
Calculus I
Main Ideas

This document provides a summary of the major ideas discussed in class each day. You

are responsible for understanding and being able to apply these ideas. There will be questions

about them on quizzes and exams, as well as written homework assignments.

August 25:

• Suppose s(t) is a function that tells us distance from a given location as a function of

time; in other words, s(t) is how far we’ve traveled as of time t. If we have two times

t0, t1, we can find the average velocity between the two times using

Average velocity =
s(t1)− s(t0)

t1 − t0
.

If we are moving at a constant rate, this is that rate (rate = distance
time

).

• We can approximate the instantaneous velocity at t0 by taking t1− t0 to be very small.

As we let t1 get closer and closer to t0 we can hope to approach a limiting value that

gives us the exact instantaneous velocity at t0.

• Geometrically, if we graph the function s(t), the average velocities s(t1)−s(t0)
t1−t0 correspond

to the slopes of the secant lines through (t0, s(t0)) and (t1, s(t1)). As we let t1 get closer

and closer to t0 these slopes limit to the slope of the tangent line to the graph through

the point (t0, s(t0)).

August 25, Section 2.2

• Suppose f(x) is a function. If as x gets closer and closer to a (without actually being

a) there is some number L such that f(x) gets closer and closer to L, then we say that

L is the limit of f(x) as x approaches a and write limx→a f(x) = L.

• Limits can tell us what the value of a function “should be” at places where the function

isn’t actually defined. For example, this is how we figured out instantaneous velocity

yesterday.

• Limits might not exist! For example, if the function jumps or if it oscillates too much,

then a limit might not exist.

• Limits depend only on what happens near x = a and not at all on what happens at

x = a.

• Limits must be numbers. Technically, ∞ and −∞ are not limits, though later we will

write limx→a f(x) =∞ if f(x) keeps getting larger and large as x gets close to a.

August 27, Section 2.3
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• For suitably “nice” functions (such as continuous functions), we can compute limx→a f(x)

by just computing f(a).

• If f(x) is not continuous (for example, if f(a) is not even defined), we need to use some

technique such as algebra or trigonometry to rewrite f(x) to understand it better. In

particular, if f(x) = g(x) for x 6= a, then limx→a f(x) = limx→a g(x), so if we can find

such a g(x) that is “nice”, we can use that to find limx→a f(x)

• For example x2−6x+8
x−4

is not defined at x = 4. But by doing some algebra, we can notice

that x2−6x+8
x−4

= x − 2 when x 6= 4. So limx→4
x2−6x+8

x−4
= limx→4 x − 2. But x − 2 is

continuous, so limx→4 x− 2 = 2

August 28, Section 2.3

• The squeeze theorem says that if f(x) ≤ g(x) ≤ h(x) and limx→a f(x) = limx→a h(x) =

L then also limx→a g(x) = L.

• We used the squeeze theorem and some geometry (see the book) to show that

limx→0
sinx
x

= 1.

• In general, if you’re not sure how to proceed on a limit, try to use some algebra or

trigonometry to make it look like something you’ve seen before.

September 2, Section 2.4

• Definition of continuity: f(x) is continuous at x = a if limx→a f(x) = f(a). Note that

this says the limit at a must exist and equal the value of the function at a.

• We say a function is continuous on an interval (a, b) if f(x) is continuous at all points

in the interval.

• The intermediate value theorem: if f(x) is continuous on an interval containing the

interval [a, b] then f(x) must take every value between f(a) and f(b) (this is the idea

- see the book or class notes for the technical statement).

• In order to have limx→a f(x) = L, we need f(x) to approach L as x approaches a both

for x > a and for x < a. If we only know that f(x) approaches L when x approaches

a for x > a, then we say limx→a+ f(x) = L. If we only know that f(x) approaches

L when x approaches a for x < a, then we say limx→a− f(x) = L. These are called

one-sided limits.

• limx→a f(x) = L if and only if both limx→a+ f(x) = L AND limx→a− f(x) = L.

• We can also talk about “one sided continuity.” We say f(x) is continuous from the left

at x = a if limx→a− f(x) = f(a). We say f(x) is continuous from the right at x = a if

limx→a+ f(x) = f(a).

September 1, Section 2.5
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• If limx→a f(x) = L doesn’t exist because, as x approaches a, f(x) grows bigger and

bigger without bound, we say limx→a f(x) =∞ (though the limit still doesn’t exist, this

tells us it doesn’t exist in this particular way). Similarly, we can have limx→a f(x) =

−∞, and there are one sided versions of these limits.

• To evaluate infinite limits, plug in values near x = a and think about whether the

function must be increasing or decreasing without bound as you move closer to a. It

might also be useful to do algebraic simplifications first.

• Remember, if you plug in and get 0/0, you can’t make conclusions - you need to do

more work. If you get c/0 for c 6= 0, there are infinite one-sided limits on each side. If

they agree, there’s an infinite limit.

September 3, Section 3.1

• If s(t) represents distance traveled at time t, then we can compute the instantaneous

velocity at time a using the formula lim∆t→0
s(a+∆t)−s(a)

∆t
. Here s(a+∆t)−s(a)

∆t
is the aver-

age velocity between time a and time a + ∆t, so we expect to get better and better

approximations to the instantaneous velocity at time a by letting the time interval

length ∆t get smaller and smaller.

• Geometrically, f(a+∆x)−f(a)
∆x

represents the slope of the secant line containing (a, f(a))

and (a+∆x, f(a+∆x)). Then lim∆x→0
f(a+∆x)−f(a)

∆x
represents the slope of the tangent

line which goes through (a, f(a)) and whose slope matches the rate of increase of the

graph of f at a. So this is also the a rate of change: the rate of change of the height

of a graph.

• If y = f(x) is any function, then lim∆x→0
f(x+∆x)−f(x)

∆x
is a new function of x (notice

that if we plug in any number for x, we get an output number that depends on x - this

is the definition of a function). This new function is called the derivative of f with

respect to x. There are a number of notations for this new function: df
dx

, dy
dx

, f ′, y′,
d
dx
f , or Dxf .

September 4, Section 3.1-3.2

• The derivative df
dx

(a) = lim∆x→0
f(a+∆x)−f(a)

∆x
can be used to compute the instantaneous

rate of change when x = a. For example, if x represents units produced by a company

and f(x) represents profit then lim∆x→0
f(a+∆x)−f(a)

∆x
represents the rate at which profit

increases per unit produced when producing a units; note that the rate of profit increase

per unit my vary depending on how much is being produced just as your velocity (your

rate of change per unit time) can vary at different times.

• Similarly, df
dx

(x) = lim∆x→0
f(x+∆x)−f(x)

∆x
can be used to compute the instantaneous rate

of change for all x at once. For example, suppose x is the amount of chemical in a

reaction and f(x) is the amount of heat given off by the reaction as a function of x.

Then df
dx

(x) tells us how quickly the heat changes depending on the amount of material.
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For example, if heat is in joules and amount of material is in grams, then df
dx

would tell

us about the rate of change in joules per gram of the heat as we add more chemicals.

So if, say, df
dx

(2) = 7, then as we add chemicals, when we get to 2 grams, the heat is

increasing at a rate of 7 joules per gram - meaning that the ratio of increase of heat

to increase in chemicals is currently 7 to 1. But notice that df
dx

(x) is itself a function

of x; we can now plug in any x we want to learn about the rate of change at x.

• Derivatives don’t always exist because limits don’t always exist! If the derivative of f

exists at x = a, we say that f is differentiable at a. If f is differentiable at every point

on an interval, we say f is differentiable on the interval.

• If f is not continuous at a, then f can’t be differentiable at a. It follows that if f is

differentiable at a then it is continuous at a (by the rule of the contrapositive).

• However, even if f is continuous at a, f still might not be differentiable at a. For

example, a function with a “corner” will not be differentiable at the corner. An example

is f(x) = |x| at x = 0.

• Rather than use the definition every time, we can work out some formulas to help us

compute derivatives. Basic first examples d
dx
c = 0, d

dx
x = 1, d

dx
xn = nxn−1 for any

n 6= 0.

September 8, Section 3.2

• Rather than use the definition every time, we can work out some formulas to help us

compute derivatives. Basic first examples d
dx
c = 0, d

dx
x = 1, d

dx
xn = nxn−1, d

dx
(f(x) +

g(x)) = d
dx
f(x) + d

dx
g(x), d

dx
(cf(x)) = c d

dx
f(x),

• d
dx

sinx = cosx, d
dx

cosx = − sinx, d
dx
ex = ex

September 10, Section 3.3

• It isNOT true that d
dx

(fg) = df
dx

dg
dx

. DO NOT MAKE THIS MISTAKE.

• The product rule: d
dx

(fg) = df
dx
· g + f · dg

dx

• The quotient rule: d
dx

(
f
g

)
=

g· df
dx
−f · dg

dx

g2

• Sometimes you need to use multiple rules. For example, to differentiate x sinx
ex

you’d

probably use the quotient rule, but then you’d need to use the product rule at the

point where you need to take the derivative of the numerator.

• It is sometimes useful to take more than one derivative of a function. If n is a positive

integer, we use the notation dnf
dxn to mean that we should take the derivative of f n

times.

• If s(t) is a distance function, the first derivative is velocity and the second derivative

is the acceleration function.
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September 11, Section 3.4

• A composite function is one that is made up of other functions with the output of

one being plugged into the next. For example, if f and g are functions, f(g(x)) is a

composite. g is the inner function; f is the outer function. Example: sin(x2). Then

sinx is the outer function and x2 is the inner function.

• The Chain Rule: d
dx
f(g(x)) = df

dx
(g(x)) · dg

dx
(x). So we take the derivative of f and

plug g(x) into the result. Then we multiply the whole thing by the derivative of g.

Example: d
dx

sin(x2) = cos(x2) · 2x

• We might need to use the chain rule in combination with other rules, such as the

product and quotient rules or even the chain rule again. Be careful to use them

properly.

• More formulas we get using the chain rule: d
dx

lnx = 1
x
, d

dx
ax = ax ln(a), d

dx
loga x =

1
x ln(a)

• We also have d
dx

ln |x| = 1
x
. This is a little strange-looking, but ln |x| is a nice way to

extend lnx to negative values of x while still keeping the same derivative formula (as

verified using the chain rule).

September 14, Sections 3.5

• When we have a nice formula y = f(x) for y (for example y = x2), we say that we

have an explicit formula for y in terms of x.

• But sometimes we have a complicated relation between x and y such as y3+xy+x2 = 11.

Then we can’t solve explicitly for y, but we can still say that x determines y implicitly

near a given point on the graph.

• To find the slope of a tangent line at a point on a graph for an implicit relation, we take

the x derivative of both sides of the expression, using the chain rule. Then we solve for
dy
dx

. For example, taking derivatives of y3 +xy+x2 = 11 we get 3y2 dy
dx

+y+x dy
dx

+2x = 0.

Then we can solve for dy
dx

to get dy
dx

= −y−2x
3y2+x

.

• Important point: these formulas only make sense when (x, y) is a point on the graph.

September 15, Section 1.5

• Recall that a function f can be thought of as a machine that takes inputs (x) and

produces outputs (y). Question: given f and an output y, can we determine the x so

that y = f(x)?

• Answer: not always! For example, if f(x) = x2, and y = 4, we can’t tell whether x

was 2 or −2.
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• A function f is called one-to-one (or 1-1 or injective) if for any output y there is

only one input x with f(x) = y. A function is 1-1 if and only if its graph passes the

horizontal line test: any horizontal line intersects the graph in at most one point.

• Not all functions are 1-1; example f(x) = x2. But sometimes we can make them 1-1

by restricting their domains; example f(x) = x2 on x ≥ 0 or f(x) = x2 on x ≤ 0.

• If a function is 1-1 on its domain, there is an inverse function f−1 that, given an

output of f , takes you back to the input of f . In other words f−1(f(x)) = x. Similarly

f(f−1(y)) = y. Note: this is horrible notation but we’re stuck with it.

• When we write
√
y, this is the inverse function to f(x) = x2 with the choice of domain

x ≥ 0 for f . When we write −√y, this is the inverse function to f(x) = x2 with the

choice of domain x ≤ 0 for f . (We don’t always mention this choice explicitly, but we

are making it every time we write
√

.

• Another function that is not 1-1 on its full domain is f(x) = sinx, but sinx is 1-1

on its principal part −π/2 ≤ x ≤ π/2 (this is also sometimes called the fundamental

domain). The function arcsin is the inverse function to sinx with this domain; so in

particular, the output of arcsin is always in the interval [−π/2, π/2].

• Similarly, the fundamental domain for cos is 0 ≤ x ≤ π and the fundamental domain

for tan is −π/2 < x < π/2.

• If we limit the domain of sinx to the fundamental domain −π/2 ≤ x ≤ π/2, then

arcsin(sin(x)) = x and sin(arcsin y) = y. Similar rules hold for the other trig functions

and their fundamental domains. The first formula might fail if we’re not restricted to

the fundamental domain.

September 21, Sections 3.6

• If we do not limit the domain of sinx, then it will not always be true that arcsin(sin(x)) =

x because x might not be in the fundamental domain, but arcsin, by definition, al-

ways returns a value in the fundamental domain. For example arcsin(sin(3π/2)) =

arcsin(−1) = −π/2. This is completely analogous to
√

(−2)2 = 2.

• Regardless of the domain, it will always be true that sin(arcsin x) = x since by defi-

nition arcsinx is an angle (in the fundamental domain) whose sin is x. Analogously,

(±
√
x)2 = x.

• To simplify expressions like cos(arctanx), make a right triangle and label it appropri-

ately. (see class notes.)

• To find the derivative of f−1 (when it exists). First write out f(f−1(x)) = x. Now

take d
dx

of both sides using the chain rule to get df
dx

(f−1(x)) · df−1

dx
= 1. Now solve for

df−1

dx
= 1

df
dx

(f−1(x))
and simplify.
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• Example: sin(arcsinx) = x, so cos(arcsinx) d
dx

arcsinx = 1, so d
dx

arcsinx = 1
cos arcsinx

=
1√

1−x2

September 22 Section 3.7

• Related rates problems use derivatives to relate the rates of change of various quantities

that are changing in time depending on relations among each other.

• Step to solving a related rates problem:

1. Read the problem and understand what’s going on.

2. Draw a picture, label the relevant quantities, and identify all units.

3. Write down a formula giving the relationship among the quantities at an arbitrary

fixed time.

4. Take the time derivatives of your formula using the chain rule to get a formula

relating the derivatives of the various quantities in the problem.

5. To finish solving the problem, first identify what values for quantities and their

derivatives you’re given in the problem. Then plug these in and solve for the

quantity you want to solve for. This might involve some auxiliary computations

involving the relation formula.

• Warning: never ever plug in specific numbers before you take derivatives.

September 25, Section 4.1

• If f(x) is a function, it has an absolute maximum (or global maximum) at x = c if

f(c) ≥ f(x) for all x in the domain of f .

• If f(x) is a function, it has an absolute minimum (or global minimum) at x = c if

f(c) ≤ f(x) for all x in the domain of f .

• A function might have multiple absolute maxima or minima, or it might have none.

September 29, Section 4.1

• If x = c is an absolute maximum or minimum, then df
dx

(c) is either 0 or does not exist.

Here is the argument for an absolute maximum; the argument for minimina is similar:

If c is a maximum, then f(c) ≥ f(x) for all x. So then for x > c, f(x)−f(c)
x−c ≤ 0 and

for x < c, f(x)−f(c)
x−c ≥ 0. Thus limx→c+

f(x)−f(c)
x−c ≤ 0 and limx→c−

f(x)−f(c)
x−c ≥ 0. Since

df
dx

(c) = limx→c
f(x)−f(c)

x−c either doesn’t exist or it equals both limx→c+
f(x)−f(c)

x−c and

limx→c−
f(x)−f(c)

x−c , if it does exist it would have to be 0. So at an absolute maximum

(or minimum) either the derivative is 0 or does not exist.

• If the derivative doesn’t exist or is 0 at x = c, then c is called a critical point.
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• So absolute maxima and minima must occur at critical points, but not every critical

point is an absolute maximum or minimum.

• Theorem: If f(x) is continuous and its domain is a closed bounded interval [a, b], then

f(x) definitely has at least one absolute maximum and at least one absolute minimum.

(Bounded means a and b are finite numbers, not infinities.)

• How to find absolute maxima and minima on a closed bounded interval: 0. Make sure

f is continuous on a closed bounded interval, 1. Find all critical points and endpoint,

2. Plug in to f (not df
dx

!!) to see where the biggest and smallest values are.

October 2, Section 4.3

• x = c is a local maximum (or relative maximum) if f(c) ≥ f(x) for all x in some open

interval containing c. x = c is a local minimum (or relative minimum) if f(c) ≤ f(x)

for all x in some open interval containing c.

• It is also true that all local maxima and minima occur at critical points (by the same

argument as for absolute maxima and minima).

• But a critical point might be a local maximum, a local minimum, or neither.

• If df
dx

is continuous between two critical points, then it is either positive on the whole

interval or negative on the whole interval. On the intervals where df
dx
> 0, the function

is increasing. Where df
dx
< 0, the function is decreasing.

October 5, Section 4.3

• To determine how a function behaves at critical points, we use the first derivative test:

– If df
dx
> 0 to the left of a critical points and df

dx
< 0 to the right, the critical point

is a local maximum.

– If df
dx
< 0 to the left of a critical points and df

dx
> 0 to the right, the critical point

is a local minimum.

– If df
dx

is the same sign on the left and on the right, the critical point is neither a

local maximum, nor a local minimum.

October 6, Section 4.3

• Important note: in order for x = c to be a critical point, f(c) must be define so that

we have a point on the curve. So if both f and df
dx

are undefined at c, it still isn’t a

critical point.

• We can use our information about local maxima, local minima, and where the func-

tion is increasing and decreasing to sketch a graph of the function: Plot the critical

points (using the original function f(x) to find the y values), and then use the increas-

ing/decreasing information to fill in the rest of the graph.
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• To find absolute max/min of a differentiable function on a closed bounded interval

(one of the form a ≤ x ≤ b with a, b finite numbers), we just need to find the critical

points in the interval, and plug the critical points and the endpoints into f . Where we

obtain the highest number is the absolute maximum, and where we obtain the smallest

number is the absolute minimum.

• To find absolute max/min of a differentiable function with a domain that is not closed

and bounded, find the critical points and endpoints, then use the increasing/decreasing

information along with some basic reasoning to figure out which are absolute maxima

and minima (see the examples from class). Note: absolute max/min might not exist.

October 8, Section 4.4

• On intervals where d2f
dx2 > 0, we say that f(x) is concave up.

• On intervals where d2f
dx2 < 0, we say that f(x) is concave down.

• If (c, f(c)) is a point on the graph where d2f
dx2 (c) is 0 or doesn’t exist and the graph

changes from concave up to concave down (or vice versa), we say that (c, f(c)) is a

point of inflection.

• See class notes for pictures.

October 9, Section 4.4

• The second derivative test: Suppose x = c is a critical point for f(x). If d2f
dx2 (c) > 0,

f has a local minimum at c; if d2f
dx2 (c) < 0, f has a local maximum at c; if d2f

dx2 (c) = 0,

the test fails and we need to use another technique, such as the first derivative test, to

determine what kind of critical point c is.

October 15, Section 4.5

• We say limx→∞ f(x) = L if (roughly) as x gets bigger and bigger, f(x) gets closer and

closer to L. Similarly, we can define limx→−∞ f(x) = L.

• If as x gets bigger and bigger, f(x) gets bigger and bigger to infinity, we can have

limx→∞ f(x) =∞, and other similar statements.

October 19, Section 4.5

• If f(x) and g(x) are polynomials, then limx→∞
f(x)
g(x)

= limx→∞
l.t(f(x))
l.t.(g(x))

where l.t.(f(x))

is the leading term of f(x), and similarly for g(x) or for x → −∞. So for example,

limx→∞
5x3−4x2+2

8x7+4x2 = limx→∞
5x3

8x7 .

• In general, for algebraic expressions, often the best technique is to focus on leading

terms and ignore “lower order” terms.

• When in doubt - think logically about the properties of the function.

9



October 20, Section 4.6

• We can draw good graphs of functions using the techniques from this chapter and

from precalculus. We should try to take as much of the following as possible into

account: the domain of f , x- and y-intercepts, vertical asymptotes, continuity of f ,

differentiability of f , critical points, where f is increasing and decreasing, local maxima

and minima, concavity, points of inflection, limits at ±∞

October 22, Section 4.7

• In this section, we’ll do optimization problems. Steps: 1) Read and understand the

problem, 2) draw a picture and label variables, 3) write down the primary equation for

the quantity you want to optimize (maximize/minimize) and the secondary equations

(constraint equations) that relate the other quantities in the problem, 4) use the con-

straint equations to rewrite the optimization equation in terms of a single independent

variable (and figure out the domain of that variable), 5) use calculus to find the ap-

propriate max/min (including applying the necessary reasoning to know you’ve found

a maximum or minimum and not just a critical point), 6) make sure to provide a full

answer to the original question.

• A useful technique: since squaring preserves the order of non-negative numbers (i.e. if

0 ≤ a ≤ b, then also 0 ≤ a2 ≤ b2), finding the max/min of a distance d is equivalent to

finding the max/min of d2. This can be useful for eliminating ugly square roots from

some problems.

October 26, Section 5.1

• If dF
dx

= f(x), F (x) is called an antiderivative or indefinite integral of f(x). This is

denoted F (x) =
∫
f(x) dx.

• Antiderivatives are not unique: for example the derivative of any constant is 0, so 0

has many antiderivatives.

• A useful fact: the only functions whose derivatives are 0 are constants.

• So if dF
dx

= dG
dx

, then d
dx

(F (x)−G(x)) = 0, so F (x)−G(x) must be a constant. In other

words, F (x) = G(x) + C for some constant C.

• This also makes sense looking at graphs: two functions that have the same slopes of

their tangent lines at every x must differ from each other just by being shifted up or

down.

• So even though antiderivatives are not unique, two antiderivatives only differ by a

constant.

• There are many functions where we can find nice formulas for the antiderivatives

because we know nice formulas for derivatives. See the table on page 282 of the book.
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October 27, Section 5.1

• If you want to find an antiderivative of something that isn’t on the table on page 282,

first try using algebraic and trigonometric simplifications.

• Common errors. The following statements are not true; don’t try to use them:
∫
f(x)g(x) dx =∫

f(x) dx ·
∫
g(x) dx,

∫ f(x)
g(x)

dx =
∫
f(x) dx∫
g(x) dx

; for example ex sinx is NOT an antiderivative

of ex cosx (take the derivative and check!)

• Recall that antiderivatives are not unique: if F (x) is an antiderivative for f(x), then

so is any F (x) + C. But sometimes we can use other information about a problem to

choose a specific C.

October 29, Section 5.1

• If v(t) is a velocity function then s(t) =
∫
v(t) dt is the position function. To find a

specific position function, it suffices to know the exact position at a single time. We

can then plug in that information and solve for C.

• Similarly, if we know acceleration, we can find position by taking the antiderivatives

twice and using extra information to solve for the constants.

• Summation notation:
n∑

i=m

f(i) means that we’re going to add up f(m) + f(m + 1) +

f(m+ 2) + · · ·+ f(n− 1) + f(n). Here m,n must be integers with n ≥ m. i is called

the index of the summation.

• Example:
6∑

i=3

cos(i) = cos(3) + cos(4) + cos(5) + cos(6).

October 30, Section 5.2

• Special formulas:

1.
n∑

i=1

1 = n

2.
n∑

i=1

i =
n(n+ 1)

2

3.
n∑

i=1

cf(i) = c

n∑
i=1

f(i)

4.
n∑

i=1

(f(i) + g(i)) =

(
n∑

i=1

f(i)

)
+

(
n∑

i=1

g(i)

)
There are some other useful ones in the book
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November 2, Section 5.2

• New topic: Suppose f(x) is a function on an interval [a, b] with f(x) ≥ 0 on the

interval. We want to find the area of the region R under the graph but above the

x-axis.

• First approximation: Suppose M and m are the maximum and minimum values, re-

spectively, for f(x) on the interval. Then looking at the rectangles with width b − a
and heights M and m, we see that m(b− a) ≤ area(R) ≤M(b− a).

• We can do better if we increase the number of rectangles by dividing the interval [a, b].

Next we can do two pieces: Let R1 be the region under the curve on [a, a+ b−a
2

], and let

R2 be the region under the curve on [a+ b−a
2
, b]. So R is the union or R1 and R2, and

area(R) = area(R1) + area(R2). Now we do the same approximations with rectangles

of R1 and R2. Let m1,M1 and m2,M2 be the minima/maxima of f(x) on the first or

second interval, respectively. The using rectangles (see pictures from class) we see that

m1
b−a

2
+m2

b−a
2
≤ area(R) ≤M1

b−a
2

+M2
b−a

2
. These are better approximations.

• Next step: more rectangles.

• Suppose we have a function with f(x) ≥ 0 on an interval [a, b] and want to find the

area under the curve. General concept: break [a, b] up into n subintervals of width
b−a
n

. Let Mi be the maximum value of f(x) on the ith interval and let mi be the

minimum value of f(x) on the ith interval. The upper rectangle over the ith interval

has area b−a
n
Mi; the lower rectangle over the ith interval has area b−a

n
mi. So the total

approximation of the area using upper rectangles is Un =
∑n

i=1
b−a
n
Mi and the total

approximation of the area using lower rectangles is Ln =
∑n

i=1
b−a
n
mi. We will always

have

Ln ≤ area under the curve ≤ Un.

If limn→∞ Ln = limn→∞ Un, that’s the area under the curve.

• For specific problems, the hard part is finding mi and Mi, but for nice examples (such

as functions that are always increasing or decreasing) these will be at the endpoints

of the subintervals. So it is useful to observe that the ith interval has endpoints

[a+ (i− 1) · b−a
n
, a+ i · b−a

n
]

• For example. If f(x) = x2 and the interval is [4, 8], and we divide into n pieces, the

width of each subinterval is 8−4
n

= 4
n
, and the ith interval is [4 + (i− 1) 4

n
, 4 + i 4

n
]. Since

x2 is increasing on [4, 8], the minimum on the ith interval is mi = (4 + (i− 1) 4
n
)2 and

the maximum is (4+ i− 4
n
)2. So Ln =

∑n
i=1

4
n
(4+(i−1) 4

n
)2 and Un =

∑n
i=1

4
n
(4+ i 4

n
)2.

We can compute that limn→∞ Ln = limn→∞ Un = 448
3

, so this is the area under the

curve.

November 4, Section 5.2
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• Notation: When limn→∞ Ln = limn→∞ Un, we denote the common limits as
∫ b

a
f(x) dx

and call it the definite integral.

• Important theorem: If f(x) is continuous on [a, b], then limn→∞ Ln = limn→∞ Un and

so the area exists!

• But the area doesn’t always exist. For example, if f(x) is the function that takes value

0 when x is rational and 1 when x is irrational, then the upper sum on [0, 1] is 1 for

any n and the lower sum is 0 for any n, so the limits never come together.

November 5, Section 5.3

• Notice that if we pick any point ci in the ith subinterval, then mi ≤ f(ci) ≤ Mi (by

definition of maxima/minima). So b−a
n
·mi ≤ b−a

n
· f(ci) ≤ b−a

n
·Mi, and

n∑
i=1

b− a
n
·mi ≤

n∑
i=1

b− a
n
· f(ci) ≤

n∑
i=1

b− a
n
·Mi

.

So if limn→∞ Ln = limn→∞ Un (for example if f(x) is continuous), then by the Squeeze

Theorem,
∑n

i=1
b−a
n
· f(ci) has the same limit and so it also computes the area!

This is great because it says that IF WE KNOW limn→∞ Ln = limn→∞ Un (for ex-

ample if f(x) is continuous) we can use any point in the subinterval we want for

computations. A convenient choice is the right endpoint, so we can compute area as

limn→∞
∑n

i=1
b−a
n
f(a+ i · b−a

n
).

• The definition allows for many different interpretations depending on context. For

example, the most popular interpretation is area: if we just consider the graph y =

f(x), then b−a
n

is a width along the x-axis, f(ci) is the height above (or below) the

x-axis, and so f(ci) · b−an is the area of a rectangle (or negative area if f(ci) < 0). Then∑n
i=1 f(ci) · b−an is an approximate total area, and taking the limit to get

∫ b

a
f(x) dx

gives the exact area (counting area below the x-axis as negative area). Alternatively,

we could interpret f(x) as giving linear density, and then f(ci) · b−an is mass of a small

segment,
∑n

i=1 f(ci) · b−an is an approximate total mass, and taking the limit to get∫ b

a
f(x) dx gives the exact mass. Or, we could interpret f(x) as giving linear electrical

charge density, and then f(ci)· b−an is the total charge of a small segment,
∑n

i=1 f(ci)· b−an
is an approximate total charge, and taking the limit to get

∫ b

a
f(x) dx gives the exact

amount of charge.

November 6, Section 5.3

• We can split definite integrals into pieces:
∫ b

a
f(x) dx =

∫ c

a
f(x) dx+

∫ b

c
f(x) dx.

• From the definitions, it’s easy to see
∫ a

a
f(x) dx = 0.

• A useful convention (also can be seen in definitions by interchanging a and b):
∫ a

b
f(x) dx =

−
∫ b

a
f(x) dx

13



• Other easy rules:
∫ b

a
f(x)+g(x) dx =

∫ b

a
f(x) dx+

∫ b

a
g(x) dx, and

∫ b

a
cf(x) = c

∫ b

a
f(x) dx

for any constant c.

November 19, Section 5.4

• What is
∫ b

a
df
dt
dt when df

dt
is continuous? This turns out to be extremely important.

• By definition,
∫ b

a
df
dt
dt = limn→∞

∑n
i=1

b−a
n

df
dt

(ci). Now, let’s suppose f(t) represents

position so that df
dt

represents velocity and each interval b−a
n

is a small time interval.

Then since df
dt

is continuous, if n is very large, df
dt

will be approximately df
dt

(ci) anywhere

on the ith time interval. Then b−a
n

df
dt

(ci) (which is time times rate) is approximately the

displacement of the motion on the ith time interval. So
∑n

i=1
b−a
n

df
dt

(ci) approximates

the total displacement from time a to time b. It turns out that the limit then gives

the exact total displacement. So
∫ b

a
df
dt
dt gives the exact total displacement. But the

exact total displacement is just f(b)− f(a) (ending location minus starting location).

So
∫ b

a
df
dt
dt = f(b)− f(a).

• (First fundamental theorem of calculus). Using slightly different notation, suppose

f(x) is a function and F (x) is another function with dF
dx

= f(x). Then
∫ b

a
f(x) dx =

F (b)− F (a).

• Note: the fundamental theorem of calculus requires the hypothesis that the function

f(x) be continuous! Make sure to pay attention to that.

November 10, Section 5.4

• It is interesting to study the functions A(x) =
∫ x

0
f(t) dt. If f(t) ≥ 0, then A(x)

represents the area under the graph of f from 0 to x.

• It is very interesting to compute the derivative dA
dx

. We use the definition of the deriva-

tive:

dA

dx
= lim

∆x→0

A(x+ ∆x)− A(x)

∆x

= lim
∆x→0

∫ x+∆x

0
f(t) dt−

∫ x

0
f(t) dt

∆x

= lim
∆x→0

∫ x+∆x

x
f(t) dt

∆x

If ∆x is sufficiently small and f is continuous on the the interval [x, x + ∆x], then

f(t) ≈ f(x), so the area
∫ x+∆x

x
f(t) dt is approximately f(x)∆x. But then

lim
∆x→0

∫ x+∆x

x
f(t) dt

∆x
≈ lim

∆x→0

f(x)∆x

∆x

= lim
∆x→0

f(x)

= f(x).

14



These arguments can be made rigorous, so if f is a continuous function, dA
dx

= d
dx

∫ x

0
f(t) dt =

f(x).

• This result is called the second part of the Fundamental Theorem of Calculus. It

tells us that continuous functions have antiderivatives (though it doesn’t really help us

compute them).

• Notice that the derivative of A(x) at x tells us the rate of change of the area function

at x but it doesn’t really depend on how much area there already is to the left. So in

fact, the theorem generalizes to d
dx

∫ x

a
f(t) dt = f(x) for any a. Changing a is the same

as changing A(x) by a constant.

• Using the chain rule, we can take the derivative of things like A(x2) =
∫ x2

a
f(t) dt

• When necessary, remember to use that
∫ a

x
f(t) dt = −

∫ x

a
f(t) dt

• And if there are functions in both limits of integration, such as
∫ x3

x2 f(t) dt, use that∫ x3

x2 f(t) dt =
∫ c

x2 f(t) dt+
∫ x3

c
f(t) dt for any constant c.

November 17, Section 5.5

• One technique for finding antiderivatives is called substitution. It’s based on the chain

rule.

• Recall that the chain rules says that the derivative of a composite f(g(x)) has the form

f ′(g(x))g′(x). Hence
∫
f ′(g(x))g′(x) dx = f(g(x)) + C.

• Suppose we let u = g(x). Then if we write du = g′(x)dx, we can rewrite our integral∫
f ′(g(x))g′(x) dx as

∫
f ′(u)du. Now we’re just finding the antiderivative of f ′(u),

which of course is just f(u) + C. Now plugging back in u = g(x), we get f(g(x)) + C

for the antiderivative, which is the right answer!

• For example if we want to find
∫

cos(x2)2x dx, we notice that x2 looks like an inner

function whose derivative is also present. So let u = x2 and du = 2x dx. Then the

problem becomes
∫

cos(u) du, which we know is sin(u) + C = sin(x2) + C. We can

check that this is the correct answer.

• Notice that we don’t need to have exactly g′(x) appear in the original integral. For

example, if we have
∫

cos(x2)x dx, substitution still works to help us find the antideriva-

tive, with a little more algebra.

• Tip: in any expression you should have all xs or all us. If you have them mixed

together, you’re doing it wrong! Also, your final answer should always be back in

terms of xs.

November 19, Section 5.5
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• There are two ways to use substitution to compute definite integrals
∫ b

a
f(x) dx. One

is to use substitution to find the antiderivative F (x) of f(x). Then use this in the

formula
∫ b

a
f(x) dx = F (b)−F (a). The other is to turn the problem completely into a

u problem by changing the limits of integration. So if u = g(x), the limits of integration

after you do the substitution will be from g(a) to g(b). See the examples from class

and the book.

November 20, Section 5.7

• Two nice trig integrals:

–
∫

tanx dx =
∫

sinx
cosx

dx. This can be solved by a substitution of u = cosx.

– To integrate
∫

secx dx, there’s a trick: multiply by secx+tanx
secx+tanx

and then substitute.

November 23, Section 5.8

• From what we know about derivatives, we know that
∫

1
1+x2 dx = arctan x + C, and∫

1√
1−x2 dx = arcsinx + C, and

∫
1

x
√
x2−1

dx = arcsec |x| + C. Using these we can

compute integrals like
∫

1
a2+x2 dx and

∫
1√

a2−x2 dx using some algebra and substitution

(see examples from class).

November 30, Section 5.8

• If we have expressions like
∫

1
ax2+bx+c

dx, we can also use substitution and inverse trig

functions if we can complete the square to write ax2 + bx+ c = a(x− h)2 + k.

December 1, Section 8.2

• Integration by parts: From the product rule d
dx

(f(x)g(x)) = df
dx
g + f dg

dx
. So if we take

antiderivatives, we get fg =
∫

df
dx
g dx+

∫
f dg

dx
dx, so∫

f
dg

dx
dx = fg −

∫
df

dx
g dx.

We can use this to replace integral problems with simpler integrals.

• Example: f(x) = x, g(x) = ex. Then
∫
xex dx = xex −

∫
ex = xex − ex + C.

• A mnemonic for integration by parts:
∫
u dv = uv −

∫
v du

December 3, Section 8.2

• It’s okay to just have dv = dx if necessary!

• Sometimes you need to use integration by parts multiple times in one problem, for

example to integrate
∫
xnex dx. You’d use the process to make n smaller each time.

• Sometimes when you do integration by parts a few times it looks like you’ve wound up

back where you started. In this case, try to finish the problem with algebra!
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