The Hodge Theorems: sketch, consequences, generalizations

Aroldo Kaplan
¢ Introduction.
< Harmonic forms on hermitian manifolds.
< Kahler manifolds and the Hodge Decomposition.
& Sh action: Lefschetz Decomposition, bilinear relations.

© Remarks on algebraicity, generalizations, etc.
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M = compact complex manifold of dimension n.

Riemann’s Theorem (~ 1850): For n =1,

Hip(M,C) = QY M) & QL(M).

or: the number of independent holomorphic differentials on a compact
non-singular Riemann surface is equal to its genus.

Hodge Theorem (~ 1940): M = compact Kahler manifold. Then

H (M, C) = €D HP9(M)
p+q

_ ker(d) N AP9I(M)

~ im(d) N AP9(M)

HPA(M) : = Hap(M).

Hodge Structures 2/1



Reason for the lapse:

Hodge decomposition cannot not hold for general compact complex M:
H'=HOY @ HO =  pb(M) even
Expected for algebraic M — enough for the study of algebraic integrals.

But requires transcendental proof, so likely to hold for {?} D {algebraic}.

Hodge:
? = Kahler

Will sketch proof of the decomposition theorem.
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AP? = sheaf of germs of forms on M of the form

> fiydzyg Ao Adz, AdZy AL AdZ,,  fig€ G
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Dolbeault cohomology

.  ker(9 : API(M) — APIFTL(M))
Hs (M) = S(Ara-1(M))

No general relation between HX(M,C) and Hg’q(M) except for (Frolicher)
spectral sequence of (A**(M),,d).

Hermitian metrics

Positive hermitian inner product h(u, v) on the holomorphic T(M):
h(Au,v) = Mh(u,v),  h(u, A\v) = Xh(u, v)

h(u,v) = h(v,u), h(v,v)>>0
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J : complex structure on TR(M):
0 0 0 0
o) = oy Yay)= "oy
TE(M)=:Co TH(M) = T(M)® T(M)
eigenspaces +i of J. As real spaces with a J,
(T(M), i) = (TH(M), )
On TR(M),
=g—iw
g riemannian metric
w 2-form of type (1,1).

g(Ju,Jv) =g(u,v), w(u,Jv)=w(u,v), g(X,Y)=w(X,JY).

(M, w) determines h.
(M, g) too, so hermitian metrics exist.
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A hermitian metric on M defines one on AP9(M):

(6.0) = /M (e )20 (6):

and corresponding adjoint operators

*

d*,0%,0".

Laplacians:

Ng =dd* + d*d N5 = 00"+ 0"0
Ay preserves degree and real structure.

A preserves type (p,q).
(A, ) = (¢, &)

Harmonic forms:

HE(M) = {¢ € AX(M,C) : Ago = 0}
H2IM) = {¢ € API(M) : Ay¢ =0}
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Hodge Theorems on harmonic forms

For M compact orientable riemannian,
Hg(M) = H5(M)
For M compact hermitian
Hqu(M) o~ ﬁqu(M)

More precisely: every cohomology class contains a unique harmonic
representative (= form of smallest norm).

Sketch:

Harmonic = closed and coclosed:

0= (Aa,a) = (da, da) + (d*a, d*a) = |da|? + |d*al?
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Therefore have map

9k = HkL, a— [a]

Injective: [@] =0 = a = dw. Harmonic = coclosed: d*dw = 0 and
therefore
(dw, dw) = (d*dw, w) = 0.

Surjective: based on another "Hodge decomposition”:

Theorem. M compact Riemannian = $(M) is finite-dimensional and

A(M) = H(M) & A(AM))
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A(M) = kerA & imA

If A was a symmetric operator on finite-dimensional space, would
diagonalize, separate 0-eigenspace, etc. -
One does this weakly in the L, completion A(M): for any WL ker A the
equation

Np=WV

—

has a unique weak solution ¢ € A(M), meaning that for all o € A(M)
(¢, Aar) = (V, ).

This involves functional analysis.
Next one proves that A is elliptic, which = weak solutions with W

smooth, are smooth, QED.
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Now
A(M) = kerA @ imA

= H(M) & (dd* + d*d)(A(M))
= H(M) @ d(A(M)) ® d*(A(M))

because the last 3 terms are L.

Since
d*(A(M)) = Closed(M)*,
Closed(M) = $H(M) @ d(A(M))
=
H(M) = H(M),
QED.
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Kahler metrics
A hermitian metric h = g — iw is Kahler if dw = 0.

M is Kahler if it admits a Kahler metric.

o If dimgM = 1 any hermitian metric is Kahler.

o Projective implies Kahler, because Fubini-Study on CP"

I = 2
WFs = —%8alog(1 + Z | zi %)
is, and restricting to complex submanifolds preserves Kahler.

o Hopf surface (C2 — 0)/2% is not Kahler.
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Crucial Lemma. For a Kahler metric,

205 = Ng.
The Lemma implies that (p,q)-components of harmonic are harmonic, and
therefore
y)d(M @ yqu
p+q=k

H§(M,C) = P HEY(M)
p+q=k

s.t. HP9(M) = HaP(M).

Independent of the metric because

global closed (p, q) — forms

HPI(M) == =~ (PI(M)).

exact ones

This and the Lemma follow from the Hodge-Kahler identities.
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Define L € End(A*) by

L(¢) =wno
Ak N Ak+2, AP9 APtLa+1
and
AN=L".
Hodge-Kahler: B B
[A, 0] = —io", A, 0] = i0*

The proof for the euclidean metric
w=iXdz A dz

is a just a calculation.

In general, one proves that Kahler implies

h = Euclidean + terms of order > 2

which implies H-K, these being 1st. order.

Hodge Structures

14 /1



One concludes:

Hard Lefschetz Theorem:

(a):

LK. H™=K(M,R) — H""k(M,R)

is an isomorphism.
(b): The lowest-weight vectors

P* = HX(M,R) N (kerA)
generate H:

H(M,R) = P L/P*%
j

(c): (a) and (b) are compatible with the Hodge decomposition (because L
is of pure type).

Hodge Structures 15/1



Polarizing form on HX(M,R):

Q(al, [8]) = / oA B AWk
M
Real, symmetric for k even, antisymmetric for odd.

Theorem. Q is non-degenerate, the Hodge and Lefschetz decompositions
are orthogonal under Q(u, V), and on PP9 and for o # 0,

(n—p—q)(n—p—g—1)

Pa(—1)" " Q@) >> 0

Proof: use the Hodge star operator:
Qlad, [8]) = (~1)(L" i, +B)

and prove
k(k+1) |

(1) e
(n— k)!
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Geometrically: Under Poincaré duality
H¥(M,R) 2 Hap_(M,R)
For M — CPN,
o Primitive (or finite) cycles: don't intersect the hyperplane CPV~1 at oo.
o Hard Lefschetz expresses any cycle in terms of these + () CPN='s,
o @ = intersection form.

Some basic consequences

o The odd Betti numbers of a compact Kahler manifold are even, because

H2k+1(M’ C) = H?kH10 oy @ kLK @ H2k+10 @y @ Hk+LkK
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¢ Generalization of Riemann’s theorem:
QK(M) = H*O(Mm).

Proof: HP9(M) = Hg’q(M) = HY(M,QP) by Dolbeault's Theorem. In
particular HPO(M) = HO(M, QP) = QP(M).

© On CP" the only holomorphic forms are the constant functions.

Further remarks
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o Define a " weight filtration” Wy = H* @ ... ® H*. Then
(H*(M,Q), F*, W,)
is a mixed Hodge structure, polarized by (L., Q) and split /R by Y.

On Algebraicity.

o M Kahler is algebraic iff [w] € H*(M,Z) (Kodaira).
For M algebraic,

< There are algebraic constructions of the filtration
FP(HX(M,C)) = H*® @ ... @ HPk=P
[Deligne-lllusie 1989, etc.].

¢ There cannot be algebraic proofs of

HM,C)= @ FPnFa.
p+q=k
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Hodge for Characteristic Cohomology

M smooth or analytic manifold

D C T(M) distribution on M (e.g. horizontal on a M-T domain)

E = D+ C T*(M) Exterior Differential System defined by D.

Z C Q*(M) ideal generated by the sections of E and their differentials.
Characteristic Cohomology of E: de Rham

He(Q°(M)/1.d)

Assume D bracket-generating.

Then dimHg- =1
M is connected by piecewise horizontal curves.

Furthermore, let g = subriemannian or subhermitian metric supported on
D.
Then d* exists on Q*(M)/Z and
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Sublaplacian on functions:

L~ X? + ...+ X3 + lower order
X; frame of D.
Regularity goes back to

Hormander 1965: If X; generate the tangent sheaf, then Xl2 + ...+ Xg is
hypoelliptic.

Theorem (M. Taylor, Griffiths): Assume M compact. Then
H1(M) = {¢ : Ly = 0} is finite dimensional,
QM) = H1(M) © L(Q(M))

and therefore
HE(Q*(M)/Z, d) = 5H,.(M).

Assume M complex with Kahler indefinite metric h, but positive-definite
on D (e.g. horizontal distribution).
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Hodge decomposition for H:(Q2*(M)/Z, d)?

"Sub- Hodge decomposition”?

EDS's at the boundary

Let M = a hyperbolic space KHN, K =R, C,Q, O, with metric g. Fix
o€ M and let

S, = sphere of hyperbolic radius r around o.

Soc = sphere at infinity.

Then gls, blows up as r — oo, but v := lim, e 2'gls, defines on Su.:

— A standard spherical metric if K =R (up to multiples)

— A subriemannian conformal metric supported on a contact distribution
D C T(S) (and oo elsewhere), if K= C
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More precisely, the hyperbolic metric decomposes as
g = dr® +sinh?(2r)0? + sinh?(r)y

where f|s = is a " polycontact” (= contact with values in Im(K)) 1-form,
and 7y|s = subriemannian metric supported on D = kerf.

Changing the origin o changes 6,~ by a multiple, but D and the conformal
class of + are determined by the metric in the interior. Conversely, 6,~
determine g up to multiples.

This is an instance of the AdS-QFT (Maldacena, holographic)
correspondence.

Main application: deforming the EDS 6, on the boundary via curvatures

(in the sense of Cartan Equivalence) leads to Einstein deformations of the
hyperbolic metric, which are new.
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Generalizes to higher rank, with " parabolic” geometries at the boundary
[Biquard-Mazzeo, "Parabolic Geometries as Conformal Infinities of
Einstein Metrics” (2006) ], and other situations, e.g. non-symmetric
harmonic spaces M = RN with N of Heisenberg type [K., ”"Fundamental
solutions for a class of hypoelliptic operators”] (1980).

In all cases the limiting structures are real and determine filtrations of
TR(OM).

Q: On period domains, how are MT domains reflected on the boundary
along horizontal directions?
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