Complex Analysis
Sketches of Solutions to Selected Exercises

Homework 1

2.1.a $(\sqrt{2}-i)-i(1-\sqrt{2} i)=\sqrt{2}-i-i+i^{2} \sqrt{2}=\sqrt{2}-i-i-\sqrt{2}=-2 i$
2.1.b $(2,-3)(-2,1)=(2(-2)-(-3) 1,2(1)+(-3)(-2))=(-1,8)$
2.2.a $\operatorname{Re}(i z)=\operatorname{Re}(i(x+i y))=\operatorname{Re}(i x-y)=-y=-\operatorname{Im}(z)$
2.2.b $\operatorname{Im}(i z)=\operatorname{Im}(i(x+i y))=\operatorname{Im}(i x-i)=x=\operatorname{Re}(z)$
$2.4(1+i)^{2}-2(1+i)+2=1+2 i+i^{2}-2-2 i+2=0,(1-i)^{2}-2(1-i)+2=$ $1-2 i+i^{2}-2+2 i+2=0$
$2.5(x+i y)(a+i b)=x a-y b+i(x b+y a)=(a z-b y)+i(b x+a y)=(a+i b)(x+i y)$. The middle $=$ uses commutativity of real numbers.
2.8.a If (u, v) is an additive identity, i.e. a complex number such that $(x, y)+(u, v)=(x, y)$, then we can subtract (x, y) from both sides to get $(u, v)=(0,0)$.
2.8.b We know that $(1,0)$ is a multiplicative identity and that if $(x, y) \neq(0,0)$ then there is some $(x, y)^{-1}$ so that $(x, y)^{-1}(x, y)=(1,0)$. If (u, v) is also a multiplicative identity, then $(x, y)(u, v)=(x, y)$ for all (x, y). So we can suppose $(x, y) \neq(0,0)$ and multiply by $(x, y)^{-1}$. This results in $(u, v)=(1,0)$.
$2.11 z^{2}+z+1=(x+i y)^{2}+(x+i y)+1=x^{2}-y^{2}+2 x y i+x+i y+1=x^{2}-y^{2}+x+1+i(2 x y+y)$. If this is 0 then $x^{2}-y^{2}+x+1=0$ and $2 x y+y=0$. Using the hint, we can divide the second equation by y to get $2 x+1=0$ so $x=-1 / 2$. Plugging in to the other equation results in $y= \pm \sqrt{3} / 2$
3.1a $\frac{1+2 i}{3-4 i}+\frac{2-i}{5 i}=\frac{(1+2 i)(3+4 i)}{(3-4 i)(3+4 i)}-i \frac{2-i}{5}=\frac{-5+10 i}{25}+\frac{-2 i-1}{5}=\frac{-1+2 i-2 i-1}{5}=-2 / 5$
3.5 Just multiply and simplify
5.1.a Picture problem
5.1.d Picture problem
5.5.a Circle of radius 1 centered at $1-i$
5.5.b Closed disk of radius 3 centered at $-i$
5.5.c Exterior of the open disk of radius 4 centered at $4 i$
5.8 Multiply out the left side then factor.
5.9 Base case: $\left|z^{1}\right|=|z|=|z|^{1}$. Induction step: Suppose $\left|z^{n}\right|=|z|^{n}$ up to some $n \geq 1$. Then $\left|z^{n+1}\right|=\left|z^{n} z\right|=\left|z^{n}\right||z|=|z|^{n}|z|=|z|^{n+1}$. The second $=$ is Exercise 8. The third is the induction hypothesis.
6.1.a $\overline{\bar{z}+3 i}=\overline{\bar{z}}+\overline{3 i}=z-3 i$
6.1.b $\overline{i z}=\overline{i x-y}=\overline{-y+i x}=-y-i x=-i(x-i y)=-i \bar{z}$
6.1.c $\overline{(2+i)^{2}}=\overline{3+4 i}=3-4 i$
6.2.a $\operatorname{Re}(\bar{z}-i)=\operatorname{Re}(x-i y-i)=\operatorname{Re}(x-i(y+1))=x=\operatorname{Re}(z)$. So this is the line $x=2$
6.2.b $|2 \bar{z}+i|=2|\bar{z}+i / 2|=2|\overline{\bar{z}+i / 2}|=2|z-i / 2|$. So the equation is the same as $|z-i / 2|=2$. So this is a circle of radius 2 centered at $i / 2$.
6.3 Write out
6.10.a If z is real then $z=x+i 0=x-i 0=\bar{z}$. If $\bar{z}=z$, then $x-i y=x+i y$, so $2 i y=0$, so $y=0$, so z is real.
6.10.b If z is real then $\bar{z}^{2}=x^{2}=z^{2}$. If z is pure imaginary then $\bar{z}^{2}=(-i y)^{2}=(i y)^{2}=z^{2}$. Conversely, if $\bar{z}^{2}=z^{2}$ then $(x+i y)^{2}=(x-i y)^{2}$ so $x^{2}-y^{2}+i(2 x y)=x^{2}-i y^{2}-i 2 x y$. So $2 x y=-2 x y$ or $4 x y=0$. This implies that either x or y is 0 , so z is real or pure imaginary.
9.2.a $\left|e^{i \theta}\right|=|\cos \theta+i \sin \theta|=\sqrt{\cos ^{2} \theta+\sin ^{2} \theta}=1$
9.2.b $\overline{e^{i \theta}}=\overline{\cos \theta+i \sin \theta}=\cos \theta-i \sin \theta=\cos (-\theta)+i \sin (-\theta)=e^{-i \theta}$

Homework 2

9.1.a $\frac{-2}{1+\sqrt{3} i}=\frac{-2+2 \sqrt{3} i}{4}$, so $\tan \theta=-\sqrt{3}$. Therefore θ has the form $-\pi / 3+k \pi$ for some k.

Since z is in quadrant II, $\operatorname{Arg}(z)=2 \pi / 3$
9.1.b $(\sqrt{3}-i)^{6}=\left(4 e^{-i \pi / 6}\right)^{6}=4^{6} e^{-\pi i}$. So $\operatorname{Arg}(z)=\pi$.
9.10a By de Moivre's formula, $\cos (3 \theta)=\operatorname{Re}\left((\cos \theta+i \sin \theta)^{3}\right)$. But

$$
\begin{aligned}
(\cos \theta+i \sin \theta)^{3} & =(\cos \theta+i \sin \theta)\left(\cos ^{2} \theta-\sin ^{2} \theta+i 2 \cos \theta \sin \theta\right) \\
& =\cos ^{3} \theta-\cos \theta \sin ^{2} \theta-2 \cos \theta \sin ^{2} \theta+i[\cdots] \\
& =\cos ^{3} \theta-3 \cos \theta \sin ^{2} \theta+i[\cdots]
\end{aligned}
$$

11.1.a $z=2 i=2 e^{i \pi / 2}$, so the square roots are $\sqrt{2} e^{i \pi / 4}=\sqrt{2}(\sqrt{2} / 2+i \sqrt{2} / 2)=1+i$ and $-(1+i)=-1-i$
11.1.b $z=1-\sqrt{3} i=2 e^{-i \pi / 3}$, so the square roots are $\pm \sqrt{2} e^{-i \pi / 6}= \pm(\sqrt{2}(\sqrt{3} / 2-i / 2))=$ $\pm(\sqrt{3}-i) / \sqrt{2}$
$11.2 z=-8 i=8 e^{-i \pi / 2}$. So $\left|z^{1 / 3}\right|=2$ and $\arg \left(z^{1 / 3}\right)=-\pi / 6+k 2 \pi / 3$. These are $2 e^{-i \pi / 6}=$ $\sqrt{3}-i, 2 e^{i \pi / 2}=3 i$ and $2 e^{i 7 \pi / 6}=2(-\sqrt{3} / 2+-i / 2)=-\sqrt{3}-i$.
$11.3-8-8 \sqrt{3} i=16 e^{-i 2 \pi / 3}$. So $\left|z^{1 / 4}\right|=2$ and $\arg \left(z^{1 / 4}\right)=-\pi / 6+k 2 \pi / 4=-\pi / 6+k \pi / 2$. Converting back to rectangular coordinates gives (working counterclockwise $\sqrt{3}-i$, $1+\sqrt{3} i,-\sqrt{3}+i,-1-\sqrt{3} i$
11.4.a $(-1)=1 e^{i \pi}$, so $(-1)^{1 / 3}=e^{i \pi / 3+i k 2 \pi / 3}$. In rectangular coordinates, these are $e^{i \pi / 3}=$ $1 / 2+i \sqrt{3} / 2, e^{i \pi}=-1$, and $e^{i 5 p i / 3}=e^{-i \pi / 3}=1 / 2-i \sqrt{3} / 2$
11.4.b $8^{1 / 6}=\left(8 e^{i 0}\right)^{1 / 6}=\sqrt{2} e^{i k 2 \pi / 6}$. These are $\sqrt{2}(1 / 2 \pm i \sqrt{3} / 2), \sqrt{2}(-1 / 2 \pm i \sqrt{3} / 2), \sqrt{2}$, and $-\sqrt{2}$.
$5.2 x \leq|x|$ is true for all real numbers, so $\operatorname{Re}(z) \leq|\operatorname{Re}(z)|$ and $\operatorname{Im}(z) \leq|\operatorname{Im}(z)|$. For the others, $0 \leq x^{2} \leq x^{2}+y^{2}$, so, taking square roots, $|x| \leq \sqrt{x^{2}+y^{2}}$, so $\operatorname{Re}(z) \leq|z|$, and similarly for $I m$
5.3 Using the preceding exercise and the triangle inequality, $\operatorname{Re}\left(z_{1}+z_{2}\right) \leq\left|z_{1}+z_{2}\right| \leq$ $\left|z_{1}\right|+\left|z_{2}\right|$. From the alternative form of the triangle inequality, $\left|x_{3}+z_{4}\right| \geq\left|\left|z_{3}\right|-\left|z_{4}\right|\right|$. Since $\left|z_{3}\right| \neq\left|z_{4}\right|$, neither of these values is 0 (WHY?!). So $1 /\left|x_{3}+z_{4}\right| \leq 1 /\left|\left|z_{3}\right|-\left|z_{4}\right|\right|$. No multiply the two inequalities.

Show that a set is closed according to the book definition if and only if is the complement of an open set. Let $S \subset \mathbb{C}$. Let I be the interior points of S, E the exterior points, and B the boundary points. From the book definitions, $I \subset S$ and $E \subset \mathbb{C}-S$, so I and E are disjoint. Furthermore, B is defined to be $\mathbb{C}-(E \cup I)$. So E, I, and B form a partition of \mathbb{C} (they are pairwise disjoint and their union is \mathbb{C}). We also observe that boundary points are those points such that every ϵ-neighborhood intersects both S and $\mathbb{C}-S$. So, by symmetry, the boundary points of S are also the boundary points of $\mathbb{C}-S$. Furthermore, by the definition of E, if $z \in E$ then z contains a neighborhood in $\mathbb{C}-S=E$. So the points of E are the interior points of $\mathbb{C}-S$ and similarly the points of I are the exterior points of $\mathbb{C}-S$.
Putting this all together, we see that $B \subset S$ if and only if $\mathbb{C}-S=E$ if and only if $\mathbb{C}-S$ contains none of its boundary points if and only if $\mathbb{C}-S$ is open (by the book definition).

Note that this discussion also demonstrates the claim from class that a set S is open if and only if every point $z \in S$ has an ϵ-neighborhood also contained in S : The points that have this property are exactly the interior points of S, and so saying that every point of S has this property is the same as saying that $S=I$, which is the same as saying that S contains no boundary points, which is the book's definition of open.
12.1 a. Closed disk of radius 1 centered at $2-i$, not a domain; b. points outside of circle of radius 2 centered at $-3 / 2$, is a domain; c. Half play $y>1$, is a domain; d. line $y=1$, not a domain; e. 45 degree wedge from the origin, origin not included; not a domain; f. Half plane $x \leq 2$, not a domain
12.2 e
12.3 a
12.4 a. whole plane, b. whole plane, d. $\arg (z)$ is in $[-\pi / 4, \pi / 4]$ or $[3 \pi / 4,5 \pi / 4]$

Homework 3

12.8 Suppose there is a boundary point z of S that is not contained in S. Since it's a boundary point, every ϵ-neighborhood of z contains a point of S. Since z is not in S, it must in fact be that every deleted ϵ-neighborhood of z contains a point of S. So z is an accumulation point of S. But this implies that $z \in S$, a contradiction. So all boundary points of S are in S and thus S is closed.
12.9 If z_{0} is a point in a domain S, then since the domain is open there is an ϵ such that the disk $\left|z-z_{0}\right|<\epsilon$ is contained in S, so certainly the deleted neighborhood $0<\left|z-z_{0}\right|<\epsilon$ is contained in S. Any smaller deleted neighborhood around z_{0} is thus also contained in S, and any larger disk intersects S in at least one point that is not z_{0}. Thus every deleted neighborhood around z_{0} intersects S, so z_{0} is an accumulation point.
14.5 There are two such domains. One of them is bounded on the left by the right branch of the hyperbola $x^{2}-y^{2}=1$, on the right by the right branch of the hyperbola $x^{2}-y^{2}=2$, on the bottom by the top branch of the hyperbola $x y=1 / 2$, and on the top by the right branch of the hyperbola $x y=1$.
14.8 a) quarter disk in the first quadrant given by $0 \leq r \leq 1,0 \leq \theta \leq \pi / 2$, b) similar but with $0 \leq \theta \leq 3 \pi / 4$, c) upper half disk

Find an equation satisfied by all the complex numbers that are taken to the line $x=1$ under the map $w=z^{3}$. Without looking it up or using any algebraic geometry you should be able to give a rough sketch of this set. $x^{3}-3 x y^{2}=1$; picture discussed in class
18.1.a Let $z_{0}=x_{0}+i y_{0}$ and $z=x+i y$. Let $f(z)=\operatorname{Re}(z)=x$. Let $\epsilon>0$. We need to show that there is a δ such that $\left|\operatorname{Re}(z)-x_{0}\right|=\left|x-x_{0}\right|<\epsilon$ whenever $0 \leq\left|z-z_{0}\right| \leq \delta$. Recall that for any complex number a we know that $|\operatorname{Re}(a)| \leq|a|$. So in particular it is always true that $\left|x-x_{0}\right| \leq\left|z-z_{0}\right|$. So if we choose $\delta=\epsilon$ then $\left|z-z_{0}\right|<\epsilon=\delta$ implies that $\left|x-x_{0}\right|<\epsilon$ as desired.
18.1.c Fix any $\epsilon>0$. We need to show that there is a δ such that $0<|z-0|=|z|<\delta$ implies $\left|\bar{z}^{2} / z-0\right|=\left|\bar{z}^{2} / z\right|<\epsilon$. But from the properties of conjugates and moduli, $\left|\bar{z}^{2} / z\right|=|\bar{z}|^{2} /|z|=|z|^{2} /|z|=|z|$. So again we can take $\delta=\epsilon$, and if $|z|<\epsilon$, so is $\left|\bar{z}^{2} / z\right|=|z|$.
18.5 If $z=x$ then $f(z)=(x / x)^{2}=1$. If $z=i y$, then $f(z)=(i y /(-i y))^{2}=(-1)^{2}=1$. But if $y=z$, then $f(z)=\left(\frac{x+i x}{x-i x}\right)^{2}=\left(\frac{2 i x^{2}}{2 x^{2}}\right)^{2}=-1$. So there are points arbitrarily close to 0 that evaluate to 1 and also points arbitrarily close to 0 that evaluate to -1 . So the limit cannot exist.
18.6.b Suppose $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ and $\lim _{z \rightarrow z_{0}} F(z)=W_{0}$. Let $\epsilon>0$. Then there are a δ and Δ such that $0<\left|z-z_{0}\right|<\delta$ implies $\left|f(z)-w_{0}\right|<\epsilon / 2$ and $0<\left|z-z_{0}\right|<\Delta$ implies $\left|F(z)-W_{0}\right|<\epsilon / 2$. Choose δ_{1} so that $0<\delta_{1}<\delta$ and $0<\delta_{1}<\Delta$. Then if $\left|z-z_{0}<\delta_{1}\right|$, we have $\left|f(z)+F(z)-\left(w_{0}+W_{0}\right)\right|=\left|f(z)-w_{0}+F(z)-W_{0}\right| \leq$ $\left|f(z)-w_{0}\right|+\left|F(z)-W_{0}\right|<\epsilon / 2+\epsilon / 2=\epsilon$. So δ_{1} works. Since ϵ was arbitrary, this completes the argument.

Homework 4

A.II. By definition, $\lim _{z \rightarrow z_{0}} f(z)=w_{0}$ means that for all $\epsilon>0$ there is a $\delta>0$ such that $\left|f(z)-w_{0}\right|<\epsilon$ whenever $0<\left|z-z_{0}\right|<\delta$. But these are exactly the same formulas as for showing that $\lim _{z \rightarrow 0}\left(f(z)-w_{0}\right)=0$.
18.10.a We look at $\lim _{z \rightarrow 0} \frac{4 / z^{2}}{((1 / z)-1)^{2}}$. Multiplying by z^{2} / z^{2} we get $\lim _{z \rightarrow 0} \frac{4}{(1-z)^{2}}=4$.
18.10.b We use that $\lim _{z \rightarrow 1}(z-1)^{3}=0$.
18.10.c We look at $\frac{(1 / z)-1}{\left(1 / z^{2}\right)+1}=\frac{z-z^{2}}{\left(1+z^{2}\right.}$, which goes to 0 as z goes to 0 .
18.10.13 By definition, S is bounded if there is an R such that $|z|<R$ for all $z \in S$. So unbounded means that for all R there is a $z \in S$ with $|z|>R$. But this means precisely that every neighborhood of infinity (which as the form $|z|>R$) contains a point of S.
$20.1 \lim _{\Delta z \rightarrow 0} \frac{(z+\Delta z)^{2}-z^{2}}{\Delta z}=\lim _{\Delta z \rightarrow 0} \frac{2 z \Delta z+(\Delta z)^{2}}{\Delta z} \lim _{\Delta z \rightarrow 0} 2 z+\Delta z=2 z$
20.8.a We look at $\frac{\Delta w}{\Delta z}=\frac{\operatorname{Re}(z+\Delta z)-\operatorname{Re}(z)}{\Delta z}=\frac{\operatorname{Re}(z)+\operatorname{Re}(\Delta z)-\operatorname{Re}(z)}{\Delta z}=\frac{\operatorname{Re}(\Delta z)}{\Delta z}$. When Δz is real, this is 1 . When Δz is pure imaginary this is 0 . So there can't be any limit as $\Delta z \rightarrow 0$.
20.9 Note that we're only asked about the derivative at $z_{0}=0$. So in this case $\frac{f\left(z_{0}+\Delta z\right)-f\left(z_{0}\right)}{\Delta z}=$ $\frac{f(\Delta z)}{\Delta z}=\frac{\overline{\Delta z}^{2} / \Delta z}{\Delta z}=\frac{\overline{\Delta z}^{2}}{(\Delta z)^{2}}$. When Δz is real, this is $\frac{(\Delta z)^{2}}{(\Delta z)^{2}}=1$. When Δz is pure imaginary, this is $\frac{(-\Delta z)^{2}}{(\Delta z)^{2}}=1$. If $\Delta x=\Delta y$, this becomes $\frac{(\Delta x-i \Delta x)^{2}}{(\Delta x+i \Delta x)^{2}}=\left(\frac{1-i}{1+i}\right)^{2}=\left(\frac{(1-i)^{2}}{2}\right)^{2}=$ $\left(\frac{-2 i}{2}\right)^{2}=-1$. So there can't be a limit as $\Delta z \rightarrow 0$.
24.1.b $z-\bar{z}=2 i y$. So $v_{y}=1 \neq 0=-u_{x}$. So f is not differentiable.
24.1.c $u_{x}=2$ and $v_{y}=2 x y$, so f can't be differentiable unless $x y=1$. Also $u_{y}=0$ and $-v_{x}=i y^{2}$, so f can't be differentiable unless $y=0$. Since $y=0$ and $x y=1$ can't both happen, f is not differentiable.
24.1.d $f=e^{x} \cos y-i e^{x} \sin y$. So $u_{x}=e^{x} \cos y$ and $v_{y}=-e^{x} \cos y$. These are equal only if $\cos y=0$. Also $u_{y}=-e^{x} \sin y$ and $-v_{x}=e^{x} \sin y$, and these are equal only when $\sin y=0$. Since $\sin y$ and $\cos y$ cannot be 0 simultaneously, there are no points where f is differentiable.
24.2.b Check that the Cauchy-Riemann equations are satisfied for $f=u+i v$ and that the partial derivatives are all continous. Then we can write $f^{\prime}=u_{x}+i v_{x}$ and perform the same check for this function. The result is that $f^{\prime \prime}=u_{x x}+i v_{x x}=e^{-x} \cos y-$ $i e^{-x} \sin (y)=f$.
24.3.a $1 / z=\frac{x-i y}{x^{2}+y^{2}}$. So $u=\frac{x}{x^{2}+y^{2}}$ and $v=\frac{-y}{x^{2}+y^{2}}$. So $u_{x}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}, u_{y}=\frac{-2 x y}{\left(x^{2}+y^{2}\right)^{2}}, v_{x}=$ $\frac{2 x y}{\left(x^{2}+y^{2}\right)^{2}}, v_{y}=\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}$. So the CR equations are satisfied everywhere the derivatives exist, but they do not exist at 0 (in fact $z=0$ is not in the domain of the function). The partials are also continuous everywhere but at 0 . So we have $f^{\prime}=u_{x}+i v_{x}=\frac{y^{2}-x^{2}+2 x y i}{\left(x^{2}+y^{2}\right)^{2}}$. We can recognize the top as $\overline{\left(-z^{2}\right)}=-\bar{z}^{2}$ and the denominator as $|z|^{4}=z^{2} \bar{z}^{2}$. So the quotient is $-1 / z^{2}$.
24.3.b $u=x^{2}$ and $v=y^{2}$, so $u_{x}=2 x, u_{y}=0, v_{x}=0$ and $v_{y}=2 y$. So CR implies $x=y$, and these are continuous everywhere, so $d f / d z$ is defined along $y=x$ where it equals $u_{x}+i v_{x}=2 x$.
24.4.a $f=\frac{1}{r^{4}} e^{-4 \theta i}=\frac{1}{r^{4}}(\cos (4 \theta)-i \sin (4 \theta))$. So $\left.u_{r}=\frac{-4}{r^{5}} \cos (4 \theta)\right)$, $\left.u_{\theta}=\frac{-4}{r^{4}} \sin (4 \theta)\right)$, $v_{r}=$ $\frac{4}{r^{5}}(\sin (4 \theta))$ and $v_{\theta}=\frac{-4}{r^{4}}(\cos (4 \theta))$. Thus $r u_{r}=v_{\theta}$ and $u_{\theta}=-r v_{r}$, and these are all continuous (for $r>0)$. So the derivative exists and is $e^{-i \theta}\left(u_{r}+i v_{r}\right)=e^{-i \theta}\left(\frac{-4}{r^{5}} \cos (4 \theta)+\right.$

24.4.b $u_{r}=-e^{-\theta} \sin (\ln r) / r, u_{\theta}=-e^{-\theta} \cos (\ln r), v_{r}=e^{-\theta} \cos (\ln r) / r, v \theta=-e^{-\theta} \sin (\ln r)$. So polar CR is satisfied and the partials are continuous for $r>0$ and $f^{\prime}=e^{-\theta}\left(u_{r}+\right.$ $\left.i v_{r}\right)=e^{-i \theta}\left(-e^{-\theta} \sin (\ln r) / r+i e^{-\theta} \cos (\ln r) / r\right)=\frac{-e^{-\theta} \sin (\ln r)+i e^{-\theta} \cos (\ln r)}{r e^{i \theta}}=i f(z) / z$.

Homework 5

26.1.c $u_{x}=e^{-y} \cos x, u_{y}=-e^{-y} \sin x, v_{x}=e^{-y} \sin x, v_{y}=e^{-y} \cos x$. So the CauchyRiemann equations hold and the partials are continuous everywhere in the plane. So f^{\prime} is defined everywhere, and f is entire.
26.2.a $u_{x}=y$ and $v_{y}=1$, so $u_{x}=v_{y}$ is only possible when $y=1$. Thus no point in the plane can have a neighborhood on which f^{\prime} is defined, so f cannot be analytic.
26.4.a The the numerator and denominator share no common factor and the denominator is 0 at $0, i,-i$, so f is not defined at these points. By the quotient rule, the derivative exists at all other points. So $0, i,-i$ are singular points and the function is analytic everywhere else.
26.6 It's simplest to use the polar form of the Cauchy-Riemann equations. We see that $u_{r}=1 / r, u_{\theta}=0, v_{r}=0$ and $v_{\theta}=1$. So the polar Cauchy-Riemann equations are satisfied and the partials are continuous. Thus the function is defined on the domain (notice that the domain is carefully chosen so that θ is well defined without ambiguity. Now, from our geometrical understanding of functions, z^{2} takes the open first quadrant to the upper half plane and adding one then shifts everything one unit to the right. So, as the suggestion notes, $\operatorname{Im}\left(z^{2}+1\right)>0$ for z in the open first quadrant, i.e. $0<\operatorname{Arg}\left(z^{2}+1\right)<\pi$. Since this is in the domain of g, the composition rule tells us that $g\left(z^{2}+1\right)$ is analytic.
The rest follows from the CR formula for the derivative of g and from the chain rule.
26.7 If f is real valued and analytic on D, then $f=\bar{f}$, so \bar{f} is also analytic on D. The result now follows from Example 3 in Section 26.
27.2 The formulas $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ determine curves that locally take the for $y=y(x)$. As noted in the suggestion, we have from the multivariable chain rule (differentiating $u(x, y)$ with respect to x) that $u_{x}+u_{y} \frac{d y}{d x}=0$ and $v_{x}+v_{y} \frac{d y}{d x}=0$.

Find all real values of a, b, c, d so that $a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$ is harmonic. Let $u=a x^{3}+b x^{2} y+c x y^{2}+d y^{3}$. Then $u_{x}=3 a x^{2}+2 b x y+c y^{2}$ and $u_{x x}=6 a x+2 b y$. Similarly, $u_{y}=b x^{2}+2 c x y+3 d y^{2}$ and $u_{y y}=2 c x+6 d y$. So u is harmonic if and only if $6 a=-2 c$ and $2 b=-6 d$, i.e. $c=-3 a$ and $b=-3 d$. So any function of the form $u=a x^{3}-3 d x^{2} y-3 a x y^{2}+d y^{3}$ is harmonic.

Show by hand that $u=x^{3}-3 x^{2} y-3 x y^{2}+y^{3}$ is harmonic. Find a v so that $f=u+i v$ is entire (hint: use the Cuachy-Riemann equations). $u_{x}=3 x^{2}-6 x y-3 y^{2}$ and $u_{x x}=6 x-6 y . u_{y}=-3 x^{2}-6 x y+3 y^{2}$ and $u_{y y}=-6 x+6 y$. So u is harmonic.
By the Cauchy-Riemann equations, to find our desired v we need $v_{x}=-u_{y}=3 x^{2}+$ $6 x y-3 y^{2}$ and $v_{y}=u_{x}=3 x^{2}-6 x y-3 y^{2}$. Integrating v_{x} with respect to x, we see that we must have $v=x^{3}+3 x^{2} y-3 x y^{2}+g(y)$ for some function g depending only on y. Taking the y derivative of this, we must have $v_{y}=3 x^{2}-6 x y+\frac{d g}{d y}(y)$. Comparing with the v_{y} we must have from the Cauchy-Riemann equations, we see that $\frac{d g}{d y}(y)=-3 y^{2}$. So $g(y)=-y^{3}+C$. So we see that $v=x^{3}+3 x^{2} y-3 x y^{2}-y^{3}+C$ satisfies the Cauchy-Riemann equations with u, and everything in sight is continuous. So any such v works.

Homework 6

30.1.b $e^{\frac{2+\pi i}{4}}=e^{1 / 2} e^{\pi i / 4}=\sqrt{e}(\cos \pi / 4+i \sin \pi / 4)=\sqrt{e}(1 / \sqrt{2}+i / \sqrt{2})=\sqrt{e / 2}(1+i)$
$30.3 e^{\bar{z}}=e^{x}(\cos y-i \sin y)$. So $u_{x}=e^{x} \cos y, u_{y}=-e^{x} \sin y, v_{x}=-e^{x} \sin y, v_{y}=-e^{x} \cos y$. If CR holds, then $\cos y=-\cos y$, so $\cos y=1 / 2$ and $\sin y=-\sin y$, so $\sin y=1 / 2$. Since $\sin y$ and $\cos y$ are never both $1 / 2$ for the same $y, e^{\bar{z}}$ cannot be differentiable anywhere.
$30.6\left|e^{z^{2}}\right|=\left|e^{x^{2}-y^{2}+i 2 x y}\right|=\left|e^{x^{2}-y^{2}}\right|\left|e^{i 2 x y}\right|=e^{x^{2}-y^{2}}=e^{x^{2}+y^{2}} e^{-y^{2}}=e^{\left|z^{2}\right|} e^{-y^{2}}$. Since $-y^{2} \leq 0$ we hace $e^{-y^{2}} \leq 1$. So $\left|e^{z^{2}}\right| \leq e^{\left|z^{2}\right|} e^{-y^{2}}$.
30.8.a $e^{z}=-2$ implies that $e^{x}(\cos y+i \sin y)=-2$. Since -2 is real, $\sin y=0$, so y is a multiple of π. Since $-2<0$, we must have $\cos y<0$, which means that is an odd multiple of π, i.e. $y=(2 n+1) \pi$. Then $e^{z}=-e^{x}=-2$, so $e^{x}=2$, which implies that $x=\ln 2$.
30.11 As $x \rightarrow-\infty, e^{z}$ moves toward 0 along a ray from the origin. As $y \rightarrow \infty, e^{z}$ moves clockwise around a circle of radius e^{x} centered at the origin an infinite number of times.
38.7 for $|\sin z|^{2}$ Using (13), $|\sin z|^{2}=\sin ^{2} x \cosh ^{2} y+\cos ^{2} x \sinh ^{2} y=\sin ^{2} x \cosh ^{2} y-\sin ^{2} x \sinh ^{2} y+$ $\sin ^{2} x \sinh ^{2} y+\cos ^{2} x \sinh ^{2} y=\sin ^{2} x\left(\cosh ^{2} y-\sinh ^{2} y\right)+\sinh ^{2} y\left(\sin ^{2} x+\cos ^{2} x\right)=$ $\sin ^{2} x+\sinh ^{2} y$.

Show that $\sin ^{2} z+\cos ^{2} z=1 \sin ^{2} z+\cos ^{2} z=\left(\frac{e^{i z}-e^{-i z}}{2 i}\right)^{2}+\left(\frac{e^{i z}+e^{-i z}}{2}\right)^{2}=\frac{e^{2 i z}+e^{-2 i z}-2}{-4}+$ $\frac{e^{2 i z}+e^{-i 2 z}+2}{4}=4 / 4=1$

Show that $\overline{e^{z}}=e^{\bar{z}}: \overline{e^{z}}=\overline{e^{x} \cos y+i e^{x} \sin y}=e^{x} \cos y-i e^{x} \sin y=e^{x} \cos (-y)+i e^{x} \sin (-y)=$ $e^{x} e^{-i y}=e^{x-i y}=e^{\bar{z}}$.

Show that $\overline{\sin z}=\sin \bar{z}$ and $\overline{\cos z}=\cos \bar{z}$. Using the last problem and basic properties of conjugates, $\overline{\sin z}=\frac{e^{-i \bar{z}}-e^{i \bar{z}}}{-2 i}=\frac{e^{i \bar{z}}-e^{-i \bar{z}}}{2 i}=\sin \bar{z}$. cos is similar.
33.1.a $|-e i|=e$ and $\arg (-i e)=-\pi / 2+2 \pi n$, so $\log (-e i)=\ln e+i \theta=1+i(-\pi / 2)$
33.2.c $|-1+\sqrt{3} i|=2$ and $\arg (-1+\sqrt{3} i)=2 \pi / 3+2 \pi n$, so $\log (-1+\sqrt{3} i)=\ln 2+i(2 \pi / 3+$ $2 \pi n$)
33.4 With the chosen branch, $\log \left(i^{2}\right)=\log (-1)=\pi i$, while $2 \log i=2(i 5 \pi / 2)=i 5 \pi$
33.9 In general, we have $e^{z}=e^{x+i y}=e^{x} e^{i y}$, so $\left|e^{z}\right|=e^{x}$ and $\arg \left(e^{z}\right)=y+2 \pi n$. If we use the branch $\alpha<\theta<\alpha+2 \pi$ for \log, then we have that $\log \left(e^{z}\right)=\ln e^{x}+i \Theta$, where Θ is the value of $\arg \left(e^{z}\right)=y+2 \pi n$ with $\alpha<\Theta<\alpha+2 \pi$. But with the assumption, this is precisely y. So $\log e^{z}=x+i y=z$.
33.10.a By definition/branch cuts, $\log (z)$ is analytic so long as z does not lie on the part of the real axis with $x \leq 0$. Thus, since the composition of anlaytic functions is analytic where it is defined (and $\log z$ and $z-i$ are analytic) $\log (z-i)$ is thus analytic so long as $z-i$ is not on the non-positive x-axis, which is equivalent to z not being on the line $y=1$ with $x \leq 0$.
33.11 One way to do this is by direct computation of derivatives. Alternatively, $\ln \left(x^{2}+y^{2}\right)$ is the real part of $2 \log z$ for any branch cut. For any branch cut, $2 \log z$ is analytic in its domain, and so its real part is harmonic in that domain, which covers all of the plane except one ray. If we choose a different branch cut, then we see that $\ln \left(x^{2}+y^{2}\right)$ is also harmonic on the ray, except for at 0 . Since being harmonic is a local property and we have verified it at all non-zero points of the plane, the function is harmonic on $\mathbb{C}-\{0\}$.

Homework 7

34.3 Let $z_{1}=-\sqrt{2} / 2+i \sqrt{2} / 2$, and let $z_{2}=-i$. Then $z_{1} / z_{2}=-\sqrt{2} / 2-i \sqrt{2} / 2$, so $\log \left(z_{1} / 1_{z}\right)=-i 3 \pi / 4$. But $\log \left(z_{1}\right)-\log \left(z_{2}\right)=i 3 \pi / 4-(-i \pi / 2)=i 5 \pi / 4$.
36.1.a $(1+i)^{i}=e^{i \log (1+i)}=e^{i(\ln \sqrt{2}+i(\pi / 4+2 \pi n))}=e^{-\pi / 4+2 \pi n} e^{i \ln \sqrt{2}}=e^{-\pi / 4+2 \pi n} e^{i(\ln 2) / 2}$
36.2.a Principal value of $(-i)^{i}=e^{i \log (-i)}=e^{i(-\pi i / 2)}=e^{\pi / 2}$
36.2.c Principal value of $(1-i)^{4 i}=e^{4 i \log (1-i)}=e^{4 i(\ln \sqrt{2}-\pi i / 4)}=e^{\pi+i 2 \ln (2)}=e^{\pi}(\cos (2 \ln 2)+$ $i \sin (2 \ln 2))$
36.6 If a is real then $\left|z^{a}\right|=\left|e^{a \log z}\right|=\left|e^{a(\ln |z|)+a i \arg (z)}\right|=\left|e^{a \ln |z|} e^{a i \arg z}\right|=\left|e^{a \ln |z|}\right|=$ $\left|e^{\ln |z|^{a}}\right|=\left||z|^{a}\right|$. But if we take the principal value of $|z|^{a}$ then since $|z|$ is a positive real number we have $|z|^{a}=e^{a \log |z|}=e^{a \ln |z|}$ as real numbers, and this is the usual real number $|z|^{a}$, which is also positive. So $\left||z|^{a}\right|=|z|^{a}$.
36.8.a Using principal values, we have $z^{c_{1}} z^{c_{2}}=e^{c_{1} \log z} e^{c_{2} \log z}$. As noted in Section 35, when we use principal values e^{z} is exactly the function we're used to working with, so, in particular, $e^{c_{1} \log z} e^{c_{2} \log z}=e^{c_{1} \log z+c_{2} \log z}=e^{\left(c_{1}+c_{2}\right) \log z}$, which is the principal branch of $z^{c_{1}+c_{2}}$.
42.2.a $\int_{0}^{1}(1+i t)^{2} d t=\int_{0}^{1} 1+2 i t-t^{2} d t=t+i t^{2}-t^{3} /\left.3\right|_{0} ^{1}=1+i-1 / 3-(0)=\frac{2}{3}+i$
42.2.c $\int_{0}^{\pi / 6} e^{i 2 t} d t=\left.\frac{e^{i 2 t}}{2 i}\right|_{0} ^{\pi / 6}=\frac{e^{i \pi / 3-1}}{2 i}=\frac{1}{2 i}\left(\frac{-1}{2}+i \frac{\sqrt{3}}{2}=\frac{\sqrt{3}+i}{4}\right.$
$42.4 \int_{0}^{\pi} e^{(1+i) x} d x=\left.\frac{e^{(1+i) x}}{1+i}\right|_{0} ^{\pi}=\frac{e^{(1+i) \pi}-1}{1+i}=\frac{-e^{\pi}-1}{1+i}=\frac{1}{2}\left(-e^{\pi}-1\right)(1-i)$. So $\int_{0}^{\pi} e^{x} \cos x d x=$ $\frac{1}{2}\left(-e^{\pi}-1\right)$ and $\int_{0}^{\pi} e^{x} \sin x d x=\frac{1}{2}\left(e^{\pi}+1\right)$.
43.1.a Let $\tau=-t$. Then $d \tau=-d t$ and $\int_{-b}^{-a} w(-t) d t=-\int_{-b}^{-a} w(\tau) d \tau=\int_{a}^{b} w(\tau) d \tau$
46.1.a $z^{\prime}=2 i e^{i \theta}$ so $\int_{C} \frac{z+2}{z} d z=\int_{0}^{\pi} \frac{2 e^{i \theta}+2}{2 e^{i \theta}} 2 i e^{i \theta} d \theta=\int_{0}^{\pi} 2 i e^{i \theta}+2 i d \theta=2 e^{i \theta}+\left.2 i \theta\right|_{0} ^{\pi}=-2+$ $2 \pi i-2=-4+2 \pi i$
46.2.b Take $z(t)=t, 0 \leq t \leq 2$. Then $\int_{C} z-1 d z=\int_{0}^{2} t-1 d t=t^{2} / 2-\left.t\right|_{0} ^{2}=2-2-0=0$
46.4 Our parametrization is $z=t+i t^{3}$ but we need to consider two pieces, $-1 \leq t \leq 0$ and $0 \leq t \leq 1$. We also have $z^{\prime}=1+3 t^{2} i$. The first part gives us $\int_{-1}^{0} 1\left(1+3 t^{2} i\right) d t=$ $t+\left.t^{3} i\right|_{-1} ^{0}=-(-1-i)=1+i$. The second part is $\int_{0}^{1} 4 t^{3}\left(1+3 t^{2} i\right) d t=\int_{0}^{1} 4 t^{3}+12 t^{5} i d t=$ $t^{4}+\left.2 t^{6} i\right|_{0} ^{1}=1+2 i$. So altogether we have $1+i+1+2 i=2+3 i$
46.5 Given any $z(t), a \leq t \leq b$, we have $\int_{C} 1 d z=\int_{a}^{b} \frac{d z}{d t} d t=\left.z\right|_{a} ^{b}=z(b)-z(a)=z_{2}-z_{1}$
46.6 Note that the contour only has an endpoint on the branch cut. So we use $z^{\prime}=i e^{i \theta}$ and the integral is $\int_{0}^{\pi} e^{i \log z} i e^{i \theta} d \theta=\int_{0}^{\pi} e^{i(i \theta)} i e^{i \theta} d \theta=\int_{0}^{\pi} e^{-\theta} i e^{i \theta} d \theta=\int_{0}^{\pi} e^{i \theta-\theta} i d \theta=$ $\int_{0}^{\pi} e^{(i-1) \theta} i d \theta=\left.\frac{i e^{(i-1) \theta}}{i-1}\right|_{0} ^{\pi}=\frac{i e^{\pi i-\pi}-i}{i-1}=\frac{-i e^{-\pi}-i}{i-1}=\frac{(-1-i)\left(-i e^{-\pi}-i\right)}{2}=\frac{(-1+i)\left(e^{-\pi}+1\right)}{2}$

Homework 8

43.5 Let $w(t)=f(z(t))=u(x(t), y(t))+i v(x(t), y(t))$. Then by the chain rule, $\frac{d w}{d t}=\frac{\partial u}{\partial x} \frac{d x}{d t}+$ $\frac{\partial u}{\partial y} \frac{d y}{d t}+i \frac{\partial v}{\partial x} \frac{d x}{d t}+i \frac{\partial v}{\partial y} \frac{d y}{d t}$. Writing $u_{x}, u_{y}, v_{x}, v_{y}, x^{\prime}, y^{\prime}$ for the appropriate derivatives and using Cauchy-Riemann, this is $u_{x} x^{\prime}+u_{y} y^{\prime}+i\left(v_{x} x^{\prime}+v_{y} y^{\prime}\right)=u_{x} x^{\prime}-v_{x} y^{\prime}+i\left(v_{x} x^{\prime}+u_{x} y^{\prime}\right)=$ $\left(u_{x}+i v_{x}\right)\left(x^{\prime}+i y^{\prime}\right)=\frac{d f}{d z} \frac{d z}{d t}$ as desired.
47.1.a On part of the circle of radius $2,|z+4| \leq|z|+4=2+4=6$ and $\left|z^{3}-1\right| \geq\left||z|^{3}-1\right|=7$. The length of the quarter circle is $2 \pi \cdot 2 / 4=\pi$. So by the Theorem in this section, the integral is $\leq 6 \pi / 7$.
47.2 As noted in the suggestion, the minimum $|z|$ on the curve occurs at the midpoint $1 / 2+i / 2$ and so is $\sqrt{1 / 2}$. Thus $\left|1 / z^{4}\right| \geq 1 /(\sqrt{1 / 2})^{4}=4$. The length of the line segment is $\sqrt{2}$ by the Pythagorean theorem. So the integral is $\leq 4 \sqrt{2}$.
47.4 On the circle of radius R we have that $\left|2 z^{2}-1\right| \leq 2|z|^{2}+1=2 R^{2}+1$ while $\left|z^{4}+5 z^{2}+4\right|=$ $\left|z^{2}+4\right|\left|z^{2}+1\right| \geq\left.\left||z|^{2}-4\right|| | z\right|^{2}-1 \mid=\left(R^{2}-4\right)\left(R^{2}-1\right)$. So $\left|\frac{2 z^{2}-1}{z^{4}+5 z^{2}+4}\right| \leq \frac{2 R^{2}+1}{\left(R^{2}-4\right)\left(R^{2}-1\right)}$ and the integral is $\leq \frac{2 R^{2}+1}{\left(R^{2}-4\right)\left(R^{2}-1\right)} \pi R$. As $R \rightarrow \infty$ this expression goes to 0 .
47.7 $\left|x+i \sqrt{1-x^{2}} \cos \theta\right|=\sqrt{x}^{2}+\left(1-x^{2}\right) \cos ^{2} \theta$. Since $1-x^{2} \geq 0$ by the assumption $|x| \leq 1$, we have $\left(1-x^{2}\right) \cos ^{2} \theta \leq 1-x^{2}$. So $\left|x+i \sqrt{1-x^{2}} \cos \theta\right| \leq x^{2}+1-x^{2}=1$. So $\left|\left(x+i \sqrt{1-x^{2}} \cos \theta\right)^{n}\right|=\left|x+i \sqrt{1-x^{2}} \cos \theta\right|^{n} \leq 1^{n}=1$. So the modulus of the integral is $\leq \pi$ and therefore $\left|P_{n}(x)\right| \leq 1$.
49.1 For n a nonnegative integer, z^{n} is entire with antiderivative $F(z)=\frac{z^{n+1}}{n+1}$ in the whole plane. So a contour integral from z_{1} to z_{2} of z^{n} is $F\left(z_{2}\right)-F\left(z_{1}\right)=\frac{z_{2}^{n+1}-z_{1}^{n+1}}{n+1}$.
49.2.b $2 \sin (z / 2)$ is an antiderivative of $\cos (z / 2)$. So the integral is $2(\sin (\pi / 2+i)-\sin (0))=$ $2 \sin (\pi / 2+i)=\frac{e^{i(\pi / 2+i)}-e^{-i(\pi / 2+i)}}{i}=\frac{e^{-1+i \pi / 2}-e^{1-i \pi / 2}}{i}=\frac{e^{-1} i-e(-i)}{i}=e^{-1}+e$
49.3 Since the case $n=0$ is omited, $\left(z-z_{0}\right)^{n-1}$ has antiderivative $\frac{\left(z-z_{0}\right)^{n}}{n}$ on the domain $\mathbb{C}-\left\{z_{0}\right\}$ (if $n>0$ this is an antiderivative on all of \mathbb{C}). As long as a contour does not pass through z_{0}, the integrand is defined and continuous on the contour. So why the Theorem in Section 48, the integral is 0 when the contour is also closed.
49.4 As observed in the text, the branch of $z^{1 / 2}$ using $\pi / 2<\theta<5 \pi / 2$ is defined at all points of any contour that lies below the real axis except for its endpoints at -3 and 3 , and for all points on such a contour the values of this branch aree with those of the branch $0<\theta<2 \pi$, except at the point 3 . But as one point does not affect the value
of the integral, we can use the $\pi / 2<\theta<5 \pi / 2$ branch to compute. Furthermore, this branch of $z^{1 / 2}$ has antiderivative $z^{3 / 2} /(3 / 2)$ (with the same branch choice) on a domain containing the contour. So by the Theorem in Section 48, the contour integral is $\frac{2}{3}\left(3^{3 / 2}-(-3)^{3 / 2}\right.$. For this branch, $3^{3 / 2}=\left(3 e^{2 \pi i}\right)^{3 / 2}=3^{3 / 2} e^{3 \pi i}=-3^{3 / 2}$ while $(-3)^{3 / 2}=$ $\left(3 e^{\pi i}\right)^{3 / 2}=3^{3 / 2} e^{i 3 \pi / 2}=-i 3^{3 / 2}$. So the integral is $\left.\frac{2 / 3}{(}-3^{3 / 2}+i 3^{3 / 2}\right)=2(-\sqrt{3}+i \sqrt{3})$.
49.5 As in the suggestion, if we consider the branch of z^{i} with $-\pi / 2 \arg z<3 \pi / 2$ to write $z^{i}=e^{i \log z}$ then this agrees with $e^{i \log z}$ on the entirety of any contour that lies about the real axis (except for its endpoints). So the integral is the same treating z^{i} either way. But now using our branch, z^{i} has antiderivative $z^{i+1} /(i+1)$ (using the same branch to define z^{i+1}) and so by the Theorem in Section 48, the integral is $\left(1^{i+1}-(-1)^{i+1}\right) /(i+1)$. Using our branch, we compute $1^{i+1}=e^{(i+1) \log 1}=e^{(i+1)(0+0 i)}=e^{0}=1$, while $(-1)^{i+1}=$ $e^{(i+1) \log (-1)}=e^{(i+1)(\ln 1+i \pi)}=e^{-\pi+i \pi}=-e^{-\pi}$. So the integral is $\frac{1+e^{-\pi}}{i+1}=\frac{1+e^{-\pi}}{2}(1-i)$

Homework 9
53.1.a This function is analytic except at $z=-3$. So it is analytic on and inside the circle, so the integral is 0 .
53.1.c This function only fails to be analytic at $\frac{-2 \pm \sqrt{4}-8}{2}=-1 \pm i$. These points are outside the disk, so by Cauchy-Goursat the integral is 0 .
53.1.f f fails to be analytic at the points $\{x+i y \mid x \leq-2, y=0\}$. These don't intersection the unit disk, so by Cauchy-Goursat the integral is 0 .
53.2.a This function is analytic except where $z= \pm \sqrt{1} 3 i$. So, for example, f is analytic on the domain $|z|>0.6$. Thus the Theorem (more precisely the Corollary) from Section 53 applies.
$53.3 z_{0}=2+i$ is in the interior of the rectangle described, and for all n the function $(z-2-i)^{n-1}$ is analytic on $\mathbb{C}-\left\{z_{0}\right\}$. So by the Corollary of Section 53 , the integral on C_{0} equals the integral on C. The result follows from the C_{0} integral computations given.
53.6 We can't use Cauchy-Goursat here because the square root isn't well defined at 0 , so the hypotheses of the theorem aren't satisfied. However, we compute the pieces. On the semicircle we use $z=e^{i \theta}$ so $z^{\prime}=i e^{i \theta}$ and we have $\int_{0}^{\pi} e^{i \theta / 2} i e^{i \theta} d \theta=i \int_{0}^{\pi} e^{i 3 \theta / 2} d \theta=$ $e^{i 3 \theta / 2} 2 / 3=(2 / 3)\left(e^{i 3 \pi / 2}-1\right)=(2 / 3)(-i-1)=-2 / 3-i 2 / 3$. For the part on the positive x axis we have $\int_{0}^{1} \sqrt{t} d t=\left.(2 / 3) t^{3 / 2}\right|_{0} ^{1}=2 / 3$. For the negative real part we have $\int_{-1}^{0} \sqrt{-t} e^{i \pi / 2} d t=i 2 / 3$. Adding these three pieces, we get 0 .
53.7 This comes from Green's Theorem. With $f=x-i y$, Green's Theorem (see (4) in Section 50) says that $\int_{C} u-i v d z=\iint_{R} v_{x}-u_{y}+i\left(u_{x}+v_{y}\right) d A=\iint_{R} 0-0+i(1+1) d A=$ $\iint R 2 i d A=2 i \cdot \operatorname{Area}(R)$.

Homework 10
57.1.a $2 \pi i e^{-\pi i / 2}=2 \pi i(-i)=2 \pi$
57.1.b $2 \pi i \frac{\cos (0)}{0^{2}+8}=\pi i / 4$
57.1.c $\frac{z}{2 z+1}=\frac{z / 2}{z+1 / 2}$ so the answer is $2 \pi i(-1 / 4)=-\pi i / 2$
57.1.e $2 \pi i \frac{d}{d z} \tan (z / 2)=2 \pi i \sec ^{2}(z / 2) / 2$. So the answer is $\pi i \sec ^{2}\left(x_{0} / 2\right)$
57.2.a $z^{2}+4=(z+2 i)(z-2 i) .2 i$ is in the circle but $-2 i$ isn't. So the integral is $2 \pi i$ times $\frac{1}{z+2 i}$ evaluated at $2 i$. So the answer is $2 \pi i / 4 i=\pi / 2$
$57.3 g(2)=\int_{C} \frac{2 s^{2}-s-2}{s-2} d s$, so $g(2)=2 \pi i\left(2(2)^{2}-2-2\right)=2 \pi i 4=8 \pi i$. If $|z|>3$ then the integrand is analytic on and inside the contour so $g(z)=0$.
57.5 If z_{0} is outside the contour, both sides are 0 . If z_{0} is inside the contour and C is positively oriented then from the Cauchy formulas both sides are $f^{\prime}\left(z_{0}\right)$, using that f analytic implies that f^{\prime} is analytic. If C is negatively oriented, then the integrals reverse signs but are still equal.
57.7 From the integral formula, the integral is $2 \pi i e^{a 0}=2 \pi i$. In terms of θ, we let $z=e^{i \theta}$ so that $z^{\prime}=i e^{i \theta}$. Then the integral is $\int_{-\pi}^{\pi} e^{a(\cos \theta+i \sin \theta)} i e^{i \theta} / e^{i \theta} d \theta=$ $i \int_{-\pi}^{\pi} e^{a \cos \theta} e^{i a \sin \theta} d \theta=i \int_{-\pi}^{\pi} e^{a \cos \theta}(\cos (a \sin \theta)+i \sin (a \sin \theta)) d \theta$. Since $e^{a \cos \theta} \sin (a \sin \theta)$ is an odd function, its integral from $-\pi$ to π is 0 . So we get $i \int_{-\pi}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=$ $2 \pi i$. Also $e^{a \cos \theta} \cos (a \sin \theta)$ is even so its integral from $-\pi$ to 0 is equal to the integral from 0 to π. So $\int_{0}^{\pi} e^{a \cos \theta} \cos (a \sin \theta) d \theta=\pi$
57.10 Let z_{0} be a point in the plane, and let C_{R} be the circle of radius R around z_{0}. The points on C_{R} have the form $z_{0}+R e^{i \theta}$. Then on C_{R} we have $|f(z)| \leq$ $A\left|z_{0}+R e^{i \theta}\right| \leq A\left(\left|z_{0}\right|+R\right)$. So $f^{\prime \prime}\left(z_{0}\right) \leq 2 A\left(\left|z_{0}\right|+R\right) / R^{2}$. As R goes to ∞, we see that $f^{\prime \prime}\left(z_{0}\right)=0$. So $f^{\prime}(z)$ is constant, i.e. $f^{\prime}(z)=a_{1}$. Since f is an antiderivative of f^{\prime}, this implies $f(z)=a_{1} z+C$. But $f(0)$ must be 0 for $|f(z)| \leq A|z|$ to hold, $f(z)=a_{1} z$.
59.1 If f is entire, so is $e^{f}=e^{u+i v}=e^{u} e^{i v}$. So if u is bounded, then so is $\left|e^{f}\right|=e^{u}$. So then e^{f} is constant. So $\left|e^{f}\right|=e^{u}$ is constant. So $u=\ln e^{u}$ is constant.
59.3 Let R be the region $|z| \leq 1$. Then if $f(z)=z,|f(z)|=|z|=0$ at $z=0$, but $|f(z)|=|z|>0$ for $z \neq 0$. So $|f|$ has a minimum in the interior of R.
59.8.a Just multiply and cancel
59.8.b By part a, we can write $z^{k}-z_{0}^{k}=\left(z-z_{0}\right) P_{k-1}(z)$, where P_{k-1} is a polynomial of degree $k-1$.

$$
\begin{aligned}
P(z)-P\left(z_{0}\right) & =a_{0}+a_{1} z+a_{2} z^{2}+\cdots+a_{n} z^{n}-a_{0}-a_{1} z_{0}-a_{2} z_{0}^{2}-\cdots-a_{n} z_{0}^{n} \\
& =a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right)^{2}+\cdots+a_{n}\left(z^{n}-z_{0}^{n}\right) \\
& =a_{1}\left(z-z_{0}\right)+a_{2}\left(z-z_{0}\right) P_{1}(z)+\cdots+a_{n}\left(z-z_{0}\right) P_{n-1}(z) \\
& =\left(z-z_{0}\right)\left(a_{1}+a_{2} P_{1}(z)+\cdots+a_{n} P_{n-1}(z)\right. \\
& =\left(z-z_{0}\right) Q(z)
\end{aligned}
$$

When $P\left(z_{0}\right)=0$ we see that $P(z)=\left(z-z_{0}\right) Q(z)$, as required.

Suppose $f(z)$ is entire and $|f(z)| \geq 1$ for all z. Show that f is constant. Since $|f(z)| \geq 1$, we have $\left|\frac{1}{f(z)}\right| \leq 1$, so $\left|\frac{1}{f(z)}\right|$ is bounded. It is entire since $f(z)$ is never 0 . So $1 / f(z)$ is constant by Liouville's Theorem. So $f(z)$ is also constant.
Let R be a closed bounded region of the plane. Suppose f and g are continuous on R and analytic in the interior of R. Show that if $f=g$ on the boundary of R then $f=g$ on all of R. Consider $f-g$, which is 0 on the boundary. By the corollary to the maximum modulus principle, the maximum of $|f-g|$ is on the boundary of R, so $|f-g|$ must be 0 on all of R. So $f=g$. Technically that corollary requires $f-g$ not be constant, but if $f-g$ is constant, then since it's 0 on the boundary it's 0 everywhere in R so again $f=g$.
What is the maximum of $\left|e^{i z^{2}}\right|$ on the disk $|z| \leq 1$. From the Maximum Modulus Principle, we know that the maximum must be on the boundary. So we consider $\left|e^{i z^{2}}\right|=\left|e^{i\left(x^{2}-y^{2}+2 i x y\right)}\right|=e^{-2 x y}$ on the circle. This will have its maximum where $-2 x y$ has its maximum on the circle. Using Calc III methods (either parametrize the curve or use Lagrange multipliers), the maximum will be where $y=-x$ on the circle, i.e. $(1 / \sqrt{2})(1-i)$ and $(1 / \sqrt{2})(-1+i)$. Then $e^{-2 x y}=e$.
61.1 We want $\left|\left(\frac{1}{n^{2}}+i\right)-i\right|=\left|\frac{1}{n^{2}}\right|<\epsilon$. This will be true so long as $n>1 / \sqrt{\epsilon}$

Show directly from the definitions that if $\sum_{n=1}^{\infty} a_{n}=A$ and $\sum_{n=1}^{\infty} b_{n}=B$ then $\sum_{n=1}^{\infty}\left(a_{n}+b_{n}\right)=A+B$. Let $S_{m}=\sum_{n=1}^{m} a_{n}$ and $T_{m}=\sum_{n=1}^{m} b_{n}$. Then by definition for all $\epsilon>0$ there are M_{1} and M_{2} so such that $\left|S_{m}-A\right|<\epsilon$ for $m>M_{1}$ and $\left|T_{m}-B\right|<\epsilon$ for $m>M_{2}$. By taking the larger of M_{1}, M_{2}, we see there is a single M so that $\left|S_{m}-A\right|<\epsilon$ and $\left|T_{m}-B\right|<\epsilon$ simultaneously for $m>M$. Now let $U_{m}=S_{m}+T_{m}=\sum_{n=1}^{m}\left(a_{n}+b_{n}\right)$ (we can do this because these sums are finite). Then for $M>m,\left|U_{m}-(A+B)\right|=\left|S_{m}+T_{m}-(A+B)\right|=\left|S_{m}-A+T_{m}-B\right| \leq$ $\left|S_{m}-A\right|+\left|T_{m}-B\right|$. If we choose M so that $\left|S_{m}-A\right|,\left|T_{m}-B\right|<\epsilon / 2$ for $m>M$, then we have $\left|U_{m}-(A+B)\right|<\epsilon$ for $m>M$. This shows that U_{m} converges to $A+B$ as desired.

Homework 11
65.2.b $e^{z}=e e^{z-1}=e \sum_{n=0}^{\infty} \frac{(z-1)^{n}}{n!}$. This applies for all $z \in \mathbb{C}$.
$65.4 \cos z=-\sin (z-\pi / 2)=-\sum_{n=0}^{\infty} \frac{(z-\pi / 2)^{2 n+1}}{(2 n+1)!}$. This holds everywhere in \mathbb{C}.
65.8.a $\cos z=\frac{e^{i z}+e^{-i z}}{2}=\frac{1}{2}\left(\sum \frac{(i z)^{n}}{n!}+\sum \frac{(-i z)^{n}}{n!}\right)=\frac{1}{2}\left(\sum \frac{(i z)^{n}}{n!}+\sum \frac{(-)^{n}(i z)^{n}}{n!}\right)$. Using that the terms are negatives of each other for n odd and equal to each other for n even this becomes $\frac{1}{2}\left(\sum \frac{2(i z)^{2 n}}{(2 n)!}\right)=\sum \frac{(i z)^{2 n}}{(2 n)!}=\sum \frac{(i)^{2 n} z^{2 n}}{(2 n)!}=\sum \frac{(-1)^{n} z^{2 n}}{(2 n)!}$.
$65.9 f(z)=\sum_{n=0}^{\infty}(-1)^{n} \frac{\left(z^{2}\right)^{2 n+1}}{(2 n+1)!}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{4 n+2}}{(2 n+1)!}$. Since this only has powers of the form $z^{4 n+2}$, all of the terms $z^{4 n}, z^{4 n+1}, z^{4 n+3}$ must have trivial coefficients, so $f^{(4 n)}(0)=0$ and similarly for the others. Notice that $4 n+1$ and $4 n+3$ together give all the positive odd integers, so we can restate that condition as vanishing for all $2 n+1$.

Find a Maclaurin series for $\frac{z^{3}}{z^{2}+16}$. On what set does this converge? $\frac{z^{3}}{z^{2}+16}=$ $\frac{z^{3}}{16} \frac{1}{1-\frac{z^{2}}{-16}}=\frac{z^{3}}{16} \sum_{n=0}^{\infty}\left(\frac{z^{2}}{-16}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n+3}}{(16)^{n+1}}$. This converges when $\left|z^{2} / 16\right|<1$, i.e. when $|z|<4$

Find a Taylor series for $\frac{z}{1-z}$ centered at $z=3$. What is the region of convergence?

$$
\begin{aligned}
\frac{z}{1-z} & =\frac{z-3+3}{-2-(z-3)} \\
& =\frac{z-3}{-2-(z-3)}+\frac{3}{-2-(z-3)} \\
& =\frac{z-3}{-2} \frac{1}{1-\frac{z-3}{-2}}+\frac{3}{-2} \frac{1}{1-\frac{z-3}{-2}} \\
& =\frac{z-3}{-2} \sum_{n=0}^{\infty}\left(\frac{z-3}{-2}\right)^{n}+\frac{3}{-2} \sum_{n=0}^{\infty}\left(\frac{z-3}{-2}\right)^{n} \\
& =\sum_{n=0}^{\infty}\left(\frac{z-3}{-2}\right)^{n+1}+\sum_{n=0}^{\infty} \frac{3(z-3)^{n}}{(-2)^{n+1}} \\
& =\sum_{n=1}^{\infty}\left(\frac{z-3}{-2}\right)^{n}+\frac{3}{-2}+\sum_{n=1}^{\infty} \frac{3}{-2} \frac{(z-3)^{n}}{(-2)^{n}} \\
& =\frac{-3}{2}+\sum_{n=1}^{\infty}\left(1+\frac{-3}{2}\right) \frac{(z-3)^{n}}{(-2)^{n}} \\
& =\frac{-3}{2}+\sum_{n=1}^{\infty} \frac{-1}{2} \frac{(z-3)^{n}}{(-2)^{n}} \\
& =\frac{-3}{2}+\sum_{n=1}^{\infty} \frac{(z-3)^{n}}{(-2)^{n+1}}
\end{aligned}
$$

This converges for $|z-3|<2$
$65.10 \sin z=z-\frac{z^{3}}{3!}+\frac{z^{5}}{5!}-\frac{z^{7}}{7!}+\cdots$ so $\sin z^{2}=z^{2}-\frac{z^{6}}{3!}+\frac{z^{10}}{5!}-\frac{z^{14}}{7!}+\cdots$ and $\frac{\sin z^{2}}{z^{4}}=$ $z^{-1}-\frac{z^{2}}{3!}+\frac{z^{6}}{5!}-\frac{z^{10}}{7!}+\cdots$
65.11

$$
\begin{aligned}
\frac{1}{4 z-z^{2}} & =\frac{1}{4 z} \frac{1}{1-\frac{z}{4}} \\
& =\frac{1}{4 z} \sum_{n=0}^{\infty}\left(\frac{z}{4}\right)^{n} \\
& =\sum_{n=0}^{\infty} \frac{z^{n-1}}{4^{n+1}} \\
& =\frac{1}{4 z}+\sum_{n=0}^{\infty} \frac{z^{n}}{4^{n+2}}
\end{aligned}
$$

Find Laurent expansions about $z_{0}=0$ for $\frac{1}{z^{3}-4 z}$ on the regions $0<|z|<2$ and $|z|>2$. When $0<|z|<2$ we have $\frac{1}{z^{3}-4 z}=\frac{-1}{4 z} \frac{1}{1-\left(\frac{z}{2}\right)^{2}}=\frac{-1}{4 z} \sum_{n=0}^{\infty}\left(\frac{z^{2}}{4}\right)^{n}=\sum_{n=0}^{\infty} \frac{-z^{2 n-1}}{4^{n+1}}$. When $|z|>2, \frac{1}{z^{3}-4 z}=\frac{1}{z^{3}} \frac{1}{1-\frac{4}{z^{2}}}=\frac{1}{z^{3}} \sum_{n=0}^{\infty}\left(\frac{4}{z^{2}}\right)^{n}=\sum_{n=0}^{\infty} \frac{4^{n}}{z^{2 n+3}}$
68.5 (just for D_{2}) $f(z)=\frac{-1}{(z-1)(z-2)}=\frac{1}{z-1}-\frac{1}{z-2}=\frac{1}{z} \frac{1}{1-\frac{1}{z}}-\frac{-1}{2} \frac{1}{1-\frac{z}{2}}=\frac{1}{z} \sum_{n=0}^{\infty} \frac{1}{z^{n}}+\frac{1}{2} \sum_{n=0}^{\infty} \frac{z^{n}}{2^{n}}=$ $\sum_{n=0}^{\infty} \frac{1}{z^{n+1}}+\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}=\sum_{n=0}^{\infty} \frac{z^{n}}{2^{n+1}}+\sum_{n=1}^{\infty} \frac{1}{z^{n}}$

Let C be the contour $|z|=2$ oriented positively. Compute $\int_{C} z \cos (1 / z) d z$. We have the Laurent series $z \cos (1 / z)=z \sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!}\left(\frac{1}{z}\right)^{2 n}=z \cos (1 / z)=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{(2 n)!} \frac{1}{z^{2 n-1}}$. So $b_{1}=-1 / 2$. Thus the integral is $2 \pi i(-1 / 2)=-\pi i$.

Homework 12
72.1 Differentiating both sides of the first equation, we get $\frac{1}{(1-z)^{2}}=\sum_{n=1}^{\infty} n z^{n-1}=\sum_{n=0}^{\infty}(n+$ 1) z^{n}. Differentiating again, $\frac{2}{(1-z)^{3}}=\sum_{n=1}^{\infty} n(n+1) z^{n-1}=\sum_{n=0}^{\infty}(n+1)(n+2) z^{n}$. This is all valid only within the circle of convergence $|z|<1$
72.4 Using the Taylor series for $\cos z$, which is entire, $1-\cos z=1-\left(\sum_{n=0}^{\infty} \frac{z^{2 n}}{(2 n)!}\right)=$ $\sum_{n=1}^{\infty} \frac{z^{2 n}}{(2 n)!}$. So $(1-\cos z) / z^{2}=\sum_{n=1}^{\infty} \frac{z^{2 n-2}}{(2 n)!}$. At $z=0$, this is $1 / 2$, so this series represents $f(z)$ on all of \mathbb{C}. Since the series for $\cos z$ converges for all z, our new series also converges for all z (for each fixed z, multiplying by $\frac{1}{z^{2}}$ is multiplication by a constant and so doesn't affect the convergence). Since the series converges everywhere, it represents an entire function by the corollary in section 71 .
72.6 Let C be a contour from 1 to z where z satisfies $|z-1|<1$. Then we can integrate both sides along this contour. On the left we get $\int_{C} \frac{1}{w} d w=\left.\log w\right|_{1} ^{z}=\log z-\log 1=$ $\log z$. on the right we have $\int_{C} \sum_{n=0}^{\infty}(-1)^{n}(w-1)^{n} d w=\sum_{n=0}^{\infty} \int_{C}(-1)^{n}(w-1)^{n} d w=$ $\left.\sum_{n=0}^{\infty}(-1)^{n} \frac{(w-1)^{n+1}}{n+1}\right|_{1} ^{z}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(z-1)^{n+1}}{n+1}=\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(z-1)^{n}}{n}$.
72.7 Away from $z=1$ on the described domain, $f(z)$ is analytic by the analyticity of Log and the quotient rule. Inside the circle $|z-1|<1$ (and only here), $f(z)=$
$\sum_{n=1}^{\infty}(-1)^{n+1} \frac{(z-1)^{n-1}}{n}=\sum_{n=0}^{\infty}(-1)^{n} \frac{(z-1)^{n}}{n+1}$. Note that this agrees with $f(1)=1$, and the series absolutely converges inside the circle by comparison to the geometric series $\sum|z-1|^{n}$. So $f(z)$ is analytic at 1 also.

Show that if f is analytic in a domain except for finitely many singular points then they are all isolated singularities. Let z_{1}, \ldots, z_{n} be the singular points. Without loss of generality, consider z_{1}. For each $i>1$, let $R_{i}=\left|z_{1}-z_{i}\right|$. Since there are finitely many singular points, there is a minimum $R=\min \left\{R_{2}, \ldots, R_{n}\right\}$. Now choose ϵ so that $0<\epsilon<R$ and so that z_{1} has an ϵ neighborhood in the domain (this is possible because domains are open). Then f is analytic on the deleted ϵ neighborhood around z_{1}, so z_{1} is an isolated singular point. The argument is the same for the other singular points.
77.1.a $\frac{1}{z+z^{2}}=\frac{1}{z} \frac{1}{1+z}=\frac{1}{z}(1-z+\cdots)=\frac{1}{z}-1+\cdots$ for $|z|<1$. So the residue at 0 is 1 .
77.1.b $z \cos (1 / z)=z\left(1-\frac{1}{2 z^{2}}+\cdots\right)=z-\frac{1}{2 z}+\cdots$ on the whole plane. So the residue is $-1 / 2$.
77.1.c $\frac{z-\sin z}{z}=\frac{1}{z}\left(z-\left(z-z^{3} / 6+\cdots\right)\right)=\frac{1}{z}\left(z^{3} / 6+\cdots\right)=z^{2} / 6+\cdots$. So the residue is 0 .
77.2.a $\frac{e^{-z}}{z^{2}}=\frac{1}{z^{2}}\left(1-z+z^{2} / 2+\cdots\right)=\frac{1 / z^{2}}{-} \frac{1}{z}+\cdots$. So the integral is $2 \pi i(-1)=-2 \pi i$.
77.2.d There are singularities at 0 and 2. By partial fractions, $\frac{z+1}{z^{2}-2 z}=\frac{-1}{2 z}+\frac{3}{2(z-2)}$. At $z=0$, the second function is analytic, so the residue is $-1 / 2$. At $z=2$, the first function is analytic so the residue is $3 / 2$. So the integral is $2 \pi i(-1 / 2+3 / 2)=2 \pi i$

Let C be the positively oriented circle $|z|=5$. Compute $\int_{C} \frac{\sin z}{(z-\pi)^{2}}$. To find the residue at π, we need to expand $\sin z$ in powers of $z-\pi$. We use $\sin (z)=\sin (z-\pi+\pi)=$ $\sin (z-\pi) \cos \pi+\cos (z-\pi) \sin \pi=-\sin (z-\pi)=-(z-\pi)+(z-\pi)^{3} / 6-\cdots$. So $\frac{\sin z}{(z-\pi)^{2}}=-1 /(z-\pi)+\cdots$. So the residue is -1 and the integral is $-2 \pi i$.
77.3 Looking at $\frac{f(1 / z)}{z^{2}}$ we have $\frac{1}{z^{2}} \frac{4 / z-5}{(1 / z)(1 / z-1)}=\frac{1}{z^{2}} \frac{z(4-5 z)}{1-z}=\frac{4-5 z}{z(1-z)}$. The residue at 0 is $\frac{4-5(0)}{(1-0)}=4$, so the integral is $8 \pi i$.
77.4.a $\frac{1}{z^{2}} f(1 / z)=\frac{1}{z^{2}} \frac{1 / z^{5}}{1-1 / z^{3}}=\frac{1}{z^{7}} \frac{1}{1-1 / z^{3}}=\frac{1}{z^{4}} \frac{-1}{1-z^{3}}=\frac{-1}{z^{4}} \sum_{n=0}^{\infty} z^{3 n}$. So the residue is -1 and the integral is $-2 \pi i$.
77.4.b $\frac{1}{z^{2}} f(1 / z)=\frac{1}{z^{2}} \frac{1}{1+1 / z^{2}}=\frac{1}{z^{2}+1}$. This is analytic at 0 so the residue at 0 is 0 . So the integral is 0 .
77.7 Consider $P(1 / z) / Q(1 / z)$. The biggest power of $1 / z$ in the expression is $1 / z^{m}$. Multiplying top and bottom by z^{m}, we get a polynomial with non-zero constant term on the bottom and a polynomial with 0 constant term and linear term on the top. Dividing by z^{2}, the numerator is still a polynomial and the denominator is a polynomial with non-zero constant term. So $\frac{1}{z^{2}} \frac{P(1 / z)}{Q(1 / z)}$ is analytic at 0 , so its residue at 0 is 0 and the integral is 0 .
79.1.a The principal part is $\sum_{n=2}^{\infty} \frac{1}{z^{n-1} n!}$. This singularity is essential.
79.1.b Note that $z^{2}=(z+1)^{2}-2 z-1=(z+1)^{2}-2(z+1)+1$. So $\frac{z^{2}}{z+1}=(z+1)-2+\frac{1}{z+1}$. So the principal part is $\frac{1}{z+1}$ and this is a simple pole.
79.1.c $\sin z / z=\sum_{n=0}^{\infty}(-1)^{n} \frac{z^{2 n}}{(2 n+1)!}$. So this is a removable singularity.
79.2b $\frac{1-e^{2 z}}{z^{4}}=\frac{1}{z^{4}}\left(1-\sum_{n=0}^{\infty} 2^{n} z^{n} / n!\right)=\frac{1}{z^{4}}\left(-\sum_{n=1}^{\infty} 2^{n} z^{n} / n!\right)$. So the principal part is $-2 / z^{3}-$ $2 / z^{2}-8 / 6 z$. So the pole has order 3 and residue $-4 / 3$.

Homework 13
Section 83.1 From the Maclaurin series we know that $\sin z$ has a zero of order 1. So by the Theorem in section 83, the residue is $\frac{1}{\cos 0}=1$.
83.2 We have $q(z)=1-\cos z, q^{\prime}(z)=\sin z$, and $q^{\prime \prime}(z)=\cos z$. So $q(0)=q^{\prime}(0)=0$ but $q^{\prime \prime}(0)=1$. So 0 is a zero of order 2 .
83.4.a We can write $z \sec z$ as $z / \cos z$. Since $f(z)=\cos z$ is 0 as $\pi / 2+n \pi$ but $f^{\prime}(z)=-\sin z$ is not zero at this points, we see that $\cos z$ has zeros of degree 1 at these points. So from theorem, the residues are $\frac{z}{\sin z}$ evaluated at these points. For $z_{n}=\pi / 2+\pi n$ we have $\sin \left(z_{n}\right)=(-1)^{n}$, so the residues are $(-1)^{n} z_{n}$ as desired.
83.5.a $\tan z=\sin z / \cos z$ has singularities at $\pm \pi / 2$. From the theorem in section 83 , the residue at these points is $\sin z /(-\sin z)=-1$ evaluated at these points, so each is just -1 . So by the residue theorem, the integral is $2 \pi i(-1-1)=-4 \pi$

Homework 14
81.1.a $f(z)=\frac{z+1}{(z-3 i)(z+3 i)}$. So at $3 i$ we have a simple pole with $\phi(z)=\frac{z+1}{z+3 i}$ and residue $\phi(3 i)=\frac{1+3 i}{6 i}$. And $-3 i$ we have a simple pole with $\phi(z)=\frac{z+1}{z-3 i}$ and residue $\phi(-3 i)=$ $\frac{1-3 i}{-6 i}$.
81.1.c $f(z)=\frac{z^{3}}{2^{3}(z+1 / 2)^{3}}$. So we have a pole of order 3 at $-1 / 2$ with $\phi(z)=z^{3} / 8$. So the residue is $\phi^{\prime \prime}(-1 / 2) / 2=-3 / 16$.
81.2.a $(-1)^{1 / 4}$ is not 0 , so we have a simple pole at -1 with residue $(-1)^{1 / 4}=\left(e^{\pi i}\right)^{1 / 4}=$ $e^{\pi i / 4}=\sqrt{2} / 2+i \sqrt{2}$
81.2.b $f(z)=\frac{\log z}{(z+i)^{2}(z-i)^{2}}$, so we have a pole of order 2 at i with $\phi(z)=\frac{\log z}{(z+i)^{2}}$. The residue is $\phi^{\prime}(i) . \phi^{\prime}=\frac{(z+i)^{2}(1 / z)-(\log z)(2 z+2 i)}{(z+i)^{4}}$ so $\phi^{\prime}(i)=\frac{(2 i)^{2}(1 / i)-(\log i)(4 i)}{(2 i)^{4}}=\frac{4 i+2 \pi}{16}=\frac{\pi+2 i}{8}$
81.3.b Note that ϕ is not $\frac{1}{e^{z}-1}$ because this is undefined at 0 . Rather we observe that $e^{z}-1=$ $\sum_{n=1}^{\infty} z^{n} / n!=z \sum_{n=0}^{\infty} z^{n} /(n+1)$!. So $f(z)=\frac{1}{z^{2} g(z)}$ where $g(z)=\sum_{n=0}^{\infty} z^{n} /(n+1)$! or $\phi(z) / z^{2}$ with $\phi=1 / g$. Thus we have a pole of order 2 and the residue is $\phi^{\prime}(0)$. Then $\phi^{\prime}(0)=-g^{\prime}(0) / g^{2}(0)$. From the series for g we have $g(0)=1$ while, differentiating term by term, $g^{\prime}=\sum_{n=1}^{\infty} n z^{n-1} /(n+1)!$. So $g^{\prime}(0)=1 / 2$. Thus $\phi^{\prime}(0)=-1 / 2$.
81.5.a The contour only goes around the pole -4 , where the residue is $1 / 4^{3}=1 / 64$. So the integral is $2 \pi i / 64=\pi i / 32$.
81.5.b The contour goes around both poles. The integral is $2 \pi i$ times the sum of the residues. At -4 we have a simple pole with residue $1 /(-4)^{3}=-1 / 64$. At 0 we have a pole of order 3 and so need $\phi^{\prime \prime}(0) / 2$. Here $\phi=1 /(z+4)$, so $\phi^{\prime}=-1 /(z+4)^{2}$ and $\phi^{\prime \prime} / 2=1 /(z+4)^{3}$. At 0 this is $1 / 64$. So the integral is $2 \pi i(1 / 64-1 / 64)=0$
83.11 By contradiction, assume there are an infinite number of zeros. Since the contour together with the region inside it constitute a closed bounded region, by the BolzanoWeierstrass Theorem, the set of zeros must have an accumulation point, i.e. a point so that there is a zero in every deleted neighborhood.
This accumulation point cannot be a pole: In a neighborhood of a pole $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}$ for some ϕ that is analytic at z_{0} and with $\phi\left(z_{0}\right) \neq 0$. But then if z_{i} is a sequence of zeros of f for which z_{0} is a limit point we must have $\phi\left(z_{i}\right)=0$ in this neighborhood. So by continuity we also have $\phi\left(z_{0}\right)=0$, a contradiction.
So the accumulation point is not a pole but rather a point z_{0} at which f is analytic and again by continuity $f\left(z_{0}\right)=0$.
But now by (the contrapositive of) the theorem in section 82 , this situation can only happen is f is identically zero in a neighborhood of the accumulation point. But then the accumulation point is a zero of infinite order (and/or on the boundary), contradicting the assumption that all the zeros have finite order and are interior to C.
86.1 Since the integrand is even, we start with the PV integral $\int_{-\infty}^{\infty} f(x) d x$. Letting $f(z)=$ $1 /\left(z^{2}+1\right)=\frac{1}{(z-i)(z+i)}$, this has poles at $\pm i$. The residue at i is $1 / 2 i=-i / 2$. So integrating around a semi-circular contour, the PV integral will be $2 \pi i(-i / 2)=\pi$ and the desired integral will be $\pi / 2$ if we can show that the integral around the top part of the contour goes to 0 . Since $\left|z^{2}+1\right| \geq\left||z|^{2}-1\right|$, on the semi circle of radius R we'll have $f(z) \leq \frac{1}{R^{2}-1}$. So the integral of the top semicircle is $\leq \frac{1}{R^{2}-1} \pi R$. This goes to 0 as R goes to infinity.
86.2 The procedure is essentially the same as in the preceding problem but now $f(z)=$ $\frac{1}{(z-i)^{2}(z+i)^{2}}$. We have a pole of order 2 at i, and letting $\phi(z)=1 /(z+i)^{2}$, the residue will be $\phi^{\prime}(i)$. Since $\phi^{\prime}=-2 /(z+i)^{3}$, we have $\phi^{\prime}(i)=-2 /(2 i)^{3}=-1 / 4 i^{3}=-1 /-4 i=-i / 4$. So the PV integral will be $2 \pi i(-i / 4)=\pi / 2$ and the desired integral will be $\pi / 4$. For the top semicircle, we use that the maximum will be $\leq 1 /\left(R^{2}-1\right)^{2}$ using the triangle inequality.
86.5 Let $f(z)=\frac{z^{2}}{\left(z^{2}+1\right)\left(z^{2}+4\right)}$. The poles in the upper half plane will be the simple poles at i and $2 i$. The easiest way to find the residues here will be to use Theorem 2 in Section 83. In this case, $p / q^{\prime}=\frac{z^{2}}{2 z\left(z^{2}+4\right)+\left(z^{2}+1\right) 2 z}=\frac{z^{2}}{4 z^{3}+1 z}=\operatorname{frac} z 4 z^{2}+10$. So the desired integral will be $\pi i\left(\frac{i}{4 i^{2}+10}+\frac{2 i}{4(2 i)^{2}+10}\right)=\pi i\left(\frac{i}{6}+\frac{2 i}{-6}\right)=\pi i\left(\frac{-i}{6}\right)=\pi / 6$. The upper half circle integral is $\leq \frac{R^{2}}{\left(R^{2}-1\right)\left(R^{2}-4\right)} \pi R$, which goes to 0
86.9 First note that $1 /\left(z^{3}+1\right)$ has simple poles at $e^{\pi i / 3+2 \pi n i / 3}$. The only one of these in the contour is $e^{\pi i / 3}$. Using the theorem from section 83 , the residue there is $\frac{1}{3\left(e^{\pi i / 3}\right)^{2}}=\frac{1}{3 e^{2 \pi i / 3}}=e^{-2 \pi i / 3} / 3$. So the contour integral gives $2 \pi i e^{-2 \pi i / 3} / 3$. The integral along the circular arc of the contour is $\leq \frac{1}{R^{3}-1} \frac{2 \pi R}{3}$ which goes to 0 as R goes to infinity. For the diagonal piece, letting the contour grow to infinity, we note that we can parameterize it in the wrong direction by $z(t)=t e^{i 2 \pi / 3}, 0 \leq t<\infty$. Writing out the contour integral along this piece in the wrong direction using the parametrization we get $\int_{0}^{\infty} \frac{1}{\left(t e^{i 2 \pi / 3}\right)^{3}+1} e^{i 2 \pi / 3} d t=\int_{0}^{\infty} \frac{1}{t^{3}+1} e^{i 2 \pi / 3} d t=e^{i 2 \pi / 3} \int_{0}^{\infty} \frac{1}{t^{3}+1} d t$. Not that the integral here is the same one we're interested in evaluation and that we get along the positive x axis. However, the contribution to the contour is negative since we parameterized in the wrong direction. So altogether the contour integral has three parts: the circle part that goes to 0 , the part $\int_{0}^{\infty} \frac{1}{x^{3}+1} d x$ and the diagonal part $-e^{i 2 \pi / 3} \int_{0}^{\infty} \frac{1}{x^{3}+1} d x$.
Adding these up and using our residue computation from earlier, we have that ($1-$ $\left.e^{i 2 \pi / 3}\right) \int_{0}^{\infty} \frac{1}{x^{3}+1}=2 \pi i e^{-2 \pi i / 3} / 3$.
So the integral is $\frac{2 \pi i e^{-2 \pi i / 3}}{3\left(1-e^{i 2 \pi / 3}\right)}$. This simplifies to $\frac{2 \pi}{3 \sqrt{3}}$ by basic arithmetic/trigonometry.
Homework 15
Let C be the curve $-z-=2$ oriented positively. For each of the following functions $f(z)$, determine how many times (with sign) the image $f(C)$ winds around the origin: 1) $f(z)=z^{3}$, winding number 3; 2) $f(z)=z^{4} /(z-1)^{2}$, winding number 2; 3) $f(z)=1 /\left(z^{2}+1\right)^{2}$, winding number -4
94.5 Suppose that f has a zero of degree m_{k} at z_{k}. Then near $z_{k}, f(z)=\left(z-z_{k}\right)^{m_{k}} g(z)$, where $g(z)$ is analytic at z_{k} and $f\left(z_{k}\right) \neq 0$. Then $f^{\prime}=m_{k}\left(z-z_{k}\right)^{m_{k}-1} g(z)+(z-$ $\left.z_{k}\right)^{m_{k}} g^{\prime}(z)$. Then $z f^{\prime} / f=\frac{\left.z\left(m_{k}\left(z-z_{k}\right)^{m}\right)^{-1} g(z)+\left(z-z_{k}\right)^{m_{k}} g^{\prime}(z)\right)}{\left(z-z_{k}\right)^{m} k g(z)}=\frac{z m_{k}}{z-z_{k}}+\frac{z g^{\prime}(z)}{g(z)}$. The second summand is analytic at z_{k} and, unless $z_{k}=0$, the first has a simple pole at z_{k} with residue $m_{k} z_{k}$ (remember that if $\phi(z)$ is analytic at z_{0} then the residue of $\phi(z) /\left(z-z_{0}\right)$ at z_{0} is $\phi\left(z_{0}\right)$). If $z_{k}=0$ then there is no pole, but this is consistent with the contribution to the formula being $m_{k} z_{k}=0$. Since f is analytic, the only singularities of $z f^{\prime} / f$ are where $f(z)=0$. So from the residue theorem, the integral is $2 \pi i \sum m_{k} z_{k}$.
94.6.c On $|z|=1,\left|4 z^{3}\right|=4$, while $\left|z^{7}+z-1\right| \leq|z|^{7}+|z|+1=3$. So the full polynomial has the same number of zeros in the circle as $4 z^{3}$, which has 3 .
94.7.a On $|z|=2$, we have $\left|9 z^{2}\right|=36$ while $\left|z^{4}-2 z^{3}+z-1\right| \leq 2^{4}+2 \cdot 2^{3}+2+1=35$. So the full polynomial has as many zeros in the circle as $9 z^{2}$, which has 2 .
94.9 On the circle, $\left|c z^{n}\right|=|c|$ while $\left|e^{z}\right|=e^{x} \leq e^{1}=e$. So since $e<|c|$ by assumption, $c z^{n}$ and $c z^{n}-e^{z}$ have the same number of zeros in the circle, which is n.

