
Demonstration Examples
Jonathan D. Hauenstein

1. ILLUSTRATIVE EXAMPLE

For an illustrative first example of using Bertini [1], we solve the following quintic polynomial
equation which can not be solved in terms of radicals:

(1) f(x) = x5 − x+ 1 = 0.

The following input file can be used to solve (1):

CONFIG
END;
INPUT
variable_group x;
function f;

f = xˆ5 - x + 1;
END;

Executing Bertini from the command line:

>> bertini input

tracks deg f = 5 paths to compute the 5 solutions to (1). A portion of the screen output is:

Multiplicity | Number of real solns | Number of non-real solns

1 | 1 | 4

showing that (1) has 1 real and 4 non-real solutions. In our test, the following is the output file
finite solutions:

5

7.648844336005846e-01 3.524715460317263e-01

-1.812324444698754e-01 1.083954101317711e+00

-1.167303978261419e+00 -1.665334536937735e-16

7.648844336005847e-01 -3.524715460317264e-01

-1.812324444698754e-01 -1.083954101317711e+00

which first lists the number of solutions (5) and then numerical approximations of the real and
imaginary coordinates of the solutions, i.e., the line

7.648844336005846e-01 3.524715460317263e-01

corresponds with

0.7648844336005846 + 0.3524715460317263 ·
√
−1.

1

2

Hence, the third point listed above in finite solutions is a numerical approximation of the
real solution of (1). The file main data provides information about the quality of the numerical
approximations of each solution. For example, here is a portion of main data from our test:
Solution 3 (path number 0)
Estimated condition number: 5.940070457750704e+01
Function residual: 3.972054645195637e-15
Latest Newton residual: 4.405327952961146e-16
T value at final sample point: 3.906250000000000e-04
Maximum precision utilized: 52
T value of first precision increase: 0.000000000000000e+00
Accuracy estimate, internal coordinates (difference of last two endpoint estimates): 5.083739718695013e-13
Accuracy estimate, user’s coordinates (after dehomogenization, if applicable): 5.679652284963224e-13
Cycle number: 1
7.648844336005846e-01 3.524715460317263e-01
Paths with the same endpoint, to the prescribed tolerance:
Multiplicity: 1

2. SHARPEN ILLUSTRATIVE EXAMPLE

To demonstrate the ability of Bertini to compute solutions to arbitrary accuracy, we utilize the
sharpening module on the illustrative quintic polynomial equation (1) to refine the solutions to 30
digits using Newton’s method:

CONFIG
SharpenDigits: 30;
END;
INPUT
variable_group x;
function f;

f = xˆ5 - x + 1;
END;

In our test, the unique real solution is listed in the the output file real finite solutions is:
-0.1167303978261418684256045899854842180724e1 0.3673419846319648462402301678819517743183e-39

which shows that the imaginary part of the numerical approximation is on the order of 10−39.

3. CERTIFY ILLUSTRATIVE EXAMPLE

We now demonstrate using alphaCertified [3] to prove the output of Bertini from above
for solving (1). The polynomial is described based on monomials in the following polySys file:

1 1

3
5 1 0
1 -1 0
0 1 0

The first line states that there is one variable and one polynomial. The next line states that the first
polynomial has 3 monomials. Each monomial is written by listing the degrees of the variables and

3

then real and imaginary parts of the coefficient. That is, the last three lines correspond to x5, −x,
and 1, respectively. This file can be created using the alphaCertifiedMaple library.

If we want to use exact rational certification in alphaCertified, we need to write the real and
imaginary coordinates of the points using rational numbers. For example, we use the following
points file (which can also be created using the alphaCertifiedMaple library):

5

-116/100 0

764/1000 -352/1000

764/1000 352/1000

-181/1000 1083/1000

-181/1000 -1083/1000

The execution alphaCertified from the command line:

>> alphaCertified polySys points

produces the following screen output:

Analyzing 5 points using exact arithmetic.

Isolating 5 approximate solutions.

Classifying 5 distinct approximate solutions.

Rational certification results:

Number of points tested: 5
Certified approximate solutions: 5
Certified distinct solutions: 5
Certified real distinct solutions: 1

This shows that all 5 points tested correspond with distinct solutions to (1) and exactly one of the
solutions is real.

4. MULTIHOMOGENEOUS EXAMPLE

For a matrix A ∈ CN×N , λ ∈ C is an eigenvalue of A with corresponding eigenvector v ∈ CN if

(2) Av − λv = 0

and v 6= 0. We utilize this example to demonstrate using Bertini to solve systems defined on
a product of affine and projective space. Since (2) is homogeneous with respect to v, i.e., if v is
an eigenvector of A corresponding to λ, then αv is also an eigenvector of A corresponding to λ
for any α 6= 0, we should naturally treat (2) as a system of N equations defined on the product
space C × PN−1. In particular, since each equation in (2) is linear in both λ and v, a homotopy
on C× PN−1 to solve (2) requires tracking

(
N
1

)
= N solution paths (see [2, § 5.1]), which is equal

to the generic number of distinct eigenvalue and eigenvector pairs.

4

For example, for the matrix

A =

[
1 2
3 4

]
the following input file computes eigenvalue and eigenvector pairs:

CONFIG
END;
INPUT
variable_group l; % eigenvalue
hom_variable_group v1,v2; % eigenvector
function f1,f2;
constant a11,a12,a21,a22; % matrix
a11 = 1; a12 = 2; a21 = 3; a22 = 4;

f1 = a11*v1 + a12*v2 - l*v1;
f2 = a21*v1 + a22*v2 - l*v2;
END;

Executing Bertini tracks two paths. The following is finite solutions from our test:

2

5.372281323269013e+00 0.000000000000000e+00
4.574271077563382e-01 -2.775557561562891e-17
1.000000000000000e+00 0.000000000000000e+00

-3.722813232690144e-01 0.000000000000000e+00
1.000000000000000e+00 0.000000000000000e+00
-6.861406616345070e-01 5.551115123125783e-17

This shows the eigenvalues ofA are approximately 5.372 and−0.372. Notice that the eigenvectors
are scaled so that largest coordinate (in absolute value) is 1.

5. NUMERICAL IRREDUCIBLE DECOMPOSITION

To illustrate computing a numerical irreducible decomposition using Bertini, we consider the
following polynomial system defined on C6:

(3) f(x) =

[
x1x5 − x2x4
x2x6 − x3x5

]
.

This is accomplished using the following input:

CONFIG
TrackType: 1; % compute numerical irreducible decomposition
END;
INPUT
variable_group x1,x2,x3,x4,x5,x6;
function f1,f2;

5

f1 = x1*x5 - x2*x4;
f2 = x2*x6 - x3*x5;
END;

A portion of the screen output from executing Bertini is:

************** Decomposition by Degree **************

Dimension 4: 2 classified components

degree 1: 1 component
degree 3: 1 component

showing that (3) defines two irreducible components of dimension 4, one has degree 1 and the
other has degree 3.

In our test, a portion of main data is:

Number of variables: 6
Variables: x1 x2 x3 x4 x5 x6
Rank: 2

----------DIMENSION 4----------

NONSINGULAR SOLUTIONS

Path number: 3
Component number: 0
Estimated condition number: 1.000572e+01
7.950394424236318e-01 1.008831895707915e+00
0.000000000000000e+00 0.000000000000000e+00
-4.302450583776669e-01 9.066401487298040e-01
1.810287256420423e-01 -1.095072346789127e+00
2.759195389687779e-17 3.102179290555893e-18
-2.160905745563312e-01 6.033840888172206e-01
Multiplicity: 1
Deflations needed: 0

which shows, for example, that the x2 and x5 coordinates are zero on this component.

The file witness data contains the data required to use the witness set for further computations.

6. SAMPLING

Using the witness set computed when solving (3) stored in witness data, we next use Bertini
to sample an irreducible component. The modified input file is:

CONFIG
TrackType: 2; % sample
END;

6

INPUT
variable_group x1,x2,x3,x4,x5,x6;
function f1,f2;

f1 = x1*x5 - x2*x4;
f2 = x2*x6 - x3*x5;
END;

Executing Bertini produces a sequence of menus for selecting the dimension, component, num-
ber of points, output type (screen or file), and file name [if necessary]. For example, in our test,
sampling 3 points on linear component yields the following three points:

3

5.920239720895480e-01 -4.418341177482604e-01
-3.658401632350801e-22 3.530846845538152e-19
3.134261347213816e+00 1.187159473313852e+00
-5.800140329537541e-01 -2.618666107204265e+00
1.762472291907067e-20 -5.909247530626338e-20
-4.990593900777348e-01 -1.154504588134285e+00

9.465018523915929e-01 -2.510458828984211e+00
-1.304063261824207e-18 -1.447731669164072e-18
2.583294298316470e+00 1.808135524193481e+00
1.548253600150566e+00 2.248756149691759e+00
-6.960997818938286e-19 1.521255718232070e-18
-2.624002809603148e+00 -4.019203985948467e+00

-4.603118770899699e-02 4.026715942103231e-02
-7.430492710325136e-21 -4.579109411165913e-22
1.617409479899316e+00 4.897963058450606e-01
-3.155419868887653e-01 -1.398760129469327e+00
-7.497965781365959e-21 -2.124147634696427e-20
-1.512720350616142e-01 -8.294039396795403e-01

which again shows that the x2 and x5 coordinates are zero on this component.

7. PROJECTION

Due to time constraints, our final computation is to project the degree 3 component of (3) onto the
x1, x3, x4, x6 variables. We utilize witness data together with the following input file:

CONFIG
TrackType: 5; % projection
END;
INPUT
variable_group x1,x2,x3,x4,x5,x6;
function f1,f2;

7

f1 = x1*x5 - x2*x4;
f2 = x2*x6 - x3*x5;
END;

To define the projection, we create the file projection which provides a boolean for each
variable depending on if that coordinate is in the image. Projecting onto the x1, x3, x4, x6 variables
is described by

1 0 1 1 0 1

Executing Bertini produces a sequence of menus for selecting the dimension and component.
Projecting the degree 3 component produces the following screen output:

Dimensions
Projection: 3

Fiber: 1

Degrees
Projection: 2

Fiber: 1

showing that the image has dimension 3 and degree 2 while the fiber has dimension 1 and degree 1.
In fact, the image is a hypersurface defined by x1x6 − x3x4 = 0.

REFERENCES

[1] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Bertini: Software for Numerical Algebraic
Geometry. Available at bertini.nd.edu.

[2] D.J. Bates, J.D. Hauenstein, A.J. Sommese, and C.W. Wampler. Numerically Solving Polynomial Systems with
Bertini, Volume 25 of Software, Environments, and Tools, SIAM, Philadelphia, 2013.

[3] J.D. Hauenstein and F. Sottile. Algorithm 921: alphaCertified: certifying solutions to polynomial systems. ACM
Trans. Math. Software, 38(4), 28, 2012.

bertini.nd.edu

	1. Illustrative example
	2. Sharpen illustrative example
	3. Certify illustrative example
	4. Multihomogeneous example
	5. Numerical irreducible decomposition
	6. Sampling
	7. Projection
	References

