;

f. Half plane x ≤ 2, not a domain

12.2 e

12.3 a

12.4 a. whole plane, b. whole plane, d. arg(z) is in [−π/4, π/4] or [3π/4, 5π/4]

Homework 3

12.8 Suppose there is a boundary point z of S that is not contained in S. Since it’s a

boundary point, every ε-neighborhood of z contains a point of S. Since z is not in S,

it must in fact be that every deleted ε-neighborhood of z contains a point of S. So z

is an accumulation point of S. But this implies that z ∈ S, a contradiction. So all

boundary points of S are in S and thus S is closed.

12.9 If z0 is a point in a domain S, then since the domain is open there is an ε such that the

disk |z−z0| < ε is contained in S, so certainly the deleted neighborhood 0 < |z−z0| < ε

is contained in S. Any smaller deleted neighborhood around z0 is thus also contained

in S, and any larger disk intersects S in at least one point that is not z0. Thus every

deleted neighborhood around z0 intersects S, so z0 is an accumulation point.

14.5 There are two such domains. One of them is bounded on the left by the right branch of

the hyperbola x2−y2 = 1, on the right by the right branch of the hyperbola x2−y2 = 2,

on the bottom by the top branch of the hyperbola xy = 1/2, and on the top by the

right branch of the hyperbola xy = 1.

14.8 a) quarter disk in the first quadrant given by 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/2, b) similar but

with 0 ≤ θ ≤ 3π/4, c) upper half disk

Find an equation satisfied by all the complex numbers that are taken to the line

x = 1 under the map w = z3. Without looking it up or using any algebraic

geometry you should be able to give a rough sketch of this set. x3−3xy2 = 1;

picture discussed in class

18.1.a Let z0 = x0 + iy0 and z = x + iy. Let f(z) = Re(z) = x. Let ε > 0. We need to

show that there is a δ such that |Re(z)− x0| = |x− x0| < ε whenever 0 ≤ |z− z0| ≤ δ.

Recall that for any complex number a we know that |Re(a)| ≤ |a|. So in particular it

is always true that |x − x0| ≤ |z − z0|. So if we choose δ = ε then |z − z0| < ε = δ

implies that |x− x0| < ε as desired.
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18.1.c Fix any ε > 0. We need to show that there is a δ such that 0 < |z − 0| = |z| < δ

implies |z̄2/z − 0| = |z̄2/z| < ε. But from the properties of conjugates and moduli,

|z̄2/z| = |z̄|2/|z| = |z|2/|z| = |z|. So again we can take δ = ε, and if |z| < ε, so is

|z̄2/z| = |z|.

18.5 If z = x then f(z) = (x/x)2 = 1. If z = iy, then f(z) = (iy/(−iy))2 = (−1)2 = 1. But

if y = z, then f(z) = (x+ix
x−ix)2 = (2ix2

2x2 )2 = −1. So there are points arbitrarily close to

0 that evaluate to 1 and also points arbitrarily close to 0 that evaluate to −1. So the

limit cannot exist.

18.6.b Suppose limz→z0 f(z) = w0 and limz→z0 F (z) = W0. Let ε > 0. Then there are a

δ and ∆ such that 0 < |z − z0| < δ implies |f(z) − w0| < ε/2 and 0 < |z − z0| < ∆

implies |F (z) − W0| < ε/2. Choose δ1 so that 0 < δ1 < δ and 0 < δ1 < ∆. Then

if |z − z0 < δ1|, we have |f(z) + F (z) − (w0 + W0)| = |f(z) − w0 + F (z) − W0| ≤
|f(z) − w0| + |F (z) −W0| < ε/2 + ε/2 = ε. So δ1 works. Since ε was arbitrary, this

completes the argument.

Homework 4

A.II. By definition, limz→z0 f(z) = w0 means that for all ε > 0 there is a δ > 0 such that

|f(z)−w0| < ε whenever 0 < |z − z0| < δ. But these are exactly the same formulas as

for showing that limz→0(f(z)− w0) = 0.

18.10.a We look at limz→0
4/z2

((1/z)−1)2 . Multiplying by z2/z2 we get limz→0
4

(1−z)2 = 4.

18.10.b We use that limz→1(z − 1)3 = 0.

18.10.c We look at (1/z)−1
(1/z2)+1

= z−z2

(1+z2 , which goes to 0 as z goes to 0.

18.10.13 By definition, S is bounded if there is an R such that |z| < R for all z ∈ S. So

unbounded means that for all R there is a z ∈ S with |z| > R. But this means precisely

that every neighborhood of infinity (which as the form |z| > R) contains a point of S.

20.1 lim∆z→0
(z+∆z)2−z2

∆z
= lim∆z→0

2z∆z+(∆z)2

∆z
lim∆z→0 2z + ∆z = 2z

20.8.a We look at ∆w
∆z

= Re(z+∆z)−Re(z)
∆z

= Re(z)+Re(∆z)−Re(z)
∆z

= Re(∆z)
∆z

. When ∆z is real, this

is 1. When ∆z is pure imaginary this is 0. So there can’t be any limit as ∆z → 0.

20.9 Note that we’re only asked about the derivative at z0 = 0. So in this case f(z0+∆z)−f(z0)
∆z

=
f(∆z)

∆z
= ∆z

2
/∆z

∆z
= ∆z

2

(∆z)2 . When ∆z is real, this is (∆z)2

(∆z)2 = 1. When ∆z is pure imagi-

nary, this is (−∆z)2

(∆z)2 = 1. If ∆x = ∆y, this becomes (∆x−i∆x)2

(∆x+i∆x)2 =
(

1−i
1+i

)2
=
(

(1−i)2

2

)2

=(−2i
2

)2
= −1. So there can’t be a limit as ∆z → 0.
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24.1.b z − z̄ = 2iy. So vy = 1 6= 0 = −ux. So f is not differentiable.

24.1.c ux = 2 and vy = 2xy, so f can’t be differentiable unless xy = 1. Also uy = 0 and

−vx = iy2, so f can’t be differentiable unless y = 0. Since y = 0 and xy = 1 can’t

both happen, f is not differentiable.

24.1.d f = ex cos y − iex sin y. So ux = ex cos y and vy = −ex cos y. These are equal only

if cos y = 0. Also uy = −ex sin y and −vx = ex sin y, and these are equal only when

sin y = 0. Since sin y and cos y cannot be 0 simultaneously, there are no points where

f is differentiable.

24.2.b Check that the Cauchy-Riemann equations are satisfied for f = u+ iv and that the

partial derivatives are all continous. Then we can write f ′ = ux + ivx and perform

the same check for this function. The result is that f ′′ = uxx + ivxx = e−x cos y −
ie−x sin(y) = f .

24.3.a 1/z = x−iy
x2+y2 . So u = x

x2+y2 and v = −y
x2+y2 . So ux = y2−x2

(x2+y2)2 , uy = −2xy
(x2+y2)2 , vx =

2xy
(x2+y2)2 , vy = y2−x2

(x2+y2)2 . So the CR equations are satisfied everywhere the derivatives

exist, but they do not exist at 0 (in fact z = 0 is not in the domain of the function). The

partials are also continuous everywhere but at 0. So we have f ′ = ux+ivx = y2−x2+2xyi
(x2+y2)2 .

We can recognize the top as (−z2) = −z̄2 and the denominator as |z|4 = z2z̄2. So the

quotient is −1/z2.

24.3.b u = x2 and v = y2, so ux = 2x, uy = 0, vx = 0 and vy = 2y. So CR implies x = y,

and these are continuous everywhere, so df/dz is defined along y = x where it equals

ux + ivx = 2x.

24.4.a f = 1
r4 e
−4θi = 1

r4 (cos(4θ) − i sin(4θ)). So ur = −4
r5 cos(4θ)), uθ = −4

r4 sin(4θ)), vr =
4
r5 (sin(4θ)) and vθ = −4

r4 (cos(4θ)). Thus rur = vθ and uθ = −rvr, and these are all

continuous (for r > 0). So the derivative exists and is e−iθ(ur+ivr) = e−iθ(−4
r5 cos(4θ)+

i 4
r5 (sin(4θ))) = e−iθ−4

r5 (cos(4θ)− i sin(4θ)) = e−iθ−4
r5 e
−4iθ = −4

r5 e
−5iθ = −4

z5

24.4.b ur = −e−θ sin(ln r)/r, uθ = −e−θ cos(ln r), vr = e−θ cos(ln r)/r, vθ = −e−θ sin(ln r).

So polar CR is satisfied and the partials are continuous for r > 0 and f ′ = e−θ(ur +

ivr) = e−iθ(−e−θ sin(ln r)/r + ie−θ cos(ln r)/r) = −e−θ sin(ln r)+ie−θ cos(ln r)
reiθ

= if(z)/z.

Homework 5

26.1.c ux = e−y cosx, uy = −e−y sinx, vx = e−y sinx, vy = e−y cosx. So the Cauchy-

Riemann equations hold and the partials are continuous everywhere in the plane. So

f ′ is defined everywhere, and f is entire.

26.2.a ux = y and vy = 1, so ux = vy is only possible when y = 1. Thus no point in the

plane can have a neighborhood on which f ′ is defined, so f cannot be analytic.
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26.4.a The the numerator and denominator share no common factor and the denominator

is 0 at 0, i,−i, so f is not defined at these points. By the quotient rule, the derivative

exists at all other points. So 0, i,−i are singular points and the function is analytic

everywhere else.

26.6 It’s simplest to use the polar form of the Cauchy-Riemann equations. We see that

ur = 1/r, uθ = 0, vr = 0 and vθ = 1. So the polar Cauchy-Riemann equations are

satisfied and the partials are continuous. Thus the function is defined on the domain

(notice that the domain is carefully chosen so that θ is well defined without ambiguity.

Now, from our geometrical understanding of functions, z2 takes the open first quadrant

to the upper half plane and adding one then shifts everything one unit to the right.

So, as the suggestion notes, Im(z2 + 1) > 0 for z in the open first quadrant, i.e.

0 < Arg(z2 + 1) < π. Since this is in the domain of g, the composition rule tells us

that g(z2 + 1) is analytic.

The rest follows from the CR formula for the derivative of g and from the chain rule.

26.7 If f is real valued and analytic on D, then f = f̄ , so f̄ is also analytic on D. The

result now follows from Example 3 in Section 26.

27.2 The formulas u(x, y) = c1 and v(x, y) = c2 determine curves that locally take the

for y = y(x). As noted in the suggestion, we have from the multivariable chain rule

(differentiating u(x, y) with respect to x) that ux + uy
dy
dx

= 0 and vx + vy
dy
dx

= 0.

Find all real values of a, b, c, d so that ax3 + bx2y + cxy2 + dy3 is harmonic. Let

u = ax3 + bx2y + cxy2 + dy3. Then ux = 3ax2 + 2bxy + cy2 and uxx = 6ax + 2by.

Similarly, uy = bx2 + 2cxy + 3dy2 and uyy = 2cx + 6dy. So u is harmonic if and only

if 6a = −2c and 2b = −6d, i.e. c = −3a and b = −3d. So any function of the form

u = ax3 − 3dx2y − 3axy2 + dy3 is harmonic.

Show by hand that u = x3−3x2y−3xy2 +y3 is harmonic. Find a v so that f = u+iv

is entire (hint: use the Cuachy-Riemann equations). ux = 3x2− 6xy− 3y2 and

uxx = 6x− 6y. uy = −3x2 − 6xy + 3y2 and uyy = −6x+ 6y. So u is harmonic.

By the Cauchy-Riemann equations, to find our desired v we need vx = −uy = 3x2 +

6xy−3y2 and vy = ux = 3x2−6xy−3y2. Integrating vx with respect to x, we see that

we must have v = x3 + 3x2y − 3xy2 + g(y) for some function g depending only on y.

Taking the y derivative of this, we must have vy = 3x2− 6xy+ dg
dy

(y). Comparing with

the vy we must have from the Cauchy-Riemann equations, we see that dg
dy

(y) = −3y2.

So g(y) = −y3 + C. So we see that v = x3 + 3x2y − 3xy2 − y3 + C satisfies the

Cauchy-Riemann equations with u, and everything in sight is continuous. So any such

v works.

Homework 6

30.1.b e
2+πi

4 = e1/2eπi/4 =
√
e(cos π/4 + i sin π/4) =

√
e(1/
√

2 + i/
√

2) =
√
e/2(1 + i)
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30.3 ez̄ = ex(cos y− i sin y). So ux = ex cos y, uy = −ex sin y, vx = −ex sin y, vy = −ex cos y.

If CR holds, then cos y = − cos y, so cos y = 1/2 and sin y = − sin y, so sin y = 1/2.

Since sin y and cos y are never both 1/2 for the same y, ez̄ cannot be differentiable

anywhere.

30.6 |ez2 | = |ex2−y2+i2xy| = |ex2−y2||ei2xy| = ex
2−y2

= ex
2+y2

e−y
2

= e|z
2|e−y

2
. Since −y2 ≤ 0

we hace e−y
2 ≤ 1. So |ez2| ≤ e|z

2|e−y
2
.

30.8.a ez = −2 implies that ex(cos y + i sin y) = −2. Since −2 is real, sin y = 0, so y is

a multiple of π. Since −2 < 0, we must have cos y < 0, which means that is an odd

multiple of π, i.e. y = (2n+ 1)π. Then ez = −ex = −2, so ex = 2, which implies that

x = ln 2.

30.11 As x → −∞, ez moves toward 0 along a ray from the origin. As y → ∞, ez moves

clockwise around a circle of radius ex centered at the origin an infinite number of times.

38.7 for | sin z|2 Using (13), | sin z|2 = sin2 x cosh2 y+cos2 x sinh2 y = sin2 x cosh2 y−sin2 x sinh2 y+

sin2 x sinh2 y + cos2 x sinh2 y = sin2 x(cosh2 y − sinh2 y) + sinh2 y(sin2 x + cos2 x) =

sin2 x+ sinh2 y.

Show that sin2 z + cos2 z = 1 sin2 z + cos2 z =
(
eiz−e−iz

2i

)2

+
(
eiz+e−iz

2

)2

= e2iz+e−2iz−2
−4

+

e2iz+e−i2z+2
4

= 4/4 = 1

Show that ez = ez̄ : ez = ex cos y + iex sin y = ex cos y−iex sin y = ex cos(−y)+iex sin(−y) =

exe−iy = ex−iy = ez̄.

Show that sin z = sin z̄ and cos z = cos z̄. Using the last problem and basic properties of

conjugates, sin z = e−iz̄−eiz̄
−2i

= eiz̄−e−iz̄
2i

= sin z̄. cos is similar.

33.1.a | − ei| = e and arg(−ie) = −π/2 + 2πn, so Log(−ei) = ln e+ iθ = 1 + i(−π/2)

33.2.c |−1+
√

3i| = 2 and arg(−1+
√

3i) = 2π/3+2πn, so log(−1+
√

3i) = ln 2+ i(2π/3+

2πn)

33.4 With the chosen branch, log(i2) = log(−1) = πi, while 2 log i = 2(i5π/2) = i5π

33.9 In general, we have ez = ex+iy = exeiy, so |ez| = ex and arg(ez) = y + 2πn. If we use

the branch α < θ < α+ 2π for log, then we have that log(ez) = ln ex + iΘ, where Θ is

the value of arg(ez) = y + 2πn with α < Θ < α + 2π. But with the assumption, this

is precisely y. So log ez = x+ iy = z.

33.10.a By definition/branch cuts, Log(z) is analytic so long as z does not lie on the part of

the real axis with x ≤ 0. Thus, since the composition of anlaytic functions is analytic

where it is defined (and Log z and z − i are analytic) Log(z − i) is thus analytic so

long as z − i is not on the non-positive x-axis, which is equivalent to z not being on

the line y = 1 with x ≤ 0.

8



33.11 One way to do this is by direct computation of derivatives. Alternatively, ln(x2 + y2)

is the real part of 2 log z for any branch cut. For any branch cut, 2 log z is analytic

in its domain, and so its real part is harmonic in that domain, which covers all of the

plane except one ray. If we choose a different branch cut, then we see that ln(x2 + y2)

is also harmonic on the ray, except for at 0. Since being harmonic is a local property

and we have verified it at all non-zero points of the plane, the function is harmonic on

C− {0}.

Homework 7

34.3 Let z1 = −
√

2/2 + i
√

2/2, and let z2 = −i. Then z1/z2 = −
√

2/2 − i
√

2/2, so

Log(z1/1z) = −i3π/4. But Log(z1)− Log(z2) = i3π/4− (−iπ/2) = i5π/4.

36.1.a (1 + i)i = ei log(1+i) = ei(ln
√

2+i(π/4+2πn)) = e−π/4+2πnei ln
√

2 = e−π/4+2πnei(ln 2)/2

36.2.a Principal value of (−i)i = eiLog(−i) = ei(−πi/2) = eπ/2

36.2.c Principal value of (1− i)4i = e4iLog(1−i) = e4i(ln
√

2−πi/4) = eπ+i2 ln(2) = eπ(cos(2 ln 2) +

i sin(2 ln 2))

36.6 If a is real then |za| = |ea log z| = |ea(ln |z|)+ai arg(z)| = |ea ln |z|eai arg z| = |ea ln |z|| =

|eln |z|a| = ||z|a|. But if we take the principal value of |z|a then since |z| is a posi-

tive real number we have |z|a = eaLog |z| = ea ln |z| as real numbers, and this is the usual

real number |z|a, which is also positive. So ||z|a| = |z|a.

36.8.a Using principal values, we have zc1zc2 = ec1 Log zec2 Log z. As noted in Section 35, when

we use principal values ez is exactly the function we’re used to working with, so, in

particular, ec1 Log zec2 Log z = ec1 Log z+c2 Log z = e(c1+c2) Log z, which is the principal branch

of zc1+c2 .

42.2.a
∫ 1

0
(1 + it)2 dt =

∫ 1

0
1 + 2it− t2 dt = t+ it2 − t3/3|10 = 1 + i− 1/3− (0) = 2

3
+ i

42.2.c
∫ π/6

0
ei2tdt = ei2t

2i
|π/60 = eiπ/3−1

2i
= 1

2i
(−1

2
+ i

√
3

2
=
√

3+i
4

42.4
∫ π

0
e(1+i)x dx = e(1+i)x

1+i
|π0 = e(1+i)π−1

1+i
= −eπ−1

1+i
= 1

2
(−eπ − 1)(1 − i). So

∫ π
0
ex cosx dx =

1
2
(−eπ − 1) and

∫ π
0
ex sinx dx = 1

2
(eπ + 1).

43.1.a Let τ = −t. Then dτ = −dt and
∫ −a
−b w(−t)dt = −

∫ −a
−b w(τ)dτ =

∫ b
a
w(τ)dτ

46.1.a z′ = 2ieiθ so
∫
C
z+2
z
dz =

∫ π
0

2eiθ+2
2eiθ

2ieiθ dθ =
∫ π

0
2ieiθ + 2i dθ = 2eiθ + 2iθ|π0 = −2 +

2πi− 2 = −4 + 2πi

46.2.b Take z(t) = t, 0 ≤ t ≤ 2. Then
∫
C
z− 1 dz =

∫ 2

0
t− 1 dt = t2/2− t|20 = 2− 2− 0 = 0

46.4 Our parametrization is z = t + it3 but we need to consider two pieces, −1 ≤ t ≤ 0

and 0 ≤ t ≤ 1. We also have z′ = 1 + 3t2i. The first part gives us
∫ 0

−1
1(1 + 3t2i) dt =

t+t3i|0−1 = −(−1−i) = 1+i. The second part is
∫ 1

0
4t3(1+3t2i) dt =

∫ 1

0
4t3+12t5i dt =

t4 + 2t6i|10 = 1 + 2i. So altogether we have 1 + i+ 1 + 2i = 2 + 3i

9



46.5 Given any z(t), a ≤ t ≤ b, we have
∫
C

1 dz =
∫ b
a
dz
dt
dt = z|ba = z(b)− z(a) = z2 − z1

46.6 Note that the contour only has an endpoint on the branch cut. So we use z′ = ieiθ

and the integral is
∫ π

0
eiLog zieiθdθ =

∫ π
0
ei(iθ)ieiθdθ =

∫ π
0
e−θieiθdθ =

∫ π
0
eiθ−θidθ =∫ π

0
e(i−1)θidθ = ie(i−1)θ

i−1
|π0 = ieπi−π−i

i−1
= −ie−π−i

i−1
= (−1−i)(−ie−π−i)

2
= (−1+i)(e−π+1)

2

Homework 8

43.5 Let w(t) = f(z(t)) = u(x(t), y(t))+ iv(x(t), y(t)). Then by the chain rule, dw
dt

= ∂u
∂x

dx
dt

+
∂u
∂y

dy
dt

+ i ∂v
∂x

dx
dt

+ i∂v
∂y

dy
dt

. Writing ux, uy, vx, vy, x
′, y′ for the appropriate derivatives and

using Cauchy-Riemann, this is uxx
′+uyy

′+i(vxx
′+vyy

′) = uxx
′−vxy′+i(vxx′+uxy′) =

(ux + ivx)(x
′ + iy′) = df

dz
dz
dt

as desired.

47.1.a On part of the circle of radius 2, |z+4| ≤ |z|+4 = 2+4 = 6 and |z3−1| ≥ ||z|3−1| = 7.

The length of the quarter circle is 2π · 2/4 = π. So by the Theorem in this section, the

integral is ≤ 6π/7.

47.2 As noted in the suggestion, the minimum |z| on the curve occurs at the midpoint

1/2 + i/2 and so is
√

1/2. Thus |1/z4| ≥ 1/(
√

1/2)4 = 4. The length of the line

segment is
√

2 by the Pythagorean theorem. So the integral is ≤ 4
√

2.

47.4 On the circle of radius R we have that |2z2−1| ≤ 2|z|2+1 = 2R2+1 while |z4+5z2+4| =
|z2 + 4||z2 + 1| ≥ ||z|2 − 4|||z|2 − 1| = (R2 − 4)(R2 − 1). So | 2z2−1

z4+5z2+4
| ≤ 2R2+1

(R2−4)(R2−1)

and the integral is ≤ 2R2+1
(R2−4)(R2−1)

πR. As R→∞ this expression goes to 0.

47.7 |x + i
√

1− x2 cos θ| =
√
x

2
+ (1 − x2) cos2 θ. Since 1 − x2 ≥ 0 by the assumption

|x| ≤ 1, we have (1 − x2) cos2 θ ≤ 1 − x2. So |x + i
√

1− x2 cos θ| ≤ x2 + 1 − x2 = 1.

So |(x + i
√

1− x2 cos θ)n| = |x + i
√

1− x2 cos θ|n ≤ 1n = 1. So the modulus of the

integral is ≤ π and therefore |Pn(x)| ≤ 1.

49.1 For n a nonnegative integer, zn is entire with antiderivative F (z) = zn+1

n+1
in the whole

plane. So a contour integral from z1 to z2 of zn is F (z2)− F (z1) =
zn+1
2 −zn+1

1

n+1
.

49.2.b 2 sin(z/2) is an antiderivative of cos(z/2). So the integral is 2(sin(π/2+i)−sin(0)) =

2 sin(π/2 + i) = ei(π/2+i)−e−i(π/2+i)

i
= e−1+iπ/2−e1−iπ/2

i
= e−1i−e(−i)

i
= e−1 + e

49.3 Since the case n = 0 is omited, (z − z0)n−1 has antiderivative (z−z0)n

n
on the domain

C− {z0} (if n > 0 this is an antiderivative on all of C). As long as a contour does not

pass through z0, the integrand is defined and continuous on the contour. So why the

Theorem in Section 48, the integral is 0 when the contour is also closed.

49.4 As observed in the text, the branch of z1/2 using π/2 < θ < 5π/2 is defined at all

points of any contour that lies below the real axis except for its endpoints at −3 and

3, and for all points on such a contour the values of this branch aree with those of the

branch 0 < θ < 2π, except at the point 3. But as one point does not affect the value
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of the integral, we can use the π/2 < θ < 5π/2 branch to compute. Furthermore,

this branch of z1/2 has antiderivative z3/2/(3/2) (with the same branch choice) on a

domain containing the contour. So by the Theorem in Section 48, the contour integral

is 2
3
(33/2−(−3)3/2. For this branch, 33/2 = (3e2πi)3/2 = 33/2e3πi = −33/2 while (−3)3/2 =

(3eπi)3/2 = 33/2ei3π/2 = −i33/2. So the integral is 2/3
(
− 33/2 + i33/2) = 2(−

√
3 + i

√
3).

49.5 As in the suggestion, if we consider the branch of zi with −π/2 arg z < 3π/2 to write

zi = ei log z then this agrees with eiLog z on the entirety of any contour that lies about the

real axis (except for its endpoints). So the integral is the same treating zi either way.

But now using our branch, zi has antiderivative zi+1/(i+ 1) (using the same branch to

define zi+1) and so by the Theorem in Section 48, the integral is (1i+1−(−1)i+1)/(i+1).

Using our branch, we compute 1i+1 = e(i+1) log 1 = e(i+1)(0+0i) = e0 = 1, while (−1)i+1 =

e(i+1) log(−1) = e(i+1)(ln 1+iπ) = e−π+iπ = −e−π. So the integral is 1+e−π

i+1
= 1+e−π

2
(1− i)

Homework 9

53.1.a This function is analytic except at z = −3. So it is analytic on and inside the circle,

so the integral is 0.

53.1.c This function only fails to be analytic at −2±
√

4−8
2

= −1± i. These points are outside

the disk, so by Cauchy-Goursat the integral is 0.

53.1.f f fails to be analytic at the points {x+ iy|x ≤ −2, y = 0}. These don’t intersection

the unit disk, so by Cauchy-Goursat the integral is 0.

53.2.a This function is analytic except where z = ±
√

13i. So, for example, f is analytic on

the domain |z| > 0.6. Thus the Theorem (more precisely the Corollary) from Section

53 applies.

53.3 z0 = 2 + i is in the interior of the rectangle described, and for all n the function

(z − 2− i)n−1 is analytic on C− {z0}. So by the Corollary of Section 53, the integral

on C0 equals the integral on C. The result follows from the C0 integral computations

given.

53.6 We can’t use Cauchy-Goursat here because the square root isn’t well defined at 0, so

the hypotheses of the theorem aren’t satisfied. However, we compute the pieces. On

the semicircle we use z = eiθ so z′ = ieiθ and we have
∫ π

0
eiθ/2ieiθdθ = i

∫ π
0
ei3θ/2dθ =

ei3θ/22/3 = (2/3)(ei3π/2 − 1) = (2/3)(−i − 1) = −2/3 − i2/3. For the part on the

positive x axis we have
∫ 1

0

√
t dt = (2/3)t3/2|10 = 2/3. For the negative real part we

have
∫ 0

−1

√
−teiπ/2 dt = i2/3. Adding these three pieces, we get 0.

53.7 This comes from Green’s Theorem. With f = x − iy, Green’s Theorem (see (4) in

Section 50) says that
∫
C
u−ivdz =

∫∫
R
vx−uy+i(ux+vy)dA =

∫∫
R

0−0+i(1+1) dA =∫∫
R2i dA = 2i · Area(R).

Homework 10
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57.1.a 2πie−πi/2 = 2πi(−i) = 2π

57.1.b 2πi cos(0)
02+8

= πi/4

57.1.c z
2z+1

= z/2
z+1/2

so the answer is 2πi(−1/4) = −πi/2

57.1.e 2πi d
dz

tan(z/2) = 2πi sec2(z/2)/2. So the answer is πi sec2(x0/2)

57.2.a z2 + 4 = (z+ 2i)(z− 2i). 2i is in the circle but −2i isn’t. So the integral is 2πi

times 1
z+2i

evaluated at 2i. So the answer is 2πi/4i = π/2

57.3 g(2) =
∫
C

2s2−s−2
s−2

ds, so g(2) = 2πi(2(2)2 − 2− 2) = 2πi4 = 8πi. If |z| > 3 then

the integrand is analytic on and inside the contour so g(z) = 0.

57.5 If z0 is outside the contour, both sides are 0. If z0 is inside the contour and C

is positively oriented then from the Cauchy formulas both sides are f ′(z0), using

that f analytic implies that f ′ is analytic. If C is negatively oriented, then the

integrals reverse signs but are still equal.

57.7 From the integral formula, the integral is 2πiea0 = 2πi. In terms of θ, we

let z = eiθ so that z′ = ieiθ. Then the integral is
∫ π
−π e

a(cos θ+i sin θ)ieiθ/eiθdθ =

i
∫ π
−π e

a cos θeia sin θ dθ = i
∫ π
−π e

a cos θ(cos(a sin θ)+i sin(a sin θ))dθ. Since ea cos θ sin(a sin θ)

is an odd function, its integral from−π to π is 0. So we get i
∫ π
−π e

a cos θ cos(a sin θ)dθ =

2πi. Also ea cos θ cos(a sin θ) is even so its integral from −π to 0 is equal to the

integral from 0 to π. So
∫ π

0
ea cos θ cos(a sin θ)dθ = π

57.10 Let z0 be a point in the plane, and let CR be the circle of radius R around

z0. The points on CR have the form z0 + Reiθ. Then on CR we have |f(z)| ≤
A|z0 +Reiθ| ≤ A(|z0|+R). So f ′′(z0) ≤ 2A(|z0|+R)/R2. As R goes to∞, we see

that f ′′(z0) = 0. So f ′(z) is constant, i.e. f ′(z) = a1. Since f is an antiderivative

of f ′, this implies f(z) = a1z + C. But f(0) must be 0 for |f(z)| ≤ A|z| to hold,

f(z) = a1z.

59.1 If f is entire, so is ef = eu+iv = eueiv. So if u is bounded, then so is |ef | = eu.

So then ef is constant. So |ef | = eu is constant. So u = lneu is constant.

59.3 Let R be the region |z| ≤ 1. Then if f(z) = z, |f(z)| = |z| = 0 at z = 0, but

|f(z)| = |z| > 0 for z 6= 0. So |f | has a minimum in the interior of R.

59.8.a Just multiply and cancel

59.8.b By part a, we can write zk − zk0 = (z− z0)Pk−1(z), where Pk−1 is a polynomial

of degree k − 1.

P (z)− P (z0) = a0 + a1z + a2z
2 + · · ·+ anz

n − a0 − a1z0 − a2z
2
0 − · · · − anzn0

= a1(z − z0) + a2(z − z0)2 + · · ·+ an(zn − zn0 )

= a1(z − z0) + a2(z − z0)P1(z) + · · ·+ an(z − z0)Pn−1(z)

= (z − z0)(a1 + a2P1(z) + · · ·+ anPn−1(z)

= (z − z0)Q(z)

When P (z0) = 0 we see that P (z) = (z − z0)Q(z), as required.
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Suppose f(z) is entire and |f(z)| ≥ 1 for all z. Show that f is constant. Since

|f(z)| ≥ 1, we have | 1
f(z)
| ≤ 1, so | 1

f(z)
| is bounded. It is entire since f(z) is never

0. So 1/f(z) is constant by Liouville’s Theorem. So f(z) is also constant.

Let R be a closed bounded region of the plane. Suppose f and g are

continuous on R and analytic in the interior of R. Show that if f = g on

the boundary of R then f = g on all of R. Consider f − g, which is 0 on the

boundary. By the corollary to the maximum modulus principle, the maximum

of |f − g| is on the boundary of R, so |f − g| must be 0 on all of R. So f = g.

Technically that corollary requires f − g not be constant, but if f − g is constant,

then since it’s 0 on the boundary it’s 0 everywhere in R so again f = g.

What is the maximum of |eiz2| on the disk |z| ≤ 1. From the Maximum Modulus

Principle, we know that the maximum must be on the boundary. So we consider

|eiz2| = |ei(x2−y2+2ixy)| = e−2xy on the circle. This will have its maximum where

−2xy has its maximum on the circle. Using Calc III methods (either parametrize

the curve or use Lagrange multipliers), the maximum will be where y = −x on

the circle, i.e. (1/
√

2)(1− i) and (1/
√

2)(−1 + i). Then e−2xy = e.

61.1 We want |( 1
n2 + i)− i| = | 1

n2 | < ε. This will be true so long as n > 1/
√
ε

Show directly from the definitions that if
∑∞

n=1 an = A and
∑∞

n=1 bn = B

then
∑∞

n=1(an + bn) = A + B. Let Sm =
∑m

n=1 an and Tm =
∑m

n=1 bn. Then by

definition for all ε > 0 there are M1 and M2 so such that |Sm−A| < ε for m > M1

and |Tm − B| < ε for m > M2. By taking the larger of M1,M2, we see there is a

single M so that |Sm−A| < ε and |Tm−B| < ε simultaneously for m > M . Now

let Um = Sm+Tm =
∑m

n=1(an+bn) (we can do this because these sums are finite).

Then for M > m, |Um− (A+B)| = |Sm +Tm− (A+B)| = |Sm−A+Tm−B| ≤
|Sm−A|+ |Tm−B|. If we choose M so that |Sm−A|, |Tm−B| < ε/2 for m > M ,

then we have |Um − (A + B)| < ε for m > M . This shows that Um converges to

A+B as desired.

Homework 11

65.2.b ez = eez−1 = e
∑∞

n=0
(z−1)n

n!
. This applies for all z ∈ C.

65.4 cos z = − sin(z − π/2) = −
∑∞

n=0
(z−π/2)2n+1

(2n+1)!
. This holds everywhere in C.

65.8.a cos z = eiz+e−iz

2
= 1

2
(
∑ (iz)n

n!
+
∑ (−iz)n

n!
) = 1

2
(
∑ (iz)n

n!
+
∑ (−)n(iz)n

n!
). Using that the

terms are negatives of each other for n odd and equal to each other for n even this

becomes 1
2
(
∑ 2(iz)2n

(2n)!
) =

∑ (iz)2n

(2n)!
=
∑ (i)2nz2n

(2n)!
=
∑ (−1)nz2n

(2n)!
.

65.9 f(z) =
∑∞

n=0(−1)n (z2)2n+1

(2n+1)!
=
∑∞

n=0(−1)n z4n+2

(2n+1)!
. Since this only has powers of the form

z4n+2, all of the terms z4n, z4n+1, z4n+3 must have trivial coefficients, so f (4n)(0) = 0

and similarly for the others. Notice that 4n+1 and 4n+3 together give all the positive

odd integers, so we can restate that condition as vanishing for all 2n+ 1.
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Find a Maclaurin series for z3

z2+16
. On what set does this converge? z3

z2+16
=

z3

16
1

1− z2

−16

= z3

16

∑∞
n=0( z2

−16
)n =

∑∞
n=0(−1)n z2n+3

(16)n+1 . This converges when |z2/16| < 1, i.e.

when |z| < 4

Find a Taylor series for z
1−z centered at z = 3. What is the region of convergence?

z

1− z
=

z − 3 + 3

−2− (z − 3)

=
z − 3

−2− (z − 3)
+

3

−2− (z − 3)

=
z − 3

−2

1

1− z−3
−2

+
3

−2

1

1− z−3
−2

=
z − 3

−2

∞∑
n=0

(
z − 3

−2

)n
+

3

−2

∞∑
n=0

(
z − 3

−2

)n
=
∞∑
n=0

(
z − 3

−2

)n+1

+
∞∑
n=0

3 (z − 3)n

(−2)n+1

=
∞∑
n=1

(
z − 3

−2

)n
+

3

−2
+
∞∑
n=1

3

−2

(z − 3)n

(−2)n

=
−3

2
+
∞∑
n=1

(
1 +
−3

2

)
(z − 3)n

(−2)n

=
−3

2
+
∞∑
n=1

−1

2

(z − 3)n

(−2)n

=
−3

2
+
∞∑
n=1

(z − 3)n

(−2)n+1

This converges for |z − 3| < 2

65.10 sin z = z − z3

3!
+ z5

5!
− z7

7!
+ · · · so sin z2 = z2 − z6

3!
+ z10

5!
− z14

7!
+ · · · and sin z2

z4 =

z−1 − z2

3!
+ z6

5!
− z10

7!
+ · · ·
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65.11

1

4z − z2
=

1

4z

1

1− z
4

=
1

4z

∞∑
n=0

(z
4

)n
=
∞∑
n=0

zn−1

4n+1

=
1

4z
+
∞∑
n=0

zn

4n+2

Find Laurent expansions about z0 = 0 for 1
z3−4z

on the regions 0 < |z| < 2 and

|z| > 2. When 0 < |z| < 2 we have 1
z3−4z

= −1
4z

1
1−( z

2
)2 = −1

4z

∑∞
n=0( z

2

4
)n =

∑∞
n=0

−z2n−1

4n+1 .

When |z| > 2, 1
z3−4z

= 1
z3

1
1− 4

z2
= 1

z3

∑∞
n=0

(
4
z2

)n
=
∑∞

n=0
4n

z2n+3

68.5 (just for D2) f(z) = −1
(z−1)(z−2)

= 1
z−1
− 1
z−2

= 1
z

1
1− 1

z

−−1
2

1
1− z

2
= 1

z

∑∞
n=0

1
zn

+1
2

∑∞
n=0

zn

2n
=∑∞

n=0
1

zn+1 +
∑∞

n=0
zn

2n+1 =
∑∞

n=0
zn

2n+1 +
∑∞

n=1
1
zn

Let C be the contour |z| = 2 oriented positively. Compute
∫
C
z cos(1/z) dz. We have

the Laurent series z cos(1/z) = z
∑∞

n=0
(−1)n

(2n)!

(
1
z

)2n
= z cos(1/z) =

∑∞
n=0

(−1)n

(2n)!
1

z2n−1 . So

b1 = −1/2. Thus the integral is 2πi(−1/2) = −πi.

Homework 12

72.1 Differentiating both sides of the first equation, we get 1
(1−z)2 =

∑∞
n=1 nz

n−1 =
∑∞

n=0(n+

1)zn. Differentiating again, 2
(1−z)3 =

∑∞
n=1 n(n+ 1)zn−1 =

∑∞
n=0(n+ 1)(n+ 2)zn. This

is all valid only within the circle of convergence |z| < 1

72.4 Using the Taylor series for cos z, which is entire, 1 − cos z = 1 −
(∑∞

n=0
z2n

(2n)!

)
=∑∞

n=1
z2n

(2n)!
. So (1 − cos z)/z2 =

∑∞
n=1

z2n−2

(2n)!
. At z = 0, this is 1/2, so this series

represents f(z) on all of C. Since the series for cos z converges for all z, our new

series also converges for all z (for each fixed z, multiplying by 1
z2 is multiplication by a

constant and so doesn’t affect the convergence). Since the series converges everywhere,

it represents an entire function by the corollary in section 71.

72.6 Let C be a contour from 1 to z where z satisfies |z − 1| < 1. Then we can integrate

both sides along this contour. On the left we get
∫
C

1
w
dw = Logw|z1 = Log z−Log 1 =

Log z. on the right we have
∫
C

∑∞
n=0(−1)n(w− 1)n dw =

∑∞
n=0

∫
C

(−1)n(w− 1)n dw =∑∞
n=0(−1)n (w−1)n+1

n+1
|z1 =

∑∞
n=0(−1)n (z−1)n+1

n+1
=
∑∞

n=1(−1)n+1 (z−1)n

n
.

72.7 Away from z = 1 on the described domain, f(z) is analytic by the analyticity of

Log and the quotient rule. Inside the circle |z − 1| < 1 (and only here), f(z) =
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∑∞
n=1(−1)n+1 (z−1)n−1

n
=
∑∞

n=0(−1)n (z−1)n

n+1
. Note that this agrees with f(1) = 1, and

the series absolutely converges inside the circle by comparison to the geometric series∑
|z − 1|n. So f(z) is analytic at 1 also.

Show that if f is analytic in a domain except for finitely many singular points then they

are all isolated singularities. Let z1, . . . , zn be the singular points. Without loss of

generality, consider z1. For each i > 1, let Ri = |z1 − zi|. Since there are finitely

many singular points, there is a minimum R = min{R2, . . . , Rn}. Now choose ε so

that 0 < ε < R and so that z1 has an ε neighborhood in the domain (this is possible

because domains are open). Then f is analytic on the deleted ε neighborhood around

z1, so z1 is an isolated singular point. The argument is the same for the other singular

points.

77.1.a 1
z+z2 = 1

z
1

1+z
= 1

z
(1− z + · · · ) = 1

z
− 1 + · · · for |z| < 1. So the residue at 0 is 1.

77.1.b z cos(1/z) = z(1 − 1
2z2 + · · · ) = z − 1

2z
+ · · · on the whole plane. So the residue is

−1/2.

77.1.c z−sin z
z

= 1
z
(z − (z − z3/6 + · · · )) = 1

z
(z3/6 + · · · ) = z2/6 + · · · . So the residue is 0.

77.2.a e−z

z2 = 1
z2 (1− z + z2/2 + · · · ) = 1/z2

−
1
z

+ · · · . So the integral is 2πi(−1) = −2πi.

77.2.d There are singularities at 0 and 2. By partial fractions, z+1
z2−2z

= −1
2z

+ 3
2(z−2)

. At

z = 0, the second function is analytic, so the residue is −1/2. At z = 2, the first

function is analytic so the residue is 3/2. So the integral is 2πi(−1/2 + 3/2) = 2πi

Let C be the positively oriented circle |z| = 5. Compute
∫
C

sin z
(z−π)2 . To find the residue

at π, we need to expand sin z in powers of z − π. We use sin(z) = sin(z − π + π) =

sin(z − π) cosπ + cos(z − π) sinπ = − sin(z − π) = −(z − π) + (z − π)3/6 − · · · . So
sin z

(z−π)2 = −1/(z − π) + · · · . So the residue is −1 and the integral is −2πi.

77.3 Looking at f(1/z)
z2 we have 1

z2

4/z−5
(1/z)(1/z−1)

= 1
z2

z(4−5z)
1−z = 4−5z

z(1−z) . The residue at 0 is
4−5(0)
(1−0)

= 4, so the integral is 8πi.

77.4.a 1
z2f(1/z) = 1

z2

1/z5

1−1/z3 = 1
z7

1
1−1/z3 = 1

z4
−1

1−z3 = −1
z4

∑∞
n=0 z

3n. So the residue is −1 and

the integral is −2πi.

77.4.b 1
z2f(1/z) = 1

z2
1

1+1/z2 = 1
z2+1

. This is analytic at 0 so the residue at 0 is 0. So the

integral is 0.

77.7 Consider P (1/z)/Q(1/z). The biggest power of 1/z in the expression is 1/zm. Multi-

plying top and bottom by zm, we get a polynomial with non-zero constant term on the

bottom and a polynomial with 0 constant term and linear term on the top. Dividing

by z2, the numerator is still a polynomial and the denominator is a polynomial with

non-zero constant term. So 1
z2

P (1/z)
Q(1/z)

is analytic at 0, so its residue at 0 is 0 and the

integral is 0.
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79.1.a The principal part is
∑∞

n=2
1

zn−1n!
. This singularity is essential.

79.1.b Note that z2 = (z+ 1)2−2z−1 = (z+ 1)2−2(z+ 1) + 1. So z2

z+1
= (z+ 1)−2 + 1

z+1
.

So the principal part is 1
z+1

and this is a simple pole.

79.1.c sin z/z =
∑∞

n=0(−1)n z2n

(2n+1)!
. So this is a removable singularity.

79.2b 1−e2z
z4 = 1

z4 (1−
∑∞

n=0 2nzn/n!) = 1
z4 (−

∑∞
n=1 2nzn/n!). So the principal part is −2/z3−

2/z2 − 8/6z. So the pole has order 3 and residue −4/3.

Homework 13

Section 83.1 From the Maclaurin series we know that sin z has a zero of order 1. So by

the Theorem in section 83, the residue is 1
cos 0

= 1.

83.2 We have q(z) = 1 − cos z, q′(z) = sin z, and q′′(z) = cos z. So q(0) = q′(0) = 0 but

q′′(0) = 1. So 0 is a zero of order 2.

83.4.a We can write z sec z as z/ cos z. Since f(z) = cos z is 0 as π/2+nπ but f ′(z) = − sin z

is not zero at this points, we see that cos z has zeros of degree 1 at these points. So

from theorem, the residues are z
sin z

evaluated at these points. For zn = π/2 + πn we

have sin(zn) = (−1)n, so the residues are (−1)nzn as desired.

83.5.a tan z = sin z/ cos z has singularities at ±π/2. From the theorem in section 83, the

residue at these points is sin z/(− sin z) = −1 evaluated at these points, so each is just

−1. So by the residue theorem, the integral is 2πi(−1− 1) = −4π

Homework 14

81.1.a f(z) = z+1
(z−3i)(z+3i)

. So at 3i we have a simple pole with φ(z) = z+1
z+3i

and residue

φ(3i) = 1+3i
6i

. And −3i we have a simple pole with φ(z) = z+1
z−3i

and residue φ(−3i) =
1−3i
−6i

.

81.1.c f(z) = z3

23(z+1/2)3 . So we have a pole of order 3 at −1/2 with φ(z) = z3/8. So the

residue is φ′′(−1/2)/2 = −3/16.

81.2.a (−1)1/4 is not 0, so we have a simple pole at −1 with residue (−1)1/4 = (eπi)1/4 =

eπi/4 =
√

2/2 + i
√

2

81.2.b f(z) = Log z
(z+i)2(z−i)2 , so we have a pole of order 2 at i with φ(z) = Log z

(z+i)2 . The residue

is φ′(i). φ′ = (z+i)2(1/z)−(Log z)(2z+2i)
(z+i)4 so φ′(i) = (2i)2(1/i)−(Log i)(4i)

(2i)4 = 4i+2π
16

= π+2i
8

81.3.b Note that φ is not 1
ez−1

because this is undefined at 0. Rather we observe that ez−1 =∑∞
n=1 z

n/n! = z
∑∞

n=0 z
n/(n + 1)!. So f(z) = 1

z2g(z)
where g(z) =

∑∞
n=0 z

n/(n + 1)! or

φ(z)/z2 with φ = 1/g. Thus we have a pole of order 2 and the residue is φ′(0). Then

φ′(0) = −g′(0)/g2(0). From the series for g we have g(0) = 1 while, differentiating

term by term, g′ =
∑∞

n=1 nz
n−1/(n+ 1)!. So g′(0) = 1/2. Thus φ′(0) = −1/2.
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81.5.a The contour only goes around the pole −4, where the residue is 1/43 = 1/64. So the

integral is 2πi/64 = πi/32.

81.5.b The contour goes around both poles. The integral is 2πi times the sum of the

residues. At −4 we have a simple pole with residue 1/(−4)3 = −1/64. At 0 we have

a pole of order 3 and so need φ′′(0)/2. Here φ = 1/(z + 4), so φ′ = −1/(z + 4)2 and

φ′′/2 = 1/(z + 4)3. At 0 this is 1/64. So the integral is 2πi(1/64− 1/64) = 0

83.11 By contradiction, assume there are an infinite number of zeros. Since the contour

together with the region inside it constitute a closed bounded region, by the Bolzano-

Weierstrass Theorem, the set of zeros must have an accumulation point, i.e. a point so

that there is a zero in every deleted neighborhood.

This accumulation point cannot be a pole: In a neighborhood of a pole f(z) = φ(z)
(z−z0)m

for some φ that is analytic at z0 and with φ(z0) 6= 0. But then if zi is a sequence of

zeros of f for which z0 is a limit point we must have φ(zi) = 0 in this neighborhood.

So by continuity we also have φ(z0) = 0, a contradiction.

So the accumulation point is not a pole but rather a point z0 at which f is analytic

and again by continuity f(z0) = 0.

But now by (the contrapositive of) the theorem in section 82, this situation can only

happen is f is identically zero in a neighborhood of the accumulation point. But

then the accumulation point is a zero of infinite order (and/or on the boundary),

contradicting the assumption that all the zeros have finite order and are interior to C.

86.1 Since the integrand is even, we start with the PV integral
∫∞
−∞ f(x) dx. Letting f(z) =

1/(z2 + 1) = 1
(z−i)(z+i) , this has poles at ±i. The residue at i is 1/2i = −i/2. So

integrating around a semi-circular contour, the PV integral will be 2πi(−i/2) = π and

the desired integral will be π/2 if we can show that the integral around the top part

of the contour goes to 0. Since |z2 + 1| ≥ ||z|2− 1|, on the semi circle of radius R we’ll

have f(z) ≤ 1
R2−1

. So the integral of the top semicircle is ≤ 1
R2−1

πR. This goes to 0

as R goes to infinity.

86.2 The procedure is essentially the same as in the preceding problem but now f(z) =
1

(z−i)2(z+i)2 . We have a pole of order 2 at i, and letting φ(z) = 1/(z+i)2, the residue will

be φ′(i). Since φ′ = −2/(z+i)3, we have φ′(i) = −2/(2i)3 = −1/4i3 = −1/−4i = −i/4.

So the PV integral will be 2πi(−i/4) = π/2 and the desired integral will be π/4. For

the top semicircle, we use that the maximum will be ≤ 1/(R2 − 1)2 using the triangle

inequality.

86.5 Let f(z) = z2

(z2+1)(z2+4)
. The poles in the upper half plane will be the simple poles at i

and 2i. The easiest way to find the residues here will be to use Theorem 2 in Section

83. In this case, p/q′ = z2

2z(z2+4)+(z2+1)2z
= z2

4z3+1z
= fracz4z2 + 10. So the desired

integral will be πi( i
4i2+10

+ 2i
4(2i)2+10

) = πi( i
6

+ 2i
−6

) = πi(−i
6

) = π/6. The upper half

circle integral is ≤ R2

(R2−1)(R2−4)
πR, which goes to 0
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86.9 First note that 1/(z3 + 1) has simple poles at eπi/3+2πni/3. The only one of these

in the contour is eπi/3. Using the theorem from section 83, the residue there is
1

3(eπi/3)2 = 1
3e2πi/3

= e−2πi/3/3. So the contour integral gives 2πie−2πi/3/3. The inte-

gral along the circular arc of the contour is ≤ 1
R3−1

2πR
3

which goes to 0 as R goes to

infinity. For the diagonal piece, letting the contour grow to infinity, we note that we can

parameterize it in the wrong direction by z(t) = tei2π/3, 0 ≤ t < ∞. Writing out the

contour integral along this piece in the wrong direction using the parametrization we

get
∫∞

0
1

(tei2π/3)3+1
ei2π/3 dt =

∫∞
0

1
t3+1

ei2π/3 dt = ei2π/3
∫∞

0
1

t3+1
dt. Not that the integral

here is the same one we’re interested in evaluation and that we get along the positive

x axis. However, the contribution to the contour is negative since we parameterized in

the wrong direction. So altogether the contour integral has three parts: the circle part

that goes to 0, the part
∫∞

0
1

x3+1
dx and the diagonal part −ei2π/3

∫∞
0

1
x3+1

dx.

Adding these up and using our residue computation from earlier, we have that (1 −
ei2π/3)

∫∞
0

1
x3+1

= 2πie−2πi/3/3.

So the integral is 2πie−2πi/3

3(1−ei2π/3)
. This simplifies to 2π

3
√

3
by basic arithmetic/trigonometry.

Homework 15

Let C be the curve —z—=2 oriented positively. For each of the following

functions f(z), determine how many times (with sign) the image f(C) winds

around the origin: 1) f(z) = z3, winding number 3; 2) f(z) = z4/(z − 1)2, winding

number 2; 3) f(z) = 1/(z2 + 1)2, winding number -4

94.5 Suppose that f has a zero of degree mk at zk. Then near zk, f(z) = (z − zk)mkg(z),

where g(z) is analytic at zk and f(zk) 6= 0. Then f ′ = mk(z − zk)
mk−1g(z) + (z −

zk)
mkg′(z). Then zf ′/f = z(mk(z−zk)mk−1g(z)+(z−zk)mkg′(z))

(z−zk)mkg(z)
= zmk

z−zk
+ zg′(z)

g(z)
. The second

summand is analytic at zk and, unless zk = 0, the first has a simple pole at zk with

residue mkzk (remember that if φ(z) is analytic at z0 then the residue of φ(z)/(z−z0) at

z0 is φ(z0)). If zk = 0 then there is no pole, but this is consistent with the contribution

to the formula being mkzk = 0. Since f is analytic, the only singularities of zf ′/f are

where f(z) = 0. So from the residue theorem, the integral is 2πi
∑
mkzk.

94.6.c On |z| = 1, |4z3| = 4, while |z7 + z − 1| ≤ |z|7 + |z|+ 1 = 3. So the full polynomial

has the same number of zeros in the circle as 4z3, which has 3.

94.7.a On |z| = 2, we have |9z2| = 36 while |z4− 2z3 + z − 1| ≤ 24 + 2 · 23 + 2 + 1 = 35. So

the full polynomial has as many zeros in the circle as 9z2, which has 2.

94.9 On the circle, |czn| = |c| while |ez| = ex ≤ e1 = e. So since e < |c| by assumption, czn

and czn − ez have the same number of zeros in the circle, which is n.
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