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� Introduction.

� Harmonic forms on hermitian manifolds.

� Kahler manifolds and the Hodge Decomposition.

� Sl2 action: Lefschetz Decomposition, bilinear relations.

� Remarks on algebraicity, generalizations, etc.
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M = compact complex manifold of dimension n.

Riemann’s Theorem (∼ 1850): For n = 1,

H1
dR(M,C) ∼= Ω1(M)⊕ Ω1(M).

or: the number of independent holomorphic differentials on a compact
non-singular Riemann surface is equal to its genus.

Hodge Theorem (∼ 1940): M = compact Kahler manifold. Then

Hk(M,C) ∼=
⊕
p+q

Hp,q(M)

Hp,q(M) :=
ker(d) ∩ Ap,q(M)

im(d) ∩ Ap,q(M)
= Hq,p(M).
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Reason for the lapse:

Hodge decomposition cannot not hold for general compact complex M:

H1 = H10 ⊕ H10 ⇒ b1(M) even

Expected for algebraic M – enough for the study of algebraic integrals.

But requires transcendental proof, so likely to hold for {?} ⊃ {algebraic}.

Hodge:
? = Kahler

Will sketch proof of the decomposition theorem.
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Ap,q
M = sheaf of germs of forms on M of the form∑

I ,J

fI ,J dzi1 ∧ ... ∧ dzip ∧ dz̄j1 ∧ ... ∧ dz̄jq , fI ,J ∈ C∞M

d : Ap,q
M → Ap+1,q

M ⊕Ap,q+1
M

d = ∂ + ∂̄

Explicitely, ∂̄(f dzI ∧ d z̄J) =∑
r

∂f

∂z̄r
dz̄r ∧ dzI ∧ d z̄J ,

∂f

∂z̄r
=

1

2
(
∂f

∂xr
+ i

∂f

∂yr
)

Since
0 = (∂ + ∂̄)2 = ∂2 + (∂∂̄ + ∂̄∂) + ∂̄2

type: (2, 0) (1, 1) (0, 2)
implies

∂̄2 = 0 = ∂2 = ∂∂̄ + ∂̄∂
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Dolbeault cohomology

Hp,q

∂̄
(M) =

ker(∂̄ : Ap,q(M)→ Ap,q+1(M))

∂̄(Ap,q−1(M))

No general relation between Hk
d (M,C) and Hp,q

∂̄
(M) except for (Frolicher)

spectral sequence of (A∗,∗(M), ∂, ∂̄).

Hermitian metrics

Positive hermitian inner product h(u, v) on the holomorphic T (M):

h(λu, v) = λh(u, v), h(u, λv) = λ̄h(u, v)

h(u, v) = h(v , u), h(v , v) >> 0
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J : complex structure on TR(M):

J(
∂

∂xj
) =

∂

∂yj
, J(

∂

∂yj
) = − ∂

∂xj
.

TC(M) =: C⊗ TR(M) = T (M)⊕ T (M)

eigenspaces ±i of J. As real spaces with a J,

(T (M), i) ∼= (TR(M), J)

On TR(M),
h = g − iω

g riemannian metric
ω 2-form of type (1,1).

g(Ju, Jv) = g(u, v), ω(Ju, Jv) = ω(u, v), g(X ,Y ) = ω(X , JY ).

(M, ω) determines h.
(M, g) too, so hermitian metrics exist.
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A hermitian metric on M defines one on Ap,q(M):

(φ, ψ) =

∫
M

hx(φx , ψx)Ωh(x).

and corresponding adjoint operators

d∗, ∂∗, ∂
∗
.

Laplacians:
4d = dd∗ + d∗d 4∂̄ = ∂̄∂̄∗ + ∂̄∗∂̄

4d preserves degree and real structure.
4∂̄ preserves type (p,q).
(4φ, ψ) = (φ,4ψ)

Harmonic forms:

Hk
d(M) = {φ ∈ Ak(M,C) : 4dφ = 0}

Hp,q

∂̄
(M) = {φ ∈ Ap,q(M) : 4∂̄φ = 0}
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Hodge Theorems on harmonic forms

For M compact orientable riemannian,

Hk
d (M) ∼= Hk

d(M)

For M compact hermitian

Hp,q

∂̄
(M) ∼= Hp,q

∂̄
(M)

More precisely: every cohomology class contains a unique harmonic
representative (= form of smallest norm).

Sketch:

Harmonic ⇒ closed and coclosed:

0 = (4α, α) = (dα, dα) + (d∗α, d∗α) = |dα|2 + |d∗α|2
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Therefore have map

Hk → Hk
dR , α 7→ [α]

Injective: [α] = 0 ⇒ α = dw . Harmonic ⇒ coclosed: d∗dw = 0 and
therefore

(dw , dw) = (d∗dw ,w) = 0.

Surjective: based on another ”Hodge decomposition”:

Theorem. M compact Riemannian ⇒ H(M) is finite-dimensional and

A(M) = H(M)⊕4(A(M))
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A(M) = ker4⊕ im4

If 4 was a symmetric operator on finite-dimensional space, would
diagonalize, separate 0-eigenspace, etc.

One does this weakly in the L2 completion Â(M): for any Ψ⊥ ker4 the
equation

4φ = Ψ

has a unique weak solution φ ∈ Â(M), meaning that for all α ∈ A(M)

(φ,4α) = (Ψ, α).

This involves functional analysis.
Next one proves that 4 is elliptic, which ⇒ weak solutions with Ψ
smooth, are smooth, QED.
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Now
A(M) = ker4⊕ im4

= H(M)⊕ (dd∗ + d∗d)(A(M))

= H(M)⊕ d(A(M))⊕ d∗(A(M))

because the last 3 terms are ⊥.
Since

d∗(A(M)) = Closed(M)⊥,

Closed(M) = H(M)⊕ d(A(M))

⇒
H(M) ∼= H(M),

QED.
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Kahler metrics

A hermitian metric h = g − iω is Kahler if dω = 0.

M is Kahler if it admits a Kahler metric.

� If dimCM = 1 any hermitian metric is Kahler.

� Projective implies Kahler, because Fubini-Study on CPn

ωFS = − 1

2πi
∂∂log(1 +

∑
| zi |2)

is, and restricting to complex submanifolds preserves Kahler.

� Hopf surface (C2 − 0)/2Z is not Kahler.
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Crucial Lemma. For a Kahler metric,

24∂̄ = 4d .

The Lemma implies that (p,q)-components of harmonic are harmonic, and
therefore

Hk
d(M) =

⊕
p+q=k

Hp,q

∂̄
(M).

Hk
d (M,C) ∼=

⊕
p+q=k

Hp,q

∂̄
(M)

s.t. Hp,q(M) = Hq,p(M).

Independent of the metric because

Hp,q(M) :=
global closed (p, q)− forms

exact ones
∼= Hp,q(M)).

This and the Lemma follow from the Hodge-Kahler identities.
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Define L ∈ End(A∗) by
L(φ) = ω ∧ φ

Ak → Ak+2, Ap,q → Ap+1,q+1

and

Λ = L∗.

Hodge-Kahler:
[Λ, ∂̄] = −i∂∗, [Λ, ∂] = i ∂̄∗

The proof for the euclidean metric

ω = iΣdzj ∧ dz̄j

is a just a calculation.

In general, one proves that Kahler implies

h = Euclidean + terms of order ≥ 2

which implies H-K, these being 1st. order.

H-K ⇒ 4d = 24∂̄ AND
4 commutes with Lω,Λ,.

The same is true for

Y =
2n⊕
k=1

(n − k)Projk

Therefore L,Λ,Y induce operators on H∗d and on H∗,∗
∂̄

.

They satisfy

[Y , L] = −2L, [Y ,Λ] = 2Λ, [Λ, L] = Y

and therefore define a finite-dimensional representation of sl2, with the
Hk(M,R) as weight spaces for the Cartan RY .
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One concludes:

Hard Lefschetz Theorem:

(a):
Lk : Hn−k(M,R)→ Hn+k(M,R)

is an isomorphism.
(b): The lowest-weight vectors

Pk = Hk(M,R) ∩ (kerΛ)

generate H:

Hk(M,R) =
⊕
j

LjPk−2j

(c): (a) and (b) are compatible with the Hodge decomposition (because L
is of pure type).
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Polarizing form on Hk(M,R):

Q([α], [β]) =

∫
M
α ∧ β ∧ ωn−k .

Real, symmetric for k even, antisymmetric for odd.

Theorem. Q is non-degenerate, the Hodge and Lefschetz decompositions
are orthogonal under Q(u, v̄), and on Pp,q and for α 6= 0,

ip−q(−1)
(n−p−q)(n−p−q−1)

2 Q(α, α) >> 0

Proof: use the Hodge star operator:

Q([α], [β]) = (−1)(Ln−kα, ∗β)

and prove

∗β =
(−1)

k(k+1)
2 ip−q

(n − k)!
Ln−kβ.
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Geometrically: Under Poincaré duality

Hk(M,R) ∼= H2n−k(M,R)

For M ↪→ CPN ,

� Primitive (or finite) cycles: don’t intersect the hyperplane CPN−1 at ∞.

� Hard Lefschetz expresses any cycle in terms of these +
⋂

CPN−k ’s.

� Q = intersection form.

Some basic consequences

� The odd Betti numbers of a compact Kahler manifold are even, because

H2k+1(M,C) = H2k+1,0 ⊕ ...⊕ Hk+1,k ⊕ H2k+1,0 ⊕ ...⊕ Hk+1,k
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� Generalization of Riemann’s theorem:

Ωk(M) ∼= Hk,0(M).

Proof: Hp,q(M) ∼= Hp,q

∂̄
(M) ∼= Hq(M,Ωp) by Dolbeault’s Theorem. In

particular Hp,0(M) ∼= H0(M,Ωp) = Ωp(M).

� On CPn the only holomorphic forms are the constant functions.

Further remarks
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� Define a ”weight filtration” Wk = H0 ⊕ ...⊕ Hk . Then

(H∗(M,Q),F ∗,W∗)

is a mixed Hodge structure, polarized by (Lω,Q) and split /R by Y .

On Algebraicity.

� M Kahler is algebraic iff [ω] ∈ Hk(M,Z) (Kodaira).

For M algebraic,

� There are algebraic constructions of the filtration

F p(Hk(M,C)) = Hk,0 ⊕ ...⊕ Hp,k−p

[Deligne-Illusie 1989, etc.].

� There cannot be algebraic proofs of

Hk(M,C) =
⊕

p+q=k

F p ∩ F q.
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Hodge for Characteristic Cohomology

M smooth or analytic manifold
D ⊂ T (M) distribution on M (e.g. horizontal on a M-T domain)
E = D⊥ ⊂ T ∗(M) Exterior Differential System defined by D.
I ⊂ Ω∗(M) ideal generated by the sections of E and their differentials.
Characteristic Cohomology of E : de Rham

H∗E (Ω∗(M)/I, d)

Assume D bracket-generating.

Then dimH0
E = 1.

M is connected by piecewise horizontal curves.

Furthermore, let g = subriemannian or subhermitian metric supported on
D.
Then d∗ exists on Ω∗(M)/I and

L = dd∗ + d∗d

is hypoelliptic: unique solutions to

Lφ = Ψ

with Ψ smooth are smooth.
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Sublaplacian on functions:

L ∼ X 2
1 + ...+ X 2

d + lower order

Xi frame of D.
Regularity goes back to

Hormander 1965: If Xi generate the tangent sheaf, then X 2
1 + ...+ X 2

d is
hypoelliptic.

Theorem (M. Taylor, Griffiths): Assume M compact. Then
HL(M) = {ϕ : Lϕ = 0} is finite dimensional,

Ω(M) = HL(M)⊕ L(Ω(M))

and therefore
H∗E (Ω∗(M)/I, d) ∼= HL(M).

Assume M complex with Kahler indefinite metric h, but positive-definite
on D (e.g. horizontal distribution).
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Hodge decomposition for H∗E(Ω∗(M)/I, d)?

”Sub- Hodge decomposition”?

EDS’s at the boundary

Let M = a hyperbolic space KHN , K = R,C,Q,O, with metric g . Fix
o ∈ M and let
Sr = sphere of hyperbolic radius r around o.
S∞ = sphere at infinity.

Then g |Sr blows up as r →∞, but γ := limr→∞e−2rg |Sr defines on S∞:

– A standard spherical metric if K = R (up to multiples)

– A subriemannian conformal metric supported on a contact distribution
D ⊂ T (S) (and ∞ elsewhere), if K = C

– A subriemannian conformal metric supported on a ”polycontact”
distribution D ⊂ T (S) if K = Q,O.
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More precisely, the hyperbolic metric decomposes as

g = dr 2 + sinh2(2r)θ2 + sinh2(r)γ

where θ|S = is a ”polycontact” (= contact with values in Im(K)) 1-form,
and γ|S = subriemannian metric supported on D = kerθ.

Changing the origin o changes θ, γ by a multiple, but D and the conformal
class of γ are determined by the metric in the interior. Conversely, θ, γ
determine g up to multiples.

This is an instance of the AdS-QFT (Maldacena, holographic)
correspondence.

Main application: deforming the EDS θ, γ on the boundary via curvatures
(in the sense of Cartan Equivalence) leads to Einstein deformations of the
hyperbolic metric, which are new.
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Generalizes to higher rank, with ”parabolic” geometries at the boundary
[Biquard-Mazzeo, ”Parabolic Geometries as Conformal Infinities of
Einstein Metrics” (2006) ], and other situations, e.g. non-symmetric
harmonic spaces M = RN with N of Heisenberg type [K., ”Fundamental
solutions for a class of hypoelliptic operators”] (1980).

In all cases the limiting structures are real and determine filtrations of
TR(∂M).

Q: On period domains, how are MT domains reflected on the boundary
along horizontal directions?
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