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Chemical reaction networks and our main goal

A two–component system
Two-component signal transduction systems enable bacteria to sense,
respond, and adapt to a wide range of environments, stressors, and
growth conditions. It relies on phosphotransfer reactions.

HK00
k1−→ HKp0

k2−→ HK0p
k3−→ HKpp

HK0p +RR
k4−→ HK00 +RRp

HKpp +RR
k5−→ HKp0 +RRp

RRp
k6−→ RR,

k = (k1, . . . , k6) are positive rate constants.

The hybrid histidine kinase HK has two phosphorylable domains: the
four possible states of HK are HK00, HKP0, HK0P , HKPP .

RR is the unphosphorylated response regulator protein, RRP the

phosphorylated form.
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Chemical reaction networks and our main goal

A two–component system
Call x1, . . . , x6 the concentration of the species of the network:

X1
k1−→ X2

k2−→ X3
k3−→ X4

X3 +X5
k4−→ X1 +X6 (1)

X4 +X5
k5−→ X2 +X6

X6
k6−→ X5

Under mass-action kinetics, we get the following dynamical system

dx1
dt

= −k1x1 + k4x3x5,
dx2
dt

= k1x1 − k2x2 + k5x4x5,

dx3
dt

= k2x2 − k3x3 − k4x3x5,
dx4
dt

= k3x3 − k5x4x5,
dx5
dt

= −k4x3x5 − k5x4x5 + k6x6,
dx6
dt

= k4x3x5 + k5x4x5 − k6x6.
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Chemical reaction networks and our main goal

dx1

dt
= f1(x) = −k1x1 + k4x3x5,

dx2

dt
= f2(x) = k1x1 − k2x2 + k5x4x5,

dx3

dt
= f3(x) = k2x2 − k3x3 − k4x3x5,

dx4

dt
= f4(x) = k3x3 − k5x4x5,

dx5

dt
= f5(x) = −k4x3x5 − k5x4x5 + k6x6,

dx6

dt
= f6(x) = k4x3x5 + k5x4x5 − k6x6.

Linear dependencies give conservation relations

From f1 + f2 + f3 + f4 = f5 + f6 = 0, we get two conservation
relations:

x1 + x2 + x3 + x4 =T1,

x5 + x6 =T2.

Thus, trajectories lie in a 4d-plane in 6d-space. Total amounts
T1, T2 are determined by the initial conditions x(0).
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Chemical reaction networks and our main goal

CRN with mass-action kinetics

Starting data: a set of r reactions (labeled edges, e.g. i
κij→ j,

where κij ∈ R>0 are the reaction rate constants) between m

complexes (monomials e.g. xyi = xyi11 xyi22 · · ·xyiss ) composed of s

species (variables x1, . . . , xs).

Definition: A chemical reaction network is a finite
directed graph G = (V,E, (κij)(i,j)∈E , (yi)i=1,...,m) whose
vertices are labeled by complexes and whose edges are
labeled by parameters.

X1
k1−−→ X2

k2−−→ X3
k3−−→ X4

X3 +X5
k4−−→ X1 +X6 (2)

X4 +X5
k5−−→ X2 +X6

X6
k6−−→ X5

6 reactions (arrows), 10 complexes (nodes), 6 species
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Chemical reaction networks and our main goal

CRN with mass-action kinetics
A chemical reaction network is a finite directed graph

G = (V,E, (κij)(i,j)∈E , (yi)i=1,...,m) whose vertices are labeled by

complexes and whose edges are labeled by parameters.

View the concentrations x1, x2, . . . , xs as functions of time.

Mass-action kinetics specified by the network G is the
following autonomous system of ordinary differential
equations:

dx

dt
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Chemical reaction networks and our main goal

Law of Mass Action

Proposed by Cato Guldberg (1836–1902) (chemist) and Peter
Waage (1833-1900) (mathematician).

Waage was a chemist and
Guldberg was a mathematician.
They were close friends and
brothers in law. Waage’s second
wife was Guldberg’s sister and
they are Ragni Piene’s great
grandparents!
Published in Norwegian in 1862,
in French in 1867, and in German
around 1880, until it was
recognized (in the meantime, it
was rediscovered by van’t Hoff.)
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Chemical reaction networks and our main goal

Observations

dx

dt
=

∑
(i,j)∈E

κi,j x
yi (yj − yi)

dxk
dt

= fk(x), k = 1, . . . , s, (4)

f1, . . . , fs are polynomials in R[x1, . . . , xs].

Linear relations among the vectors yj − yi give raise to linear
conservation relations. Total amounts are determined by the
initial conditions.

By the form of the equations the (closed or open) positive
orthant is forward invariant for the dynamics.

In general, the rate constants κi,j are unknown (difficult or
impossible to be determined).
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Chemical reaction networks and our main goal

General goal

Analize mathematical models arising from biochemical reaction
networks, formalize and make sense of biologist’s intuitions, and
make predictions from the structure of the network.
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Multistationarity and persistence

Definition

x∗ is a steady state of dx/dt = f(x) if f(x∗) = 0.

Definition

A chemical reaction system exhibits multiestationarity if it is possible
to find more than one positive steady state in the same stoichiometric
compatibility class = with the same total constants.

Stoichiometric

Compatibility

Class

RS
>0

S

xC

xB

xA
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Multistationarity and persistence

dx/dt = f(x)

The green curve represents the steady states f = 0

The number of intersection points depends on the total constants

x1

x2

Stoichiometric
compatibility class

Steady states
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Multistationarity and persistence

Usual multistationarity pictures

More complex:
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Multistationarity and persistence

Why studying multistationarity?

Almost all cells in a body
have the same genetic
information. Multistatio-
narity in cellular networks
can be viewed as a rationale
for decision making and cell
differentiation [Delbrück’49].

[Ferrell ’09]: Current state of
systems biology is like plane-
tary astronomy science
before Kepler and Newton
and cannot be studied
without math and physics.

Although all biological
processes are complex and
involve many variables,
essential qualitative features
of these processes can
usually be understood in
terms of a small number of
crucial variables.

This view is strongly
supported by the observa-
tion that extremely complex
behaviour can arise from
simple networks [Kaufman,
Soulé, Thomas ’07].
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Multistationarity and persistence

Another important property

Persistence

Persistence means that any trajectory starting from a point
with positive coordinates stays at a positive distance from any
point in the boundary.
So, persistence means that no species which is present can tend
to be eliminated in the course of the reaction.
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Some important biological netwoks

Phosho-Dephosphorylation: “futile” cycle

S0 + E
kon−→
←−
koff

ES0
kcat→ S1 + E

S1 + F
`on−→
←−
`off

FS1
`cat→ S0 + F

E and F enzymes, S0 and S1 substrates, S0E and S1F intermediates

and we represent it with: S0 S1.

F

E

There are 6 species, 6 complexes (nodes) and 6 reactions (edges)
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E and F enzymes, S0 and S1 substrates, S0E and S1F intermediates

and we represent it with: S0 S1.

F

E

There are 6 species, 6 complexes (nodes) and 6 reactions (edges)
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Some important biological netwoks

Two sequential phosphorylations

S0 + E
kon0 // ES0
koff0

oo
kcat0 // S1 + E

kon1 // ES1
koff1

oo
kcat1 // S2 + E

S2 + F
lon1 // FS2
loff1

oo
lcat1 // S1 + F

lon0 // FS1
loff0

oo
lcat0 // S0 + F

We number the species and their concentrations

x1, x2, x3 = concentrations of S0, S1, S2

y1, y2, y3, y4 = concentrations of the intermediate species

x4 = concentration of the kinase E

x5 = concentration of the phosphatase F .
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Some important biological netwoks

The differential equations and the
conservation laws

dx1

dt
=−kon0x1x4 + koff0y1 + lcat0y4

dx4

dt
=−kon0x1x4−kon1x2x4 + (koff0 + kcat0)y1

dx2

dt
=−kon1x2x4 + kcat0y1 + koff1y2 + (koff1 + kcat1)y2

−lon0x2x5 + lcat1y3 + loff0y4
dx5

dt
=−lon0x2x5 − lon1x3x5 + (loff1 + lcat1)y3

dx3

dt
=kcat1y2 − lon1x3x5 + loff1y3 + (loff0 + lcat0)y4

dy1

dt
=kon0x1x4 − (koff0 + kcat0)y1

dy3

dt
=lon1x3x5 − (loff1 + lcat1)y3

dy2

dt
=kon1x2x4 − (koff1 + kcat1)y2

dy4

dt
=lon0x2x5 − (loff0 + lcat0)y4

x1 + x2 + x3 + y1 + y2 + y3 + y4 =Stot

x4 + y1 + y2 =Etot

x5 + y3 + y4 =Ftot.
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Some important biological netwoks

Other important examples of networks

Phosphorylation cascades

R0 R1

F3

R2

F3

P0 P1

F2

P2

F2

S0 S1

F1

E
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Some important biological netwoks

Other important examples of networks

Phosphorylation cascades with retroactivity
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Some important biological netwoks

Other important examples of networks
Different phosphatases vs same phosphatase in a cascade

S0 S1

F1

E

P0 P1

F2

S0 S1

F

E

P0 P1

F
Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 21 / 41



Some important biological netwoks

Example: Processive phosphorilations

C. Conradi and A. Shiu. A global convergence result for processive multisite phosphorylation

systems, 2015.
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Some important biological netwoks

Small motifs ([Alon’07, Feliu-Wiuf’12])
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Some important biological netwoks

Shvartsman’s enzymatic network
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MESSI systems

A common structure (arXiv:1612.08763)
MESSI systems

We identified with Mercedes Pérez Millán a common structure in
many popular biological networks that describe Modifications of type
Enzyme-Substrate or Swap with Intermediates, which allows us to
prove general results valid in all these networks. MESSI systems
include all the previous ones.

Less general, but stil quite general goal

Analyze MESSI systems, prove results and give algorithms based on
structure of the network to predict conservation relations, persistence
and the capacity for multistationarity.
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MESSI systems

Definition of a MESSI system

A MESSI network is a chemical reaction network satisfying the
following properties. When endowed with mass-action kinetics,
we have a MESSI system.

There exists a partition of the set S of species:

S = S(0)︸︷︷︸
intermediates

⊔
S(1)

⊔
S(2)

⊔
· · ·
⊔
S(M)︸ ︷︷ ︸

non-intermediates or core

.

There are two types of complexes: intermediates
(consisting of a single intermediate species) and
non-intermediates or core (consisting of one or two core
species, but if there are two, they belong to distinct S(α)).

Notation: →◦= reacts via a path of intermediates.

Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 26 / 41



MESSI systems

Definition of a MESSI system

A MESSI network is a chemical reaction network satisfying the
following properties. When endowed with mass-action kinetics,
we have a MESSI system.

There exists a partition of the set S of species:

S = S(0)︸︷︷︸
intermediates

⊔
S(1)

⊔
S(2)

⊔
· · ·
⊔
S(M)︸ ︷︷ ︸

non-intermediates or core

.

There are two types of complexes: intermediates
(consisting of a single intermediate species) and
non-intermediates or core (consisting of one or two core
species, but if there are two, they belong to distinct S(α)).

Notation: →◦= reacts via a path of intermediates.

Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 26 / 41



MESSI systems

Definition of a MESSI system

A MESSI network is a chemical reaction network satisfying the
following properties. When endowed with mass-action kinetics,
we have a MESSI system.

There exists a partition of the set S of species:

S = S(0)︸︷︷︸
intermediates

⊔
S(1)

⊔
S(2)

⊔
· · ·
⊔
S(M)︸ ︷︷ ︸

non-intermediates or core

.

There are two types of complexes: intermediates
(consisting of a single intermediate species) and
non-intermediates or core (consisting of one or two core
species, but if there are two, they belong to distinct S(α)).

Notation: →◦= reacts via a path of intermediates.

Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 26 / 41



MESSI systems

Definition of a MESSI system

A MESSI network is a chemical reaction network satisfying the
following properties. When endowed with mass-action kinetics,
we have a MESSI system.

There exists a partition of the set S of species:

S = S(0)︸︷︷︸
intermediates

⊔
S(1)

⊔
S(2)

⊔
· · ·
⊔
S(M)︸ ︷︷ ︸

non-intermediates or core

.

There are two types of complexes: intermediates
(consisting of a single intermediate species) and
non-intermediates or core (consisting of one or two core
species, but if there are two, they belong to distinct S(α)).

Notation: →◦= reacts via a path of intermediates.

Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 26 / 41



MESSI systems

Definition of a MESSI system

A MESSI network is a chemical reaction network satisfying the
following properties. When endowed with mass-action kinetics,
we have a MESSI system.

There exists a partition of the set S of species:

S = S(0)︸︷︷︸
intermediates

⊔
S(1)

⊔
S(2)

⊔
· · ·
⊔
S(M)︸ ︷︷ ︸

non-intermediates or core

.

There are two types of complexes: intermediates
(consisting of a single intermediate species) and
non-intermediates or core (consisting of one or two core
species, but if there are two, they belong to distinct S(α)).

Notation: →◦= reacts via a path of intermediates.

Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 26 / 41



MESSI systems

Definition of a MESSI system

A MESSI network is a chemical reaction network satisfying the
following properties. When endowed with mass-action kinetics,
we have a MESSI system.

There exists a partition of the set S of species:

S = S(0)︸︷︷︸
intermediates

⊔
S(1)

⊔
S(2)

⊔
· · ·
⊔
S(M)︸ ︷︷ ︸

non-intermediates or core

.

There are two types of complexes: intermediates
(consisting of a single intermediate species) and
non-intermediates or core (consisting of one or two core
species, but if there are two, they belong to distinct S(α)).

Notation: →◦= reacts via a path of intermediates.

Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 26 / 41



MESSI systems

Definition of a MESSI system

S = S(0)︸︷︷︸
intermediates

⊔
S(1)

⊔
S(2)

⊔
· · ·
⊔
S(M)︸ ︷︷ ︸

non-intermediates or core

.

Reactions satisfy:

For any intermediate Xk, there exist core complexes
Xi +Xj and X` +Xm such that Xi +Xj →◦ Xk and
Xk →◦ X` +Xm.

If Xi →◦ Xj then Xi, Xj belong to the same S(α).
Xi +Xj → Xk or Xk → Xi +Xj . α 6= 0.

If Xi +Xj →◦ Xk +X` there exist α 6= β such that
Xi, Xk ∈ S(α), Xj , X` ∈ S(β) (or the other way about).

Examples: All the examples we mentioned . . . plus many
other common biochemical models.
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MESSI systems

Inspired by and generalizing

Feliu and Wiuf 2013, Thomson and Gunawardena 2009,
Gnacadja 2011.

Enzymes and swaps

In a reaction Xi +X` → Xj +X`, we say that X` acts as
an enzyme.

A reaction Xi +X` → Xj +Xm, with i, `, j,m distinct, is
called a swap.

We do not restrict: substrates can also be enzymes.

Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 28 / 41



MESSI systems

Inspired by and generalizing

Feliu and Wiuf 2013, Thomson and Gunawardena 2009,
Gnacadja 2011.

Enzymes and swaps

In a reaction Xi +X` → Xj +X`, we say that X` acts as
an enzyme.

A reaction Xi +X` → Xj +Xm, with i, `, j,m distinct, is
called a swap.

We do not restrict: substrates can also be enzymes.

Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 28 / 41



MESSI systems

Conserved quantities: Theorem 1 [D.-P. M.]

A MESSI system has one (independent) linear conservation relation
associated to each of the subsets S(α), 1 ≤ α ≤M , in the partition of
the species set corresponding to non-intermediate species:∑

Xi∈S(α)

xi +
∑

Xk∈Intα

xk = constant,

where Intα = {Xk : Xi →◦ Xk or Xi+Xj →◦ Xk for some Xi∈S(α)}.

Observation:

Theorem 1 implies that all MESSI systems are conservative (and
thus the solutions are defined for any positive time).

Question: when these span all the linear conservation laws?

We give different sufficient restrictive conditions, satisfied by
most common biochemical enzymatic models. We show
counterexamples if any of these conditions is released.
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MESSI systems

From G to G1 (without intermediates)

Going from G to G1 we delete intermediates and we put an
edge between two core complexes yi → yj if y1 →◦ yj in G:

Figure: S(0) ⊆ {Z1, Z2, Z3},S(1) = {y1, y2, y3}

In all cases G = A,B,C,D (with rate constants κ), the
associated digraph G1 is A.
Wiuf and Feliu proved that with rate constants τ(κ) and QSSA
style substitutions, G1 has still mass-action kinetics.
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MESSI systems

G1 → G2 (hide enzymes and swaps in labels)
G : Double seq.phospho.

S0 + E
κ1
�
κ2

U1
κ3→ S1 + E

κ4
�
κ5

U2
κ6→ S2 + E

S2 + F
κ7
�
κ8

U3
κ9→ S1 + F

κ10
�
κ11

U4
κ12→ S0 + F

⇓
G1 :

S0 + E
τ1→ S1 + E

τ2→ S2 + E

S2 + F
τ3→ S1 + F

τ4→ S0 + F

⇒
G2 :

S0

τ1 e

�
τ4 f

S1

τ2 e

�
τ3 f

S2

E � E, F � F loops .

G : EnvZ−OmpR

X1

κ1
�
κ2

X2
κ3→ X3

X3 + Y1

κ4
�
κ5

U1
κ6→ X1 + Y2

X2 + Y2

κ7
�
κ8

U2
κ9→ X2 + Y1

⇓
G1 :

X1

τ1
�
τ2

X2
τ3→ X3

X3 + Y1
τ4→ X1 + Y2

X2 + Y2
τ5→ X2 + Y1

⇒
G2 :

X1

τ1
�
τ2

X2
τ3→ X3

τ4y1

Y1

τ4x3
�
τ5x2

Y2

G2 formally defines the same steady state equations.Alicia Dickenstein (UBA) (Bio)chemical reaction networks NSF/CBMS-TCU, 2018 31 / 41
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MESSI systems

Precluding relevant boundary steady states

If we have a minimal partition, we define a new graph GE ,
whose vertices are the sets S(α) for α ≥ 1, and there is an edge
from S(α) to S(β) if there is a species in S(α) on a label of an
edge in G2 between species of S(β).

Persistence: Theorem 2 [D.-P. M.]

If there is no directed cycle in GE , then G has no boundary
steady states in any positive stoichiometric compatibility class.
Thus, the network is persistent.
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MESSI systems

Examples

P0 P1

F

S0 S1

F

E

S(1) = {S0, S1},
S(2) = {P0, P1},
S(3) = {E},S(4) = {F}.

G2:

S0

τ1e
�
τ2f

S1

P0

τ3s1
�
τ4f

P1

GE :

S(3) S(1) S(2)

S(4)

Persistent

G: EnvZ-OmpR S(0),

S(1) = {X,XT,Xp}, S(2) =

{Y, Yp}.

GE :
S(1) � S(2)

xp = Xtot, yp = Ytot, x = xt = xpy =
xT yp = y = 0 is a boundary steady
state in the class with totals Xtot, Ytot.
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MESSI systems

Deciding multistationarity: Theorem 3 [D.-P. M.]

Assume the steady state variety V is cut out by binomials with
exponents in a matrix B and coefficients in Q(κ), or equivalently, it is
parametrized by monomials with exponents in the dual matrix A. Let
S⊥ denote a matrix whose rows define the dual of the subspace
S = 〈yj − yi, yi → yj〉. If rank(S⊥) = rank(A) = d, the following
statements are equivalent:

1 There is at most a single positive solution in V ∩ x(0) + S for
any x(0) in the positive orthant (monostationarity), for any
choice of rate constants κ.

2 For all subsets J ⊆ [s] of cardinality d, the product
det(S⊥J ) det(AJ) either is zero or has the same sign as all other
nonzero products, and at least one such product is nonzero.

3 Same sign conditions with det(SJ) det(BJ).

4 Same sign conditions with (−1)σ(J)det(S⊥J )det(B[s]−J).
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MESSI systems

How to find multistationarity rate constants
Theorem 3 is based on several previous papers, including joint
papers in [FOCM 2016, Bull. Math. Biol. 2012], which in turn
generalized several papers starting with Craciun-Feinberg, SIAP,
2005-06.

We give precise sufficient conditions for the hypotheses of
Theorem 3 to hold.

We implemented Theorem 3 to decide if a network has the
capacity for multistationarity.

Once this is the case, we give an algorithm to produce vectors of
rate constants k for which multistationarity occurs. This is based
in the theory of oriented matroids, that goes back to Rockafellar.

A general package Chemical Reaction Networks Toolbox
produced by M. Feinberg and coll. is available online at:
https://crnt.osu.edu/CRNTWin.

Other packages can be accessed from Mathematics of Reaction
Networks Wiki: https://reaction-networks.net/wiki/Mathematics
of Reaction Networks.
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Other approaches to multistationarity

Joint work with F. Bihan and M. Giaroli
Regions of multistationarity

We devised a method to give open regions in rate constant +
total amount space where multistationarity occurs for all k, T in
these regions. This is based on a result by Bihan, Santos and
Spaenlehauer in real algebraic geometry (arXiv:2018) which
uses regular triangulations of the convex hull of the exponents
occuring in f1, . . . , fn.

a
Rd

Rd+1h(a)
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Other approaches to multistationarity

Coming back to the two–component system

X1
k1−→ X2

k2−→ X3
k3−→ X4

X3 +X5
k4−→ X1 +X6 (5)

X4 +X5
k5−→ X2 +X6

X6
k6−→ X5

x1 + x2 + x3 + x4 =T1,

x5 + x6 =T2.
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Other approaches to multistationarity

Our results for the two–component system

Multstationarity parameters: Theorem 4 [B.-D.- G.]

With the previous notations, assume that the reaction rate
constants and the total amounts verify the inequalities

k6

(
1

k2
+

1

k3

)
<
T1

T2
< k6

(
1

k1
+

1

k2

)
.

Then, there exist positive constants N1, N2 such that for any
values of γ4 and γ5 veryfying γ4 > N1 and γ5

γ4
> N2, the

rescaling of the given parameters k4, k5 by k4 = γ4 k4,
k5 = γ5 k5, gives raise to a multistationary system.
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Other approaches to multistationarity

Other approaches to multistationarity

Using degree theory (Brouwer’s theorem):
Conradi-Feliu-Mincheva-Wiuf, PLOS Computational
Biology 2017.

Using numerical or symbolic methods to detect points in
different chambers of the complement of the discriminant:
Harrington-Mehta-Byrne-Hauenstein 2016;
Gross-Harrington-Rosen-Sturmfels, BMB 2016;
Faugère-Moroz-Rouillier-Safey El Din, ISSAC 2008 and
other.

Several authors: direct computations of small subnetworks
+ extrapolation: Conradi et al. 2007 and other, Joshi-Shiu
2013 and 2017, Banaji-Pantea 2016 and 2017.

Triangular forms and extensions of other approaches: D.-P.
Millán-Shiu-Tang, 2018.
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Conclusions

Summary

We can use algebraic
geometry to analyze system
biology models.

Algebro-geometric and
combinatorial methods
allows us to predict (some)
dynamical behaviors of our
model from the structure,
without simulations and
without knowing the precise
reaction rate constants . . .

. . . and (in some interesting
cases) to “see the woods”

and not only “the trees”.

In theory, we have several
answers. In practice, they
tend to be too complex to be
understood or computed.

Answers require a
combination of tools from
dynamical systems,
computational and
numerical algebraic
geometry, real algebraic
geometry, biochemistry, . . . !
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Conclusions

SUBMIT YOUR BEST PAPER!
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