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3d bar-and-joint rigidity

Is a generic framework associated G = (V ,E) minimally
infinitesimally rigid in R3 if and only if

I |E | = 3|V | − 6
I If V ′ ⊂ V , and E ′ ⊂ E is the set of edges induced on V ′,

then |E ′| ≤ 3|V ′| − 6?

Figure: A counterexample: the double banana

Question
What kinds of frameworks do other constraint systems give?
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Bodies and bars

Definition
A d-dimensional body-bar framework in Rd ⊂ Pd is a finite
collection of full-dimensional rigid bodies B1, . . . ,Bn connected
at flexible joints by fixed-length bars by m fixed-length bars.

Is a given framework of bodies
and bars rigid or flexible?
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Combinatorial rigidity theory for body-bar frameworks

Figure: Two rigid bodies in the
plane connected by three bars.

1 2

Figure: Multigraph G associated
to a framework with 2 bodies
joined by 3 bars.

Theorem (Tay 1, White-Whiteley 2)
A generic framework associated to a multigraph G(V ,E) is
minimally infinitesimally rigid in Pd if and only if

I |E | = k |V | − k
I If V ′ ⊂ V, and E ′ ⊂ E is the set of edges induced on V ′,

then |E ′| ≤ k |V ′| − k ,
where k =

(d+1
2

)
.

1Tay, Rigidity of Multi-graphs. I. Linking Rigid Bodies in n-Space, 1984.
2White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.
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Combinatorial rigidity theory for body-bar frameworks

Figure: Two rigid bodies in the
plane connected by three bars.

1 2

Figure: Multigraph G associated
to a framework with 2 bodies
joined by 3 bars.

Theorem (Tay 3, White-Whiteley4)
A generic framework associated to a multigraph G(V ,E) is
minimally infinitesimally rigid in Pd if and only if G can be
decomposed as a union of k edge-disjoint spanning trees
where k =

(d+1
2

)
.

3Tay, Rigidity of Multi-graphs. I. Linking Rigid Bodies in n-Space, 1984.
4White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.
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An aside: bar-joint rigidity theory in terms using
spanning trees

Theorem (Laman 5,Pollaczek-Geiringer 6, Haas 7)
A generic framework associated to G = (V ,E) is minimally
infinitesimally rigid in R2 if and only if adding any edge e to G
(which may give a multigraph) results in a graph that can be
decomposed into 2 edge-disjoint spanning trees.

1 2

3

1 2

34

5Laman, On graphs and the rigidity of plane skeletal structures, 1970
6Pollaczek-Geiringer, Über die gliederung ebener fachwerk, 1927
7Haas, Characterizations of Arboricity in Graphs, 2002
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The rigidity matrix and the pure condition 8

Given n bodies in Pd and m bars, we form an m × kn rigidity
matrix.

I k =
(d+1

2

)
= dim of group Euclidean motions.

I xij = Plücker coordinates of bar from vertex i to vertex j .
I Study the generic minimally rigid case where m = kn − k .
I Eliminate trivial motions by tying down a body (1)

CG := det


...

...
0 · · · xij · · · −xij · · · 0
...

...
Ik 0 · · · · · · 0


Definition
The polynomial CG is the pure condition of G .

8White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.
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Key idea of the proof (for 3-frame in P2)

1

2

3

d
c

b

a

e
f



a1 a2 a3 −a1 −a2 −a3 0 0 0
b1 b2 b3 −b1 −b2 −b3 0 0 0
c1 c2 c3 0 0 0 −c1 −c2 −c3
d1 d2 d3 0 0 0 −d1 −d2 −d3
0 0 0 e1 e2 e3 −e1 −e2 −e3
0 0 0 f1 f2 f3 −f1 −f2 −f3
1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0


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Key idea of the proof: rearrange the columns

1

2

3

d
c

b

a

e
f



a1 −a1 0 a2 −a2 0 a3 −a3 0
b1 −b1 0 b2 −b2 0 b3 −b3 0
c1 0 −c1 c2 0 −c2 c3 0 −c3
d1 0 −d1 d2 0 −d2 d3 0 −d3
0 e1 −e1 0 e2 −e2 −0 e3 −e3
0 f1 −f1 0 f2 −f2 0 f3 −f3
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0


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Key idea of the proof: expand via trees

1

2

3

d
c

b

a

e
f



a1 −a1 0 a2 −a2 0 a3 −a3 0
b1 −b1 0 b2 −b2 0 b3 −b3 0
c1 0 −c1 c2 0 −c2 c3 0 −c3
d1 0 −d1 d2 0 −d2 d3 0 −d3
0 e1 −e1 0 e2 −e2 −0 e3 −e3
0 f1 −f1 0 f2 −f2 0 f3 −f3
1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 1 0 0


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More geometric constraints: body-cad frameworks9

Figure: line-line
coincidence
constraint

Figure: line-plane
angle constraint

Figure: point-plane
distance constraint

Question: Does a given set of constraints specify an
infinitesimally rigid structure?

9Figures from Haller et al, Body-and-cad geometric constraint systems, 2012.
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CAD-frameworks vs body-and-bar frameworks10

I Constraints may restrict more than one degree of freedom.
I Some constraints only restrict rotational degrees of

freedom, so generically there are “extra” zeroes in the
rigidity matrix.

A

B I line-line coincidence

I point-plane coincidence

I point-point distance

10Figure from Lee-St. John, S, Combinatorics and the Rigidity of CAD Systems, 2013.
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Primitive cad graphs

A

B
H = (V ,R ∪ B)11

A

B

point-plane 
coincidence

line-line
coincidence

point-point
distance

I One vertex per body.
I One edge per row in rigidity matrix.
I Edges partitioned into angular and non-angular

constraints.

11Figure from Lee-St. John, S, Combinatorics and the Rigidity of CAD Systems, 2013.
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A combinatorial characterization of body-cad rigidity12

G = (V ,R ∪ B) is an [a,b]-graph if ∃B′ ⊂ B such that
I (V ,R ∪ B′) is the disjoint union of a spanning trees
I (V ,B\B′) is the disjoint union of b spanning trees

Theorem (Lee-St.John, S.)
A body-and-cad framework is generically minimally
infinitesimally rigid iff it is a

I [1,2]-graph in 2D.
I [3,3]-graph in 3D (point-point coincidences are omitted).

Figure: [1,2]-frame

A B
d

C

a e f

c
b

Figure: [3,3]-frame
A

B

point-plane 
coincidence

line-line
coincidence

point-point
distance

12Lee-St. John, S, Combinatorics and the Rigidity of CAD Systems, 2013.
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What about nongeneric frameworks?

I Frameworks designed to
be useful may have
nongeneric properties.

I Geiss-Schreyer 13:
Realizations of the
Stewart-Gough platform
via finite fields.

Figure: (Geiss-Schreyer,
Figure 2) Motions generate
a curve of degree 12 and
genus 7 in its canonical
embedding.

13Geiss-Schreyer, A family of exceptional Stewart-Gough mechanisms of genus 7
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Nongeneric frameworks and the pure condition

I CG(x) is a nonzero polynomial if and only if G is
generically infinitesimally rigid.

I V (CG) is the set of frameworks associated to G with
infinitesimal motions.

What can we learn from studying CG?

I Rigid substructures?
I Intuitive, geometric descriptions of special positions?
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Writing the pure condition: brackets 14

G =

1

2

3

d
c

b

a

e
f

CG = det



a −a 0
b −b 0
c 0 −c
d 0 −d
0 e −e
0 f −f
I3 0 0



1

2

3

d
c

b

a

e
f

1

2

3

d
c

b

a

e
f

CG = [abe][cdf ]− [abf ][cde] = (a ∧ b) ∨ (c ∧ d) ∨ (e ∧ f )
via Grassmann-Cayley factorization

14White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.
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The rigidity matrix and the pure condition: body-cad15

Example
A B

d

C

a e f

c
b

“Tie down” a body
by appending
dimSE(d) rows.

The pure condition
= detMT .

MT =

a1 a2 a3 0 0 0 −a1 −a2 −a3
b1 0 0 0 0 0 −b1 0 0
c1 0 0 −c1 0 0 0 0 0
d1 d2 d3 −d1 −d2 −d3 0 0 0
0 0 0 e1 e2 e3 −e1 −e2 −e3
0 0 0 f1 f2 f3 −f1 −f2 −f3
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

15Farre et al, Algorithms for detecting dependencies and rigid subsystems for CAD, 2016
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The structure of the pure condition: body-cad

A B
d

C

a e f

c
b

detMT = det



a1 a2 a3 0 0 0
b1 0 0 0 0 0
c1 0 0 −c1 0 0
d1 d2 d3 −d1 −d2 −d3
0 0 0 e1 e2 e3
0 0 0 f1 f2 f3


= [abc][def ]− [abd ][cef ]
= −[abd ][cef ]
= b1(a2d3 − a3d2)c1(e2f3 − e3f2)
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The pure condition: body-bar vs body-cad

Body-bar 16

I Each edge is in the
support of one irreducible
factor.

I Each factor is the pure
condition of a graph
minor.

I Circuits have the form
isostatic plus one edge.

1

2

3

d
c

b

a

e
f

Body-cad17

I Each edge is in the
support of one irreducible
factor

I Irreducible factors may
not be pure conditions of
[a,a], [b,b]or [a+b,a+b]−
graphs.

I Circuits are mysterious!

A B
d

C

a e f

c
b

16White, Whiteley, The Algebraic Geometry of Motions of Bar-And-Body Frameworks, 1987.
17Farre et al, Algorithms for detecting dependencies and rigid subsystems for CAD, 2016
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The bar-joint pure condition18

The tied-down rigidity matrix

x1 − x2 x2 − x1 0 0 0
x1 − x3 0 x3 − x1 0 0
x1 − x4 0 0 x4 − x1 0

0 x2 − x3 x3 − x2 0 0
0 x2 − x5 0 0 x5 − x2
0 0 x3 − x4 x4 − x3 0
0 0 0 x4 − x5 x5 − x4

x1 − a 0 0 0 0
x1 − b 0 0 0 0

0 x2 − c 0 0 0


1

2
3 4

5

a
b

c

18White, Whiteley, The algebraic geometry of stresses in frameworks, 1983.
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The pure condition of G

MT =



x1 − a 0 0 0 0
x1 − b 0 0 0 0
x1 − x2 x2 − x1 0 0 0

0 x2 − c 0 0 0
x1 − x3 0 x3 − x1 0 0
x1 − x4 0 0 x4 − x1 0

0 x2 − x3 x3 − x2 0 0
0 x2 − x5 0 0 x5 − x2
0 0 x3 − x4 x4 − x3 0
0 0 0 x4 − x5 x5 − x4


det

(
x1 − a
x1 − b

)
= det

 a1 a2 1
b1 b2 1
x11 x12 1

 = [a,b,x1]

detMT = [a,b,x1][x1,c,x2][x1,x2,x3][x1,x3,x4][x2,x4,x5].
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The factors and stresses

The pure condition of G is [x1,x2,x3][x1,x3,x4][x2,x4,x5].
I [x1,x2,x3] = 0⇔ x1,x2 and x3 are collinear.

I ⇔ There is a dependence on the rows ofx1 − x2 x2 − x1 0 0 0
x1 − x3 0 x3 − x1 0 0

0 x2 − x3 x3 − x2 0 0

 .

I There is a stress supported on the induced graph on
{1,2,3}.

1

2

3 4

5

a
b

c
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Factors and stresses

The pure condition of G is [x1,x2,x3][x1,x3,x4][x2,x4,x5].

I [x2,x4,x5] = 0⇔ x2,x4 and x5 are collinear.
I But there is no dependence relation supported on(

0 x2 − x5 0 0 x5 − x2
0 0 0 x4 − x5 x5 − x4

)
.

I The induced subgraph on {2,4,5} cannot support a stress.

1

2

3 4

5

a
b

c

Question: How can we find a stress associated to this
factor?
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Back to the Cayley-Menger variety 19

I Let G = (V ,E) be a graph with |V | = n.

I Define ϕ : (Cd)n → C(n
2) by

ϕ(x) = ((xi − xj) · (xi − xj)) = `ij .

(Cd)n C(n
2)

C|E |

ϕ

ϕG πG

1. kerϕ = ideal of ĈM
n,d
.

2. Every f ∈ kerϕ gives rise to a stress by differentiating
[f (ϕ(x))]′ = ∇f (ϕ(x)) · dϕ.

19Joint work with Rosen, Theran, Vinzant
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Theorem (Rosen-S-Theran-Vinzant)

I G is isostatic
I ϕ∗ : C[`ij ]→ C[x]
I g is an irreducible factor of CG

Then
I P = (ϕ∗)−1(〈g〉) is prime
I ∃f 6= 0 ∈ P ∩ C[`G]

I ∇f is a stress for frameworks in V (g).
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Defining equation of ϕG([x1,x2,x3])

Let G be

1

2
3 4

5

a
b

c

with pure condition [x1,x2,x3][x1,x3,x4][x2,x4,x5].

I ϕG(V ([x1,x2,x3]) is defined by

−`212 + 2`12`13 − `213 + 2`12`23 + 2`13`23 − `223

= det

(
2`13 `13 − `12 + `23

`13 − `12 + `23 2`23

)
I This is the Cayley condition that a triple of real numbers

must satisfy if they are the pairwise distances among 3
collinear points.

I `G(V ([x1,x3,x4])) is analogous.
I Compare with previous work by Borcea, Streinu, Gortler,

Thurston.
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Defining equation of ϕG([x2,x4,x5]))

ϕG(V ([x2,x4,x5])) is defined by an irreducible polynomial of
degree 6 supported on every edge of G.

1

2
3 4

5

a
b

c

Question: Can we use algebraic methods to find (true)
motions?
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Finding motions [Rosen-S-Theran-Vinzant]

Let G be isostatic and e /∈ G..
Question: Are there edge lengths so that G has a motion in
which e changes length?

I Add in edge e = 35.
I G + e contains a circuit.
I Get circuit polynomial p of

degree 4 in each variable.
I I = 〈 coefficients of p(e)〉.
I I has 6 associated

primes.

1

2 3 4

5

The two that are geometrically significant for motions are

〈`13, `14 − `34, `12 − `23〉, 〈`23 − `34, `12 − `14,−`45 + `25)〉
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Summary

I Bar-and-joint rigidity is open in dimension 3.
I Combinatorial rigidity comes in many flavors.
I Polynomial methods may be used to find intuitive,

geometric explanations for singular behavior.
For more background on rigidity theory, see the forthcoming:
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