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Implementation - Bertini real [BBH+17]

Command-line MPI-parallel
program.

Uses Bertini 1 as its path
tracker.

C++ code, with options for
Matlab or Python for
symbolic operations.

Matlab and Python
visualization suites.
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Requirements

For now, you have to install Bertini real (and Bertini 1) from source.

To install
I Modern C++ compiler (C++11 minimum)
I Boost (not old), MPI (your choice)
I Autotools (sorry)
I Bertini 1 – compiled and installed from source, + its dependencies

To use
I Either Matlab + symbolic toolbox,
I or Python + sympy

To visualize
I Full suite – Matlab + a few things from the exchange
I Partially implemented suite – Python’s Matplotlib

sorry, no native windows compilation at the moment.
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Basic calling sequence

Here’s a quick summary. See the user manual, please

1 Make plain-text Bertini 1 input file. Move to that directory. For
sanity, limit yourself to one bertini input file per directory.

2 bertini – computes complex witness set

3 bertini real -opt1 arg1 -opt2 arg2 – computes real cell
decomposition

4 Visualize, probably in Matlab cuz python viz is incomplete so far
5 Tell me how it goes!

I issues at github.com/ofloveandhate/bertini_real or
I email to brakeda@uwec.edu
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Cautions and disclaimers

Bertini real is numerical software, and does not compute a certified
correct decomposition.

The default settings for Bertini do not work well for Bertini real.
Some almost always need tweeking.

See below and the manual for notes on problems and solutions.

There are known areas that need improvement. Again, see below
and the manual.
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Application - Kinematics
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A curve, of kinematic mechanisms, of degree 630 / 128 in the meaningful
projection.
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Application - reproducing Herwig Hauser’s gallery
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Application - reproducing Herwig Hauser’s gallery
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Motivation - reproducing Herwig Hauser’s gallery
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Principle – implicit function theorem
An object C may be parameterized such that:

the number of parameters is equal to dim(C)
the parameterization is well-defined almost everywhere
the parameterization is not ‘special’

Example: the circle defined

x2 + y2 − 1 = 0

can be parameterized by x:

y = ±
√

1− x2

π
0
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Edges – Structure of computed object
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Curves – What Bertini real does
1. Compute critical points 2. Bound infinite behaviour 3. Slice between critical points

4. Connect the dots 5. Merge (optional) 6. Smooth (optional)

Danielle Brake – brakeda@uwec.edu br@CBMS2018 June 5, 2018



Faces – Structure of computed object
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Surfaces – What Bertini real does

1. Decompose 
    critical curve

2. Decompose 
    singular curves

3. Intersect with
    sphere

4. Slice5. Connect the dots6. Refine
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Choosing a projection

The decomposition algorithms depend on the component being in
general position. Accomplished by using a random real projection.
Problems with random projections:

Some cause the critical points on the critical curve to be very far
from the origin.
You can easily get things like critical points very near the origin
(‖x‖ ≈1e-6), and very far away (‖x‖ ≈1e3). Now you have a scaling
problem!

Some cause multiple critical points to have similar projection
values. Near an axis projection, or near symmetry.
Should we do a π1 surface slice between 1.451331542e1 and
1.451331601e1???
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Scale

How to deal with
points close to the
origin?

How to deal with
points close together?

How to decide if two
points are the same
point, or not?
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Singular on singular

Surfaces can have non-isolated singularities.
Must curve-decompose singular curves
⇒ deflate witness points for the singular curves.

No good deflation implementation exists, that I’ve found.1

Combinatorial growth in number of polynomials in deflating system.

x4y2 + y4x2 − x2y2 + z6 = 0

Buggle, only degree 6, but I still fail
to decompose it.

Starts with 1 polynomial, then adds
3, then adds 13, then adds 358, then
adds thousands and never terminates.

1Best notes I’ve found on improving isosingular deflation are in [AHS17]
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On classifying points as singular

In Bertini, one can classify
(end)points as singular
based on:

1 Multiplicity > 1

2 Condition number of
Jacobian at endpoint

3 Rank of Jacobian at
endpoint

2 and 3 are precarious,
depending on arbitrary
tolerances.
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What went wrong?

Calypso

x2 + y2z − z2
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What went wrong?

Dingdong

x2 + y2 + z3 − z2 = 0
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What went wrong?
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What went wrong?
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My current typical fixes

Tighter tracking tolerances – walk a tighter line

ODE predictor – use higher order, accept higher cost

Use few Newton correction iterations – require correction each step

Use the Cauchy endgame for well-separated roots, power series for
poorly?
Use many sample points (hopefully at least half as many as the
cycle number?), and
enter the endgame late.
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My current typical fixes (2)

Always allow higher precision. Safety digits in adaptive precision
increase robustness near singularities.

Do not flag points as singular except if multiple.
New problem: multiplicity-one singularities are undetectable.

Over-sharpen. But don’t depend on sharpening, because methods
for sharpening singular points are not (yet) well-exposed.

Lower the maximum step size up front
⇒ increase minimum number of steps
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Choose a projection - or not

To solve the projection problem, I take these steps:

1 Run decomposition several times. Hope completes correctly.

2 If not, choose a special projection. Probably onto two variables.
Hope completes correctly.

3 If not, choose a less special projection. Probably integer coefficients,
always orthogonal. Hope completes correctly.

4 If not, go back to random, play games with settings. Use more
processors, wait longer.
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Use relative comparisons

Use the relative norm and relative difference.
Donald Knuth knows this, and Boost.UnitTest specifically recommends
we use the relative difference for unit testing code.

Compare u and v, by scaling by ‖u‖, ‖v‖. Unless, of course, you
shouldn’t. See [Squassabia 2000]

Beware comparing numbers at different precisions.

Beware comparing numbers at different accuracies.

Be careful comparing to zero.

I yearn for a system which will tag points with the accuracy with which
they were computed, and prevent garbage comparisons.

Danielle Brake – brakeda@uwec.edu br@CBMS2018 June 5, 2018
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Idea: keep it real

Any little bit of imaginary part creeps in and infects all subsequent real
computations.

⇒ I want a pure-real tracker, that throws when domain errors arise.

⇒ I also need to replace the default complex patch equation from
Bertini’s NID with a real patch, so the homotopy is entirely real.

This would be particularly helpful when doing the ConnectTheDots

routines in Bertini real. Easy to step off the path, I think a
real-only tracker would solve some problems.
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Idea: decompose in zones

To solve the scale problem, we could

1 Compute critical points;

2 For each critical point, center, scale, decompose;

3 Glue together decompositions.

Sounds like a complicated bit of code, so it’s not being done.
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Success!
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Success!
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Success!
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Thank you for your kind attention!
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