Asymptotics of the Period Map

Eduardo Cattani

University of Massachusetts Amherst

June 19, 2012
CBMS - TCU

Hodge Decomposition

Hodge Decomposition

Let X be a smooth, n-dimensional, compact Kähler manifold. Then $H^{k}(X, \mathbb{C})$ decomposes as:

$$
H^{k}(X, \mathbb{C})=\bigoplus_{p+q=k} H^{p, q} ; \quad H^{q, p}=\overline{H^{p, q}}
$$

where $H^{p, q}$ may be described as the set of cohomology classes admitting a representative of bidegree (p, q).

Requires existence of Kähler structure ω but depends only on complex structure.

Lefschetz Theorems and Primitive Cohomology

Lefschetz Theorem

If $k=n-\ell, \ell \geq 0$, then multiplication by powers ω^{j} of a Kähler class is injective for $j \leq \ell$ and an isomorphism for $j=\ell$.

The primitive cohomology is then defined as

$$
H_{0}^{k}(X):=\left\{\alpha \in H^{k}(X): \omega^{\ell+1} \cup \alpha=0\right\}
$$

The Hodge structure restricted to the primitive cohomology is polarized; i.e. satisfies the Hodge-Riemann bilinear relations:

Hodge-Riemann Bilinear Relations

Define a real bilinear form Q on $H^{*}(X, \mathbb{C})$ by

$$
Q(\alpha, \beta)=(-1)^{\frac{k(k-1)}{2}} \int_{X} \alpha \cup \beta,
$$

where $\operatorname{deg}(\alpha)=k$ and the right-hand side is assumed to be zero if $\operatorname{deg}(\alpha \cup \beta) \neq 2 \operatorname{dim}_{\mathbb{C}}(X)$.
Then, the Hodge decomposition on $H^{k}(X, \mathbb{C})$ is Q-orthogonal (first bilinear relation) and:

$$
i^{p-q} Q\left(\alpha, \omega^{\ell} \cup \bar{\alpha}\right) \geq 0 \quad \text { (second bilinear relation) }
$$

for any

$$
\alpha \in H^{p, q}(X) \cap H_{0}^{p+q}(X, \mathbb{C}) ; \quad k=p+q=n-\ell .
$$

Moreover, equality holds if and only if $\alpha=0$.

Families

Varying the complex structure of X defines a variation of the Hodge structure in cohomology.
Typically this arises from a family of varieties:

$$
f: \mathcal{X} \subset \mathbb{P}^{N} \rightarrow S,
$$

where f is a proper holomorphic submersion so that the fibers $X_{b}=f^{-1}(b)$ are smooth projective varieties.
Example: $\mathcal{X}=\left\{(x, y, t): y^{2}=x(x-1)(x-t)\right\}$;
$S=\{t: 0<|t|<1\}$.
The fibers X_{t} are curves of genus 1 .

Monodromy

Such a family is locally C^{∞}-trivial. Globally, the diffeomorphism between fibers is only well defined up to homotopy. At the cohomology level we get a homomorphism:

$$
\rho: \pi_{1}\left(S, s_{0}\right) \rightarrow \operatorname{Aut}_{\mathbb{Z}}\left(H^{k}\left(X_{s_{0}}, \mathbb{Z}\right), Q_{k}\right)=: G_{\mathbb{Z}}
$$

called the monodromy representation.
Example: If $S=\left(\Delta^{*}\right)^{r}$ then $\pi_{1}(S) \cong \mathbb{Z}^{r}$ and ρ is determined by r commuting elements:

$$
\gamma_{1}, \ldots, \gamma_{r} \in G_{\mathbb{Z}}
$$

Theorem: (Landman; Katz) The γ_{i} are quasi-unipotent; i.e. $\gamma_{i}^{u_{i}}=e^{N_{i}}$. Moreover, $N_{i}^{k+1}=0$.

Classifying Space

We fix the data ($V_{\mathbb{Z}}, k, h^{p, q}, Q$) and consider the space D of all Q-polarized Hodge structures on $V_{\mathbb{C}}$, with these invariants.

To a Hodge decomposition we associate a filtration

$$
F^{p}:=\bigoplus_{a \geq p} H^{a, k-a} ; \quad F^{p} \oplus \overline{F^{k-p+1}}=V_{\mathbb{C}} .
$$

Conversely such a filtration defines a decomposition:

$$
\begin{gathered}
H^{p, q}:=F^{p} \cap \overline{F^{q}} . \\
D^{\text {open }} \subset\left\{\text { flags } \cdots F^{p} \subset F^{p-1} \subset \cdots: Q\left(F^{p}, F^{k-p+1}\right)=0\right\}=: \check{D}
\end{gathered}
$$

\check{D} is a smooth projective variety. The group $G_{\mathbb{C}}:=\operatorname{Aut}\left(V_{\mathbb{C}}, Q\right)$ acts transitively on D and D is an orbit of $G_{\mathbb{R}}:=\operatorname{Aut}\left(V_{\mathbb{R}}, Q\right)$:

$$
\check{D} \cong G_{\mathbb{C}} / B ; \quad D \cong G_{\mathbb{R}} / V
$$

Example: weight 2

$$
V_{\mathbb{C}}=H^{2,0} \oplus H^{1,1} \oplus H^{0,2} ; H^{0,2}=\overline{H^{2,0}}
$$

The polarization Q is symmetric, negative-definite on the real subspace $\left(H^{2,0} \oplus H^{0,2}\right) \cap V_{\mathbb{R}}$ and positive-definite on $H^{1,1} \cap V_{\mathbb{R}}$.

$$
G_{\mathbb{R}} \cong O\left(2 h^{2,0}, h^{1,1}\right) ; \quad V \cong U\left(h^{2,0}\right) \times O\left(h^{1,1}\right)
$$

$$
\check{D}=\left\{F^{2} \subset F^{1}: Q\left(F^{2}, F^{1}\right)=0\right\} \subset \mathcal{G}\left(h^{2,0}, V_{\mathbb{C}}\right) \times \mathcal{G}\left(h^{2,0}+h^{1,1}, V_{\mathbb{C}}\right)
$$

Period Map

A family $f: \mathcal{X} \rightarrow S$ defines a map

$$
\Phi: S \rightarrow G_{\mathbb{Z}} \backslash D
$$

The local liftings to D are holomorphic and satisfy differential equations: Griffiths' transversality (aka: Horizontality).

The tangent space to D is a subspace of the tangent space to the product of Grasmannians:

$$
T_{F} D \subset \bigoplus_{p} \operatorname{Hom}\left(F^{p}, V_{\mathbb{C}} / F^{p}\right)
$$

Griffiths' Transversality

Griffiths' Transversality Theorem

The differential of the period map takes values on the subspace

$$
\bigoplus_{p} \operatorname{Hom}\left(F^{p}, F^{p-1} / F^{p}\right) .
$$

Example: If $\Phi: U \subset \mathbb{C} \rightarrow D$ is a period map of PHS of weight two. Then the subspace $F(z):=F^{2}(z)$ determines the Hodge filtration and:

$$
Q\left(F(z), F^{\prime}(z)\right)=0
$$

Abstract Variations of Hodge Structure

A VHS of weight k consists of: a local system $\mathcal{V}_{\mathbb{Z}} \rightarrow S$ and a filtration of the associated holomorphic vector bundle \mathbb{V} :

$$
\cdots \subset \mathbb{F}^{p} \subset \mathbb{F}^{p-1} \subset \cdots \subset \mathbb{V}
$$

by holomorphic subbundles such that:
■ $\mathbb{V}=\mathbb{F}^{p} \oplus \overline{\mathbb{F}^{k-p+1}}$.
■ $\nabla\left(\mathcal{F}^{p}\right) \subset \Omega_{S}^{1} \otimes \mathcal{F}^{p-1}$, where ∇ is the flat connection on \mathbb{V}.
The VHS is polarized if there exists a flat, non-degenerate, bilinear form \mathcal{Q} defined over \mathbb{Z}, which polarizes the HS on each fiber.

Hodge Structure in the Lie Algebra

If $V_{\mathbb{C}}=\bigoplus H^{p, q}$ is a PHS on V, we get a HS of weight 0 on $p+q=k$
the Lie algebra $\mathfrak{g}_{\mathbb{C}}$:

$$
\mathfrak{g}_{\mathbb{C}}=\bigoplus \mathfrak{g}^{r,-r} ; \quad\left[\mathfrak{g}^{r,-r}, \mathfrak{g}^{s,-s}\right] \subset \mathfrak{g}^{r+s,-r-s}
$$

where

$$
\mathfrak{g}^{r,-r}:=\left\{X: X\left(H^{p, q}\right) \subset H^{p+r, q-r}\right\} .
$$

We have $\mathfrak{b}=\operatorname{Lie}(B)=F^{0} \mathfrak{g}=\bigoplus_{r \geq 0} \mathfrak{g}^{r,-r}$. The adjoint action of B leaves $F^{-1} \mathfrak{g}=\bigoplus_{r \geq-1} \mathfrak{g}^{r,-r}$. invariant. The corresponding homogeneous vector bundle on $G_{\mathbb{C}} / B$ is the horizontal subbundle.

Example

Let $\quad V_{\mathbb{C}}=\mathbb{C}^{2}=H^{1,0} \oplus H^{0,1}=\mathbb{C} \cdot\binom{i}{1} \oplus \mathbb{C} \cdot\binom{-i}{1}$
Then

$$
\begin{gathered}
\mathfrak{g}_{\mathbb{C}}=\mathfrak{s} /(2, \mathbb{C})=\mathfrak{g}^{1,-1} \oplus \mathfrak{g}^{0,0} \oplus \mathfrak{g}^{-1,1} \\
=\mathbb{C} \cdot\left(\begin{array}{cc}
1 & -i \\
-i & 1
\end{array}\right) \oplus \mathbb{C} \cdot\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \oplus \mathbb{C} \cdot\left(\begin{array}{cc}
1 & i \\
i & -1
\end{array}\right)
\end{gathered}
$$

Asymptotic Behavior of the Period Map

Consider a period map

$$
\Phi:\left(\Delta^{*}\right)^{r} \rightarrow G_{\mathbb{Z}} \backslash D
$$

with (unipotent) monodromy $\gamma_{j}=e^{N_{j}}, j=1, \ldots, r$, where

$$
N_{j} \in \mathfrak{g}_{\mathbb{R}}:=\operatorname{Lie}\left(G_{\mathbb{R}}\right)
$$

The map $\psi\left(t_{1}, \ldots, t_{r}\right)=\exp \left(-\sum_{j} \frac{\log t_{j}}{2 \pi i} N_{j}\right) \cdot \Phi\left(t_{1}, \ldots, t_{r}\right)$ is univalued with values in \check{D}.

Schmid's Nilpotent Orbit Theorem

Nilpotent Orbit Theorem

■ The map ψ extends holomorphically to Δ^{r}.
■ For $|t|<\varepsilon$, the map

$$
\left(t_{1}, \ldots, t_{r}\right) \mapsto \exp \left(\sum_{j} \frac{\log t_{j}}{2 \pi i} N_{j}\right) \cdot F_{\mathrm{lim}} ; F_{\mathrm{lim}}:=\psi(0) \in \check{D}
$$

is an (abstract) period map, called a nilpotent orbit. (Horizontality $\Leftrightarrow N_{j}\left(F_{\text {lim }}^{p}\right) \subset F_{\lim }^{p-1}$.)
■ The nilpotent orbit approximates the period map Φ exponentially.

Reformulation of Schmid's Nilpotent Orbit Theorem

Let $\mathcal{V} \rightarrow\left(\Delta^{*}\right)^{r}$ be a VPHS with unipotent monodromy. Then the vector bundle \mathbb{V} has an extension

$$
\overline{\mathbb{V}} \rightarrow \Delta^{r}
$$

whose sections around $0 \in \Delta^{r}$ are of the form

$$
\tilde{v}(t)=\exp \left(\sum_{j=1}^{r} \frac{\log t_{j}}{2 \pi i} N_{j}\right) \cdot v(t)
$$

where $v(t)$ is a (multivalued) flat section of \mathbb{V}. Then, the Nilpotent Orbit Theorem asserts that the Hodge bundles \mathbb{F}^{p} extend to $\overline{\mathbb{V}}$.

Mixed Hodge Structures

A (real) mixed Hodge structure on V consists of:
■ An increasing filtration $W=\left\{W_{\ell}\right\}$ defined over \mathbb{R}, and
■ A decreasing filtration $F=\left\{F^{p}\right\}$, such that
F induces a Hodge structure of weight ℓ on $G r_{\ell}^{W}$; i.e. the filtration

$$
F^{P}\left(\operatorname{Gr}_{\ell}^{W}\right):=\left(F^{P} \cap W_{\ell}+W_{\ell-1}\right) / W_{\ell-1}
$$

is a Hodge structure of weight ℓ.

Mixed Hodge Structures and Bigradings

Theorem
(Deligne) There is an equivalence between mixed Hodge structures (W, F) on V and bigradings

$$
V_{\mathbb{C}}=\bigoplus_{a, b} I^{a, b}
$$

such that

$$
I^{a, b} \equiv \overline{l^{b, a}}\left(\bmod \bigoplus_{r<a, s<b} I^{r, s}\right)
$$

If equality holds then we say that (W, F) is split over \mathbb{R}.
Given the bigrading we set:

$$
W_{\ell}=\bigoplus_{a+b \leq \ell} I^{a, b} ; \quad F^{p}=\bigoplus_{a \geq p} I^{a, b}
$$

Weight Filtration

Given $N: V \rightarrow V$, nilpotent, we can define a unique increasing filtration $W_{\ell}(N)$ such that:
■ $N\left(W_{\ell}(N)\right) \subset W_{\ell-2}(N)$, and
\square For $\ell \geq 0, N^{\ell}: \operatorname{Gr}_{\ell}^{W}:=W_{\ell} / W_{\ell-1} \rightarrow \operatorname{Gr}_{-\ell}^{W}$ is an isomorphism.

Example: If $N^{2}=0$, then

$$
\begin{gathered}
\{0\} \subset W_{-1}=\operatorname{Im}(N) \subset W_{0}=\operatorname{ker}(N) \subset W_{1}=V \\
N: G r_{1}^{W}=V / \operatorname{ker}(N) \xlongequal{\rightrightarrows} \operatorname{Im}(N)=G r_{-1}^{W}
\end{gathered}
$$

Limiting MHS and Nilpotent Orbits

Theorem (Griffiths, Deligne, Schmid, Kaplan, C.)
Suppose

$$
\exp \left(\sum_{j=1}^{r} \frac{\log t_{j}}{2 \pi i} N_{j}\right) \cdot F ; \quad F \in \check{D}
$$

is a nilpotent orbit of Q-polarized HS of weight k. Then
$1 N\left(F^{p}\right) \subset F^{p-1}$ and $N^{k+1}=0$ for every N in the open cone $C:=\left\{\sum_{j} \lambda_{j} N_{j}, \lambda_{j} \in \mathbb{R}_{>0}\right\}$.
2 For every $N, N^{\prime} \in C, W(N)=W\left(N^{\prime}\right):=W(C)$
$3(W(C)[-k], F)$ is a MHS (The limiting MHS.)
4 For every $N \in C$, the form $Q\left(\bullet, N^{\ell} \bullet\right)$ polarizes the $H S$ (of weight $k+\ell$ in the subspace:

$$
\operatorname{Pr}_{k+\ell}:=\operatorname{ker}\left\{N^{\ell+1}: G r_{k+\ell}^{W} \rightarrow G r_{k-\ell-2}^{W}\right\} ; \quad W=W(C)[-k] .
$$

Limiting MHS and Nilpotent Orbits

Theorem (Griffiths, Deligne, Schmid, Kaplan, C.)

Conversely, if $\left(N_{1}, \ldots, N_{r} ; F, Q, k\right), N_{j} \in \mathfrak{g}_{\mathbb{R}}, F \in \check{D}$, satisfy the above four properties, then the map

$$
\left(t_{1}, \ldots, t_{r}\right) \rightarrow \exp \left(\sum_{j=1}^{r} \frac{\log t_{j}}{2 \pi i} N_{j}\right) \cdot F
$$

is a VPHS for $|t|<\varepsilon$.

$S L_{2}$-orbits and Polarized Split MHS

Suppose $\left(W, F_{0}\right), W=W(N)[-k]$, is a polarized MHS split over \mathbb{R}. Then

$$
V_{\mathbb{R}}=\bigoplus_{\ell=0}^{2 k} V_{\ell} ; \quad\left(V_{\ell}\right)_{\mathbb{C}}=\bigoplus_{p+q=\ell} 1^{p, q} ; \quad \quad^{q, p}=\overline{\left.\right|^{p, q}}
$$

We let Y denote the real linear transformation defined by $Y(v)=(\ell-k) \cdot v$ if $v \in V_{\ell}$. Note that $Y \in \mathfrak{g}_{\mathbb{R}}$ and

$$
N\left(I^{p, q}\right) \subset I^{p-1, q-1} \Rightarrow[Y, N]=-2 N
$$

$S L_{2}$-orbits and Polarized Split MHS

Theorem

If $\left(W(N)[-k], F_{0}\right)$ is a PMHS split over \mathbb{R}, then there exist real representations

$$
\rho_{*}: \mathfrak{s} I_{2}(\mathbb{C}) \rightarrow \mathfrak{g}_{\mathbb{C}} ; \quad \rho: S L_{2}(\mathbb{C}) \rightarrow G_{\mathbb{C}}
$$

such that

$$
\rho_{*}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)=Y ; \quad \rho_{*}\left(\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right)=N
$$

giving rise to a horizontal equivariant morphism $\tilde{\rho}: \mathbb{P}^{1} \rightarrow \check{D}$; $\tilde{\rho}(g \cdot i)=\rho(g) \cdot\left(e^{i N} . F_{0}\right)$ mapping the upper-half plane $U \subset \mathbb{P}^{1}$ to $D \subset \check{D}$. Moreover, ρ_{*} is a morphism of Hodge structures (induced by $i \in U$ and $\exp (i N) \in D$). (Hodge representation).

$S L_{2}$-orbits and Polarized Split MHS

Conversely, any such Hodge representation arises from a PMHS split over \mathbb{R}.
There are canonical constructions that associate a split MHS to a PMHS. One such construction is given by Schmid's $S L_{2}$-orbit Theorem which also provides a detailed description of the relationship with the nilpotent orbit.
A different functorial construction is due to Deligne.
These results extend to several variables.

MHS in the Lie Algebra

Suppose $(W(C)[-k], F, Q, k)$ is a PMHS on $V_{\mathbb{C}}$. Let $\left\{{ }^{p, q},\right\}$ denote the associated bigrading. Then, we can define a bigrading of $\mathfrak{g}_{\mathbb{C}}$ by

$$
I^{a, b} \mathfrak{g}:=\left\{X \in \mathfrak{g}_{\mathbb{C}}:\left.X\left(I^{p, q}\right) \subset\right|^{p+a, q+b}\right\} .
$$

This defines a MHS. Moreover $\left[l^{a, b} \mathfrak{g}, a^{\prime}, b^{\prime} \mathfrak{g}\right] \subset l^{a+a^{\prime}, b+b^{\prime}} \mathfrak{g}$.
We have: $\operatorname{Lie}(\operatorname{Stab}(F))=F^{0} \mathfrak{g}=\bigoplus_{a \geq 0} 1^{a, b} \mathfrak{g}$ and

$$
\mathfrak{g}_{-}:=\bigoplus_{a<0}{ }^{a, b} \mathfrak{g}_{\mathfrak{g}}
$$

is a complementary subspace. So we have a local model for \check{D} near F :

$$
X \in \mathfrak{g}_{-} \mapsto \exp (X) \cdot F \in \check{D} .
$$

Asymptotics

Let $\Phi:\left(\Delta^{*}\right)^{r} \rightarrow G_{\mathbb{Z}} \backslash D$ be a period mapping with monodromy N_{1}, \ldots, N_{r} and $F_{\text {lim }}$ the limiting Hodge Filtration. Then

$$
\begin{gathered}
\Psi(t)=\exp \Gamma(t) \cdot F_{\mathrm{lim}}, \text { and } \\
\Phi(t)=\exp \left(\sum_{j} \frac{\log t_{j}}{2 \pi i} N_{j}\right) \cdot \exp \Gamma(t) \cdot F_{\mathrm{lim}}
\end{gathered}
$$

where $\Gamma: \Delta^{r} \rightarrow \mathfrak{g}_{-}$is holomorphic and $\Gamma(0)=0$. We can write

$$
\Gamma(t)=\sum_{a<0} \Gamma_{a}(t) ; \quad \Gamma_{a}(t) \in \bigoplus_{b} I^{a, b} \mathfrak{g}
$$

Asymptotics

Theorem

If Φ is horizontal then

$$
X(t)=\sum_{j} \frac{\log t_{j}}{2 \pi i} N_{j}+\Gamma_{-1}(t)
$$

satisfies the differential equation

$$
d X \wedge d X=0
$$

Conversely, if $Y: \Delta^{r} \rightarrow \bigoplus_{b} I^{-1, b} \mathfrak{g}, Y(0)=0$, is holomorphic and

$$
X(t)=\sum_{j} \frac{\log t_{j}}{2 \pi i} N_{j}+Y(t)
$$

satisfies the differential equation then, there exists a unique period map with $\Gamma_{-1}(t)=Y(t)$.

Weight-three Example (Deligne)

Consider a PVHS over Δ^{*} of weight 3 and $h^{i j}=1$. Assume that the limiting MHS splits over \mathbb{R} and $N^{3} \neq 0$. Then

$$
V_{\mathbb{C}}=I^{0,0} \oplus I^{1,1} \oplus I^{2,2} \oplus I^{\beta, 3}
$$

and

$$
\Gamma_{-1}(t)=\left(\begin{array}{cccc}
0 & a(t) & 0 & 0 \\
0 & 0 & b(t) & 0 \\
0 & 0 & 0 & a(t) \\
0 & 0 & 0 & 0
\end{array}\right),
$$

Weight-three Example (Deligne)

The definition of $\Gamma(t)$ depends on the choice of parameter t. One can show that for $q:=t \exp (2 \pi i a(t)), a(q)=0$. This parameter is canonical.

Thus, the period map depends only on the nilpotent orbit and one analytic function $b(q)$.
The function $b(q)$ also has a nice interpretation: For a suitably normalized choice $\omega(q) \in H^{3,0}(q)=F^{3}(q)$, we may define

$$
\kappa:=Q\left(\omega(q), \Theta^{3}(\omega(q))\right) ; \quad \Theta:=2 \pi i q \frac{d}{d q} .
$$

This is called the normalized Yukawa coupling. We have:

$$
\kappa=2 \pi i q \frac{d b}{d q}
$$

