
Algebraic Topology I Homework
Spring 2014

Homework solutions will be available

http://faculty.tcu.edu/gfriedman/algtop/algtop-hw-solns.pdf

Due 5/1

A Do Hatcher 2.2.4

B Do Hatcher 2.2.9b (Find a cell structure)

C Do Hatcher 2.2.12 (There are a few ways to do this!)

D Do Hatcher 2.2.13a (note the “usual” cell structure on S1 has one 0-cell and one 1-cell).

E Read about the homology of RP n in Hatcher and then do Hatcher 2.2.19

Due 4/24/2014

A 1 Let M be the closed Mobius strip (i.e. including its boundary). Let ∂M be

the boundary of M . Compute H∗(M,∂M) using arguments with the long exact

sequence and other basic properties of homology. You can use that you already

know homology computations for circles, but you shouldn’t compute H∗(M,∂M)

directly from the Delta complex. If necessary, you can also use that H∗(X) =

H∆
∗ (X) if X can be realized as a Delta complex in order to compute H∗(M) and

H∗(∂M).

2 Recall that RP 2 can be obtained from the Mobius strip by filling in the boundary

circle with a disk. Using this and excision, compute H∗(RP 2).

B Do Hatcher 2.1.29

C Hatcher 2.2.2 (note: he means no real eigenvectors)

Due 4/17/2014

A Part A

1 Let A be the closed annulus, i.e. A = {z ∈ C | 1 ≤ |z| ≤ 2}. Let ∂A be

the boundary of A. Compute H∗(A, ∂A) using arguments with the long exact

sequence and other basic properties of homology. You can use that you already

know homology computations for circles, but you shouldn’t compute H∗(A, ∂A)

directly from the Delta complex. If necessary, you can also use that H∗(X) =

H∆
∗ (X) if X can be realized as a Delta complex in order to compute H∗(A) and

H∗(∂A).
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2 Find generators for the homology groups Hi(A, ∂A) you computed above.

Due 4/10/2014

A Part A

1 Let A
f−→ B

h−→ C
k−→ D

g−→ E be an exact sequence. Suppose f is surjective and g

is injective. Show that C = 0. Provide all the details.

2 Recall that if f : G → H is a map of abelian groups, then the cokernel, cok(f),

is defined to be H/im(f). Suppose you have the following commutative diagram

of abelian groups in which the horizontal sequences are exact:

0 - A - B
g

- C - 0

0 - D

α

? h
- E

β

?
- F

γ

?
- 0

The serpent lemma says that there is an exact sequence

0→ ker(α)→ ker(β)→ ker(γ)→ cok(α)→ cok(β)→ cok(γ)→ 0.

Prove the serpent lemma. Hint: write the kernels and cokernels as homology

groups and use some big results you learned in class.

B Part B

1 Do Hatcher 2.1.16 and 2.1.17.a (just part with X = S2)

2 Study for the exam

Due 4/3/2014

A Part A

1 Do Hatcher 2.1.11.

2 Suppose H < G are abelian groups and G/H ∼= F is a free abelian group. Prove

that G ∼= H ⊕ F . Hint: Let q : G → G/H be the natural quotient map. First

construct a homomorphism ψ : F → G such that qψ = idF ; note: this implies

that ψ : F → G is injective, so ψ(F ) ∼= F . Then show that G ∼= H ⊕ ψ(F ) by

showing that H ∩ ψ(F ) = {0} and that every element of G can be written as a

sum h + f with h ∈ H and f ∈ ψ(F ). Double hint: it might help to notice that

H is the kernel of q. Triple hint: to construct f , use the maps!

B Part B
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1 Show that if f : X → Y is homotopic to a constant map, then f∗ : H̃∗(X) →
H̃∗(Y ) is the 0 map.

2 The topologist’s sine curve is the subspace of R2 consisting of all points (x, sin(1/x))

for 0 < x ≤ 1 and all points (0, y) for −1 ≤ y ≤ 1. Compute the singular homol-

ogy groups of this space.

3 Read Section 2.A, then do the following problem: Suppose X is a path con-

nected space such that π1(X) is a non-abelian simple group (i.e. its only normal

subgroups are {1} and the whole group). Show that H1(X) = 0.

4 Do Hatcher 2.1.12

5 Do Hatcher 2.1.13

Due 3/27/2014

A Part A

1 Do Hatcher 2.1.1

2 Do Hatcher 2.10.a - note that he means that every edge is glued to precisely one

other edge.

3 Find a way to realize the “two-holed torus” (what Hatcher calls M2) as a ∆-

complex.

4 Find a ∆-complex X such that π1(X) = Z3.

B Part B

1 Do Hatcher 2.1.4, 2.1.5 ,2.1.9

Due March 20

A Part A

1 Note: the following exercise is essentially a special case of Hatcher’s 1.40, which

actually follows from the same sort of ideas as this by “putting more spaces in the

middle”. Suppose p : X̃ → X is a covering space with X̃ path connected, locally

path connected, and simply connected.

a Show that X̃ is a normal cover and that the group of deck transformations

G for X̃ over X is isomorphic to π1(X).

b Let x̃0 be a basepoint of X̃ over x0 ∈ X. Let H be a subgroup of G =

π1(X, x0) and hence also a subgroup of the group of deck transformations of X̃

over X. Let XH = X̃/H, and let x̃H0 be the image of x̃0 in XH , which we let be

the basepoint of xH . Notice that we can factor p as X̃
pH−→ XH

q−→ X = X/G.

We know that pH : X → XH is a covering map by Hatcher Proposition 1.40.a.

Show that q : XH → X is also a covering space of X.
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c Show that q∗(π1(XH , x̃
H
0 )) = H so that XH really is the cover of X corre-

sponding to the subgroup H.

d Suppose H is normal. Show that G/H acts freely and properly discontinu-

ously on XH (in particular, show that g1x = g2x for x ∈ XH if and only if

g1H = g2H) and then observe that X = X/G = XH/(G/H). [More precisely:

recall that each point of XH corresponds to an orbit of a point x in X̃ under

the action of H. In particular, every point in XH is an image pH(x) for some

x in X̃. Define an action of G on XH by letting g(pH(x)) = pH(gx). Show

that this is well-defined, i.e. if y is another point in X̃ with pH(y) = pH(x),

show that g(pH(x)) = g(pH(y)) so that this definition is consistent. Then

to show that we really have an action of G/H, show that every element of

the coset gH acts on pH(x) the same way. Lastly, you should argue that

the action of G/H is free and properly discontinuous. It then follows that

X = XH/(G/H) from the general theory. )

2 Part B

a Recall from a previous homework the spaces Xn, n ∈ {1, 2, 3, . . .} obtained

from the two-dimensional disk D2 by identifying points on the boundary

that differ by an angle 2π/n; let q : D2 → Xn be the quotient map. In

that problem, you should have shown π1(Xn) ∼= Zn and determined that the

universal cover X̃n is homeomorphic to n copies of D2 with their boundaries

identified to each other.

i Describe how the deck transformations act on X̃n.

ii Describe what points of X̃4 you would identify to get the quotient space

of X̃4 corresponding to the unique subgroup of index 2 of π1(X4).

b Describe all connected covering spaces of RP 2×RP 2 (Note: some of these will

be familiar, others you made need to describe as quotients of the universal

cover under certain group actions).

c Let X = RP 2 ∨ RP 2 with basepoint the union point x0.

i What’s the universal cover X̃ of X?

ii Since X̃ is simply-connected, its group of deck transformations is π1(X, x0) ∼=
Z2 ∗ Z2. Let a, b be the respective generators of π1(RP 2 ∨ x0) and

π1(x0 ∨RP 2) as subgroups of π1(X, x0). Describe the covering actions of

a and b. Then describe what a covering action by a general element of

π1(X, x0) would look like. Can you see why all such transformations are

generated by those corresponding to a and b? (Note, while the group of

deck transformations is isomorphic to π1(X, x0), the exact isomorphism

might depend upon the choice of basepoint in X̃.)

Due 3/6/2014 (put in my box)

1 Part A

a Describe all connected covering spaces of RP 2, up to isomorphism.
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b Describe all connected covering spaces of RP 2 ∨ S2, up to isomorphism.

c Describe all connected covering spaces of S1 ∨ S2, up to isomorphism.

d Describe all connected covering spaces of S1 × S2, up to isomorphism.

e Let X = S1 ∨ S1 with π1(X, x0) = 〈a, b〉 in the standard way. For each

of the following subgroups of π1(X, x0), find (draw) a covering space (with

basepoint) (X̃, x̃0) of X such that p∗(π1(X̃, x̃0)) is the given subgroup: [Hint:

think about the pictures on page 58]

i {(ab2)an(ab2)−1 | n ∈ Z}
ii {(ab)n | n ∈ Z}

iii {b3(ab)nb−3 | n ∈ Z}
iv the subgroup freely generated by a2 and b

v the subgroup freely generated by a3, b, aba−1 and a−1ba.

Due 2/27/2014 (you can hand this in the week after the exam)

1 Part A

a Let p : X̃ → S1 ∨ S1 be the covering space shown in box 2 of Hatcher’s table

of examples of coverings of S1 ∨ S1. Let f : S1 × S1 → S1 ∨ S1 be the map

given by the composition of the projection S1×S1 → S1×y0 followed by the

map S1 × y0 → S1 ∨ S1 described by the loop a3b3. Does f lift to X̃?

b Use covering space theory to show that every map φ : RP 2 → S1 is homotopic

to a constant map.

c Suppose Y is simply connected and p : X̃ → X is a covering space with X̃

contractible. Show that every map f : Y → X is homotopic to a constant

map.

2 Part B

a Describe the universal cover of T 2 ∨ S1, where T 2 is the torus S1 × S1.

b Let Xn be the space obtained from the two-dimensional disk D2 by identifying

points on the boundary that differ by an angle 2π/n; let q : D2 → Xn be the

quotient map.

i What’s π1(Xn) (you don’t need to write out the argument)?

ii Suppose x is in the interior of D2; describe what small neighborhoods of

q(x) look like. Now suppose x is in the boundary of D2; describe what

small neighborhoods of q(x) look like.

iii Find and describe the universal cover X̃n of Xn using what you figured out

in the previous sections; hint: think about the familiar case X2 = RP 2.

Due 2/20/2014
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1 Show that a covering map p : X → Y is an open map (and hence a quotient

map).

2 Do Hatcher 1.3.1 and 1.3.2

3 Use a covering space of S1 ∨ S1 to show that the free group on 3 generators is

isomorphic to a subgroup of the free group on 2 generators. Generalize 3 to n.

4 Find a simply connected cover of the space θ (the space homeomorphic to the

lowercase Greek letter theta).

Due 2/13/2014

1 Reading assignments

a Read Section 1.2 in the book, including the proof of the van Kampen theorem

and the proof of the theorem stated at the end of class on Feb. 6

b Read this about the classification of surfaces: http://pages.uoregon.edu/

koch/math431/Surfaces.pdf

c Technically, the last link only talks about surfaces that can be obtained by

gluing the edges of polygons and does not give a complete proof that all

surfaces can be obtained that way. Another approach to the classification of

surfaces that you can read (optional) is the following: http://www.maths.

ed.ac.uk/~aar/papers/francisweeks.pdf. Even this proof assumes that

surfaces can be triangulated, which is hard to prove and won’t be treated in

this class.

2 Part A

a Think of the real projective plane RP 2 as the space obtained from the unit

disk by identifying opposite points on the boundary.

i Show that π1(RP 2) ∼= Z2.

ii Draw a picture showing a loop representing the nontrivial element [f ] ∈
π1(RP 2).

iii Draw a series of pictures showing the nullhomotopy from 2[f ] to the

constant path.

b Let X be the quotient space of the disk D2 obtained by identifying points on

the boundary that are 120 degree apart. Compute π1(X)

c Let X be the complement of n points in R2. Compute π1(X). Do the same

for the complement of n points in R3. [Hint: use induction on n].

3 Part B

a Do Hatcher 1.2.7

b Consider the annulus. Identify antipodal (opposite) points on the outer circle

with each other (as if you’re forming RP 2). Also identify antipodal points on

the inner circle with each other. Call the resulting space X. Describe π1(X)

in terms of generators and relations.
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c Let X be the union of a sphere S2 with one of its diameters. Compute π1(X).

Due 2/6/2014

1 Part A

a Some point set topology:

i Suppose that X is a compact metric space and that U is an open covering

of X. Show that there is a number δ > 0 (called a Lebesgue number) such

that for every set Z ⊂ X with diameter < δ, there is an element U ∈ U
such that Z ⊂ U .

ii Use the results of the previous exercise to show that if f : I → Y is a

path in the arbitrary space Y and if V is an open covering of Y then there

is a partition 0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 of I such that for each interval

[ti, ti+1], the image f([ti, ti+1]) is contained in some single element V ∈ V .

b Do Hatcher 1.1# 13, 16b, 17

c Do Hatcher Section 0 #3a, 3c (you may use 3b), 4, 0.6a ([Hint: Here’s a point

set topology lemma that might be useful. Suppose X×Y is a product space,

Y is compact, and N is an open set in X×Y . Suppose also that x0×Y ⊂ N

for some x0 ∈ X. Then there is a neighborhood W of x0 in X such that

W × Y ⊂ N . This is a very important lemma, sometimes called the “tube

lemma”.])

2 Part B

a Give a presentation in terms of generators and relations of Z4 involving one

generator; involving two generators; involving three generators.

b Recall the fundamental theorem of finitely generated abelian groups. If G

is a finitely generated abelian group, explain how you would write down a

presentation for it in terms of generators and relations.

c Consider the group G with presentation 〈x, y | x4 = e, y2 = e, (xy)2 = e〉.
Show that G is a finite group and determine how many elements it has. Hint:

start by rewriting the relation (xy)2 = e in a more useful form. Extra credit:

can you identify G as a familiar group?

Due 1/30/2014

1 Part A

a Do Hatcher Section 1.1 #2, 3, 6

2 Part B

a Do Hatcher Section 1.1 #10
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b Let G be a topological group with operation ∗ and identity e. This means

that G is a group and a topological space and that the group operation

∗ : G×G→ G, (g, h)→ g ∗ h and the inverse map g → g−1 are continuous.

Let Ω(G, e) denote the set of all loops in G based at e. If f, g ∈ Ω(G, e),

define a loop f ⊗ g by the rule (f ⊗ g)(s) = f(s) ∗ g(s).

i Show that the operation ⊗ makes the set Ω(G, e) into a group.

ii Show that the operation ⊗ induces a group operation on π1(G, e) (this

requires showing that if f ∼ f ′ and g ∼ g′, then f ⊗ g ∼ f ′ ⊗ g′, so that

⊗ is an operation on homotopy classes).

iii Show that the usual group operation and ⊗ are actually the same oper-

ation on π1(G, e) (we write the usual operation on f, g ∈ π1(G, e) as fg,

as in class). Hint: compute (fce) ⊗ (ceg), where f, g are loops and ce is

the constant loop at e.

iv Show that π1(G, e) is abelian.

Due 1/23/2014

1 Start reading Hatcher Chapter 1 (since Hatcher’s book has been continually evolv-

ing, different printings have different page numbers, so I can’t really reference

these; nonetheless, our lectures will mostly follow the book pretty closely so it

should be too hard to pick out the bits that correspond to what we’re doing in

class)

2 Do Hatcher Exercises for Section 1.1 #1, 4

3 More general than homotopies of paths are homotopies of maps. Two maps f, g :

X → Y are called homotopic (written f ∼ g) if there exsits a map F : X×I → Y

such that F (x, 0) = f(x) and F (x, 1) = g(x). Show that, for any fixed X and Y ,

homotopy is an equivalence relation on the set of maps from X to Y .

4 Suppose f, f ′ : X → Y with f ∼ f ′ and g, g′ : Y → Z with g ∼ g′. Show that

g ◦ f ∼ g′ ◦ f ′, where ◦ denotes composition of functions.

5 Suppose f, f ′ : X → Y are homotopic and g, g′ : Z → W are homotopic. Show

that f × g, f ′ × g′ : X × Z → Y ×W are homotopic.
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