Asymptotics of the Period Map

Eduardo Cattani

University of Massachusetts Amherst

June 19, 2012 CBMS - TCU

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Hodge Decomposition

Let X be a smooth, n-dimensional, compact Kähler manifold. Then $H^k(X, \mathbb{C})$ decomposes as:

$$H^k(X,\mathbb{C}) = \bigoplus_{p+q=k} H^{p,q}; \ H^{q,p} = \overline{H^{p,q}},$$

where $H^{p,q}$ may be described as the set of cohomology classes admitting a representative of bidegree (p,q).

Requires existence of Kähler structure ω but depends only on complex structure.

(日) (日) (日) (日) (日) (日) (日)

Lefschetz Theorem

If $k = n - \ell$, $\ell \ge 0$, then multiplication by powers ω^j of a Kähler class is injective for $j \le \ell$ and an isomorphism for $j = \ell$.

The primitive cohomology is then defined as

$$H_0^k(X) := \{ \alpha \in H^k(X) : \omega^{\ell+1} \cup \alpha = 0 \}$$

The Hodge structure restricted to the primitive cohomology is polarized; i.e. satisfies the Hodge-Riemann bilinear relations:

(日) (日) (日) (日) (日) (日) (日)

Hodge-Riemann Bilinear Relations

Define a real bilinear form Q on $H^*(X, \mathbb{C})$ by

$$Q(\alpha,\beta)=(-1)^{\frac{k(k-1)}{2}}\int_X\alpha\cup\beta\;,$$

where $deg(\alpha) = k$ and the right-hand side is assumed to be zero if $deg(\alpha \cup \beta) \neq 2 \dim_{\mathbb{C}}(X)$.

Then, the Hodge decomposition on $H^k(X, \mathbb{C})$ is *Q*-orthogonal (first bilinear relation) and:

 $i^{p-q} Q(\alpha, \omega^{\ell} \cup \bar{\alpha}) \ge 0$ (second bilinear relation)

for any

 $\alpha \in H^{p,q}(X) \cap H^{p+q}_0(X,\mathbb{C})$; $k = p + q = n - \ell$.

Moreover, equality holds if and only if $\alpha = 0$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Varying the complex structure of X defines a variation of the Hodge structure in cohomology.

Typically this arises from a family of varieties:

 $f: \mathcal{X} \subset \mathbb{P}^N \to S,$

where *f* is a proper holomorphic submersion so that the fibers $X_b = f^{-1}(b)$ are smooth projective varieties.

Example: $\mathcal{X} = \{(x, y, t) : y^2 = x(x - 1)(x - t)\};$ $S = \{t : 0 < |t| < 1\}.$ The fibers X_t are curves of genus 1. Such a family is locally C^{∞} -trivial. Globally, the diffeomorphism between fibers is only well defined up to homotopy. At the cohomology level we get a homomorphism:

 $\rho \colon \pi_1(S, \mathcal{S}_0) \to \operatorname{Aut}_{\mathbb{Z}}(H^k(X_{\mathcal{S}_0}, \mathbb{Z}), Q_k) =: G_{\mathbb{Z}}$

called the monodromy representation.

Example: If $S = (\Delta^*)^r$ then $\pi_1(S) \cong \mathbb{Z}^r$ and ρ is determined by *r* commuting elements:

 $\gamma_1,\ldots,\gamma_r\in G_{\mathbb{Z}}.$

Theorem: (Landman; Katz) The γ_i are quasi-unipotent; i.e. $\gamma_i^{u_i} = e^{N_i}$. Moreover, $N_i^{k+1} = 0$.

Classifying Space

We fix the data $(V_{\mathbb{Z}}, k, h^{p,q}, Q)$ and consider the space *D* of all *Q*-polarized Hodge structures on $V_{\mathbb{C}}$, with these invariants.

To a Hodge decomposition we associate a filtration

$$F^{p} := \bigoplus_{a \ge p} H^{a,k-a}$$
; $F^{p} \oplus \overline{F^{k-p+1}} = V_{\mathbb{C}}.$

Conversely such a filtration defines a decomposition:

 $H^{p,q} := F^p \cap \overline{F^q}.$

 $D^{\text{open}} \subset \{ \text{flags} \cdots F^p \subset F^{p-1} \subset \cdots : Q(F^p, F^{k-p+1}) = 0 \} =: \check{D}$

 \check{D} is a smooth projective variety. The group $G_{\mathbb{C}} := \operatorname{Aut}(V_{\mathbb{C}}, Q)$ acts transitively on \check{D} and D is an orbit of $G_{\mathbb{R}} := \operatorname{Aut}(V_{\mathbb{R}}, Q)$:

 $\check{D}\cong G_{\mathbb{C}}/B$; $D\cong G_{\mathbb{R}}/V.$

$$V_{\mathbb{C}} = H^{2,0} \oplus H^{1,1} \oplus H^{0,2}; \ H^{0,2} = \overline{H^{2,0}}$$

The polarization Q is symmetric, negative-definite on the real subspace $(H^{2,0} \oplus H^{0,2}) \cap V_{\mathbb{R}}$ and positive-definite on $H^{1,1} \cap V_{\mathbb{R}}$.

$$G_{\mathbb{R}} \cong O(2h^{2,0},h^{1,1}); \quad V \cong U(h^{2,0}) \times O(h^{1,1}).$$

 $\check{D} = \{F^2 \subset F^1 : Q(F^2, F^1) = 0\} \subset \mathcal{G}(h^{2,0}, V_{\mathbb{C}}) \times \mathcal{G}(h^{2,0} + h^{1,1}, V_{\mathbb{C}}).$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

A family $f: \mathcal{X} \to S$ defines a map

 $\Phi\colon S\to G_{\mathbb{Z}}\backslash D$

The local liftings to *D* are holomorphic and satisfy differential equations: Griffiths' transversality (aka: Horizontality).

The tangent space to *D* is a subspace of the tangent space to the product of Grasmannians:

$$T_FD \subset \bigoplus_{p} Hom(F^p, V_{\mathbb{C}}/F^p).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

Griffiths' Transversality Theorem

The differential of the period map takes values on the subspace

 $\bigoplus_{p} Hom(F^{p}, F^{p-1}/F^{p}).$

Example: If $\Phi: U \subset \mathbb{C} \to D$ is a period map of PHS of weight two. Then the subspace $F(z) := F^2(z)$ determines the Hodge filtration and:

Q(F(z),F'(z))=0.

(日) (日) (日) (日) (日) (日) (日)

A VHS of weight *k* consists of: a local system $\mathcal{V}_{\mathbb{Z}} \to S$ and a filtration of the associated holomorphic vector bundle \mathbb{V} :

 $\cdots \subset \mathbb{F}^{p} \subset \mathbb{F}^{p-1} \subset \cdots \subset \mathbb{V}$

by holomorphic subbundles such that:

 $\blacksquare \mathbb{V} = \mathbb{F}^{p} \oplus \overline{\mathbb{F}^{k-p+1}}.$

 $\blacksquare \nabla(\mathcal{F}^p) \subset \Omega^1_S \otimes \mathcal{F}^{p-1}, \text{ where } \nabla \text{ is the flat connection on } \mathbb{V}.$

The VHS is polarized if there exists a flat, non-degenerate, bilinear form Q defined over \mathbb{Z} , which polarizes the HS on each fiber.

If $V_{\mathbb{C}} = \bigoplus_{p+q=k} H^{p,q}$ is a *PHS* on *V*, we get a HS of weight 0 on the Lie algebra $\mathfrak{g}_{\mathbb{C}}$:

$$\mathfrak{g}_{\mathbb{C}}=igoplus \mathfrak{g}^{r,-r}$$
; $[\mathfrak{g}^{r,-r},\mathfrak{g}^{s,-s}]\subset \mathfrak{g}^{r+s,-r-s}$

where

$$\mathfrak{g}^{r,-r}:=\{X:X(H^{p,q})\subset H^{p+r,q-r}\}.$$

We have $\mathfrak{b} = \operatorname{Lie}(B) = F^0 \mathfrak{g} = \bigoplus_{r \ge 0} \mathfrak{g}^{r, -r}$. The adjoint action of *B* leaves $F^{-1}\mathfrak{g} = \bigoplus_{r \ge -1} \mathfrak{g}^{r, -r}$. invariant. The corresponding homogeneous vector bundle on $G_{\mathbb{C}}/B$ is the horizontal subbundle.

Let
$$V_{\mathbb{C}} = \mathbb{C}^2 = H^{1,0} \oplus H^{0,1} = \mathbb{C} \cdot {i \choose 1} \oplus \mathbb{C} \cdot {-i \choose 1}$$

Then
 $\mathfrak{g}_{\mathbb{C}} = \mathfrak{sl}(2,\mathbb{C}) = \mathfrak{g}^{1,-1} \oplus \mathfrak{g}^{0,0} \oplus \mathfrak{g}^{-1,1}$

$$= \mathbb{C} \cdot \begin{pmatrix} 1 & -i \\ -i & 1 \end{pmatrix} \oplus \mathbb{C} \cdot \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \oplus \mathbb{C} \cdot \begin{pmatrix} 1 & i \\ i & -1 \end{pmatrix}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

Consider a period map

$$\Phi \colon (\Delta^*)^r \to \textit{G}_{\mathbb{Z}} \backslash \textit{D}$$

with (unipotent) monodromy $\gamma_j = e^{N_j}$, j = 1, ..., r, where

 $N_j \in \mathfrak{g}_{\mathbb{R}} := \operatorname{Lie}(G_{\mathbb{R}}).$

The map
$$\Psi(t_1, \ldots, t_r) = \exp\left(-\sum_j \frac{\log t_j}{2\pi i} N_j\right) \cdot \Phi(t_1, \ldots, t_r)$$
 is univalued with values in \check{D} .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Nilpotent Orbit Theorem

- The map Ψ extends holomorphically to Δ^r .
- For $|t| < \varepsilon$, the map

$$(t_1,\ldots,t_r)\mapsto \exp\left(\sum_j \frac{\log t_j}{2\pi i} N_j\right)\cdot F_{\lim}; F_{\lim}:=\Psi(0)\in \check{D}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

is an (abstract) period map, called a nilpotent orbit. (Horizontality $\Leftrightarrow N_j(F_{\lim}^p) \subset F_{\lim}^{p-1}$.)

The nilpotent orbit approximates the period map exponentially. Let $\mathcal{V}\to (\Delta^*)^r$ be a VPHS with unipotent monodromy. Then the vector bundle $\mathbb V$ has an extension

 $\overline{\mathbb{V}} \to \Delta^r$

whose sections around $0 \in \Delta^r$ are of the form

$$\tilde{\mathbf{v}}(t) = \exp\left(\sum_{j=1}^{r} \frac{\log t_j}{2\pi i} \mathbf{N}_j\right) \cdot \mathbf{v}(t)$$

where v(t) is a (multivalued) flat section of \mathbb{V} . Then, the Nilpotent Orbit Theorem asserts that the Hodge bundles \mathbb{F}^{p} extend to $\overline{\mathbb{V}}$.

A (real) mixed Hodge structure on V consists of:

- An increasing filtration $W = \{W_{\ell}\}$ defined over \mathbb{R} , and
- A decreasing filtration $F = \{F^p\}$, such that

F induces a Hodge structure of weight ℓ on Gr_{ℓ}^{W} ; i.e. the filtration

$$F^{p}(Gr_{\ell}^{W}) := (F^{p} \cap W_{\ell} + W_{\ell-1})/W_{\ell-1}$$

(日) (日) (日) (日) (日) (日) (日)

is a Hodge structure of weight ℓ .

Mixed Hodge Structures and Bigradings

Theorem

(Deligne) There is an equivalence between mixed Hodge structures (W, F) on V and bigradings

$$V_{\mathbb{C}} = igoplus_{a,b} I^{a,b}$$

such that

$$I^{a,b} \equiv \overline{I^{b,a}} \left(mod \bigoplus_{r < a, s < b} I^{r,s} \right).$$

If equality holds then we say that (W, F) is split over \mathbb{R} .

Given the bigrading we set:

$$W_{\ell} = \bigoplus_{a+b \leq \ell} I^{a,b}; \quad F^{p} = \bigoplus_{a \geq p} I^{a,b}.$$

Given $N: V \rightarrow V$, nilpotent, we can define a *unique increasing filtration* $W_{\ell}(N)$ such that:

- $N(W_{\ell}(N)) \subset W_{\ell-2}(N)$, and
- For $\ell \ge 0$, N^{ℓ} : $\operatorname{Gr}_{\ell}^{W} := W_{\ell}/W_{\ell-1} \to \operatorname{Gr}_{-\ell}^{W}$ is an isomorphism.

Example: If $N^2 = 0$, then

 $\{0\} \subset W_{-1} = \operatorname{Im}(N) \subset W_0 = \ker(N) \subset W_1 = V.$

$$N: \operatorname{Gr}_{1}^{W} = V/\operatorname{ker}(N) \xrightarrow{\cong} \operatorname{Im}(N) = \operatorname{Gr}_{-1}^{W}.$$

(日) (日) (日) (日) (日) (日) (日)

Limiting MHS and Nilpotent Orbits

Theorem (Griffiths, Deligne, Schmid, Kaplan, C.)

Suppose

$$\exp\left(\sum_{j=1}^r rac{\log t_j}{2\pi i} \, \textit{N}_j
ight) \cdot \textit{F} \, ; \quad \textit{F} \in \check{D},$$

is a nilpotent orbit of Q-polarized HS of weight k. Then

- 1 $N(F^p) \subset F^{p-1}$ and $N^{k+1} = 0$ for every N in the open cone $C := \{\sum_j \lambda_j N_j, \lambda_j \in \mathbb{R}_{>0}\}.$
- 2 For every $N, N' \in C$, W(N) = W(N') := W(C)
- (W(C)[-k], F) is a MHS (The limiting MHS.)
- For every N ∈ C, the form Q(•, N^ℓ•) polarizes the HS (of weight k + ℓ in the subspace:

 $\Pr_{k+\ell} := \ker\{\mathbf{N}^{\ell+1} \colon \operatorname{Gr}_{k+\ell}^{W} \to \operatorname{Gr}_{k-\ell-2}^{W}\}; \quad W = W(C)[-k].$

Theorem (Griffiths, Deligne, Schmid, Kaplan, C.)

Conversely, if $(N_1, ..., N_r; F, Q, k)$, $N_j \in g_{\mathbb{R}}$, $F \in \check{D}$, satisfy the above four properties, then the map

$$(t_1,\ldots,t_r) o \exp\left(\sum_{j=1}^r rac{\log t_j}{2\pi i} N_j\right) \cdot F$$

(日) (日) (日) (日) (日) (日) (日)

is a VPHS for $|t| < \varepsilon$.

Suppose (W, F_0) , W = W(N)[-k], is a polarized MHS split over \mathbb{R} . Then

$$V_{\mathbb{R}} = \bigoplus_{\ell=0}^{2k} V_{\ell}; \quad (V_{\ell})_{\mathbb{C}} = \bigoplus_{p+q=\ell} I^{p,q}; \quad I^{q,p} = \overline{I^{p,q}}.$$

We let *Y* denote the real linear transformation defined by $Y(v) = (\ell - k) \cdot v$ if $v \in V_{\ell}$. Note that $Y \in \mathfrak{g}_{\mathbb{R}}$ and

$$N(I^{p,q}) \subset I^{p-1,q-1} \Rightarrow [Y,N] = -2N.$$

SL₂-orbits and Polarized Split MHS

Theorem

If $(W(N)[-k], F_0)$ is a PMHS split over \mathbb{R} , then there exist real representations

$$ho_*\colon \mathfrak{sl}_2(\mathbb{C}) o \mathfrak{g}_\mathbb{C} ; \quad
ho\colon SL_2(\mathbb{C}) o G_\mathbb{C}$$

such that

$$\rho_*\begin{pmatrix} -1 & 0\\ 0 & 1 \end{pmatrix} = Y; \quad \rho_*\begin{pmatrix} 0 & 1\\ 0 & 0 \end{pmatrix} = N$$

giving rise to a horizontal equivariant morphism $\tilde{\rho} \colon \mathbb{P}^1 \to \check{D}$; $\tilde{\rho}(g \cdot i) = \rho(g) \cdot (e^{iN} \cdot F_0)$ mapping the upper-half plane $U \subset \mathbb{P}^1$ to $D \subset \check{D}$. Moreover, ρ_* is a morphism of Hodge structures (induced by $i \in U$ and $\exp(iN) \in D$). (Hodge representation). Conversely, any such Hodge representation arises from a PMHS split over \mathbb{R} .

There are canonical constructions that associate a split MHS to a PMHS. One such construction is given by Schmid's SL_2 -orbit Theorem which also provides a detailed description of the relationship with the nilpotent orbit.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

A different functorial construction is due to Deligne.

These results extend to several variables.

MHS in the Lie Algebra

Suppose (W(C)[-k], F, Q, k) is a PMHS on $V_{\mathbb{C}}$. Let $\{I^{p,q}\}$ denote the associated bigrading. Then, we can define a bigrading of $\mathfrak{g}_{\mathbb{C}}$ by

$$l^{a,b}\mathfrak{g}:=\{X\in\mathfrak{g}_{\mathbb{C}}:X(l^{p,q})\subset l^{p+a,q+b}\}.$$

This defines a MHS. Moreover $[I^{a,b}\mathfrak{g}, I^{a',b'}\mathfrak{g}] \subset I^{a+a',b+b'}\mathfrak{g}$. We have: $\operatorname{Lie}(\operatorname{Stab}(F)) = F^0\mathfrak{g} = \bigoplus_{a \ge 0} I^{a,b}\mathfrak{g}$ and

$$\mathfrak{g}_{-}:=igoplus_{a<0}I^{a,b}\mathfrak{g}$$

is a complementary subspace. So we have a local model for D near F:

$$X \in \mathfrak{g}_{-} \mapsto \exp(X) \cdot F \in \check{D}.$$

Let $\Phi: (\Delta^*)^r \to G_{\mathbb{Z}} \setminus D$ be a period mapping with monodromy N_1, \ldots, N_r and F_{lim} the limiting Hodge Filtration. Then

$$\Psi(t) = \exp \Gamma(t) \cdot F_{\lim}$$
, and

$$\Phi(t) = \exp\left(\sum_{j} \frac{\log t_j}{2\pi i} N_j\right) \cdot \exp\Gamma(t) \cdot F_{\lim},$$

where $\Gamma: \Delta^r \to \mathfrak{g}_-$ is holomorphic and $\Gamma(0) = 0$. We can write

$$\Gamma(t) = \sum_{a < 0} \Gamma_a(t); \quad \Gamma_a(t) \in \bigoplus_b I^{a,b} \mathfrak{g}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Asymptotics

Theorem

If Φ is horizontal then

$$X(t) = \sum_{j} \frac{\log t_j}{2\pi i} N_j + \Gamma_{-1}(t)$$

satisfies the differential equation

 $dX \wedge dX = 0.$

Conversely, if $Y: \Delta^r \to \bigoplus_b I^{-1,b}\mathfrak{g}$, Y(0) = 0, is holomorphic and

$$X(t) = \sum_{j} \frac{\log t_{j}}{2\pi i} N_{j} + Y(t)$$

satisfies the differential equation then, there exists a unique period map with $\Gamma_{-1}(t) = Y(t)$.

Consider a PVHS over Δ^* of weight 3 and $h^{ij} = 1$. Assume that the limiting MHS splits over \mathbb{R} and $N^3 \neq 0$. Then

 $V_{\mathbb{C}} = I^{0,0} \oplus I^{1,1} \oplus I^{2,2} \oplus I^{3,3}$

and

$$\Gamma_{-1}(t) = \begin{pmatrix} 0 & a(t) & 0 & 0 \\ 0 & 0 & b(t) & 0 \\ 0 & 0 & 0 & a(t) \\ 0 & 0 & 0 & 0 \end{pmatrix},$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ●

The definition of $\Gamma(t)$ depends on the choice of parameter *t*. One can show that for $q := t \exp(2\pi i a(t))$, a(q) = 0. This parameter is canonical.

Thus, the period map depends only on the nilpotent orbit and one analytic function b(q).

The function b(q) also has a nice interpretation: For a suitably normalized choice $\omega(q) \in H^{3,0}(q) = F^3(q)$, we may define

$$\kappa := \boldsymbol{Q}\left(\omega(\boldsymbol{q}), \Theta^{3}(\omega(\boldsymbol{q}))\right); \quad \Theta := 2\pi i \boldsymbol{q} \frac{d}{d\boldsymbol{q}}.$$

This is called the *normalized Yukawa coupling*. We have:

$$\kappa=2\pi {\it i} q {db\over dq}.$$