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1. RIEMANNIAN MANIFOLDS

Our principal objects of study will be Riemannian manifolds, Mn, without boundary. Our
eventual objects of interest will be closed Riemannian manifolds (compact, without boundary). G
will usually denote a compact, Lie group. Recall that, by the structure theorem for compact Lie
groups, every such G admits a finite cover, say G̃, which is isomorphic to a product of simple
groups and possibly a torus (a product of circle groups).

1.1. Curvature.
A Riemannian manifold comes equipped with a (Levi-Civita) connection, ∇, (a way of taking

derivatives) which in turn yields a curvature tensor defined on every tangent space: for every
p ∈ M , we have R : TpM ⊗ TpM ⊗ TpM → TpM defined by R(x, y, z) := ∇[X.Y ]Z − [∇X ,∇Y ]Z,
where X,Y, Z are vector fields around p with Xp = x, Yp = y, Zp = z. This allows us to define the
sectional curvature of any 2-plane σ ⊆ TpM . If σ = span(u, v), then the sectional curvature of σ is

defined as sec(σ) :=
R(u, v, u, v)

Area(u, v)2
(the 4-tensor R(u, v, u, v) is simply 〈R(u, v, u), v〉). The sectional

curvature of σ is defined so that it is independent of choice of basis of σ.

We say that a manifold Mn has non-negative sectional curvature if sec(σ) > 0 for every 2-plane
σ ⊆ TM . In the talk we are interested in constructing and understanding the structure of non-
negatively curved manifolds. A starting point for most constructions is the following fact: if G is
a simple, compact Lie group, then it naturally admits a bi-invariant metric i.e., a metric for which
every left translation, Lg : G → G, x 7→ gx, and every right right translation, Rg : G → G, x 7→ xg

is an isometry for every g ∈ G. This is given by, for instance, the negative of the Killing form on
the Lie algebra g. A useful feature of this metric is that it has non-negative sectional curvature (the
zero curvatures come precisely from 2-planes tangent to a maximal torus) and a large group of
isometries (G × G almost effectively). Since non-negative curvature is preserved under products
every compact Lie group admits non-negative curvature with a large group of symmetries.

1.2. Submersions.
A smooth map f : M → N between manifolds is called a submersion if for every p ∈ M with

q = f(p), the differential dfp : TpM → TqN is surjective. A submersion between Riemannian
manifolds is a Riemannian submersion if the restriction of the differential on the horizontal space is



as isometry i.e., if Kp = ker(dfp) and if Hp = K⊥p , then f is a Riemannian submersion if dfp : Hp →
TqN is an isometry for every p ∈M .

A useful feature of Riemannian submersions is their curvature increasing (or non-decreasing)
property. Namely, the Gray–O’Neill submersion formulas for curvature show that the sectional
curvature can only go up as one pushes down in a submersion. More precisely, given a Riemann-
ian submersion f : M → N and q = f(p), suppose σ̃ is a 2-plane in TqN . Let σ be a horizontal
2-plane in Hp ⊆ TpM such that dfp(σ) = σ̃. Then sec(σ̃) > sec(σ).

2. GROUP ACTIONS

Let G be a group acting on a space X (where we keep in mind that in our setting G will be
a Lie group and X a smooth manifold). This means that there is a homomorphism Φ : G →
Aut(X), where Aut(X) could be a group of homeomorphisms, diffeomorphisms or some other
group of invertible self maps. (For example, when X is a vector space and Aut(X) is a subgroup
of invertible linear self maps, then this is a representation of G). In particular, the identity e ∈ G
acts as the identity map and multiplication of group elements corresponds to composition of maps.

For x ∈ X , the set G(x) := {y = g · x : g ∈ G} is called the orbit of x ∈ X . Note that G(x) ⊆ X .
The subgroup Gx := {g ∈ G : g(x) = x} is called the isotropy group or the stabilizer of x ∈ X . Note
that Gx ⊆ G. The orbit space of an action is the quotient space X/G := X/ ∼, where x1 ∼ x2 if and
only if x2 = g(x1) for some g ∈ G.

If Gx = {e} for every x ∈ X , then the action if said to be free. If Gx ( G for every x ∈ X , then
the action is said to fixed point free. If G acts freely on a manifold M , then the orbit space M/G

admits a canonical smooth structure as a manifold.

2.1. Transitive actions and homogeneous space.
We look at an important special case where we consider the action of a subgroup H ⊆ G on G

given by H × G → G, h(g) = gh−1. This is a free action and every orbit looks like a copy of H
inside G (these orbits are also called cosets). A simple example of this is H = S1 × {e} ⊆ S1 × S1,
the 2-torus. The action rotates the circle in the first coordinate and provides a foliation of the 2-
torus into a bunch of circles (orbits). The orbit space in this case is a circle (imagine an orthogonal
circle meeting every orbit exactly once).

In the setting of H acting on G, the orbit space or the space of (left) cosets is denoted as G/H :=

{gH : g ∈ G}. Note that this orbit space admits an action of G via G × G/H → G/H , g(g′H) =

gg′H . This is a transitive action i.e., any two points in G/H lie in the same orbit (equivalently there
is only one orbit): if g1H, g2H are any two points in G/H , then g2g−11 (g1H) = g2H . Thus, the orbit
space is a single point {∗}.



When a group G acts transitively on a space X , then X is called a homogeneous space and is
homeomorphic to G/H for some subgroup H ⊆ G. For the G action on G/H the isotropy group
at any point gH is gHg−1 i.e., a subgroup conjugate to H .

2.2. Some facts about group actions.
(i) If G acts on X , then we can stratify X into disjoint G-orbits.

(ii) Any orbit G(x) is naturally homeomorphic to the homogeneous space G/Gx.

(iii) Two orbits G(x1), G(x2) (disjoint or coincident) are said to be of the same type if all isotropy
groups of points in either orbit are conjugate in G to a fixed subgroup H . An important fact that
we will need is that for a compact group action there are only finitely many orbit types.

(iv) For a compact group actions there exists a principal orbit type i.e., a unique orbit type such
that the set of points in this orbit type form an open, dense subset of the space X (and project to
an open dense subset of the orbit space). The other orbits are usually called singular orbits.

2.3. An Example.
Let G = SO(3) act via the canonical orthogonal linear transformations on X = R3. Since the

action preserves the lengths of vectors, one can see that the orbit of any point (x, y, z) except the
origin is the 2-sphere of radius

√
x2 + y2 + z2 with isotropy group a circle. For instance, the orbit

of the point (0, 0, 1) is the unit sphere with isotropy group the (circle) group of rotations of the
XY -plane. The origin is a fixed point i.e., the orbit is a single point with isotropy group G. In this
case we see that there are two orbit types (the origin and everything else).

2.4. Cohomogeneity.
Now we restrict to compact Lie groups acting on smooth manifolds. An action of G on Mn is

said to be of cohomogeneity k if a principal orbit has codimension k. With this terminology, one can
see that the transitive G action on the coset space G/H has cohomogeneity zero. The S1 action on
the torus T2 = S1 × S1 that we saw earlier is cohomogeneity one (every orbit is a circle which has
codimension 1). The SO(3) action on R3 above is also cohomogeneity 1. It is not hard to construct
actions of higher cohomogeneity using these examples.

We already looked at the cohomogeneity 0 setting (homogeneous space) and saw that the orbit
space is a single point. In the cohomogeneity 1 setting there are several possibilities for the orbit
space: an open interval (−1, 1), a half open interval [−1, 1), a circle S1 or a closed interval [−1, 1]. If
M is compact, then we are limited to S1 or [−1, 1]. In the case whenM/G ≈ S1, it follows that there
is exactly one orbit type, say with isotropy group type H and there is a fibration G/H →M → S1.
This in turn implies that π1(M) is infinite. Since we will focus on simply connected manifolds, we
consider the orbit space [−1, 1].



2.5. Cohomogeneity One manifolds.
Now we look at the setting of a closed, connected Riemannian manifold M admitting the

isometric action of a compact Lie group G such that the orbit space is [−1, 1] i.e., a cohomo-
geneity one action. Let π : M → M/G be the quotient map. Fix a point x0 ∈ π−1(0) and let
c : [−1, 1] → M be the unique minimal geodesic orthogonal to each orbit such that c(0) = x0 and
π ◦ c = Id[−1,1]. Then c : R → M intersects all orbits orthogonally. Let B− = π−1(−1) = G(x−)

and B+ = π−1(1) = G(x+) be the two non-principal orbits with isotropy groups K− and K+

respectively, where x− = c(−1) and x+ = c(1). Let H be the principal isotropy group. If we
write the tubular neighborhoods of B− and B+ as D(B−) = π−1([−1, 0]) and D(B+) = π−1([0, 1])

respectively, then we have the following description by the slice theorem,

D(B±) = G×K± D
l±+1,

where Dl±+1 is the unit normal disk to B± at x±. As a consequence, we may write M as,

M = D(B−) ∪E D(B+),

where E = π−1(0) = G(x0) = G/H is canonically identified with the boundaries, ∂Dl±+1 = Sl± =

K±/H . Thus we see that M can be completely described in terms of G and the inclusions of the
subgroups, K± and H .

On the other hand, suppose we are given a compact Lie group G with closed subgroups K−,
K+ and H such that K±/H = Sl± are spheres. Then the diagram of inclusions shown below
determines a cohomogeneity one manifold.

(2.1) G

K−

j−
==

K+

j+
aa

H
h−

aa

h+

==

The manifold may be written as M = G ×K− D
l−+1 ∪G/H G ×K+ D

l++1 on which the G action is
of cohomogeneity one. The above was first described by [?].

In this setting Grove and Ziller showed that when K±/H are both S1, then (M,G) admits an
invariant metric of non-negative sectional curvature.

3. BIQUOTIENTS

We saw already that there is a large class of spaces one can construct as quotient of Lie groups by
subgroups namely coset spaces. In particular, they yield Riemannian submersions G→ B, where
B = G/H for some (closed) subgroup H ⊆ G. However, this is not the most general Riemannian
submersion from a Lie group with a bi-invariant metric. Since both left and right translations are



isometries, the most general subgroup of the isometry group looks like U ⊆ G×G and acts on G
as follows:

U ×G→ G

(u1, u2) · g 7→ u1gu
−1
2

Unlike the case of a subgroup H acting on G, there is no guarantee that the action is free (most of
the time it is not). However, when it is free, then we potentially have a larger class of manifolds
arising as quotients of Lie groups. The orbit spaces in this case are called biquotients or double coset
manifolds. Here is an instructive example.

LetG = Sp(2), the simple compact group of 2×2 matricesAwith quaternionic entries such that
AA∗ = Id. Here A∗ is the conjugate transpose (the quaternionic analog of orthogonal matrices).
Let U ⊆ G×G be the subgroup

U =

{((
q 0

0 q

)
,

(
q 0

0 1

))
, where q is a unit quaternion

}
Then Gromoll and Meyer showed in ’72 that the double coset space G//U (the double slash indi-
cates that this is not just a coset space) is a 7 dimensional exotic or homotopy sphere. Since Borel
showed that a homogeneous manifold that is homeomorphic to a standard sphere must, in fact,
be diffeomorphic to it, this shows that the class of biquotients is strictly larger than homogeneous
spaces and contains interesting examples.
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