Polynomial methods and rigidity theory

Jessica Sidman Mount Holyoke College

June 8, 2018

Jessica Sidman Mount Holyoke College Polynomial methods and rigidity theory

3d bar-and-joint rigidity

Is a generic framework associated G = (V, E) minimally infinitesimally rigid in \mathbf{R}^3 if and only if

►
$$|E| = 3|V| - 6$$

► If $V' \subset V$, and $E' \subset E$ is the set of edges induced on V', then $|E'| \leq 3|V'| - 6$?

Figure: A counterexample: the double banana

Question

What kinds of frameworks do other constraint systems give?

Definition

A *d*-dimensional body-bar framework in $\mathbf{R}^d \subset \mathbf{P}^d$ is a finite collection of full-dimensional rigid bodies B_1, \ldots, B_n connected at flexible joints by fixed-length bars by *m* fixed-length bars.

Is a given framework of bodies and bars rigid or flexible?

Combinatorial rigidity theory for body-bar frameworks

Figure: Two rigid bodies in the plane connected by three bars.

Figure: Multigraph *G* associated to a framework with 2 bodies joined by 3 bars.

Theorem (Tay ¹, White-Whiteley ²)

A generic framework associated to a multigraph G(V, E) is minimally infinitesimally rigid in \mathbf{P}^d if and only if

$$|E| = k|V| - k$$

 If V' ⊂ V, and E' ⊂ E is the set of edges induced on V', then |E'| ≤ k|V'| − k,

where $k = \binom{d+1}{2}$.

¹Tay, Rigidity of Multi-graphs. I. Linking Rigid Bodies in n-Space, 1984.

²White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.

Combinatorial rigidity theory for body-bar frameworks

Figure: Two rigid bodies in the plane connected by three bars.

Figure: Multigraph *G* associated to a framework with 2 bodies joined by 3 bars.

Theorem (Tay ³, White-Whiteley⁴)

A generic framework associated to a multigraph G(V, E) is minimally infinitesimally rigid in \mathbf{P}^d if and only if G can be decomposed as a union of k edge-disjoint spanning trees where $k = \binom{d+1}{2}$.

³Tay, Rigidity of Multi-graphs. I. Linking Rigid Bodies in n-Space, 1984.

⁴White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.

An aside: bar-joint rigidity theory in terms using spanning trees

Theorem (Laman ⁵, Pollaczek-Geiringer ⁶, Haas ⁷)

A generic framework associated to G = (V, E) is minimally infinitesimally rigid in \mathbf{R}^2 if and only if adding any edge e to G (which may give a multigraph) results in a graph that can be decomposed into 2 edge-disjoint spanning trees.

⁵Laman, On graphs and the rigidity of plane skeletal structures, 1970

⁶Pollaczek-Geiringer, Über die gliederung ebener fachwerk, 1927

⁷Haas, Characterizations of Arboricity in Graphs, 2002

The rigidity matrix and the pure condition ⁸

Given *n* bodies in \mathbf{P}^d and *m* bars, we form an $m \times kn$ rigidity matrix.

- ► $k = \binom{d+1}{2}$ = dim of group Euclidean motions.
- $\mathbf{x}_{ij} = \text{Plücker coordinates of bar from vertex } i$ to vertex j.
- Study the generic minimally rigid case where m = kn k.
- Eliminate trivial motions by tying down a body (1)

$$C_G := \det \begin{pmatrix} \vdots & & & \vdots \\ 0 & \cdots & \mathbf{x}_{ij} & \cdots & -\mathbf{x}_{ij} & \cdots & 0 \\ \vdots & & & & \vdots \\ I_k & 0 & \cdots & & \cdots & 0 \end{pmatrix}$$

Definition The polynomial C_G is the pure condition of G.

⁸White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.

Key idea of the proof (for 3-frame in P^2)

$(a_1$	a_2	a_3	$-a_1$	$-a_{2}$	$-a_3$	0	0	0	
<i>b</i> ₁	b ₂	b_3	$-b_1$	$-b_2$	$-b_3$	0	0	0	
C ₁	<i>C</i> ₂	<i>C</i> 3	0	0	0	- <i>c</i> 1	- <i>c</i> ₂	- <i>C</i> 3	
d_1	d_2	d ₃	0	0	0	$-d_1$	$-d_2$	$-d_3$	
0	0	0	e ₁	e ₂	e_3	- <i>e</i> 1	$-e_2$	$-e_3$	
0	0	0	f ₁	f ₂	f ₃	$-f_{1}$	$-f_2$	$-f_3$	
1	0	0	0	0	0	0	0	0	
0	1	0	0	0	0	0	0	0	
\ 0	0	1	0	0	0	0	0	0	Ϊ

Key idea of the proof: rearrange the columns

/ a ₁	$-a_1$	0	a_2	$-a_{2}$	0	a_3	$-a_3$	0	
b_1	$-b_1$	0	b ₂	$-b_2$	0	b ₃	$-b_3$	0	
<i>C</i> ₁	0	- <i>c</i> ₁	<i>C</i> ₂	0	- <i>c</i> ₂	<i>C</i> 3	0	$-c_3$	
d_1	0	$-d_1$	d_2	0	$-d_2$	d ₃	0	$-d_3$	
0	e_1	$-e_1$	0	e ₂	$-e_2$	-0	e_3	$-e_3$	
0	<i>f</i> ₁	$-f_{1}$	0	f ₂	$-f_2$	0	f ₃	- <i>f</i> ₃	
1	0	0	0	0	0	0	0	0	-
0	0	0	1	0	0	0	0	0	
0 /	0	0	0	0	0	1	0	0	Ϊ

Key idea of the proof: expand via trees

More geometric constraints: body-cad frameworks⁹

Figure: line-line coincidence constraint

Figure: point-plane distance constraint

Question: Does a given set of constraints specify an infinitesimally rigid structure?

⁹Figures from Haller et al, Body-and-cad geometric constraint systems, 2012.

- Constraints may restrict more than one degree of freedom.
- Some constraints only restrict rotational degrees of freedom, so generically there are "extra" zeroes in the rigidity matrix.

- line-line coincidence
- point-plane coincidence
- point-point distance

¹⁰Figure from Lee-St. John, S, Combinatorics and the Rigidity of CAD Systems, 2013.

Primitive cad graphs

- One vertex per body.
- One edge per row in rigidity matrix.
- Edges partitioned into angular and non-angular constraints.

¹¹Figure from Lee-St. John, S, Combinatorics and the Rigidity of CAD Systems, 2013.

A combinatorial characterization of body-cad rigidity¹²

- $G = (V, R \cup B)$ is an [a, b]-graph if $\exists B' \subset B$ such that
 - $(V, R \cup B')$ is the disjoint union of *a* spanning trees
 - $(V, B \setminus B')$ is the disjoint union of *b* spanning trees

Theorem (Lee-St.John, S.)

A body-and-cad framework is generically minimally infinitesimally rigid iff it is a

- [1,2]-graph in 2D.
- ▶ [3,3]-graph in 3D (point-point coincidences are omitted).

Figure: [1, 2]-frame

¹²Lee-St. John, S, Combinatorics and the Rigidity of CAD Systems, 2013.

What about nongeneric frameworks?

 Frameworks designed to be useful may have nongeneric properties.

 Geiss-Schreyer ¹³: Realizations of the Stewart-Gough platform via finite fields.

Figure: (Geiss-Schreyer, Figure 2) Motions generate a curve of degree 12 and genus 7 in its canonical embedding.

¹³ Geiss-Schreyer, A family of exceptional Stewart-Gough mechanisms of genus 7

- C_G(x) is a nonzero polynomial if and only if G is generically infinitesimally rigid.
- ► V(C_G) is the set of frameworks associated to G with infinitesimal motions.

What can we learn from studying C_G ?

- Rigid substructures?
- Intuitive, geometric descriptions of special positions?

Writing the pure condition: brackets ¹⁴

$C_G = [abe][cdf] - [abf][cde] = (a \land b) \lor (c \land d) \lor (e \land f)$ via Grassmann-Cayley factorization

¹⁴White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.

The rigidity matrix and the pure condition: body-cad¹⁵

Example

"Tie down" a body by appending $\dim SE(d)$ rows. The pure condition $= \det M_T$.

¹⁵Farre et al, Algorithms for detecting dependencies and rigid subsystems for CAD, 2016

The structure of the pure condition: body-cad

$$\det M_T = \det \begin{pmatrix} a_1 & a_2 & a_3 & 0 & 0 & 0 \\ b_1 & 0 & 0 & 0 & 0 & 0 \\ c_1 & 0 & 0 & -c_1 & 0 & 0 \\ d_1 & d_2 & d_3 & -d_1 & -d_2 & -d_3 \\ 0 & 0 & 0 & e_1 & e_2 & e_3 \\ 0 & 0 & 0 & f_1 & f_2 & f_3 \end{pmatrix}$$
$$= [abc][def] - [abd][cef]$$
$$= -[abd][cef]$$
$$= b_1(a_2d_3 - a_3d_2)c_1(e_2f_3 - e_3f_2)$$

The pure condition: body-bar vs body-cad

Body-bar 16

- Each edge is in the support of one irreducible factor.
- Each factor is the pure condition of a graph minor.
- Circuits have the form isostatic plus one edge.

Body-cad¹⁷

- Each edge is in the support of one irreducible factor
- Irreducible factors may not be pure conditions of [a, a], [b, b]or[a+b, a+b]graphs.
- Circuits are mysterious!

¹⁶White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.

¹⁷Farre et al, Algorithms for detecting dependencies and rigid subsystems for CAD, 2016

The bar-joint pure condition¹⁸

The tied-down rigidity matrix

¹⁸White, Whiteley, The algebraic geometry of stresses in frameworks, 1983.

The pure condition of G

$$M_{T} = \begin{pmatrix} \mathbf{x}_{1} - \mathbf{a} & 0 & 0 & 0 & 0 \\ \mathbf{x}_{1} - \mathbf{b} & 0 & 0 & 0 & 0 \\ \mathbf{x}_{1} - \mathbf{x}_{2} & \mathbf{x}_{2} - \mathbf{x}_{1} & 0 & 0 & 0 \\ \mathbf{0} & \mathbf{x}_{2} - \mathbf{c} & 0 & 0 & 0 \\ \mathbf{x}_{1} - \mathbf{x}_{3} & 0 & \mathbf{x}_{3} - \mathbf{x}_{1} & 0 & 0 \\ \mathbf{x}_{1} - \mathbf{x}_{4} & 0 & 0 & \mathbf{x}_{4} - \mathbf{x}_{1} & 0 \\ 0 & \mathbf{x}_{2} - \mathbf{x}_{3} & \mathbf{x}_{3} - \mathbf{x}_{2} & 0 & 0 \\ 0 & \mathbf{x}_{2} - \mathbf{x}_{5} & 0 & 0 & \mathbf{x}_{5} - \mathbf{x}_{2} \\ 0 & 0 & \mathbf{x}_{3} - \mathbf{x}_{4} & \mathbf{x}_{4} - \mathbf{x}_{3} & 0 \\ 0 & 0 & 0 & \mathbf{x}_{4} - \mathbf{x}_{5} & \mathbf{x}_{5} - \mathbf{x}_{4} \end{pmatrix}$$
$$\det \begin{pmatrix} \mathbf{x}_{1} - \mathbf{a} \\ \mathbf{x}_{1} - \mathbf{b} \end{pmatrix} = \det \begin{pmatrix} a_{1} & a_{2} & 1 \\ b_{1} & b_{2} & 1 \\ x_{11} & x_{12} & 1 \end{pmatrix} = [\mathbf{a}, \mathbf{b}, \mathbf{x}_{1}]$$

 $\det M_T = [\mathbf{a}, \mathbf{b}, \mathbf{x}_1] [\mathbf{x}_1, \mathbf{c}, \mathbf{x}_2] [\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3] [\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4] [\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5].$

The factors and stresses

The pure condition of G is $[\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3][\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4][\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5]$.

- $[\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3] = 0 \Leftrightarrow \mathbf{x}_1, \mathbf{x}_2$ and \mathbf{x}_3 are collinear.
- A there is a dependence on the rows of

$$\begin{pmatrix} \mathbf{x}_1 - \mathbf{x}_2 & \mathbf{x}_2 - \mathbf{x}_1 & 0 & 0 & 0 \\ \mathbf{x}_1 - \mathbf{x}_3 & 0 & \mathbf{x}_3 - \mathbf{x}_1 & 0 & 0 \\ 0 & \mathbf{x}_2 - \mathbf{x}_3 & \mathbf{x}_3 - \mathbf{x}_2 & 0 & 0 \end{pmatrix}.$$

There is a stress supported on the induced graph on {1,2,3}.
1 b

Factors and stresses

The pure condition of G is $[\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3][\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4][\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5]$.

- $[\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5] = 0 \Leftrightarrow \mathbf{x}_2, \mathbf{x}_4$ and \mathbf{x}_5 are collinear.
- But there is no dependence relation supported on

$$\begin{pmatrix} 0 & \mathbf{x}_2 - \mathbf{x}_5 & 0 & 0 & \mathbf{x}_5 - \mathbf{x}_2 \\ 0 & 0 & 0 & \mathbf{x}_4 - \mathbf{x}_5 & \mathbf{x}_5 - \mathbf{x}_4 \end{pmatrix}$$

► The induced subgraph on {2,4,5} cannot support a stress.

Question: How can we find a stress associated to this factor?

Jessica Sidman Mount Holyoke College Polynomial methods and rigidity theory

Back to the Cayley-Menger variety ¹⁹

- Let G = (V, E) be a graph with |V| = n.
- Define $\varphi: (\mathbf{C}^d)^n \to \mathbf{C}^{\binom{n}{2}}$ by

$$\varphi(\mathbf{x}) = ((\mathbf{x}_i - \mathbf{x}_j) \cdot (\mathbf{x}_i - \mathbf{x}_j)) = \ell_{ij}.$$

1. ker
$$\varphi$$
 = ideal of $\widehat{CM}^{n,d}$.

2. Every $f \in \ker \varphi$ gives rise to a stress by differentiating $[f(\varphi(\mathbf{x}))]' = \nabla f(\varphi(\mathbf{x})) \cdot d\varphi$.

¹⁹Joint work with Rosen, Theran, Vinzant

Theorem (Rosen-S-Theran-Vinzant)

- G is isostatic
- ▶ $\varphi^* : \mathbf{C}[\ell_{ij}] \to \mathbf{C}[\mathbf{x}]$
- ▶ g is an irreducible factor of C_G

Then

- $P = (\varphi^*)^{-1}(\langle g \rangle)$ is prime
- ▶ $\exists f \neq 0 \in P \cap \mathbf{C}[\ell_G]$
- ∇f is a stress for frameworks in V(g).

Defining equation of $\varphi_G([\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3])$

Let G be

with pure condition $[\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3][\mathbf{x}_1, \mathbf{x}_3, \mathbf{x}_4][\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5].$

• $\varphi_G(V([\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3]))$ is defined by

$$-\ell_{12}^2 + 2\ell_{12}\ell_{13} - \ell_{13}^2 + 2\ell_{12}\ell_{23} + 2\ell_{13}\ell_{23} - \ell_{23}^2$$

$$= \det \begin{pmatrix} 2\ell_{13} & \ell_{13} - \ell_{12} + \ell_{23} \\ \ell_{13} - \ell_{12} + \ell_{23} & 2\ell_{23} \end{pmatrix}$$

This is the Cayley condition that a triple of real numbers must satisfy if they are the pairwise distances among 3 collinear points.

Jessica Sidman Mount Holyoke College Polynomial methods and rigidity theory

 $\varphi_G(V([\mathbf{x}_2, \mathbf{x}_4, \mathbf{x}_5]))$ is defined by an irreducible polynomial of degree 6 supported on every edge of *G*.

Question: Can we use algebraic methods to find (true) motions?

Finding motions [Rosen-S-Theran-Vinzant]

Let *G* be isostatic and $e \notin G$..

Question: Are there edge lengths so that *G* has a motion in which *e* changes length?

- Add in edge e = 35.
- G + e contains a circuit.
- Get circuit polynomial p of degree 4 in each variable.
- $I = \langle \text{ coefficients of } p(e) \rangle.$
- I has 6 associated primes.

The two that are geometrically significant for motions are

$$\langle \ell_{13}, \ell_{14} - \ell_{34}, \ell_{12} - \ell_{23} \rangle, \langle \ell_{23} - \ell_{34}, \ell_{12} - \ell_{14}, -\ell_{45} + \ell_{25}) \rangle$$

Summary

- Bar-and-joint rigidity is open in dimension 3.
- Combinatorial rigidity comes in many flavors.
- Polynomial methods may be used to find intuitive, geometric explanations for singular behavior.

For more background on rigidity theory, see the forthcoming:

Jessica Sidman Mount Holyoke College

Polynomial methods and rigidity theory