
Sketches of solutions to selected exercises
Note: these are intended as sample solutions. There will often be alternative solutions

to problems. Furthermore, solutions presented here are not intended to be 100% complete

but rather to demonstrate the idea of the problem. If the solution is not clear to you, please

come ask me about it!

Due April 24

Let M be the closed Mobius strip (i.e. including its boundary). Let ∂M be

the boundary of M . Compute H∗(M,∂M) using arguments with the long exact

sequence and other basic properties of homology. You can use that you already

know homology computations for circles, but you shouldn’t compute H∗(M,∂M)

directly from the Delta complex. If necessary, you can also use that H∗(X) =

H∆
∗ (X) if X can be realized as a Delta complex in order to compute H∗(M) and

H∗(∂M). To get at H∗(M,∂M), we first compute H∗(M) and H∗(∂M). The boundary

∂A is homeomorphic to a circle, so, using what we know about circles (or spheres in general),

H1(∂M) = Z, and H0(∂M) = Z. We’ll also have Hi(∂M) = 0 for i > 1. Similarly, M is

homotopy equivalent to a circle, so we have H0(M) ∼= H1(M) ∼= Z and all others are 0. So

far we have the long exact sequence

0 - H2(M,∂M) - H1(∂M)
g
- H1(M) - H1(M,∂M) - H0(∂M)

f
- H0(M) - H0(M,∂M) - 0

0

=

?
- H2(M,∂M)

=

?
- Z

=

? g
- Z

=

?
- H1(M,∂M)

=

?
- Z

=

? f
- Z

=

?
- H0(M,∂M)

=

?
- 0

=

?

Note that as all Hi(M) and Hi(∂M) are 0 for i > 1, it is immediate that Hi(M,∂M) = 0

for i > 2.

So what are the maps? H0(∂M) = Z is generated by any singular 0-simplex, and this

maps to a generator of H0(M) = Z, so the map H0(∂M) → H0(M) is an isomorphism and

H0(M,∂M) must be 0. We can also see this directly as any 0 simplex in M is homologous

via a path to a 0-simplex in ∂M .

Similarly, H1(∂M) = Z is generated by a cycle that goes once around the circle ∂M .

This can most easily be seen using simplicial homology. Furthermore, the inclusion of ∂M

to M followed by the homotopy equivalence of M to the circle provides a map that wraps

around the circle twice. So the map H1(∂M) ∼= Z → H1(M) ∼= Z is multiplication by 2. It

now follows that H1(M,∂M) ∼= Z2, using also that the map H1(M)→ H1(M,∂M) must be

surjective because the map H0(∂M)→ H0(M) is injective from above.

Finally, as H1(∂M)→ H1(M) is injective, this forces H2(M,∂M) to be 0.

Recall that RP 2 can be obtained from the Mobius strip by filling in the boundary

circle with a disk. Using this and excision, compute H∗(RP 2). By excision, we
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have H∗(M,∂M) ∼= H∗(RP 2, disk), which is isomorphic to H∗(RP 2, pt) ∼= H̃∗(RP 2) using

homotopy equivalence and our previous result about reduced homology. Putting this all

together, H̃∗(RP 2) ∼= H∗(M,∂M) is 0 in all dimensions except when ∗ = 1, in which case it

is Z2. So H1(RP 2) ∼= Z2, H0(RP 2) ∼= Z, and all other homology groups are 0.

Hatcher 2.1.29 Let T = S1 × S1. Let X = S1 ∨ S1 ∨ S2 and x0 be the union point. By

Example 2.3, H2(T ) = Z, H1(T ) = Z ⊕ Z, H0(T ) = Z and all other homology groups of

T are 0. By Corollary 2.25, we have H̃∗(X) ∼= H̃∗(S
1) ⊕ H̃∗(S1) ⊕ H̃∗(S2). Since we know

H̃i(S
n) = Z if i = n and 0 otherwise, we see that H∗(X) ∼= H∗(T ) (using also basic facts

about the relation between ordinary and reduced homology).

The universal cover of T is R2, which is contractible, so H2(T̃ ) = 0. But the universal

cover of X is like the antenna space over S1 ∨ S1 but with an S2 attached at every vertex.

This is homotopy equivalent to a wedge of a (countably) infinite number of S2s (one for each

word in a, b, a−1, b−1). So H̃2(X̃) ∼= ⊕aH̃2(S2
a)
∼= ⊕aZ 6= 0.

Hatcher 2.2.2 Suppose for all x, f(x) 6= x and f(x) 6= −x, then gt(x) = (1−t)x+tf(x)
|(1−t)x+tf(x)| is

a homotopy from f to the identity and gt(x) = (1−t)(−x)+tf(x)
|(1−t)(−x)+tf(x)| is a homotopy from f to the

antipodal map. So the identity and antipodal map are homotopic. But the identity has

degree 1 and the antipodal map has here degree −1 because S2n is an even sphere. So this

is a contradiction, so there must be an x that gets taken to x or −x by f .

Now RP 2n is covered by S2n. Condsider the following diagram

S2n f̃
- S2n

RP 2n

p

? f
- RP 2n

p

?

The map f̃ exists by applying the lifting theorem to fp. By the first part of the theorem,

some x ∈ S2n gets taken to x or −x, so fp(x) = p(x).

Finally consider the map f : R2n → R2n given by

(
0 −1

1 0

)
in blocks along the diagonal

and 0 elsewhere. This takes lines to lines, and so induces a map RP 2n → RP 2n. But since

there are no real eigenvectors, there are no lines fixed by this.
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Due April 17

Let A be the closed annulus, i.e. A = {z ∈ C | 1 ≤ |z| ≤ 2}. Let ∂A be the boundary

of A. Compute H∗(A, ∂A) using arguments with the long exact sequence and other

basic properties of homology. You can use that you already know homology

computations for circles, but you shouldn’t compute H∗(A, ∂A) directly from the

Delta complex. If necessary, you can also use that H∗(X) = H∆
∗ (X) if X can be

realized as a Delta complex in order to compute H∗(A) and H∗(∂A) .

To get at H∗(A, ∂A), we first compute H∗(A) and H∗(∂A). The boundary ∂A is the

disjoint union of two circles, so, using what we know about circles (or spheres in general),

H1(∂A) = Z⊕ Z, and H0(∂A) = Z⊕ Z. We’ll also have Hi(∂A) = 0 for i > 1. Similarly, A

is homotopy equivalent to a circle, so we have H0(A) ∼= H1(A) ∼= Z and all others are 0. So

far we have the long exact sequence

0 - H2(A, ∂A) - H1(∂A)
g
- H1(A) - H1(A, ∂A) - H0(∂A)

f
- H0(A) - H0(A, ∂A) - 0

0

=

?
- H2(A, ∂A)

=

?
- Z⊕ Z

=

? g
- Z

=

?
- H1(A, ∂A)

=

?
- Z⊕ Z

=

? f
- Z

=

?
- H0(A, ∂A)

=

?
- 0

=

?

Note that as all Hi(A) and Hi(∂A) are 0 for i > 1, it is immediate that Hi(A, ∂A) = 0

for i > 2.

So what are the maps? H0(∂A) = Z⊕Z is generated by one 0-simplex in each component.

These each map to a generator of H0(A) = Z, so the map f : Z⊕ Z → Z is (a, b) → a + b.

Therefore, it is onto, so H0(A, ∂A) = 0. We can also see this directly as any 0 simplex in A

is homologous via a path to a 0-simplex in ∂A.

Similarly, H1(∂A) = Z ⊕ Z is generated by a cycle that goes once around each circle.

This can most easily be seen using simplicial homology. Furthermore, as each inclusion of

a boundary circle into A is a homotopy equivalence, each of these inclusions induces an

isomorphism. This implies that g : Z ⊕ Z → Z is also given by (a, b) → a + b. So this is

also surjective, and its kernel must be H2(A, ∂A). This is easily seen to be isomorphic to Z,

generated by (1,−1).

That leaves H1(A, ∂A). As g is surjective, H1(A, ∂A) must inject into H0(A), and, in

fact, it is the kernel of f . Again, this is Z generated by (1,−1).

So, H2(A, ∂A) ∼= H1(A, ∂A) ∼= Z and H0(A, ∂A) = 0.

Find generators for the homology groups Hi(A, ∂A) you computed above. For

each of H1(A, ∂A) and H2(A, ∂A), we need generators that map to (1,−1) under ∂∗, where

here the 1 and −1 are with respect to the generators of H0(∂A) or H1(∂A) observed above.

So for H1(A, ∂A), we can use a 1-simplex that runs from one boundary component to the

other. For H2(A, ∂A) we can use any 2-chain that triangulates A as a Delta-complex; in
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other words, form such a ∆ complex and then take the sum over all the 2-simplices, oriented

compatibly.
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Due April 10

Let A
f−→ B

h−→ C
k−→ D

g−→ E be an exact sequence. Suppose f is surjective and g is

injective. Show that C = 0. Provide all the details. As g is injective, ker(g) = 0, so

im(k) = 0, so ker(k) = C.

On the other hand, as f is surjective, im(f) = B, so ker(h) = im(f) = B. This implies

that im(h) = 0.

But im(h) = ker(k), so C = 0.

Recall that if f : G → H is a map of abelian groups, then the cokernel, cok(f),

is defined to be H/im(f). Suppose you have the following commutative diagram

of abelian groups in which the horizontal sequences are exact:

0 - A - B
g

- C - 0

0 - D

α

? h
- E

β

?
- F

γ

?
- 0

The serpent lemma says that there is an exact sequence

0→ ker(α)→ ker(β)→ ker(γ)→ cok(α)→ cok(β)→ cok(γ)→ 0.

Prove the serpent lemma. Hint: write the kernels and cokernels as homology

groups and use some big results you learned in class. Notice that the map A→ D

can be included in a chain complex · · · → 0 → A
α−→ D → 0 → · · · . You can check this

is indeed a chain complex. If we think of D as being in degree 0, then H0 = cok(α) and

H1 = ker(α). Similarly for the other groups. The exact sequence of the serpent lemma is then

just the long exact homology sequence from the short exact sequence of chain complexes.

Hatcher 2.1.16 a) This could be done directly but let’s use the exact sequence. First,

notice that if X has one component and A is not empty, then a 0-chain generating H0(A)

also generates H0(X). So H0(A) → H0(X) is onto and H0(X,A) is 0 from the long exact

sequence. More generally, suppose X has multiple connected components and that A inter-

sects each component. If Xi is a component of X, then H0(A ∩Xi)→ H0(Xi) is surjective

by the preceding argument. But then H0(A) = ⊕iH0(A ∩ Xi) → ⊕iH0(Xi) = H0(X) is

surjective. So H0(X,A) = 0.

b) If H1(X,A) = 0, then H1(A)→ H1(X) is onto immediately by the long exact sequence

and H0(A)→ H0(X) is injective. This last statement can’t be true if some path component

Xi of X contains multiple components of A because then H0(A ∩Xi) ∼= Zn for some n ≥ 2

while H0(Xi) = Z. So then H0(A ∩ Xi) → H0(Xi) can’t be 1-1, and the same follows for

H0(A)→ H0(X).
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Conversely. If H1(A) → H1(X) is onto, then ker(p1 : H1(X) → H1(X,A)) = H1(X),

so the map p1 : H1(X) → H1(X,A) is the 0 map. Similarly, if each component of X

contains at most one component of A, then H0(A) → H0(X) is injective. So its kernel is

0, so the image of H1(X,A) → H0(A) is 0. But then by the first isomorphism theorem,

0 = H0(X,A)/ ker(∂∗) = H0(X,A)/im(p1) = H0(X,A).

Hatcher 2.1.17.a (just the sphere for now) We know from previous computations

that H2(S2) ∼= H0(S2) ∼= Z, and otherwise Hi(S
2) = 0. Also if A consists of n points,

H0(A) ∼= Zn and Hi(A) = 0 otherwise. So the long exact reduced homology sequence looks

like

0 - H̃2(S2) ∼= Z - H2(S2, A) - 0 -

0 - H1(S2, A) - H̃0(A) ∼= Zn−1 - H̃0(X) = 0 - H0(S2, A) - 0

So immediately, we have H2(S2, A) ∼= H̃2(S2) ∼= Z, and H1(S2, A) is isomorphic to

H̃0(A) ∼= Zn−1. We also must have H0(S2, A) = 0.
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Due April 3

Hatcher 2.1.11 Since A is a retract, there are maps A
i−→ X

r−→ A such that ri = idA.

Thus by functoriality, r∗i∗ is the identity, so i∗ : H∗(A)→ H∗(X) is injective.

Suppose H < G are abelian groups and G/H ∼= F is a free abelian group. Prove

that G ∼= H ⊕ F . Hint: Let q : G → G/H be the natural quotient map. First

construct a homomorphism ψ : F → G such that qψ = idF ; note: this implies that

ψ : F → G is injective, so ψ(F ) ∼= F . Then show that G ∼= H⊕ψ(F ) by showing that

H ∩ ψ(F ) = {0} and that every element of G can be written as a sum h + f with

h ∈ H and f ∈ ψ(F ). Double hint: it might help to notice that H is the kernel

of q. Triple hint: to construct f , use the maps! First we construct ψ. As F is free,

it has generators, say {xa}. As q is surjective, there is an element (not necessarily unique)

ya ∈ G such that q(ya) = xa. Define ψ(xa) = ya. Again, ψ is not unique, but that’s okay.

Then clearly qψ(xa) = xa. As F is free abelian, defining ψ on the generators determines ψ

on all of F , and as q and ψ are homomorphisms, qψ(
∑

a caxa) =
∑

a caqψ(xa) =
∑

a caxa for

any ca ∈ Z and finite index set for the sum. So ψ is as desired.

Now, let us first show that H ∩ ψ(F ) = {0}. Suppose y ∈ H ∩ ψ(F ). Then q(y) = 0

because H = ker q. But also, if y ∈ ψ(F ), the y = ψ(x) for some x and so 0 = q(y) =

qψ(x) = x. So x = 0 and y = ψ(x) = 0.

Next, let’s show that every element of G can be written as h + f with h ∈ H and

f ∈ ψ(F ). Let y ∈ G. Notice y = y − ψq(y) + ψq(y). Obviously ψq(y) ∈ ψ(F ). But then

q(y − ψq(y)) = q(y)− qψ(q(y)) = q(y)− q(y) = 0. so y − ψq(y) ∈ H.

Show that if f : X → Y is homotopic to a constant map, then f∗ : H̃∗(X)→ H̃∗(Y )

is the 0 map . Since homotopic maps induce the same map on homology (and reduce

homology), we might as well assume f is the constant map. The we can write f = gh, where

h maps X to a point and g maps a point to the image point f(X). So then the image of f∗

is the image of the composition H̃∗(X)
h∗−→ H̃∗(pt)

g∗−→ H̃∗(Y ). But H̃∗(pt) = 0, so the result

follows.

The topologist’s sine curve is the subspace of R2 consisting of all points (x, sin(1/x))

for 0 < x ≤ 1 and all points (0, y) for −1 ≤ y ≤ 1. Compute the singular homology

groups of this space. The space X has two path components, let’s say X1 is the set of

points on the (x, sin(1/x)) piece and X2 the other piece. Each of these pieces is contractible.

So H∗(X) = H∗(X1) ⊕ H∗(X2) and for each i, H0(Xi) = Z and Hj(Xi) = 0 for j > 0. So

H0(X) = Z⊕ Z and Hi(X) =) otherwise.

Suppose X is a path connected space such that π1(X) is a non-abelian simple

group. Show that H1(X) = 0. Since H1(X) is the abelianization of π1(X), we must show

that π1(X) abelianizes to 0. The abelianization of a group is its quotient by its commutator

subgroup C. This is the normal subgroup generated by the commutators, which are elements
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of the form aba−1b−1. Since C is normal by definition and since π1(X) is simple, C is either

trivial or all of π1(X). In the latter case, H1(X) ∼= π1(X)/π1(X) = 0. So we just have to

show that C is not trivial. But if C is trivial, then every commutator aba−1b−1 is equal to

the identity e. So aba−1b−1 = e, whence ab = ba. So C will be nontrivial as long as there

are two elements of π1(X) that don’t commute.

Hatcher 2.1.12 Equivalence relation:

1. Reflexivity . Suppose f : A∗ → B∗ is a chain map. We need to show that f is chain

equivalent to f , i.e. that there is a P : A∗ → B∗+1 such that ∂P + P∂ = f − f = 0. Just

take P = 0, and that will work.

2. Suppose f, g : A∗ → B∗ are chain homotopic. So there is a P : A∗ → B∗+1 such that

∂P + P∂ = f − g. But now consider the map −P . Then using linearity of all the maps,

∂(−P ) + (−P )∂ = g − f . So g is chain homotopic to f .

3. Suppose f, g : A∗ → B∗ are chain homotopic via P : A∗ → B∗+1 and that g, h : A∗ →
B∗ are chain homotopic via Q : A∗ → B∗+1. Then ∂P + P∂ = f − g and ∂Q+Q∂ = g − h.

So ∂P + P∂ + ∂Q+Q∂ = ∂(P +Q) + (P +Q)∂ = f − h. So the relation is transitive.

Do Hatcher 2.1.13. From the proof of Theorem 2.10, there is a chain homotopy P :

C∗(X) → C∗+1(Y ) between f# and g#, ie. ∂P + P∂ = f# − g#. If we want a chain

homotopy P̃ : C̃∗(X) → C̃∗+1(Y ), we can try to let P̃ = P on Ci(X) for i > 0. We only

need to be careful about what happens at the bottom, so let’s have a closer look at what

P̃0 : C̃0(X)→ C̃1(Y ) and P̃−1 : Z→ C̃0(Y ) must be.

Note: Since we need εf# = f#ε, we must define f̃# : C̃−1(X) = Z → C̃−1(Y ) = Z to be

the identity on Z, and similarly for any chain map.

Let’s first look at P̃−1. We need ∂0P̃−1 + P̃−2∂−1 = f̃#− g̃#. Notice that ∂−1 = 0, ∂0 = ε,

by definition, and f̃# − g̃# = 0 at the degree −1. So we can just take P̃−1 = 0.

For P̃0, we need ∂1P̃0 + P̃−1∂0 = f̃# − g̃#. We have just defined P̃−1 = 0, and from our

chain homotopy P , we already have a P0 such that ∂1P0 +P−1∂0 = ∂1P0 = f#− g# (because

in the unreduced chain complex, ∂0 = 0). So we just use P̃0 = P0, and from here we can just

let P̃i = Pi for all i ≥ 0, and everything will be consistent by the properties of P .

The homology result follows from the chain homotopy result as in the unreduced case.
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Due March 27

Hatcher 2.1.1 It’s a Mobius strip. (The easiest way to see this is that the instructions

given an RP 2 with a hole cut out of it. That’s always a Mobius strip.)

Hatcher 2.10.a - note that he means that every edge is glued to precisely one

other edge. Let X be such a space. Every point of X lies in the interior of a vertex, an

edge, or a face. If it lies in the interior of a face, it clearly has a euclidean neighborhood. If

it lies on the interior of an edge, then we can find a euclidean neighborhood that looks like

a half disk in each of the two 2-simplices joined together along that edge. At a vertex, the

space looks locally like a pie. Since there are no free edges in the quotient, it must be a “full

pie” and we get a euclidean neighborhood by adjoining wedges from each of the 2-simplices

Find a way to realize the “two-holed torus” (what Hatcher calls M2) as a ∆-

complex.

Find a Delta-complex X such that π1(X) = Z3. See me for a picture.

Hatcher 2.1.4 We have ∆0(X) =� v �, ∆1(X) =� e1, e2, e3 �, ∆2(X) =� f �.

• ∂2f = e1 + e2 − e3. So ker ∂2 = 0, so H∆
2 (X) = 0.

• We’ve seen im∂2 =� e1 +e2−e3 �. Also, ∂1e1 = ∂1e2 = ∂1e3 = 0. So ker ∂1 = ∆1(X).

So H∆
1 (X) =� e1, e2, e3 | e1 + e2 − e3 �=� e1, e2 �∼= Z⊕ Z.

• We know im∂1 = 0 and clearly ker ∂0 = ∆0(X) =� v �. So H∆
0 (X) ∼= Z.

Hatcher 2.1.5 Using the notation from Hatcher’s picture, ∆0(K) =� v �, ∆1(K) =�
a, b�, and ∆2(K) =� U,L�.

• ∂2U = a + b − c and ∂2L = c + a − b. It’s easy then to check that ker ∂2 = 0, so

H∆
2 (K) = 0.

• We’ve seen im∂2 =� a + b − c, a − b + c �. Also, ∂1a = ∂1b = ∂1c = 0. So

ker ∂1 = ∆1(K). So H∆
1 (K) =� a, b, c | a + b − c, a − b + c �=� a, b | a − b + (a +

b)�=� a, b | 2a�∼= Z2 ⊕ Z.

• We know im∂1 = 0 and clearly ker ∂0 = ∆0(X) =� v �. So H∆
0 (K) ∼= Z.
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Hatcher 2.1.9 Here clearly each ∆j(X) has one generator for each 0 ≤ i ≤ n. What

are the maps δj. If d is the lone j-face (after identification), then let’s represent d as

[v0, . . . , vj] (of course all the vi have also been identified, but we don’t use that yet. Then

∂i[v0, . . . , vj] =
∑

(−1)i[v0, . . . , v̂i, . . . , vj]. But now each of the [v0, . . . , v̂i, . . . , vj] have been

identified to each other. If we call the identified face f , this is
∑j

i=0(−1)if , which is 0

if j is odd and f if j is even. So each map ∂2k+1 is 0 and each map ∂2k is the identity

� d�→� f �. We just have to be careful around j = 0 and j = n because there are no

−1 or n+ 1 simplices. Thinking about all these cases shows that H∆
0 (X) ∼= Z, H∆

n (X) ∼= Z
if n is odd, and H∆

i (X) = 0 otherwise.
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Due March 20

Note: the following exercise is essentially a special case of Hatcher’s 1.3.24, which

actually follows from the same sort of ideas as this by “putting more spaces in

the middle”. 1. Suppose p : X̃ → X is a covering space with X̃ path connected,

locally path connected, and simply connected. Show that X̃ is a normal cover

and that the group of deck transformations for X̃ over X is isomorphic to π1(X).

Since π1(X̃) is trivial, so is its image in π1(X). The trivial subgroup is normal, so the

covering is normal, and G(X̃) = π1(X)/{e} = π1(X).

2. Let x̃0 be a basepoint of X̃ over x0 ∈ X. Let H be a subgroup of π1(X, x0) and

hence also a subgroup of the group of deck transformations of X̃ over X. Let

XH = X̃/H, and let x̃H0 be the image of x̃0 in XH, which we let be the basepoint of

xH. Notice that we can factor p as X̃
pH−→ XH

q−→ X = X/G. Show that q : XH → X

is a covering space of X. For each x ∈ X, let Ux be a neighborhood such that p−1(Ux)

consists of homeomorphic copies of Ux. In fact, if Ũx is one such copy, then all the other

copies will have the form gŨx, where g ∈ π1(X, x0) and gŨx is the image of Ũx under the

action of g. XH is formed from X̃ by identifying equivalence classes of the form {hy | h ∈ H}
for each y ∈ X̃. So going from X̃ to XH identifies all of the hŨx for h ∈ H. Thus q−1(Ux)

is the quotient p−1(Ux)/H, which consists of a copy of Ux for each left coset gH.

3. Show that q∗(π1(XH , x̃
H
0 ) = H. Recall that q∗(π1(XH , x̃

H
0 ) will be consist of those

loops in X that are images of loops in XH . Since X̃ is simply connected, the loops in XH are

the image from X̃ of the paths in X̃ starting at x̃0 and ending at points of the form hx̃0 for

h ∈ H. Thus there is a correspondence between elements of H and elements of π1(XH , x̃
H
0 ).

One then checks that this is a homomorphism.

4. Suppose H is normal. Show that G/H acts properly discontinuously on XH

(in particular, show that g1x = g2x if and only if g1H = g2H) and observe that

X = X/G = XH/(G/H).

(Clarification: recall that each point of XH corresponds to an orbit of a point x

in the X̃ under the action of H. In particular, every point in XH is an image pH(x)

for some x in X̃. Define an action of G on XH by letting g(pH(x)) = pH(gx). Part

of your job is to show that this is well-define, i.e. if y is another point in X̃ with

pH(y) = pH(x), show that g(pH(x)) = g(pH(y)) so that this definition is consistent.

Then to show that we really have an action of G/H, show that every element

of the coset gH acts on pH(x) the same way. Lastly, you should argue that the

action of G/H is properly discontinuous.) Recall that pH : X̃ → XH identifies points

of X̃ that are in the same orbit of H. So let x ∈ X̃, and let pH(x̄) be its image in xH . Define

gpH(x̄) to be pH(gx̄). To see that this is well-defined, suppose pH(y) = pH(x). Then y = hx

for some h ∈ H. But then gy = ghx, so gpH(y) = pH(gy) = pH(ghx) = gpH(hx) = gpH(x)
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because x and hx are in the same orbit. So the map is well-defined. Now, to show that G/H

acts on XH , observe ghpH(x) = pH(ghx) = gpH(hx) = gpH(x). Therefore, each element of

the coset gH acts on XH in the same way, and we can consider this an action of GH on

XH . This action is properly discontinuous because if Ux is as above, then g takes pH(Ũx) to

pH(gŨx), which is disjoint from Ũx if g /∈ H. For freeness, if g(pH(x)) = pH(x), that means

that pH(gx) = pH(x), which happens only if g ∈ H for some h ∈ H. But then gH represents

the identity element of G/H.

Recall from last week’s homework the spaces Xn, n ∈ {1, 2, 3, . . .} obtained from

the two-dimensional disk D2 by identifying points on the boundary that differ

by an angle 2π/n; let q : D2 → Xn be the quotient map. In that problem, you

should have shown π1(Xn) ∼= Zn and determined that the universal cover X̃n is

homeomorphic to n copies of D2 with their boundaries identified to each other.

1. Describe how the deck transformations act on X̃n. The group of transformations

is Zn. The generator 1 acts by taking the ith copy of D2 to the (i+ 1)st copy (the nth

copy goes to the first) and rotating it by an angle 2π/n.

2. Describe what points of X̃4 you would identify to get the quotient space of

X̃4 corresponding to the unique subgroup of index 2 of π1(X4). Each point on

disk i would be identified with its antipodal point on the disk i+ 2 mod 4

Describe all connected covering spaces of RP 2, up to equivalence. The covering

spaces are RP 2 and S2.

Describe all connected covering spaces of RP 2×RP 2 (Note: some of these will be

familiar, others you made need to describe as quotients of universal cover under

certain group actions). π1(RP 2 × RP 2) = Z2 × Z2, so the covering spaces correspond

to 0, Z2 × 0, 0× Z2, and {0, (1, 1)}. The covering spaces corresponding to the first three of

these are S2 × S2, RP 2 × S2 and S2 × RP 2. The last space is S2 × S2/(p, q) ∼ (−p,−q).

Let X = RP 2 ∨ RP 2 with basepoint the union point x0.

1. What’s the universal cover X̃ of X?

It’s a string of S2s with the north pole of one identified to the south pole of the next.

2. Since X̃ is simply-connected, its group of deck transformations is π1(X, x0) ∼=
Z2 ∗Z2. Let a, b be the respective generators of π1(RP 2 ∨ x0) and π1(x0 ∨RP 2)

as subgroups of π1(X, x0). Describe the covering actions of a and b. Then

describe what a covering action by a general element of π1(X, x0) would

look like. Can you see why all such transformations are generated by those

corresponding to a and b? (Note, while the group of deck transformations

is isomorphic to π1(X, x0), the exact isomorphism might depend upon the

choice of basepoint in X̃.)
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Take two consecutive spheres and label them A and B. a acts as the antipodal map

on sphere A and consequently flips the entire string of spheres. b acts similarly but

inverts B instead. A general element would flip the string of spheres, inverting one

them.

Due 3/6/2014

Describe all connected covering spaces of RP 2, up to isomorphism. π1(RP 2) = Z2

which has only one subgroup - the trivial subgroup. So the only cover is the universal cover,

which is S2.

Describe all connected covering spaces of RP 2 ∨ S2, up to isomorphism. This

should look like three spheres in a row.

Describe all connected covering spaces of S1∨S2, up to isomorphism. This should

look like R with a sphere attached at every integer.

Describe all connected covering spaces of S1 × S2, up to isomorphism. Since S2

is simply connected, we need only take products of S2 with the covering spaces of S1. The

trivial subgroup of π1(S1) = Z corresponds to the covering eiθ : R→ S1, while the subgroup

nZ corresponds to eniθ : S1 → S1. So the desired covers are eiθ × id : R× S2 → S1× S2 and

eniθ × id : S1 × S2 → S1 × S2.

Let X = S1 ∨ S1 with π1(X, x0) = 〈a, b〉 in the standard way. For each of the

following subgroups of π1(X, x0), find (draw) a covering space (with basepoint)

(X̃, x̃0) of X such that p∗(π1(X̃, x̃0)) is the given subgroup:

1. {(ab2)an(ab2)−1 | n ∈ Z}

2. {(ab)n | n ∈ Z}

3. {b3(ab)nb−3 | n ∈ Z}

4. the subgroup freely generated by a2 and b

5. the subgroup freely generated by a3, b, aba−1 and a−1ba.

I can’t draw these here. Come see me if you want to talk about them.
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Due 2/28/2014

Let p : X̃ → S1 ∨ S1 be the covering space shown in box 2 of Hatcher’s table of

examples of coverings of S1 ∨ S1. Let f : S1 × S1 → S1 ∨ S1 be the map given

by the composition of the projection S1 × S1 → S1 × y0 followed by the map

S1 × y0 → S1 ∨ S1 described by the loop a3b3. Does f lift to X̃? Yes! The image

f∗ in π1(S1 ∨ S1) is the cyclic subgroup generated by a3b3 = a2(ab)b2, which is a subgroup

of the image of p∗ because a2, b2, ab are all in this image (by direct inspection or using the

information given in Hatcher’s table).

Use covering space theory to show that every map φ : RP 2 → S1 is homotopic to

a constant map. Since π1(RP 2) = Z2, and π1(S1) = Z, the homomorphism φ∗ must be

the trivial homomorphism with image 0. So φ must lift to a map φ̃ : RP 2 → R. But every

map to R is nullhomotopic, so we have a homotopy, say φ̃t from φ̃0 = φ̃ to φ̃1 = 0. Then if

p : R→ S1 is the covering map, p ◦ φ̃t is a nullhomotopy of φ.

Suppose Y is simply connected and p : X̃ → X is a covering space with X̃

contractible. Show that every map f : Y → X is homotopic to a constant map.

Since Y is simply connected, the criterion for the lifting theorem is automatically satisfied,

so there is a lift f̃ : Y → X̃ of f . Since X̃ is contractible, say by a homotopy Ht, the

composition Htf̃ gives a homotopy from f̃ to a constant map and pHtf̃ gives a homotopy

from pf̃ = f to a constant map.

Describe the universal cover of T 2 ∨S1, where T 2 is the torus S1×S1. This is like

an antenna space, except it alternates lines and planes. Start with a line. At every integer

points attach a plane. At ever Z×Z lattice point in each plane, attach a line (disjoint from

the rest of the space otherwise). At every integer point of each new line, attach a plane.

And so on.

Let Xn be the space obtained from the two-dimensional disk D2 by identifying

points on the boundary that differ by an angle 2π/n; let q : D2 → Xn be the

quotient map.

What’s π1(Xn) (you don’t need to write out the argument)? Zn

Suppose x is in the interior of D2; describe what small neighborhoods of q(x)

look like. Now suppose x is in the boundary of D2; describe what small neigh-

borhoods of q(x) look like. For points in the interior of D2, the corresponding points

in Xn have neighborhoods homeomorphic to Euclidean 2-space R2. For points on ∂D2, their

neighborhoods in Xn look like n copies of the half-plane {(x, y) ∈ R2 | y ≥ 0}, all joined

along the x-axis.

14



Find and describe the universal cover X̃n of Xn using what you figured out in

the previous sections; hint: think about the familiar case X2 = RP 2. Recall

that each point in Xn has to have n points in its preimage in X̃n. Thinking about RP 2,

the space can be assembled as follows: start with n copies of D2, then glue together their

boundaries such that the point at angle θ on the ith copy ( mod n) gets glued to the point

at angle θ + 2π/n on the i + 1st copy ( mod n). It is not difficult to see that this space is

simply connected, using the van Kampen Theorem, and then we can check that each point

in X̃n has neighborhoods that get taken homeomorphically to Xn in the appropriate way:

the preimage of each point in the interior of D2 has a neighborhood that looks like n copies

of D2 (displaced in the copies of D2 by angles of 2π/n), while the preimage of each point

corresponding to a boundary point of the original D2 consists of n neighborhoods around

the “edge” of X̃n, each of the form described above (a union of half planes).

Due 2/20/2014

Show that a covering map p : X → Y is an open map (and hence a quotient

map). Let {Ua} be a covering of Y by open sets such that each p−1(Ua) is a disjoint union

of open sets each homeomorphic to Ua. We can write p−1(Ua) = ∪bŨ b
a, where each Ũ b

a is

homeomorphic to Ua. Then ∪a,bŨ b
a covers X, so there is a basis {Bi} for X for which each

elements of the basis lies inside some Ũ b
a. But then if Bi ⊂ Ũ b

a is an open set in the basis,

then p(Bi) is also open because p|Ũb
a

is an isomorphism. Any open set V of X is a union of

some collection of the Bi, V = ∪i∈JBi. Then p(V ) = p(∪i∈JBi) = ∪i∈Jp(Bi) is open. So p is

an open map.

Alternative: Let U be an open set of X. Let x ∈ U . Then, as p is a covering map, p(x) ∈
Y has a neighborhood V such that p−1(V ) is a disjoint union of open sets homeomorphic

to U . Let V0 be the subset of p−1(V ) that is homeomorphic to V and contains x. Then

V0 ∩ U is an open neighborhood of x that maps to an open neighborhood of p(x) in p(U).

Since x ∈ U was arbitrary and p : U → p(U) is surjective, every point of p(U) has an open

neighborhood in p(U). So p(U) is open.

Hatcher 1.3.1. If Ua is the open covering of X in the definition of what makes p : X̃ → X

a covering map, then {Ua ∩ A} is an open covering of A. Furthermore, it has the desired

property because if p−1(Ua) = qbUa,b, then the homeomorphism Ua,b → Ua induced by p

restricts to a homeomorphism Ua,b ∩ p−1(A)→ Ua ∩ A.

Hatcher 1.3.1. Let {Uα} and {Vβ} be appropriate coverings of X1 and X2. Consider

(p1 × p2)−1(Uα × Vβ) = p−1
1 (Uα) × p−1

2 (Vβ) (this is an easy set theory exercise). Suppose

p−1
1 (Uα) = qUα,i and p−1

2 (Vβ) = qVβ,j. Then the sets Uα,i×Vβ,j are disjoint from each other

(again by easy set theory). And p1 × p2 restricts to a homeomorphism from Uα,i × Vβ,j to

Uα × Vβ because the product of homeomorphisms is a homeomorphism.

Use a covering space of S1 ∨ S1 to show that the free group on 3 generators is

isomorphic to a subgroup of the free group on 2 generators. Generalize 3 to n.
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Use a covering space that is a union of 3 (or n) circles and so has π1 = Fn.

Find a simply connected cover of the space θ. This is the free graph of valence 3.

Due 2/13/2014

Think of the real projective plane RP 2 as the space obtained from the unit disk

by identifying opposite points on the boundary. 1. Show that π1(RP 2) ∼= Z2. 2.

Draw a picture showing a loop representing the nontrivial element [f ] ∈ π1(RP 2).

3. Draw a series of pictures showing the nullhomotopy from 2[f ] to the constant

path. Using the picture, we see that RP 2 can be formed as a CW complex with one cell in

each dimension 0, 1, 2. If a represents the one-cell, then the attaching map takes the boundary

of the 2-cell to a2. So by our theorems about π1 of cell complexes, π1(RP 2) = Z/〈a2〉 ∼= Z2.

Let X be the quotient space of the disk D2 obtained by identifying points on

the boundary that are 120 degree apart. Compute π1(X) Just like for RP 2, this

π1 = Z/3.

Let X be the complement of n points in R2. Compute π1(X). Do the same for the

complement of n points in R3. [Hint: use induction on n]. If n = 1, we can assume

without loss of generality that the point is the origin. Then X deformation retracts to S1

so π1(X) = Z. Now, suppose we’ve shown that for n − 1 points π1(X) = ∗n−1Z, the free

product on n− 1 copies of Z. Let X be the complement of n points. It’s possible to find a

plane that separates the points into two groups of size m and m′, each less than n. Now write

X = A ∪ B where A and B are each halfspaces determined by the plane, but thickened up

slightly so that A∩B ∼= Rn−1× (−ε, ε). Then by induction π1(A) ∼= ∗mZ and π1(B) ∼= ∗m′Z.

π1(A ∩B) = 0, so by the van Kampen theorem, π1(X) ∼= (∗mZ) ∗ (∗m′Z) ∼= ∗nZ.

For R3, the proof is the same except all groups are trivial.

Hatcher 1.2.7 Start with the cell structure on S2 with two cells in each dimension. So

there are two 0 cells, v0, v1. We can assume the two one cells e1, e2 are attached so that

they both run from v0 to v1. Then to attach the two 2-cells, we can attach each one by

sending its boundary to the loop e1e
−1
2 . Now form the quotient X by gluing v0 to v1. Then

e1 and e2 are loops, and the 1-skeleton X1 of X is the figure eight. So π1(X1) = Z ∗ Z.

But now using Proposition 1.26, π1(X) = π1(X1)/N , where N is the subgroup generated

by the loops along which we glue the 2-cells. But the only such loop is still e1e
−1
2 . So

π1(X) = Z∗Z/〈e1e
−1
2 〉 ∼= Z∗Z/〈e1 = e2〉. So this group is generated by {e1, e2} but e1 = e2.

So this is just Z.

Consider the annulus. Identify antipodal (opposite) points on the outer circle

with each other (as if you’re forming RP 2). Also identify antipodal points on

the inner circle with each other. Call the resulting space X. Compute π1(X).
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Let the space be X. Suppose the annulus consists of the points in the plane with radius

1 ≤ r ≤ 2. Write the annulus as A∪B where A consists of the points of radius 1 < r ≤ 2 and

B consists of the points with radius 1 ≤ r < 2. Then each of A and B deformation retracts

to the boundary, which is just a circle (note: if you identify the antipodal points of a circle,

you get a circle). So π1(A) ∼= π1(B) ∼= Z. So π1(X) ∼= Z ∗π1(A∩B) Z. Now A∩B also retracts

to a circle, so π1(A ∩ B) ∼= Z. The inclusions π1(A ∩ B) → π1(A) and π1(A ∩ B) → π1(B)

can each be identified as multiplication by 2 Z→ Z. So π1(X) = Z ∗ Z/〈x2 = y2〉 ∼= Z ∗ Z2.

Let X be the union of a sphere S2 with one of its diameters. Compute π1(X).

π1(X) = Z using the van Kampen theorem. Alternatively, note that this space is homotopy

equivalent to the one in Hatcher 1.2.7.

Due 2/6/2014

1. Suppose that X is a compact metric space and that U is an open covering of X. Show

that there is a number δ > 0 (called a Lebesgue number) such that for every set Z ⊂ X

with diameter < δ, there is an element U ∈ U such that Z ⊂ U .

Suppose there is no such δ. Then for each n ∈ N, there is a subset Zn ⊂ X with

diameter < 1/n and such that Zn is not contained in any single element of U . Let

zn ∈ Zn. Then zn has a convergent subsequence, as X is compact. Let z be the limit

of the subsequence. But then there is some U ∈ U such that x ∈ U , and so there is a

ball of some diameter d centered at x and contained in U . But then an easy inequality

argument shows that there must be some Zm contained in U , a contradiction.

2. Use the results of the previous exercise to show that if f : I → Y is a path in

the arbitrary space Y and if V is an open covering of Y then there is a partition

0 = t0 ≤ t1 ≤ · · · ≤ tn = 1 of I such that for each interval [ti, ti+1], the image

f([ti, ti+1]) is contained in some single element V ∈ V .

Let δ be the Lebesgue number for the covering {f−1(V ) : V ∈ V} of I. Then 0 ≤
δ/2 ≤≤ δ ≤ 3δ/2 ≤ · · · . . . Nδ/2 ≤ 1, for an appropriate N , gives a partition of the

desired form.

Hatcher 1.1.13 Let φ : A→ X be the inclusion. Suppose every path in X with endpoints

in A is homotopic to a path in A. Let f be a loop in X based at x0. By the assumption, f

is homotopic to a loop f ′ in A. But then f ′ represents an element [f ′] ∈ π1(A, x0) and also

φ∗([f
′]) = [f ] ∈ π1(X, x0) because f is homotopic to f ′. So φ∗ is surjective.

Conversely, let f be a path with endpoints in A. Let h1 be a path from f(0) to x0 in

A, and let h2 be a path from x0 to f(1) in A. Since φ∗ is onto, there is a homotopy from

h−1
1 fh−1

2 to a loop g contained in A, i.e. h−1
1 fh−1

2 ∼ g. But then f ∼ h1gh2 using previous

problems.
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Hatcher 1.1.16b If there were a retraction S1 × D2 → S1 × S1, then there would be

homomorphisms π1(S1 × S1) → π1(S1 × D2) → π1(S1 × S1) that compose to the identity.

But π1(S1 × D2) ∼= π1(S1) × π1(D2) ∼= Z, while π1(S1 × S1) ∼= Z × Z. This leads to a

contradiction as there is no surjection Z → Z × Z (pick your favorite reason from abstract

algebra; mine is that the image would have to consist of multiples of some (a, b) ∈ Z × Z
because the image of a cyclic group is cyclic, but then it’s not hard to argue that this cannot

include all possible (x, y)).

Hatcher 1.1.17 For n ∈ Z define φn : S1 ∨ S1 → S1 so that φn is the identity on the first

S1 of S1 ∨ S1 and φn restricts to the angle map θ → nθ for θ ∈ S1. So φn is the identity

on the first circle and wraps the second circle n times around the image circle. φn cannot

be homotopic to φm for m 6= n because if [f ] ∈ π1(S1 ∨ S1) is represented by the loop that

generates π1 of the second circle in S1 ∨ S1, then φn∗([f ]) and φm∗([f ]) represent different

elements of π1(S1) by what we know about the fundamental group of the circle. Thus φn is

not homotopic to φm using Lemma 1.19 of the book.

Hatcher 0.3a Suppose f : X → Y and g : Y → Z are homotopy equivalences. Let f ′ and

g′ be the homotopy inverses. We claim f ′g′ is a homotopy inverse to gf . To see this, we

recall that, by definition, there are homotopies, say Ft from f ′f to idX , Gt from g′g to idY ,

Ht from ff ′ to idY , and It from gg′ to idZ . Then we can obtain a homotopy from f ′g′gf

to idX as follows. First do the homotopy f ′Gtf from f ′g′gf to f ′idY f = f ′f . Then do the

homotopy Ft from f ′f to idX . The other homotopy from gff ′g′ to idZ is similar.

This shows that the relation of being homotopy equivalent is transitive. But clearly for

any space X, X is homotopy equivalent to X by the identity. Symmetry is evident from the

definition. So homotopy equivalence is an equivalence relation.

Hatcher 0.3c (You may assume 0.3b) Suppose f ′ : X → Y is homotopic via Ft to

the homotopy equivalence f : X → Y , with homotopy inverse g : Y → X. Then f ′g is

homotopic to fg via Ftg, which is homotopic to idY and gf ′ is homotopic via gFt to gf ,

which is homotopic to idX . Thus g is also a homotopy inverse to f ′.

Hatcher 0.4 Let F be the weak deformation retraction. Let f1(x) = F (x, 1) : X → A,

and let g : A ↪→ X be the inclusion. Then for gf1 : X → X, we have gf1 = f1, which is

homotopic to f0, which is the identity. On the other hand, f1g : A → A is the same as the

restriction of f1 to A. But then the restriction of F to A × I is a homotopy from f1|A to

f0|A = id|A.

Hatcher 0.6a [Hint to students. Here’s a point set topology lemma that might be useful:

Suppose X × Y is a product space, Y is compact, and N is an open set in X × Y . Suppose

also that x0 × Y ⊂ N for some x0 ∈ X. Then there is a neighborhood W of x0 in X such

that W × Y ⊂ N . This is a very important lemma, sometimes called the “tube lemma”.]
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First we can perform a deformation retraction ft(x, y) = (x, ty). At time t = 1 this is

the identity and at time t = 0 every point is on the horizontal segment. Now perform a

deformation retract from the horizontal segment to your favorite point x0. Explicitly, this

can be done as gt(x) = tx0 + (1 − t)x. The desired deformation retraction comes by first

doing ft and then gt.

It is impossible to have a deformation retract to any other point (x0, y0) ∈ X for y0 > 0

because this would contradict the continuity of the retraction. Suppose it were possible.

Then the homotopy F : X × I → X giving the deformation retract would have to be

continuous. Pick a ball neighborhood U = Bε((x0, y0)) of (x0, y0) where the radius ε satisfies

0 < ε < y0. Now F−1(U) would have to be open in X× I and contain [X×1]∪ [(x0, y0)× I].

In particular, it follows from the tube lemma that F−1(U) would contain some neighborhood

Bδ × I around (x0, y0)× I in X × I. But then every point in Bδ would have to stay within

ε of (x0, y0) through the homotopy, which is impossible.

Give a presentation in terms of generators and relations of Z4 involving one

generator; involving two generators; involving three generators. There are many

answers to this. Here are some: 〈x | x4 = e〉, 〈x, y | x4 = 1, y = x2〉, 〈x, y, z | x4 = 1, y =

x, z = x.

Recall the fundamental theorem of finitely generated abelian groups. If G is a

finitely generated abelian group, explain how you would write down a presenta-

tion for it. Every finitely generated abelian group has the form Zr×Zp1×· · ·Zpn}, where

Zr is the product of r copies of z. So a presentation would be 〈x1, . . . , xr, y1, . . . , yn | ypii =

e, xixj = xjxi, yayb = ybya, xky` = y`xk〉.

Consider the group G with presentation 〈x, y | x4 = e, y2 = e, (xy)2 = e〉. Show

that G is a finite group and determine how many elements it has. Hint: start

by rewriting the relation (xy)2 = e in a more useful form. Extra credit: can you

identify G as a familiar group? Using (xy)2 = xyxy = e, we see xy = y−1x−1 = yx−1

(since y2 = e implies y = y−1). So given any word, we can use this relation to pull any ys

from right to left across powers of x (for negative powers, note that x−1 = x3, so we can

always write xs in terms of positive powers). Thus every word can be rewritten as ynxm, and

clearly n = 0, 1 and m = 0, 1, 2, 3, so there are at most 8 elements of the group. Furthermore,

this group is isomorphic to the dihedral D4; it’s not hard to find an explicit isomorphism.

Due 1/30/2014

Hatcher 1.1.2. Suppose h and g are homtopic paths from x0 to x1 and that [f ] ∈ π1(X, x0).

Then hfh−1 is homotopic to gfg−1 (see the paragraph in which Hatcher defined the product

of paths), so βh([f ]) = βg([f ]).
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Hatcher 1.1.3. First suppose βh depends only on the endpoints of h and not the actual

path. Let x0 ∈ X be a basepoint. Let [h] ∈ π1(X, x0). Because h has the same endpoints

as the constant path, βh : π1(X, x0) → π1(X, x0) is the same as βc : π1(X, x0) → π1(X, x0),

where c is the constant path. But it is clear that βc = id. Therefore, using the definition of

βh, [g] = βc([g]) = βh([g]) = [hgh−1] = [h][g][h]−1. But then [g][h] = [h][g]. Since [h] and [g]

were arbitrary, π1(X, x0) is abelian.

Conversely, assume π1(X, x0) is abelian for any x0. Let h and g be two paths from x0 to

x1, and let [f ] ∈ π1(X, x1). We must show that βh([f ]) = βg([f ]), i.e. that [hfh−1] = [gfg−1],

which is the same as showing that hfh−1gf−1g−1 is homotopic to the constant map to x0. But

now notice that h−1g and f are both loops based at x1, so [h−1g][f ] = [f ][h−1g] as elements

of π1(X, x1). But now using this homotopy, we see that hfh−1gf−1g−1 is homotopic to

hh−1gff−1g−1, which is homotopic to the constant map.

Hatcher 1.1.6. Since I can’t draw pictures here, I’ll just outline the ideas. Let [g]f denote

the equivalence class of the loop g : S1 → X in [S1, X] (the g stands for “free” - these are

sometimes called free homotopy classes). This is an equivalence relation just like homotopy

of paths is (the proof is essentially identical).

One of the keys to this problem is to notice the following: suppose f : S1 → X can be

written as the composition of paths g1g2 . . . gk, where the gi are paths but not necessarily

loops. Then [g1g2 . . . gk]f = [g2 . . . gkg1]f ; in other words, cyclically permuting the order of the

paths gives the same equivalence class. This can be seen by just rotating the parametrization,

i.e. if the parametrization of g2 starts at angle ψ from s0, then we have a homotopy ft(θ) =

f(θ + ψt) from g1g2 . . . gk to g2 . . . gkg1.

Now, let f ∈ [S1, X], and let x1 = f(s0), where s0 is a basepoint of S1. Let h be any path

from x0 to x1 (this exists by the assumption of path-connectedness). We can consider the

map f as representing an element of π1(X, x1) and form βh([f ]). This gives a loop, hfh−1

based at x0. By our observation above, this is homotopic to fh−1h, and this is homotopic to

f by “reeling” in h−1h to x1 analogously to the proof that h−1h is homotopic to the constant

path. This shows that Φ is surjective.

Now suppose [f ], [g] ∈ π1(X, x0) are conjugate. Then by definition, [f ] = [h][g][h]−1 for

some [h] ∈ π1(X, x0). So [f ] = [hgh−1]. But then [f ]f = Φ([f ]) = Φ([hgh−1]) = [hgh−1]f =

[gh−1h]f = [g]f .

Finally, suppose Φ([f ]) = Φ([g]), so there is a free homotopy F : S1 × I → X from f to

g. Let h be the path followed by s0 during this homotopy. Then f is homotopic, preserving

basepoints, to hgh−1. (This would be easier in pictures (come by my office if you want to

see it), but the homotopy can be described by the composition I × I S−→
H

1

×I X−→
F

, where H

takes I × 0 to S1 × 0 by the obvious quotient and 0 × I and 1 × I to s0 × 0 and I × 1 up

s0 × I, around S1 × 1 and then down s0 × I).

Hatcher 1.1.10 Suppose [f ] ∈ π1(X, x0) and [g] ∈ π1(Y, y0). We will show that as a loop

in X × Y , fg is homotopic to the loop s → (f(s), g(s)). The same argument in reverse

shows that that gf is also homotopic to s → (f(s), g(s)), so fg ∼ gf . For the homotopy,
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we simply note that fg consists of the path s→ (f(2s), cy0) ∈ X × Y for s ∈ [0, 1/2], where

cy0 is the constant path at y0 ∈ Y , and similarly, (fg)(s) = (cx0 , g(2s − 1)) for s ∈ [1/2, 1].

In other words, if f ′ is the path that does f(2s) for s ∈ [0, 1/2] and is constant after that

and g′ is the path that does g(2s − 1) for s ∈ [1/2, 1] and is constant before that, then

fg = (f ′, g′). But clearly f ′ ∼ f and g′ ∼ g, so (f ′, g′) ∼ (f, g), using the isomorphism

π1(X × Y, x0 × y0) ∼= π1(X, x0)× π1(Y, y0).

Topological group problem. i. The operation is well-defined and I’ll let you show it’s

associative (should be easy). The identity is the constant path ce since (f⊗ce)(s) = f(s)∗e =

f(s). If f is a loop, then its inverse in this group is the loop s→ (f(s))−1.

ii. Suppose F (s, t) is the homotopy from f to f ′ and G(s, t) is the homotopy from g to

g′. Let H(s, t) = F (s, t) ∗G(s, t). Then H(s, 0) = F (s, 0) ∗G(s, 0) = f(s) ∗ g(s) = (f ⊗ g)(s)

and H(s, 1) = F (s, 1) ∗ G(s, 1) = f ′(s)g′(s) = (f ′ ⊗ g′)(s). So H is a homotopy from f ⊗ g
to f ′ ⊗ g′.

iii. On the one hand fce ∼ f and ceg ∼ g. So by part ii, (fce) ⊗ (ceg) ∼ f ⊗ g. On

the other hand, ((fce) ⊗ (ceg))(s) = (fce)(s) ∗ (ceg)(s). Notice that if s ≤ 1/2, then ceg(s)

is just e, and if s ≥ 1/2, fce(s) = e. So (fce)(s) ∗ (ceg)(s) = fg. So f ⊗ g ∼ fg. So

[f ⊗ g] = [fg] ∈ π1(G, e).

iv. In the last problem we saw that (fce) ⊗ (ceg) ∼ f ⊗ g, but fce ∼ f ∼ cef and

ceg ∼ g ∼ gce. So (fce)⊗ (ceg) ∼ (cef)⊗ (gce) ∼ g ⊗ f (the last relation for essentially the

same reason as in part iii). So [f ]⊗ [g] = [g]⊗ [f ] ∈ π1(G, e), and since [f ]⊗ [g] = [f ][g] by

part iii, also [f ][g] = [g][f ].

Due 1/23/2014

Hatcher 1.1.1. Since g0 ∼ g1, it follows that ḡ0 ∼ ḡ1: Recall that ḡ0(s) = g0(1 − s)

and ḡ1(s) = g1(1 − s). So if G(s, t) is the homotopy from g0 to g1, then G(1 − s, t) is the

homotopy from ḡ0 to ḡ1. Now, as f0g0 ∼ f1g1 and ḡ0 ∼ ḡ1, we have f0g0ḡ0 ∼ f1g1ḡ1. But g0ḡ0

is homotopic to the constant path at f0(1) = f1(1), so f0g0ḡ0 ∼ f0. Similarly f1g1ḡ1 ∼ f1.

Hatcher 1.1.4. UPDATED: Lemma: if Z is a star-shaped subset of Rn, then Z is simply

connected. Proof: Let z ∈ Z be the “center” and consider π1(Z, z). Let f be any loop based

at z. Let F (t, s) = tz + (1− t)f(s). This is a continuous homotopy from f to the constant

path at z. Since every point in the homotopy lies along the straight path from f(s) ∈ Z to

z, F is contained in Z. Therefore, Z is simply connected.

Now, let f : I → X be a path. By compactness, we can divide I into subintervals

0 = s0 ≤ s1 · · · ≤ sn = 1 such that each f([si, si+1]) is contained in a single star-shaped

neighborhood, say Si. Let zi be the “center” of the star Si. As Si is simply connected, any

two paths with the same endpoints are homotopic (we proved this in class). So f |[si,si+1]

is homotopic to the path that goes straight from f(si) to zi and then straight from zi to

f(si+1).

More general than homotopies of paths are homotopies of maps. Two maps

f, g : X → Y are called homotopic (written f ∼ g) if there exists a map F :
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X × I → Y such that F (x, 0) = f(x) and F (x, 1) = g(x). Show that, for any fixed X

and Y , homotopy is an equivalence relation on the set of maps from X to Y .

Same proof as for path homotopies! (see class notes)

Suppose f, f ′ : X → Y with f ∼ f ′ and g, g′ : Y → Z with g ∼ g′. Show that

g ◦ f ∼ g′ ◦ f ′, where ◦ denotes composition of functions.

Let F : X × I → Y be the homotopy from f to f ′ and G : Y × I → Z be the homotopy

from g to g′. Now use G(F (x, t), t).

Suppose f, f ′ : X → Y are homotopic and g, g′ : Z → W are homotopic. Show that

f × g, f ′ × g′ : X × Z → Y ×W are homotopic.

Let F : X × I → Y be the homotopy from f to f ′ and G : Z × I → W be the homotopy

from g to g′. Now use (F (x, t), G(z, t)).
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