TEXAS GEOMETRY-TOPOLOGY CONFERENCE, FEBRUARY 2019 BACKGROUND MATERIAL

KRISHNAN SHANKAR

1. RIEMANNIAN MANIFOLDS

Our principal objects of study will be Riemannian manifolds, M^n , without boundary. Our eventual objects of interest will be closed Riemannian manifolds (compact, without boundary). G will usually denote a compact, Lie group. Recall that, by the structure theorem for compact Lie groups, every such G admits a finite cover, say \tilde{G} , which is isomorphic to a product of simple groups and possibly a torus (a product of circle groups).

1.1. Curvature.

A Riemannian manifold comes equipped with a (Levi-Civita) connection, ∇ , (a way of taking derivatives) which in turn yields a *curvature tensor* defined on every tangent space: for every $p \in M$, we have $R : T_p M \otimes T_p M \otimes T_p M \to T_p M$ defined by $R(x, y, z) := \nabla_{[X,Y]} Z - [\nabla_X, \nabla_Y] Z$, where X, Y, Z are vector fields around p with $X_p = x, Y_p = y, Z_p = z$. This allows us to define the *sectional curvature* of any 2-plane $\sigma \subseteq T_p M$. If $\sigma = \operatorname{span}(u, v)$, then the sectional curvature of σ is defined as $\operatorname{sec}(\sigma) := \frac{R(u, v, u, v)}{\operatorname{Area}(u, v)^2}$ (the 4-tensor R(u, v, u, v) is simply $\langle R(u, v, u), v \rangle$). The sectional curvature of σ is defined so that it is independent of choice of basis of σ .

We say that a manifold M^n has non-negative sectional curvature if $\sec(\sigma) \ge 0$ for every 2-plane $\sigma \subseteq TM$. In the talk we are interested in constructing and understanding the structure of nonnegatively curved manifolds. A starting point for most constructions is the following fact: if *G* is a simple, compact Lie group, then it naturally admits a bi-invariant metric i.e., a metric for which every left translation, $L_g : G \to G, x \mapsto gx$, and every right right translation, $R_g : G \to G, x \mapsto xg$ is an isometry for every $g \in G$. This is given by, for instance, the negative of the Killing form on the Lie algebra \mathfrak{g} . A useful feature of this metric is that it has non-negative sectional curvature (the zero curvatures come precisely from 2-planes tangent to a maximal torus) and a large group of isometries ($G \times G$ almost effectively). Since non-negative curvature is preserved under products every compact Lie group admits non-negative curvature with a large group of symmetries.

1.2. Submersions.

A smooth map $f : M \to N$ between manifolds is called a *submersion* if for every $p \in M$ with q = f(p), the differential $df_p : T_pM \to T_qN$ is surjective. A submersion between Riemannian manifolds is a *Riemannian submersion* if the restriction of the differential on the horizontal space is

as isometry i.e., if $K_p = \ker(df_p)$ and if $H_p = K_p^{\perp}$, then f is a Riemannian submersion if $df_p : H_p \to T_q N$ is an isometry for every $p \in M$.

A useful feature of Riemannian submersions is their curvature increasing (or non-decreasing) property. Namely, the Gray–O'Neill submersion formulas for curvature show that the sectional curvature can only go up as one pushes down in a submersion. More precisely, given a Riemannian submersion $f: M \to N$ and q = f(p), suppose $\tilde{\sigma}$ is a 2-plane in T_qN . Let σ be a horizontal 2-plane in $H_p \subseteq T_pM$ such that $df_p(\sigma) = \tilde{\sigma}$. Then $\sec(\tilde{\sigma}) \ge \sec(\sigma)$.

2. GROUP ACTIONS

Let *G* be a group acting on a space *X* (where we keep in mind that in our setting *G* will be a Lie group and *X* a smooth manifold). This means that there is a homomorphism $\Phi : G \rightarrow$ Aut(*X*), where Aut(*X*) could be a group of homeomorphisms, diffeomorphisms or some other group of invertible self maps. (For example, when *X* is a vector space and Aut(*X*) is a subgroup of invertible linear self maps, then this is a representation of *G*). In particular, the identity $e \in G$ acts as the identity map and multiplication of group elements corresponds to composition of maps.

For $x \in X$, the set $G(x) := \{y = g \cdot x : g \in G\}$ is called the *orbit* of $x \in X$. Note that $G(x) \subseteq X$. The subgroup $G_x := \{g \in G : g(x) = x\}$ is called the *isotropy group* or the *stabilizer* of $x \in X$. Note that $G_x \subseteq G$. The *orbit space* of an action is the quotient space $X/G := X/\sim$, where $x_1 \sim x_2$ if and only if $x_2 = g(x_1)$ for some $g \in G$.

If $G_x = \{e\}$ for every $x \in X$, then the action if said to be *free*. If $G_x \subsetneq G$ for every $x \in X$, then the action is said to *fixed point free*. If *G* acts freely on a manifold *M*, then the orbit space M/Gadmits a canonical smooth structure as a manifold.

2.1. Transitive actions and homogeneous space.

We look at an important special case where we consider the action of a subgroup $H \subseteq G$ on G given by $H \times G \to G$, $h(g) = gh^{-1}$. This is a free action and every orbit looks like a copy of H inside G (these orbits are also called cosets). A simple example of this is $H = S^1 \times \{e\} \subseteq S^1 \times S^1$, the 2-torus. The action rotates the circle in the first coordinate and provides a foliation of the 2-torus into a bunch of circles (orbits). The orbit space in this case is a circle (imagine an orthogonal circle meeting every orbit exactly once).

In the setting of *H* acting on *G*, the orbit space or the space of (left) cosets is denoted as $G/H := \{gH : g \in G\}$. Note that this orbit space admits an action of *G* via $G \times G/H \to G/H$, g(g'H) = gg'H. This is a *transitive* action i.e., any two points in G/H lie in the same orbit (equivalently there is only one orbit): if g_1H, g_2H are any two points in G/H, then $g_2g_1^{-1}(g_1H) = g_2H$. Thus, the orbit space is a single point {*}.

When a group *G* acts transitively on a space *X*, then *X* is called a *homogeneous* space and is homeomorphic to G/H for some subgroup $H \subseteq G$. For the *G* action on G/H the isotropy group at any point gH is gHg^{-1} i.e., a subgroup conjugate to *H*.

2.2. Some facts about group actions.

(*i*) If *G* acts on *X*, then we can stratify *X* into disjoint *G*-orbits.

(*ii*) Any orbit G(x) is naturally homeomorphic to the homogeneous space G/G_x .

(*iii*) Two orbits $G(x_1)$, $G(x_2)$ (disjoint or coincident) are said to be of the same *type* if all isotropy groups of points in either orbit are conjugate in *G* to a fixed subgroup *H*. An important fact that we will need is that for a compact group action there are only finitely many orbit types.

(*iv*) For a compact group actions there exists a principal orbit type i.e., a unique orbit type such that the set of points in this orbit type form an open, dense subset of the space X (and project to an open dense subset of the orbit space). The other orbits are usually called *singular orbits*.

2.3. An Example.

Let G = SO(3) act via the canonical orthogonal linear transformations on $X = \mathbb{R}^3$. Since the action preserves the lengths of vectors, one can see that the orbit of any point (x, y, z) except the origin is the 2-sphere of radius $\sqrt{x^2 + y^2 + z^2}$ with isotropy group a circle. For instance, the orbit of the point (0, 0, 1) is the unit sphere with isotropy group the (circle) group of rotations of the *XY*-plane. The origin is a fixed point i.e., the orbit is a single point with isotropy group *G*. In this case we see that there are two orbit types (the origin and everything else).

2.4. Cohomogeneity.

Now we restrict to compact Lie groups acting on smooth manifolds. An action of G on M^n is said to be of *cohomogeneity* k if a principal orbit has codimension k. With this terminology, one can see that the transitive G action on the coset space G/H has cohomogeneity zero. The S^1 action on the torus $T^2 = S^1 \times S^1$ that we saw earlier is cohomogeneity one (every orbit is a circle which has codimension 1). The SO(3) action on \mathbb{R}^3 above is also cohomogeneity 1. It is not hard to construct actions of higher cohomogeneity using these examples.

We already looked at the cohomogeneity 0 setting (homogeneous space) and saw that the orbit space is a single point. In the cohomogeneity 1 setting there are several possibilities for the orbit space: an open interval (-1, 1), a half open interval [-1, 1), a circle S^1 or a closed interval [-1, 1]. If M is compact, then we are limited to S^1 or [-1, 1]. In the case when $M/G \approx S^1$, it follows that there is exactly one orbit type, say with isotropy group type H and there is a fibration $G/H \rightarrow M \rightarrow S^1$. This in turn implies that $\pi_1(M)$ is infinite. Since we will focus on simply connected manifolds, we consider the orbit space [-1, 1].

2.5. Cohomogeneity One manifolds.

Now we look at the setting of a closed, connected Riemannian manifold M admitting the isometric action of a compact Lie group G such that the orbit space is [-1,1] i.e., a cohomogeneity one action. Let $\pi : M \to M/G$ be the quotient map. Fix a point $x_0 \in \pi^{-1}(0)$ and let $c : [-1,1] \to M$ be the unique minimal geodesic orthogonal to each orbit such that $c(0) = x_0$ and $\pi \circ c = \mathrm{Id}_{[-1,1]}$. Then $c : \mathbf{R} \to M$ intersects all orbits orthogonally. Let $B_- = \pi^{-1}(-1) = G(x_-)$ and $B_+ = \pi^{-1}(1) = G(x_+)$ be the two non-principal orbits with isotropy groups K_- and K_+ respectively, where $x_- = c(-1)$ and $x_+ = c(1)$. Let H be the principal isotropy group. If we write the tubular neighborhoods of B_- and B_+ as $D(B_-) = \pi^{-1}([-1,0])$ and $D(B_+) = \pi^{-1}([0,1])$ respectively, then we have the following description by the slice theorem,

$$D(B_{\pm}) = G \times_{K_{\pm}} D^{l_{\pm}+1}$$

where $D^{l_{\pm}+1}$ is the unit normal disk to B_{\pm} at x_{\pm} . As a consequence, we may write M as,

$$M = D(B_-) \cup_E D(B_+),$$

where $E = \pi^{-1}(0) = G(x_0) = G/H$ is canonically identified with the boundaries, $\partial D^{l_{\pm}+1} = \mathbf{S}^{l_{\pm}} = K_{\pm}/H$. Thus we see that M can be completely described in terms of G and the inclusions of the subgroups, K_{\pm} and H.

On the other hand, suppose we are given a compact Lie group *G* with closed subgroups K_- , K_+ and *H* such that $K_{\pm}/H = \mathbf{S}^{l_{\pm}}$ are spheres. Then the diagram of inclusions shown below determines a cohomogeneity one manifold.

(2.1)

The manifold may be written as $M = G \times_{K_{-}} D^{l_{-}+1} \cup_{G/H} G \times_{K_{+}} D^{l_{+}+1}$ on which the *G* action is of cohomogeneity one. The above was first described by [?].

In this setting Grove and Ziller showed that when K_{\pm}/H are both S^1 , then (M, G) admits an invariant metric of non-negative sectional curvature.

3. BIQUOTIENTS

We saw already that there is a large class of spaces one can construct as quotient of Lie groups by subgroups namely coset spaces. In particular, they yield Riemannian submersions $G \rightarrow B$, where B = G/H for some (closed) subgroup $H \subseteq G$. However, this is not the most general Riemannian submersion from a Lie group with a bi-invariant metric. Since both left and right translations are

isometries, the most general subgroup of the isometry group looks like $U \subseteq G \times G$ and acts on G as follows: $U \times G \to G$

$$U \times G \to (u_1, u_2) \cdot g \mapsto u_1 g u_2^{-1}$$

Unlike the case of a subgroup *H* acting on *G*, there is no guarantee that the action is free (most of the time it is not). However, when it is free, then we potentially have a larger class of manifolds arising as quotients of Lie groups. The orbit spaces in this case are called *biquotients* or *double coset manifolds*. Here is an instructive example.

Let G = Sp(2), the simple compact group of 2×2 matrices A with quaternionic entries such that $AA^* = \text{Id}$. Here A^* is the conjugate transpose (the quaternionic analog of orthogonal matrices). Let $U \subseteq G \times G$ be the subgroup

$$U = \left\{ \left(\begin{pmatrix} q & 0 \\ 0 & q \end{pmatrix}, \begin{pmatrix} q & 0 \\ 0 & 1 \end{pmatrix} \right), \text{ where } q \text{ is a unit quaternion} \right\}$$

Then Gromoll and Meyer showed in '72 that the double coset space $G/\!\!/U$ (the double slash indicates that this is not just a coset space) is a 7 dimensional exotic or homotopy sphere. Since Borel showed that a homogeneous manifold that is homeomorphic to a standard sphere must, in fact, be diffeomorphic to it, this shows that the class of biquotients is strictly larger than homogeneous spaces and contains interesting examples.

E-mail address: Krishnan.Shankar-1@ou.edu