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Overview

» Musings on numerical algebraic geometry

» \Witness sets

» Applications of sampling




Theory vs. Practice

“In theory,
theory and
practice are the

same. In practice,
they are not.”

f - .
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Theory vs. Practice

Let f € C|[x] be a univariate polynomial.

Theory:
» f =0 if and only if f(x*) = 0 for general x* € C.

It £ # 0, then V(f) C C has finitely many points. Hence, C\ V(f)

is a Zariski open dense subset of C.




Theory vs. Practice

Let f € C|[x] be a univariate polynomial.

Theory:
» f =0 if and only if f(x*) = 0 for general x* € C.

» f =0 if and only if f(x*) = 0 for random x* € C with
probability 1.




Theory vs. Practice

Practice:

» |s f known exactly or only approximately?
» What is the scaling of 7

> V(f) _ V(].O_mOUUOU . f)
» How to select a random point in x* € C?

» How much error in evaluating f(x*)?

» [n the presence of error, what does it mean to be equal to 07
» Floating-point arithmetic: select from a finite subset of C

Prob(failure) > 0 ®
N
o |7V()=6
® o




Theory vs. Practice

Practice:

» |s f known exactly or only approximately?
» What is the scaling of 7
> V(f) _ V(].O_mOUUOU . f)

» How to select a random point in x* € C?

» How much error in evaluating f(x*)?

» [n the presence of error, what does it mean to be equal to 07
» Floating-point arithmetic: select from a finite subset of C

Prob(failure) > 0

Reduce failure rate by:

» using higher precision

> rescale

» reformulate (different geometric description?)

» take advantage of structure
li_‘$ » develop a different numerical approach (Simon Telen's poster) \j[\
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Theory vs. Practice

Is V(xy — €) reducible or irreducible?




Theory vs. Practice

Is V(xy — €) reducible or irreducible?

Theory:

» Reducible if € = 0: V(xy) = V(x) UV(y)

» Irreducible if € # 0 .

IisD
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Theory vs. Practice

Is V(xy — €) reducible or irreducible?
Practice:

» Problem is ill-posed

» answer does not depend continuously on ¢




Theory vs. Practice

Is V(xy — €) reducible or irreducible?

Practice:

» |s € # 0 due to numerical noise or truly nonzero

» |f numerical noise: set to 0 — reducible

» |f nonzero: solve a rescaled version — irreducible

f(x,y)=xy —e€

N S oo
g(X,9) = Ef(x\/g.y\@) =Xy —1




"heory vs. Practice

For numerical methods:

» Solve well-posed, well-conditioned, and num. stable problems!




"heory vs. Practice

For numerical methods:

» Solve well-posed, well-conditioned, and num. stable problems!

22070179871476654215734436981460373192064947078797748209¢°

+ 5585831392725719195345163470516310362705889042844010328¢°

+ 14175569812724447393500233789877848531491265¢* W

— 4477180786035007172164248960407378691578283216077040398641*
— 865676553865719012232365931516983629620274401° W

+ 571145297696983576247423064751° W2

+ 474302309016648096934423520799618219755274954155075926592¢°
+ 1928563420712290077234813561834612137380576801° W

— 194302706043604453258752959400t W* — 26371599148125W°

+ 2341397816853864817617847981162945070584483528261510775184 "
— 183528856281941126263893376861009344326329920¢ W

+ 164969244105921949388612135400 W~

— 53902586939707726951178119438334197544888079203381457465601
+ 61550499069700173478724063089387654512308400W

+ 3193966974265623365398753846860968247266969720956505401600.

ish



Theory vs. Practice

What is the difference locally at the origin between

.
f(X-y)[yymg ] and  g(x,y) =y —x°7

IisD




Theory vs. Practice

What is the difference locally at the origin between

.
f(X-y)[yymg ] and  g(x,y) =y —x°7

Theory:

» f: origin is isolated of multiplicity 200

» g: origin lies on a positive-dimensional component

IisD




Theory vs. Practice

What is the difference locally at the origin between

.
f(X-y)[ymg ] and  g(x,y) =y —x°7

Y
Practice:
» For C = {(x,x?) | x| < 1/2}:
» g=0o0on C

» ||f|| <1070 on C

IisD




Theory vs. Practice

What is the difference locally at the origin between

.
f(x*y)[yymg ] and  g(x,y) =y —x°7

Practice:
» For C = {(x,x?) | x| < 1/2}:
» g=0o0on C

» ||f|| <1070 on C

» Difference is some WD-40




Theory vs. Practice

At 2001 Computational Kinematics Workshop:

» Demonstrated this was a highly accurate machine

Theory: isolated solution of multiplicity 4

» |t should not move but does due to

multiplicity, joint tolerances, and link elasticity

F. Park et al.

Seoul National University




Symbolic vs. Numeric

Generally speaking:

» Numerical methods prefer well-constrained systems of low
degrees with coefficients of roughly unit magnitude
» codimension = # equations
» stable under perturbations

Perturbation

y+2r—1=0
y—2r—1=10
y—x—1=0

y—2r—1=e9

y—r—1=ey




Symbolic vs. Numeric

Generally speaking:

» Numerical methods prefer well-constrained systems of low
degrees with coefficients of roughly unit magnitude

» codimension = # equations
» stable under perturbations

» Grobner basis methods prefer vastly over-determined systems

» fewer “new’ polynomials to compute
» Bardet-Faugere-Salvy (2004)

The result of an exact Grobner basis computation is a proof.

» Num. alg. geom. replaces certainty with “probability 1"




Symbolic vs. Numeric

How to represent an irreducible algebraic variety A on a computer?

A




Symbolic vs. Numeric

How to represent an irreducible algebraic variety A on a computer?

A

» algebraic: prime ideal /(A) = {g | g(a) =0 for all a € A}

» Hilbert Basis Theorem (1890): there exists fi,.. .. f. such that




Witness Set

How to represent an irreducible algebraic variety A on a computer?

» geometric: witness set {f, L. W} where

» f is polynomial system where A is an irred. component of V(f)
» L is a linear space with codim £ = dim A

» W =LnNAwhere #W = deg A

A




Witness Set

Example

A= {[s3. 5%t st’. t3] | [s.t] € P!} C P® — twisted cubic curve

» [(A) = (><12 — X0X2, X1 X2 — X0X3. X22 — X1X3) A




Witness Set

Example
A= {[s3. 5%t st’. t3] | [s.t] € P!} C P® — twisted cubic curve

» [(A) = (x12 — X0X2. X1X2 — X0X3. x22 — X1X3)

A
» {f. L, W} where

> f[ X12—X0X2 ]

X1 X2 — XpX3

L

» L = {[X{],XLXQ,X?,] e p3 ‘ bxg — 6x1 — 2Xx0 + x3 = 0} c p3
» codim L =dim A=1

( 1,3.2731,10.7130, 35.0644]. )
» W =< [1,0.8596,0.7389,0.6351]. >
\ 1,—2.1326,4.5481, —9.6995] )
» deg A=3 [\

{ N X
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Witness Set

Example
A= {[s3. 5%t st’. t3] | [s.t] € P!} C P® — twisted cubic curve

» [(A) = (x12 — X0X2. X1X2 — X0X3. x22 — X1X3)

o[ e A

X1 X2 — XpX3
V(f):AU{X{):Xl:O} L

» Witness sets “localize” computations to A effectively ignoring
the other irreducible components.

» Sample points from A by moving the linear slice L.

:").7 7.\\ 7 N
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Many other numerical algebraic geometric computations can be

Witness Set

performed starting from witness sets, such as:

The Numerical Solution

of Systems of Polynomials
Arising in Engineering and Science

» X

Angreew J, Sommese « Chanes W. Wamgw, i

Ardrew | Sommese
jonathan D. Haucnsieln Charles W. Wampler

Numerically Solving
Polynomial Systems
with Bertini




Witness Set

Many other numerical algebraic geometric computations can be
performed starting from witness sets, such as:

» membership testing: is x* € A?

> decide if g(x*) =0 for every g € [(A) without knowing /(A)

A ‘/ }
_---"//
—

j
FR .




Witness Set

Many other numerical algebraic geometric computations can be
performed starting from witness sets, such as:

» projection: m(A)

» perform computations on 7(A) without knowing any

polynomials that vanish on 7(A)

A T (L)

homotopy >




Witness Set

Many other numerical algebraic geometric computations can be
performed starting from witness sets, such as:

» intersection: AN B

» special case is regeneration
» V(fi,..., fi, fus1) = V(f, ..., fi) N V(fir1) via witness sets

» compute Asing
» compute critical points of optimization problem

*

s X ﬂ

li‘-j min |[x* — a||2 such that a€ ANR" =1~



Witness Set

Many other numerical algebraic geometric computations can be
performed starting from witness sets, such as:

Test other algebraic properties of A
» is A arithmetically Cohen Macaulay?
» is A arithmetically Gorenstein?

» i1s A a complete intersection?

|
|
[




Algebraic properties

Example
A=04(C3 xC>xC* cP®

» dim A = 31
» deg A = 345

» [(A) contains 10 poly. of degree 6 and 20 poly. of degree 9
» Bates-Oeding (2011), Friedland-Gross (2012)

» used sampling to show that A was aCM and that these
polynomials generate /(A)

N.S. Daleo and J.D. Hauenstein, [\
l‘_j Numerically deciding the arithmetically Cohen-Macaulayness of a projective scheme. \j
.I.\‘ J. Symb. Comput., 72, 128-146, 2016. :



Sampling

Sample points from A by moving the linear slice L.

V4
L
How to utilize sample point(s) to extract data?

» Vanishing polynomials

» Sampling for solving sum of squares (SOS) programs

, L

» Degree estimation % T

i » Topological properties < !



Vanishing polynomials

For many varieties A, the only known polynomial in /(A) is f = 0.




Vanishing polynomials

For many varieties A, the only known polynomial in /(A) is f = 0.

Problem: Compute the exponent w of matrix multiplication.

» smallest constant such that two n X n matrices can be
multiplied using O(n“™¢) arithmetic operations for every € > 0

» Current state of the art: 2 < w < 2.374

» Could be solved by knowing polynomials that vanish
on secant varieties — Landsberg (2017).

Geometry and
Complexity Theory

J. M. LANDSBERG




Vanishing polynomials

Compute homogeneous polynomials that vanish on

6
(T@((C4 x C* x (C4) — Za; Qb; @c; | aj.bj.c;e C*y c PO3
=1

» 6" secant variety of C* x C* x C* in P°3

» dim = 59

» If a.b.c € C* then a® b® c € CH¥4*4 with

(a@b®c)jjk = aj - bj - ck

J.D. Hauenstein, C. lkenmeyer, and J.M. Landsberg,

Equations for lower bounds on border rank.
w Exp. Math., 22(4), 372-383, 2013.



Vanishing polynomials

Cast as a classical elimination problem:

» Eliminate a's, b's, ¢'s from

6
Z agi - byj - cok — zjjg =0 where /. j k=1,.... 4,
(=1

IisD




Vanishing polynomials

Cast as a classical elimination problem:

» Eliminate a's, b's, ¢'s from

6
Z agi - byj - cok — zjjg =0 where /. j k=1,.... 4,
(=1

Still waiting for Grobner basis methods to terminate....

IisD




Vanishing polynomials ’>
Cast as a classical interpolation problem:

» For sample points ay,....ay € A, compute f where f(a;) = 0.




Vanishing polynomials

Cast as a classical interpolation problem:

» For sample points ay,....ay € A, compute f where f(a;) = 0.

Example

Find homogeneous quadratic polynomials vanishing on:

[1.1,1,1],[1. 1.1, —1],[1,2,4,8].[L, -2, 4, —8].[1,3,9,27].
[1.-3,9,-27],[1,4.16,64],[1, —4, 16, —64], [1,5. 25, 125], [1, —5, 25, —125]




Vanishing polynomials

Cast as a classical interpolation problem:

» For sample points ay,....ay € A, compute f where f(a;) = 0.

Example

Find homogeneous quadratic polynomials vanishing on:

[1.1,1,1],[1. 1.1, —1],[1,2,4,8].[L, -2, 4, —8].[1,3,9,27].
[1.-3,9,-27],[1,4.16,64],[1, —4, 16, —64], [1,5. 25, 125], [1, —5, 25, —125]

x§ X0X1 X0 X2 X0X3 Xf X1X2 X1X3 x§ X2X3 X??

1 1 1 1 1 1 1 1 1 1

1 -1 1 —1 1 —1 1 1 —1 1

1 2 4 3 4 3 16 16 32 64

1 =2 4 —8 4 —38 16 16 —32 64

1 3 9 27 9 27 81 81 243 729

1 =3 9 —27 9 =27 81 81 —243 729

1 4 16 64 16 64 256 266 1024 4096

1 -4 16 —64 16 —-64 256 256 —1024 4096

1 5 25 126 26 126 625 625 3126 15625 ol [\
1 -5 265 —125 25 —125 625 625 —3125 15625 R



Example Vanishing polynomials

Find homogeneous quadratic polynomials vanishing on:

[1.1,1,1],[1. 1.1, —1],[1,2,4,8].[L, -2, 4, —8].[1,3,9,27].
[1.-3,9,-27],[1,4.16,64],[1, —4, 16, —64], [1,5. 25, 125], [1, —5, 25, —125]

x§ X0X1 X0 X2 X0X3 Xf X1X2 X1X3 x§ X2X3 X32
1 1 1 1 1 1 1 1 1
—1 1 —1 1 —1 1 1 —1 1

2 4 3 4 3 16 16 32 64

—2 4 —8 4 —38 16 16 —32 64

3 9 27 9 27 81 81 243 729

-3 9 —27 9 =27 81 81 —243 729

4 16 64 16 64 266 256 1024 40096
-4 16 —-64 16 —64 256 256 —1024 4096
5 25 125 25 125 625 625 3125 15625
-5 25 126 25 125 625 625 —3125 15625

— f —

3-dimensional null space is generated by:

x12 — Xp0X2., X1X2 — X0X3. x22 — X1X3




Vanishing polynomials ’>
Cast as a classical interpolation problem:

» For sample points ay,....ay € A, compute f where f(a;) = 0.

Problem is the number of sample points needed:

» [o show no nonconstant polynomials of degree 18 vanish on
76(C* x C* x C*) C P*3, need

63 L 18
N>( 1+8 >x4.567-1017




Vanishing polynomials

When all else fails, solve a different problem.

» partial information is better than no information




Vanishing polynomials

When all else fails, solve a different problem.

» partial information is better than no information

What polynomials vanish on the set of witness points AN L?

» |f f vanishes on A, then f| vanishes on AN L.
L

L

» Exact correspondence when arithmetically Cohen-Macaulay

» Upper bounds in general N\

RN
\_\\1\_/
¢



Example Vanishing polynomials

6
06(C* x C* x C*) = {Za,- R bi@ci | aj, b cie 64} c P
=1

» dim = 59

» deg = 15,456

Restricting to dim 4 linear space £

» [o show no nonconstant polynomials of degree 18 vanish:

4+ 18
N > = 7315
()

J.D. Hauenstein, C. lkenmeyer, and J.M. Landsberg, [\

"j Equations for lower bounds on border rank. \J
l,l,_“ Exp. Math., 22(4), 372-383, 2013. (



Example Vanishing polynomials

6
56(([34 x C* x (Cd) = Za; R b;®@c; | aj. b cie T4y c P
=1

» dim = 59
» deg = 15,456
Interpolating witness point set shows

» No nonconstant polynomials of degree < 18 vanish
» 64 polynomials of degree 19 restricted to £ vanish

» Go search for polynomials of degree 19!

J.D. Hauenstein, C. lkenmeyer, and J.M. Landsberg, [\

= Equations for lower bounds on border rank. \J
l,l,—‘ Exp. Math., 22(4), 372-383, 2013. (



Example Vanishing polynomials

6
56(([34 x C* x (Cd) = Za; R b;®@c; | aj. b cie T4y c P
=1

Representation theory proves existence of 64 polynomials of
degree 19 that vanish.

» Used to prove that 2 x 2 matrix multiplication tensor is not
contained in o6(C* x C* x C%).

» Rank and border rank of 2 x 2 matrix multiplication tensor is 7

J.D. Hauenstein, C. lkenmeyer, and J.M. Landsberg, ]\
- Equations for lower bounds on border rank. \J
I,I,_“ Exp. Math., 22(4), 372-383, 2013. <



SOS programs

It is possible to interpolate over other families of polynomials

» Cifuentes-Parrilo (2017) interpolate sums of squares modulo
an ideal without knowing the ideal using sample points

Given polynomial p, compute g1, . ... gy such that

p—Zg; mod /(A)

assuming such a decomposition exists.

» Certificate that p > 0 on ANR".




SOS programs

A necessary condition for

p= Zg; mod /(A)
s, for samples a7, .... ay € A,
k
= ai(a)’
i=1

» Computation performed using semidefinite program

D. Cifuentes and P.A. Parrilo,

j Sampling algebraic varieties for sum of squares programs.
l“ SIAM J. Opt., 27(4), 2381-2404, 2017.




SOS programs

Example (Trace ratio)

nk—{XER”XH ‘ XT

= X. X?

= X, trace(X) = k}

Given symmetric matrix X.Y.Z € R"*" where Y = 0, solve

Mmax Y
s.t.  trace(Ya)(y — trace(Za)) — trace(Xa) = F(a) mod (A, k).
F is SOS.
degF = 2.
& Equations SDP Sampling SDP Grobner bases
"™ % |l variables constraints time(s) || variables constraints time(s) time(s)
4 2 342 188 0.47 56 45 0.10 0.00
5 3 897 393 0.71 121 105 0.11 0.02
6 4 2062 738 1.34 232 210 0.15 0.20
7T b 4265 1277 3.62 407 378 0.19 6.04
& 6 8106 2073 9.06 667 630 0.34 488.17
9 7 14387 3198 23.83 1036 990 0.61 out of memory
10 8 24142 4733 58.17 1541 1485 1.18 out of memory

D. Cifuentes and P.A. Parrilo,

Sampling algebraic varieties for sum of squares programs.
SIAM J. Opt., 27(4), 2381-2404, 2017.

I\\j T
¢



Degree estimation

Can we estimate the degree of a variety by sampling?

Example

How many 6-bar Watt | linkages obtain 8 given poses?

Multihomogeneous Bézout bound: 3.43-101°

J.D. Hauenstein and S.N. Sherman,
Statistically estimating the number of solutions to motion generation problems.
= [n preparation.




Degree estimation

How many 6-bar Watt | linkages obtain 8 given poses?

Corresponding problem for 4-bar linkages — Burmester (1886)

» 4 solutions for 5 poses

L L
\/’\ T




Degree estimation

Given one point in a witness point set W = AN L, generate
another point (possibly same point) by using a monodromy loop.

1

MonodromySolver
» Duff-Hill-Jensen-Lee-Leykin-Sommars (2018)
» Bliss-Duff-Leykin-Sommars (2018)




Degree estimation

Given one point in a witness point set W = AN L, generate
another point (possibly same point) by using a monodromy loop.

;;;,i,rjéj}j,f;jj;’gffff////m
2 i
o ////lf////

,/,;,;//////////////////

» |F we assume that
can estimate # W/ .

N P



Degree estimation

Example (German tank problem)
WWII: Estimate # of tanks Germany was producing per month.

» use serial numbers on parts recovered
» assume uniformly distributed to generate statistical estimate




Degree estimation

Example (German tank problem)

WWII: Estimate # of tanks Germany was producing per month.

» use serial numbers on parts recovered

» assume uniformly distributed to generate statistical estimate

month statistical est. | intelligence est. | German records
June 1940 169 1000 122
June 1941 244 1550 271
August 1942 327 1550 342

IisD




Degree estimation

Hypergeometric estimate of deg A = #W:

degA:#WzE
p

» n = number of points already known in W

» p — ratio of repeats in sample

Jiei
L
2
,%/////////////

7
-
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Degree estimation

Hypergeometric estimate of deg A = #W:

n

deg A=H#HW =~ —
p

» n = number of points already known in W

» p — ratio of repeats in sample

Example

Assume that n = 10 points are already known in W.

» Monodromy loop provides 8 new points and 2 repeats:

10
50

W50 N




Example Degree estimation

Validate statistical model:

» Fix the two ground pivots and find 6-bar Watt | linkages that
obtain 6 given poses.

» Problem was studied by Plecnik-McCarthy-Wampler (2014)




Example Degree estimation

» Fix the two ground pivots and find 6-bar Watt | linkages that

obtain 6 given poses. L
O ?\b
(\’)\

Perform monodromy loops starting from n = 1000 known solutions.

» Mean from 10 monodromy loops:

» Ratio of repeats: 17.51%
» Estimated number of solutions: 5750.5




Example Degree estimation

» Fix the two ground pivots and find 6-bar Watt | linkages that

obtain 6 given poses. L
J | n -
~ ?\b

Perform monodromy loops starting from n = 1000 known solutions.

» Mean from 10 monodromy loops:

» Ratio of repeats: 17.51%
» Estimated number of solutions: 5750.5

» | heoretical values:

» Ratio of repeats: 17.38%
» Number of solutions: 5754




Degree estimation

How many 6-bar Watt | linkages obtain 8 given poses?

Iish

Watt |, N=8 task positions
2,000,000
- = Roots collected

1,600,000
Estimated number of solutions

1,200,000

800,000

Number of Solutions

400,000 ,

ﬂ . ———————————————————————————————————————————————— . s SRS S

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Trials

J.D. Hauenstein and S.N. Sherman,
Statistically estimating the number of solutions to motion generation problems.

In preparation.




Topological properties

Objects can be identified from point clouds (set of sample points):

/BU - 1;}61 - 0: ﬁ? =1
Topology of real algebraic surfaces from point clouds:

Niyogi-Smale-Weinberger (2008)

Cucker-Krick-Shub (2016)
Dufresne-Edwards-Harrington-H (2018)
Breiding-Kalisnik Verovsek-Sturmfels-Weinstein (2018)




Topological properties

Persistent homology

» treat each point as center of a ball where radius changes

» determine features which persist over wide range of radii

| 8%

With provably dense samples, we can prove theorems about when
topological features must be present in the point cloud.

» Generate provably dense samples using num. alg. geom.




Topological properties

4ot + Tyt + 32* — 3 — 823 + 2%y — 42? — S8xy? — bay + 8x — 6y° + 8y? + 4y

Persistence diagram

2
1
n\,\
\ . 1____--:: 2 <
B 1 1 %
=
(]
ﬁﬂ — 1?1[-))1 — 0:52 =1
: 0
0 0.5 1 1.5 2
Birth
E. Dufresne, P.B. Edwards, H.A. Harrington, and J.D. Hauenstein, {\

Sampling real algebraic varieties for topological data analysis. _\\1_/
Preprint available at https://www.nd.edu/~jhauenst/preprints/dehhTDANAG. pdf Pe



» Shed some light on what makes some computations difficult

» Solve well-posed, well-conditioned, and num. stable problems!

» Explain witness sets and some applications of sampling

» With many omissions (sorry)

» See software “in action” during software demonstration with

» Jose Rodriguez
» Danielle Brake

» Maggie Regan




Thank You!




