
Abstracts of Professor Cox’s Talks
NSF/CBMS Regional Conference in the Mathematical Sciences

Applications of Polynomial Systems - June 4-8, 2018

The following description of planned lectures has been provided by Professor Cox.
The talks are divided into five topics of two lectures each. Each such pair of lectures
will be followed by a complementary lecture given by an expert in that subject area.

Topic I: Elimination Theory Elimination theory is an important part of sym-
bolic algebra that can help one understand the structure of a system of polynomial
equations. These two lectures will explore elimination theory from a historical point
of view.

Lecture 1. Elimination Theory in the 18th and 19th Centuries. Although
the origins of the subject trace back to the 17th century, our story begins about 100
years later with Bézout’s 1779 book Théorie Générale des Équations Algebriques [3].
These days, Bézout’s Theorem is usually regarded as part of enumerative algebraic
geometry, but for Bézout and his contemporaries, elimination was at the heart of the
matter. Although Bézout was not the first to state his theorem, his book studied many
versions of the theorem, including ones for polynomials whose Newton polytopes are
truncated simplices.

This lecture will also explore Minding’s 1841 paper Ueber die Bestimmung des
Grades einer durch Elimination hervorgehenden Gleichung [42], where he gave a for-
mula for the number of solutions of f(x, y) = g(x, y) = 0 that can be seen as comput-
ing the mixed volume of two polygons by means of a mixed subdivision. Elimination
also plays an important role in Kronecker’s great 1882 paper Grundzüge einer arith-
metischen Theorie der algebraischen Grössen [40]. Another important development
is the emergence of the theory of resultants.

Lecture 2. Elimination Theory in the 20th Century. The century began
with the maturation of resultants (Netto [43]; Macaulay [41]) and the Principle of
Conservation of Number (Severi [47]), which involves generic points and multiplicities.
The first rigorous definitions of generic point and multiplicity used elimination theory
and resultants (van der Waerden [51] and [52]).

As the century progressed, the development of algebra “eliminates from algebraic
geometry the last traces of elimination theory” (Weil [55]), a trend amplified by the
theory of schemes (Grothendieck and Dieudonné [28]). But the 1960s also witnessed
the birth of Gröbner bases (Buchberger [7]) and computer algebra in general. A
decade later, resultants made a comeback (Jouanolou [35]; Sederberg [44]) and ex-
ploded with the introduction of sparse resultants (Gel’fand, Kapranov and Zelevinsky
[26]; Sturmfels [50]).

Two extended examples will give the flavor of these developments:
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• The evolution of generic point, with definitions from van der Waerden in 1926–
27, Weil in 1946, and Grothendieck and Dieudonné in 1961–67.

• The fundamental theorem of projective elimination theory, with proofs from
van der Waerden’s Moderne Algebra [53] and Hartshorne’s Algebraic Geometry
[31].

Follow-up Lecture. After Lectures 1 and 2, Carlos D’Andrea will lecture on
elimination theory in the 21st century.

Topic 2: Polynomial Systems in the Real World These talks will discuss
some numerical issues that can arise when trying to solve polynomial systems.

Lecture 3. Polynomial Systems via Numerical Linear Algebra. Basic
facts from algebra and elimination theory become problematic in the presence of
floating point numbers. This will be illustrated by examples involving the binomial
theorem and a polynomial system from Ideals, Varieties, and Algorithms [16], where
changing a coefficient from 2 to 2.1 or 2.01 turns a lovely solution via Gröbner bases
into something much more complicated.

There are several paradigms for what is now called numerical algebraic geometry.
The remainder of the lecture will explore the approach described in Stetter’s Numer-
ical Polynomial Algebra [49], focusing on systems with finitely many solutions over
the complex numbers. Here are two of the main ideas:

• Solving such a polynomial system can be turned into an eigenvalue problem,
allowing use of methods from numerical linear algebra.

• When the coefficients are floating point numbers, a solution will not satisfy the
system exactly but will be regarded as valid provided it is an exact solution of
a nearby system.

Other topics that will be discussed include real solutions, condition numbers, Gröbner
bases, and border bases, all illustrated with numerous examples.

Lecture 4. Polynomial Systems via Homotopy Continuation. Another
approach to numerical solving views an inexact system as a polynomial system whose
coefficients are variables living in a parameter space. The idea is that the system has
a stable behavior when the parameters are chosen generically in the parameter space.

Following [2, 48], the lecture will discuss homotopy continuation, which links the
given system to a start system with known solutions, and explain the connection
to Severi’s Principle of Conservation of Number from 1912. Bézout’s Theorem also
enters when thinking about the solutions of the start system, and applying these
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ideas to some of Bézout’s examples from 1779 leads to the idea of a polyhedral start
system.

For systems with infinitely many solutions, it is common to represent a positive-
dimensional component of the solution set using a witness set. As will be seen, this
relates nicely to both elimination theory and the idea of a generic point.

Other topics that may be mentioned include the Stewart-Gough platform, re-
cent work of Hauenstein and Sottile [32] on witness sets and Newton polyhedra, and
Kukelova’s award-winning construction [8] of numerical solvers in computer vision
that takes an engineering approach to S-polynomials in the theory of Gröbner bases.

Follow-up Lecture. After Lectures 3 and 4, Jonathan Hauenstein will lecture
on the research frontier in numerical algebraic geometry.

Topic 3: Geometric Modeling The interactions between geometric modeling,
algebraic geometry, and commutative algebra are rich and varied. There are stories to
tell about the relation between applied math and algebra, as well as some nontrivial
commutative algebra.

Lecture 5. The Geometry and Algebra of Curve Parametrizations. In
geometric modeling, curve parametrizations have many applications, including outline
fonts and the design of automobiles, ships, and airplanes. Sometimes it is useful to
have the equation of a parametrized curve, which is where elimination theory enters
the picture.

In the mid 1990s, Sederberg and his coworkers introduced moving lines [45] and
moving curves [46] to improve computational complexity and highlight the geometry.
The surprise was the link between moving curves and syzygies, explored in [17], and
more generally between moving curves and the Rees algebra, studied in [10, 12].
After introducing some of the key players and discussing the especially nice case of
rational quartics [12], the lecture will survey some recent work with Iarrobino [14]
and with Kustin, Polini, and Ulrich [15] about various ways to stratify the space of
all parametrizations of a given degree.

Lecture 6. The Geometry and Algebra of Surface Parametrizations.
Curves are nice, but surfaces are much more important in geometric modeling. They
are also a lot harder – nice behavior in the curve case often becomes more complicated
in the surface case. The lecture will begin with basepoints, a phenomenon not present
in the curve case, and explain how basepoints (real or complex) influence the degree
of the parametrized surface in R3.

To give the flavor of how surface implicitization works, moving quadrics will be
used to construct the equation of a basepoint-free rectangular surface parametrization
[13]. There are also results when one allows nice basepoints [9], where “nice” means
“local complete intersection.” This gives a hint of the commutative algebra involved.
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The adjective “rectangular” in the previous paragraph refers to the shape of the
Newton polytope of the polynomials in the parametrization. When the Newton poly-
tope is more complicated, various approaches are available. One can specify the New-
ton polytope in advance and use the toric surface patches introduced by Krasauskas
[39]. Alternatively, one can make no assumptions in advance about the Newton poly-
tope and develop methods that work for arbitrary parametrizations, as done in [6].

In the last decade, matrix representation has emerged as a useful tool that replaces
the single (often complicated) equation of the surface with a matrix M of (often
simpler) polynomials that drops rank precisely on the surface. This approach is
taken in the paper [6] mentioned above. It will be seen that matrix representations
can also be used to study surface intersections, following [1].

Follow-up Lecture. After Lectures 5 and 6, Hal Schenck will lecture on some
recent interactions between geometric modeling and algebraic geometry.

Topic 4: Geometric Constraint Theory This fascinating topic involves the
study of configurations of rods and joints in R2 and R3. Here is a version of a linkage
introduced by James Watt in 1784:

In this picture, AD = BC = 2, AB = CD =
√

2, A,D are fixed, and B,C rotate
freely about their respective circles. The midpoint m of BC traces out the lemniscate
shown above.

Given a rod and joint configuration, a key question is whether a given configuration
is rigid, and if not, what motions are possible. Studying these questions involves
Euclidean geometry, algebraic geometry, and combinatorics. And there are some
great pictures.

Lecture 7. Configuration Spaces and Cayley-Menger Spaces. Given a
graph G = (V,E) and edge lengths ` : E → R>0, a realization in Rd is a function
ρ : V → Rd satisfying |ρ(u)−ρ(v)| = `(uv) for all edges uv ∈ E. The set of all such bar
and joint linkages is a real algebraic variety in the affine space R|V |. This construction
has many variants, including constraints imposed by requiring that certain vertices
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map to preassigned points and certain angles between bars are specified in advance.
The configuration space of the lemniscate linkage has two irreducible components,
one of which is a resolution of singularities of the lemniscate.

A notable result of the 19th century was Kempe’s 1875 proof [37] that any compact
real algebraic curve in the plane can be generated by a linkage. From the modern point
of view, the idea is (roughly) that any compact real algebraic variety is isomorphic
to a suitably chosen configuration space, as proved by King [38] and Kapovich and
Millson [36].

By construction, configuration spaces are invariant under the action of the affine
isometry group. The quotient under this group action lives naturally in what is called
a Cayley-Menger variety, studied in [4]. These varieties are determinantal and can
be interpreted as secant varieties of Veronese embeddings. Some lovely algebraic
geometry is happening here.

Lecture 8. Rigidity. A quadrilateral in the plane is not rigid – it is easily
deformed without changing the edge lengths. On the other hand, a triangle in the
plane is rigid. In general, the notion of rigidity has various flavors, including global
rigidity, local rigidity, minimal rigidity, and infinitesimal rigidity. This lecture will
introduce the key ideas, following White and Whitely [54]. Some of the tools that
appear are what one might expect, such as the rigidity matrix whose kernel gives
information about infinitesimal deformations, while others are more unexpected, such
as the exterior algebra.

One goal of the lecture is to explain why the condition

|E| = d|V | −
(
d+1

2

)
(1)

for realizations of G = (V,E) in Rd is good from the rigidity point of view. As an
illustration, suppose d = 2, so that (1) reduces to |E| = 2|V | − 3. In this case, a 1970
result of Laman states that a generic realization of G in the plane is minimally rigid
if and only if every subgraph (V ′, E ′) of G satisfies |E ′| ≤ 2|V ′| − 3 when |E ′| > 0.

Time permitting, the lecture will conclude with a result of Borcea and Streinu [5],
which says that if G satisfies (1) and has an infinitesimally rigid generic realization
in Rd with |V | ≥ d+ 1, then the number of distinct realizations is at most

2

|V |−d−2∏
k=0

( |V |−1+k
|V |−d−1−k

)(
2k+1
d

) .

The proof uses Bézout’s Theorem on an appropriately chosen Cayley-Menger variety.

Follow-up Lecture. After Lectures 7 and 8, Jessica Sidman will lecture on
current research in rigidity theory.
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Topic 5: Chemical Reaction Networks In modern biology, it is becoming
increasingly more important to take a systems perspective when studying biological
processes. This involves tools from many areas, including graph theory and algebraic
geometry from mathematics.

Lecture 9. Mass Action Kinetics. The standard way of writing a chemical
reaction leads to a system of ODEs. An example involving nitrogen N and oxygen O
is

2NO +O2
κ−→ 2NO2 (2)

with reaction rate κ. Applying the law of mass action leads to the system of ODEs

d[NO]
dt

= −2κ[NO]2[O2]
d[O2]
dt

= −κ[NO]2[O2]
d[NO2]
dt

= 2κ[NO]2[O2]

or
d

dt

 [NO]
[O2]

[NO2]

 =

2 0
1 0
0 2


︸ ︷︷ ︸

Y

(
− κ 0
κ 0

)
︸ ︷︷ ︸

A

(
[NO]2[O2]

[N2O]2

)
︸ ︷︷ ︸

Ψ

,

(3)
where [· · ·] denotes concentration, Ψ consists of monomials in the concentrations
coming from the law of mass action, A is the transposed Laplacian of the weighted
directed graph • κ→• underlying (2), and Y records the integer coefficients appearing
in (2).

This lecture will begin with the law of mass action (including its subtleties [29])
and the general form of (3) for the vector of concentrations x, which following [22] is
given by

dx

dt
= Y AΨ(x). (4)

The steady states of such a system can have biological significance and are positive
real solutions of the system of polynomial equations

Y AΨ(x) = 0. (5)

Since reaction rates for individual reactions are typically unknown, they are usually
regarded as parameters, similar to the numerical polynomial systems discussed in
Lecture 4.

Methods used to study the system (5) include the matrix-tree theorem [29] and
elimination theory [11]. About fifteen years ago, Gatermann noticed that the mono-
mial map Ψ parametrizes a toric variety that ends up being a key player [23, 24, 25].
The lecture will conclude with a discussion of invariants of steady-state solutions, as
studied in [20] and [30]. The paper [20] gives a splendid overview of this emerging
application of algebraic geometry.

Lecture 10. Toric Dynamical Systems. In chemistry, each side of the reaction
(2) is called a complex. These correspond to the vertices of the directed graph. The
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columns of the matrix Y in (4) and (5) record how each complex is built from the
molecules appearing in the reactions. Complex balancing refers to the equation

AΨ(x) = 0. (6)

Any solution of this equation gives a steady state solution of (4), and the system is
said to be complex balanced if (6) has a real solution with positive entries. Intuitively,
this means that there is a positive steady state solution such that the total incoming
flow equals the total outgoing flow at each vertex (= complex) of the graph. The
importance of complex balancing was identified in 1972 [34].

In recent years, the phenomenon of complex balancing has been observed for other
systems, including recombination equations in population genetics and quadratic dy-
namical systems in computer science. Because of these connections outside of chem-
istry and the relation to toric geometry (via Gatermann), complex balanced systems
were renamed in 2009 as toric dynamical systems [19].

For systems with reversible reactions and a property called formally balanced,
complex balancing is equivalent to the existence of a positive solution of the equations

κijx
yi = κjix

yj ,

where yi is the ith column of Y [21]. In general, equations of this sort define toric
varieties (up to a twist), so that the toric connection is even more evident.

In 1972, Horn and Jackson [34] showed that in a complex balanced (= toric) system
with weakly reversible reactions, each stoichiometric compability class contains a
unique positive fixed point that is a local attractor. After some initial confusion, they
realized that their proof did not show that it was a global attractor. This led to the
formulation of the Global Attractor Conjecture (GAC) in 1974 [33]. Since then, the
GAC has attracted a lot of attention in the research literature.

In 2015, Gheorge Craciun, one of the authors of [19], announced a proof [18] of
the GAC. The strategy of [18] is to show that the conjecture is a consequence of a
differential toric inclusion built from a suitable polyhedral fan. Craciun’s proof is
featured in the excellent article [27] in the July/August 2016 issue of SIAM News.

Follow-up Lecture. After Lectures 9 and 10, Alicia Dickenstein will lecture on
the latest developments in chemical reaction network theory.
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