
Singular intersection homology

Greg Friedman

Texas Christian University

Fort Worth, TX

greg.b.friedman@gmail.com

July 24, 2019



To Angie



Preface

This book arose thanks to a short course the author was asked to give in Lille in 2013 as

an introduction to intersection homology theory. Originally conceived as a set of written

lecture notes, the project quickly grew into the more comprehensive volume that follows.

The goal has been to provide a single coherent exposition of the basic PL (piecewise linear)

and singular chain intersection homology theory as it has come to exist today. Several older

results have been given more detailed treatments than previously existed in the literature,

and several newer, though likely not unexpected, topics have been newly developed here,

such as intersection homology Poincaré duality and products over Dedekind rings, including

Z.

To say a word about our primary topic, though a more extensive introduction will be

provided in Chapter 1, intersection homology was first developed by Mark Goresky and

Robert MacPherson in the late 1970s and early 1980s in order to generalize to spaces with

singularities some of the most significant tools of manifold theory, including Poincaré duality

and signatures. Although originally introduced in the language of PL chain complexes, it

was soon reformulated in terms of sheaf theory, and it was in this form that it quickly found

much success, particularly in applications to algebraic geometry and representation theory.

Early highlights in these directions include a key role in the proof of the Kazhdan-Lusztig

conjecture, a singular variety version of the Weil conjectures, and generalizations to singular

complex projective varieties of the “Kähler package” for smooth complex projective varieties,

including a Lefschetz hyperplane theorem, a hard Lefschetz theorem, and Hodge decompo-

sition and signature theorems1. In the time since, intersection homology has exploded. As

of 2017, Mathematical Reviews records 700 entries that mention intersection homology or

intersection cohomology, and this jumps to over 1100 when including the closely related

perverse sheaves, which developed out of intersection homology. Viewpoints have also pro-

liferated. In addition to definitions via PL and singular chains and through sheaf theory, an

analytic L2-cohomology formulation initially due to Jeff Cheeger developed concurrently to

the work of Goresky and MacPherson, and another approach via what we might call perverse

differential forms is the setting for some of the most exciting current work in the field, pro-

viding a means to explore an intersection homology version of the rational homotopy type

of a singular space. Each of these perspectives has its merits, and, as is often the case in

mathematics, sometimes the most powerful results come by considering the interplay among

different perspectives.

1The book [140] by Kirwan and Woolf provides an excellent introduction to these applications of inter-

section homology.
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The intent of this book is to introduce the reader to the PL and singular chain perspec-

tives on intersection homology. By this choice we do not mean at all to undervalue the other

approaches. Rather, by sticking to the chain theoretic context we hope to provide an intro-

duction that will be readily accessible to the student or researcher familiar with the basics of

algebraic topology without the need for the additional prerequisites of the sheaf theoretic or

more analytic formulations. This may then motivate the reader on to further study requiring

more background; to facilitate this, we provide in Chapter 10 a collection of suggested refer-

ences for the reader who wishes to pursue these other vantage points and their applications,

including references for several excellent introductory textbooks and expositions. We also

feel that the time is ripe for such a chain-based text given recent developments that allow

for a thorough treatment of intersection homology duality via cup and cap products that

completely parallels the modern approach to duality on manifolds as presented, for example,

in Hatcher [125]. We provide such a textbook treatment for the first time here.

This book is intended to be as self-contained as possible, with the main prerequisite being

a course in algebraic topology, particularly homology and cohomology through Poincaré

duality. Some additional background in homological algebra may be useful throughout, and

some familiarity with manifold theory and characteristic classes will serve as good motivation

in the later chapters. In fact, we hope that this material might make for a good reading

course for second or third year graduate students, as much of our development parallels and

reinforces that of the standard tools of homology theory, though often the proofs need some

modifications. The book also includes a number of sections, including the two appendices

at the end, that provide some of the less standard background results in detail, as well as

some expository sections regarding further directions and applications that there was not

space to pursue here. When it is necessary to use facts from further afield, such as some

occasional elementary sheaf theory or more advanced algebraic or geometric topology, we

have attempted to provide copious references, with a preference for textbooks when at all

possible. Our favored sources include topology texts by Hatcher [125], Munkres [181, 180],

Dold [71], Spanier [219], Bredon [38], and Davis and Kirk [67]; books on PL topology by

Hudson [130] and Rourke and Sanderson [197]; algebra books by Lang [147], Lam [146], and

Bourbaki [30]; homological algebra books by Hilton and Stammbach [126], Weibel [237], and

Rotman [196]; and introductions to sheaf theory by Bredon [37] and Swan [229].

This work would likely not have been conceived without the kind invitation from David

Chataur, Martin Saralegi, and Daniel Tanré to visit and lecture at Université Lille 1 and

Université Artois. I thank those universities for their support, and I thank David, Martin,

and Daniel for the wonderful opportunity to visit and talk intersection homology with them

and their students. I would also like to thank my colleagues at TCU who suffered through

endless questions about background material and occasional lectures as I sorted things out.

In particular, thanks to Scott Nollet, Loren Spice, Efton Park, Ken Richardson, and Igor

Prokhorenkov. The book further benefited from conversations with and suggestions by

Markus Banagl, Laurent, iu Maxim, Martin Saralegi, Jörg Schürmann, and Jonathan Woolf.

My perpetual thanks go to my Ph.D. advisor, Sylvain Cappell, for first suggesting that

intersection homology would be something I would find interesting to think about and for his
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continued support throughout my career. Most of all, I would like to thank my collaborator

Jim McClure, without whom much of the work on intersection homology I have participated

in over the past several years would never have occurred. In particular, the intersection

(co)homology cup and cap products presented in this book owe their existence to Jim’s

deep insights and instincts. More specific thanks also to Jim for reading over various draft

sections of the manuscript, for helping with a number of technical issues, and for suggesting

additional results to be included.

During the writing of this book, in addition to primary support from my home institution,

Texas Christian University, I received support from a grant from the Simons Foundation

(#209127 to Greg Friedman), a grant from the National Science Foundation (DMS-1308306),
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Notations and conventions

This section describes some conventions, notational and otherwise, we attempt to use through-

out the book, though we we make no claim to complete consistency.

1. Spaces

(a) Manifolds and ∂-manifolds are usually denoted M or N . A manifold is a Hausdorff

space that is locally homeomorphic to Euclidean space; we do not assume man-

ifolds must be paracompact or second countable. A ∂-manifold2is a Hausdorff

space that is locally homeomorphic to Euclidean space or Euclidean half-space

{(x1, . . . , xk) ∈ Rk|x1 ≥ 0}; in other words, a ∂-manifold is what is often called a

“manifold with boundary.” The boundary of a ∂-manifold may be empty. “Man-

ifold” will always mean a ∂-manifold with empty boundary. There is also an

empty manifold of every dimension.

(b) Arbitrary spaces have letters from the end of the alphabet such as Z, though

sometimes also other letters. The space with one point is occasionally denoted

pt.

(c) Open subsets get letters such as U, V,W .

(d) Subsets will be denoted A ⊂ X, rather than A ⊆ X; in other words A ⊂ X

includes the possibility that A = X

(e) Simplicial complexes will be given letters such as K,L. Subdivisions will generally

be denoted by an apostrophe, such as K ′. We will often abuse notation and use K

to represent both the simplicial complex (a space with a combinatorial structure as

a union of simplices) and its underlying space as a topological space disregarding

the extra structure. When we wish to emphasize the difference, for example in

Appendix B, we will use |K| to denote the underlying space.

2We mostly avoid the phrase “manifold with boundary,” which sounds as though it specifies some par-

ticular class of manifolds but which is really a generalization of the concept of “manifold.” Furthermore, we

take the view that a “manifold with boundary” that has a non-empty boundary is not a manifold! This is

because points on the boundary fail to satisfy the property that they should have Euclidean neighborhoods,

which we take as part of the definition of being a manifold. The other problem is that “manifold with

boundary” implies that there is a boundary and it is tempting to think then that the boundary cannot be

empty. As an alternative, some authors have taken to using the notation “∂-manifold” as a replacement for

“manifold with boundary.” This seems to avoid these issues as well as eliminate some clunky phrasing.
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(f) When working with product spaces, we may write elements of X × Y as either

(x, y) or x× y. Products maps are usually written f × g.

(g) Generic maps between spaces will be denoted by letters such as f or g. The letter

i, or variants such as i, generally denotes an inclusion. The map d is the diagonal

map d : Z → Z × Z, d(z) = (z, z).

(h) While we will attempt to parenthesize fairly thoroughly, we will occasionally rely

on a few simplifying conventions. In particular, expressions of the form A − B
should be understood as (A) − (B). So, for example, X × Y − A × B means

(X×Y )− (A×B) and not X× (Y −A)×B, and X−K ∪L means X− (K ∪L).

(i) For a compact space Z, the space cZ is the open cone cZ = [0, 1)× Z/ ∼, where

∼ is the relation (0, w) ∼ (0, z) for all w, z ∈ Z. We typically denote the vertex

of a cone by v. Similarly, the closed cone is c̄Z = [0, 1] × Z/ ∼. More generally,

for r > 0, we let crZ = [0, r) × Z/ ∼ and c̄rZ = [0, r] × Z/ ∼; in particular,

cZ = c1Z. Then crZ ⊂ c̄rZ ⊂ csZ ⊂ c̄sZ whenever r < s.

(j) For a compact space Z, the (unreduced) suspension is SZ = [−1, 1] × X/ ∼,

where the relation ∼ is such that (−1, w) ∼ (−1, z) and (1, w) ∼ (1, z) for any

w, z ∈ Z. So SZ = c̄Z ∪Z c̄Z.

(k) When taking the product of a space with a Euclidean space, interval, or sphere,

we usually put the Euclidean space, interval, or sphere on the left, e.g. R × Z

instead of Z × R. This has some ramifications for signs. For example, if ξ is a

singular cycle in Z and c̄ξ denotes the singular cone on ξ in c̄Z (see Example

3.4.7), this is the convention that is consistent with adding the cone vertex as the

first vertex and so gives us ∂(c̄ξ) = ξ.

(l) We use q to denote disjoint union.

(m) Filtered spaces (our main object of study) are generally denoted by capital letters

near the end of the alphabet, in particular X (or Y when we talk about multiple

filtered spaces at the same time); the filtrations are usually left implicit in the

sense that we say “the filtered space X.” When we need to refer to the filtration

explicitly, we let X i denote the ith skeleton of the filtration, and we let Xi =

X i − X i−1; see Section 2.2. The connected components of each X i − X i−1 are

called strata. The formal dimension of a filtered space is generically denoted n (or

m for a second filtered space). When we wish to emphasize the formal dimension

of X, we write X = Xn. The codimension of X i in Xn is codim(X i) = n− i. If

S is a stratum in X i −X i−1, then codim(S) = codim(X i). Subspaces of filtered

spaces, which inherit filtrations by intersection with the X i, have letters like A or

B, so we tend to have filtered pairs (X,A) or (Y,B).

(n) If we wish to consider the underlying topological space of a filtered space X, i.e.

we wish to explicitly disregard the filtration, we may write |X|.
(o) The singular locus of a filtered space X = Xn is defined to be Xn−1 and can also

be written ΣX , or simply Σ if the space is clear. Strata contained in the singular

locus are called singular strata.
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(p) Generic strata (see Section 2.2) of a filtered space have letters such as S and T .

Regular strata are sometimes denoted R.

(q) The links occurring in locally-conelike spaces (see Section 2.3), in particular CS

sets or stratified pseudomanifolds, are denoted L or, occasionally, `. We let Lk(x)

denote the polyhedral link of a point in a piecewise linear space, i.e. if x is contained

in the piecewise linear space X, then Lk(x) is the unique PL space such that x

has a neighborhood piecewise linearly homeomorphic to cLk(x); see [197, Section

1.1].

(r) If X is a piecewise linear space, we let X denote the filtered space with the under-

lying space of X but with its intrinsic PL filtration; see Section 2.10. Similarly, if

X is a CS set, X will denote the underlying space of X with its intrinsic filtration

as a CS set.

2. Algebra

(a) G will always be an abelian group, R a commutative ring with unity. In some con-

texts, R will be assumed to be a Dedekind domain, though this will be established

at the relevant time.

(b) Subgroups (or submodules) will be denoted H ⊂ G, rather than H ⊆ G; in other

words H ⊂ G includes the possibility that H = G.

(c) We use the standard notations for standard algebraic objects: Z for integers, Q
for rational numbers, R for real numbers (which also notates the space of real

numbers, i.e. 1-dimensional Euclidean space).

(d) When working withR-modules in the context of a fixed ringR, we write Hom(A,B)

and A⊗B rather than HomR(A,B) and A⊗R B.

(e) Dedekind domains have cohomological dimension ≤ 1 (this follows from [196,

Proposition 8.1] using that Dedekind domains are hereditary by definition [196,

page 161]). Therefore, if R is a Dedekind domain, ExtnR(A,B) = 0 for n > 1

and for any R-modules A, B. Therefore, we write simply Ext(A,B) instead of

Ext1
R(A,B). Similarly, TornR(A,B) = 0 for n > 1 and for any R-modules A, B;

rather than Tor1
R(A,B) we write A ∗B.

(f) Generic purely algebraic chain complexes are denoted C∗, D∗, etc. Cohomologi-

cally graded complexes can be denoted C∗, D∗, etc.

(g) For almost3 all chain complexes, the boundary maps are all denoted ∂. For

cohomologically graded complexes, we use d for the coboundary maps. If we wish

to emphasize that ∂ is the boundary map of the chain complex C∗, we can write

∂C∗ , and analogously for coboundary maps of cochain complexes.

(h) Elements of geometric chain complexes are typically denoted by lowercase Greek

letters such as ξ, ζ, η, though we sometimes also use x, y, z. N.B. we generally

3We will see an exception in Section 6.2 for I p̄S∗(X).
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abuse notation by using the same symbol to refer to both a homology class and a

chain representing it. For example, ξ ∈ Hi(C∗) means that ξ is a homology class

that we also think of as being represented by a cycle in Ci that we also denote ξ.

In most contexts, this should not cause much confusion, though in those instances

where confusion might reasonably occur, we use ξ just to denote the chain and [ξ]

to specify the homology class. We will indicate this notation specifically when it

occurs. More generally, [·] indicates some sort of equivalence class, so, depending

on context, [ξ] might reference a singular chain ξ ∈ S∗(X) representing an element

[ξ] ∈ S∗(X,A) or an element [ξ] ∈ H∗(X) or [ξ] ∈ H∗(X,A). Similarly, if ξ is

a simplicial chain, [ξ] might denote the class in the PL chain complex C∗(X)

represented by ξ. See notation item (3e) below.

(i) Elements of cochain complexes are denoted by lowercase Greek letters such as

α, β, γ. Again, we typically abuse notation by using the same symbol to refer to

both a cohomology class and a cochain representing it. For example, α ∈ H i(C∗)

means that α is a cohomology class that we also think of as being represented by a

cocycle in Ci that we also denote α. In most contexts, this should not cause much

confusion, though in those instances where confusion might reasonably occur, we

use α just to denote the cochain and [α] to specify the cohomology class. We will

indicate this notation specifically when it occurs. More generally, [·] indicates an

equivalence class.

(j) The connecting morphisms in long exact homology sequences are denoted ∂∗. The

connecting morphisms in long exact cohomology sequences are denoted d∗.

(k) Augmentation maps of chain complexes are denoted a, e.g. we might have a :

S∗(X)→ Z.

(l) If x is an element of a chain or cochain complex, then we use |x| to indicate the

degree x. For example, if x ∈ Ci or X ∈ Ci, then4|x| = i.

3. Algebraic topology

(a) ∆i denotes the standard geometric i-dimensional simplex. For definiteness, we

can suppose that ∆i is embedded in Ri with vertices

(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1).

By an “open simplex” or an “open face,” we mean the interior of a simplex, e.g.

the complement in ∆i of the union of its faces of dimension < i.

(b) Lowercase Greek letters such as σ, τ , and often others can denote either simplices

in a simplicial complex or singular simplices, depending on context.

4Technically, this is not quite the right thing to do as the standard equivalence between homological and

cohomological gradings tells us that the notation Ci should be equivalent to the notation C−i. However,

matters of degree will arise only when working with signs, and so |x| will really only have significance mod

2. Therefore, we will live with this inconsistency.
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(c) Lowercase Greek letters such as ξ and η will typically be used for chains and α

and β will typically be used for cochains.

(d) If ξ is a chain, then we use |ξ| to indicate its support. If ξ is a simplicial chain,

this is the union of the simplices appearing in ξ, while if ξ is singular it is the

union of the images of the singular simplices of ξ. If σ is an oriented simplex in

a simplicial complex, then we will typically write σ instead of |σ| unless we really

need to emphasize the notion of σ as a space. Note that |ξ| might also indicate

the degree of ξ, depending on context.

(e) Simplicial chain complexes are denoted C∗(X), singular chain complexes are de-

noted S∗(X), PL chain complexes are denoted C∗(X). When there are subspaces

or coefficients involved, the notations look like C∗(X,A;G) for a subspace A and

a coefficient group G. We use the same notation H∗(X) for both homology groups

H∗(C∗(X)) or H∗(S∗(X)), letting context determine which is meant. Since simpli-

cial and PL chains often occur in the same context, we use H∗(X) for H∗(C∗(X)).

(f) If f : X → Y is a map of spaces, we abuse notation by letting f also denote both

the induced chain maps of chain complexes defined on the spaces and the induced

maps on homology, e.g. we write f : S∗(X) → S∗(Y ) and f : H∗(X) → H∗(Y ).

The dualized maps of cochain complexes and cohomology groups are denoted f ∗,

e.g. f ∗ : S∗(Y ) → S∗(X) and f ∗ : H∗(Y ) → H∗(X). Similarly, if f : C∗ → D∗
is a purely algebraic map of chain complexes of R-modules, we also write f :

H∗(C∗) → H∗(D∗) for the induced homology map and f ∗ : H∗(Hom(D∗, R)) →
H∗(Hom(C∗, R)) for the induced cohomology map.

(g) For Mayer-Vietoris sequences, the map H∗(U) ⊕ H∗(V ) → H∗(U ∪ V ) will take

(ξ, η) to ξ + η. Therefore, the map H∗(U ∩ V ) → H∗(U) ⊕H∗(V ) will take ξ to

(ξ,−ξ).
(h) The cross product chain map S∗(X)⊗S∗(Y )→ S∗(X ×Y ) (and its variants) can

be written either as ε or ×. For example, we tend to write ε : S∗(X)⊗ S∗(Y )→
S∗(X×Y ), but given two specific chains x, y, we may write x×y. Unfortunately, it

is common in algebraic topology to use the symbol × for both chain cross products

and cochain cross products. We perpetuate this ambiguity, though context should

make clear which is meant.

(i) We use ^ for cup products and _ for cap products. This distinguishes them

from ∪ and ∩ for unions and intersections.

(j) Fundamental classes are denoted Γ, with a decoration such as ΓX if it is necessary

to keep track of the space X.

(k) The Poincaré duality map, consisting of a signed cap product with a fundamental

class, is denoted D.

(l) We use 1 ∈ S0(X) to denote the cocycle that evaluates to 1 on every 0-simplex.

This is sometimes called the augmentation cocycle.

4. Intersection homology and cohomology
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(a) Perversities (see Section 3.1) are denoted p̄, q̄, r̄, etc. In general, perversities will

always have bars, with the exception5 of the special perversities Q that occur in

the discussion of the Künneth theorem; see Section 6.4.

(b) 0̄ denotes the perversity that always evaluates to 0. t̄ is the top perversity t̄(S) =

codim(S) − 2. m̄ and n̄ are respectively the lower middle perversity and upper

middle perversity, i.e.

m̄(S) =

⌊
codim(S)− 2

2

⌋
(round down)

n̄(S) =

⌈
codim(S)− 2

2

⌉
(round up).

(c) For a perversity p̄, we let Dp̄ be the dual or complementary perversity with

Dp̄(S) = t̄(S)− p̄(S) for all singular strata S; see Definition 3.1.7.

(d) Throughout the first part of the book, simplicial, PL, and singular perversity p̄

intersection chain complexes are written I p̄CGM
∗ (X), I p̄CGM∗ (X), I p̄SGM∗ (X), with

corresponding homology groups I p̄HGM
∗ (X), I p̄HGM

∗ (X), I p̄HGM
∗ (X). The GM

here stands for “Goresky-MacPherson.” In Chapter 6, we introduce the vari-

ant “non-GM” intersection homology and the notation becomes simply I p̄C∗(X),

I p̄C∗(X), and I p̄S∗(X) with corresponding homology groups I p̄H∗(X), I p̄H∗(X),

and I p̄H∗(X).

(e) When we introduce non-GM intersection homology, the definition will use a mod-

ified boundary map that we write as ∂̂. See Section 6.2.1.

(f) For intersection cohomology, we raise the index and lower the perversity mark-

ing, e.g. Ip̄S
∗(X) and Ip̄H

∗(X). Lowering the perversity symbol has no intrinsic

meaning; it is meant as a further distinguishing aid between homology and coho-

mology.

(g) We write the intersection product, which appears primarily in Section 8.5, with

the symbol t. Note that this differs from the use of this symbol in the early

intersection homology literature, such as [105], where A t B typically means A

and B are in (stratified) general position. In [105], the intersection product is

written with ∩, but for us this risks confusion with the cap product. In other

sources the intersection product of chains is sometimes written ξ • η or ξ · η. We

prefer to utilize t as the intersection pairing and to state transversality in words.

5. Miscellaneous conventions

Signs: • We utilize throughout the Koszul sign conventions, so that interchange of

elements of degrees i and j usually results in a sign (−1)ij. See the appendix,

Section A.1, for details.

5This special case is partly historical, partly because there is little risk of confusion since Q is not used

for anything else, and partly idiosyncratic. Probably we should use Q̄.
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• The standard exception to the Koszul rule, necessary for evaluation to be a

chain map, is that the sign occurring in the coboundary map of the chain

complex E∗ = Hom∗(C∗, D∗) has the form

(d∗Ef)(c) = ∂D∗(f(c))− (−1)|f |f(∂C∗(c))

for c ∈ C∗ and f ∈ Hom∗(C∗, D∗). In particular, if α ∈ Homi(C∗, R) =

Hom(Ci, R), then df = (−1)i+1f∂.

• The connecting morphisms of long exact homology sequences have degree −1

and so can generate signs upon interchanges.

id: The expression id is used for the identity function. It can be either a topological

or algebraic identity. Context will usually make clear which identity function is

meant, though we can make it precise with subscripts such as idX : X → X or

idC∗ : C∗ → C∗.

Parentheses: • When a function f acts on an element x of a set, group, etc., we

generally write f(x). The standard exception will be boundary maps ∂ acting

on a chain ξ, which we will usually write as ∂ξ.

• To avoid the ambiguity inherent in writing expressions such as ∂ξ ⊗ η, we

will write either ∂(ξ ⊗ η) or (∂ξ)⊗ η, as appropriate. We also use ξ ⊗ ∂η, as

there is no ambiguity here.

• When parentheses are omitted, expressions compile from the right. For ex-

ample, if f : X → Y and g : Y → Z, then, as usual, gf(x) means g(f(x)).

As a more complex example, Φ(id⊗ β)∂(ξ ⊗ η) means Φ((id⊗ β)(∂(ξ ⊗ η))).

• We will use an obnoxious number of parentheses to describe spaces as clearly

as possible. As noted in item (1h), one place where we will sometimes avoid

this is when considering complements.
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Chapter 1

Introduction

Let us begin with some motivation, followed by some general remarks about the structure

of this book and what can be found (and not found!) in it.

1.1 What is intersection homology?

Perhaps the most significant result about the topology of manifolds is the Poincaré Duality

Theorem: If M is a closed connected oriented n-dimensional manifold and Γ ∈ Hn(M) ∼= Z
is a generator, then the cap product _ Γ : H i(M) → Hn−i(M) is an isomorphism for all

i. There are more general versions with more bells and whistles, but, in any form, Poincaré

duality, and related invariants such as signatures and L-classes, is a fundamental tool in the

study and classification of manifolds.

Unfortunately, Poincaré duality fails in general for spaces that are not manifolds. In

fact, it is enough for a space to have just one point that is not locally Euclidean. For

example, let Sn ∨ Sn be the one-point union of two n-dimensional spheres, n > 0. Then

H0(Sn∨Sn) ∼= Z but Hn(Sn∨Sn) ∼= Z⊕Z. Or, as a slightly more substantive example, one

where we cannot simply pull the two pieces apart, consider the suspended torus ST 2 (Figure

1.1). This 3-dimensional space has two “singular points,” each of which has a neighborhood

homeomorphic to the cone on the torus cT 2, and the cone point of cT 2 does not have a

neighborhood homeomorphic to R3. Perhaps the easiest way to show this also illustrates

the power of algebraic topology: If we let v be the cone point of cT 2, then, as cones are

contractible, the long exact sequence of the pair and homotopy invariance of homology give

us

H2(cT 2, cT 2 − {v}) ∼= H1(cT 2 − {v}) ∼= H1(T 2) ∼= Z⊕ Z.

But if v has a neighborhood homeomorphic to R3, then by excision we would have

H2(cT 2, cT 2 − {v}) ∼= H2(R3,R3 − {v}) ∼= H1(R3 − {v}) ∼= H1(S2) ∼= Z.
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So ST 2 is not a manifold, and routine computations show that

H3(ST 2) = Z H3(ST 2) = Z
H2(ST 2) = Z⊕ Z H2(ST 2) = Z⊕ Z
H1(ST 2) = 0 H1(ST 2) = 0

H0(ST 2) = Z H0(ST 2) = Z.

So, for example, H2(ST 2) � H1(ST 2). Poincaré duality fails.

Figure 1.1: The suspended torus ST 2

But spaces with singularities, points that do not have Euclidean neighborhoods, are

both important and not always all that pathological. Many of them, such as our suspension

example, possess dense open subsets that are manifolds. For example, if we remove the two

suspension points from ST 2 we have (0, 1)×T 2, a manifold. Much more significant classes of

examples come by considering algebraic varieties and orbit spaces of manifolds and varieties

by group actions. In general such spaces may have singularities, and they will not necessarily

just be isolated points. But with some reasonable assumptions (for example assuming the

group actions are nice enough or that the varieties are complex irreducible - see Section 2.8),

such spaces will contain dense open manifold subsets, and, in fact, they will be filtered by

closed subsets

X = Xn ⊃ Xn−1 ⊃ · · · ⊃ X0 ⊃ X−1 = ∅

in such a way that each Xk −Xk−1 will be a manifold or empty. Such filtrations of spaces

may be in some way intrinsic to the space (Figure 1.2), or they may be imposed by some

other consideration such as the desire to study a manifold together with embedded subspaces

(Figure 1.3).

The connected components of the Xk − Xk−1 are called strata. When k < n, we say

they are singular strata, even though, depending on the choice of stratification, they may

contain points with Euclidean neighborhoods. The subspace Xn−1, which is the union of

the singular strata, is also called the singular locus or singular set and denoted Σ. The
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Figure 1.2: The twice suspended torus X = S(ST 2). This space has a natural filtration

in which X0 comprises the suspension points of the second suspension, X1 = X2 = X3

is the suspension of the suspension points of the first suspension, and X4 = X. Note

that X0 is a 0-manifold, X1 − X0 is two open intervals, X2 − X1 = X3 − X2 = ∅, and

X4 −X3 ∼= (−1, 1)× (−1, 1)× T 2.

Figure 1.3: A manifold embedded in the ambient manifold S3 (not shown).
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components of Xn −Xn−1 = X − Σ are called regular strata. It is usually too much to ask

for something like a tubular neighborhood around a singular stratum, i.e. a neighborhood

homeomorphic to a fiber bundle, but, perhaps again with some additional conditions, the

“normal behavior” along singular strata will be locally uniform. A typical condition is that

a point x ∈ Xk − Xk−1 should have a neighborhood U of the form U ∼= Rk × cL, where

L is a compact filtered space and such that the homeomorphism takes Rk × {v}, again

letting v be the cone point, to a neighborhood of x in Xk −Xk−1. For the remainder of this

introductory discussion, we will limit ourselves to discussing the class of stratified spaces

called (stratified) pseudomanifolds, defined formally in Section 2.4, which possess all of these

nice local properties and which is a broad enough class to encompass all irreducible complex

analytic varieties and all connected orbit spaces of smooth actions of compact Lie groups on

manifolds. For simplicity of discussion, we also assume through this introduction that all

spaces are compact, connected, and oriented.

Given all the manifold structure present and the other good behaviors of such spaces, it

is reasonable to ask whether there might be some way to recover some version of Poincaré

duality after all. This is precisely what Mark Goresky and Robert MacPherson did in [105]

by introducing intersection homology. Intersection homology is defined by modifying the def-

inition of the homology groups H∗(X) so that only chains satisfying certain extra geometric

conditions are allowed. These geometric conditions are governed by a perversity parameter

p̄, which assigns an integer to each singular stratum of the space. The result is the perversity

p̄ intersection chains I p̄C∗(X) and their homology groups I p̄H∗(X). Furthermore, to each

perversity p̄ there is a complementary dual perversity Dp̄, and Goresky and MacPherson

showed that, given certain assumptions on X and p̄, there are intersection pairings

I p̄Hi(X)⊗ IDp̄Hn−i(X)→ Z

that become nonsingular over the rationals, i.e. after tensoring everything with Q.

Let us provide a rough sketch of the basic idea of how and why this all works. We will

be very loose about the specific details here, but more about this material and the original

construction of the Goresky-MacPherson intersection pairing can be found in Section 8.5

and, of course, in [105].

To get at the idea, we must first ask what it is that makes manifolds so special. One

consequence of their locally Euclidean nature is that it is possible to take advantage of general

position: If Mn is a smooth manifold and P p and Qq are two smooth submanifolds, then it is

possible to perturb one of P orQ so that the intersection P∩Q will be a manifold of dimension

p + q − n. In particular, we can find a Euclidean neighborhood Ux of any point x ∈ P ∩ Q
so that the triple (U, P ∩ U,Q ∩ U) is homeomorphic to the triple (Rn,Rp × {0}, {0} × Rq)
with the intersection of the two subspaces having dimension p + q − n and providing a

Euclidean neighborhood of x in P ∩ Q; see, e.g. [38, Section II.15]. Furthermore, if M ,

P , and Q are all oriented, it is possible to orient P ∩ Q by a construction involving bases

for these local vector spaces [38, Section VI.11.12]1. These ideas can be extended so that

1Technically, what we have described here is transversality, while general position is simply the require-

ment in an n-manifold that a p-manifold and a q-manifold meet in a subspace of dimension ≤ p+ q − n.
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if ξ and η are two chains in M (simplicial, piecewise linear, or singular) that satisfy an

appropriate notion of general position, then there is defined an intersection ξ t η of degree

deg(ξ) + deg(η) − n. This notion yields a partially-defined product on chains t: Ci(M) ⊗
Cj(M)→ Ci+j−n(M); it is not fully defined because we cannot meaningfully intersect chains

that are not in general position, just as the intersection of two submanifolds not in general

position will not generally be a manifold. However, this intersection pairing is well defined

as a map t: Hi(M) ⊗ Hj(M) → Hi+j−n(M) because any two cycles can be pushed into

general position without changing their homology classes, and the homology class of the

resulting intersection does not depend on the choices. Of particular note are the products

t: Hi(M) ⊗ Hn−i(M) → H0(M) because composing with the augmentation map a then

yields a bilinear pairing t: Hi(M) ⊗ Hn−i(M) → H0(M)
a−→ Z. As any homomorphism to

Z must take any element of finite order to 0, this intersection pairing descends to a map

Hi(M)/Ti(M)⊗Hn−i(M)/Tn−i(M)→ Z, where we let T∗(M) denote the torsion subgroup

of H∗(M).

What does this have to do with Poincaré duality? If M is a closed oriented n-manifold,

then Poincaré duality and the Universal Coefficient Theorem together yield isomorphisms

Hi(M) ∼= Hn−i(M) ∼= Hom(Hn−i(M),Z)⊕ Ext(Hn−i−1(M),Z).

Some elementary homological algebra then allows us to derive from this an isomorphism

Hi(M)/Ti(M) ∼= Hom(Hn−i(M)/Tn−i(M),Z).

Some slightly more elaborate homological algebra also leads to an isomorphism

Ti(M) ∼= Hom(Tn−i−1(M),Q/Z).

Applying the adjunction relation, these two isomorphisms can be interpreted as nonsingular

bilinear pairings

Hi(M)/Ti(M)⊗Hn−i(M)/Tn−i(M)→ Z
Ti(M)⊗ Tn−i−1(M)→ Q/Z.

The first of these turns out to be precisely the intersection pairing! And the second is the

closely-relate torsion linking pairing. If ξ ∈ Ci(M) is a cycle with kξ = ∂ζ for some k ∈ Z,

k 6= 0, then the linking pairing of ξ ∈ Ti(M) with η ∈ Tn−i−1(M) can be computed as 1
k

times the intersection number of ζ with η, assuming the chains are all in general position.

This number is well defined in Q/Z.

Prior to the invention of the modern version of cohomology, Poincaré duality was formu-

lated in these terms. These days, most readers will be more familiar with the nonsingular

cup product pairing H i(M)/T i(M) ⊗Hn−i(M)/T n−i(M)
^−→ Z, which turns out to be iso-

morphic to the intersection pairing via the Poincaré duality isomorphisms. In general, cup

products are simpler to define than intersection products, they are defined at the cochain

level Ci(M)⊗Cj(M)
^−→ Ci+j(M), and, perhaps most importantly, the cup product can be

defined on any space, though in general we do not obtain a nonsingular pairing. The only
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downside to the cup product is that it obfuscates this beautiful geometric interpretation

of Poincaré duality, an interpretation that will allow us to see clearly what goes wrong for

spaces that are not manifolds.

So, let us return to spaces with singularities. As a simple example, consider X = M1∨M2,

the wedge of two n-manifolds, n > 2. In a manifold of dimension n > 2, any two curves can

be perturbed to be disjoint as 1 + 1 − n < 0. But in X = M1 ∨M2, any two curves that

pass through the wedge point v cannot be separated (unless one only intersects {v} at an

endpoint). Furthermore, even if n = 2 and ξ and η are two 1-chains that have an isolated

intersection at v, the lack of a local Euclidean neighborhood makes it unclear how to orient

the intersection point, which is a necessary step in defining an intersection product (Figure

1.4). So we see that singularities are not compatible with having well-defined intersection

products.

Figure 1.4: A failure of general position. What’s the intersection number of the two curves

depicted?

Or are they? The fundamental insight of Goresky and MacPherson was that if chains

don’t intersect well at singularities, perhaps they shouldn’t be allowed to interact with the

singularities too much. In fact, roughly stated, the allowability condition that a chain ξ must

satisfy to be a perversity p̄ intersection chain says that if S is any singular stratum of an

n-dimensional space X and if S has dimension k and ξ is an i-chain with support |ξ|, then

dim(|ξ| ∩ S) ≤ i+ k − n+ p̄(S), (1.1)

and a similar condition must hold for ∂ξ. There is a way to make this precise with singu-

lar chains, but for now the reader will be safe imagining simplicial chains to make better

sense of these dimension requirements. Without the p̄(S) summand, inequality (1.1) would

be precisely the requirement that |ξ| and S be in general position if X were a manifold.

The p̄(S) term allows for some deviation from the strict general position formula; hence

perversity. The complex of chains satisfying these conditions is the perversity p̄ intersection

chain complex I p̄C∗(X), and the resulting homology groups I p̄H∗(X) are the perversity p̄

intersection homology groups.

Now suppose ξ is a p̄-allowable i-chain, i.e. ξ ∈ I p̄Ci(X), and that η is a q̄-allowable

j-chain. We will also suppose that there is a perversity r̄ such that for each singular stratum

S we have p̄(S) + q̄(S) ≤ r̄(S) ≤ t̄(S), where t̄ is the top perversity defined by t̄(S) =
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codim(S) − 2 = dim(X) − dim(S) − 2. Lastly, we suppose that our space X is a stratified

pseudomanifold and that ξ and η are in stratified general position, which means that they

should satisfy the general position inequality within each singular stratum:

dim(S ∩ |ξ| ∩ |η) ≤ dim(S ∩ |ξ|) + dim(S ∩ |η|)− dim(S).

With these assumptions, it is possible to define an intersection ξ t η that is an r̄-allowable

i+j−n chain! Furthermore, work of Clint McCrory [170, 171] shows that it is possible to push

any p̄-allowable cycle ξ and q̄-allowable cycle η into stratified general position and in such

a way that the resulting homologies between cycles also satisfy the respective allowability

conditions. We therefore arrive at a map

t: I p̄Hi(X)⊗ I q̄Hj(X)→ I r̄Hi+j−n(X),

generalizing the intersection product for manifolds. If q̄ is the complementary perversity Dp̄,

which is defined so that p̄(S) + Dp̄(S) = t̄(S) = codim(S) − 2, then by composing with an

augmentation map we get a pairing

I p̄Hi(X)⊗ IDp̄Hn−i(X)
t−→ I t̄H0(X)

a−→ Z.

The intersection homology Poincaré duality theorem of [105] says that this pairing becomes

nonsingular when tensored with Q. If M is a manifold (unstratified), the perversity condi-

tions become vacuous, and this pairing reduces to the intersection pairing over Z, which is

nonsingular when tensored with Q.

To give an idea about why this pairing works after having argued that intersection pair-

ings are not so compatible with singularities, notice that if ξ t η is a t̄-allowable 0-chain

then its intersection with the singular stratum S must satisfy

dim(|ξ t η| ∩ S) ≤ 0− codim(S) + t̄(S) = −2.

So, in other words, |ξ t η| must be contained in the dense manifold part of X. In fact,

with a bit more work, the allowability and stratified general position conditions imply that

|ξ| ∩ |η| ⊂ X − Σ, the dense submanifold of X. So the bad behavior discussed previously

cannot happen because the intersection of chains of complementary dimension and comple-

mentary perversity is forced to happen in the nice manifold portion of the space, not at the

singularities. If ξ and η do not have complementary dimensions, it is possible that |ξ| ∩ |η|
might have a nontrivial intersection with Σ, but the r̄-allowability of ξ t η shows that such

intersections within the singular locus are carefully controlled by the perversity data.

Here is another important motivating example that provides some idea of why intersection

homology Poincaré duality might work out. Let M be a compact oriented n-dimensional

manifold with boundary ∂M 6= ∅. Let X = M/∂M . So we can think of X as M with

its boundary collapsed to a point or, up to homeomorphism, it is M with the closed cone

c̄(∂M) adjoined, X ∼= M ∪∂M c̄(∂M). If we let v be the cone point, then v will not in

general have a Euclidean neighborhood unless, for example, ∂M ∼= Sn−1. So it is natural

to stratify X by {v} ⊂ X, and any perversity on X is determined by the single value
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p := p̄({v}). Without working carefully through the details here, the basic idea is that if i is

small compared to a value depending on p, then the allowability condition (1.1) will prevent

i-chains in I p̄Ci(X) from intersecting v. So the low-dimensional chains behave as though the

cone point is not there, and we get I p̄Hi(X) ∼= Hi(X − {v}) ∼= Hi(M). On the other hand,

if i is large enough then the allowability condition will be satisfied for any i-chain, noting

that dim(|ξ| ∩ {v}) ≤ 0 because v is a point, and so all i-chains can be utilized. Therefore,

I p̄Hi(X) ∼= Hi(X), and so I p̄Hi(X) ∼= Hi(M,∂M) if i > 0. It turns out that there is only

one middle dimension in which there is a transition between these behaviors, and in that

dimension we get I p̄Hi(X) ∼= im(Hi(M) → Hi(M,∂M)). Altogether, the precise statement

works out as follows, assuming p < n− 1:

I p̄Hi(X) ∼=


Hi(M,∂M), i > n− p− 1,

im(Hi(M)→ Hi(M,∂M)), i = n− p− 1,

Hi(M), i < n− p− 1.

But now recall that the Lefschetz duality theorem for manifolds with boundary provides

a duality isomorphism _ Γ : H i(M) → Hn−i(M,∂M), and, mod torsion, this can also be

partially interpreted in terms of a nonsingular intersection pairing Hi(M)⊗Hn−i(M,∂M)→
H0(M) → Z, with the geometric intersections occurring in the interior of M . Lefschetz

duality also implies a nondegenerate intersection pairing among the groups im(Hi(M) →
Hi(M,∂M)); see Section 8.4.5 for more details. As we vary the perversity, intersection

homology of X provides all of these groups! And the duality between the perversity p̄ and

its dual Dp̄ positions the behavioral transitions in complementary dimensions: Notice that

the dual Dp̄ takes the value Dp̄({v}) = n−2−p, so indeed (n−p−1)+(n−(n−2−p)−1) = n.

So the intersection homology pairings generate the Lefschetz duality pairings as special cases!

One seeming deficiency in the intersection homology groups is that the intersection pair-

ing I p̄Hi(X) ⊗ IDp̄Hn−i(X) → Z is not just between complementary dimensions but be-

tween complementary perversities. So even when n = 2k, we do not necessarily have a

middle-dimensional pairing of a group with itself. In manifold theory, if n = 2k then such

self-pairings Hk(M)⊗Hk(M)→ Z are symmetric for k even and anti-symmetric for k-odd,

and such pairings possess their own algebraic invariants, such at the signature for k even,

that play a key role in manifold classification. Given a version of Poincaré duality for strat-

ified spaces, such invariants are the desired consequence. In general, however, there is no

self-complementary perversity such that p̄ = Dp̄. However, there are two dual perversities,

m̄ and n̄ = Dm̄, called the lower- and upper-middle perversities, and these are as close as

possible. If the pseudomanifold X satisfies certain local intersection homology vanishing

conditions, then Im̄H∗(X) and I n̄H∗(X) will be isomorphic and we do get a self-pairing. Al-

ready in [105], Goresky and MacPherson observed that this is the case for spaces stratifiable

by strata only of even codimension, and this includes complex varieties. Important broader

classes of such spaces were introduced later, including Witt spaces by Paul Siegel [217] and

IP spaces by William Pardon [186]. As is the signature for manifolds, the intersection homol-

ogy signature (and, in fact, a more refined invariant — the class of the intersection pairing in

the Witt group) is a bordism invariant of such spaces, and this has ramifications toward the
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geometric representation of certain generalized homology theories, including ko-homology

and L-homology, by bordisms of stratified spaces. This fact can also be used to construct

for such spaces a version of the characteristic L-classes in ordinary homology. We provide

an exploration of these topics in our culminating chapter, Chapter 9.

Another seeming shortcoming of intersection homology duality is that the intersection

pairing is in general only nonsingular after tensoring with Q. Over Z, the map I p̄Hi(X)→
Hom(IDp̄Hn−i(X),Z) adjoint to the intersection pairing is injective, making the pairing

nondegenerate, but it is not necessarily an isomorphism and so the pairing is not necessarily

nonsingular. But, in fact, this must be the most we can hope for in general, as the intersection

pairing on the groups im(Hi(M)→ Hi(M,∂M)) for a manifold only need be nondegenerate,

not necessarily nonsingular, and we have already seen that this occurs as a special case of

intersection homology duality2. Yet there are local “torsion-free” conditions due to Goresky

and Siegel [111] that can be imposed on a space to imply nonsingularity of the pairing over

Z, as well as the existence of nonsingular torsion linking pairings analogous to those for

manifolds. More recent work on such spaces has developed intersection cohomology and cup

and cap products, so that now intersection Poincaré duality can also be expressed as an

isomorphism of the form _ Γ : Ip̄H
i(X) → IDp̄Hn−i(X). This formulation was introduced

with field coefficients in [100], for which the torsion-free conditions are automatic, and is

developed here in Chapters 7 and 8 over more general rings, including Z.

1.2 Simplicial vs. PL vs. singular

As the reader should be aware from an introductory algebraic topology course, there are

several ways to define homology groups on a space, and, assuming the space is nice enough,

those definitions that the space admits will yield isomorphic homology groups. Each such

definition has its own advantages and disadvantages: homology via CW complexes is difficult

to set up technically but then often allows for the simplest computations, simplicial homology

is defined combinatorially and very amenable to computations by computer but enforces a

somewhat rigid structure on spaces that can make it difficult to prove theorems or work with

subspaces, singular homology is defined on arbitrary spaces and is often the best setting to

prove theorems but it is usually hopeless for direct computation from the definitions. We

encounter the same trade-offs in intersection homology. CW homology is not really available

at all, and so we have simplicial and singular homology, each of which will be treated in this

book.

There is yet another species of homology we will utilize that occupies something of a

middle ground between simplicial and singular homology: piecewise linear (or PL) homol-

ogy. The basic idea is that PL chains are linear combinations of geometric simplices, just

like in simplicial homology, but the simplices are not required to all come from the same

triangulation. Technically, a PL chain lives in the direct limit of simplicial chain complexes,

with the limit being taken over all suitably compatible triangulations of the space and with

the maps in the direct system being induced by geometric subdivision of triangulations. We

2It’s not a bug, it’s a feature!

9



will see in Theorem 3.3.20 that for any PL filtered space the PL intersection homology groups

(and hence ordinary PL homology groups on any PL space) are isomorphic to the simplicial

groups with respect to any triangulation satisfying a mild hypothesis (that the triangulation

be full). With some other mild assumptions, we will show that these simplicial and PL

intersection homology groups are isomorphic to the singular intersection homology groups

in Theorem 5.4.2. As we do not have an acyclic carrier theorem available in intersection

homology, it would be much more difficult to establish an isomorphism between simplicial

and singular intersection homology without using the PL theory as an intermediary.

One of the advantage that PL homology has over simplicial homology is that it behaves

much better with respect to the consideration of open subsets. An open subset of a triangu-

lated space needs to be given its own triangulation in order to speak of its simplicial chains;

but as PL homology already considers all triangulations, a PL chain in X that is supported

in an open subset U is already a PL chain in U without worrying about the specific trian-

gulation. Consequently, we obtain excision and Mayer-Vietoris theorems for PL homology

that mirror the singular homology theorems and so are more general than what one sees for

simplicial homology. Another technical advantage, which we shall only touch upon lightly in

Section 8.5, is that PL chains provide a good setting for defining intersection pairings, which

Goresky and MacPherson used to demonstrate Poincaré duality for intersection homology

when they introduced it in [105].

As we progress to the later stages of the book, however, the technical advantages of the

PL approach will begin to lessen as the technical difficulties begin to escalate. For example,

as the cup and cap products in intersection homology cannot be defined using an Alexander-

Whitney-type formula (as far as we know), the simplicial approach does not provide any

utility toward computing these products. At the same time, the direct limit that arises in

the definition of PL chains dualizes to an inverse limit for PL cochains, and these can be

difficult to work with. Consequently, when we reach intersection cohomology, we will discuss

briefly the PL intersection cohomology groups, but we will limit our discussion of products

and duality to the singular chain setting.

1.3 A note about sheaves and their scarcity here

As documented by Steven Kleiman in his somewhat controversial historical survey of the

early development of intersection homology [141], after first developing PL intersection ho-

mology Goresky and MacPherson soon discovered that their work dovetailed with research

in algebraic geometry that Pierre Deligne was undertaking from the point of view of sheaf

theory3. Goresky and MacPherson quickly recognized the power of the tools available work-

ing in the derived category of complexes of sheaves on a space, especially a sheaf theoretic

duality theorem called Verdier duality, and intersection homology was reformulated in these

terms in [106]. Using Verdier duality, they provided a proof of intersection homology duality

on topological pseudomanifolds, extending their duality results beyond the piecewise linear

3At the same time, Jeff Cheeger was developing a similar theory from the analytic point of view using

L2-cohomology [59, 61].
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pseudomanifolds of [105]. Furthermore, sheaf theory provides a good axiomatic framework,

which enabled them in [106] to prove that, with certain restrictions on p̄, the groups I p̄H∗(X)

are topological invariants; in other words they do not depend on the choice of stratification.

From here, the sheaf theoretic perspective on intersection homology largely took over, and

it has been the venue of many of the most significant applications of intersection homology.

For a good introductory survey to what has been accomplished in this vein, including many

extensions of significant results concerning the homology and cohomology of nonsingular

algebraic varieties to results on the intersection homology and intersection cohomology of

singular algebraic varieties, we recommend [140]; for a sheaf-theoretic introduction directed

more toward applications to characteristic classes, we suggest [11].

Nonetheless, the working title of this book was “An Introduction to Intersection Homol-

ogy Without Sheaves,” and we have several motivations for providing a text without sheaf

theory. One is that there are already several excellent introductions to intersection homology

and related topics primarily from that point of view, including [28, 11, 140, 34, 70]4. Another

is that, while common in algebraic geometry, sheaf theory is not always a standard item in

the toolbox of the topology student, while singular homology most often is. A singular chain

version of intersection homology was introduced by Henry King in [139], and it has developed

along its own path, though one often intertwined with the sheaf theory. Each approach offers

its own advantages. Historically, sheaf theory has provided more powerful machinery and

close connections to the techniques of modern algebraic geometry, and several major results

have yet to be formulated any other way. However, sheaf theory, especially in the derived

category, can also be very abstract. By contrast, simplicial/PL/singular chains offer a more

geometric picture and are more amenable to homotopy theoretic arguments. And these two

sides of the coin can work well in combination, for example in the author’s proof of Poincaré

duality on homotopically stratified spaces [86], which involves homotopy arguments to pro-

vide needed axiomatic properties for sheaves of chains. But, perhaps most importantly, it

is only recently that the development of cup and cap products for intersection homology

and cohomology has made it possible to provide a chain-theoretic treatment that completely

mimics a standard introductory text on algebraic topology. The time seems ripe to do so

in a comprehensive way, with the hopes that the reader will both find the chain theoretic

approach to intersection homology useful on its own and also then be better motivated and

equipped to go on to learn the sheaf perspective from other sources. Toward this latter end,

we have provided some suggestions for further reading at the end of the book in Chapter 10.

1.4 GM vs. non-GM intersection homology and an

important note about notation

When Goresky and MacPherson first introduced intersection homology in [105], they required

their perversity parameters to satisfy some very specific rules. Over time, it has become

apparent that these restrictions can be loosened, and today it is possible to define and

4Brasselet’s [34] also contains an extensive overview of simplicial intersection homology.
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prove useful theorems about intersection homology with essentially no restrictions on the

perversities at all. Unfortunately, however, using certain “high” perversities requires altering

the definition of intersection homology a bit in order to still get the best theorems.

More precisely, one of the Goresky-MacPherson requirements is that p̄(S) ≤ codim(S)−2

for all singular strata S. If p̄ is a perversity that does not meet this requirement, it is still

possible to define simplicial and singular intersection homology exactly as done in [105, 139],

but its local properties do not quite behave as one would expect from the sheaf-theoretic

formulation. This results, for example, in the failure of the intersection homology duality

theorem for these perversities in this version of intersection homology5. While it is possible to

modify the sheaf theory to reflect the chain theory for these high perversities (see Habegger

and Saper [120]), it turns out to be better for our purposes to modify the chain theory to

better reflect the expectations of the sheaf theory. Such modifications were developed by the

author in [85] and by Martin Saralegi in [204]. With these modifications, we obtain duality

theorems for all perversities. See [91] for a more detailed exposition of this discussion.

Over the course of this historical development, various notations have been used. In

several papers, the author used the notation I p̄H(X;G0) to refer to the modified chain-

theoretic version of intersection homology, where G is a coefficient group and G0 refers to a

notion of a “stratified coefficient system;” see [85]. However, this notation leaves a bit to be

desired as, for a constant coefficient group, it is really the definition of the intersection chain

complex that has been modified and so not the group itself that merits a decoration. Given

that it is the modern, adapted version of intersection homology that admits the most general

duality theorems and that best mirrors the groups obtained from sheaf theory, we have been

so bold in [100] as to rechristen these groups I p̄H∗(X;G) (when the coefficient group isG) and

to call them the intersection homology groups. When p̄(S) ≤ codim(S) − 2 for all singular

strata S, these are identical to the groups I p̄H∗(X;G) as classically defined by Goresky-

MacPherson [105], King [139], or via sheaf theory [106, 28]. However, these modified groups

are a bit more involved, and so we prefer in the first few chapters of the book to stick more

closely to the original Goresky-MacPherson/King definitions. When doing so, we have chosen

to use the notation I p̄HGM
∗ (X;G), with the “GM” standing for “Goresky-MacPherson.” It

is in this context that we will develop many of the basic properties of intersection homology,

and then when we introduce I p̄H∗(X;G), we will note which results carry over directly and

provide any additional needed arguments at that time. When necessary, we will refer to

I p̄HGM
∗ (X;G) and I p̄H∗(X;G) respectively as “GM intersection homology” and “non-GM

intersection homology,” with an unqualified “intersection homology” meaning the latter.

While this is perhaps not a perfect notational solution for compatibility with the existing

literature, we do note again that so long as p̄(S) ≤ codim(S)− 2 for all S, which historically

has been a common assumption, we do have I p̄HGM
∗ (X;G) ∼= I p̄H∗(X;G). This should

mitigate some of the possible confusion.

The technical details concerning non-GM intersection homology and why it is necessary

can be found at the beginning of Chapter 6.

5See Section 6.1 for an example.
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1.5 Outline

We now provide a brief summary of what can be found in each chapter, hoping to provide

something of an overview of the material contained in the book. In order to avoid getting

bogged down in too many technical details here, we will remain somewhat sketchy. For

example, a result stated here about “stratified spaces” will often have a more specific class

of space in mind. We refer the reader to the precise statements later in the text.

Chapter 2 is an introduction to stratified spaces. We begin with the quite general notion

of a filtered space and move progressively through more and more constrained classes, includ-

ing locally conelike spaces, manifold stratified spaces, the CS sets of Siebenmann, recursive

CS sets (our terminology), and, ultimately, topological and piecewise linear (PL) pseudo-

manifolds. To facilitate this last definition, we provide some background on PL topology,

both at this point and in somewhat more detail in Appendix B. Within the main text, we

take the point of view that a PL space is one that has been endowed with a family of com-

patible triangulations; in the appendix we connect this definition with the version in terms

of PL coordinate charts as in Hudson [130]. In the later sections of the chapter, we turn to

some more specialized topics, including normalization of pseudomanifolds, which will play

a limited role in the book, pseudomanifolds with boundary, and certain other more spe-

cialized types of spaces, such as Whitney stratified spaces, Thom-Mather stratified spaces,

and homotopically stratified spaces. While treating these in Section 2.8, we pause to ob-

serve through the citation of outside results that the class of pseudomanifolds includes many

spaces found in nature, such as singular varieties and orbit spaces of group actions.

In Section 2.9, we discuss stratified maps between stratified spaces. And we close Chapter

2 with two sections on even further specialized topics: intrinsic filtrations and products and

joins of stratified spaces. These sections will be utilized later but can be safely skipped on a

first reading. In fact, we hope that the reader will tread lightly through Chapter 2 in general,

absorbing just enough of the ideas about our spaces of interest to proceed on to intersection

homology itself.

Chapter 3 introduces intersection homology, beginning with a discussion of perversity

parameters. The treatment of (GM) intersection chains begins with the simplicial version,

followed by PL (piecewise linear) intersection chains, and then singular intersection chains.

As the reader may be less familiar with the PL category than the others, we provide the

relevant background. Simplicial and PL chains are closely related, but for technical reasons

to be seen we will generally focus on the latter.

Having established the basic definitions, in Chapter 4 we develop the basic properties of

PL and singular intersection homology. We consider the behavior of the intersection homol-

ogy groups under appropriately stratified maps and homotopies, demonstrating invariance

of the groups under stratified homotopy equivalences. Later in the chapter we introduce

relative intersection homology, the long exact sequence of a pair, Mayer-Vietoris sequences,

and excision.

We note especially Section 4.2, in which we present the formula for the intersection

homology of a cone. In addition, to providing a good basic example of an intersection

homology computation, the cone formula plays an essential role throughout the theory: All
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points in pseudomanifolds have neighborhoods that are stratified homotopy equivalent to

cones, and so these computations contain all the local homological data about such a space.

Just as it is the local Euclidean nature of manifolds that ultimately leads to deep homological

theorems about their topology, so too do the deep theorems about pseudomanifolds follow

from these cone computations.

A powerful set of tools for assembling these “local to global” phenomenon is known as

the “Mayer-Vietoris arguments.” In the sheaf cohomology theory, there is a general principle

that local cohomology isomorphisms lead to global (hyper)cohomology isomorphisms. When

working without sheaves, the Mayer-Vietoris arguments play the same role. They will be the

basic device undergirding our most powerful theorems. We begin Chapter 5 by establishing

this toolbox and then get to work on more advanced properties of intersection homology.

Section 5.2 contains a detailed discussion of the cross product of chains and the intersec-

tion homology Künneth theorem for the product of a stratified space with a manifold. More

background material for this section, including a detailed introduction to the Eilenberg-

Zilber shuffle product, can be found in Appendix B. Explicit treatment of this product is

often omitted from modern algebraic topology texts in favor of acyclic models arguments,

but these are not available for working with intersection homology.

In Section 5.3, we introduce intersection homology with coefficients in groups other than

Z. This is a more delicate issue than with ordinary homology, and the Universal Coefficient

Theorem does not always hold for intersection homology. It will hold, however, if we assume

the vanishing of the torsion of certain local intersection homology groups, and this leads to

the Goresky-Siegel “locally torsion free” condition, which is also necessary for many of our

later theorems.

In Section 5.4, we show that the PL and singular intersection homology groups are

isomorphic on PL stratified spaces, and Section 5.5 contains the proof that intersection

homology is stratification independent when using certain perversities, including the original

ones of Goresky and MacPherson. We close Chapter 5 with a proof that the intersection

homology of compact pseudomanifolds is finitely generated.

In Chapter 6, we turn at last to the non-GM version of intersection homology, providing

detailed motivation, definitions, and basic properties. The chapter culminates in a Künneth

theorem for the product of two stratified spaces. This Künneth theorem plays a starring

role in Chapter 7, which contains our treatment of intersection cohomology and its cup, cap,

and cross products, including full details of the properties of these products. Much of this

material has not been worked out previously, and Section 7.3.9 consists of a summary of all

of the properties, their conditions, and where they can be found in the text.

Chapter 8 concerns Poincaré duality. We show that oriented pseudomanifolds possess

fundamental intersection homology classes in Section 8.1, and we prove the cap product form

of the Poincaré Duality Theorem in Section 8.2. This is followed by Lefschetz duality for

pseudomanifolds with boundary and derivation of the nonsingular cup product and torsion

pairings. Section 8.5 provides an expositional survey of intersection pairings and the original

approach of Goresky and MacPherson to intersection homology duality.

We introduce Witt and IP spaces in Chapter 9; these are the spaces on which middle-

dimensional self-pairings are possible, and hence signatures. Using the signature, we then
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provide in detail the Goresky-MacPherson construction of the characteristic L-classes for

Witt spaces, which is modeled upon the classical construction for PL manifolds. To conclude,

we provide a survey of bordism theories of pseudomanifolds in Section 9.5.

Chapter 10 provides an afterward with suggested further reading in a variety of directions.

We also include two appendices: one concerning algebra background of various sorts and the

other about piecewise linear (PL) topology.
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Chapter 2

Stratified Spaces

In this chapter, we introduce a succession of classes of space, beginning quite generally and

then introducing more and more rigorous requirements. For each class of spaces we provide

some examples and examine basic properties. As this chapter is somewhat lengthy, we hope

the reader will take it as something of a reference section, to be read only lightly at first on

the way toward intersection homology and then returned to as necessary later.

We start in Section 2.1 with a few easy examples to get the reader acclimated to the

basic idea of stratified spaces. Then in Section 2.2 we define filtered spaces, which are simply

spaces with a sequence of closed subspaces

X = Xn ⊃ Xn−1 ⊃ · · ·X0 ⊃ X−1 = ∅.

This is followed in Section 2.2.2 by the stratified spaces, which impose some additional

reasonable point-set conditions, essentially that the closure of any stratum (a connected

component of Xk − Xk−1) is a union of strata. Manifold stratified spaces then add the

condition that each stratum be a manifold.

Locally conelike spaces and the CS sets of Siebenmann are introduced in Section 2.3.

These satisfy the added condition that each point should have a neighborhood that looks

like a bundle over a neighborhood of the point in its stratum with the fiber being a cone

on a compact space, the link. The CS sets are spaces that are locally conelike and manifold

stratified.

Section 2.4 introduces pseudomanifolds, which are our most important spaces, possessing

versions of Poincaré duality. These are CS sets with yet further structure, with each link itself

being a pseudomanifold of lower dimension. Pseudomanifolds also possess dense manifold

subspaces. Examples include all irreducible complex analytic varieties and the orbit spaces

of smooth compact Lie group actions on manifolds.

In Section 2.5, we begin with a review of piecewise linear (PL) topology from a point of

view that will be of most use to us. Further details on simplicial complexes and PL topology

can be found in Appendix B. We then discuss simplicial and PL pseudomanifolds, which are

pseudomanifolds with compatible PL structures.

Section 2.6 contains a brief treatment of normalization, a process by which a pseudo-

manifold may be replaced by something like a resolution whose links are connected. It is
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often easier to prove results about intersection homology by first proving them for normal

pseudomanifolds and then passing the results to more general pseudomanifolds. However,

we have managed to avoid the need for this throughout the book, and, as the details of

normalization require a certain amount of point-set technology, we have forgone the details

in favor of a survey approach.

Just as it is useful to study manifolds with boundary, so too do we want to consider

pseudomanifolds that may have boundaries. We refer to these as ∂-pseudomanifolds and

study them in Section 2.7. Throughout the text, a “pseudomanifold” will always mean a

∂-pseudomanifold with empty boundary, and we will always use “∂-pseudomanifold” if a

boundary may occur.

Section 2.8 concerns some other types of more specialized stratified spaces that one

may encounter. This includes the Whitney stratified spaces that arise in analytic/algebraic

geometry and the Thom-Mather stratified spaces that also arise in more analytic settings.

We cite some results about these spaces to verify that irreducible complex varieties and

orbit spaces of smooth manifolds really are pseudomanifolds. We also mention a more

general class of stratified space, the homotopically stratified spaces, which were introduced by

Quinn in [191] to provide “a setting for the study of purely topological stratified phenomena,

particularly group actions on manifolds.” This class accommodates orbit spaces of more

general group actions on more general manifolds.

In Section 2.9, we finish off the main body of the chapter with a short section on stratified

maps, i.e. maps that are compatible with stratification data in some way.

The last two sections of the chapter contain more specialized material that we will need

later but that can even more certainly be skipped at a first pass. Section 2.10 concerns

intrinsic filtrations. While a topological space might be able to carry any number of stratifi-

cation structures that make it a space of one of the types discussed to this point, sometimes

spaces carry a unique natural such structure, hence “intrinsic.” In particular, all PL spaces

carry intrinsic PL stratifications as PL CS sets, as we see in Subsection 2.10.1. Section 2.11

is then about products and joins of stratified spaces.

A note about dimension. For pseudomanifolds, “dimension” has a fairly typical mean-

ing: if X is an n-dimensional pseudomanifold, then X contains a dense n-dimensional topo-

logical manifold and each point x ∈ X has a neighborhood of topological dimension n. On

the other hand, for the most general filtered spaces, we will want our filtration subsets X i to

be indexed with some set of integers {i}, which will play a role in our intersection homology

computations, but we do not necessarily want this index to correspond to any topological

notion of dimension. In these cases, we refer to i as the formal dimension. Unfortunately,

this occasionally results in some awkwardness. For example, the strata of manifold strati-

fied spaces will be manifolds, which certainly do have a topological dimension, but we will

not always want the topological dimension and the formal dimension to correspond. Such

situations arise by necessity when working with stratified spaces that are not the closure of

a union of strata of a fixed dimension. More specifically, for example, suppose we have a

stratified space X whose topological dimension is n, and we also assign the formal dimension
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to be n, which certainly seems like the sensible thing to do. But now suppose that X has an

open subset U that has topological dimension m < n; this occurs for example if X = S1∨S2

and U is an open subset of X−S2. For the purposes of intersection homology computations,

we will typically want the formal dimensions of the induced strata of subsets, especially open

subsets, to be the same as their formal dimensions as strata of X. This is necessary for inter-

section homology to behave well under inclusion maps. So the formal dimension of U must

remain n, rather than the more natural m. There are perhaps other ways to formulate the

inclusion of subsets, but they would require an unfortunate amount of index bookkeeping.

So while the notion of formal dimension is not always completely natural, we adopt it as

the lesser evil. Unless made clear otherwise, the dimensions and codimensions of strata for

the purposes of intersection homology computations will always be these formal dimensions.

Though one happy consequence of the dimensional homogeneity of pseudomanifolds is that

every open set of an n-dimensional pseudomanifold will have topological dimension n, and

so for pseudomanifolds we can and will assume that the topological and formal dimensions

always agree1.

2.1 First examples of stratified spaces

We have already encountered some simple examples of stratified spaces in Section 1.1, such as

the wedge of spheres S2∨S2, the suspended torus ST 2 (Figure 1.1), and the twice suspended

torus (Figure 1.2). Even in these basic examples we can see several interesting features:

1. Even though neither of these spaces is a manifold, each is “mostly” a manifold, meaning

that each possesses a dense subset that is a manifold. For S2 ∨ S2, if we remove the

wedge point we have two open disks. For ST 2, if we remove the “north and south

poles,” we have left (−1, 1) × T 2. For S(ST 2), if we remove the suspension of the

suspension points of ST 2 we have (−1, 1)× (−1, 1)× T 2.

2. As computed in Section 1.1 for ST 2, just these few “bad points” are enough to ruin

Poincaré duality.

3. In each of these examples, the singularities, i.e. the “bad points,” are themselves not

too bad. In fact, the singular sets of S2 ∨S2 and ST 2 are each a discrete set of points,

and so a 0-dimensional manifold. The singular set of X = S(ST 2) is homeomorphic to

S1, although with the filtration we have given X this circle carries its own nontrivial

filtration with X0 consisting of two points and X1−X0 consisting of two open intervals.

These features will be typical of the spaces we intend to study: they are assembled from

manifold pieces of various dimensions, including a dense top dimensional piece, but this is

1This has the potential to cause a bit of confusion when working with non-open subsets of pseudomanifolds

that are themselves pseudomanifolds, for example when we define the L-classes for Witt spaces in Section

9.4. In such settings we will have to be careful about when we are treating such subspaces with their

inherited formal dimensions as opposed to their intrinsic dimensions. In context, there should not be too

much confusion.
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not generally enough for the space to possess Poincaré duality in the usual sense. Instead

we will need intersection homology to obtain duality results.

It is not difficult to construct other, more elaborate, non-manifold spaces with simi-

lar features. For example, we can construct more spaces with 0-dimensional singularities,

sometimes called isolated singularities, by taking a compact manifold with boundary and

attaching a cone on the boundary or by starting with a manifold with multiple boundary

components and coning each off separately. However, it is also not difficult to form spaces

with singular sets of higher dimension. For example, take our suspension ST 2 and a manifold

M and form the product space ST 2 ×M . Then (−1, 1) × T 2 ×M is our dense manifold,

while the singular set of non-manifold points will be homeomorphic to two disjoint copies of

M . Once again the singular set is a manifold, but this shows that it may be a manifold of

any dimension.

How about a space in which the singular set is not itself a manifold but can be similarly

disassembled into manifold pieces? Let’s start with the suspended torus ST 2, cross it with

a circle to get ST 2 × S1, and then suspend this whole space to arrive at X = S(ST 2 × S1).

Keeping track of the singular points, ST 2 × S1 has a singular set consisting of two copies

of the circle, and X has a singular set consisting of the suspension of the two circles, which

is a set Σ homeomorphic to two copies of the sphere S2 with their north poles attached to

each other and their south poles attached to each other. Notice that X − Σ is a manifold

homeomorphic to (−1, 1) × (−1, 1) × T 2 × S1. Meanwhile Σ is not a manifold, but it is

a suspension of a manifold, so if we let {n, s} be the north and south poles of the last

suspension, Σ − {n, s} ∼= (−1, 1) × (S1 q S1), which is a two-dimensional manifold. So we

begin to see spaces whose singular sets are also “nearly” manifolds, except for their own

singular subsets!

The reader is invited to think through more examples obtained by repeated applications

of suspension or crossing with a manifold (or even crossing with a singular space such as

SM !). What is the dense manifold? What is the singular set? Are there singularities that

prevent the singular set from being a manifold? And so on.

Some less artificial examples come from algebraic geometry. For example, if X is an

irreducible complex algebraic variety then the singular set Σ of X is itself an algebraic

variety described by a larger set of polynomial equations. And Σ itself will be a union

of irreducible complex varieties (possibly of different dimensions), each of which will itself

consist of a dense manifold set and lower-dimensional singular sets, which will be unions

of irreducible varieties, and so on. Eventually this decomposition process bottoms out, and

we see that the singular set of X is naturally layered, or stratified, in a way similar to our

somewhat artificial constructions involving suspensions and products.

Example 2.1.1. Consider the subspace of R3 determined by the polynomial equation xyz = 0.

This is the union of the three coordinate planes. It is a manifold except along the three axes,

whose union is described by the system of equations {xyz = 0, xy + yz + xz = 0}. This

is in turn a manifold except at the origin, which we can describe by the system {xyz =

0, xy + yz + xz = 0, x+ y + z = 0}.
Although our work will be completely topological, we will briefly discuss stratifications
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of algebraic spaces further in Section 2.8. The study of algebraic varieties through stratified

space methods has consistently been a leading motivation for development in the field of

study and remains an active area of research.

2.2 Filtered and stratified spaces

So far, we have seen spaces with various layers of singularities such that each layer is the

closure of a manifold. We wish to make this concept more precise through a series of

definitions. We will begin with very general notions and then define more and more specific

types of spaces. The reader should be aware that the definitions in the literature are not

always consistent and so some care should be exercised.

2.2.1 Filtered spaces

We assume all spaces are Hausdorff, sometimes without further mention. It is common

to find additional point-set topological assumptions, such as paracompactness or second

countability, in the definitions of the various types of spaces we will be considering. One

of the benefits of our approach is that these additional assumptions do not seem to be

necessary for any of the results we will encounter. In particular, we do not need to assume

that manifolds are paracompact or second countable.

Our most general level of definition is that of a filtered space.

Definition 2.2.1. A filtered space is a Hausdorff topological space X together with a se-

quence of closed subspaces2

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X

for some integer n ≥ −1. The smallest index is always −1 and X−1 is always empty; we

will typically not mention X−1 explicitly. We will generally refer to “the filtered space X,”

leaving the filtration tacit. If we wish explicitly to consider the filtered space X devoid of

its filtration information we will write |X|.
The space X i is called the i-skeleton. The index i is called the formal dimension of the

skeleton3, and we say that X has formal dimension n. This notion of formal dimension does

not necessarily have anything to do with other concepts of dimension, though for many of

the spaces we consider below, particularly pseudomanifolds, the skeleton dimension will be

the same as the topological dimension. Notice that it is possible to have X i = X i−1. The

intuition in this case is similar to that for CW complexes, where we would say that the

k-skeleton of X contains all cells of dimension ≤ k, but the k and k + 1 skeletons are equal

if there are no k + 1 cells.

2For us, the symbols X ⊂ Y always includes the possibility that X = Y .
3N.B. We use the phrase “formal dimension” differently from, e.g. Siebenmann [216, page 127], who

defines the formal dimension to be max{i | Xi − Xi−1 6= ∅}. This will be necessary when dealing with

subsets; see Remark 2.2.15 and Section 4.3 for more details. We will often omit the word “formal” when no

confusion can arise, especially when formal dimension agrees with topological dimension.
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We will use throughout the notation Xi = X i −X i−1 for i ≥ 0. The connected compo-

nents4 of Xi are called the strata of X of formal dimension i. If X has formal dimension n

and S ⊂ Xi = X i−X i−1 is a stratum of X, we say that S is a stratum of formal dimension

i and formal codimension n− i. Note that the strata of all codimensions partition X.

Example 2.2.2. Any finite-dimensional simplicial or CW complex is a filtered space, filtered

by its simplicial or cellular skeleta5. The strata are, respectively, the open simplices (i.e.

the interiors of the simplices) of X or the interiors of cells of X. CW complexes may

satisfy the condition that X i = X i−1. For example, if we think of the n-sphere X = Sn as

being composed of one 0-cell and one n-cell, attached in the unique way to the 0-cell, then

X0 = X1 = · · · = Xn−1.

Example 2.2.3. Let X be a finite simplicial complex filtered by its simplicial skeleta, end let

p : E → X be a fibration. Then we can filter E with the filtration Ei = p−1(X i).

When we use filtrations for which X i = X i−1 for some i, it is inconvenient to have to list

all the skeleta, so we often employ an abbreviated notation. For example, suppose X is a

filtered space for which X i = ∅ for i < 3, X3 = X4, and X = X5. Then we will write the

filtration of the space simply as X3 ⊂ X5. Note also that the statement X = X5 is meant

to imply that X has formal dimension 5; we will continue to use this convention below.

Example 2.2.4. Let X = X5 be a 5-dimensional simplicial complex, and let X2 be its sim-

plicial 2-skeleton. Then X2 ⊂ X5 is a filtration of X.

One particular point of care (and possibly of confusion) with the shortened notation is

that we could just as well have defined X2 to be the simplicial 3-skeleton of X, since the

definition of a filtered space does not require that the formal dimension of a skeleton neces-

sarily have any connection with the topological dimension of the space. Then the notation

X2 ⊂ X5 has some ambiguity: does X2 refer to the simplicial 2-skeleton or to the formal

2-skeleton of the filtration? In most situations below in which there is a topological notion of

dimension available, the topological and formal definitions of a skeleton will coincide, and so

the reader is free to trust his or her instincts. When the formal and topological dimensions

do not coincide, we will be explicit.

Example 2.2.5. If Mm is a smooth manifold and Nn is a closed smooth submanifold of M , we

have the filtered space Nn ⊂Mm. As in the previous example, and in lieu of statements to

the contrary, this notation is taken to mean that M has formal dimension m (corresponding

to its topological dimension), N is taken to be the n-skeleton (as well as the k-skeleton for

all n ≤ k < m), and the skeleta of formal dimension less than n are empty.

The n-dimensional strata in this example are the connected components of N , and the

m-dimensional strata are the connected components of M −N . All other strata are empty.

Example 2.2.6. Let X = Xn be a finite dimensional simplicial complex filtered by its sim-

plicial skeleta X i. We can form a filtration on the path space PX, which is the space of

4In some of the literature, the word stratum is reserved for the entire set Xi = Xi −Xi−1 and not just

its connected components.
5See Appendix B for a review of simplicial complexes.
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maps γ : [0, 1] → X with the compact-open topology. We can define a filtration by letting

(PX)i = {γ ∈ PX | γ(1) ∈ X i}. Notice that in this case the skeleton dimension i of

(PX)i will usually not correspond to the dimension in any geometric sense since path spaces

are usually infinite dimensional. A stratum E of PX is a set of paths such that for each

γ1, γ2 ∈ E, γ1(1) and γ2(1) lie in the same simplex interior of X. In fact, given two such

paths, it is not difficult to verify that they are homotopic through paths all of which lie in

the same stratum, and so with these filtrations, there is a bijection between strata of X and

strata of PX.

Example 2.2.7. Here is another example demonstrating that we must be careful not to trust

intuition too much when working with formal dimensions. For any natural number n, we

have the filtered space X = Xn such that X i = ∅ for all i, −1 ≤ i ≤ n.

Example 2.2.8. Let X = X2 be the union of the open upper half-plane {(x, y) ∈ R2 | y > 0}
with the y-axis {(x, y) ∈ R2 | x = 0}. If we let X1 be the y-axis Y , we can filter X as

Y ⊂ X. Here the strata are Y and the two components of X − Y .

Example 2.2.9 (Subspace filtrations). If X is a filtered space and Z ⊂ X is a subspace, we

can define the subspace filtration on Z by Zi = Z ∩ X i. In this case, we give Z the same

formal dimension as X.

Example 2.2.10 (Product filtrations). If X, Y are filtered spaces of respective formal di-

mensions n,m, then X × Y has a natural filtration of formal dimension m + n such that

(X × Y )i = ∪j+k=iX
j × Y k. In this case, the strata have the form S × T where S ⊂ X and

T ⊂ Y are strata of X and Y , respectively.

Example 2.2.11 (Cones). An extremely important way to create new filtered spaces from old

ones is by taking cones. If X is a compact filtered space of formal dimension n − 1, there

is a natural filtration of formal dimension n on the open cone cX = [0, 1) × X/ ∼, where

∼ is the relation (0, x) ∼ (0, y) for all x, y ∈ X. We simply define the filtration on cX so

that (cX)i = c(X i−1) for all i with 0 ≤ i ≤ n. We utilize here the common convention that

the cone on the empty set is a point, in this case the cone point v ∈ cX represented in the

quotient by any point (0, x). With this definition cX has formal dimension n, and the strata

of cX are the cone point and the products of the strata of X with the open interval. Notice

that we always have (cX)0 = {v}, with the possibility that (cX)i = ∅ for some i > 0 if

X i−1 = ∅. By Definition 2.2.1, the skeleton (cX)−1 is empty.

The suspension of a compact filtered space can be filtered analogously.

As cones will play such an important role for us, we also pause here to establish the

following notation:

Definition 2.2.12. For a compact space Z, the space cZ is the open cone cZ = [0, 1)×Z/ ∼,

where ∼ is the relation (0, w) ∼ (0, z) for all w, z ∈ Z. We typically denote the vertex of

a cone by v. Similarly, the closed cone is c̄Z = [0, 1] × Z/ ∼. More generally, for r > 0,

we let crZ = [0, r) × Z/ ∼ and c̄rZ = [0, r] × Z/ ∼; in particular, cZ = c1Z. Then

crZ ⊂ c̄rZ ⊂ csZ ⊂ c̄sZ whenever r < s.
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In the study of filtered spaces, the strata of the highest possible dimension play an im-

portant role; for example, if X is an n-dimensional stratified pseudomanifold (see Definition

2.4.1, below), then X is the closure of the union of its n-dimensional strata. Hence the

following definition is useful:

Definition 2.2.13. If X is a filtered space of (formal) dimension n, the components of

Xn = Xn −Xn−1 are called the regular strata of X and all other strata are called singular

strata. We sometimes let ΣX denote the union of the singular strata; the set ΣX is called

the singular set or the singular locus of X. Of course ΣX = Xn−1, but the notation ΣX

is a convenient way to refer to the singular locus without explicitly referencing the formal

dimension of X.

Example 2.2.14. Let X be an n-dimensional simplicial complex, filtered by its simplicial

skeleta as in Example 2.2.2. Then the interiors of the n-simplices are the regular strata, and

the interiors of all other faces are the singular strata.

Remark 2.2.15. As we have defined filtered spaces, it is possible for there to be no regular

strata. For example, it is allowable within the definitions to have X be homeomorphic to

the circle S1 and to have X1 = S1 but to consider X as having formal dimension 2 so that

X = X2 = X1. In this case X2 −X1 = ∅, and S1 is a singular stratum of formal dimension

1. While we do not generally intend to study spaces with no regular strata, unfortunately

they become unavoidable (and something of a nuisance) in arguments that require us to

consider subsets of more well-behaved spaces.

This phenomenon is related to the issue mentioned in the introduction to this chap-

ter concerning possible discrepancies between topological and formal dimensions, especially

when restricting to subsets. For example, let us consider again the example X = S1 ∨S2. A

fairly reasonable filtration here would be to let X1 = S1 and X2 = X so that X has formal

dimension 2. The problem is that when we want to think of X1 = S1 as a subspace of X,

for reasons that will become clear below, we will want to continue to think of X1 as having

codimension one, and so our subspace X1 will have to be a subspace of formal dimension 2

corresponding precisely to the example of the preceding paragraph. This is also consistent

with taking the subspace filtration on S1 as defined in Example 2.2.9.

Since there’s a lot of room for confusion here, we encourage the reader for now to treat

all spaces as though they have regular strata (in fact it would not be too problematic on a

first pass through the book to imagine that the regular strata are always dense in X). We

will assume that all spaces have this property unless stated explicitly otherwise or required

when working with subspaces.

See Section 4.3, below for more details concerning these issues, especially Subsection

4.3.1.

2.2.2 Stratified spaces

We next introduce the Frontier Condition, which eliminates some of the possible pathologies

in how the strata of a filtered space can fit together.
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Definition 2.2.16. If T is a stratum of the filtered space X, let T̄ denote the closure of T .

The filtered set X satisfies the Frontier Condition if for any two strata S, T of X such that

S ∩ T̄ 6= ∅ then S ⊂ T̄ .

This condition does not hold for Example 2.2.8, which had the form Y ⊂ X with Y

the y-axis in the plane and X the union of Y with the open upper half plane (Figure 2.1).

Here Y certainly intersects the closure of X − Y in X (which is the union of the upper

half plane and the origin), but it is not contained in that closure. The frontier condition

does not always hold for CW complexes with their natural filtrations either: Let X be the

CW complex obtained by starting with an interval (with its standard CW structure with

two 0-cells and one 1-cell) and attaching a 2-cell by gluing its boundary to the midpoint of

the interval. Then the interiors of the 1- and 2-cells are strata and the 1-cell intersects the

closure of the 2-cell but is not contained in that closure.

Figure 2.1: The Frontier Condition does not hold for the space on the left as the closure of

X − Y does not contain Y . However, the 2-simplex on the right with its simplicial filtration

does satisfy the Frontier Condition as the closure of each face interior contains all of the

faces it intersects.

By contrast, the Frontier Condition does hold for our other examples:

1. An embedded k-dimensional smooth submanifold of a smooth n-manifold is certainly

contained in the closure of its complement if k < n.

2. Each open simplex (i.e. simplex interior) of a finite-dimensional simplicial complex

intersects only the closures of the interiors of the simplices of which it is a face, and it

is then contained in those simplices of which it is a face (Figure 2.1).

3. For our path space example, Example 2.2.6, let us sketch an argument that the Frontier

Condition is satisfied. Suppose γ is in a stratum S of PX consisting of paths with

endpoint in the interior of the i-simplex σ of X and that γ is also in the closure of

another stratum S ′ of PX. Let σ′ be the j-simplex such that γ′(1) is in the interior

of σ′ if γ′ ∈ S ′. Then there are paths in S ′ arbitrarily close to γ in the compact-open

topology of PX. But then we must have that σ is a face of σ′, since γ(1) must be a

limit point of the γ′(1). So now to show that S ⊂ S̄ ′, we need only observe that if

now η is any path in X with η(1) in the interior of σ, then there are arbitrarily nearby
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paths η′ with η′(1) in the interior of σ′; for example we can just extend η a bit into the

interior of σ′. Thus S ⊂ S̄ ′.

Definition 2.2.17. We will say that a filtered space X is a stratified space if it satisfies the

Frontier Condition.

Remark 2.2.18. This is not a standard definition in all sources. Other conditions are some-

times required, for example that the collection of strata be locally finite (i.e. that every point

of the space has a neighborhood that intersects only finitely many strata). Alternatively,

stratified spaces are sometimes defined without reference to a filtration by simply declaring

a space to be a disjoint union of a locally finite collection of subsets called strata such that

the Frontier Condition holds and the strata are locally closed6; see, for example, [133]. We

will not require the local finiteness or locally closed conditions for arbitrary stratified spaces,

but these properties will follow from the definitions for other types of stratified spaces we

will consider; see Lemma 2.3.8. It will be necessary when discussing intersection homology

to assume that all spaces are filtered so that codimension of strata is a well-defined concept.

Remark 2.2.19. In settings where we are working explicitly with stratified spaces, we will

tend to use the words “filtration” and “stratification” interchangeably.

The benefit of working with stratified spaces, rather than general filtered spaces, is that

the set of strata possesses some nice structure. For example, we get a partial order ≺ defined

by S ≺ T if S ⊂ T̄ .

Proposition 2.2.20. If X is a stratified space, then ≺ is a partial order. Furthermore, the

closure of any stratum is a union of strata of lower dimension, in fact T̄ =
⋃
S≺T S.

Proof. Reflexivity of the relation is evident, and transitivity follows from basic topological

properties of closure. To demonstrate anti-symmetry, we need to see that if S ⊂ T̄ and

T ⊂ S̄, then S = T . We may assume that S and T are not empty, as if either is empty then

so must be the other and the conclusion follows. Now, suppose S ⊂ T̄ and T ⊂ S̄ and that

S ⊂ Xi = X i − X i−1 and T ⊂ Xj. As X i is closed in X, we have S̄ ⊂ X i and T̄ ⊂ Xj,

and it follows that T ⊂ S̄ ⊂ X i so that j ≤ i. But similarly from S ⊂ T̄ , we have i ≤ j, so

i = j. Thus S and T are each connected components of Xi = Xj, and each is thus closed in

Xi [180, p. 160]. So, there is a closed set C in X such that Xi ∩ C = S, and we must have

S̄ ⊂ C. But then T ⊂ S̄ ⊂ C and T ⊂ Xi, implying T ⊂ Xi ∩ C = S. We thus have T ⊂ S

and, by a symmetric argument, S ⊂ T . Therefore, S = T as desired.

Next, it is clear from the definitions that
⋃
S≺T S ⊂ T̄ . Now suppose x ∈ T̄ . Then since

the strata partition X, the point x is in some stratum S and by the Frontier Condition,

S ⊂ T̄ and so S ≺ T . Therefore, x ∈
⋃
S≺T S ⊂ T̄ . It follows that T̄ =

⋃
S≺T S.

Example 2.2.21. Let X be a finite-dimensional simplicial complex filtered by its simplicial

skeleta. Then the strata are open simplices (i.e. the interiors of simplices), and S ≺ T if

and only if S is an open face of the closed simplex T̄ , so X is a stratified space. In fact, the

closure of an open simplex is the disjoint union of all its open faces. See again Figure 2.1.
6Recall that a subset Z ⊂ X is locally closed if it is the intersection of an open set in X and a closed set

in X.
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Manifold stratified spaces

Our preferred stratified spaces will be those all of whose strata are manifolds.

Definition 2.2.22. A manifold stratified space is a stratified space all of whose i-dimensional

strata are i-dimensional manifolds7.

Example 2.2.23. A finite dimensional simplicial complex filtered as in Example 2.2.2 is a

manifold stratified space. Its strata are the open faces of its simplices, each of which is

homeomorphic to some Euclidean space.

Example 2.2.24. An m-dimensional (topological) manifold M with the trivial filtration (i.e.

the filtration whose only strata are the components of M in dimension m) is naturally an

m-dimensional manifold stratified space. If Mm is a smooth manifold with smooth closed

submanifold Nn ⊂ Mm, n < m, then M with the filtration N ⊂ M is naturally an m-

dimensional manifold stratified space whose n-dimensional strata are the components of N

and whose m dimensional strata are the components of M −N .

Example 2.2.25 (Product filtrations). If X is a manifold stratified space and M is an m-

dimensional manifold, then M × X has a natural structure as a manifold stratified space

with skeleta (M ×X)i = M ×X i−m. Each stratum of M ×X has the form M × S for some

stratum S ⊂ X and so is also a manifold, and it is easy to verify the Frontier Condition for

M ×X using that the Frontier condition holds on X.

Example 2.2.26 (Cones). If X is a manifold stratified space, there is a natural manifold

stratified space structure on the open cone cX. We define the filtration on cX as in Example

2.2.11 so that (cX)0 is the cone point and so that for i > 0 we have (cX)i = (0, 1) ×X i−1.

The strata are then the cone point and the products of the strata of X with the interval,

each of which is a manifold if X is manifold stratified. Note that the Frontier Condition

holds on cX as a consequence of it holding for X and that the cone point is in the closure

of every non-empty stratum.

Similarly, the suspension of a manifold stratified space is a manifold stratified space with

filtration (SX)i = S(X i−1), the suspension of the empty set consisting of two points.

Remark 2.2.27. For a manifold stratified space, the formal dimension of a stratum will always

agree with its topological dimension as a manifold, but the formal dimension of the manifold

stratified space itself might be larger. For example, we can have the manifold stratified space

X with filtration X0 ⊂ X1 ⊂ X2 = X with X0 = ∅ and X1 = X2 = S1. Here X has formal

dimension 2, but the stratum S1 = X1 = X1−X0 has formal dimension 1. Once again, such

situations will not be typical, but they will occur. Unless stated otherwise or when working

with subspaces, we will assume that if X is an n-dimensional manifold stratified space then

Xn − Xn−1 is non-empty so that X possesses regular strata. Unfortunately, as mentioned

in Remark 2.2.15, it will be necessary within some arguments to utilize manifold stratified

spaces without regular strata. See Section 4.3, especially Subsection 4.3.1, for more details.
7Recall from our established notation that by our definitions a “manifold” may not possess a boundary.

What are often called “manifolds with boundary” will be called ∂-manifolds. We also recall that there is

an empty manifold of every dimension, so the empty set with any formal dimension is a manifold stratified

space.
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2.2.3 Depth

For running induction arguments, it is helpful to have the notion of depth, which is a measure

of how many layers of strata there are in a stratified space. Before giving the definition, let

us give some motivating examples.

Example 2.2.28. Suppose X is a stratified space of formal dimension n such that X i = ∅ for

all i < n. In this case, we often say that X is unfiltered or has the trivial filtration, and we

define its depth to be 0. Similarly, if we have a space as in Remark 2.2.15 such X has formal

dimension n and is such that X i = ∅ for all i < m and Xm = Xm+1 = · · · = Xn, then again

there is only one dimension possessing non-empty strata (namely dimension m), and so we

say that X has depth 0.

If we have an n-dimensional stratified space Xk ⊂ Xn such that X i = ∅ for i < k,

X i = Xk for k ≤ i < n, and Xn−1 6= Xn, then we say that X has depth 1. The stratified

space in Examples 2.2.24 has depth 1.

Building on these examples, we present the formal definition:

Definition 2.2.29. Let S and {Si} be strata of the stratified space X such that S = Sd ≺
Sd−1 ≺ Sd−2 ≺ · · · ≺ S0, where ≺ is the partial ordering of the strata, with Si 6= Sj for i 6= j

and so that this is the (not necessarily unique) longest such chain of strata containing S as

its minimal element. Then we call d the depth of S.

The depth of a stratified space X is defined to be the maximum of the depths of its strata.

This is well defined, as all filtered spaces are assumed to have finite formal dimension.

Example 2.2.30. If X is an n-dimensional simplex filtered by its simplicial skeleta, then each

open i-face has depth n− i, and X has depth n.

If X is filtered as N ⊂M = X, where N is a smooth nonempty n-dimensional subman-

ifold of a smooth m-manifold M , n < m, then the stratum N has depth 1, the stratum

M −N has depth 0, and X has depth 1.

The suspended torus of Figure 1.1 has depth 1, and the twice suspended torus of Figure

1.2 has depth 2.

If X is the disjoint union of spheres X = S2 q S3, filtered by S2 ⊂ X, each stratum has

depth 0 and X has depth 0.

Suppose X is the simplicial complex ∆2 ∨ ∆1, with the two simplices attached at a

common vertex, filtered by its simplicial skeleta. Each vertex of ∆2 has depth 2, while the

vertex of ∆1 that is not shared with ∆2 has depth 1. The stratified space X has depth 2.

Notice that the formal dimension of X is irrelevant for considerations of depth.

Remark 2.2.31. There are other reasonable definitions of depth. This one will work well for

us. In [216], Siebenmann defines depth of a stratified space X to be

sup{m− n | Xm −Xm−l 6= ∅ 6= Xn −Xn−1}.

It is also sometimes useful to define depth to be one less than the number of distinct non-

negative formal dimensions such that X has a nonempty stratum of that dimension.
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2.3 Locally conelike spaces and CS sets

Manifold stratified spaces decompose into partially ordered sets of strata, each of which is

a manifold. But it turns out that even this is too general a setting to expect nice results.

For example, a wild embedding of a manifold into a higher-dimensional manifold would

give us a manifold stratified space, but in such cases the relation between strata can be very

complicated. To avoid pathological cases in manifold theory, one typically imposes conditions

such as local flatness by requiring that each point in the embedded manifold Kk ⊂Mm have

a neighborhood pair (N,N ∩K) that is homeomorphic to the standard Euclidean (Rm,Rk).
The following definition does something analogous for stratified spaces by imposing local

topological structure at each point.

Definition 2.3.1. A filtered space X of formal dimension n is locally cone-like if for all i,

0 ≤ i ≤ n, and for each x ∈ Xi there is an open neighborhood U of x in Xi, a neighborhood

N of x in X, a compact filtered space L (which may be empty), and a homeomorphism

h : U × cL → N such that h(U × c(Lk)) = X i+k+1 ∩ N . In this case L is called a link

of x and N is called a distinguished neighborhood of x. For a given x, the space L is not

necessarily uniquely determined8; see Example 2.3.12.

Locally cone-like filtered spaces whose i-dimensional strata are i-dimensional manifolds

are called CS sets ; see [216, 139]9. This is equivalent to every point in an i-dimensional

stratum having a distinguished neighborhood homeomorphic to Ri× cL, so we will generally

restrict attention to distinguished neighborhoods of this form.

We also consider the empty set with any formal dimension to be a CS set.

Notice that for a CS set the condition h(U × c(Lk)) = X i+k+1 ∩ N is consistent with

the product and cone filtrations introduced in Examples 2.2.25 and 2.2.11: Since U is an

i-dimensional stratum, we expect U × c(Lk) to have dimension i + k + 1. Notice also that

when k = −1, then Lk is empty, so U × c(Lk) = U × {v} ∼= U , and h(U × {v}) = X i ∩N .

The type of homeomorphism that comes up in the definition of locally cone-like spaces is

sufficiently useful that we pause to provide a definition, although we will study more general

maps of filtered spaces in Section 2.9.

Definition 2.3.2. Suppose that X, Y are filtered spaces of the same formal dimension and

that f : X → Y is a homeomorphism that takes the i-skeleton of X onto the i-skeleton of Y

for all i. Then we say that the homeomorphism f is filtration preserving. We also say that

it is a filtered homeomorphism and that the two spaces are filtered homeomorphic.

It will often be convenient to make the filtered homeomorphisms that arise in the defi-

nition of distinguished neighborhoods for locally cone-like spaces implicit and so to simply

treat a distinguished neighborhood as having the form U × cL.

The locally cone-like condition functions as a sort of homogeneity condition for filtered

spaces. Unlike manifolds, in which all points have arbitrarily small Euclidean neighborhoods,

8There are settings in which the links are unique, in particular this will be the case for piecewise linear

(PL) CS sets; see Lemma 2.5.18.
9In these sources CS sets are assumed to be metrizable, but we will not need this here.
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Figure 2.2: An example of a distinguished neighborhood homeomorphic to R1 × cL. Here

the link L is the 1-dimensional circle filtered with a 0-skeleton consisting of three points.

The neighborhood depicted has seven strata, including the stratum R1×{v} which contains

the points of which this is a distinguished neighborhood.

two points of a stratified space generally will not have the same local topology, especially

if they are contained in different strata. However, if x and y are two points in a CS set

that are sufficiently close together to be contained in the same distinguished neighborhood,

then they will have homeomorphic neighborhoods of all scales, as we can see by shrinking

Euclidean neighborhoods and cones along their cone rays. Thus such points will have the

same local topology.

Example 2.3.3. The n-dimensional manifold M is a CS set with the trivial filtration ∅ ⊂Mn.

Each point x ∈ M has a neighborhood filtered homeomorphic to Rn × c∅, with ∅ having

formal dimension −1.

Example 2.3.4. Let M be a compact connected manifold of dimension n − 1. Suppose

we filter the suspension X = SM so that X0 = {n, s} consists of the cone points of the

suspension, and the full filtration is {n, s} ⊂ SM . This is a CS set: X − {n, s} is the

manifold (−1, 1) ×M , and so each point in this stratum has a distinguished neighborhood

of the form Rn × c∅ = Rn, with ∅ filtered to have formal dimension −1. The strata {n}
and {s} are each 0-manifolds and each has a distinguished neighborhood homeomorphic to

R0×cM ∼= cM with M trivially filtered. So the points n and s each have links homeomorphic

to M .

If we consider the space Y = S1 × SM , filtered by the product filtration as in Example

2.2.25, then again we obtain a CS set with manifold strata Y −S1×{n, s} ∼= S1× (−1, 1)×
M , S1 × {n} and S1 × {s}. Points in Y − S1 × {n, s} have distinguished neighborhoods
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filtered homeomorphic to Rn+1 × c∅, while points in the other strata have distinguished

neighborhoods filtered homeomorphic to R1 × cM .

Example 2.3.5. Suppose that X is a CS set and that x ∈ X has a distinguished neighborhood

filtered homeomorphic to Rk × cL. Then, if we form (0, 1)×X using the product filtration

(see Example 2.2.25), each point (t, x) ∈ (0, 1)×X will have a neighborhood filtered home-

omorphic to [(0, 1) × Rk] × cL ∼= Rk+1 × cL. In particular, if L is a link of x in X, then L

will also be a link of (t, x) in (0, 1)×X.

Using this, we see that if X is a compact CS set then cX is a CS set: the cone point has

a neighborhood R0× cX, while each point of cX −{v} has a distinguished neighborhood by

the preceding paragraph.

Example 2.3.6. Here is an example to demonstrate why it is not possible in a CS set to refer to

“the” link of a point: it is possible for two non-homeomorphic spaces to have homeomorphic

cones. This example comes from the famous Double Suspension Theorem [41] which states

that a double suspension of a homology sphere is homeomorphic to a sphere. Let Σn−2

be a homology sphere; then X = S(SΣ) ∼= Sn. Now, filter X = S(SΣ) by {n, s} ⊂ X,

where {n, s} are the vertices of the second suspension. Then we certainly have a CS set:

X − {n, s} is an n-manifold, homeomorphic to Sn with two points removed. Points in this

stratum have distinguished neighborhoods filtered homeomorphic to Rn × c∅. The vertices

n and s each have neighborhoods homeomorphic R0 × c(SΣ) = c(SΣ), but they also have

Euclidean neighborhoods that are homeomorphic to R0 × c(Sn−1) ∼= c(Sn−1). The links SΣ

and Sn−1 are the same only in the event that SΣ itself happens to be a sphere, but in that

case we can stratify SΣ itself as a CS set whose suspension vertices have neighborhoods both

of the form R0 × cΣ and R0 × c(Sn−2), and now certainly the links are not homeomorphic

unless Σ is itself a sphere. Since there exist homology spheres that are not spheres, there

is non-uniqueness of links in this example (even if we can’t tell which pair of links are

non-homeomorphic!).

However, this lack of uniqueness is not as problematic as it may appear as it turns out

that all possible links of points in the same stratum of a CS set will have the same intersection

homology groups, as we’ll prove below in Corollary 5.3.14.

In first defining CS sets in [216], Siebenmann did not explicitly require the Frontier

Condition, but the following lemma shows that it is satisfied automatically.

Lemma 2.3.7. A CS set satisfies the Frontier Condition.

Proof. Suppose S, T are strata of X with S a component of Xi and that S ∩ T̄ 6= ∅. We

must show that S ⊂ T̄ ; we can assume that S 6= T since in that case it is immediate that

S ⊂ T̄ . Since T̄ is a closed set in X, the set S ∩ T̄ must be closed in S in its subspace

topology. It suffices then to show that S ∩ T̄ is open in S, so that it must then be the

entire connected component S of Xi. So suppose x ∈ S ∩ T̄ . Then there is a neighborhood

U ∼= Ri of x in S and a neighborhood N of x in X such that N ∼= U × cL by some filtered

homeomorphism for some compact filtered link L. As will become our common practice, we

leave the homeomorphism tacit and identify N with the structure U × cL. As x must be

in the closure of a stratum T 6= S, the link L cannot be empty. The strata of N beside U
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all have the form (U × cs) − U for some stratum s of L, though some of these strata may

be contained in the same stratum of X; so T ∩ N is the union of strata of N of this form.

In particular, T̄ ∩N is the closure of the union of some strata (U × cs)− U of N , and this

closure contains all of U . Thus U ⊂ S ∩ T̄ , and U is open in S. Since each point of S ∩ T̄
has such an open neighborhood in S, this shows that S ∩ T̄ is open in S.

CS sets also satisfy some other nice properties one typically wants in a stratified space:

Lemma 2.3.8. Let X be a CS set.

1. The strata of X are locally closed, i.e. each is the intersection of a closed set of X with

an open set of X.

2. The stratification of X is locally finite, i.e. every point has a neighborhood intersecting

only finitely many strata of X.

3. If X is a compact CS set then it possesses a finite number of strata.

Proof. For the first statement, let S be a stratum with S ⊂ Xi and, for each x ∈ S, let Wx

be a distinguished neighborhood of x. By definition, Wx ∩X i ⊂ S. Let W =
⋃
xWx. Then

S = W ∩X i, with W open and X i closed in X.

The third statement follows easily from the second: as every point of X has a neighbor-

hood that intersects only finitely many strata and as X is covered by a finite number of such

neighborhoods, X has only finitely many strata.

To prove the second statement, we will argue by contradiction. Suppose x ∈ X is a point

such that every neighborhood of x intersects infinitely many strata. Let N be a distinguished

neighborhood of x so that N is filtered homeomorphic to Ri × cL for some compact filtered

space L (we tacitly identify N with Ri×cL via this homeomorphism). Aside from the stratum

Ri×{v}, where v is the cone vertex, all the strata of Ri× cL have the form Ri× (cS−{v}),
where S is a stratum of L. Each stratum of X must intersect N in a union10 of such strata

of N , and as N must intersect infinitely many strata of X, it follows that L must have an

infinite number of strata.

Let us identify L with the subspace {0}×{1/2}×L ⊂ Ri× cL, where (abusing notation)

{1/2} × L denotes the image of {1/2} × L ⊂ [0, 1) × L under the quotient map to cL. Let

{Sα} be the strata of X that intersect N , excluding the stratum containing x. Let {yα} be

an infinite set of points such that yα ∈ L∩Sα. Then the compactness of L implies that {yα}
must have a limit point, say y ∈ L. So every neighborhood of y contains infinitely many of

the yα and so intersects infinitely many strata of X. But from the structure of distinguished

neighborhoods, y must be contained in a stratum of X of higher dimension than the stratum

containing x.

So we have shown that if x ∈ X is a point such that every neighborhood of x intersects

infinitely many strata and if x is contained in the stratum S, then there is a point y ∈ X
contained in a higher-dimensional stratum T such that S ≺ T and such that y also has

10By analogy, think of the stratification of S1 as {x0} ⊂ S1 for any x0 ∈ S1; then S1 − {x0} is a single

stratum that intersects any distinguished neighborhood of x0 in two components.
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this property. But since we assume all of our spaces are finite dimensional, this eventually

leads to a contradiction. If we use this procedure to construct a sequence of points with this

property, each contained in a stratum of higher dimension, eventually we wind up with a

point z in a stratum M of maximal dimension, meaning that there is no stratum R of X

such that M ≺ R. In this case, a sufficiently small neighborhood of z intersect only the

stratum M , a contradiction.

Example 2.3.9. Here is an example of a compact manifold stratified set that is not locally

cone-like and possesses an infinite number of strata. Let X be {x ∈ R | x = 1
n
, n ∈ Z} ∪ {0}

endowed with the trivial filtration with a single skeleton X0. The connected components of

X are the points of X, which are each embedded 0-manifolds, and the Frontier Condition

holds, but no neighborhood of the point {0} is homeomorphic to a cone.

A common strengthening of the definition of a CS set requires that each link also be a

CS set whose own links are CS sets, and so on. We will call such CS sets recursive:

Definition 2.3.10. A recursive CS set is a CS set such that every point has a link that is

either empty or itself a recursive CS set.

This definition at first appears circular, but by definition every link of a CS set X must

have formal dimension less than that of X itself. So the definition is really inductive with

the 0-dimensional recursive CS sets being disjoint unions of points.

Siebenmann intentionally did not assume that the links of a CS set be themselves CS

sets; see the second remark on page 128 of [216]. However, it is common in many sources (e.g.

[133, 56]) to include such a condition, which can be useful for making inductive arguments.

Typically authors still call these “CS sets,” and we introduce the “recursive” nomenclature

here. Unless stated explicitly, we do not assume that CS sets are necessarily recursive.

Example 2.3.11. The CS sets of Examples 2.3.4 and 2.3.6 were both recursive CS sets, since

all links were manifolds or suspensions of manifolds.

Example 2.3.12. In the introduction to [216], Siebenmann provides an example of a CS

set that is not evidently a recursive CS set. This is a compact non-manifold X such that

X×R ∼= S3×R. It follows that the cone on X is a CS set with two non-trivial skeleta — the

cone point and X ×R. But the obvious link of the cone vertex is X, which we know is not a

manifold. Siebenmann notes that conjecturally it might be possible to find a manifold link

that provides cX the structure of a recursive CS set, but the question is not settled there.

The following lemma contains the useful fact that an open subset of a CS set is a CS set,

and similarly for recursive CS sets.

Lemma 2.3.13. If X is a (recursive) CS set and V ⊂ X is an open subspace filtered by the

subspace filtration V i = V ∩X i, then V is a (recursive) CS set.

Proof. It is only necessary to show the V is locally cone-like. Since any open subset of a

manifold is a manifold, it will then follow from Lemma 2.3.7 that V satisfies the Frontier

Condition.
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Suppose x ∈ Vi. By assumption, x has a neighborhood N filtered homeomorphic to

Ri × cL in X. Let U = N ∩ V ∩ Xi. Then U is a neighborhood of x in Xi, and since U

can be identified with an open subset of Ri, we can choose a neighborhood Di of x in Xi

such that D̄i ⊂ U , Di ∼= Ri, and D̄i is compact. So consider Di × cL ⊂ Ri × cL. The

idea now is that if cL = [0, 1) × L/ ∼ then there is some t ∈ (0, 1) such that the subcone

ctL = [0, t) × L/ ∼⊂ cL satisfies Di × ctL ⊂ N ∩ V , where again we abuse notation by

identifying N identically with Ri × cL. Since N ∩ V is an open neighborhood of D̄i, by the

Tube Lemma [180, Lemma 26.8] D̄i has a neighborhood in N ∩V of the form D̄i×W , where

W is an open neighborhood of the vertex of cL. But now again applying the Tube Lemma

to [0, 1)×L and using the definition of the quotient topology for cL, we see that we can find

a ctL such that ctL ⊂ W . Then Di × ctL is a neighborhood of x in N ∩ V .

Since X and V use the same links, if X is recursive, so is V .

Remark 2.3.14. Notice that in our applications of the Tube Lemma in the proof of the

preceding lemma we have made critical use of the assumption that links are compact.

We close this section with some further observations about the point-set topology of CS

sets that will be needed below.

Lemma 2.3.15. CS sets are locally compact.

Proof. If X is a CS set, then, by definition, every point x ∈ X has a neighborhood homeo-

morphic to Ri×cL, where L is a compact space and the image of x under the homeomorphism

has the form (z, v) with z ∈ Ri and v the cone point of cL. Let D̄ be the closed disk of radius

1 about z in Ri, and let c̄rZ be as in Definition 2.2.12 for 0 < r < 1. Then D̄ × c̄rZ is a

compact neighborhood of (z, v) in Ri×cL, and it follows that x has a compact neighborhood

in X.

Corollary 2.3.16. CS sets are completely regular11. In particular, they are regular.

Proof. It is a general fact of point-set topology that locally compact Hausdorff spaces are

completely regular, and so regular. See [246, Theorem 19.3 and Definition 14.8].

Corollary 2.3.17. If X is a CS set, Z1 ⊂ X is compact, Z2 ⊂ X is closed, and Z1∩Z2 = ∅,
then there are disjoint open subspaces U1, U2 ⊂ X such that Z1 ⊂ U1 and Z2 ⊂ U2.

Proof. Suppose x ∈ Z1, and notice that Z1 is contained in the open subset X −Z2. As X is

locally compact Hausdorff, there is a neighborhood Vx of x in X−Z2 such that V̄x ⊂ X−Z2

[180, Theorem 29.2]. As x ranges over the elements of Z1, the Vx provide an open cover

of Z1; as Z1 is compact, there is a finite subcover {Vxi}mi=1. Then U1 =
⋃
i Vxi is an open

subset of X containing Z1, while U2 =
⋂
i(X − V̄xi) is an open subset of X containing Z2

and U1 ∩ U2 = ∅.
11 A space is completely regular if and only if whenever A ⊂ X is a closed subset and x /∈ A there is a

continuous function f : X → I such that f(x) = 0 and f(A) = 1. As f−1([0, 1/2)) and f−1((1/2, 1]) are

open sets separating x and A, it follows that a completely regular space is regular.
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Corollary 2.3.18. If X is a CS set and K ⊂ W ⊂ X with K compact and W open, then

there is a neighborhood V of K in X with V̄ ⊂ W .

Proof. This follows from the preceding corollary by letting Z1 = K, Z2 = X − W , and

V = Ū1.

2.4 Pseudomanifolds

We now arrive at the definition of a stratified pseudomanifold; these are the spaces that we

shall eventually show possess an intersection homology version of Poincaré duality. Stratified

pseudomanifolds are a special kind of recursive CS set. The additional idea is that a pseudo-

manifold should have a sort of dimensional homogeneity. To illustrate the idea, suppose Mm

and Nn are compact manifolds of different dimensions, and consider the cone on the disjoint

union X = c(M qN). It is easy to very that this is a manifold stratified space, and in fact

a recursive CS set. However, X is essentially made up of two pieces of different dimensions;

there are points whose neighborhoods are homeomorphic to Rm+1 and others whose neigh-

borhoods are homeomorphic to Rn+1. What dimension could a fundamental class be? The

definition of a stratified pseudomanifold is designed to avoid this sort of problem.

Definition 2.4.1. An n-dimensional recursive CS set Xn is a (topological) stratified pseu-

domanifold if Xn = Xn −Xn−1 is dense in X.

A space is called simply a pseudomanifold if it possesses a filtration with respect to which

it is a stratified pseudomanifold.

Remark 2.4.2. It is much more common throughout the literature to also assume that a

pseudomanifold must satisfy Xn−1 = Xn−2, i.e. that X not have any codimension one strata.

It will be useful for us not to assume this. We will refer to a stratified pseudomanifold such

that Xn−1 = Xn−2 as a classical stratified pseudomanifold. A space is called a classical

pseudomanifold if it possesses a filtration with respect to which it is a classical stratified

pseudomanifold.

It is also often part of the definition to assume that each point of a stratified pseudo-

manifold has a link that is a stratified pseudomanifold, however we will show in Lemma

2.4.11 that this follows automatically from our definition. N.B. When treating stratified

pseudomanifolds, we will only consider links with this property.

Remark 2.4.3. Notice that, by definition, a stratified pseudomanifold always has regular

strata; cf. Remarks 2.2.15 and 2.2.27. Therefore, the formal and topological dimensions of a

stratified pseudomanifold are always the same.

The following lemma seems somewhat obvious, although Example 2.3.9 shows that some

care is necessary.

Lemma 2.4.4. Suppose X is an n-dimensional stratified pseudomanifold. Then Xn = Xn−
Xn−1 is homeomorphic to a disjoint union of connected n-manifolds.
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Proof. By definition, each connected component of the open set Xn is a manifold. Let

Xn = qSi be the set-wise decomposition of Xn into strata. We must show that a set W is

open in Xn if and only if its restriction to each Si is open in Si. One direction is trivial: if

W is open in Xn, then W ∩ Si is open in Si by definition of the subspace topology on Si.

Conversely, suppose W∩Si is an open set in Si and suppose x ∈ W∩Si. From the definitions,

x must have a distinguished neighborhood N in X filtered homeomorphic to U × cL, where

U is an open neighborhood of x in Si, and since Si is already a top dimensional stratum, it

follows that L = ∅. Using the Euclidean topology of the distinguished neighborhood, any

smaller Euclidean neighborhood of x in N is also a neighborhood of x in Xn and in Si. Since

W ∩ Si is an open set in Si in its subspace topology as a manifold, we can then choose a

Euclidean neighborhood N ′ of x such that N ′ is a neighborhood of x in Xn and N ′ ⊂ W ∩Si.
It follows that W ∩ Si is open in Xn.

Since the disjoint union of manifolds is also a manifold, we thus see that an n-dimensional

stratified pseudomanifold X is the closure of an n-dimensional manifold contained in X.

Example 2.4.5. The n-dimensional manifold M is a stratified pseudomanifold with the trivial

filtration ∅ ⊂Mn.

Example 2.4.6. Let Nn be a smooth submanifold of codimension > 0 embedded in a smooth

manifold Mm. If we filter M in the obvious way as Nn ⊂ Mm then M will be a stratified

pseudomanifold. The locally cone-like property follows from the Tubular Neighborhood The-

orem, so each point of N will have a trivially-filtered sphere Sm−n−1 as a link. Similarly, we

obtain a stratified pseudomanifold if N and M are topological manifolds and the embedding

is assumed to be locally flat, i.e. that each point x ∈ N has a neighborhood pair that is

homeomorphic to the standard Euclidean pair (Rm,Rn).

Example 2.4.7. The suspension of a compact manifold is a stratified pseudomanifold, as are

the other stratified spaces in Example 2.3.4.

In fact, if we begin with a compact manifold and then engage in any finite iterated process

of suspensions and taking products with other compact manifolds, the resulting space will

be a stratified pseudomanifold.

Example 2.4.8. If X = X2 = S2 ∨ S1 filtered by {x0} ⊂ S1 ⊂ X, where x0 is the basepoint

of the wedge, then X is a CS set but not a stratified pseudomanifold. In fact, no filtration

of X will yield a stratified pseudomanifold, and so X is not a pseudomanifold.

Example 2.4.9. Our next example is somewhat controversial as it does not yield a classical

pseudomanifold: Let Mn be a compact n-dimensional ∂-manifold with boundary ∂M 6= ∅.
We can filter M by ∂M ⊂ M . Then M is a stratified pseudomanifold. The interior points

of M have distinguished neighborhoods of the form Rn × c∅ and the boundary points have

distinguished neighborhoods of the form Rn−1 × cL, where L is a single point. Note that

this is not a classical stratified pseudomanifold because the components of ∂M are strata of

codimension one.

This example also illustrates the important point that the choice of filtration is critical.

If M is considered as a space with the trivial filtration ∅ ⊂ M , then M is not a stratified
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pseudomanifold; in fact it is not even a manifold stratified space as M is not a manifold

(manifolds with boundary are technically not manifolds!).

Lemma 2.4.10. An open subset U of an n-dimensional stratified pseudomanifold X filtered

by the subspace filtration U i = U ∩X i is an n-dimensional stratified pseudomanifold.

Proof. By Lemma 2.3.13, it is only necessary to verify that Un is dense in U . Let x ∈ U .

If W is any neighborhood of x in U , then W is also a neighborhood of x in X, as U is

open in X. But since Xn is dense in X, each such neighborhood W intersects Xn. So every

neighborhood of x in U intersects U ∩Xn = Un.

Lemma 2.4.11. If Xn is a stratified pseudomanifold and L is a link of a point in X that is

a recursive CS set, then L is a stratified pseudomanifold. Furthermore, if Xn is a classical

stratified pseudomanifold, then so is L.

Proof. Suppose L is a link of the stratified pseudomanifold X so that there is a point x ∈ Xi

such that x has a distinguished neighborhood N filtered homeomorphic to Ri× cL with L =

Ln−i−1 a compact recursive CS set. We need only show that Ln−i−1 is dense in L. Suppose

y ∈ L is a point such that y has a neighborhood W in L that does not intersect Ln−i−1. If we

identify N ⊂ X with Ri×cL and think of L as embedded as, say, {0}×{1/2}×L ⊂ Ri×cL,

then Ri× (0, 1)×W is a neighborhood of y in N that does not intersect Ri× (0, 1)×Ln−i−1.

But Ri × (0, 1) × Ln−i−1
∼= N ∩ Xn under the filtered homeomorphism. So the image of y

in X has a neighborhood that does not intersect Xn, which contradicts X being a stratified

pseudomanifold. Hence Ln−i−1 is dense in L.

For the claim about classical stratified pseudomanifolds, we need only notice that if

L = Ln−i−1 has a codimension one stratum then Ln−i−2 6= ∅, so Ri × (cLn−i−2 − {v}) is

non-empty and is a codimension one stratum of N ⊂ X. So if any L is not classical, then

X cannot be classical either, and our claim follows by the contrapositive.

Corollary 2.4.12. Every point in a stratified pseudomanifold has a link that is a stratified

pseudomanifold.

Proof. This follows immediately from the definitions and the preceding lemma.

Given Lemma 2.4.11 and its corollary, it is natural to formulate an alternative definition

of topological stratified pseudomanifolds that does not directly refer to CS sets; this version

of the definition is common in the literature (e.g. c.f. [106]). The definition is recursive on

dimension.

Definition 2.4.13 (Alternative definition of stratified pseudomanifold). A 0-dimensional

(topological) stratified pseudomanifold is a discrete set of points.

For n > 0, an n-dimensional (topological) stratified pseudomanifold Xn is an n-dimensional

filtered space such that:

1. Each connected component of X i −X i−1 is an i-dimensional manifold.

2. Xn = Xn −Xn−1 is dense in X.
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3. For all i and for each x ∈ Xi, there is an open neighborhood U of x in Xi, a neighbor-

hood N of x in X, a compact stratified pseudomanifold L (which may be empty), and

a homeomorphism h : U × cL→ N such that h(U × c(Lk)) = X i+k+1 ∩N .

We call an n-dimensional (topological) stratified pseudomanifold classical if Xn−1 =

Xn−2.

In what follows, whenever discussing stratified pseudomanifolds we will only consider

links that are also stratified pseudomanifolds.

Remark 2.4.14. Let L be a link of a point x ∈ Xi for the stratified pseudomanifold X, and let

` be a link of L. So L has a point y in some Lk such that y has a distinguished neighborhood

in L filtered homeomorphic to Rk × c`. Then as observed in the proof of Lemma 2.4.11,

the image of y under an embedding of L within a distinguished neighborhood in X has a

neighborhood of the form Ri × (0, 1) × Rk × c` ∼= Ri+k+1 × c`. These homeomorphisms

preserve the filtrations, and this demonstrates that ` is a link of y in X. In other words, a

link in a link of a stratified pseudomanifold is a link in the stratified pseudomanifold.

2.5 PL spaces and PL pseudomanifolds

While our primary focus in this book will eventually concern singular intersection homology

on filtered spaces and topological pseudomanifolds, another useful class of spaces, both

for us as tools here and in practical application, are the piecewise linear filtered spaces

and piecewise linear pseudomanifolds. In general, piecewise linear spaces, or PL spaces,

are topological spaces with some extra structure. Roughly, these are the spaces that are

homeomorphic to simplicial complexes, which the reader is likely to have encountered to

one degree or another in most introductory algebraic topology texts, e.g. [219, Chapter 3],

[125, Section 2.1], and vast swaths of [181]. Given a simplicial complex, it is possible to

compute its simplicial homology groups algorithmically, so these are the most useful spaces

for computational applications of homology. Furthermore, the extra rigidity afforded by such

geometric structures is often enough to ensure a certain “tameness” in a space, preventing

it from having bad properties or at least making the properties it does have easier to prove.

For example, the theory of PL manifolds is quite a bit more tractable than that of purely

topological manifolds while they are still a bit more general than the category of smooth

manifolds.

While a complete introduction to PL spaces would be beyond our purview, we recognize

that they are not often covered in introductory topology courses. To complicate matters

further, the standard references (Rourke and Sanderson [197], Hudson [130], Zeeman [253],

and Stallings [221]) do not always approach the material from the same point of view or

from a point of view that will be most useful for us in what follows. Therefore, we present

in this section a good working definition of PL spaces and PL maps that seems to be well

known in the literature (e.g. see [121, Section 1.3] or [2, Section 1]), and then in Appendix B

we will review Hudson’s broader development of the subject in further detail, though mostly

without proofs. We will also show in the appendix that the category we define here in the
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main text is equivalent to the PL category implicit in [130]; see Section B.3. Furthermore,

the appendix contains some fundamentals concerning simplicial complexes that the reader

may want to review before proceeding.

In general, Hudson [130] will be our primary reference for PL topology, with occasional

citations to Rourke and Sanderson [197] or to Munkres [181], the latter especially for results

about simplicial complexes.

2.5.1 PL spaces

The general idea of a PL space is that it is a space that can be triangulated, i.e. it is

homeomorphic to a simplicial complex, but rather than fix a particular triangulations we

think of the space as possessing a family of compatible triangulations. To make this more

explicit, we need a sequence of definitions. If K is a simplicial complex, we let |K| denote

the underlying space of K as a topological space (see Appendix B for a review of simplicial

complexes). A simplicial complex K is locally finite if every point x ∈ |K| possesses a

neighborhood U in |K| that intersects only a finite number of simplices of K.

Definition 2.5.1. A triangulation T of a topological space X is a pair T = (K,h), where K

is a locally finite (possibly infinite) simplicial complex and h : |K| → X is a homeomorphism.

A subdivision of T = (K,h) is a pair T ′ = (K ′, h), where K ′ is a subdivision of the simplicial

complex K. We will say that T = (K,h) and S = (L, j) are equivalent triangulations if j−1h

is a simplicial isomorphism12; it is easy to check that this is an equivalence relation. We say

that T and S have a common subdivision if there are respective subdivisions T ′ and S ′ of T

and S such that T ′ and S ′ are equivalent.

Definition 2.5.2. A PL space is a second-countable Hausdorff space X together with a

family of triangulations T satisfying the following compatibility properties:

1. if T ∈ T and T ′ is any subdivision of T , then T ′ ∈ T ,

2. if T, S ∈ T , then T and S have a common subdivision.

If (X, T ) is a PL space, we call the triangulations in T admissible triangulations. We often

abbreviate notation by speaking of the “PL space X,” leaving the family of triangulations

tacit unless needed explicitly. Similarly, we sometimes say that “X is triangulated by K,”

leaving the precise homeomorphism tacit. Alternatively, once we have fixed a triangulation

T = (K,h) we will sometimes refer to a “simplex of T” without mentioning either K or h

explicitly.

Example 2.5.3. If we start off with a simplicial complex K, we can think of |K| as a PL

space whose admissible triangulations are id : |K| → |K| and id : |K ′| → |K| for all the

subdivisions K ′ of K. To see that this family of triangulations satisfies the compatibility

requirements, note that any two subdivisions of a simplicial complex have a common simpli-

cial subdivision. Perhaps the easiest way to see this is to observe that if K ′ and K ′′ are any

12See Definitions B.1.14 and B.1.17 regarding simplicial maps and simplicial isomorphisms.

38



two subdivisions of K, then the intersection of any simplex of K ′ with a simplex of K ′′ is a

polyhedron and together these polyhedra give |K| the structure of a cell complex (see [197,

Section 2.8]). It is then not too hard to subdivide a cell complex into a simplicial complex

[197, Proposition 2.9]. Alternatively, this follows from Example B.2.21 and our other work

in the appendix.

We also need a definition of PL map:

Definition 2.5.4. If (X, T ) and (Y,S) are two PL spaces, a PL map (X, T ) → (Y,S) is

a (topological) map f : X → Y such that if given any admissible triangulations (K,h) of

X and (L, j) of Y there is a subdivision K ′ of K such that j−1fh takes each simplex of K ′

linearly into a simplex of L. Note that we are not saying that the map g = j−1fh : K ′ → L

is simplicial, only that the image of each simplex of K ′ is contained in some simplex of L and

that the map itself is linear: if {vi} are the vertices of a simplex σ of K ′ and x =
∑
tivi is

a point of σ (using barycentric coordinates—see [125, Section 2.1] or [181, Section 1]), then

g(x) =
∑
tig(vi) using the linear structure of the simplex of L that contains f(σ).

It might help to picture the definition diagramatically:

X
f

- Y

|K ′|
=
- |K|

h ∼=

6

j−1fh
- |L|.

j ∼=

6

The definition says that if we start with triangulations (K,h) and (L, j) of X and Y ,

then a map f : X → Y is PL if we can find a subdivision K ′ such that the map across the

bottom of the diagram takes each simplex of K ′ linearly into a simplex of L.

Example 2.5.5. Let K and L be simplicial complexes and let |K| and |L| denote the PL

spaces constructed in Example 2.5.3, e.g. the admissible triangulations of |K| are K and its

subdivisions. Let f : K → L be any simplicial map. Then f is PL.

The reader might have expected a PL map to be defined as a map that is simplicial with

respect to some choices of triangulations so that essentially every PL map would be as in

the preceding example. But, it is not true that every PL map can be made simplicial in

this way. It is not difficult to construct counterexamples; see Remark B.2.20 in Section B.

However, this can be done if f is a proper13 PL map. The following result is Theorem 3.6.C

of [130], which we repeat also as Theorem B.2.19 in Appendix B:

Theorem 2.5.6. If f : X → Y is a proper PL map, then there are triangulations (K,h) of

X and (L, j) of Y such that j−1fh is simplicial.

The next proposition gives us another example of a PL map and tells us that a PL

structure on a space is determined by any one of its triangulations.

13Recall that a map f : X → Y of topological spaces is called proper if for each compact set K ⊂ Y , the

set f−1(K) is a compact subset of X.
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Proposition 2.5.7. Let (X, T ) and (X,S) be two PL spaces with the same underlying

topological space X. Suppose that T ∩ S 6= ∅, i.e. that T and S share a triangulation in

common. Then the identity map id : X → X induces a PL homeomorphism (X, T ) →
(X,S), i.e. a PL map with a PL inverse.

Proof. To show that id gives a PL map (X, T ) → (X,S), we must show that for any

T = (K, k) ∈ T and S = (L, `) ∈ S there is a subdivision T ′ = (K ′, k) of T such that

`−1k takes each simplex of K ′ linearly into a simplex of L. Let R = (J, j) ∈ T ∩ S. Then

as S,R ∈ S, there is a common subdivision, consisting of triangulations (L1, `) and (J1, j)

with L1 and J1 subdivisions of L and J and with `−1j a simplicial isomorphism from J1 to

L1. But since (J, j) ∈ T , so is (J1, j), and so there is a common subdivision of J1 and K

consisting of triangulations (J2, j) and (K2, k) with j−1k a simplicial isomorphism. We can

visualize this data in the following diagram:

X
id

=
- X

id

=
- X

|K|

k ∼=

6

|J |

j ∼=

6

|L|

` ∼=

6

|J1|

=

6

`−1j
- |L1|

=

6

|K2|

=

6

j−1k
- |J2|.

=

6

Chasing this diagram, we see that `−1k = `−1jj−1k, which can be identified with the path

along the bottom of the diagram, takes each simplex of K2 by a simplicial isomorphism

to a simplex of J2, which is contained in simplex of J1, which is mapped by a simplicial

isomorphism to a simplex of L2, which is contained in a simplex of L. Hence `−1k takes each

simplex of K2 linearly into a simplex of L. So id is piecewise linear.

The inverse of id is of course id−1 = id, which is also a piecewise linear map from

(X,S)→ (X, T ) by an analogous argument. So id is a PL homeomorphism.

Next, let us briefly mention PL subspaces, again referring to Appendix B, particularly

Section B.4, for a more thorough treatment.

Definition 2.5.8. If X is a PL space and Y is a subspace of X that is endowed with a PL

structure in its own right, then Y is a PL subspace of X if the inclusion map Y ↪→ X is a

PL map.
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Example 2.5.9. By Example B.4.3 in the appendix, which utilizes [130, Lemma 3.7], if T =

(K,h) is an admissible triangulation of X, then the image of any subcomplex of K under

h is a PL subspace of X. Conversely, if Y is any closed PL subspace of X and T = (K,h)

is any triangulation of the PL space X, then there is a subdivision T ′ = (K ′, h) such that

Y = h(K ′). So the closed PL subspaces of a PL space correspond to subcomplexes of

triangulations.

Example 2.5.10. It is also true that every open subset of a PL space is a PL subspace. This is

much easier to see from the point of view in the appendix, so we refer the reader to Section

B.4. We do note, however, that given any triangulation T = (K,h) of X and any open

subspace Y , there is a triangulation S = (L, j) of Y that “subdivides” T in the sense that

h−1j takes every simplex of L linearly and injectively into a simplex of K. See Example

B.4.2.

To complete this section, we observe that the PL spaces and maps constitute a category.

Definition 2.5.11. The PL spaces and maps as we have defined them here form a category

AT . We leave verification of the category axioms as an exercise for the reader. The name

AT is chosen here to stand for “admissible triangulations” and to avoid confusion with the

more traditional definition of the PL category, which we shall denote PL in the appendix.

We show in Theorem B.3.7 of the appendix that AT and PL are equivalent categories.

2.5.2 Piecewise linear and simplicial pseudomanifolds

We now consider filtered and stratified PL spaces.

Lemma 2.5.12. Suppose X is a PL space and that X is filtered by a sequence of closed PL

subspaces

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ X2 ⊂ · · · ⊂ Xn−1 ⊂ Xn = X.

Then there is a triangulation T = (K,h) of X with respect to which each of the X i is the

image under h of a subcomplex of K.

Proof. Let T0 = (K0, h) be any admissible triangulation of X. By Example 2.5.9, there is

a subdivision T1 = (K1, h) with respect to which there is a subcomplex K1
1 of K1 such that

Xn−1 = h(K1
1). But then there is similarly a subdivision T2 = (K2, h) of T1 with respect to

which there is a subcomplex K2
2 of K2 such that Xn−2 = h(K2

2). But if K1
2 is the subdivision

of K1
1 induced by the subdivision from T1 to T2, then (K1

2 , h) is still a triangulation of Xn−1,

just as (K2, h) is still a triangulation of X. Continuing inductively in this manner, we reach

a subdivision Tn = (Kn, h) such that h(Ki
n) = Xn−i for all i, 0 ≤ i ≤ n, as desired.

If X is a PL filtered space and T is the set of admissible triangulations of X, the proof

of the lemma shows that any T ∈ T has a subdivision that is compatible with the filtration

in the sense that every skeleton will be triangulated as a subcomplex. As this compatibility

continues to hold under subdivision, the subset TF ⊂ T of triangulations compatible with

the filtration is also a family of admissible triangulations, and in fact (X, T ) and (X, TF ) are
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PL homeomorphic by Proposition 2.5.7. So in what follows we may safely limit ourselves

to families of admissible triangulations that are compatible with filtrations, which we do

without further comment.

We can now define PL filtered spaces, PL stratified spaces, PL manifold stratified spaces,

PL CS sets, etc. All the definitions remain the same as in previous sections with the ad-

ditional requirements that the filtration should be compatible with the PL structure, i.e.

all subspaces are PL subspaces, all manifolds should be PL manifolds14, and all structural

homeomorphisms should be PL homeomorphisms.

For example, here is the full definition of a PL stratified pseudomanifold.

Definition 2.5.13. A PL stratified pseudomanifold X is a stratified pseudomanifold such

that

1. X is a PL filtered space,

2. the strata of X are PL manifolds,

3. each point x has a distinguished neighborhood N ∼= Ri × cL such that the link L is a

recursive PL CS set and the filtered homeomorphism N → Ri × cL is PL.

If X is a PL stratified pseudomanifold that has been given a fixed admissible triangulation

such that each X i is triangulated as a subcomplex, we will call X a simplicial stratified

pseudomanifold.

We will call a PL space X a PL pseudomanifold if it possesses some filtration with respect

to which it is a PL stratified pseudomanifold.

Remark 2.5.14. Again, our definition is uncommon in that it is usually assumed for a PL

stratified pseudomanifold of dimension n that Xn−1 = Xn−2. Once again we will refer to PL

stratified pseudomanifolds satisfying this condition as classical.

Remark 2.5.15. By the same argument as in Lemma 2.4.11, the links of a PL stratified pseu-

domanifold will themselves be PL stratified pseudomanifolds, and the links of a classical PL

stratified pseudomanifold will be classical PL stratified pseudomanifolds. As for topological

stratified pseudomanifolds, we assume from now on that whenever we refer to a link of a PL

pseudomanifold that we have chosen a link that is itself a PL stratified pseudomanifold.

Once again, it is nice to have a direct definition that does not refer directly to CS sets,

at the expense of the definition becoming recursive:

Definition 2.5.16 (Alternative definition of PL stratified pseudomanifold). A 0-dimensional

PL stratified pseudomanifold is a discrete set of points.

For n > 0, an n-dimensional PL stratified pseudomanifold Xn is an n-dimensional filtered

PL space such that:

14Being a PL n-manifold requires a bit more than being a topological n-manifold with a PL structure; it

is also required that each point possess a neighborhood PL homeomorphic to the simplex ∆n. See Definition

B.2.4 or [130, Section I.5]. There are triangulations of topological manifolds that do not yield PL manifolds.

This follows from the Double Suspension Theorem; see [73, Theorem 1].
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1. Each connected component of X i −X i−1 is an i-dimensional PL manifold.

2. Xn = Xn −Xn−1 is dense in X.

3. For all i and for each x ∈ Xi, there is an open neighborhood U of x in Xi, a neighbor-

hood N of x in X, a compact PL stratified pseudomanifold L (which may be empty),

and a PL homeomorphism h : U × cL→ N such that h(U × c(Lk)) = X i+k+1 ∩N .

We call an n-dimensional PL stratified pseudomanifold classical if Xn−1 = Xn−2.

In a number of ways, PL spaces are more nicely behaved than their topological counter-

parts, which is not surprising given their additional structure. The next few results illustrate

some of these niceties.

Our first lemma shows that every finite dimensional PL space can be given the structure

of a CS set. This is certainly not true in the topological category as we saw in Example

2.3.9.

Lemma 2.5.17. Every finite dimensional PL space has a filtration with respect to which it

is a PL CS set.

Proof. Let X be a PL space, and fix an admissible triangulation T = (K,h) of X. Let Ki be

the simplicial skeleta of K. We claim the images X i = h(Ki) provide a CS set filtration of

X. Indeed, the strata of X i are then the images of the interiors of simplices of K, which are

manifolds. Furthermore, by basic simplicial topology (see e.g. [181, 197]), if σ is a simplex

of K, then σ has a (relative) star neighborhood St(σ̂) obtained by taking the union of all

simplices in the barycentric subdivision15 of the triangulation that include the barycenter σ̂

of σ as a vertex. The simplicial link L of σ is then the union of the simplices in St(σ̂) that

do not intersection σ. In this case, St(σ̂) is PL homeomorphic to the join σ ∗ L and the

interior of St(σ̂) is then PL homeomorphic to σ̊ × cL. Filtering L by its intersection with

the skeleta of K provides the necessary PL filtration of L.

As we saw in Example 2.3.6, the links in CS sets are not necessarily unique, and that

example also applies to topological stratified pseudomanifolds. However, the extra rigidity

in the PL setting does yield uniqueness results for links.

Lemma 2.5.18. Let X be a PL CS set, and let S be a stratum of X. Then the links of any

two points in S are PL homeomorphic.

Proof. Suppose that X is a PL CS set and that x ∈ X is contained in an i-dimensional

stratum S so that x has a a neighborhood PL homeomorphic to Ri×cL. By basic PL topology

(see [197, Exercise 2.24(3)] or the argument of [2, page 419]), Ri × cL ∼= c(Si−1 ∗ L), where

Si−1 ∗ L is the join of L with Si−1 or, equivalently, this is the ith suspension of L. In other

words, Si−1∗L is the polyhedral link 16 [197, Section 1.1] of x in X. If L′ were another possible

15See Example B.1.13 in the appendix for a review of barycentric subdivision.
16 In PL topology, the space Lk(x) such that x has a neighborhood of the form cLk(x) is often called

simply the “link,” but since we have another meaning for “link,” we use the expression “polyhedral link.”
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link for x, then we would similarly have a neighborhood of x that is PL homeomorphic to

c(Si−1 ∗L′). But since polyhedral links are unique up to PL homeomorphism, we must have

Si−1 ∗ L ∼= Si−1 ∗ L′, and in the PL category, this implies17 that L ∼= L′ [178, Theorem 1].

So the link of x is unique.

It is also true that the links of any two points in the same stratum are PL homeomorphic.

Since strata are connected, it suffices to show that the set of points in a stratum S with links

homeomorphic to the link at a given point z ∈ S is both open and closed in S. So let L be

the link of z, let A be the set of points in S with link PL homeomorphic to L, and suppose

x ∈ A. Then x has a neighborhood N in X that is PL homeomorphic to Ri × L and where

Ri × {v} is taken by the homeomorphism to a neighborhood U of x in S. Any point in U

also has N as a neighborhood in X, and so also has L as link. Therefore, A is open in S.

Now, suppose x is in the closure of A in S. Then x has a neighborhood PL homeomorphic

to Ri × L′ for some L′. But since x is in the closure of A, there is a point y ∈ A that is in

the image of Ri × {v} under the homeomorphism. Hence the link of y is both L′ and PL

homeomorphic to L, and we must have L′ ∼= L by the arguments of the preceding paragraph.

Therefore, x ∈ A. So A is closed and open in S and so must be all of S.

The preceding two lemmas concern CS sets, but in the PL category it is also much simpler

to recognize which spaces are pseudomanifolds. The following proposition shows that any

PL space which is dimensionally homogeneous can be stratified as a PL pseudomanifold.

Proposition 2.5.19. Suppose X is any PL space of dimension n containing a closed PL

subspace Σ of dimension < n such that X−Σ is an n-dimensional PL manifold that is dense

in X. Then X is a PL pseudomanifold (i.e. there is some filtration with respect to which it

is a PL stratified pseudomanifold). If, additionally, dim(Σ) < n−1, then X can be stratified

as a classical PL stratified pseudomanifold.

Proposition 2.5.19 will follow from Proposition 2.10.18, below, concerning intrinsic filtra-

tions of PL spaces.

By [152] any semianalytic subset of a finite dimensional affine space or of a countable

real analytic manifold can be triangulated and in such a way that any closed semianalytic

subspace can be triangulated as a subcomplex. This includes affine and projective complex

analytic varieties, and so in particular affine and projective complex algebraic varieties. If

such varieties are irreducible then they possess connected dense submanifolds [153, Corollary

IV.2.8.3] and thus all such spaces can be stratified as classical PL stratified pseudomanifolds.

These are important classes of spaces to which all of the most significant intersection homol-

ogy results will apply!

Remark 2.5.20. In the setting of the proposition, it is tempting to attempt to define a

stratification of X by fixing a triangulation of X with respect to which Σ is a subcomplex

and X − Σ is a PL manifold and then letting Xn = X and letting X i for i < n be the

union of the i-simplices of Σ in the triangulation. This is the approach suggested, for

example, in [121, Proposition 1.4]. However, it is not proven there, and it is not obvious

17This fact is not true in the topological category. The Double Suspension Theorem again provides

counterexamples as in Example 2.3.6.
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to the author, that the resulting links satisfy the required condition of being themselves

PL stratified pseudomanifolds. Regardless, the approach of Proposition 2.10.18 via intrinsic

filtrations is in many ways more natural as it does not depend on a choice of triangulation.

Corollary 2.5.21. X is an n-dimensional PL pseudomanifold if and only if X can be

triangulated as a union of n-simplices, in which case every triangulation has this property.

Furthermore, X can be filtered as a classical n-dimensional PL stratified pseudomanifold if

and only if there is such a triangulation for which every n− 1 simplex is the face of exactly

two n-simplices, in which case every triangulation has this property.

Proof. If X is the union of n-simplices then the union of the interiors of those simplices con-

stitutes a dense PL manifold, and so the proposition shows that X is a PL pseudomanifold.

Conversely, suppose X is a PL pseudomanifold. Then any simplex in any triangulation

of X must be a face of an n-simplex in order for the condition to be fulfilled that X possesses

a dense n-dimensional subspace. Hence every simplex is a face of an n-simplex, and since X

is n-dimensional, X is a union of n-simplices as a simplicial complex.

Now, suppose that X is a union of n-simplices such that every n−1 simplex is the face of

exactly two n-simplices. Then if we let Σ be the simplicial n− 2 skeleton of X, Proposition

2.10.18 provides a filtration of X as a classical PL stratified pseudomanifold.

Again conversely, if X is a classical stratified PL pseudomanifold, then not only must

any triangulation of X be a union of n-simplices, but every n− 1 dimensional simplex must

be the face of exactly two n-simplices. For if not, then any point of any n − 1 simplex τ

that is not the face of exactly two n-simplices cannot have a Euclidean neighborhood. Thus

the entire n − 1 dimensional interior of τ must be part of a stratum of dimension at least

n−1 that is not contained in the n-manifold X−Σ. Therefore τ must be contained in some

codimension one stratum of X, a contradiction.

Classical simplicial pseudomanifolds

We pause in this section to discuss briefly the classical simplicial approach to pseudomani-

folds, which preceded and motivates the more modern topological notions. Simplicial pseu-

domanifolds were originally defined as simplicial complexes such that 1) every simplex is the

face of an n-simplex for some fixed n and 2) every n − 1 simplex is the face of exactly two

n-simplices. One also often sees a third condition, strong connectedness, which we will give

below.

As motivation for this definition, consider the most primitive possible approach to con-

structing an n-dimensional triangulated manifold by gluing simplices together. Certainly

one must begin with all simplices of the same dimension n since a manifold is dimensionally

homogeneous — all points have neighborhoods of the same dimension. So there can be no

simplices of dimension > n, and any simplices of dimension < n would eventually have to be

attached as faces of n-simplices. Next, there can be no free n−1 dimensional faces (since we

are constructing manifolds, not manifolds with boundary), so each n − 1 dimensional face

must be the face of at least two n-simplices. But similarly an n−1 simplex cannot be the face

of more than two n-simplices, since again we would not have a manifold otherwise. So, now
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suppose we have taken all our n-simplices and attached each n− 1 face to exactly one other

n − 1 face. Do we have a manifold? We might or we might not. Any point in the interior

of an n-simplex or the interior of an n− 1 face now has a PL Euclidean neighborhood, but

things can go wrong around lower dimensional faces. The reader can verify that a suspended

torus can also be constructed this way by gluing together 2-dimensional faces of 3-simplices.

We do see, however, that any non-manifold points must occur in the n − 2 skeleton of the

triangulation, and so in some sense things are not quite too bad. What we have constructed

is a classical simplicial pseudomanifold, and by Corollary 2.5.21 there is some filtration with

respect to which such a space is a PL stratified pseudomanifold.

In fact, classical simplicial pseudomanifolds are yet a bit more general than the discussion

so far indicates because we may also make other gluings of our n-simplices along lower

dimensional faces. For example, if we have a PL n-sphere, n ≥ 2, that we have constructed

by gluing n-simplices along n− 1 faces, we might yet glue two distinct vertices together and

still have a classical simplicial pseudomanifold.

Nonetheless, despite these extra gluings, our classical simplicial pseudomanifold is not too

far from being an n-manifold at least as far as the following property is concerned. Suppose

that X is a compact simplicial pseudomanifold and that the manifold X −X−2 is oriented,

where Xn−2 is the n − 2 skeleton of the triangulation. This implies that it is possible to

orient each of the n-simplices so that the chain Γ =
∑

i σi is a cycle, i.e. its boundary as

an element of the simplicial chain complex associated to the triangulation is 0. So Γ is a

fundamental class for X in the same sense as for the homology of closed manifolds. And

just as for manifolds, we can eliminate the orientation assumption if we are willing to work

with Z2 coefficients. Precisely these fundamental classes will arise later when we consider

intersection homology Poincaré duality for PL pseudomanifolds.

Another condition one typically sees in the definition of a simplicial n-dimensional pseu-

domanifold (e.g. [212, Section 24]) is that it should be possible to embed a path from any

point in the interior of an n-simplex to any point in the interior of any other n-simplex such

that the path only intersects interiors of n-simplices and n − 1 simplices. This condition

ensures that the PL manifold X − Σ is connected and thus that Hn(X) ∼= Z, generated

by Γ; more generally, Hn(X) will be a direct sum of Z summands corresponding to con-

nected components of X − Σ. This condition is sometimes called a “strong connectedness”

condition. An example of a simplicial pseudomanifold that is connected but not strongly

connected would be two n-spheres that are attached at a vertex.

Now, what about our PL stratified pseudomanifolds that do have dim(Σ) = dim(X)−1?

In this case, we are not requiring triangulations such that each n − 1 simplex is the face

of exactly two n-simplices. In this setting, we can still form the chain Γ =
∑

i σi, but it

is clear that it will no longer be a cycle; it will only be a cycle in the relative chain group

C∗(X,Σ). In this sense, one might then expect that stratified pseudomanifolds, as we have

defined them here, are more analogous to manifolds with boundary. As we will see below

in discussing Poincaré duality results for intersection homology, this is not quite the case

either, and, in fact, with the proper definitions they really do behave more like manifolds

than like ∂-manifolds, or perhaps as something of a hybrid of the two. However, they do

need to be handled with somewhat more general tools (see Chapter 6), which is why it is
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not unusual for some sources to restrict attention only to classical pseudomanifolds.

As we have observed above in Corollary 2.5.21, the simplicial pseudomanifolds that can

be assembled from n-simplices can all be given filtrations making them PL stratified pseudo-

manifolds in the sense of Definitions 2.5.13 or 2.5.16 (though the filtration is not necessarily

unique). We can then see how the definitions of topological stratified pseudomanifolds and

CS sets constitute natural generalizations. In fact, we will even see below in Chapter 8

that topological stratified pseudomanifolds possess fundamental classes, though we must use

singular chains rather than simplicial.

2.6 Normal pseudomanifolds

Technical difficulties can sometimes arise in working with stratified pseudomanifolds that

have points whose links are not connected. Pseudomanifolds whose links are connected are

called normal, and such spaces also have the benefit that each connected component can

contain only one regular stratum. It turns out that each stratified pseudomanifold X has

a unique normalization, that is a normal stratified pseudomanifold X̃ together with a map

p : X̃ → X satisfying certain properties that we will soon describe. The motivation for

for normalization is that p induces isomorphisms of intersection homology groups, at least

with some marginal further restrictions. So, historically, it has often been useful in proving

results about the intersection homology of X to “resolve” first to X̃ and then work there;

for an example of this, see [100]. For the purposes of this book, however, we have performed

all proofs using X itself, and so we will not give normalization a completely thorough treat-

ment. In particular, we will not prove the existence and uniqueness of normalizations for

topological stratified pseudomanifolds, instead referring to Padilla [185] or Matthews [162].

We will discuss how intersection homology behaves with respect to normalizations below in

Propositions 5.1.11 and 6.3.17.

We begin with an official statement of the definition of a normal pseudomanifold:

Definition 2.6.1. A (topological or PL) stratified pseudomanifold is called normal if the

link of any point is connected.

Remark 2.6.2. Of course in the topological case a point does not have a unique link, but if

one link is connected, they all must be. This is not completely obvious geometrically, but

it follows, for example, from Corollary 5.3.14, which says that all links of a point have the

same intersection homology groups and from the fact that intersection homology can be used

to detect connectivity, just as ordinary homology groups can. In fact, I p̄HGM
0 (L) ∼= H0(L)

for a large enough perversity p̄ (all of this will be explained once we get into intersection

homology below).

The following lemma makes the case that, in some sense, normal stratified pseudomani-

folds should play a role analogous to connected closed manifolds:

Lemma 2.6.3. If X is a normal stratified pseudomanifold, then:

1. Every link of X is a normal stratified pseudomanifold.
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2. If X is connected, then X has only one regular stratum.

Proof. The first statement follows from our earlier observation in Remark 2.4.14 that a link

` in a link L of a of a stratified pseudomanifold X is also a link in X.

We prove the second statement by induction. It is true for 0-dimensional pseudoman-

ifolds. By induction hypothesis we assume that the second statement of the lemma holds

for normal stratified pseudomanifolds of dimension less than some n > 0. Suppose now that

X = Xn is connected and normal but that X has more than one regular stratum. Let S

be one of the regular strata, and let T be the union of the other regular strata. As X is

a stratified pseudomanifold X = S ∪ T , which is equal to S̄ ∪ T̄ by basic topology [246,

Theorem 3.7]. If S̄ and T̄ are disjoint, that would make X disconnected, so there must be a

point z ∈ S̄ ∩ T̄ . Such a point z must be contained in a singular stratum of X. Consider a

distinguished neighborhood N ∼= Ri × cL of z. The intersections of S and T with N have

the respective forms Ri × (cU − {v}) and Ri × (cV − {v}), where {v} is the cone point and

U and V are unions of regular strata of the link L. So L must have more than one regular

stratum. But L is normal by the first part of the lemma and so this contradicts our induction

hypothesis. Hence T must be empty.

Unfortunately, different sources provide different technical definitions of normalization,

but they all have essentially the same goal: to construct from a stratified pseudomanifold

X a normal stratified pseudomanifold X̃, essentially by “pulling apart” neighborhoods that

are modeled on Ri × c(qLk), for each Lk a connected component of the link L, into disjoint

subsets that look like Ri × qc(Lk) = q(Ri × cLk). However, this must be done inductively

over depth to ensure that each Lk is first itself a normal pseudomanifold. More specifically,

we would like to construct such a normal X̃ together with a map p : X̃ → X such that

1. p is a proper surjection,

2. p maps i-dimensional strata of X̃ to i-dimensional strata of X (in fact these should be

finite-sheeted covering maps),

3. the restriction of p to X̃ − ΣX̃ is a homeomorphism onto X − ΣX , and

4. for any point x ∈ ΣX , the set p−1(x) is a disjoint union of points and the number of

such points is equal to the number of regular strata of any link of x.

Before giving a technical definition of normalization that implies these properties, let us

present some examples to convey the basic idea.

Example 2.6.4. Suppose qmk=1Mk is a finite disjoint union of compact connected n− 1 mani-

folds. Then c(qmk=1Mk) with the natural filtration is an n-dimensional stratified pseudomani-

fold, but it is not normal unless m = 1. The normalization is qmk=1(cMk), with normalization

map given by the quotient map that identifies the cone points together.

Similarly, something like N × c(qmk=1Mk) normalizes to qmk=1(N × cMk).
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Example 2.6.5. If M is a compact n-manifold, n > 0, then the quotient map M → X, where

X is M with a finite number of points identified together, is a normalization map. More

generally, if M is a smooth manifold containing disjoint smooth embeddings Nk of the same

manifold N , then we can obtain a stratified pseudomanifold by gluing the Nk together. The

quotient map is a normalization.

Even more generally, suppose X, Y are stratified pseudomanifolds with ΣX = ΣY . Then

the union of X and Y along the common Σ will be a non-normal pseudomanifold, and the

quotient will be a normalization if X and Y are normal.

Example 2.6.6. Suppose, as in the preceding example, that X is the quotient space of a

finite union qMk of compact n-manifolds identified along a finite set of points. Consider

cX. Even if X is connected, cX will not be normal. In order to normalize X, we first need

to normalize X. Then the normalization of cX will be qcMk, with its evident projection

to cX. Note that in the normalization we have one cone point for each manifold Mk, and

hence for each regular stratum of X.

Example 2.6.7. Suppose X is a classical n-dimensional simplicial pseudomanifold with tri-

angulation T . Then in [105], Goresky and MacPherson construct a normalization of X by

taking the disjoint union of the n-simplices of T and then identifying the n − 1 simplices

as they are identified in X but without identifying any lower dimensional simplices except

as forced by identifying the n − 1 simplices. As discussed in Section 2.5.2, this certainly

gets us a simplicial pseudomanifold and with an obvious map to X obtained by making the

remaining identifications. We leave the reader to consider why the X̃ constructed in this

way must be normal and satisfy the other desired properties.

For working with intersection homology, it is useful to give a more technical definition of

normalization. We provide a version of the one in [162], which is a generalization of that in

[185]. Analogously to the definition of pseudomanifold, the definition is inductive, assuming

we know the definition already for stratified pseudomanifolds of lesser depth.

Definition 2.6.8. Let X be an n-dimensional stratified pseudomanifold. A normalization of

X is an n-dimensional normal stratified pseudomanifold X̃ together with a proper surjective

stratified map p : X̃ → X such that

1. the restriction p : X̃ − ΣX̃ → X − ΣX is a homeomorphism, and

2. if x ∈ X has a distinguished neighborhoodN ∼= U×cL, then there exists a commutative

diagram

U × c̃L ⊂
φ̃
- X̃

U × cL

p0

?
⊂
φ
- X

p

?

such that
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(a) φ is a filtered homeomorphism from U × cL onto N ⊂ X,

(b) c̃L ∼= qcKj, where the Kj are the connected components of the normalization

of18 L, which we denote pL : L̃→ L,

(c) p0 is defined so that if u ∈ U and [t, k] with t ∈ [0, 1) and k ∈ Kj represents a

point in cKj, then p0(u, [t, k]) = (u, [t, pL(k)]),

(d) φ̃ is a filtered homeomorphism onto p−1(N).

It is a standard abuse of language to refer to X̃ alone as the normalization, leaving the map

p tacit.

From the construction, we see that we must have X̃k = p−1(Xk), and so p is compatible

with the filtrations. Moreover, for each stratum S ⊂ X, we see that p : p−1(S) → S

is a locally-trivial finite covering, and, applying Lemma 2.6.3, if x ∈ X with link L, the

cardinality of |p−1(x)| is equal to the number of regular strata of L. So the normalization

map presented in the definition satisfies our desired properties.

The existence and uniqueness of normalizations is proven in19[185, 162].

2.7 Pseudomanifolds with boundaries

Stratified pseudomanifolds constitute a generalization of manifolds. Since one also wants

to consider the important class of “manifolds with boundary,” it is reasonable to ask for

“pseudomanifolds with boundary.” This is provided by the following definition.

Definition 2.7.1. An n-dimensional ∂-stratified pseudomanifold is a pair (X,B) together

with a filtration on X such that:

1. X − B with the induced filtration (X − B)i = (X − B) ∩ X i is an n-dimensional

stratified pseudomanifold.

2. B with the induced filtration Bi−1 = B ∩X i is an n − 1 dimensional stratified pseu-

domanifold.

3. B has an open filtered collar neighborhood in X, i.e. there exists a neighborhood N

of B and a filtered homeomorphism N → [0, 1) × B (where [0, 1) is given the trivial

filtration) that takes B to {0} ×B.

B is called the boundary of X and is also denoted ∂X. We will often abuse notation by

referring to the “∂-stratified pseudomanifold X,” leaving B tacit.

18So here we assume inductively that we have defined normalization of stratified pseudomanifolds of lesser

depth than that of X. By condition (1), the normalization of a manifold is just the manifold itself with the

identity map.
19In [185], Padilla assumes that his pseudomanifolds can be covered by an atlas of distinguished neighbor-

hood charts such that, for a given stratum, the links of all points in the charts covering that stratum can be

taken to be homeomorphic. Matthews [162] does not require such hypotheses.
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A space is called simply a ∂-pseudomanifold if it possesses a filtration with respect to

which it is a ∂-stratified pseudomanifold. We will refer to a ∂-stratified pseudomanifold such

that Xn−1 = Xn−2 as a classical ∂-stratified pseudomanifold ; a space is called a classical

∂-pseudomanifold if it possesses a filtration with respect to which it is a classical ∂-stratified

pseudomanifold.

Example 2.7.2. A stratified pseudomanifold X is a ∂-stratified pseudomanifold with ∂X = ∅.
If X is a stratified pseudomanifold, then X × [0, 1] is a ∂-stratified pseudomanifold with

boundary (X × {0}) ∪ (X × {1}).
If X is a compact stratified pseudomanifold, then the closed cone c̄X is a ∂-stratified

pseudomanifold with ∂(c̄X) ∼= X.

A critical point to observe is that the boundary of a ∂-stratified pseudomanifold depends

upon the filtration. This is demonstrated by the following example.

Example 2.7.3. LetM be a paracompact n-dimensional ∂-manifold, and let P be its boundary

(in the usual manifold-with-boundary sense). Suppose P 6= ∅.

1. Suppose we filter M trivially so that M itself is the only non-empty stratum. Then

(M,P ) is a ∂-stratified pseudomanifold. Note that all the conditions of Definition 2.7.1

are fulfilled: M − P is an n-manifold, P is an n− 1 manifold, and P is collared in M

by classical manifold theory (see [125, Proposition 3.42]).

2. On the other hand, suppose X is the filtered space P ⊂M . Then it is easy to check that

X is a stratified pseudomanifold; the link of each point in P is a single point. But with

this filtration, we cannot have ∂X = P because condition (3) of Definition 2.7.1 would

not be satisfied: P has a collared neighborhood in X but the collar homeomorphism

does not preserve the filtration. With this filtration, ∂X = ∅.

So, unlike for manifolds, boundaries are not intrinsic to the topology of the space in

general. However, our next result (from [100]) shows that when there are no codimension

one strata ∂X does depend only on the underlying space X and not on the choice of filtration

(without codimension one strata). Unfortunately, the proof is fairly technical and relies on

several outside references concerning dimension theory.

Proposition 2.7.4. Let (X,B) and (X ′, B′) be ∂-stratified pseudomanifolds of dimension

n with no codimension one strata, and let h : X → X ′ be a homeomorphism (which is not

required to be filtration preserving). Then h takes B onto B′.

Proof. It suffices to show that h takes B to B′, as the equivalent result for h−1 shows then

that h takes B onto B′.

It further suffices to show that h takes the union of the regular strata of B to B′, since

the regular strata are dense in B and B′ is closed. So let x be in a regular stratum of B and

suppose that h(x) is not in B′. Then there is a Euclidean neighborhood E of x in B such

that h(E) ⊂ X ′ − B′. The existence of an open collar neighborhood of B shows that the

local homology group Hn(X,X − {y}) is 0 for each y ∈ E, so by topological invariance of
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homology h(E) must be contained in the singular set Σ′ of X ′−B′, for otherwise each point

h(y) would have a Euclidean neighborhood and Hn(X ′, X ′ − h(y)) ∼= Z.

Next we use the dimension theory of [37, Section II.16]. We will use the fact that each

skeleton of a pseudomanifold (and in particular the singular set) is locally compact, as follows

from Lemma 2.3.15 noting that each skeleton of a CS set is itself a CS set.

As defined in [37, Definition II.16.6], dimZE is n − 1 by [37, Corollary II.16.28], so

dimZ h(E) is also n − 1, and by [37, Theorem II.16.8] (using the fact that Σ′ is locally

compact) this implies that dimZ Σ′ is ≥ n− 1. To obtain a contradiction it suffices to show

that dimZ of the i-skeleton of a stratified pseudomanifold is ≤ i, as Σ′ is the n− 2 skeleton

of X ′ −B′ due to the classical stratification.

So let Y be a pseudomanifold and assume by induction that dimZ Y
j ≤ j for some j.

This holds for j = 0 by [37, Corollary II.16.28]. Let c denote the family of compact supports

and let dimc,Z be as in [37, Definition 16.3]. Then dimZ is equal to dimc,Z for any locally

compact space by [37, Definition II.16.6]. Since Y i is a closed subset of Y i+1 and Y i+1 − Y i

is a (possible empty) (i+ 1)-manifold, [37, Exercise II.11 and Corollary II.16.28] imply that

dimc,Z Y
i+1 is ≤ i+ 1 as required.

The two cases of Example 2.7.3, together with the identity map of the underlying spaces,

shows that Proposition 2.7.4 is not true if codimension one strata are allowed.

We conclude this section with some further observations concerning Definition 2.7.1.

Remark 2.7.5. When working with ∂-manifolds, the existence of collared boundaries is not

usually part of the definition but is rather a theorem (at least for paracompact manifolds);

see e.g. [125, Proposition 3.42 and remarks following]. For pseudomanifolds, however, it is

necessary to make this desired property part of the definition.

For example, let M be an n − 1 dimensional ∂-manifold with ∂M 6= ∅ and so n > 1.

Consider the closed cone X = c̄M . If we filter X by {v} ⊂ X, where v is the cone vertex,

then X is a stratified space, though it is not manifold stratified as X−{v} is not a manifold.

If we let B = M ∪∂M c̄(∂M), then X −B is an n-manifold homeomorphic to M × (0, 1), and

B is a stratified pseudomanifold with the cone point as a 0-dimensional stratum. However,

B cannot have a filtered collar neighborhood as there are no 1-dimensional strata of X.

Remark 2.7.6. The strata of a ∂-stratified pseudomanifold X will not necessarily be mani-

folds, and so ∂-stratified pseudomanifolds are not necessarily manifold stratified spaces. For

example, a trivially filtered ∂-manifold with non-empty boundary is not a manifold, though

it is a ∂-stratified pseudomanifold. However, the strata of a ∂-stratified pseudomanifold will

be ∂-manifolds with the boundary of the stratum S consisting of S ∩ ∂X.

On the other hand, if x ∈ ∂X has a distinguished neighborhood in ∂X of the form

Ri × cL, then thanks to the collar condition it also has a filtered neighborhood in X of the

form ([0, 1)× Ri) × cL. So it is useful to continue to refer to L as a link of x in X. Note

that L is also a link in X − ∂X of each point in the image of (0, 1) × {x} under the collar

homeomorphism.

Remark 2.7.7. When studying the intersection homology of ∂-stratified pseudomanifolds, we

will make fairly regular use of the existence of filtered collars. However, to really see why
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these are so critical for us, see Example 8.3.11, which shows that they are needed for our

coming Lefschetz duality results.

The following generalizes Lemma 2.4.10 to ∂-pseudomanifolds, though we must make

some additional hypotheses about the underlying topology of the boundary. This lemma

and its proof were provided by Jim McClure.

Lemma 2.7.8. Let X be an n-dimensional ∂-stratified pseudomanifold, and suppose that ∂X

is hereditarily paracompact20. If U ⊂ X is an open subset filtered by the subspace filtration

U i = U ∩X i, then U is an n-dimensional ∂-stratified pseudomanifold.

Proof. Applying Lemma 2.4.10, it’s only necessary to give a filtered collar for U ∩ ∂X in U .

Let c : [0, 1)× ∂X → X be a filtered collar of ∂X in X.

It suffices to find a continuous f : U ∩ ∂X → (0, 1) with c ([0, f(x))× {x}) ⊂ U for each

x ∈ U ∩∂X, because then we can let the collar for U ∩∂X be defined by (t, x)→ c(f(x)t, x).

Using the standard basis for the product topology, for each x ∈ U ∩ ∂X there is a

neighborhood Vx of x in U∩∂X and a dx ∈ (0, 1) such that c([0, dx)×Vx) ⊂ U . Since U∩∂X
is paracompact by the assumption that ∂X is hereditarily paracompact, the covering {Vx}
has a locally finite refinement {Wα}, and for each α there is a dα with c([0, dα)×Wα) ⊂ U .

Let φα be a partition of unity subordinate to the cover {Wα} of U ∩ ∂X. Then
∑

α dαφα is

the desired function f .

2.8 Other species of stratified spaces

In this section we mention some other types of manifold stratified spaces. These spaces

will not be used directly in the remainder of the book, so this section can be safely skipped.

However, we do note that we will cite here results about our first two types of spaces, Whitney

stratified and Thom-Mather stratified spaces, that imply that all irreducible algebraic and

analytic varieties can be stratified as pseudomanifolds, as can the connected orbit spaces

of manifolds under smooth actions of compact Lie groups. Thus pseudomanifolds arise “in

nature.”

In contrast to Whitney stratified and Thom-Mather stratified spaces, which possess more

structure than CS sets, we will also briefly consider manifold homotopically stratified spaces,

which are not necessarily CS sets. Rather than satisfying a local cone-like condition, these

spaces possess homotopy theoretic conditions imposed on the interaction of strata.

For a more detailed survey of all of these spaces and others, see [133].

2.8.1 Whitney stratified spaces

The following geometric conditions on a manifold stratified space are due to Whitney [244,

245] and assume that our stratified space X is a closed subspace of a smooth manifold M .

20A space is hereditarily paracompact if every open subset is paracompact [37, page 21].
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This will always be the case, for example, if one studies affine or projective algebraic or

analytic varieties.

Definition 2.8.1. The stratified space X ⊂M is Whitney stratified if:

1. Each stratum of X is a locally closed smooth submanifold of M .

2. (Whitney’s condition A) If {xi} ⊂ S ′ is a sequence of points in the k-dimensional

stratum S ′ converging to a point x in a stratum S ⊂ S̄ ′ and if the k-dimensional

tangent spaces TxiS
′ to S ′ at xi converge to a k-dimensional subspace V of TxM , the

tangent plane to M at x, then V contains the tangent space to S at x, i.e. TxS ⊂ V .

3. (Whitney’s condition B) If the hypotheses of condition A hold and {yi} ⊂ S is a

sequence of points also converging to x such that the sequence of secant lines between

xi and yi converges to a line `, then ` ⊂ V .

To understand the condition on secant lines, one should choose a local coordinate chart for

M around x. It can be shown that the condition is independent of the choice.

The definition turns out to be somewhat redundant, as it was shown by Mather [161]

that Condition B implies Condition A.

Whitney’s conditions were formulated with algebraic varieties in mind, however not every

algebraic variety satisfies Whitney’s conditions with its natural filtration, in which X i−1 is

the set of singular (non-smooth) points of the subvariety X i .

The standard example is the Whitney umbrella from [245, Example 18.7]. Let W =

{(x, y, z) ∈ R3 | x2 = zy2}, which is an irreducible real algebraic variety (see [160, Example

5.1]). The space W is the union of the z-axis, Z, with the 2-dimensional manifold that is the

graph of the surface z = x2

y2
for y 6= 0. Notice that each point along the negative z-axis has

a neighborhood whose intersection with W is equal to its intersection with the z-axis. By

contrast, any slice of W determined by z = c, for c a positive constant, is the union of two

lines. When z = 0, then also x = 0 and y can be arbitrary, so the intersection of W with the

x-y plane is the y-axis. As W −Z is a smooth 2-dimensional manifold, the natural filtration

of W is Z ⊂ W , since Z is the set of points at which W is not a smooth 2-dimensional

manifold, and Z itself is a smooth 1-dimensional manifold. However, notice that this is not

even a stratification as Z ∩ (W − Z) 6= ∅ but Z 6⊂ W − Z, so the Frontier Condition is not

satisfied. Whitney’s conditions are also violated as we see by letting {xi} be a sequence of

points along the positive y-axis converging to the origin 0. These are points of the stratum

W −Z, and their tangent spaces can all be identified with the x-y plane. Hence the limit of

Txi(W −Z) at the origin is also the x-y plane. But clearly this plane does not contain T0Z.

Nonetheless, it is possible to choose a different filtration of W with respect to which it

is a stratified space satisfying the Whitney conditions, namely {0} ⊂ Z ⊂ W . In fact, all

algebraic sets, semi-algebraic sets21, analytic sets and semi-analytic sets22, and sub-analytic

21Semi-algebraic sets are finite unions of sets determined by finitely many polynomial equations or in-

equalities.
22These are defined as for algebraic and semi-algebraic sets but using analytic functions rather than just

polynomials.
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Figure 2.3: Whitney’s umbrella {(x, y, z) ∈ R3 | x2 = zy2}

sets23 all can be filtered so as to possess Whitney stratifications. Expository references

include [109, 214].

2.8.2 Thom-Mather spaces

Thom-Mather spaces [161] often arise in settings where one wants to be able to make ana-

lytic arguments concerning stratified spaces. The idea is that each stratum should have an

analogue of a tubular neighborhood but that the different tubes around the different strata

should interact compatibly. We adapt our version of the definition from [133].

Definition 2.8.2. For 0 ≤ k ≤ ∞, the manifold stratified space X is a Thom-Mather Ck

stratified space if:

1. Each stratum of X is a Ck manifold.

2. There is a tube system {Ti, πi, ρi} such that Ti is an open neighborhood of Xi in

X (called a tubular neighborhood), πi : Ti → Xi is a retraction (called the local

retraction), and ρi : Ti → [0,∞) is a map such that ρ−1
i (0) = Xi.

3. For each pair Xi, Xj, if Tij = Ti ∩ Xj and the restriction of πi, ρi to Tij are denoted

πij, ρij, then the map (πij, ρi,j) : Tij → Xi × (0,∞) is a Ck submersion.

4. If x ∈ Tjk ∩ Tik ∩ π−1
jk (Tij), then πijπjk(x) = πik(x) and ρijπjk(x) = ρik(x).

The idea here is that each πi plays a role analogous the projection of a tubular neigh-

borhood to a submanifold in manifold theory, while each ρi is a measure of radial distance

from a stratum. Condition (3) says that the πi and ρi are not too wild as functions. The

first equation of Condition (4) says that the image of a point under two successive local

retractions, from Xk to Xj and then from Xj to Xi is the same as its image under the

local retraction directly from Xk to Xi when the point is close enough to Xi and Xj to be

23We will not define these here; see [214].
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contained in all the relevant tubes. The second equation of Condition (4) says roughly that

local retraction from Xk to Xj should not change the radial distance of a point from Xi,

again when points are close enough to all relevant strata.

These sorts of conditions are relevant when one wants to study stratified spaces using

techniques of global analysis; see for example [5].

By the work of Mather, Whitney stratified spaces always possess tube data making them

Thom-Mather spaces [161]. Conversely, Thom-Mather spaces can be embedded as Whitney

stratified subanalytic sets in Euclidean space by Noirel [183], see also [184]. It then follows

from theorems of Hardt [123] or Hironaka [127] that such spaces can all be triangulated; for

compact Thom-Mather spaces triangulability was shown directly by Goresky [112]. Hence

if X is an n-dimensional Thom-Mather space such that X − ΣX is dense, then X is a

PL pseudomanifold by Proposition 2.5.19. Irreducible complex analytic varieties, and so

in particular irreducible complex algebraic varieties, possess connected dense submanifolds

[153, Corollary IV.2.8.3], and they can be Whitney stratified by complex submanifolds [109,

Section I.1.7]. Thus such varieties can be stratified as classical PL stratified pseudomanifolds,

as we saw already by a different argument in Section 2.5.2.

Whitney’s umbrella shows that not every irreducible real variety will be a pseudomanifold,

as it does not contain a dense manifold subset. However, any such variety that does possess

a dense manifold subset will be a pseudomanifold. This condition is sometimes referred to

as X being equidimensional or pure.

Another important class of spaces that can be given Thom-Mather stratifications are the

orbit spaces of smooth manifolds under smooth actions of compact Lie groups. In fact, if G is

a compact Lie group that acts smoothly on the manifold M , then M can be given a Whitney

stratification whose strata are G-invariant submanifolds, and the strata of the orbit space

M/G can be taken to be the images of the strata of M under the quotient map; see Section

II.4 and, particularly, Theorems II.4.4 and II.4.5 of [72]. As M is a manifold, the union of

regular strata of the Whitney stratification is dense, and if M is connected and the Whitney

stratification can be taken to have no codimension one strata then there must be just one

regular stratum R. As R is dense in M , the image stratum R/G must be dense in M/G, and

so M/G will be a pseudomanifold. In fact, even if M has a codimension one stratum, so long

as M/G is connected it follows from the Principal Orbit Theorem [36, Theorem IV.3.1] that

the union of the regular strata M is dense in M and its image is connected in M/G, and so

M/G must have a connected dense stratum. Therefore, for any smooth action of a compact

Lie group on a manifold such that M/G is connected, M/G is a PL pseudomanifold.

2.8.3 Homotopically stratified spaces

CS sets impose fairly rigid local conditions; any point must possess a neighborhood of a

given form. Hence one might wonder whether it is possible to work effectively with manifold

stratified spaces that do not possess such conditions. This is indeed the case for a class of

spaces we refer to as manifold homotopically stratified spaces.

These spaces were introduced by Quinn in [191] to provide “a setting for the study of

purely topological stratified phenomena, particularly group actions on manifolds.” Quinn’s
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spaces are manifold stratified spaces that are not necessarily locally cone-like. Instead, they

must satisfy certain homotopy theoretic conditions concerning how the strata fit together.

To explain these conditions, we will need to introduce some definitions.

If X is a filtered space, a map f : Z ×A→ X is stratum-preserving along A if f(z ×A)

lies in a single stratum of X each z ∈ Z. If A = I = [0, 1], we call f a stratum-preserving

homotopy. If f : Z × I → X is only stratum-preserving when restricted to Z × [0, 1), we say

f is nearly stratum-preserving.

If X is a filtered space, then Y ⊂ X is forward tame in X if there is a neighborhood U

of Y in X and a nearly-stratum preserving deformation retraction R : U × I → X retracting

U to Y rel Y . So R is a strong deformation retraction that keeps each point in its original

stratum until time 1 when everything collapses into Y .

The stratified homotopy link of Y in X, denoted holinks(X, Y ), is the space (with

compact-open topology) of nearly stratum-preserving paths with their heads in Y and their

tails in X − Y :

holinks(X, Y ) = {ω ∈ XI | ω(1) ∈ Y, ω([0, 1)) ⊂ a single stratum of X − Y }.

The holink evaluation map takes a path ω ∈ holinks(X, Y ) to ω(1). For x ∈ Xi, the local

holink, denoted holinks(X, x), is simply the subset of paths ω ∈ holinks(X,Xi) such that

ω(1) = x. Holinks inherit natural filtrations from their defining spaces, as in Example 2.2.6:

(holinks(X, Y ))j = {ω ∈ holink(X, Y ) | ω(0) ∈ Xj}.

Using these notions, we can now provide the definition of manifold homotopically stratified

spaces :

Definition 2.8.3. A filtered space X is a manifold homotopically stratified space (MHSS)

if the following conditions hold:

• X is locally-compact, separable, and metric.

• Each Xi is an i-manifold and is locally-closed in X.

• For each k > i, Xi is forward tame in Xi ∪Xk.

• For each k > i, the holink evaluation holinks(Xi ∪Xk, Xi)→ Xi is a fibration.

• For each x ∈ X, there is a stratum-preserving homotopy

holink(X, x)× I → holink(X, x)

from the identity into a compact subset of holink(X, x).24

24This condition, requiring compactly dominated local holinks, was not part of the original definition of

Quinn [191]. It first appears in the work of Hughes leading towards his Approximate Tubular Neighborhood

Theorem in [131].
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While these spaces may seem complex, they have important applications. For example,

manifold homotopically stratified spaces can arise as quotient spaces of manifolds under

topological group actions and they have been utilized in this context by Yan [252], Beshears

[27], and Weinberger and Yan [239, 240] to study topological group actions on manifolds.

They also arise naturally in categories with more structure — for example, Cappell and

Shaneson showed that they occur as mapping cylinders of maps between smoothly stratified

spaces [48]. MHSSs even show up when simply studying manifolds and their submanifolds;

for example a locally-flat topological submanifold of a higher-dimensional manifold may not

possess a mapping cylinder neighborhood, but such a pair does satisfy the homotopy condi-

tions required to constitute a manifold homotopically stratified space (it is also a stratified

pseudomanifold); see Hughes, Taylor, Williams, and Weinberger [132]. This does imply the

existence of a certain type of neighborhood structure more general than a mapping cylin-

der, and such structures for MHSSs with more strata have been developed by Hughes [131].

There is even a surgery theory for MHSSs that has been developed by Weinberger [238]. A

further survey of MHSSs in such geometric settings can be found in Hughes and Weinberger

[133]. More recently, the homotopy properties of manifold homotopically stratified spaces

have been studied in the work of Miller [172, 173] and Woolf [250].

Intersection homology of manifold homotopically stratified spaces has been studied by

Quinn [190] and the author [83, 84, 86]. Unfortunately, providing a detailed treatment in

this book would take us too far afield, so we simply mention that [190] provides a version

for such spaces of the topological invariance theorem that occurs below as Theorem 5.5.1,

while [86] contains a Poincaré duality theorem. The latter is proven via a combination of

sheaf-theoretic axiomatics and chain-theoretic computations involving stratified homotopies.

2.9 Maps of stratified spaces

A central tenet of topology is that even if one is interested only in studying a specific space,

it is important to be able to consider maps into and out of that space. When working

with stratified spaces, it is natural to work with maps that are in some sense compatible

with the stratification. For example, the definition of a distinguished neighborhood uses only

homeomorphisms that preserve the filtration between the distinguished neighborhood N and

its “model” Ri × cL. But of course it is too limiting to work only with homeomorphisms,

and so it is necessary to define more general “stratified maps.” There are various definitions

in the literature. We will use the following ones.

The basic idea of a stratified map f : X → Y is that a stratum of X should not be

mapped across multiple strata of Y .

Definition 2.9.1. If X, Y are filtered spaces and f : X → Y is a continuous function (map),

we say that f is a stratified map if for each stratum S ⊂ X there is a unique stratum T ⊂ Y

such that f(S) ⊂ T .

Example 2.9.2. If X is a filtered space and Y is filtered trivially as ∅ ⊂ Y , then any map

f : X → Y is a stratified map. In particular, any map between trivially filtered spaces is

stratified (trivially).
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If Z is a subset of a filtered space X endowed with the filtration Zi = Z ∩X i, then the

inclusion Z ↪→ X is a stratified map.

Suppose that f : X → Y is a stratified map that is also a homeomorphism and that

f−1 is also stratified. If f(S) ⊂ T for strata S ⊂ X and T ⊂ Y , then f must take S

homeomorphically onto T : The restriction of f to S is certainly injective, and if it were not

surjective onto T then f−1 could not be a stratified map. It follows that f sets up a bijection

between strata of S and strata of T . However, skeleta of X and Y might have different

formal dimensions. For the purposes of intersection homology, what is really important in

this setting is the preservation of codimension, so we make the following definition:

Definition 2.9.3. If X and Y are filtered spaces and f : X → Y is a homeomorphism such

that f and f−1 are both stratified maps, we call f a stratified homeomorphism if for each

stratum S ⊂ X the codimension of the stratum f(S) in Y is equal to the codimension of S

in X.

Example 2.9.4. Suppose X = Xn = Rn filtered by {0} ⊂ Rn as a manifold stratified space

(so {0} = X0). Then X is not stratified homeomorphic to the trivially filtered Rn.

Example 2.9.5. Let X be a filtered space, and let Y be the filtered space with the same

underlying space as X but such that Y i = X i−k for some k ≥ 0; this includes the assumption

that if X has formal dimension n, then Y has formal dimension n + k. Then the identity

map on the underlying space provides a stratified homeomorphism between X and Y that

is not a filtered homeomorphism unless k = 0.

Example 2.9.6. The filtered homeomorphisms of Definition 2.3.2 are stratified homeomor-

phisms that also preserve dimension.

If f : X → Y is a stratified homeomorphism of manifold stratified spaces then f must be

a filtered homeomorphism because the formal dimension of each stratum must agree with

its topological dimension as a manifold.

Example 2.9.7. An important class of maps of stratified spaces is the normally nonsingular

maps. As noted in Fulton-MacPherson [101], these are maps such that “the singularities of

X at any point x are no better or worse than the singularities of Y at f(x).” Normally

nonsingular inclusions will play a role in our discussion of L-classes in Section 9.4.

Normally nonsingular maps are often defined without explicit reference to stratifications

(see [106, Section 5.4], [101, Section 4.1], or [113, Section 8.6]), though we’ll include stratifi-

cation information here:

Definition 2.9.8. Suppose X is a filtered space and that Z ⊂ X is a subspace. The inclusion

j : Z ↪→ X is called a normally nonsingular inclusion of codimension c if there is a filtration

on Z and a vector bundle p : V → Z with fibers Rc and filtered by V i+c = p−1(Zi)

such that, identifying Z with the zero section of V , the embedding j extends to a filtered

homeomorphism from V onto a neighborhood N of Z in X; see Figure 2.4. A normally

nonsingular inclusion is a stratified map, and Z is called a normally nonsingular subspace

of codimension c of X. Notice that Z is also a normally nonsingular subspace of N of

codimension c and that N itself is a normally nonsingular subspace of X of codimension 0.
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Figure 2.4: The bold subspace is a normally nonsingular subspace of codimension 1 with

trivial normal bundle.

If Y is a filtered space and there is a vector bundle π : W → Y with fibers Rk and

filtered by W i+k = p−1(Y i), then the projection π : W → Y is called a normally nonsingular

projection of codimension −k. Normally nonsingular projections are also stratified maps.

This definition is sometimes generalized to include bundles with manifold fibers as in [106,

Section 5.4.2].

The composition of a normally nonsingular inclusion of codimension c and a normally

nonsingular projection of codimension −k is called a normally nonsingular map of codimen-

sion c− k.

Example 2.9.9. For any filtered space X, any of the inclusions X ↪→ cX determined by

x→ (t, x) for some fixed t > 0 is a normally nonsingular inclusion of codimension 1.

We also have a notion of stratified homotopy. For stratified homotopy equivalences,

we will again want codimension to be preserved appropriately for our later applications to

intersection homology.

Definition 2.9.10. Let X, Y be filtered spaces, and let I be the unit interval with the trivial

filtration. Endow I ×X with its product filtration. Then a stratified map H : I ×X → Y is

called a stratified homotopy ; in particular for each stratum S ⊂ X, we must have H(I × S)

contained in a single stratum of Y . If f = H|{0}×X and g = H|{1}×X , we say that f and g

are stratified homotopic stratified maps.

If f : X → Y and g : Y → X are stratified maps such that

1. fg is stratified homotopic to idY and gf is stratified homotopic to idX ,

2. for each stratum S ⊂ X, the codimension of the stratum f(S) in Y is equal to the

codimension of S in X,

3. for each stratum T ⊂ Y , the codimension of the stratum g(T ) in X is equal to the

codimension of T in Y ,

then we say that f and g are stratified homotopy equivalences, that f and g are stratified

homotopy inverses to each other, and that X and Y are stratified homotopy equivalent.
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Remark 2.9.11. As for stratified homeomorphisms, a stratified homotopy equivalence is pos-

sible if and only if there is a bijection between the set of strata of X and the set of strata

of Y such that if S ⊂ X and T ⊂ Y correspond under the bijection then f(S) ⊂ T and

g(T ) ⊂ S.

Remark 2.9.12. Some care must be taken not to confuse stratified homotopies, as just defined,

with stratum-preserving homotopies, as in defined in Section 2.8.3. Our stratum-preserving

homotopies did not require the domains to be filtered spaces and only required that H({x}×
I) be contained in a single stratum of the codomain for each x ∈ X. As usual, the reader

should be careful with terminology elsewhere in the literature as it might differ from what

we utilize here.

Example 2.9.13. Suppose X is a filtered space, that Rn is given the trivial filtration, and that

Rn×X is given the product filtration as in Example 2.2.25. Then the inclusion X → Rn×X
given by x→ (0, x) is a stratified homotopy equivalence.

If cX is the cone on X with vertex v, filtered as in Example 2.2.11, then cX − {v} is

stratified homeomorphic to R×X and so stratified homotopy equivalent to X.

2.10 Advanced topic: intrinsic filtrations

In order to prove some of our more advanced results later, we will need a deeper under-

standing of CS sets, including results about intrinsic filtrations of CS sets and of PL pseu-

domanifolds. These are certain filtrations inherent to the topology of the space and of which

all other filtrations are refinements, in a sense to be made precise below. For reference pur-

poses, this chapter is the most natural place to include such results, but we strongly urge

the first-time reader to proceed on to our discussion of intersection homology in Chapter 3

and return here as needed. The first such necessity will be in our discussion of the invariance

theorem (Theorem 5.5.1) in Section 5.5.

Our first lemma will be a general theorem of point-set topology concerning conical neigh-

borhoods. In King [139], the theorem25 is attributed to Stallings with references to [220] and

[215]. The precise statement of the lemma does not seem to be contained in those references,

though the proof we give is certainly a direct application of their techniques; in particular

it is a slick combination of Stallings’s “invertible cobordisms” with an infinite process trick.

Lemma 2.10.1. Let X and Y be compact26 topological spaces, and let v and w be the

respective cone points of cX and cY . If there is a neighborhood U of the vertex v of cX such

that (U, v) ∼= (cY, w), then (cX, v) ∼= (cY, w).

Proof. For 0 < t ≤ 1, let ctX = [0, t)×X/ ∼, which we identify as a subset of cX = c1X =

[0, 1)×X/ ∼. Each ctX is a retraction of cX along its cone lines. Similarly, for 0 < t < 1,

let c̄tX = [0, t]×X/ ∼⊂ cX. Note that ctX is the interior of c̄tX.

25Note: there is a typo in the conclusion of this theorem in its statement as Proposition 1 of [139]: in

King’s notation, the last symbol in the statement should be (C̊Y, ∗).
26The assumption of compactness does not occur in [139]. I am not sure whether or not the lemma still

holds without this assumption, but the compact case will be sufficient for our purposes.
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We need to build a nested collection of neighborhoods of v. Since U is a neighborhood

of v and X is compact, there is a δ ∈ (0, 1) such that c̄δX ⊂ U . This follows from the Tube

Lemma [180, Lemma 26.8]: Let π : [0, 1) ×X → cL be the quotient map. By definition of

the quotient topology, U ⊂ cX is open if and only if π−1(U) ⊂ [0, 1)×X is open. In order

for U to contain the cone point, π−1(U) must contain {0} × X, and since X is compact,

the Tube Lemma tells us that there is an open subset of [0, 1) × X of the form [0, s) × X
contained in π−1(U). But then if δ = s/2, c̄δX ⊂ U . Similarly, using the homeomorphism

h : (cY, w)→ (U, v), there is a µ such that h(c̄µY ) is contained in cδX. Further applications

of the argument then provide γ, ν such that c̄γX ⊂ h(cµY ) and h(c̄νY ) ⊂ cγX. See Figure

2.5, where Xt denotes the image of {t} ×X in cX and similarly for Y .

Figure 2.5: A diagram for the proof of Lemma 2.10.1

Let P = c̄γX − h(cνY ), Q = h(c̄µY ) − cγX and R = c̄δX − h(cµY ). Observe that

P has disjoint boundary components homeomorphic to X and Y and that the boundary

components can be taken to have disjoint collars; similar statements hold for Q and R.

We will write PQ to stand for the union of P and Q along their common boundary that

is homeomorphic to X, and QR for the union of Q and R along the common boundary that

is homeomorphic to Y . Notice that

PQ ∼= h(c̄µY )− h(cνY ) ∼= h(c̄µY − cνY ) ∼= h([0, 1]× Y ) ∼= [0, 1]× Y

and

QR ∼= c̄δX − cγX ∼= [0, 1]×X.
We next claim that also RQ ∼= Y × [0, 1], where RQ is the union of Q and R, now along

their common copy of X. To see this, we observe (using the collars of the boundaries and

continuing to use concatenation to represent union along common boundaries) that

RQ ∼= ([0, 1]× Y )RQ ∼= (PQ)RQ ∼= P (QR)Q ∼= P ([0, 1]×X)Q ∼= PQ ∼= [0, 1]× Y.

Now consider the infinite union

(c̄γX)(QR)(QR)(QR) · · · ∼= (c̄γX)([0, 1]×X)([0, 1]×X) · · · ∼= cX.
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But if we regroup, this is the same as

((c̄γX)Q)(RQ)(RQ) · · · ∼= h(c̄µY )([0, 1]×Y )([0, 1]×Y ) · · · ∼= c̄µY ([0, 1]×Y )([0, 1]×Y ) · · · ∼= cY.

This completes the proof.

Corollary 2.10.2. Let X and X ′ be two CS set stratifications of the same underlying topo-

logical space |X|. Let x ∈ |X|, and let N,N ′ be distinguished neighborhoods of x in X and

X ′, respectively. Then N and N ′ are homeomorphic as topological spaces.

Proof. Any distinguished neighborhood of x in some CS set stratification has the form Rk×
cL by definition. Suppose N ∼= Ri × cL and N ′ ∼= Rj × cL′ are two such distinguished

neighborhoods. Notice that

(N, x) ∼= (Ri × cL, x) ∼= (c(Si−1 ∗ L), x)

and

(N ′, x) ∼= (Rj × cL′, x) ∼= (c(Sj−1 ∗ L′), x),

where ∗ indicates the join of two spaces. By contracting along cone lines, we may assume,

up to homeomorphism, that N ′ ⊂ N . But now, by the lemma, (N, x) ∼= (N ′, x).

Although we will not need Lemma 2.10.1 or Corollary 2.10.2 until Section 5.5, they are

closely related to our next goal, which is to construct from a CS set X a new CS set X

with the same underlying space and formal dimension as X but with the filtration of X

determined only by the topological properties of X. In other words, we will construct an

intrinsic filtration. We provide a version of the argument of King [139], who credits Dennis

Sullivan with the construction, though see also [122].

Definition 2.10.3. Let X be a CS set of formal dimension n, and define an equivalence

relation ∼ on X such that two points x0, x1 ∈ X are equivalent if they possess neighborhoods

U0, U1 such that (U0, x0) ∼= (U1, x1) as topological space pairs (i.e. ignoring the filtrations).

We sometimes abbreviate this condition by saying that x0 and x1 have “homeomorphic

neighborhoods,” although this isn’t technically precise.

It is clear that this is an equivalence relation; we need one further property:

Lemma 2.10.4. If x0, x1 are both in the same stratum of X, then x0 ∼ x1.

Proof. Let S be a stratum of X of dimension i, and let x0 ∈ S. We will show that the set W

of points of S that are equivalent to x0 is both open and closed in S. Since S is connected,

it will follow that W = S, which will prove the lemma.

First, suppose x ∈ W and notice that, by definition of CS sets, x has a neighborhood N

homeomorphic to Ri×cL with x corresponding to the point 0×v and with S∩N ∼= Ri×{v}.
But since (Ri× cL, 0× v) ∼= (Ri× cL, z× v) for any z ∈ Ri, we see that we must have x ∼ y

for any y ∈ S ∩N . Hence W is open in S.
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Next, suppose y ∈ W̄ , where W̄ is the closure of W in S. Then again y has a distinguished

neighborhood N homeomorphic to Ri× cL with y corresponding to the point 0× v and with

S∩N ∼= Ri×{v}. Since y ∈ W̄ , there must be some x ∈ W corresponding to z×v ∈ Ri×{v}
for some z ∈ Ri. But now again since (Ri×cL, 0×v) ∼= (Ri×cL, z×v), we have y ∼ x ∼ x0.

So W is also closed, and it follows that W = S.

Now, since any two points in a stratum of X are equivalent, it follows that the equivalence

classes under ∼ must be unions of strata of the filtration. Let Xi be the union of the

equivalence classes that only contain strata of dimension ≤ i. Then each Xi and Xi =

Xi−Xi−1 will be a union of equivalence classes of X and a union of strata of X of dimension

≤ i. The Xi also give a CS set filtration of the underlying space27 |X|, and this new filtration

is intrinsic to |X| as a topological space.

Proposition 2.10.5. Given a CS set X, let Xi be the union of the equivalence classes that

only contain strata of X of dimension ≤ i. Suppose m is the dimension of the highest-

dimensional non-empty stratum of X. Then for any integer28 k ≥ m, the subsets Xi for

−1 ≤ i ≤ k filter X as a CS set of formal dimension k. Furthermore, the sets Xi do not

depend on the initial filtration of X as a CS set; in other words, if we begin with a different

CS set stratification X̂ of the underlying space |X| and construct a filtration X̂i analogously

to the construction of the Xi then Xi = X̂i.

Before proving the proposition, let us consider a definition and some examples.

Definition 2.10.6. Given a CS set X of formal dimension n, let X denote |X| with the

filtration constructed in Proposition 2.10.5 and with the same formal dimension n as X.

This is called the intrinsic filtration of X of formal dimension n.

Remark 2.10.7. In general, if X is a filtered space then a coarsening of a filtration {X i} of

X is a second filtration {Zi} of the same underlying space such that each stratum of the

Z filtration is a union of strata of the X filtration. The proposition shows that X is the

intrinsic coarsest filtration of |X| as a CS set in the sense that X is also a CS set and no

matter what stratification of |X| as a CS set we begin with, X is a coarsening of it.

Example 2.10.8. Suppose X = Xn = M is a smooth n-dimensional manifold and that V ⊂M

is a smooth submanifold so that X is filtered as V ⊂ M . Then every point x ∈ M has a

neighborhood homeomorphic to (Rn, x), so all points of M are equivalent and the intrinsic

filtration is the trivial stratification on M .

Example 2.10.9. The suspended torus ST 2 of Figure 1.1 on page 2 already has its intrinsic

filtration. However, the twice suspended torus of Figure 1.2 on page 3 is not intrinsically

filtered. As we leave the reader to show, all of the points of X1 are equivalent. The coarsening

∅ ⊂ X1 ⊂ X4 of that example is an intrinsic filtration.

Now let us prove Proposition 2.10.5.

27Recall that we use |X| to denote the underlying space of X, disregarding any filtration information.
28Note that Xi is well defined even if i exceeds the formal dimension of X.
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Proof. First, we show that the Xi are closed subsets of |X|. Suppose x ∈ |X| − Xi. So x

must be equivalent to a point in a stratum of X of dimension greater than i. But then from

the definitions every point of any distinguished neighborhood N of x is in X − X i. So no

point of N is contained in Xi, so Xi is closed. Thus ∅ = X−1 ⊂ X0 ⊂ . . . ⊂ Xn is a filtration

of |X|. In fact, if m is the dimension of the highest-dimensional non-empty stratum of X,

then we have both Xm = · · · = Xn and Xm = · · · = Xn, as every point of X is contained in

a stratum of dimension at most m. Therefore, ∅ = X−1 ⊂ X0 ⊂ . . . ⊂ Xk is a filtration of

|X| for any k ≥ m and with Xm = · · · = Xk.

Next we must show that points have distinguished neighborhoods with respect to the

filtration by Xi. First we suppose z ∈ Xi ∩Xi. Then z has a distinguished neighborhood N

in X that we identify with Ri × cL. We also identify L with {0} × {1/2} × L ⊂ Ri × cL.

Let Zj = |N | ∩ Xj, and let `j−i−1 = |L| ∩ Zj. We claim that Zj = Ri × c`j−i−1. In other

words, this says that if we filter |L| by the `k and denote the resulting filtered space by

`, then Ri × c` is filtered homeomorphic to |N | filtered by the Zj. So this will provide a

distinguished neighborhood of z in X.

To verify the claim, we first observe that every point of N is contained in a stratum of

X of dimension ≥ i, so |N | can only intersect nontrivially strata of X of dimension ≥ i. Let

us show that Ri×{v} must equal |N | ∩Xi = Zi: We already know that Ri×{v} = N ∩Xi.

As these points are all in the same stratum of X, they are all equivalent and so all must

lie in Xi. Furthermore, the points in |N | −Xi are all contained in strata of X of dimension

> i and so must be in strata of X of dimension > i. Thus |N | ∩ Xi = |N | ∩X i = Ri × {v}.
Next, for j > i, we have that `j−i−1 ⊂ Zj by definition. But if s is a point of |L| = |`|, then

the points of Ri × (0, 1) × {s} ⊂ |Ri × cL| all have homeomorphic neighborhoods. So the

equivalence class of all the points in any Ri × (0, 1) × {s} is determined completely by the

equivalence class of {s}. It follows that we must have Zj = Ri × c`j−i−1, as desired. So z

has a distinguished neighborhood in X.

Now, suppose x is any point in Xi. Then x is equivalent to a point z in an i-dimensional

stratum of X since, by definition of Xi, the point x is in an equivalence class containing

strata of X of dimension at most i, but if x is in an equivalence class containing only strata

of dimension at most i− 1, then x would be in Xi−1. Since z is equivalent to x, we also have

z ∈ Xi, so z ∈ Xi∩Xi. We have already shown that z possess a distinguished neighborhood,

and we will use this to construct a distinguished neighborhood for x. Since x is equivalent

to z, they have homeomorphic neighborhood pairs (U, x) and (V, z). Let h : V → U be

the homeomorphism. Let N = Ri × c` be the distinguished neighborhood of z in X. By

contracting Ri and c` by homeomorphisms if necessary, we may assume Ri × c` ⊂ V . We

claim that h(N) is then a distinguished neighborhood of x. For this we observe that as h

is a homeomorphism and as equivalence classes are determined entirely by local topology, h

takes every point in N to an equivalent point, i.e. y and h(y) are equivalent for all y ∈ N.

But then as the Xj are unions of equivalence classes, h must take points of N∩Xj to points

of Xj. So h induces a filtered homeomorphism from N to its image, providing a distinguished

neighborhood for x.

So we have shown that every point x ∈ Xi has a neighborhood filtered homeomorphic to

Ri × c`, and so we have a CS set.
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Finally, let us demonstrate that the filtration by the Xi does not depend on the initial

filtration of X as a CS set. Let X̂ denote an alternative CS set filtration of X, and let X̂i

denote the corresponding CS set filtration, i.e. each X̂i is the union of the equivalence classes

that only contain strata of X̂ of dimension ≤ i. Note that the definitions of the sets Xi and

X̂i make sense for all integers i ≥ −1, so we will allow that possibility for the rest of the

argument.

We make the following observation: Suppose x ∈ X has a neighborhood |N | that is

homeomorphic to |Rj × cL| for some compact L (ignoring the filtration information). Then

we claim x is equivalent to a point in some stratum of X of dimension at least j. Indeed,

consider the points of |N | contained in the homeomorphic image in |X| of |Rj×{v}|. All the

points in this j-dimensional set are clearly equivalent. We know that each equivalence class

is a union of strata of X; so, if the equivalence class of x contained only strata of dimension

< j, this would create a contradiction, as the union of strata of dimension < j cannot cover

a j-dimensional set due to the niceness of the local conical structures. Therefore, x must be

equivalent to a point in a stratum of dimension ≥ j. Now, suppose x ∈ Xi. By definition,

x is not equivalent to any point in a stratum of X of dimension > i. Therefore, by our

immediately preceding argument, x cannot have a neighborhood homeomorphic to |Rj× cL|
for any j > i. In particular, x must be contained in a stratum of X̂ of dimension ≤ i, and the

same must be true of all points equivalent to x, i.e. all points equivalent to x are contained

in X̂ i. But this implies that x ∈ X̂i. So Xi ⊂ X̂i. The equivalent argument then shows that

X̂i ⊂ Xi, and so Xi = X̂i for all i.

Lemma 2.10.10. Let U be an open subset of the CS set X. Then U is a CS set with

the filtration U i = U ∩ X i and the intrinsic filtration U agrees with the restriction of the

stratification of X to |U |. In other words, Ui = Xi ∩ U .

Proof. That U with the filtration coming from X is a CS set is Lemma 2.3.13. Therefore,

U possesses an intrinsic filtration U by Proposition 2.10.5. As the equivalence relation of

Definition 2.10.3 is determined entirely by local conditions, we see that two points in U are

equivalent if and only if they are equivalent in X. The lemma therefore follows from the

definitions of U and X.

We will need one more lemma, which is a slight generalization of [139, Lemma 2].

Lemma 2.10.11. Let M be a manifold (trivially filtered) and X a filtered space such that

M×X is a CS set. Then the intrinsic filtration (M×X)∗ of |M×X| is filtered homeomorphic

to M×Z, where Z is some coarsening of X (see Remark 2.10.7). Furthermore, if M1,M2 are

two n-manifolds and Z1, Z2 are coarsenings of X such that (Mi×X)∗ is filtered homeomorphic

to Mi × Zi for i = 1, 2, then Z1 = Z2. In other words, the coarsening Z of X depends only

on the dimension of the manifold M .

Proof. Let x ∈ X, and notice that all points of M × {x} are equivalent under ∼. So

(M × X)∗ must have the form M × Z for some filtration Z of X. Furthermore, since the

intrinsic filtration of M×X is coarser than that of M×X, the filtration of Z must be coarser

than that of X. The second claim of the lemma follows because the definition of the intrinsic

filtration is local, and so the filtration Z depends only on the subspace |Rn ×X|.
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Notice that the filtered space Z of the lemma is not necessarily a cone, and even if v is

the cone point of cW , then M × {v} might not be a stratum of |M × cW | with its intrinsic

filtration; it may be a subset of a larger stratum. For example, if W = Sn−1 and M = Rk,
then M × cW is homeomorphic to Rk+n, whose intrinsic filtration is trivial and so stratified

homeomorphic to Rn+k ∼= Rk × Rn. Here the trivial filtration of Rn provides the intrinsic

filtration of cW .

Remark 2.10.12. We will see below in Lemma 2.10.17 that, in the piecewise linear world,

Lemma 2.10.11 can be strengthened to the statement that if M is a PL n-manifold and X a

PL filtered space then the intrinsic filtration of M×X is PL homeomorphic to M×X, where

X is the intrinsic filtration of X; no such claim is made in Lemma 2.10.11. The proof relies

strongly on facts of PL topology, so it is not clear that there are versions of this available in

the topological world, even with additional restrictions.

2.10.1 Intrinsic PL filtrations

One can also consider intrinsic PL filtrations of PL spaces. These have been a historically

important tool in the study of PL spaces (e.g. [2]), and they will be particularly important for

us in our construction of L-classes in Section 9.4. They are also useful in studying bordism

groups of PL pseudomanifolds and the resulting bordism homology theories; see [3, 94].

Recall that every PL space is a CS set with respect to some filtration; see Lemma 2.5.17.

We can then set up an equivalence relation ∼PL analogous to that of Definition 2.10.3 but

requiring PL homeomorphisms of neighborhoods; we will say that points satisfying the PL

version of Definition 2.10.3 are PL equivalent. Then PL analogues of Lemma 2.10.4 and

Proposition 2.10.5 hold with the identical proofs, assuming each homeomorphism is a PL

homeomorphism. For reference purposes, we restate them in this context:

Lemma 2.10.13. If X is a PL CS set and x0, x1 are both in the same stratum of X, then

x0 ∼PL x1.

Proposition 2.10.14. Given a PL CS set X, let Xi
PL be the union of the PL equivalence

classes that only contain strata of X of dimension ≤ i. Suppose m is the dimension of the

highest-dimensional non-empty stratum of X. Then for any integer k ≥ m, the subsets Xi
PL

for −1 ≤ i ≤ k filter X as a PL CS set of formal dimension k. The PL CS set filtration

{Xi
PL} does not depend on the initial filtration of X as a PL CS set.

One additional observation is needed for the proposition: the intrinsic PL skeleta, say

Xi
PL, are PL subsets, i.e. they will be subcomplexes in an admissible triangulation of X. To

see this, let K be a triangulation of X, and let σ be a simplex of K. Then all points in

the open simplex σ̊ have the same PL neighborhood, the open star simplicial star of σ in

K. So if Xi
PL intersects σ̊, it contains σ̊, and hence all of σ, since each Xi

PL is closed by

the PL analogue of the arguments of Proposition 2.10.5. Therefore, every Xi
PL is a union of

simplices, and so it is a subcomplex of the chosen triangulation.

Definition 2.10.15. If X is a PL set, let XPL denote the underlying space X filtered with

skeleta {Xi
PL} and with the same formal dimension as X. We call XPL the intrinsic PL
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filtration of X. If the PL context is understood, we may write simply X and Xi, as we will

do for the remainder of this section.

The PL version of Lemma 2.10.10 holds by the same arguments used to prove that lemma:

Lemma 2.10.16. Let U be an open subset of the PL CS set X. Then U is a PL CS set

with the filtration U i = U ∩X i and the intrinsic PL filtration U agrees with the restriction

of the intrinsic PL filtration X to |U |. In other words, Ui = Xi ∩ U .

In the PL setting, we also have a stronger version of Lemma 2.10.11:

Lemma 2.10.17. Let M be a PL n-manifold (trivially filtered) and X a PL filtered space.

Then the intrinsic filtration of M × X is PL filtered homeomorphic to M × X, where X is

the intrinsic filtration of X.

Proof. Let (M ×X)∗ denote the intrinsic filtration of M ×X. Since the intrinsic filtration

of a PL CS set is the coarsest PL CS set filtration, and since (M ×X)∗ and M ×X are both

PL CS sets, (M ×X)∗ must be a coarsening of M ×X. Suppose these filtrations are not the

same. Then there must be two points, say (t, x) and (s, y), that are in the same stratum of

(M ×X)∗ but different strata of M ×X. This implies that x and y are in different strata of

X. Since (t, x) and (s, y) are in the same stratum of (M ×X)∗, they have PL homeomorphic

neighborhoods. Let ` be the polyhedral link of x in X, i.e. x has a neighborhood c` in X.

The space ` is unique up to PL homeomorphism by basic PL topology [197, Lemma 2.19].

Owing to the product structure on M ×X and basic PL topology, the point (t, x) then has

a neighborhood of the form c(Sn−1 ∗ `), where Sn−1 ∗ ` is the PL join of Sn−1 with `. Notice

that Sn−1 ∗ ` is also the nth suspension of `. Similarly, if y has polyhedral link `′ in X,

then (s, y) has a neighborhood in M ×X of the form c(Sn−1 ∗ `′). But since (t, x) and (s, y)

have PL homeomorphic neighborhoods, by the uniqueness of polyhedral links, we must have

Sn−1 ∗ ` ∼= Sn−1 ∗ `′, where ∼= denotes PL homeomorphism. But now we can invoke another

basic result of PL topology to conclude that ` ∼= `′ [178, Theorem 1]. This implies that

c` ∼= c`′, so that x and y have PL homeomorphic neighborhoods in X. This is not quite

enough yet to conclude that x and y are in the same stratum of X as x and y could have

homeomorphic neighborhoods but lie in different strata. However, now let us consider a path

from (t, x) to (s, y) in (M ×X)∗ in the stratum containing the two points. This is possible

because the stratum is a connected PL set. The same arguments we employed above apply

to any two points along the path, so if (u, z) is such a point, then z is PL equivalent to x

and y in X. Projecting the path to X provides a path between x and y consisting entirely

of points that are PL equivalent to both x and y. Therefore, x and y must be in the same

stratum of X. We have reached a contradiction, and so (M ×X)∗ = M × X.

Notice that the proof of Lemma 2.10.17 leans heavily upon PL topology.

Thanks to the more structured behavior of the PL category, we are able to prove the

following about intrinsic PL filtrations of PL pseudomanifolds.

Proposition 2.10.18. Let X be an n-dimensional PL space containing a dense n-dimensional

PL manifold M . Then X is a PL stratified pseudomanifold. If X−M has dimension ≤ n−2,

then X is a classical PL stratified pseudomanifold.
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Proof. We will prove the proposition by induction on the dimension of X. If X has dimension

0, then we must have that X = X is a discrete set of points, and the proposition is immediate.

Now, we assume we have proven the lemma for dimensions < n and suppose that X is n-

dimensional.

By Lemma 2.5.17, X can be filtered as a PL CS set, so, using that filtration to get

started, we can apply the PL analogue of Proposition 2.10.5 to see that X is a PL CS set.

To show that X is a stratified pseudomanifold as defined in Definition 2.5.13, we need to

verify that the union of the regular strata of X is dense in X and that the links in X are

themselves recursive PL CS sets.

For the density requirement, we have assumed that X possesses a dense PL manifold

subset M . We claim that M ⊂ Xn − Xn−1 so that Xn − Xn−1 must also be dense in X. To

verify the claim, let’s utilize the filtration, say X ′, of X guaranteed by Lemma 2.5.17; this

was simply the simplicial filtration with respect to some admissible triangulation K of X.

Since X coarsens all other PL CS set filtrations by the PL analogue of Remark 2.10.7, every

skeleton of X is a union of strata of X ′. By definition, we take as the n− 1 skeleton of X the

union of the PL equivalence classes of points of X that contain only strata of X ′ of dimension

≤ n−1. So if x ∈ Xn−1, then x is contained in an n−1 simplex of K and x is not equivalent

to any point in (X ′)n − (X ′)n−1. But (X ′)n − (X ′)n−1 is a union of open n-simplices, so

this means that x cannot have an n-dimensional PL Euclidean neighborhood, so x /∈ M .

So x ∈ M implies x ∈ Xn − Xn−1. This is the desired result. We also observe here that if

dim(X −M) ≤ n− 2, then dim(Xn−1) ≤ n− 2, and so X can then have no codimension one

strata, making it a classical PL stratified pseudomanifold once we have finished showing it

is a PL stratified pseudomanifold.

Now we must consider the links of X and show that, with the filtrations that are com-

patible with X, they are recursive PL CS sets.

Suppose x ∈ X has a distinguished neighborhood U filtered PL homeomorphic to Ri×cL
for some PL filtered space L. Since X is a CS set, every point has some such neighborhood,

and this assumption implies that x is in an i-dimensional stratum of X. Let us identify L as

the subset {0} × {1/2} × L ⊂ Ri × cL, and let us identify Ri × cL with U so that we can

think of L as embedded in X. We claim that the given filtration on L (the one compatible

with it being a subset of X in this way) is the intrinsic PL filtration of L, which exists by

Proposition 2.10.14 because L is a PL space and every PL space can be filtered as a PL

CS set. Notice that Ri × (cL − {v}) ∼= Ri+1 × L is an open set of X and so is intrinsically

PL filtered by Lemma 2.10.16. Lemma 2.10.17 then implies that L must be intrinsically PL

filtered. In particular, L is filtered as a PL CS set.

Next we observe that L possesses a dense PL n−i−1 manifold. For this, fix an admissible

triangulation of L, and let ML be the union of the interiors of the n − i − 1 simplices of

the triangulation. We claim that ML is dense in L. By way of contradiction, assume that

x ∈ L is a point that has no neighborhood that intersects ML; this implies that x is not

a face of any n − i − 1 simplex of L, so x has a neighborhood V in L that has dimension

< n − i − 1. But continuing to think of L as a subspace of X, if x has a neighborhood

V of dimension < n − i − 1 in L, then 0 × 1/2 × x has a neighborhood homeomorphic to

Ri+1×V in X that must have dimension < n. But this is a contradiction with X containing
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a dense n-manifold. Therefore, every point of L must be in a face of an n − i − 1 simplex

and ML is dense in L. Thus, we can apply the induction hypothesis to conclude that L is a

PL stratified pseudomanifold, and, in particular, a PL recursive CS set as desired.

The following corollaries are immediate:

Corollary 2.10.19. If X is an n-dimensional PL stratified pseudomanifold, then X is an

n-dimensional PL stratified pseudomanifold. If X is a classical PL stratified pseudomanifold,

then X is a classical PL stratified pseudomanifold.

Corollary 2.10.20. If X is a PL space with a triangulation in which every simplex is a

face of an n-simplex, then X is an n-dimensional PL stratified pseudomanifold and so |X|
is a PL pseudomanifold. If X is a PL space with a triangulation in which every simplex is a

face of an n-simplex and such that every n− 1 simplex is the face of exactly two n-simplices,

then X is a classical n-dimensional PL stratified pseudomanifold and |X| is a classical PL

pseudomanifold.

For the latter corollary, the manifolds for Proposition 2.10.18 are respectively the union

of the interiors of the n simplices and the union of the interiors of the n and n− 1 simplices

of the triangulations.

Intrinsic filtrations of PL pseudomanifolds with boundary

It is also useful to have a notion of an intrinsic filtration for a pseudomanifold with boundary.

This is a bit more delicate, as we know from Example 2.7.3 that the notion of “boundary”

itself can depend upon the filtration. Let us reconsider Example 2.7.3. There, we considered

a ∂-manifold M with non-empty boundary (in the manifold sense) P . If we let X be the

filtered space P ⊂ M , then we have a stratified pseudomanifold (without boundary!). In

fact, we can easily verify that this is the intrinsic filtration of X. But if we instead think

of M as trivially filtered it becomes a ∂-stratified pseudomanifold with boundary P . It is

reasonable to ask for a version of intrinsic filtration that continues to “know” that there is

a boundary present.

In fact, no intrinsic filtration, following our previous definitions, could have a boundary.

The reason for this is that we have defined ∂-stratified pseudomanifolds so that the boundary

has a filtered collar. In other words, if X is a ∂-stratified pseudomanifold, ∂X must have a

neighborhood in X stratified homeomorphic to the product [0, 1)×∂X, with {0}×∂X being

taken to ∂X ⊂ X by the homeomorphism. In particular, then, if x ∈ ∂X then all the points

in29 [0, 1)× {x} live in a single stratum of X. However, the points (t, x), for 0 < t < 1, will

have identical neighborhoods in X, while (0, x) will have a different neighborhood. Thus

(0, x) and the (t, x) for t > 0 cannot live in the same stratum of any intrinsic filtration. Thus

no intrinsic filtration on X could have a non-empty boundary.

Nonetheless, there is still a way that we can usefully introduce intrinsic filtrations into

the context of ∂-stratified pseudomanifolds.

29Here we use the collar homeomorphism to provide coordinates for points in the collar.
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Definition 2.10.21. Let X be a ∂-stratified pseudomanifold. We will say that X is naturally

filtered if X − ∂X and ∂X are intrinsically filtered pseudomanifolds with filtrations deter-

mined fromX as in Definition 2.7.1, i.e. (X−∂X)i = (X−∂X)∩X i and (∂X)i−1 = (∂X)∩X i.

Example 2.10.22. Consider again a trivially filtered ∂-manifold M with ∂M 6= ∅. Then M

is naturally stratified, as M and ∂M are both intrinsically stratified.

Proposition 2.10.23. Let X be a PL ∂-pseudomanifold. Then X can be naturally filtered.

In other words, there exists a filtration X̌ of X such that

1. X̌ is a PL ∂-stratified pseudomanifold,

2. (X̌, ∂X̌) and (X, ∂X) have the same underlying PL space pairs,

3. X̌ − ∂X̌ and ∂X̌ are intrinsically stratified PL pseudomanifolds.

Proof. By the definition of ∂-stratified pseudomanifolds, X − ∂X and ∂X are each PL

stratified pseudomanifolds, and so by Corollary 2.10.19 each has an intrinsic filtration as a

PL stratified pseudomanifold. Also by the definition of ∂-stratified pseudomanifolds, ∂X has

a collar neighborhood in X that is PL homeomorphic to [0, 1)×X. Consider the subspace

of X PL homeomorphic to (0, 1)× ∂X. If we let (X − ∂X)∗ denote the intrinsic filtration,

then by Lemma 2.10.16, the restriction of this filtration to (0, 1)×∂X is intrinsically filtered,

and by Lemma 2.10.17 it is (0, 1)× (∂X)∗, where (∂X)∗ is |∂X| with its intrinsic filtration.

Therefore, if we take (X − ∂X)∗ and [0, 1) × (∂X)∗, we can glue these spaces along their

common PL filtered subset (0, 1) × (∂X)∗. The resulting space is the desired X̌. Notice

that X̌ does indeed meet the requirements to be a PL ∂-stratified pseudomanifold with

∂X̌ = (∂X)∗.

Remark 2.10.24. Notice that the proof of Proposition 2.10.23 depends on Lemma 2.10.17,

and, as noted in Remark 2.10.12, we do not necessarily have this available in the topological

world. This thwarts our attempts to prove the existence of appropriate analogous natural

filtrations of topological ∂-stratified pseudomanifolds in terms of intrinsically stratified CS

sets.

Corollary 2.10.25. Suppose X is a PL space possessing a triangulation such that

1. every simplex is a face of an n-simplex,

2. every (n− 1)-simplex is a face of either one or two n-simplices,

3. if B is the union of all (n − 1)-simplices of X that are a face of only one n-simplex,

then B has a collar, meaning that there is a PL embedding of [0, 1)×B into X taking

{0} ×B to B ⊂ X.

Then X is an n-dimensional PL ∂-pseudomanifold. If each n− 2 simplex of B is a face of

exactly two n− 1 simplices of B, then X is an n-dimensional classical ∂-pseudomanifold.
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Proof. If we let M denote the union of the interiors of the n-simplices of the triangulation

and the interiors of the n − 1 simplices of the triangulation that are not in B, then M is a

manifold that is dense in the PL set X − B and (X − B) −M has dimension ≤ n − 2. So

by Proposition 2.10.18, X − B is a classical PL pseudomanifold. Similarly, the interiors of

the n − 1 simplices of B are dense in B, so B is a PL pseudomanifold, also by Proposition

2.10.18. By assumption, B is collared in X, so by the same arguments as used in Proposition

2.10.23, we can glue together the intrinsic filtrations of X −B and [0, 1)×B to obtain a PL

∂-stratified pseudomanifold with X as its underlying space. If B satisfies the extra condition,

then both X − B and B will be classical PL pseudomanifolds by Proposition 2.10.18, so X

will be a classical PL ∂-stratified pseudomanifold.

2.11 Advanced topic: products and joins

This section contains proofs that products and joins of CS sets and stratified pseudoman-

ifolds are again CS sets and stratified pseudomanifolds. We also show that the product of

∂-stratified pseudomanifolds are ∂-stratified pseudomanifolds and that the product of intrin-

sically stratified PL pseudomanifolds is intrinsically stratified. These are obviously desirable

results, and, as for the previous section, this material is included here because it fits nat-

urally with our chapter on stratified spaces. However, once again, the first-time reader is

encouraged to skip this material for now in order to “get on with it” and to come back to

this section as needed later on. In fact, most of the results of this section are the expected

ones, so this section should serve more as a reference for the purposes of completeness.

As we observed in Example 2.2.25, if X and Y are filtered spaces, then X × Y has a

natural product filtration such that

(X × Y )i =
⋃

j+k=i

Xj × Y k.

If X and Y have respective formal dimensions n and m, then this product has formal

dimension m+ n.

Lemma 2.11.1. The strata of X × Y all have the form S × T , where S is a stratum of X

and T is a stratum of Y .

Proof. By a basic set-theoretic argument, which we leave to the reader,

(X × Y )i − (X × Y )i−1 =

( ⋃
j+k=i

Xj × Y k

)
−

( ⋃
j+k=i−1

Xj × Y k

)
=
⋃

j+k=i

(
(Xj −Xj−1)× (Y k − Y k−1)

)
.

Now consider S×T for S a stratum of X and T a stratum of Y . To be specific, suppose

S has formal dimension j and T has formal dimension k. Since S and T are connected, the
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set S × T is connected [180, Theorem 23.6]. We must show that each such S × T is in fact

a connected component of (X × Y )i − (X × Y )i−1. As S × T is connected, it suffices to

show that S × T is separated from each other S ′ × T ′ with S ′ a stratum of X, T ′ a stratum

of y, dim(S ′) + dim(T ′) = j + k = i, and S × T 6= S ′ × T ′. In other words, we show that

(S × T ) ∪ (S ′ × T ′) is not connected. By [180, Lemma 23.1], it suffices to show that neither

of S× T or S ′× T ′ contains a limit point of the other. The arguments are symmetric, so we

will show that S ′ × T ′ cannot contain a limit point of S × T .

Suppose (x, y) is a limit point of S × T . If (x, y) ∈ S × T , then (x, y) /∈ S ′ × T ′ as

(S × T ) ∩ (S ′ × T ′) is non-empty only if S = S ′ and T = T ′. So, suppose (x, y) /∈ S × T .

Then x is a limit point of S not contained in S or y is a limit point of T not contained in

T . Suppose x /∈ S. As Xj is closed, x ∈ Xj, but x cannot be contained in a j-dimensional

stratum because S is a connected component of Xj −Xj−1. Therefore, x ∈ Xj−1. Applying

the same argument to y, we have that either x ∈ Xj−1 or y ∈ Y k−1, so (x, y) ∈ (X × Y )i−1.

Thus (x, y) is not contained in any of the other strata of dimension i, in particular S ′×T ′.

We will see that taking products preserves other nice structure. For example the products

of CS sets are CS sets and the products of pseudomanifolds are pseudomanifolds. In order

to verify these claims, it is necessary to study not just products of filtered spaces, but also

their joins, as the joins arise as links in product spaces.

We recall the construction of the join of two spaces X and Y ; see, e.g. [125, Sections 0

and 4.G]. In all of our applications of joins, X and Y will be compact. Conceptually, the join

X ∗ Y of two spaces is the union of all line segments connecting a point of X to a point of

Y . A more constructive definition is that X ∗Y is the quotient space of X× [0, 1]×Y under

the relations (x, 0, y) ∼ (x, 0, y′) and (x, 1, y) ∼ (x′, 1, y), where x, x′ ∈ X and y, y′ ∈ Y . As

for cones, it is convenient to parameterize points of the join with coordinates (x, t, y), noting

that the coordinate system is degenerate when t = 0 or t = 1. We can observe that X ∗ Y
contains canonical copies of X and Y as the respective images of X×{0}×Y and X×{1}×Y
under the quotient map, and we will identify X and Y with these canonical copies. We have

X ∗Y −X ∼= cX×Y , while X ∗Y −Y ∼= X×cY . Of course, X ∗Y −(XqY ) ∼= X×(0, 1)×Y .

If we identify X × Y with the subset X × {1/2} × Y ⊂ X ∗ Y , then we can also identify

X ∗ Y as the union of closed subsets by

X ∗ Y ∼= (X × c̄Y ) ∪X×Y (c̄X × Y ),

where the cone parameter of c̄Y runs from 0 to 1/2 with the vertex at the 0 end and the

cone parameter of c̄X runs from 1/2 to 1 with the vertex at the 1 end.

These descriptions allow us to introduce a filtration for X ∗ Y if X and Y are filtered.

If the respective formal dimensions of X and Y are n and m, then X ∗ Y will have formal

dimension m + n + 1. Looking at X × (0, 1)× Y , we can use the product filtration, letting

(0, 1) be filtered trivially, i.e.

(X × (0, 1)× Y )i = ∪j+k=i−1X
j ∪ (0, 1) ∪ Y k.

On X ∗ Y − Y , the product filtration on X × cY is (X × cY )i = ∪j+k=iX
j × (cY )k, but

each Xj × (cY )k has the form Xj × c(Y k−1). Therefore, if we consider X ∗ Y − Y with
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this product filtration, the induced filtration on the subset ((X ∗ Y )− Y )−X is consistent

with the product filtration on X × (0, 1) × Y . Similarly, looking at the product filtration

on X ∗ Y − X ∼= cX × Y with its product filtration, the induced filtration on the subset

((X ∗ Y ) − X) − Y is consistent with the product filtration on X × (0, 1) × Y . Therefore,

assembling X ∗Y as the union of X× cY and cX×Y with their product filtrations provides

a natural join filtration on X ∗ Y .

Even better, we can find a more explicit filtration of X ∗ Y by observing that the union

in X ∗Y of the set Xj × (cY k−1) ⊂ X × cY with the set c(Xj)×Y k−1 ⊂ cX ×Y is itself the

join Xj ∗ Y k−1. So we can write the i-skeleton of X ∗ Y as ∪a+b=i−1X
a ∗ Y b. Notice that the

reason we have a + b = i − 1 instead of a + b = i is that the [0, 1] factor in the join adds a

dimension that is only implicit in the notation. In particular, if a = −1, then Xa = X−1 = ∅
and X−1 ∗Y i = ∅∗Y i = Y i is in the i-skeleton of X ∗Y . The equivalent observation holds if

b = −1, so the i-skeleton of X ∗ Y includes the i-skeleta of X and Y . One can also compute

that the set of i-dimensional strata of X ∗ Y comprises the i-strata of X, the i-strata of Y ,

and the i-strata of X × (0, 1)× Y .

Example 2.11.2. Let M = Mm and N = Nn be compact manifolds, filtered trivially, and

suppose m < n. Then the smallest dimensional non-empty skeleton of M ∗N is (M ∗N)m =

Mm∗∅−1 = M . The next lowest dimensional skeleton that is not equal to M is the n-skeleton

M qN = (Mm ∗∅−1)∪ (∅−1 ∗Nn). And the next skeleton that is not equal to the n-skeleton

is the m+ n+ 1 skeleton M ∗N = Mm ∗Nn.

Example 2.11.3. In Figure 2.6 we have the join X ∗ Y where X and Y are both intervals.

Suppose first that we filter X trivially and think of Y as the interval I filtered as {y} ⊂ I

with y an interior point. We also assume all strata have their natural dimensions. Then we

can notice that X ∗ Y − X ∼= (cX) × Y and X ∗ Y − Y is filtered homeomorphic to the

filtered space X × c{y} ⊂ X × cI. We also observe (X ∗ Y )0 = {y}, (X ∗ Y )1 = X q Y ,

(X ∗ Y )2 = X ∪ (X ∗ {y}) ∪ Y , and (X ∗ Y )3 = X ∗ Y .

We could also interpret Figure 2.6 so that X is given its simplicial filtration as a 1-simplex

and so that Y is a simplicial complex with two 1-simplices, also filtered simplicially. In this

case, X ∗ Y is simplicially filtered as a simplicial complex with two 3-simplices joined along

a 2-simplex.

Lemma 2.11.4. If X and Y are (recursive) CS sets, then so is X × Y with the product

filtration. If X and Y are compact (recursive) CS sets, then so is X ∗ Y with the join

filtration.

Proof. Since the strata of X ×Y have the form S×T , where S is a stratum of X and T is a

stratum of Y , the strata of X ×Y are manifolds. Similarly, as the strata of X ∗Y are strata

of X, strata of Y , or have the form S × (0, 1)× T where S and T are respective strata of X

and Y , the strata of X ∗ Y are manifolds.

To verify the locally-conelike property, we will proceed by a simultaneous induction on

dim(X) + dim(Y ) for X × Y and X ∗ Y . We first dispense with some trivial cases by noting

that if either X or Y is empty, then so is X × Y , and if X is empty, then X ∗ Y = Y ,

while if Y is empty, X ∗ Y = X. So the result is established whenever dim(X) or dim(Y ) is
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Figure 2.6: The join of Example 2.11.3

< 0. If dim(X) = dim(Y ) = 0, then both X and Y are discrete unions of points or empty,

and hence so is X × Y , which is a recursive CS set. If dim(X) = dim(Y ) = 0 and X and

Y are compact (and so finite), then X ∗ Y is the union of all intervals between X and Y ,

with (X ∗ Y )0 consisting of the #X + #Y points in X and Y and (X ∗ Y )1 consisting of

(#X)(#Y ) open intervals. The link of each point of X is homeomorphic to Y , and the link

of each point of Y is homeomorphic to X. So X ∗ Y is a recursive CS set.

We will also need to consider separately the case of X × Y with dim(X) + dim(Y ) = 1.

If either dim(X) or dim(Y ) is < 0, the product is empty and there is nothing to prove.

Otherwise, one of X or Y must be 0-dimensional. Choosing dim(X) = 0 without loss of

generality, we then have X × Y ∼= q#XY . In other words, X × Y is a disjoint collection of

copies of Y , one for each point of X, and again the conclusion is trivial.

Now, let An be the statement that if dim(X), dim(Y ) ≥ 0, and dim(X) + dim(Y ) ≤ n

then X×Y is a (recursive) CS set if X and Y are, and let Bn be the statement that if X and

Y are compact, dim(X), dim(Y ) ≥ 0, and dim(X) + dim(Y ) ≤ n then X ∗Y is a (recursive)

CS set if X and Y are. We will show that An+1 ⇒ Bn if n ≥ 0 and that Bn−2 ⇒ An if

n− 2 ≥ 0. Thus we have the chain of implications

B0 ⇒ A2 ⇒ B1 ⇒ A3 ⇒ B2 ⇒ A4 ⇒ B3 ⇒ · · · .

Together with our low dimensional cases, this will demonstrate the lemma.

First, we assume An+1, with n ≥ 0, and consider X ∗ Y with X and Y compact and

dim(X) + dim(Y ) = n ≥ 0. In our initial discussion, we observed that X ∗ Y is the union

of the open subsets X × cY and cX × Y . If X is a (recursive) CS set, then so is cX by

Example 2.3.5, and similarly for Y . Thus X × cY and cX × Y are (recursive) CS sets by

our assumption that An+1 holds, as dim(X) + dim(cY ) = dim(cX) + dim(Y ) = n+ 1. Since

the (recursive) locally cone-like condition is a local condition, it follows then for all points

in X ∗ Y .

Next, let us assume Bn−2, with n − 2 ≥ 0, and let dim(X) + dim(Y ) = n. We will

demonstrate An. Let (x, y) ∈ X × Y with x in a stratum S ⊂ X and y in a stratum T ⊂ Y

with dim(S) = j, dim(T ) = k. Then x has a distinguished neighborhood N in X with a

75



filtered homeomorphism hN : U×cL→ N such that hN(U×cLa) = Xj+a+1∩N = N j+a+1 for

all a ≥ −1, and y has a distinguished neighborhood M in Y with a filtered homeomorphism

hM : V × cK → M such that hM(V × cKb) = Y k+b+1 ∩M = Mk+b+1 for all b ≥ −1. By

the definition of distinguished neighborhoods, we assume L and K are compact and that

they are recursive if X and Y are. Then N ×M is a neighborhood of (x, y) in X × Y , and

(hN × hM)−1 provides a filtered homeomorphism between N ×M and U × cL × V × cK.

Ignoring filtrations for a moment, we then have

U × cL× V × cK ∼= U × V × cL× cK ∼= (U × V )× c(L ∗K),

where we have used the basic topological fact that cL× cK ∼= c(L ∗K); see Figures 2.7 and

2.8. Since dim(L) ≤ dim(X) − 1 and dim(K) ≤ dim(Y ) − 1, we have dim(L) + dim(K) ≤
dim(X) + dim(Y )−2 = n−2. As L and K are compact filtered spaces then so is L∗K with

its join filtration, and if L and K are recursive CS sets then so is L ∗K by the hypothesis

that Bn−2 holds. So this provides a distinguished neighborhood of (x, y) of the desired form

provided we verify the compatibility of the filtrations. In other words, we need to show that

U × V × cL× cK ∼= (U × V )× c(L ∗K) is a filtered homeomorphism.

Figure 2.7: A schematic illustration of cL×cK ∼= c(L∗K). In this case we have L = c(S0) ∼=
(−1, 1), the open interval, and K = c(T 2) so that L ∗K ∼= S0 ∗ T 2 ∼= ST 2, the suspension of

the torus. We see the suspension here in the figure as the dashed (so unincluded) boundary

of c(L ∗K) as the union of the two cones on T 2 on the left and right with I × T 2 along the

bottom.

From the definitions, the product of the skeleta N j+a+1 and Mk+b+1 are contained in the

j + k + a+ b+ 2 skeleton of N ×M . Via (hN × hM)−1, this product corresponds to

U × cLa × V × cKb ∼= U × V × cLa × cKb ∼= U × V × c(La ∗Kb).

So we have

N j+a+1 ×Mk+b+1 ∼= U × V × c(La ∗Kb).

Taking the unions over all a, b ≥ −1 such that a+ b = i, we see that (hN × hM)−1 takes the

j + k + i+ 2-skeleton of N ×M homeomorphically onto

U × V × c({i+ 1 skeleton of K ∗ L}),

as desired.
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Figure 2.8: Figure 2.7 viewed more as a cone

The following fact can be abstracted directly from the preceding proof:

Corollary 2.11.5. If L and K are compact filtered spaces then cL× cK, formed using the

cone and product filtrations, is filtered homeomorphic to c(L ∗K), formed using the join and

cone filtrations.

The next corollary is a version of Lemma 2.11.4 for stratified pseudomanifolds.

Corollary 2.11.6. If X and Y are stratified pseudomanifolds then so is X × Y . If X and

Y are compact stratified pseudomanifolds then so is X ∗ Y . Similarly, if X and Y are PL

stratified pseudomanifolds then so is X × Y and, if X and Y are compact PL stratified

pseudomanifolds then so is X ∗ Y .

Proof. If U and V are respectively the unions of the regular strata of X and Y , then U is

dense in X and V is dense in Y . The union of the regular strata of X × Y is U × V , and

this is dense in X ×Y by basic point-set topology. Similarly, unless one of X or Y is empty,

in which case the result is trivial, the union of the regular strata of X × Y is U × (0, 1)× V ,

which is again easily seen to be dense. So, by Lemma 2.11.4 and Definition 2.4.1, X × Y is

a topological stratified pseudomanifold.

For the PL case, we note that products and joins of PL spaces are PL spaces by Section

B.5. So we only need to note additionally that, using the definition of PL stratified pseu-

domanifolds, the homeomorphisms of the proof of Lemma 2.11.4 can all be taken to be PL,

and, for PL spaces, c(L)× c(K) ∼= c(L ∗K) piecewise linearly by [197, Exercise 2.24(3)] or

the argument on [2, page 419].

It is also true that the product of ∂-stratified pseudomanifolds is a ∂-stratified pseudo-

manifold. Given Corollary 2.11.6, the main additional technicality is the need to demonstrate

the collaring of the boundary.

Lemma 2.11.7. If X and Y are ∂-stratified pseudomanifolds, then so is X × Y . If X and

Y are PL ∂-stratified pseudomanifolds, then so is X × Y .
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Figure 2.9: A schematic of the product X × Y showing the neighborhood of the boundary

Proof. The proofs are nearly identical in the topological and PL cases, so we focus on the

former. We will indicate the one place where we it is not evident we have a PL map.

The interior of X × Y is (X − ∂X)× (Y − ∂Y ), which is a stratified pseudomanifold by

Corollary 2.11.6. The boundary of X × Y will be (∂X × Y ) ∪ (X × ∂Y ) once we show that

it is a pseudomanifold and that it is collared in X × Y . So we will provisionally label this

set ∂(X × Y ). Again by Corollary 2.11.6,

∂(X × Y )− ∂X × ∂Y = (∂X × (Y − ∂Y ))q ((X − ∂X)× ∂Y )

is a stratified pseudomanifold, so to see that ∂(X × Y ) is a stratified pseudomanifold, we

only have to be careful near the “corner” ∂X × ∂Y . Now, we have stratified collars that

we can identify as C = [0, 1) × ∂X in X and D = (−1, 0] × Y in Y with [0, 1) and (−1, 0]

trivially filtered; in the latter cases, the only difference from our standard conventions is a

choice of a different parameterization on the collar, which will be useful below. So in X×∂Y ,

the subspace ∂X × ∂Y has a neighborhood C × ∂Y = [0, 1) × ∂X × ∂Y with the product

filtration. Similarly, ∂X × ∂Y has a neighborhood

∂X ×D = ∂X × (−1, 0]× ∂Y ∼= (−1, 0]× ∂X × ∂Y

with the product filtration. So we then see that ∂X × ∂Y has a neighborhood in ∂(X × Y )

that is filtered homeomorphic to

(∂X ×D) ∪ (C × ∂Y ) ∼= (−1, 1)× ∂X × ∂Y,
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which is a stratified pseudomanifold by Corollary 2.11.6. We have shown that ∂(X × Y )

is covered by open sets that are stratified pseudomanifolds, and so ∂(X × Y ) must be a

stratified pseudomanifold.

Slightly more complex is the issue of demonstrating that ∂(X×Y ) has a stratified collar.

For this, it will be useful to assume that the closures of C and D have the form C̄ ∼= [0, 1]×∂X
and D̄ ∼= [−1, 0] × ∂Y by filtered homeomorphisms; this entails no loss of generality as we

could, for example, form a new C from the subset [0, 1/2)× ∂X of the original C. Then

N = (C × Y ) ∪ (X ×D) ∼= ([0, 1)× ∂X × Y ) ∪ (X × (−1, 0]× ∂Y )

is a neighborhood of ∂(X × Y ) in X × Y . Here, the product filtrations of the pieces of

this neighborhood are consistent with those inherited from X × Y . We need to show that

N ∼= [0, 1)× ∂(X × Y ). For this, we notice that

(C × Y ) ∩ (X ×D) = C ×D ∼= [0, 1)× ∂X × (−1, 0]× ∂Y ∼= [0, 1)× (−1, 0]× ∂X × ∂Y,

and the closure of this intersection in N has the form

(([0, 1]× [−1, 0])− ({1} × {−1}))× ∂X × ∂Y.

In particular, we can think of N as consisting of three closed (in N) pieces: C × (Y −D),

(X − C)×D, and the closure in N of C ×D. These pieces are glued along

(C ×D) ∩ (C × (Y −D)) ∼= [0, 1)× {−1} × ∂X × ∂Y

and

(C ×D) ∩ ((X − C)×D) ∼= {1} × (−1, 0]× ∂X × ∂Y.

But ([0, 1]× [−1, 0])− ({1}× {−1}) is simply a solid square with one corner point removed,

and this space is piecewise-linearly homeomorphic to [0, 1)× [−1, 1]. We can see this using

Figure 2.10. Thus the closure in N of C ×D is PL homeomorphic to

[0, 1)× [−1, 1]× ∂X × ∂Y.

Now, we form the collar neighborhood of ∂(X × Y ) by gluing the pieces back together

having “straightened” the closure of C × D and now identifying {1} × (−1, 0] × ∂X × ∂Y
in (X − C)×D with [0, 1)× {1} × ∂X × ∂Y in the homeomorphed image of the closure of

C ×D. See Figure 2.11. Together, we obtain a space that has the form [0, 1)× ∂(X × Y ),

using our earlier observation that

∂(X × Y ) ∼= (X − C) ∪ (Y −D) ∪ ([−1, 1]× ∂X × ∂Y ).

This is the desired collar.
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Figure 2.10: A PL homeomorphism ([0, 1)× [0, 1))− ({1}×{−1})→ [0, 1)× [−1, 1]. We see

the first steps in triangulations of the spaces and a simplicial map that takes each L-shaped

region with four triangles on the left to a rectangular region with four triangles on the right.

Figure 2.11: Straightening the collar neighborhood of ∂(X × Y )
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2.11.1 Products of intrinsic filtrations

A reasonable question to ask is whether the products of intrinsically filtered spaces are

intrinsically filtered in their product filtrations. In the topological category, results like the

Double Suspension Theorem demonstrate that this is too much to ask. However, in the PL

category, and even here with an extra assumption, we can have such results.

Proposition 2.11.8. Let X and Y be two PL stratified pseudomanifolds with intrinsic

filtrations X and Y, and let (X × Y )∗ denote the intrinsic filtration of X × Y . If at least

one of X, Y is a classical pseudomanifold, then (X × Y )∗ = X×Y.

Remark 2.11.9. The assumption that at least one of X or Y be classical is necessary, as

demonstrated by the following example: Let I = [0, 1] be filtered as {0, 1} ⊂ I. This is a PL

stratified pseudomanifold filtration, and it is intrinsic. Then I × I is filtered as

{(0, 0), (0, 1), (1, 0), (1, 1)} ⊂ ({0, 1} × I) ∪ (I × {0, 1}) ⊂ I × I.

This is not an intrinsic filtration as all of the boundary points of the square I × I have PL

homeomorphic relative neighborhoods. This follows from, among other arguments, the PL

unbending procedures that we utilized in the proof of Lemma 2.11.7.

The proof of the proposition relies upon the following lemma:

Lemma 2.11.10. A filtration of a PL pseudomanifold X is the PL intrinsic filtration if and

only if no link of any point in X is PL homeomorphic to a suspension; i.e. if and only if for

every link L in X there is no compact PL space Z such that L is PL homeomorphic to SZ.

Furthermore, if X is a classical PL pseudomanifold, then no link of the intrinsic filtration

is PL homeomorphic to a closed cone.

Proof. Throughout this proof, ∼= will denote PL homeomorphism without regard for filtra-

tions. First, suppose L is a link of a point in an i-dimensional stratum of X, i.e. there is some

x ∈ X with a distinguished neighborhood filtered PL homeomorphic to Ri × cL. Suppose L

is PL homeomorphic to a suspension, so that L ∼= SZ for some compact PL space Z. Then

we have

Ri × cL ∼= Ri × c(SZ) ∼= Ri × R1 × cZ ∼= Ri+1 × cZ,

using again that cA× cB ∼= c(A ∗B) with A = S0 and B = Z. Then if w is the cone vertex

of cZ, all the points in Ri+1×{w}, including x, have PL homeomorphic neighborhoods, con-

tradicting that x is contained in an i-dimensional stratum of X (see the proof of Proposition

2.10.5). Thus L is not a suspension. So no link in X can be a suspension.

Conversely, suppose X is a PL stratified pseudomanifold such that no link is a suspension.

We claim that X is filtered by the intrinsic filtration. Suppose not, and let X be the intrinsic

filtration. Since X is the coarsest filtration, there must be a stratum T of X that is contained

in a stratum S of X with dim(S) > dim(T ). Let dim(T ) = i and dim(S) = j, and suppose

x ∈ T . Then x has a distinguished neighborhood in X of the form Ri × cL ∼= c(Si−1 ∗ L),

while x has a distinguished neighborhood in X of the form Rj × cL′ ∼= c(Sj−1 ∗ L′). Note:

if i = 0, we let S−1 = ∅ and ∅ ∗ L = L; similarly, the formulas apply if L = ∅. By the
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uniqueness of polyhedral links30 [130, Corollary 1.15], this implies that Si−1 ∗L ∼= Sj−1 ∗L′,
or, written in terms of iterated suspensions, SiL ∼= SjL′. Since i < j, then L ∼= Sj−iL′ by

[178, Theorem 1], so L is a suspension, contradicting the assumption. Therefore, X must

actually be X.

Lastly, suppose X is a classical PL pseudomanifold and X its intrinsic filtration. By

Remark 2.5.15, each link L is also a classical PL pseudomanifold. By Corollary 2.5.21, this

implies that if L has dimension k, then no triangulation of L can have a dimension k−1 face

that does not bound exactly two k-simplices. This implies that L cannot have the structure

of a closed cone c̄Z unless Z is empty. But if Z is empty, c̄Z is a point. However, since X

is classical, it has a PL pseudomanifold filtration X ′ with no codimension one strata, and

since X is coarser than X ′, X also has no codimension one strata. Therefore, L also cannot

be a point. Therefore, L is not a closed cone.

Proof of Proposition 2.11.8. By Lemma 2.11.10, it suffices to show that the links of X×Y are

not suspensions. But every link of X×Y has the form L ∗K, where L and K are respective

links of X and Y, by our computations in the proof of Lemma 2.11.4. Furthermore, L and

K cannot be suspensions, again by Lemma 2.11.10. We must show that L ∗ K is not a

suspension.

In [178], Morton defines a compact polyhedron (PL space) to be reduced if it is not a closed

cone or a suspension. By [178, Corollary to Theorems 1 and 2], every compact polyhedron

(PL space) factors uniquely as the join of a ball or sphere to a reduced polyhedron. Since L

and K are not suspensions, their unique factorizations must have the form L ∼= Ba ∗D and

K ∼= Bb ∗ E, where D and E are reduced and Ba and Bb are balls of respective dimensions

a and b such that a, b ≤ 0 (letting B−1 = ∅). The last condition is due to the fact that

any ball of dimension > 0 is a suspension, so if, for example, L ∼= Ba ∗D with a > 0, then

L ∼= (S0 ∗ Ba−1) ∗ D ∼= S0 ∗ (Ba−1 ∗ D), presenting a contradiction. In fact, one of a or b

must be < 0, as if a = 0 then L is a closed cone, and similarly if b = 0 then K is a closed

cone. But we have assumed that one of X or Y is classical, and so by Lemma 2.11.10, it is

not possible for both L and K to be closed cones.

So now we must have

L ∗K ∼= Ba ∗D ∗Bb ∗ E ∼= Ba+b+1 ∗D ∗ E

with a + b + 1 ≤ 0. Furthermore, by [178, Lemma 3], the join of reduced polyhedra is

reduced, so D ∗ E is reduced. So if a + b + 1 < 0, then L ∗ K ∼= D ∗ E is reduced, and

we are done. If a + b + 1 = 0, then L ∗ K ∼= B0 ∗ D ∗ E. Suppose this is a suspension,

B0 ∗ D ∗ E ∼= S0 ∗ F for some compact polyhedron F . Then, again by [178, Corollary to

Theorems 1 and 2], we have either F ∼= Bc ∗ G or F ∼= Sd ∗H with G and H reduced and

c, d ≥ 0. The reason c or d must be ≥ 0 is that otherwise F would be G or H, and so reduced,

making B0 ∗D ∗ E ∼= S0 ∗ F impossible by the uniqueness part of Morton’s corollary. But

then S0 ∗F is PL homeomorphic to either S0 ∗Bc ∗G ∼= Bc+1 ∗G or S0 ∗Sd ∗H ∼= Sd+1 ∗H,

with c + 1, d + 1 ≥ 1. These spaces are intended to be PL homeomorphic to B0 ∗ D ∗ E
30See Footnote 16 on page 43.
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with D ∗ E reduced, so the uniqueness part of Morton’s corollary again implies that both

scenarios are impossible. Thus B0 ∗D ∗ E ∼= L ∗K cannot be a suspension, as desired.

We also have a product result for naturally stratified PL ∂-stratified pseudomanifolds;

see Definition 2.10.21.

Proposition 2.11.11. Let X, Y be naturally stratified PL ∂-stratified pseudomanifolds such

that at least one of X or Y is a classical PL ∂-stratified pseudomanifold. Then X × Y is

naturally stratified.

Proof. By Lemma 2.11.7, X × Y is a ∂-stratified pseudomanifold. According to Definition

2.10.21, we must show that X × Y − ∂(X × Y ) and ∂(X × Y ) are intrinsically stratified.

First, we see that

X × Y − ∂(X × Y ) = (X − ∂X)× (Y − ∂Y )

is intrinsically stratified by Proposition 2.11.8. By the same proposition, (X − ∂X) × ∂Y ,

∂X × (Y − ∂Y ), and ∂X × ∂Y are intrinsically stratified. For this we note that if X is a

classical PL stratified ∂-pseudomanifold, then ∂X is also classical, as if ∂X has codimension

one strata, then so does the collar neighborhood of ∂X in X; the same is, of course, true

of Y . From the proof of Lemma 2.11.7, we observe that ∂(X × Y ) is the union of the open

subsets (X − ∂X) × ∂Y , ∂X × (Y − ∂Y ), and (−1, 1) × ∂X × ∂Y , where the latter space

is also intrinsically filtered by Proposition 2.11.8. Piecing these spaces together to form

∂(X × Y ) and using that intrinsic filtration is a local property, we see that ∂(X × Y ) must

be intrinsically filtered.
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Chapter 3

Intersection homology

In this chapter, we will define the intersection homology groups and compute some examples

that demonstrate their most fundamental properties.

We begin in Section 3.1 by defining the perversity parameters whose values control how

intersection chains are allowed to intersect with the strata of a space. Intersection homology

itself is first defined in Section 3.2, beginning with simplicial intersection homology. We

provide a number of examples there to develop the reader’s geometric intuition.

In Section 3.3, we turn to piecewise linear (PL) intersection homology. PL chains can

be thought of as simplicial chains but without requiring a fixed a triangulation of the space

in advance. In other words, a PL chain is represented by a simplicial chain chosen from

any one of the triangulations admissible within the PL structure of the space. This outlook

has some technical advantages; for example all possible subdivisions are already built into

the definition of the chain complex. However, as the reader is likely less familiar with PL

homology than simplicial or singular homology, we develop the necessary background in

Sections 3.3.1 and 3.3.2. PL intersection homology is then defined in Section 3.3.3 and its

relation with the simplicial theory explored in Section 3.3.4.

Intersection homology defined with singular chains comes in Section 3.4.

This chapter is mostly concerned with definitions, examples, and the most fundamental

properties of intersection homology. Further properties will be developed in the following

chapters.

3.1 Perversities

The idea for defining intersection homology groups is that we should consider the simplices

and chains that are ordinarily used to define homology groups but that we should place some

limitations on how such chains are allowed to interact with different strata. In practice this

is done by restricting the dimensions of the intersections of chains with strata. Of course

there can be many different ways to do this: we could forbid a chain from intersecting a

stratum altogether, we could pose no limitation with a given stratum, or we could make

various choices in between. These choices are encoded in a perversity parameter, most often

referred to simply as a perversity. As there are many choices for these parameters, there are
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many different kinds of intersection homology groups. In this section, we provide the precise

definition of perversity.

In fact, the definition of perversity has evolved. We begin with the most general definition

and then discuss some of the other limitations that were originally imposed.

Definition 3.1.1. Let X be a filtered space of formal dimension n, and let S be the set of

strata of X. A perversity on X is a function

p̄ : S → Z

such that p̄(S) = 0 if S ⊂ X − ΣX , i.e. if S is a regular stratum.

Remark 3.1.2. Given the generality of the definition, one might wonder whether we could do

without the requirement that p̄(S) = 0 if S ⊂ X − ΣX , i.e. if S is a regular stratum. It will

turn out that we could just as well require that p̄(S) ≥ 0 if S is a regular stratum. However,

this would not change the intersection homology groups (or even of the intersection chain

complexes), and it is occasionally simpler in technical statements to have that p̄(S) = 0

for such strata. On the other hand, if p̄(S) < 0, the definition of intersection homology

either becomes trivial or simply doesn’t see the regular strata at all. We choose to avoid this

degenerate case; see Remarks 3.2.9 and 3.4.5 for more details.

Definition 3.1.3. If p̄ and q̄ are perversities on a filtered space X such that p̄(S) ≤ q̄(S)

for all singular strata S, then we will write p̄ ≤ q̄.

3.1.1 GM perversities

The original definition of perversity was more complex, owing to the setting and properties

of the original Goresky and MacPherson intersection homology groups. In particular, their

intersection homology of classical PL stratified pseudomanifolds possesses a Poincaré duality

theorem and is invariant of the filtration of the space as a pseudomanifold. We will see below

in detail how these requirements force additional conditions on the perversity parameters.

In fact, they will also place certain requirements on the space itself in that pseudomanifolds

for which these properties hold simultaneously must be classical pseudomanifolds.

For now, we will simply provide an alternative definition for what we will call Goresky-

MacPherson perversities or GM perversities. We will come to understand the additional

requirements later on. We will sometimes refer to perversities as defined in Definition 3.1.1

as general perversities when we wish to distinguish them from GM perversities.

One further point worth mentioning before providing the definition is that GM perversi-

ties assign the same value to all strata of the same codimension. Hence given that perversities

always evaluate to 0 on codimension 0 strata and that we will assume when using GM per-

versities that there are no codimension one strata, it is standard to write GM perversities as

functions of codimension with domain {2, 3, 4, . . .}.

Definition 3.1.4. A Goresky-MacPherson perversity (or GM perversity) is a function

p̄ : {2, 3, 4, . . .} → Z

such that
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1. p̄(2) = 0,

2. p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1.

The conditions of the definition say that a perversity is a function defined on the integers

≥ 2 that “starts” at 0 and then for each transition in the domain from k to k + 1 the

perversity value either stays the same or increases by 1. So a GM perversity is sort of a

“sub-step” function.

One convenient way to describe GM perversities is to think of them as sequences

[p̄(2), p̄(3), p̄(4), . . .].

So, for example, a GM perversity might look like

p̄ = [0, 1, 1, 2, 3, 3, 3, 4, 5, 5, . . .].

Remark 3.1.5. A GM perversity determines a general perversity in the following way. If p is

a GM perversity and X is a filtered space of formal dimension n with no codimension one

strata, then we can define an associated perversity p̄ on X by p̄(S) = p(codim(S)) for any

singular stratum S of X. In what follows, we will abuse notation by using the same symbol,

typically p̄, for a GM perversity and the general perversity it determines. All perversities

should be assumed to be general perversities unless explicitly stated otherwise.

There are a few particular perversities that have special importance:

Example 3.1.6. The minimal GM perversity is the zero perversity 0̄, which takes the smallest

possible values at each step by starting at 0 and then never increasing:

0̄ = [0, 0, 0, 0, . . .].

On the other hand, the maximal GM perversity is the top perversity t̄, which always

takes the step up

t̄ = [0, 1, 2, 3, . . .].

Both of these GM perversities can be extended to general perversities on arbitrary filtered

spaces in somewhat obvious ways. The general zero perversity always takes the value 0 for

all strata S of a filtered space X, i.e. 0̄(S) = 0 . Similarly, the general top perversity can

be defined by the function t̄(S) = codim(S)− 2 for all singular strata S. Note that we still

always set t̄(S) = 0 if S is a regular stratum. We shall see by our duality results that the

definition we have given here is indeed the most reasonable extension of t̄ for spaces with

strata of codimension one.

3.1.2 Dual perversities

The general top perversity t̄, defined so that t̄(S) = codim(S) − 2 for all singular strata S,

plays an especially important role in intersection homology Poincaré duality, as intersection

homology groups dualize with respect not only to dimension index but with respect to

perversities, which is defined in terms of the top perversity.
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Definition 3.1.7. Given a perversity p̄, its dual perversity (or complementary perversity) is

the perversity Dp̄ defined so that

Dp̄(S) = t̄(S)− p̄(S) = codim(S)− 2− p̄(S)

for all singular strata S, and Dp̄(S) = 0 if S is a regular stratum. We will often abbreviate

this property by saying Dp̄ = t̄− p̄ or p̄+Dp̄ = t̄.

Example 3.1.8. We have D0̄ = t̄ and Dt̄ = 0̄.

The following lemma, whose proof is immediate, shows that dualization acts as an invo-

lution on the set of perversities.

Lemma 3.1.9. For any perversity, D(Dp̄) = p̄.

Manifold theory, and in particular the study of the cup product pairing or the intersection

pairing, might lead us to expect that if duality between two objects is important, then

objects that are dual to themselves are even more important. For example, the symmetric

self-dual cup product pairing on H2k(M ;Q) of a closed oriented 4k-manifold yields signature

invariants. This theme will be developed in detail in Chapter 9. To see now what sorts of

perversities might have this property, we observe that since

p̄(S) +Dp̄(S) = codim(S)− 2

for all singular strata S, it will only be possible to have p̄(S) = Dp̄(S) on strata that are of

even codimension, in which case we would want p̄(S) = Dp̄(S) = codim(S)−2
2

. We would be

justified in calling this a middle perversity since it is halfway between the perversities 0̄ and

t̄, which are the extreme possibilities of GM perversities.

What about spaces that do possess odd codimension strata? If our goal is to continue to

have p̄(S) and Dp̄(S) remain as close in value as possible, we would want |p̄(S)−Dp̄(S)| ≤ 1

for all S. This implies that one of the perversities must have value1
⌊

codim(S)−2
2

⌋
and the other

one have value
⌈

codim(S)−2
2

⌉
. Such perversities were defined by Goresky and MacPherson so

that one would always take the higher value and the other would always take the lower value:

Definition 3.1.10. The lower middle GM perversity m̄ and the upper middle GM perversity

n̄ are defined by

m̄ = [0, 0, 1, 1, 2, 2, 3, . . .]

n̄ = [0, 1, 1, 2, 2, 3, 3, . . .].

These extend to general perversities with the definitions

m̄(S) =

⌊
codim(S)− 2

2

⌋
n̄(S) =

⌈
codim(S)− 2

2

⌉
.

1Here bxc denotes the greatest integer less than or equal to the real number x, and dxe denotes the least

integer greater than or equal to x.

87



Notice that if X has no strata of odd codimension then m̄ and n̄ take the same value

on all strata. In this case it is customary to use either symbol m̄ or n̄ to stand for a single

“middle perversity.”

Remark 3.1.11. The reader might well ask why we want to make a choice such that always

m̄(S) ≤ n̄(S). For example, why is this better than two dual GM perversities such as

[0, 0, 1, 2, 2, . . .] and [0, 1, 1, 1, 2, . . .] in which sometimes one and sometimes the other per-

versity is allowed to be the greater one. Beyond it being pleasing to have made a definite

choice, we will see that it is possible to have maps between intersection homology groups

of a given space of the form I p̄H∗(X) → I q̄H∗(X) when p̄(S) ≤ q̄(S) for all singular strata

S. Thus it is possible to have such a comparison map Im̄H∗(X)→ I n̄H∗(X), but we would

not generally be able to do this for other pairs of dual perversity “near” the middle. This

comparison map will be critical for finding intersection homology groups that are self-dual

under the intersection pairing in Chapter 9.

3.2 Simplicial intersection homology

Now that we have defined perversities on stratified spaces, we are prepared to provide a

first definition of intersection chains I p̄C∗(X) and intersection homology I p̄H∗(X). As for

classical homology, there are in fact several different types of chain complexes — simplicial,

singular, piecewise linear, etc.2 — that lead to the same homology groups, at least with the

proper assumptions. We will consider each of these in turn. However, the reader should also

be aware that there are at least two competing definitions in another sense, reflecting certain

challenges that arise when perversities take values that are “too high,” meaning that they

take values on strata that exceed the value of the top perversity t̄, or when working with

spaces with strata of codimension one. When either of these conditions arise, the definitions

of intersection homology become incompatible. However, they do all agree, for example,

when considering Goresky-MacPherson perversities and classical pseudomanifolds.

In order to ease the exposition, we will begin with the definitions of intersection homology

closest to the original definition of Goresky and MacPherson [105], though the reader should

be aware that this is not the definition that we will ultimately want when p̄(S) ≥ t̄(S) for

some stratum or when discussing stratified pseudomanifolds with codimension one strata

(though it is still defined in those cases). Once we have gotten used to the basic ideas,

we will proceed to discuss how the definition should be modified to obtain the best results

in the general settings beginning in Chapter 8. Since we will eventually want to use the

notations I p̄C∗(X) and I p̄H∗(X) for the modified definition we will present later, for now we

use the notations I p̄CGM
∗ (X) and I p̄HGM

∗ (X). When we need to distinguish between the two

theories, we will refer to “GM intersection homology” or “non-GM intersection homology.”

We will begin with a simplicial3 version of intersection homology. For this we let X be

2This might be a good place to note that a good CW theory of intersection homology does not seem to

have been worked out, perhaps for reasons that will become evident as we proceed.
3The initial Goresky-MacPherson intersection homology of [105] is defined with respect to PL chains,

meaning the direct limit complex of simplicial chains over all triangulations compatible with the stratification.
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a simplicial filtered space, meaning that X is a filtered space with a fixed triangulation such

that each skeleton of the filtration is a simplicial subcomplex (not necessarily a simplicial

skeleton).

We assume the reader is familiar with standard simplicial homology built from oriented

simplices as in, e.g. [181, 219]. Let us briefly review simplicial chain complexes to fix our

notation; see [181, Section 5] or [219, Section 4.1] for more details4.

Recall that ifK is a simplicial complex then an oriented i-simplex ofK is an i-dimensional

simplex of K together with an equivalence class of orderings of its vertices, where two

orderings are equivalent if they differ by an even permutation. If we fix an orientation for

each simplex, then the simplicial chain group Ci(K) is the free abelian group generated by

the oriented simplices. So if ξ ∈ Ci(K), it can be written as a sum ξ =
∑

j ajσj, where each

σj is a unique simplex of K with its fixed orientation, each aj ∈ Z, and the sum is finite. We

typically leave σj out of the sum if its coefficient aj is 0, and we say that σj is a “simplex of

ξ” if aj 6= 0. The support of ξ, written |ξ|, is the union of the simplices of ξ (though if ξ = σ

for some oriented simplex σ, we will tend to write σ rather than |σ|). For each oriented

simplex σ, we identify the oriented simplex that has the same underlying geometric simplex

but the opposite orientation with −σ ∈ Ci(K). If the vertices of σ are {vj}ij=0, we can write

[v0, . . . , vi] to represent σ with the orientation corresponding to the indicated ordering. The

boundary map ∂ : Ci(K)→ Ci−1(K) is defined to act on an oriented simplex by

∂[v0, . . . , vi] =
i∑

k=0

(−1)k[v0, . . . , v̂k, . . . , vi],

where v̂k indicates that we remove the vertex vk and so obtain an oriented i − 1 simplex.

Then we obtain ∂ : Ci(K) → Ci−1(K) by extending linearly, with ∂ ◦ ∂ = 0 so that C∗(K)

is a chain complex. The ith simplicial homology group is

Hi(K) =
ker(∂ : Ci(K)→ Ci−1(K))

im(∂ : Ci+1(K)→ Ci(K))
.

If X is a space triangulated by K, we will write C∗(X) to mean C∗(K) when the trian-

gulation is understood.

Remark 3.2.1. An orientation on a simplex as just described also determines an orientation

for it as a ∂-manifold if i > 0: By our Definition B.1.4, our simplicial complexes are all

contained in Euclidean space, so every i-simplex σ is contained in a unique minimal i-

dimensional affine space that can be identified with the tangent space at each point of σ. If

σ is oriented by the ordering [v0, . . . , vi], then the ordered set of vectors [−−→v0v1, . . . ,
−−→v0vi] gives

a basis for the tangent space at v0, and hence fixes an orientation for σ, which is clearly

We will address this version shortly.
4The simplicial homology treated by Hatcher in [125, Section 2.1] is a bit different, being built on ordered

simplices as opposed to oriented simplices. We will need ordered simplices a bit later in Section 4.4.2 and

will review them at that time. The two resulting chain complexes, oriented and ordered, are chain homotopy

equivalent by [181, Theorem 13.6].
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orientable. This observation is useful if, for example, we have another i-simplex τ contained

in σ, for it then makes sense to speak of orienting τ compatibly with σ: the orientation of σ

as a ∂-manifold restricts to an orientation of τ as a ∂-manifold, and then we may choose an

ordering of the vertices of τ consistent with this orientation.

We can now define the complex of intersection chains as a subcomplex of C∗(X):

Definition 3.2.2. Let X be a simplicial filtered space endowed with a general perversity p̄,

and let C∗(X) be the chain complex of oriented simplices of X.

We deem an i-simplex σ of X to be p̄-allowable if, for each stratum S ⊂ X,

dim(σ ∩ S) ≤ i− codim(S) + p̄(S). (3.1)

Here codim(S) is the formal codimension of S in the filtered space X, while dim(σ ∩ S) is

the topological dimension. As everything here is simplicial, this intersection will be a union

of open faces of σ, so dim(σ ∩ S) will be the highest dimension of such an open face. If

σ ∩ S = ∅, we let dim(∅) = −∞.

If inequality (3.1) is satisfied for some σ and some S, we say that σ is p̄-allowable with

respect to the stratum S. If the perversity p̄ has been fixed in advance, we will sometimes

simply say that σ is allowable.

A chain ξ ∈ Ci(X) is p̄-allowable if all of the simplices of ξ and all of the simplices of ∂ξ

(with non-zero coefficient) are p̄-allowable.

Let I p̄CGM
∗ (X) ⊂ C∗(X) be the chain complex of p̄-allowable chains, which we call the

perversity p̄ intersection chain complex. Let the perversity p̄ intersection homology groups

be the homology groups H∗(I
p̄CGM
∗ (X)).

A number of observations are in order. First of all, we should note that each I p̄CGM
∗ (X)

is well-defined as a chain complex. In particular, if ξ and η are p̄-allowable chains, then every

simplex in ξ+η, −ξ, ∂(ξ+η) = ∂ξ+∂η, or ∂(−ξ) = −∂ξ must be a simplex already contained

in ξ, η, ∂ξ, or ∂η and so must be p̄-allowable. Thus each I p̄CGM
∗ (X) is a subgroup of C∗(X).

Each is also a well-defined chain complex by fiat, owing to the declaration that in order for ξ

to be p̄-allowable so must be all of the simplices of ∂ξ. Of course, as I p̄CGM
∗ (X) ⊂ C∗(X), we

always have ∂(∂ξ) = 0, so ∂ξ is a p̄-allowable chain so long as it is composed of p̄-allowable

simplices.

We will discuss motivation for this definition in Section 3.2.2 after computing a few

examples. The interested reader may feel free to skip ahead to that section now and then

come back to the examples here.

3.2.1 First examples

In order to get a feel for working with intersection homology, let us compute some elementary

examples.

Example 3.2.3. For the general idea in abstract, consider Figure 3.1, which shows two 2-

simplices that intersect a stratum S. The intersection dimension on the left is 0 and on the

right it is 1. If we use the perversity t̄, then 2−codim(S)+ t̄(S) = 2−codim(S)+codim(S)−
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Figure 3.1: Two 2-simplices that intersect the stratum S.

2 = 0. So the simplex on the left is t̄-allowable with respect to S, but the one on the right

is not.

Example 3.2.4. Let X = X0 be a point. In this case there is only one stratum, X itself with

codimension 0, and it is a regular stratum5 so p̄(X) = 0 for any perversity p̄. There is also

only one simplex to work with, a 0-simplex we shall denote v. The allowability condition

then becomes that

dim(v) = dim(v ∩X) ≤ dim(v)− codim(S) + p̄(S) = 0− 0 + 0 = 0.

This is evidently true, so v is allowable, ∂v = 0 is allowable, and I p̄CGM
∗ (X) = C∗(X),

the ordinary chain complex. So in this case intersection homology yields nothing new.

Figure 3.2: The boundary of the simplex [v0, v1, v2]

Example 3.2.5. For a more interesting example, let X be the boundary of the simplex

[v0, v1, v2]; see Figure 3.2. Suppose X is filtered as X0 = {v0} ⊂ X = X1. Then X

has two strata: the regular stratum X −{v0} and the singular stratum {v0} of codimension

1. For any perversity, we must have p̄(X −{v0}) = 0, but p̄({v0}) could be any integer. Let

us generically use the notation v for a 0-simplex and e for a 1-simplex. Then a 0-simplex v

is allowable if it satisfies the conditions

5Recall that writing X = X0 lets us know that the formal dimension is 0.
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dim(v ∩ (X − {v0})) ≤ dim(v)− codim(X − {v0}) + p̄(X − {v0}) = 0− 0 + 0 = 0

dim(v ∩ {v0}) ≤ dim(v)− codim({v0}) + p̄({v0}) = 0− 1 + p̄({v0}) = p̄({v0})− 1.

Since dim(v∩(X−{v0})) must always be ≤ 0 (as v is a 0-simplex), we see that any 0-simplex

in X−{v0} is allowable. By contrast, the 0-simplex v0 itself is allowable only if p̄({v0}) ≥ 1.

Similarly, for a 1-simplex e, the allowability conditions are

dim(e ∩ (X − {v0})) ≤ dim(e)− codim(X − {v0}) + p̄(X − {v0}) = 1− 0 + 0 = 1

dim(e ∩ {v0}) ≤ dim(e)− codim({v0}) + p̄({v0}) = 1− 1 + p̄({v0}) = p̄({v0}).

Again dim(e∩(X−{v0})) must always be ≤ 1 since e is a 1-simplex, and so the first condition

always holds. Additionally, the 1-simplex [v1, v2] does not intersect {v0}, so it is allowable

for any p̄. The 1-simplices [v0, v1] and [v0, v2] both intersect {v0} with dim(e∩ {v0}) = 0, so

they will be allowable only if p̄({v0}) ≥ 0.

So already we see that there are three distinct cases according to whether p̄({v0}) is > 0,

= 0, or < 0:

• If p̄({v0}) > 0, then we have seen that all simplices will be allowable, and hence all

chains will be allowable. In this case I p̄CGM
∗ (X) = C∗(X), and we recover the standard

simplicial chain complex, so I p̄HGM
∗ (X) = H∗(X).

• If p̄({v0}) < 0 then neither the 0-simplex [v0] nor either of the 1-simplices of X inter-

secting {v0} will be allowable, but the 1-simplex [v1, v2] and the 0-simplices [v1], [v2] are

allowable. So I p̄CGM
∗ (X) = C∗([v1, v2]), the simplicial chain complex of the 1-simplex

[v1, v2]. Correspondingly I p̄HGM
∗ (X) is the homology of the interval.

• If p̄({v0}) = 0, then our analysis concerning 0-simplices is the same as in the previous

case: [v0] is not allowable, but [v1] and [v2] are. Now, however, all the 1-simplices are

allowable. So what is the intersection chain complex I p̄CGM
∗ (X)? Here for the first

time we must pay attention to boundaries. The 1-simplex [v0, v1] is allowable as a

simplex, but it is not allowable as a chain because its boundary [v1] − [v0] contains

a 0-simplex that is not allowable. However, the chain [v0, v1] − [v0, v2] is allowable

because its boundary is [v1] − [v0] − ([v2] − [v0]) = [v1] − [v2], which is allowable. In

fact, we can see that I p̄CGM
1 (X) ∼= Z ⊕ Z generated by [v1, v2] and [v0, v1] − [v0, v2].

We have also seen that I p̄CGM
0 (X) ∼= Z ⊕ Z, generated by [v1] and [v2]. One can

then compute by hand, using the boundary map, that I p̄HGM
1 (X) ∼= Z, generated by

[v0, v1] − [v0, v2] + [v1, v2], just as for the standard homology, while I p̄HGM
0 (X) ∼= Z

generated by either [v1] or [v2], which are homologous via the 1-simplex [v1, v2]. So

ultimately it turns out that I p̄HGM
∗ (X) ∼= H∗(X) again here.

In the last case, p̄({v0}) = 0, there are some shortcuts we could have used to compute

the groups I p̄HGM
∗ (X) without having to compute the complexes I p̄CGM

∗ (X). For example,

92



since I p̄CGM
∗ (X) ⊂ C∗(X) and since we know from familiar homology computations that

the only cycles in C1(X) are the multiples of

ξ = [v0, v1]− [v0, v2] + [v1, v2],

these are also the only possible cycles in I p̄CGM
∗ (X). Therefore, since I p̄CGM

2 (X) = 0

trivially, to compute I p̄HGM
1 (X) we need only determine whether ξ is allowable. Once we

have determined that it is, then we must have I p̄HGM
1 (X) ∼= Z. Similarly, since all 0-

simplices are cycles, once we have noticed that [v0] is not allowable but that [v1], [v2], and

[v1, v2] are allowable, we can quickly conclude that I p̄HGM
0 (X) ∼= Z. Such computational

techniques will prove very useful.

Example 3.2.6. Let X again be the boundary of the 2-simplex [v0, v1, v2], but this time

suppose the filtration is the simplicial filtration, i.e. X0 = {[v0], [v1], [v2]} and X1 = X.

Suppose p̄({v0}) = p̄({v1}) = p̄({v2}) = 0. Now, by the same analysis as in Example 3.2.5,

none of the vertices are allowable but all of the edges are. Hence the cycle

[v0, v1]− [v0, v2] + [v1, v2]

is allowable and I p̄HGM
1 (X) ∼= Z, but since no vertices are allowable, I p̄HGM

0 (X) = 0.

Allowability with respect to regular strata

One observation we might conjecture from our first examples is that the allowability condition

is vacuous when it comes to regular strata. This is indeed the case as we formalize in the

following lemma, which will help shorten the computations in our further examples.

Lemma 3.2.7. Let σ be an i-simplex of a simplicial filtered space X and let S be a regular

stratum of X. Then the allowability condition (3.1) is always satisfied.

Proof. Since σ is an i-simplex, for any subspace Z ⊂ X it must be true that dim(σ∩Z) ≤ i,

and since codim(S) = p̄(S) = 0, the righthand side of the inequality (3.1) reduces to i.

Example 3.2.8. Suppose X is an n-dimensional simplicial filtered space that is filtered triv-

ially so that there are only regular strata; see Example 2.2.28. Then it follows from the

preceding lemma that I p̄CGM
∗ (X) = C∗(X).

Remark 3.2.9. Lemma 3.2.7 allows us to provide some justification for setting p̄(S) = 0 for

all regular strata. We see from the lemma that with p̄(S) = 0 all simplices are allowable with

respect to all regular strata. Furthermore, if p̄(S) = m for any m ≥ 0, then it is easy to see

that the same conclusion will hold, so as mentioned in Remark 3.1.2, any choice of p̄(S) ≥ 0

for regular strata would provide the same intersection chains, but we choose p̄(S) = 0 for

definiteness and convenience.

By contrast if S is regular and p̄(S) ≤ −1, then for an i-simplex to be allowable with

respect to S, we would need

dim(σ ∩ S) ≤ i− codim(S) + p̄(S) = i− 0 + p̄(S) ≤ i− 1.
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This implies that the interior of σ cannot be completely contained in any regular stratum,

and as the skeleta of the filtration are closed, this implies that σ ⊂ ΣX . So if p̄(S) ≤ −1 for

any regular stratum, no simplex can intersect that stratum at all. In other words, I p̄HGM
∗ (X)

does not see that stratum, so it is equal to I p̄HGM
∗ (X−S), noting that X−S is a subcomplex

of X so that this group is defined. Therefore, having regular strata with negative perversities

is the same as working on spaces without those strata, and we could just as well have taken

that view from the beginning and worked on a different space.

One could imagine there might be circumstances where it would nonetheless be useful to

keep the regular stratum and use a negative perversity, but in fact these don’t seem to come

up meaningfully in applications. Altogether, we therefore believe it reasonable to always

have p̄(S) = 0 for regular strata.

See Remark 3.4.5 below for the analogous considerations for singular intersection chains.

Effects of subdivision

Next we explore the effects of subdivision on the computation of intersection homology

groups.

Example 3.2.10. LetX = X1 again be the boundary of the 2-simplex [v0, v1, v2] as in Example

3.2.6. Now consider X ′, the first barycentric subdivision of X (see Example B.1.13), but with

the same filtration as in Example 3.2.6 so that the 0-skeleton of the filtration is {v0, v1, v2};
see Figure 3.3. We also continue to suppose p̄({v0}) = p̄({v1}) = p̄({v2}) = 0. So as seen in

the preceding example, these vertices are not allowable. But the barycenters of the edges will

be allowable vertices, and they will be homologous via simplicial paths that cross through

v0, v1, or v2, as all 1-simplices are allowable. Thus I p̄HGM
0 (X ′) ∼= Z.

Figure 3.3: A simplicial complex X ′ with six 0-simplices and six 1-simplices. The filtration

is (X ′)0 ⊂ (X ′)1 = X ′ with (X ′)0 = {v0, v1, v2}.

Example 3.2.11. Let Y = Y 2 be the suspension of the boundary of the 2-simplex [v0, v1, v2],

and let Y 0 = Y 1 = {v0, v1, v2}; see Figure 3.4. Let p̄ again be a perversity with p̄({v0}) =

p̄({v1}) = p̄({v2}) = 0. Let {n, s} be the other two vertices. Then we can easily check

that the two cone vertices [n] and [s] are the only allowable 0-simplices. Furthermore, as
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1− 2 + p̄({vi}) = −1, no 1-simplex of Y is allowable, and we must have I p̄HGM
0 (Y ) = Z⊕Z.

Yet if Y ′ is the first barycentric subdivision of Y , keeping the same filtration, then there are

allowable paths connecting any vertices and that don’t contain any of the vi, and so in this

case I p̄HGM
0 (Y ) = Z.

Figure 3.4: Left: the space Y . Right: The dotted path indicates a homology between [n]

and [s] in the barycentric subdivision.

These two examples show that the intersection homology groups are not independent of

the triangulation. This might raise some reasonable concerns; however, we will show below

in Theorem 3.3.20 that there is independence of the triangulation assuming some minor

conditions. In particular, the groups will stabilize with respect to repeated barycentric

subdivision.

Some more advanced examples

The next examples involve computations of the intersection homology of stratified spaces

built by coning off the boundary of a manifold. This example provides an intriguing first

glimpses of the duality results we shall study later.

Example 3.2.12. LetM be a connected n-dimensional triangulated ∂-manifold with boundary

∂M 6= ∅. Let c̄(∂M) be the simplicial cone on the boundary of M . In other words, for each

simplex [v0, . . . , vi] of ∂M , we add a simplex [v, v0, . . . , vi]; see [181, Section 8]. Let X be the

space obtained by coning off the boundary of M :

X = Xn = M ∪∂M c̄(∂M).

If v is the cone vertex, let X be filtered as a manifold stratified space by {v} ⊂ X. We

compute I p̄HGM
∗ (X) for any perversity p̄.

We have already seen that every simplex is allowable with respect to the regular stratum

X − {v}, so we need only check which simplices are allowable with respect to {v}. This is

only an issue for those simplices containing v, for which dim(σ ∩ {v}) = 0. So if σ is an
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i-simplex, we need

0 ≤ i− codim({v}) + p̄({v}) = i− n+ p̄({v}).

In other words, an i simplex is allowed to contain v if only if i ≥ n− p̄({v}).
From this computation, we deduce that for i < n − p̄({v}), no allowable simplex, and

hence no allowable chain, may contain v. Hence in this range every simplex must be a

simplex in M itself and I p̄CGM
i (X) = Ci(M). On the other hand, since every simplex is

allowable for i ≥ n − p̄({v}), every chain is allowable for i > n − p̄({v}), and so in this

range I p̄CGM
i (X) = Ci(X). The complicated case arises for i = n − p̄({v}). Now each

i-simplex is allowable, but no i− 1 simplex may contain v. So I p̄CGM
n−p̄({v})(X) consists of all

the (n− p̄({v}))-chains of X whose boundaries are in M .

Let us use these computations to compute the intersection homology groups. Since

I p̄CGM
n−p̄({v})(X) in particular includes all cycles of Cn−p̄({v})(X), we have I p̄HGM

i (X) = Hi(X)

for i ≥ n − p̄({v}). It also follows readily from the above discussion that I p̄HGM
i (X) =

Hi(M) for i < n− p̄({v})− 1. To compute I p̄HGM
n−p̄({v})−1(X), we observe that the cycles in

I p̄CGM
n−p̄({v})−1(X) are precisely the cycles in M , but they may bounded any chain in X. This

is a description of the image group of the homomorphism Hn−p̄({v})−1(M)→ Hn−p̄({v})−1(X)

induced by the inclusion M ↪→ X.

Summarizing, we have computed

I p̄HGM
i (X) ∼=


Hi(X), i ≥ n− p̄({v}),
im(Hi(M)→ Hi(X)), i = n− p̄({v})− 1,

Hi(M), i < n− p̄({v})− 1.

In particular, if p̄({v}) ≥ n, then I p̄HGM
∗ (X) ∼= H∗(X), and if p̄({v}) ≤ −2 then I p̄HGM

∗ (X) ∼=
H∗(M). In fact, the latter isomorphism is also true when p̄({v}) = −1, since then

Hn(M) = im(Hn(M)→ Hn(X)) = 0.

It is interesting to observe that if i > 0 then Hi(X) ∼= Hi(M,∂M) by an easy homological

argument (employ the exact sequence of the pair, the contractibility of cones, and excision),

so that in this case we can identify I p̄HGM
i (X) with Hi(M,∂M) if i ≥ n − p̄({v}) > 0 and

I p̄HGM
n−p̄({v})−1(X) with

im(Hn−p̄({v})−1(M)→ Hn−p̄({v})−1(M,∂M))

if n− p̄({v})− 1 > 0. In particular, if n > p̄({v}) + 1, we can reformulate our computation

as

I p̄HGM
i (X) ∼=


Hi(M,∂M), i ≥ n− p̄({v}),
im(Hi(M)→ Hi(M,∂M)), i = n− p̄({v})− 1,

Hi(M), i < n− p̄({v})− 1.

This innocent-seeming computation is actually fairly remarkable. The intersection ho-

mology groups incorporate both the groups H∗(M) and the groups H∗(M,∂M) with a tran-

sition point depending on the perversity. At the transition point, we have im(Hi(M) →
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Hi(M,∂M)). This is already reminiscent of duality results, as Lefschetz duality provides

pairings (in appropriate dimensions) between H∗(M) and H∗(M,∂M) and self pairings on

im(H∗(M)→ H∗(M,∂M)).

Example 3.2.13. The last example involved considering what happens at a cone vertex of a

cone on a manifold. This next example, in which we compute the intersection homology of

a suspension of a simplicial filtered space, is somewhat similar in terms of the involvement

of cones, though the computations become more involved. We present this computation

as an extended example of the kinds of computations that might arise when working with

simplicial intersection homology. We note that such computations become much simpler once

further tools are developed, such as singular intersection homology and the Mayer-Vietoris

sequence. Singular intersection homology might give a different computation depending on

the properties of the triangulation; however, singular and simplicial intersection homology

will agree for suitably fine triangulations by Corollary 3.3.22 and Theorem 5.4.2, below. Thus

the reader who doesn’t want to get too bogged down in the following lengthy computation

may safely skip ahead, perhaps simply noting the final results at the end of the example.

Let X be a compact (m − 1)-dimensional simplicial filtered space, and let SX be the

simplicial suspension of X obtained by adjoining two closed cones on X along X. In other

words, we form SX from X by adding two new 0-simplices n and s and then for each simplex

[v0, . . . , vi] of X, we also now have simplices [n, v0, . . . , vi] and [s, v0, . . . , vi]; see [181, Section

8, Exercise 1]. The suspension has a natural filtration given by (SX)i+1 = S(X i) for i ≥ 0

and by letting (SX)0 = {n, s}, the “north and south poles” given by the two cone vertices.

The strata of SX are {n}, {s}, and the collection of ST −{n, s} where T is a stratum of X.

Let p̄ be a perversity on SX. For simplicity, we will compute the example for which

p̄({n}) = p̄({s}), but we encourage the reader to consider the more general case as an

instructive exercise. It will be useful to let p̄X be the perversity on X defined by p̄X(T ) =

p̄(ST − {n, s}).
To begin to compute I p̄CGM

∗ (X), we first observe that since the codimension of a stratum

T in X is the same as the codimension of ST − {n, s} in SX, the condition for a simplex

contained in X to be p̄X-allowable with respect to a stratum T ⊂ X is exactly the same as

the condition for the simplex to be p̄-allowable with respect to ST − {n, s} in SX.

Next we consider simplices containing n or s. Notice that any simplex of dimension > 0

containing one of these vertices can be written as a cone on a simplex contained in X, i.e. it

has the form [w, v0, . . . , vi] for [v0, · · · , vi] an i-simplex of X and w ∈ {n, s} (see [181, Section

8]). If σ = [v0, . . . , vi] is a simplex of X, let c̄nσ = [n, v0, . . . , vi] and c̄sσ = [s, v0, . . . , vi].

It is easy to check that c̄n and c̄s generate homomorphisms C∗(X) → C∗+1(SX) if we let

c̄n(0) = 0 and c̄s(0) = 0, though these are not chain maps. In fact ∂(c̄nξ) = ξ− c̄n(∂ξ) if ξ is

a chain of dimension greater that 0; if [v] is a 0-simplex, then ∂(c̄n[v]) = [v]− [n]. Similarly

formulas hold for c̄s. Conversely, if τ is a simplex containing n, then τ can be written (up to

sign) as [n, v0, . . . , vi], and we recognize τ as a cone on ±σ = ±[v0, . . . , vi] ∈ X. Again the

analogous statement holds for simplices containing s. No simplex contains both n and s.

Now, let σ = [v0, . . . , vi] be an i-simplex inX. Then σ is p̄X-allowable inX with respect to

a stratum T ⊂ X if and only if c̄nσ and c̄sσ are p̄-allowable in SX with respect to ST−{n, s}.
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The argument is the same for each of c̄nσ and c̄sσ so we provide only the former. Clearly,

dim(c̄nσ∩(ST−{n, s})) = dim(σ∩T )+1, while codimX(T ) = codimSX(ST−{n, s}), (using

the notation codimZ(·) to denote codimension within the space Z). Thus the inequality

dim(σ ∩ T ) ≤ i− codimX(T ) + p̄X(T )

is equivalent to the inequality

dim(c̄nσ ∩ (ST − {n, s}))− 1 ≤ i− codimSX(ST − {n, s}) + p̄(ST − {n, s}),

which we can rewrite at

dim(c̄nσ ∩ (ST − {n, s})) ≤ i+ 1− codimSX(ST − {n, s}) + p̄(ST − {n, s}).

Hence as c̄nσ is an i+ 1 simplex, we see that the conditions for the allowability of σ and c̄nσ

with respect to T and ST − {n, s} are equivalent.

Next we look at allowability with respect to the strata {n} and {s}. As in our previous

computation, if a simplex contains the vertex n then dim(σ ∩ {n}) = 0. So for an i-simplex

σ containing n to be allowable with respect to {n}, we need

0 ≤ i− codim({n}) + p̄({n}) = i−m+ p̄({n}).

In other words, an i simplex is allowed to contain n only if i ≥ m − p̄({n}), and similarly

for the vertex s.

So if i < m− p̄({n}), no allowable i-simplex, and hence no allowable chain, may contain

n (or s), and so all such chains must be contained in X. But we have already noted that a

simplex in X is p̄-allowable in SX if and only if it is p̄X-allowable in X. So for i < m−p̄({n}),
we have I p̄CGM

i (SX) = I p̄XCGM
i (X), and it follows that I p̄HGM

i (SX) = I p̄XHGM
i (X) for

i < m− p̄({n})− 1.

We also have that any cycle in I p̄CGM
m−p̄({n})−1(SX) is contained in X, but chains in

I p̄CGM
m−p̄({n})(SX) may contain the suspension vertices. So suppose that ξ is a cycle in

I p̄CGM
m−p̄({n})−1(SX) and that m − p̄({n}) − 1 > 0. Then ξ ∈ I p̄XCGM

n−p̄({n})−1(X) and

c̄nξ ∈ I p̄XCGM
n−p̄({n})(SX) will be allowable — we have seen above that the cone on the

simplices of ξ, which are each p̄X-allowable, will be p̄-allowable with respect to all strata

ST − {n, s} but we have also just seen allowability of simplices of this dimension with re-

spect to {n}. Since ∂(c̄nξ) = ξ − c̄n(∂ξ) = ξ, the boundary of c̄nξ also consists of allowable

simplices. So c̄nξ is allowable, and ξ represents 0 in intersection homology. Since this argu-

ment applies to any cycle, we have I p̄HGM
m−p̄({n})−1(SX) = 0.

If m − p̄({n}) − 1 = 0, we have a slightly more delicate situation as if v is a 0-simplex

in X, then ∂(c̄n[v]) = [v]− [n], and the 0-simplex [n] is not allowable. However, for any two

allowable 0-simplices [v], [w] in X, the chain c̄n([v] − [w]) is an allowable 1-chain and has

boundary [v]− [w]. Hence any two allowable 0-simplices in SX are homologous. So in this

case I p̄HGM
0 (SX) is either Z or 0 according as there are or are not any allowable vertices in

X.

Finally, we must compute the intersection homology for degrees i ≥ m− p̄({n}). In this

case all cycles are allowable with respect to {n, s}. We will see that, except in low-dimensional
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cases, these intersection homology groups are equal to the intersection homology groups of

X in dimension i− 1. This agrees with what one might expect from the suspension formula

for ordinary homology H̃i(SX) = H̃i−1(X). Also as for ordinary homology, we will see that

the isomorphism can be given by suspending chains in X. We will consider the possibilities

i = 0, 1, which must be handled separately, below. For now assume that i ≥ m− p̄({n}) ≥ 2.

First suppose ξ ∈ I p̄CGM
i (SX), with i ≥ m − p̄({n}) ≥ 2, is a cycle that does not

intersect {n, s}. Then the same coning argument used above shows that ξ is the boundary

of the allowable chain c̄nξ. Similarly, suppose ξ is a cycle containing a simplex that includes,

say n, but not s. Then we can write ξ uniquely as ξ = x + c̄ny, where x and y are each

contained in X; c̄ny contains exactly those simplices of ξ containing n and then x = ξ− c̄ny.

We do not assume that x or cny are allowable chains, as their boundaries might not be

allowable, though of course all simplices of x and cny are allowable, as ξ is. This implies, as

above, that all simplices of c̄nx are allowable, and we next show that ∂(c̄nx) = ξ. Since ξ is

a cycle, we have ∂x = −∂(c̄ny) = −y + c̄n(∂y). As x and y are contained in X, so must be

∂x+ y = c̄n(∂y), which is a contradiction unless ∂y = 0. So we must have ∂y = 0, and now

we compute that

∂(c̄nx) = x− c̄n(∂x)

= x+ c̄n(∂(c̄ny))

= x+ c̄n(y − c̄n∂y)

= x+ c̄ny

= ξ.

So we see that the only cycles that might not be trivial in intersection homology in this

dimension range are those containing both n and s. We can write any such intersection cycle

uniquely as ξ = x+ c̄ny− c̄sz, where x, y, z are contained in X and composed of p̄-allowable

simplices, though their individual boundaries might not be. By arguments similar to those

above, c̄nx is composed of allowable simplices but now with boundary

∂(c̄nx) = x− c̄n(∂x)

= x+ c̄n∂(c̄ny − c̄sz)

= x+ c̄n(y − c̄n(∂y)− z + c̄s(∂z))

= x+ c̄n(y − z).

For the last equation, we have used that

∂x = −∂(c̄ny) + ∂(c̄nz) = −y + c̄n(∂y) + z − c̄s(∂z)

and so, since x, y, z ∈ X, we must have ∂y = ∂z = 0, as in the argument above. Therefore,

ξ − c̄nz + c̄sz = x+ c̄ny − c̄sz − c̄nz + c̄sz

= x+ c̄n(y − z)

= ∂(c̄nx).
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As the cycle z is allowable, so is the cycle c̄nz− c̄sz, which we denote Sz and call the suspen-

sion of z. This calculation also shows that ∂c̄nx is allowable, and so c̄nx is an allowable chain.

Our last computation therefore shows that every cycle of I p̄CGM
i (SX) for i ≥ m−p̄({n}) ≥ 2

is homologous in I p̄CGM
∗ (SX) to a suspension of an allowable cycle of I p̄XCGM

i−1 (X), i.e. sus-

pension induces a surjective homomorphism S : I p̄XHGM
i−1 (X)→ I p̄HGM

i (SX).

We next show that the intersection homology homomorphism S is also injective in this

dimension range. Suppose z is an allowable cycle in I p̄CGM
i−1 (X) so that Sz is a cycle in

I p̄CGM
i (SX) for i ≥ m− p̄({n}), and suppose Sz bounds an allowable i+ 1 chain Z. Again

we can uniquely write Z = c̄nA− c̄sB +D for chains A,B,D contained in X and composed

of allowable simplices; and again A,B,D need not be allowable as chains, a priori. However,

we have

Sz = ∂Z

= ∂(c̄nA− c̄sB +D)

= A− c̄n(∂A)−B + c̄s(∂B) + ∂D,

and since Sz = c̄nz− c̄sz, we can identify the subchains of Sz in each equation that contain

n to obtain c̄nz = −c̄n∂A. It follows that z = −∂A. As A consists of allowable cycles,

this shows that z bounds an intersection chain in X. So the suspension homomorphism is

injective for i ≥ m− p̄({n}) ≥ 2.

To conclude we must consider the cases i ≥ m− p̄({n}) and i = 0, 1. For i = 0, we note

that [n] and [s] are now both allowable 0-cycles. If there is any allowable 0-simplex [v] in X,

then c̄n and c̄s are allowable and show that [v], [n], and [s] are all intersection homologous

so I p̄HGM
0 (SX) = Z. However, if there is no allowable 0-simplex [v] in X, then [n] and

[s] are not intersection homologous as any 1-chain with boundary [n] − [s] would have to

include an edge [n, v] for some 0-simplex [v] in X, and we know this will be allowable only

if [v] is allowable by our work way back at the beginning of the example. So in this case

I p̄HGM
0 (SX) = Z⊕ Z.

Finally, we consider i = 1 ≥ m − p̄({n}). The main concern here is that cones and

suspensions of 0-chains will be involved in the argument, but these must be treated carefully

since, for example, if [v] is a 0-simplex in X, then ∂(c̄n[v]) = [v] − [n], and, similarly,

∂(S[v]) = [s] − [n]. So the suspension of a 0-chain is not necessarily a cycle. In fact, if

η =
∑
aj[vj], then ∂(Sη) =

∑
aj([n] − [s]), so that Sη is a cycle if and only if

∑
aj = 0,

i.e. if the augmentation a(η) is 0. Similarly, ∂(c̄nη) = ∂(c̄sη) = η if and only if a(η) = 0.

Thus we should consider S̃ : I p̄X C̃GM
0 (X) → I p̄CGM

1 (SX), where I p̄X C̃GM
0 (X) is the kernel

of the augmentation map a : I p̄XCGM
0 (X) → Z restricted from a : C0(X) → Z. Now if

ξ ∈ I p̄CGM
1 (SX), and ξ = x+ c̄ny − c̄sz, then y and z must have trivial augmentations or ξ

could not be a cycle. With this observation, the above argument goes through to show that ξ

is intersection homologous to a suspension of an allowable 0-cycle with trivial augmentation.

Similarly, the above injectivity argument carries over for S̃, and it follows that S̃ induces an

isomorphism I p̄X H̃GM
0 (X)→ I p̄HGM

1 (SX).

At last we can provide now the full formula6:

6Note, as for ordinary homology, we let I p̄X H̃GM
i (X) = I p̄XHGM

i (X) if i 6= 0.
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I p̄HGM
i (SX) =



I p̄X H̃GM
i−1 (X), i ≥ m− p̄({n}), i 6= 0,

0, i = m− p̄({n})− 1, i 6= 0,

I p̄XHGM
i (X), i < m− p̄({n})− 1,

Z⊕ Z, i = 0 ≥ m− p̄({n}), X does not have an allowable 0-simplex,

Z, i = 0 ≥ m− p̄({n})− 1, X has an allowable 0-simplex,

0, i = 0 = m− p̄({n})− 1, X does not have an allowable 0-simplex.

Suppose that X has regular strata and is sufficiently finely triangulated that there is a

0-simplex in a regular stratum. Then X will have p̄X-allowable 0-simplices. Furthermore,

suppose that p̄({n}) = p̄({s}) ≤ m− 2, which will be the case if p̄ is a GM perversity. Then

our formula simplifies to a more manageable

I p̄HGM
i (SX) =


I p̄X H̃GM

i−1 (X), i ≥ m− p̄({n}), i 6= 0,

0, i = m− p̄({n})− 1, i 6= 0,

I p̄XHGM
i (X), i < m− p̄({n})− 1.

In this form, we can see more clearly that, except for some quirks in dimension 0 in

exceptional cases, I p̄HGM
i (SX) agrees with I p̄XHGM

i (X) in lower dimensions and with

I p̄XHGM
i−1 (X) in higher dimensions; it is 0 at the transition dimension, which depends on

the perversity.

In general, if p̄({n}) = p̄({s}) ≥ m, then I p̄HGM
i (SX) behaves like a suspension in ordi-

nary homology in all dimensions except i = 0, by always being isomorphic to I p̄XHGM
i−1 (X).

For p̄({n}) = p̄({s}) ≤ −2, we have I p̄HGM
∗ (SX) = I p̄XHGM

∗ (X), as if no suspension took

place.

3.2.2 Some remarks on the definition

In this section we briefly discuss the motivation for the definition of p̄-allowability and a

competing definition that we will not use.

The motivation for the definition of intersection homology

We should next briefly discuss the curious allowability condition that dim(σ ∩ S) ≤ i −
codim(S) + p̄(S) for an i-simplex σ. For this, recall that if Mm is a manifold with submani-

folds Nn and P p, then we say that N and P are in general position if dim(N∩P ) ≤ n+p−m.

In particular, this is the case if N and P are actually transverse, meaning that at each point

of N ∩P we have a neighborhood U so that the triple (U,N ∩U, P ∩U) is homeomorphic to

the triple (Rm,Rn × {0}, {0} × Rp). In smooth manifold theory, transversality is often the

more useful concept, but piecewise linear intersection theory requires only general position.

We will discuss piecewise linear intersection products in Section 8.5. For our current pur-

poses, we notice that since dim(P ) = p and dim(M) = m, then the codimension of P in M is

m−p, so that the definition of general position can be rewritten dim(N∩P ) ≤ n−codim(P ).
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So now let ξ be an i-dimensional simplicial chain in M , which we continue to let be

a manifold for the moment. We let |ξ| be its support, i.e. the union of simplices of ξ.

Furthermore, suppose M is filtered and that S is a manifold stratum. Then a requirement

of the form dim(σ∩S) ≤ i− codim(S) is simply the requirement that σ and S be in general

position. If this condition holds for all σ in ξ, then |ξ| and S are in general position.

Within a smooth manifold M , it is possible to manipulate smooth submanifolds by small

isotopies to make them transverse; see, for example, [38, Section II.15]. Similarly, there are

techniques for pushing polyhedra into general position ; see [197, Chapter 5]. More generally,

one can push chains into general position with respect to submanifolds or other chains by

isotopies, with the technique varying slightly depending on what category we’re in and what

kinds of chains we’re working with. And as far as homology is concerned, such isotopies

don’t change the homology class of a cycle. Consequently, if it suited our purposes, we

might define the ordinary homology of a manifold using only chains in general position with

respect to certain submanifolds or even more general subcomplexes.

Now, suppose X is a PL stratified pseudomanifold. If X is not a manifold, we no longer

expect it to be possible to achieve general position with respect to subspaces. For example,

let ξ be a 1-cycle that runs through the pinch point v of a pinched 2-dimensional torus; see

again Figure 1.4 on page 6. General position on a 2-manifold would require a 1-cycle and a

0-manifold to be disjoint, but there is no isotopy of the 1-cycle that can achieve that. So the

idea of the p̄-allowability condition is to provide a more flexible version of a general position

constraint that might still allow that 1-cycle if we so desire.

For our i-simplex σ, the requirement

dim(σ ∩ S) ≤ i− codim(S) + p̄(S)

differs from the general position condition only by the p̄(S) summand. So if p̄(S) = 0, we

recover general position, but having p̄(S) > 0 lets us relax the general position requirement by

a degree controlled by p̄. By contrast, taking p̄(S) < 0, which is less common, strengthens the

general position requirement! As p̄ is a function on strata, the perversity provides stratum-

by-stratum control over how much deviation from general position we are willing to allow in

defining the intersection chains. This is the origin of the term “perversity” — in some sense

it is perverse that we are not requiring general position7!

Later, in Section 8.5, we will see how this loosening of general position requirements

comes into play for constructing an intersection pairing that is well defined and nonsingular

on pseudomanifolds, despite their singularities. This was the original setting for Poincaré

duality on pseudomanifolds.

Strata vs. skeleta in the definition of intersection chains

In some sources, notably including the original Goresky-MacPherson paper [105], the com-

plex of intersection chains is defined not in terms of the dimensions of intersections of

simplices with strata but rather in terms of the dimensions of intersections of simplices

7The historical survey [141] contains a bit more regarding the origins of the terminology.
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with skeleta. In particular, this alternative definition tends to arise in settings where one

uses only GM perversities. Recall from Definition 3.1.4 that a GM perversity is a function

p̄ : {2, 3, 4, . . .} → Z such that p̄(2) = 0 and p̄(k) ≤ p̄(k+ 1) ≤ p̄(k) + 1. Further, as noted in

Remark 3.1.5, a GM perversity determines a general perversity on any filtered space X with

no codimension one strata by (abusing notation) letting p̄(S) = p̄(codim(S)) for a singular

stratum S.

Lemma 3.2.14. Let X be a simplicial filtered space without codimension one strata and of

dimension n, and let p̄ be a GM perversity. Let σ be an i-simplex of X. Then dim(σ ∩S) ≤
i−codim(S)+ p̄(S) for all singular strata S if and only if dim(σ∩Xk) ≤ i−(n−k)+ p̄(n−k)

for all k ≤ n− 2.

Proof. Before beginning with the details, we remind the reader that Xk is the k-skeleton of

the filtration on X, not the simplicial k-skeleton.

First, suppose that

dim(σ ∩Xk) ≤ i− (n− k) + p̄(n− k)

for all k ≤ n − 2, and let S be a singular stratum of X. By definition, S is a connected

component of Xk −Xk−1 for some k with k ≤ n− 2. So σ ∩ S ⊂ σ ∩Xk. Therefore,

dim(σ ∩ S) ≤ dim(σ ∩Xk) ≤ i− (n− k) + p̄(n− k) = i− codim(S) + p̄(S).

Conversely, suppose dim(σ∩S) ≤ i−codim(S)+p̄(S) for all singular strata S, and choose

some particular skeleton Xm, m ≤ n− 2. The skeleton Xm is a union of strata of dimension

≤ m, and so of codimension ≥ n − m. Suppose Xm = ∪jSj for some collection of strata

{Sj} of codimension ≥ n−m. Since σ is compact (or simply because it has a finite number

of faces), it intersects only a finite number of the Sj, and dim(σ∩Xm) = max{dim(σ∩Sj)}.
So

dim(σ ∩Xm) = max{dim(σ ∩ Sj)} ≤ max{i− codim(Sj) + p̄(Sj)}.

As p̄(k) ≤ p̄(k + 1) ≤ p̄(k) + 1, the function p̄(k) − k is decreasing (non-strictly). So if we

input to i− codim(Sj) + p̄(Sj) strata of codimension ≥ n−m, the maximum value will be

i− (n−m) + p̄(n−m). Thus

dim(σ ∩Xm) ≤ i− (n−m) + p̄(n−m),

as desired.

This lemma implies that when X is a simplicial filtered space with no codimension

one strata and p̄ is a GM perversity, we equally well could have used the dimensions of

intersections of simplices with skeleta, rather than strata, to define intersection homology,

and we would have obtained the same intersection chain complexes and intersection homology

groups. In fact, this statement holds more generally, as the reader may note that the

proof of the lemma really only used that the perversity was a nondecreasing function of the

codimension. We invite the reader to think through the most general case where the two

definitions are equivalent. But let us note that they are not equivalent in full generality:
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Example 3.2.15. Here’s a simple example. Let X be an n-simplex, n ≥ 2, filtered by its

simplicial skeleton. Let p̄ be a perversity defined in terms of codimension such that p̄(n) = n

and p̄(n − 1) = 0. Then for each vertex v, p̄({v}) = n and [v] is an allowable 0-simplex by

our usual definition. However, it is not true that

0 = dim({v} ∩X1) ≤ 0− (n− 1) + p̄(n− 1) = 1− n.

So, in general, it matters that we have used intersections with strata rather than intersec-

tions with skeleta to define intersection homology. As there are more strata than skeleta in

general and as strata are smaller than skeleta, the stratum definition is the more flexible one

and the one we maintain throughout the book, including as we move on to PL and singular

intersection homology theories.

3.3 PL intersection homology

As one learns in an introductory text on algebraic topology, there are many benefits to work-

ing with simplicial homology. For example, unlike singular homology, if the space is compact

then all of the chain groups are finitely generated. Additionally, there are no simplices of di-

mension higher than that of the space. Simplicial homology is also completely combinatorial,

and so, at least in theory, computations can be done by a computer. Nonetheless, there are

drawbacks to working with a fixed triangulation. Even given a triangulable manifold there

is not necessarily any canonical choice of triangulation, and, as we have seen, intersection

homology might depend on the choice of triangulation. There are also theorems that become

difficult to prove when locked into a specific triangulation.

In this section we turn to a homology theory that takes away the choice of triangulation

but that still takes advantage of piecewise linear structure when it exists. This is piecewise

linear (PL) homology. PL homology could be presented in any introductory algebraic topol-

ogy text that treats simplicial homology, though usually it is not considered as most texts

have little reason not to jump straight to singular homology. Nonetheless, for the purposes

of treating transversality and intersections in manifolds (or pseudomanifolds), which is a

topic that will concern us briefly later in Section 8.5, PL chains come in handy. In fact,

the language of PL chains was the original language in which intersection homology was

formulated by Goresky and MacPherson in [105]; despite our limited consideration, the in-

tersection pairing from the PL chain perspective was a motivating cornerstone for the entire

intersection homology theory!

Additionally, PL intersection homology will help us prove theorems about simplicial

intersection homology. This is not as big of an issue for ordinary homology where less

care needs to be taken to make sure that simplicial maps don’t inadvertently change the

allowability of simplices with respect to strata. But even for ordinary homology the reader

has likely had past opportunity to note that it is useful to have these multiple perspectives

available for computing what often amount to the same homology groups. For example, CW

homology is often the easiest to compute by hand, simplicial homology is perhaps the best

for asking a computer to compute homology, while singular homology is often the simplest
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to prove certain theorems about (while of course also being defined on more general spaces).

There does not seem to have developed a useful theory of intersection homology from the CW

perspective, but we will treat simplicial, PL, and singular intersection homology throughout

the first few chapters, ultimately demonstrating that the PL and singular theories agree on

PL spaces, and that these also agree with the simplicial theory if we impose a few additional

hypotheses. However, once we get to more sophisticated topics, it will be useful to focus

primarily, and often exclusively, on the singular theory, which applies in more situations.

One could also develop PL versions of these later results in detail and attempt to show that

they are equivalent to the singular versions, but this book will be long enough as it is!

3.3.1 PL homology

Let X be a PL space. Recall again that this means that X is endowed with a family of ad-

missible locally finite triangulations such that any subdivision of an admissible triangulation

is admissible and any two admissible triangulations have a common subdivision. The idea

of the PL chain complex is that it should contain simplicial chains that are simplicial with

respect to any admissible triangulation of X, and any two simplicial chains that differ just

by a subdivision should represent the same PL chain.

To formalize this notion, let us first recall that in Definition 2.5.1 we defined two trian-

gulations T = (K,h) and S = (L, j) of a PL space X to be equivalent triangulations if j−1h

is a simplicial isomorphism. Further, recall that if T = (K,h) is a triangulation then a sub-

division of T is a triangulation of the form T ′ = (K ′, h), where K ′ is a simplicial subdivision

(not necessarily barycentric) of K as a simplicial complex. If T = (K,h) and S = (L, j) are

equivalent triangulations, then any subdivision T ′ = (K ′, h) induces an equivalent subdivi-

sion S ′ = (L′, j) by letting the vertices of K ′ determine the vertices of L′ via j−1h, using

that j−1h is already linear on each simplex of K.

Now, let us observe that T can be given the structure of a directed set. Recall that a

directed set has a relation ≤ that is reflexive and transitive and such that any two elements

have a common upper bound, meaning that given any elements a, b, there is an element c

with a ≤ c and b ≤ c. If T = (K,h) and S = (L, j) are two triangulations in T , we will

say that T ≤ S if S is equivalent to a subdivision of T ; this includes the possibility that S

is equivalent to T itself. This relation is clearly reflexive, and it satisfies the upper bound

property because any two triangulations in T have a common subdivision, i.e. they have

subdivisions that are equivalent (see Definitions 2.5.1 and 2.5.2). In particular, if T ′ and S ′

are equivalent subdivisions of T and S, respectively, then we have T ≤ T ′ and S ≤ T ′ (as well

as T ≤ S ′ and S ≤ S ′). Finally, if T ≤ S ≤ R, with T = (K, k), S = (L, `), and R = (J, j),

then, by definition, there exist T ′ = (K ′, k) and S ′ = (L′, `) such that `−1k : K ′ → L

and j−1` : L′ → J are simplicial isomorphisms. But L′ induces via k−1` an equivalence

between S ′ and a subdivision T ′′ = (K ′′, k) of T ′, which is then also a subdivision of T . The

composition j−1``−1k = j−1k : K ′′ → J is then a simplicial isomorphism, so T ≤ R.

If T = (K,h) ∈ T is an admissible triangulation of X, we set CT
∗ (X) = C∗(K), the

simplicial chain complex of K. If T is equivalent to S = (L, j), the simplicial isomorphism

j−1h induces an isomorphism CT
∗ (X) → CS

∗ (X). If T ′ = (K ′, h) is a subdivision of T , then
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there is a subdivision chain map CT
∗ (X) → CT ′

∗ (X) that takes each oriented i-simplex σ of

K to the sum of the i-simplices of K ′ contained in σ with the compatible orientations, as

per Remark 3.2.1; see Figure 3.5. The existence of subdivision chain maps typically appears

in texts either only for barycentric subdivisions — where an easy precise inductive formula

is available — or as a consequence of the fancier machinery of the acyclic models theorem.

Unfortunately, such accounts do not tend to include the more geometric description we have

given for non-barycentric subdivisions; cf. [181, Section 17] and [219, Chapter 4.6]. So let us

sketch a proof of how to draw our description out of, say, [181, Theorem 17.2], which says

that if K ′ is a subdivision of K then there is a unique augmentation-preserving chain map

λ : C∗(K)→ C∗(K
′) such that |λ(σ)| ⊂ σ for each σ.

Figure 3.5: The subdivision chain map C∗(K)→ C∗(K
′) takes each oriented i-simplex of K

to the sum of the compatibly-oriented i-simplices of K ′ that it contains.

Lemma 3.3.1. Let K be a simplicial complex and K ′ a subdivision of K. Then the unique

augmentation-preserving chain map λ : C∗(K) → C∗(K
′) such that |λ(σ)| ⊂ σ for each

oriented simplex σ of K satisfies λ(σ) =
∑
τj, where if σ is an i-simplex the sum is over all

i-simplices of K ′ contained in σ, assuming each is oriented compatibly with σ.

Proof. Suppose that σ is an i-simplex of K and that in the subdivision K ′ the i-simplices con-

tained in σ are denoted {τj}j∈J . We can assume that σ and the τj are oriented compatibly;

see Remark 3.2.1. Then [181, Theorem 17.2] implies that we must have λ(σ) =
∑

j∈J ajτj
and that ∂λ(σ) = λ(∂σ) must be supported in |∂σ|. Each i − 1 simplex of K ′ contained

in σ but not contained in |∂σ| must be the face of exactly two of the τj by [181, Corollary

63.3.b], noting that (σ, ∂σ) is a relative homology i-manifold. So in order for ∂λ(σ) to be

contained in |∂σ|, we must have that if τj and τk share such an i− 1 face η then aj = ±ak.
But as τj and τk are compatibly oriented, we must in fact have aj = ak. This follows from

the orientation on η being determined by the orientations of τj and τk as in manifold theory

using the outward pointing normals: as τj and τk have compatible orientations but induce

oppositely directed outward pointing normals on η, they induce opposite orientations on η so

that the coefficient of η in ∂λ(σ) is 0 only if the coefficients of τj and τk agree. Furthermore,

as we know that Hi(σ, |∂σ|) ∼= Z, an argument analogous to that of [181, Corollary 65.2]

shows that we can move from any τj to any other τk by a sequence of i-simplices pairwise

intersecting in i− 1 simplices so that all of the coefficients of all of the τj must agree. If we

call this common value a, we have λ(σ) = a
(∑

j∈J τj

)
.
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So it remains to show that a = 1. For this, we use an induction argument. When

i = 0, the condition that λ be augmentation preserving guarantees that a = 1. Now

suppose i > 0 and that the result has been proven for dimensions < i. As λ is a chain

map, λ(∂σ) = ∂λ(σ) =
∑

j∈J a∂τj. If η is a particular i − 1 face of σ given an arbitrary

orientation then, by induction, λ(η) is the sum over the i − 1 simplices of K ′ contained in

|η| and compatibly oriented with η, each with coefficient 1. If δ is such an i− 1 simplex, it

follows that the coefficient of δ in λ(∂σ) is 1 or −1, depending on whether η appears with

coefficient 1 or −1 in ∂σ. Furthermore, δ is the i − 1 face of precisely one of the τj, say

τ0. So the coefficient of δ in
∑

j∈J a∂τj is a or −a depending on whether δ appears with

coefficient 1 or −1 in ∂τ0. But, as τ0 is compatibly oriented with σ and as δ is compatibly

oriented with η, it follows that the sign of the coefficient of η in ∂σ must be the same as the

coefficient of δ in ∂τ0, and so a = 1.

Corollary 3.3.2. If λ : C∗(K)→ C∗(K
′) is the subdivision chain map and ξ ∈ C∗(K), then

|λ(ξ)| = |ξ| and λ is injective.

Proof. The first claim follows directly from the lemma and definitions, recalling that if

ξ ∈ Ci(K) then |ξ| is the union of the i-simplices of K, i.e. the σk with non-zero coefficient

in the unique expression ξ =
∑
akσk for ξ. The injectivity of λ follows as a chain has empty

support if and only if it is the chain representing 0.

From the description in the lemma, it is clear that subdivision chain maps commute with

each other in the sense that if K has subdivisions K ′ and K ′′ with common subdivision

K ′′′, then the composition of subdivision maps C∗(K) → C∗(K
′) → C∗(K

′′′) and C∗(K) →
C∗(K

′′)→ C∗(K
′′′) agree: the image of an i-simplex in K under either composition is the sum

over all i-simplices of K ′′′ contained in σ and with the compatible orientation. Similarly, the

chain maps induced by simplicial isomorphisms commute with each other, and they commute

with the subdivision chain maps. So we obtain from the directed set T a directed system of

chain complexes consisting of the CT
∗ (X) for T ∈ T with the maps of the directed system

being the subdivision chain maps and maps induced by simplicial isomorphisms.

Definition 3.3.3. If X is a PL space and T is its family of admissible triangulations, the

PL chain complex C∗(X) is defined to be

C∗(X) = lim−→
T∈T

CT
∗ (X).

So each chain in C∗(X) can be described as a simplicial chain with respect to some

admissible triangulation of X, and two such simplicial chains defined with respect to possi-

bly different triangulations T, S represent the same PL chain if their images agree in some

common subdivision of T and S (up to the simplicial isomorphism between those subdi-

visions); see Figure 3.6. As a consequence of Corollary 3.3.2, each of the canonical maps

CT
∗ (X) → C∗(X) is injective, and we can let the support |ξ| of a PL chain correspond to

the support of any of its representatives, i.e. if ξ ∈ CT
i (K) with T = (K,h) represents

[ξ] ∈ Ci(X), then |[ξ]| = h(|ξ|) is the image of the union of the i-simplices of ξ.
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Figure 3.6: Simplicial 1-chains all representing the same PL chain

We will tend to denote chains in C∗(X) by letters like ξ. However, if we need to distinguish

between an element of C∗(X) and an element of some CT
∗ (X) representing it, as in the

preceding paragraph, then we will tend to use ξ for the element of CT
∗ (X) and [ξ] for the

element of C∗(X) that ξ represents. We also occasionally use [ξ] to represent a homology

class of the PL chain ξ. Which interpretation of [ξ] is meant will be determined by context

or by direct statement if confusion would otherwise result.

The following lemma might help simplify things a bit in thinking about PL chains.

Lemma 3.3.4. Let X be a PL space with family of admissible triangulations T . Let T0 =

(K,h) ∈ T , and let T0 be the subset of T consisting of subdivisions of T0. Then

C∗(X) = lim−→
T∈T

CT
∗ (X) ∼= lim−→

T∈T0
CT
∗ (X).

Remark 3.3.5. Essentially, this lemma says that you can fix your favorite triangulation of

X and then just work with the subdivisions of that triangulation. In what follows, we will

generally use this model of C∗(X) implicitly, leaving h tacit and simply saying that “K is a

triangulation of X.”

The proof of the lemma is really just a combination of the arguments that the family T0

is cofinal in T and that any cofinal subsystem of a direct system yields the same direct limit

as the full direct system8. So any cofinal system of triangulations would do for the role of

T0 in the lemma.

Proof of Lemma 3.3.4. As T0 is a subset of T , we have a canonical map φ : lim−→T∈T0
CT
∗ (X)→

lim−→T∈T C
T
∗ (X) = C∗(X).

If [ξ] ∈ C∗(X), then [ξ] can be represented by ξ ∈ C∗(L) for some triangulation S =

(L, j) of X. But T0 and S have some common subdivision given, say, by T ′0 = (K ′, h) and

S ′ = (L′, j) with j−1h a simplicial isomorphism. So then [ξ] is also represented by the image

ξ′ of ξ in C∗(L
′) under the subdivision map. As K ′ and L′ are isomorphic, it follows that ξ′

8Recall that a subset J0 of a directed set J is cofinal if for any y ∈ J there is a z ∈ J0 with y ≤ z; see

[181, Section 73]. Furthermore, recall that if Gj is a direct system of abelian groups indexed by J then there

is a canonical isomorphism lim−→j∈J0
Gj → lim−→j∈J Gj ; see [181, Lemma 73.1].
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is in the image of C∗(K
′) in C∗(L

′) under the map induced by the simplicial isomorphism,

and so [ξ] is in the image of lim−→T∈T0
CT
∗ (X). Thus φ is surjective.

Similarly, if [ξ] ∈ lim−→T∈T0
CT
∗ (X) is represented by some ξ ∈ C∗(K ′) for some subdivision

T ′0 = (K ′, h) of T0 and if φ([ξ]) = 0, then there is some S = (L, j) with T ′0 ≤ S such that the

image ξ′ of ξ in CS
∗ (X) = C∗(L) is 0. But then the image of ξ must also be 0 in any common

subdivision of T ′0 and S, and it follows that [ξ] = 0 in lim−→T∈T0
CT
∗ (X). So φ is injective.

The PL homology groups are defined to be the homology groups of the chain complex

C∗(X):

Definition 3.3.6. If X is a PL space, we define its PL homology groups to be

H∗(X) = H∗(C∗(X)).

As taking homology of a chain complex behaves well with respect to direct limits, these

groups are really just the ordinary simplicial or singular homology groups of X:

Proposition 3.3.7. If X is a PL space, then H∗(X) ∼= H∗(X), where H∗(X) are the singular

homology groups of X or the simplicial homology groups with respect to any triangulation.

Proof. Of course the isomorphism of simplicial and singular homology groups is a well known

property. See [181, Theorem 34.3] or [125, Theorem 2.27]. But also, letting T be the

admissible triangulations of X, we have

H∗(X) = H∗(C∗(X))

= H∗

(
lim−→
T∈T

CT
∗ (X)

)
∼= lim−→

T∈T
H∗
(
CT
∗ (X)

)
∼= H∗(X).

The two equalities come from the definitions. The first isomorphism is a standard algebraic

property of direct limits (see [71, Proposition VIII.5.20]). The last isomorphism follows

because the H∗
(
CT
∗ (X)

)
are all isomorphic to the simplicial homology of X with the sub-

division maps inducing homology isomorphisms; so the direct system of homology groups is

constant.

PL chains and PL maps

We also need to know that PL maps induce maps of PL chain complexes, and so of PL

homology. The following preliminary lemma will be useful. We refer to [181, Section 12] for

background about the chain map between simplicial chain complexes induced by a simplicial

map of simplicial complexes.

Lemma 3.3.8. Let f : K → L be a simplicial map, and let K ′ and L′ be subdivisions such

that the induced map f ′ : K ′ → L′ is also simplicial. Let sK : C∗(K) → C∗(K
′) and sL :

C∗(L)→ C∗(L
′) be the subdivision chain maps. Suppose ξ ∈ C∗(K). Then sLf(ξ) = f ′sK(ξ).
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Proof. Let σ be a (geometric) i-simplex of K. As f is simplicial, it either takes σ to a lower

dimensional simplex of L or it takes it linearly homeomorphically onto some i-simplex τ of

L. Now suppose σ is oriented and consider how f acts on σ by the map of chain complexes

f : C∗(K) → C∗(L). In the first case, f(σ) = 0 ∈ C∗(L), and, in the second case, f(σ) is

±τ ∈ C∗(L). Next, consider the subdivision maps. The map sK takes σ and subdivides it

into a chain sK(σ) ∈ Ci(K ′), which is the sum over the compatibly oriented i-simplices in

the subdivision σ′ of σ determined by K ′, and sL acts analogously on τ . In the case where

f collapses σ to a lower-dimensional face, this must be true of every i-simplex in σ′, and so

f ′(sK(σ)) = 0 = sLf(σ). And if f takes σ homeomorphically to an i-simplex τ of L, then

our assumptions imply that f must also take each simplex of σ′ homeomorphically onto a

simplex in the subdivision τ ′ of τ in L′, and there is a bijection between simplices of σ′ and

the corresponding simplices of τ ′. As all the simplices of σ′ are oriented coherently with

the orientation of σ and similarly all the simplices of τ ′ are oriented coherently with the

orientation of τ , then we must have f ′(sK(σ)) = ±sLτ , where the sign agrees with the sign

in f(σ) = ±τ . So f ′(sK(σ)) = sL(f(σ)), which implies the lemma.

Lemma 3.3.9. Let X and Y be PL spaces, and let f : X → Y be a PL map. Then f

induces a chain map f : C∗(X)→ C∗(Y ) and so a map of PL homology H∗(X)→ H∗(Y ).

Proof. By Lemma 3.3.4, it suffices to limit the triangulations of X and Y that we consider to

one family each, each of which consists of subdivisions of a single triangulation. It is therefore

safe to leave the triangulation maps tacit and identify X and Y with the underlying spaces

of simplicial complexes in Euclidean space and refer to f as the map between them. All

simplicial complexes arising in the proof below will be assumed to derive from these fixed

complexes by subdivision or as subcomplexes so that they are all compatible with the fixed

PL structures on X and Y .

Let [ξ] ∈ Ci(X). By the definition, this means that [ξ] can be represented as a simplicial

chain in C∗(K), where K is some simplicial complex with |K| = X. Let ξ be such a simplicial

chain, let |ξ| be its support, and let J0 be any finite subcomplex of K containing |ξ|. Let

L be a simplicial complex with |L| = Y . As J0 is compact, the restriction of f to J0 is a

proper map, and so by Theorem B.2.19 there are subdivisions J1 of J0 and L1 of L with

respect to which f : J1 → L1 is simplicial. So then f induces a map of simplicial chain

complexes f1 : C∗(J1)→ C∗(L1). Let ξ1 be the image of ξ in the subdivision J1. We can now

set f([ξ]) = [f1(ξ1)]. To see that this is well-defined, we need to verify that the construction

does not depend on the choices of K, J0, J1, L, or L1.

Suppose we instead choose a representative ξ̄ for [ξ] in a triangulation K̄ of X with |K̄| =
|K| = X, and let L̄ be an alternative triangulation for Y with |L̄| = |L| = Y . Note that we

must have |ξ̄| = |ξ|. In fact, as ξ and ξ̄ both represent the same PL chain, there is a common

subdivision K ′ = K̄ ′ of K and K̄ such that the images of ξ and ξ̄ in C∗(K
′) = C∗(K̄

′),

say ξ′ and ξ̄′, must agree. Then by Corollary 3.3.2 we have |ξ̄| = |ξ̄′| = |ξ′| = |ξ|. Let J̄0

be any finite subcomplex of K̄ containing |ξ̄|. Let J̄1 and L̄1 be subdivisions of J0 and L

with respect to which f is simplicial, let ξ̄1 be the image of ξ̄ in the subdivision J̄1, and let

f̄1 : C∗(J̄1)→ C∗(L̄1). We need to show that f1(ξ1) and f̄1(ξ̄) represent the same element of

C∗(Y ).
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The intersection |J0| ∩ |J̄0| = |J1| ∩ |J̄1| is a closed PL subspace of both |J0| = |J1| and

|J̄0| = |J̄1|, and so by Example B.4.3 there are subdivisions J2 of J1 and J̄2 of J̄1 with

respect to which the intersection is triangulated by subcomplexes, say M2 and M̄2. Let

J3 and L3 be subdivisions of J2 and L1 such that f : J3 → L3 is simplicial and induces

f3 : C∗(J3)→ C∗(L3), and let ξ3 denote the image of ξ under these subdivisions. By Lemma

3.3.8, f1(ξ1) and f3(ξ3) represent the same element in C∗(Y ). Furthermore, for the purposes

of computing f3(ξ3), we can consider the domain of f3 to be restricted to the subcomplex

of J3 triangulating |J1| ∩ |J̄1|; call this subcomplex M3. Analogously, we can perform a

“barred” version of this construction, and the proof reduces to comparing f3(ξ3), thinking

of f3 as restricted to M3, with f̄3(ξ̄3), constructed analogously by restricting f to M̄3. So

far, we have simplified the problem in that now |M3| = |M̄3|, whereas |J1| and |J̄1| did not

necessarily agree.

As the inclusion |M3| ↪→ X is PL and |M3| is compact, there are subdivisions M ′
3 of M3

and K3 of K so that the inclusion is simplicial, i.e. M ′
3 is a subcomplex of K3. Similarly,

we can construct M̄ ′
3 and K̄3. The complexes K3 and K̄3 must have a common subdivision

K4, and as ξ and ξ̄ represent the same PL chain, we can assume this is a subdivision in

which their images under subdivision ξ4 ∈ Ci(K4) and ξ̄4 ∈ Ci(K̄4) agree. The restriction

of this subdivision to |M3| = |M̄3| gives us a common subdivision M4 = M̄4 of M3 and M̄3

containing ξ4 = ξ̄4. Let L4 = L̄4 be a common subdivision of L3 and L̄3. Then let M5 = M̄5

and L5 = L̄5 be respective subdivisions of M4 = M̄4 and L4 = L̄4 such that f is simplicial

as a restricted map f5 : M5 → L5. We can define f̄5 : M̄5 → L̄5 similarly, but as M5 = M̄5,

L5 = L̄5, and f5 and f̄5 are both induced by the same map f , we have f5 = f̄5. Furthermore,

as ξ4 = ξ̄4, the images ξ5 and ξ̄5 under subdivision remain equal. So, employing Lemma 3.3.8

again, we have f3(ξ3) = f5(ξ5) = f̄5(ξ̄5) = f̄3(ξ̄3).

So we have show that the definition of f : C∗(X)→ C∗(Y ) is independent of the choices

made.

To see that f : C∗(X) → C∗(Y ) so defined is a homomorphism, suppose that [ξ], [η] ∈
C∗(X). If M and N are triangulations of X that contain simplicial representations of [ξ] and

[η], we can let K be a common subdivision of M and N and let ξ and η be the representatives

of [ξ] and [η] in C∗(K). Then we can choose J0 in the above construction large enough to

contain both |ξ| and |η|, and so also |ξ + η| ⊂ |ξ| ∪ |η|. As the subdivision chain map, the

simplicial chain map induced by f1, and the maps CT
∗ (Y )→ C∗(Y ) are homomorphisms, it

follows that

f([ξ + η]) = [f1((ξ + η)1)]

= [f1(ξ1 + η1)]

= [f1(ξ1) + f1(η1)]

= [f1(ξ1)] + [f1(η1)]

= f([ξ]) + f([η]).

Similarly, to see that the map f : C∗(X)→ C∗(Y ) we have just defined is a chain map, we

need only observe that each of the maps of simplicial complexes used in the above discussion
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are chain maps, as are the subdivision operators and the maps CT
∗ (X)→ C∗(X). So,

∂(f [ξ]) = ∂[f1(ξ1)]

= [∂f1(ξ1)]

= [f1∂(ξ1)]

= [f1((∂ξ)1)]

= f([∂ξ])

= f(∂[ξ]).

Of course once we have a chain map, we have an induced map on homology.

3.3.2 A useful alternative characterization of PL chains

There is an interesting alternative way to describe a PL chain that is sometimes very useful.

The idea is that a PL i-chain ξ can be recovered from its support |ξ|, the support of its

boundary |∂ξ|, and a homology class in Hi(|ξ|, |∂ξ|). Basically, the supports tells us what

simplices can be involved and the homology class carries the coefficient information. This

observation was made by Goresky-MacPherson [105, Section 1.2] and has been utilized in

[119, 168, 89] and with some generalizations in [95].

The main point comes from the following Useful Lemma:

Lemma 3.3.10. Let X be a PL space and let C ⊂ B ⊂ A be closed PL subspaces of X such

that dim(A) ≤ i, dim(B) ≤ i− 1, and dim(C) ≤ i− 2. Let

CA,Bi = {ξ ∈ Ci(X) | |ξ| ⊂ A, |∂ξ| ⊂ B},

and define CB,Ci−1 analogously. Then

1. CA,Bi
∼= Hi(A,B),

2. the following diagram commutes:

CA,Bi

∼=
- Hi(A,B)

CB,Ci−1

∂

? ∼=
- Hi−1(B,C).

∂∗

?

Here all horizontal maps take chains (relative cycles) to the homology classes they represent.

Proof. The isomorphism comes directly from the definitions: Hi(A,B) is by definition the

quotient of the relative PL i-cycles in A (rel B) by the relative i-boundaries. But the set

CA,Bi is precisely the group of relative i-cycles. And the group of relative boundaries is trivial
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by the dimension hypothesis: As dim(A) = i, there can be no PL i + 1 chains in A. This

shows CA,Bi
∼= Hi(A,B) with a chain in CA,Bi representing a homology class in Hi(A,B).

The second part of the lemma follows because we know from basic homology theory that

if ξ ∈ CA,Bi represents the homology class [ξ] ∈ Hi(A,B), then ∂∗[ξ] is represented by ∂ξ.

As a special case of the lemma, let ξ be any i-chain in Ci(X). Then ξ ∈ C
|ξ|,|∂ξ|
i , and the

lemma tells us that ξ corresponds to an element of Hi(|ξ|, |∂ξ|). So ξ is completely determined

by |ξ|, |∂ξ|, and an element of Hi(|ξ|, |∂ξ|). Furthermore, every element of Hi(|ξ|, |∂ξ|) yields

a specific chain supported in |ξ| and whose boundary is supported in |∂ξ|.
Example 3.3.11. It takes a bit of thinking about examples for this all to seem reasonable.

To see how a PL chain determines a homology class, suppose X is a PL space and that in

some triangulation we have a subspace A consisting of two compatibly oriented 2-simplices

σ1, σ2 that share a common 1-simplex; see Figure 3.7. Suppose the PL chain ξ of X is

represented by σ1 +2σ2. So the support of ξ is all of A, and the support of ∂ξ is |∂σ1|∪ |∂σ2|.
Using excision and the isomorphism between simplicial and PL homology, we have9

H2(|ξ|, |∂ξ|) = H2(A, |∂σ1| ∪ |∂σ2|) ∼= H2(σ1, |∂σ1|)⊕ H2(σ2, |∂σ2|) ∼= Z⊕ Z,

and ξ is represented by the element (1, 2) in the sum.

Figure 3.7: Two 2-simplices with a common 1-simplex

Conversely, let’s see in a more interesting case how a homology class determines a chain.

Suppose that in A ⊂ X, we have a 1-dimensional PL subspace Z that traverses the interior

of A, breaking A into two PL subspaces each PL homeomorphic to the disk as in Figure

3.8. Then we still have H2(A, ∂A ∪ Z) ∼= Z ⊕ Z, and the lemma tells us that there is a

PL chain corresponding to each such homology class. If we have any triangulation of the

pair (A, ∂A ∪ Z) as in Figure 3.9, the class (a, b) ∈ Z ⊕ Z will correspond to a PL chain

represented by a simplicial chain of the form
∑
aτi +

∑
bηj, where the τi are the 2-simplices

in the first disk (compatibly oriented with A) and the ηj are the 2-simplices in the second

disk (compatibly oriented with A). Notice that it is possible to have either a or b equal to

0 so that the support of the chain is not necessarily all of A.
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Figure 3.8: A different division of A, separated by Z

Figure 3.9: A triangulation compatible with A and Z
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To illustrate the boundary property of the lemma, let us continue to consider the pair

(A,Z) within X. Then an element of H1(Z, ∂A∩Z) ∼= Z determines a PL 1-chain supported

in Z with boundary in ∂A ∩ Z. And the boundary map

∂∗ : H2(A, ∂A ∪ Z)→ H1(∂A ∪ Z, ∂A) ∼= H1(Z, ∂A ∩ Z)

takes (a, b) to a 1-chain supported on Z such that each simplex in our triangulation has

coefficient a − b or b − a depending on the choices of orientations. If we orient these 1-

simplices consistently with an orientation of Z going from the bottom to the top of the

diagram and if A is given the standard orientation of the plane, then ∂∗(a, b) corresponds

to a − b times the fundamental class of Z in the triangulation. But the principal point of

Lemma 3.3.10 is that this discussion is the same for any triangulation and so support and

homology information are enough to determine PL chains and their boundaries.

This description of chains via homology classes is somewhat reminiscent of the technical

definition of the CW chain complex, though in general our spatial regions need not be cells.

For example, if M is a compact oriented PL n-manifold, our isomorphism relates CM,∅
n with

Hn(M), which is generated by the fundamental classes of the connected components.

Adding chains

If we fix closed PL subsets B ⊂ A ⊂ X with dim(A) = i and dim(B) < i then each

CA,Bi
∼= Hi(A,B) is a group. But suppose we want to add two PL chains with different

supports. For this we can use the following lemma:

Lemma 3.3.12. Suppose we have PL subspace pairs of X given by (A,B) ⊂ (C,D) with

dim(A) ≤ dim(C) ≤ i and dim(B) ≤ dim(D) ≤ i−1. Then we have a commutative diagram

of inclusions/isomorphisms

CA,Bi

∼=
- Hi(A,B)

CC,Di

?

∩

∼=
- Hi(C,D).

?

∩

Proof. The horizontal isomorphisms come from Lemma 3.3.10. We have an inclusion CA,Bi ↪→
CC,Di because any PL chain in X supported in A and with boundary in B is also a PL chain in

X supported in C and with boundary in D. The square evidently commutes by considering

representative chains, and it follows that the righthand vertical map is injective.

So, suppose we are given two PL chains ξj, j = 1, 2, represented by classes [ξj] ∈
Hi(Aj, Bj) with dim(Aj) ≤ i and dim(Bj) < i. To add them “homologically,” we can

9Recall that if σ is an oriented simplex then we write σ rather than |σ| for its support, which is just the

geometric simplex σ itself.

115



consider their images under the injections Hi(Aj, Bj) ↪→ Hi(A1∪A2, B1∪B2) and then form

the sum [ξ1] + [ξ2] in the latter group. In fact, we could form the sum in any Hi(C,D)

with |ξj| ⊂ C and |∂ξj| ⊂ D for j = 1, 2 with C and D satisfying the dimension condi-

tions. In particular, given any PL i-chains ξ1, ξ2, we can represent ξ1 + ξ2 as an element of

Hi(|ξ1| ∪ |ξ2|, |∂ξ1| ∪ |∂ξ2|).

Compatibility with PL maps

The description of PL chains as homology classes via Lemma 3.3.10 is compatible with PL

maps:

Lemma 3.3.13. Let f : X → Y be a PL map of PL spaces, and let ξ ∈ Ci(X) be represented

by the homology class [ξ] ∈ Hi(|ξ|, |∂ξ|). Then f(ξ) ∈ Ci(Y ) is represented by the class

f([ξ]) ∈ Hi(f(|ξ|), f(|∂ξ|)).

Proof. By Lemma 3.3.9, the image f(ξ) ∈ Ci(Y ) can be found by triangulating X and Y by

simplicial complexes K and L so that |ξ| is triangulated as a subcomplex and the restriction

of f to |ξ| is a simplicial map. Then if ξ can be represented as
∑
ajσj in the simplicial chain

complex associated to K, we have f(ξ) represented by
∑
ajf(σj) using the triangulation L.

By f(σj), we mean that if f takes the vertices of σj to distinct vertices in L, then f(σj) is the

oriented simplex with those image vertices in the order of the orientation of σj, and otherwise

it is 0 [181, Section 12]. But the map induced by f from Hi(|ξ|, |∂ξ|) to Hi(f(|ξ|), f(|∂ξ|))
can be described by precisely the same simplicial map. Since the simplicial representative

in Hi(f(|ξ|), f(|∂ξ|)) determines the PL chain, the lemma follows.

Realization

Another natural question is the following: Suppose again that we are given closed PL sub-

spaces A and B of a PL space X with dim(A) ≤ i and dim(B) ≤ i − 1 and an element

x ∈ Hi(A,B). By Lemma 3.3.10, this data determines a PL chain ξ with support in A and

support of its boundary in B. It is then very reasonable to ask what chain ξ is. More specifi-

cally, if we have a triangulation T of X such that A and B are triangulated as subcomplexes,

can we identify a simplicial chain in CT
i (X) that represents ξ? The answer is given by the

following construction:

Let Ai−1
T denote the simplicial i − 1 skeleton of A in the triangulation T . As B is

triangulated as a subspace of A of dimension < i, we have B ⊂ Ai−1
T . So as in Lemma 3.3.12

we have a diagram

CA,Bi

∼=- Hi(A,B)

C
A,Ai−1

T
i

?

∩

∼=- Hi(A,A
i−1
T ).
?

∩
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By excisions and homotopy equivalences Hi(A,A
i−1
T ) ∼= ⊕σHi(σ, |∂σ|), where the sum is over

the i-simplices of T . If we assign to each i-simplex σ of T an arbitrary orientation, this

determines an isomorphism Hi(σ, |∂σ|) ∼= Z. For x ∈ Hi(A,B), let aσ(x) denote the image of

x under projection to the Z summand corresponding to σ. Then we see that
∑

σ aσ(x)σ is a

chain in CT
i (X) that represents the image of x in Hi(A,A

i−1
T ). As an element of CT

i (X) that

is supported in A, the sum
∑

σ aσ(x)σ also represents an element of C
A,Ai−1

T
i that again maps

to the image of x in Hi(A,A
i−1
T ). Chasing the above diagram then reveals that our desired

chain ξ ∈ CA,Bi corresponding to x ∈ Hi(A,B) must map to the element represented by∑
σ aσ(x)σ in C

A,Ai−1
T

i . But, again from the diagram chase,
∑

σ aσ(x)σ represents an element

of C
A,Ai−1

T
i in the image of CA,Bi , so we must have |∂ (

∑
σ aσ(x)σ)| ⊂ B, and

∑
σ aσ(x)σ

represents ξ.

So we have shown that given an x ∈ Hi(A,B) and a triangulation of X that triangulates

A and B as subcomplexes, the PL chain ξ corresponding to x under the isomorphism of

Lemma 3.3.10 has the form
∑

σ aσ(x)σ, where the sum is over the i-simplices of A in the

triangulation with fixed orientations and aσ(x) ∈ Z is the image of x under the maps

Hi(A,B)→ Hi(A,A
i−1
T )→ Hi(σ, |∂σ|) ∼= Z with the second arrow being the projection to a

summand and the isomorphism being determined by the orientation of σ.

Remark 3.3.14. A further useful observation is that if z is a point in the interior of an i-

simplex σ in the triangulation of A, then by homotopy invariance and excision Hi(σ, |∂σ|) ∼=
Hi(σ, σ − {z}) ∼= Hi(A,A− {z}). So we can determine the coefficients of the simplices in a

simplicial representation of a PL chain by looking at local homology groups.

3.3.3 PL intersection homology

Now, suppose that X is a PL filtered space so that each skeleton of the filtration is a

subcomplex of any admissible triangulation; see Section 2.5.2. We would like to define the

PL intersection chain complex as

I p̄CGM∗ (X) = lim−→
T∈T

I p̄CGM,T
∗ (X),

where I p̄CGM,T
∗ (X) is the simplicial intersection chain complex with respect to the triangu-

lation T and T is a set of admissible triangulations of X compatible with the filtration. In

other words, if T = (K,h) and we filter |K| by the h−1(X i), which must be subcomplexes

of K, and we similarly give |K| the perversity with (abusing notation) p̄(h−1(S)) = p̄(S) for

any stratum S of X, then we let I p̄CGM,T
∗ (X) = I p̄CGM

∗ (|K|). In order to ensure that this

definition makes sense, we need to show that subdivision provides a well-defined chain map

I p̄CGM,T
∗ (X) → I p̄CGM,T ′

∗ (X) when T ′ is a subdivision of T ; it is clear that this is true of

the maps induced by simplicial isomorphisms.

Lemma 3.3.15. For any perversity p̄ and for any admissible triangulations T, T ′ of the PL

filtered space X such that T ′ is a subdivision of T , the subdivision chain map ν̄ : CT
∗ (X)→

CT ′
∗ (X) restricts to a chain map ν : I p̄CGM,T

∗ (X)→ I p̄CGM,T ′
∗ (X).

117



Proof. Let T = (K,h) and T ′ = (K ′, h). As the subdivision map is already a chain map

CT
∗ (X) = C∗(K) → CT ′

∗ (X) = C∗(K
′), it is only necessary to show that if the i-simplex

σ ∈ K is allowable (with respect to the induced filtration and perversity on |K|), then so is

each i-simplex σ′ ∈ K ′ such that σ′ is contained in σ. But if σ is allowable, then for each

singular stratum S,

dim(σ ∩ S) ≤ i− codim(S) + p̄(S).

If σ′ is contained in σ, we must have dim(σ′ ∩ S) ≤ dim(σ ∩ S), so σ′ is also allowable.

Definition 3.3.16. Given the preceding lemma, we can now define

I p̄CGM∗ (X) = lim−→
T∈T

I p̄CGM,T
∗ (X)

and

I p̄HGM
∗ (X) = H∗(I

p̄CGM∗ (X)) ∼= lim−→
T∈T

I p̄HGM,T
∗ (X).

Remark 3.3.17. Analogously to the observation of Remark 3.3.5 and by a proof just like that

of Lemma 3.3.4, rather than using all admissible triangulations of X to define I p̄CGM∗ (X)

and hence I p̄HGM
∗ (X), it suffices to stick with a smaller cofinal family of triangulations.

In particular, it is useful to choose some particular admissible triangulation T0 = (K,h)

and replace T with T0, the family of all subdivisions of T0. There is then little harm in

identifying X with |K|, keeping the homeomorphism h implicit, and then working entirely

with subdivisions of K as the family of admissible triangulations, now redesignated as T . In

what follows, we will generally employ this identification without further comment, writing,

for example, that “K is a triangulation of X” or “the PL chain ξ in X.”

Lemma 3.3.18. Let ξ ∈ Ci(X), and let |ξ| ⊂ X be the support of ξ, i.e. the union of

the simplices with non-zero coefficient in some representation of ξ with respect to some

triangulation. Then ξ ∈ I p̄CGMi (X) if and only if, for each stratum S of X,

dim(|ξ| ∩ S) ≤ i− codim(S) + p̄(S)

and

dim(|∂ξ| ∩ S) ≤ i− 1− codim(S) + p̄(S).

Proof. Suppose ξ ∈ Ci(X) = lim−→T∈T C
T
i (X). Then ξ is represented by a chain ξT in CT

i (X)

for some T , and if the given conditions on |ξ| and |∂ξ| hold, then they clearly also hold on

each simplex of ξT and ∂ξT . Thus ξT ∈ I p̄CGM,T
i (X), and it follows that ξ ∈ I p̄CGMi (X).

Conversely, suppose ξ ∈ I p̄CGMi (X) = lim−→T∈T I
p̄CGM,T

i (X). Then again ξ is represented

by a chain ξT ∈ I p̄CGM,T
∗ (X) for some T , and each simplex of ξT and ∂ξT must be allowable.

But if

dim(σ ∩ S) ≤ i− codim(S) + p̄(S)

for each simplex σ of ξT , then σ ∩ S is contained in the i− codim(S) + p̄(S) skeleton of T ,

and therefore so will be |ξ| ∩ S = ∪{σ in ξ}(σ ∩ S). Therefore,

dim(|ξ| ∩ S) ≤ i− codim(S) + p̄(S).

The same argument holds for ∂ξ and shows that |ξ| and |∂ξ| satisfy the required conditions.

118



3.3.4 The relation between simplicial and PL intersection homol-

ogy

For the ordinary PL chains, the homology of C∗(X) agrees with the simplicial homology of

X with respect to any triangulation because

Hi(C∗(X)) = H∗

(
lim−→
T∈T

CT
∗ (X)

)
∼= lim−→

T∈T
H∗
(
CT
∗ (X)

) ∼= HT
∗ (X)

for any T , as homology commutes with direct limits and every map in the direct system

lim−→T∈T H∗(C
T
∗ (X)) is an isomorphism given that simplicial homology is preserved by sub-

division (see Theorem [181, Theorem 17.2]). However, in Example 3.2.10, we saw that

intersection homology is not preserved by simplicial subdivision. In this section we will show

that preservation of intersection homology under subdivision does hold provided we impose

some reasonable conditions on the triangulations. It will follow that I p̄HGM
∗ (X) does in fact

agree with H∗(I
p̄CGM,T
∗ (X)) for “most” triangulations T .

Recall that a subcomplex L ⊂ K of a simplicial complex is called a full subcomplex if for

any simplex σ ∈ K it is true that if the vertices of K are all in L then σ itself is contained

in L. If a subcomplex L ⊂ K is full, it remains full under any further subdivisions L′ ⊂ K ′

such that |K| = |K ′|, |L| = |L′| [197, Lemma 3.3.b]. If T is an admissible triangulation of a

PL filtered space X, we will say that T is a full triangulation if each skeleton of the filtration

of X is triangulated as a full subcomplex.

Lemma 3.3.19. If X is a PL filtered space, then X possesses a full triangulation.

Proof. By Lemma 2.5.12, we know that X has triangulations with respect to which all the

skeleta of the filtration are subcomplexes. Suppose X is triangulated by such a triangulation

K. By [197, Lemma 3.3.a], for every subcomplex L of K, there is a subdivision K ′ for which

L is a full subcomplex (it is not even necessary to subdivide L!); by [197, Lemma 3.3.b], if

J is a full subcomplex of K and K ′ is any subdivision of K, then the resulting complex J ′

remains a full subcomplex in K ′. It follows that if X has finitely many skeleta then we can

inductively subdivide K finitely many times until each skeleton is a full subcomplex.

Notice that in Examples 3.2.10 and 3.2.11, in which we demonstrated the poor behavior

of intersection homology under subdivision, we worked with triangulations that were not

full. Full triangulations are much better behaved, as the following theorem shows.

Theorem 3.3.20. Suppose T is a full triangulation of a PL filtered space and that T ′ is any

subdivision of T . Then the maps induced by subdivision I p̄HGM,T
∗ (X) → I p̄HGM,T ′

∗ (X) are

isomorphisms, as is the canonical map I p̄HGM,T
∗ (X)→ I p̄HGM

∗ (X) .

The second assertion was first proven by Goresky and MacPherson in an appendix to

[157]. Our proof of Theorem 3.3.20 is based upon an elaboration of their argument.

The theorem will depend on two key lemmas. We will first state the lemmas and prove

immediate corollaries, which will provide the proof of the theorem. Then we will prove the

lemmas, which will involve some fairly technical work.

119



The first lemma provides a slightly stronger statement of part of Theorem 3.3.20 and

implies part of the theorem.

Lemma 3.3.21. Suppose T is a full triangulation of a PL filtered space and that T ′ is any

subdivision of T . Then the subdivision chain map ν : I p̄CGM,T
∗ (X) → I p̄CGM,T ′

∗ (X) has a

left inverse chain map µ : I p̄CGM,T ′
∗ (X) → I p̄CGM,T

∗ (X) so that µν = id. In particular, ν

induces an injection on intersection homology.

Corollary 3.3.22. If T is a full triangulation of X, then the canonical map β : I p̄HGM,T
∗ (X)→

I p̄HGM
∗ (X) is injective.

Proof. Since the subdivisions of T form a cofinal system T ′ ⊂ T by the proof of Lemma 3.3.4,

we can compute I p̄HGM
∗ (X) as lim−→T ′∈T ′ I

p̄HGM,T ′
∗ (X). Since T is a full triangulation, so will

be any subdivision of T [197, Lemma 3.3.b]. So by Lemma 3.3.21 each map of this direct sys-

tem of groups will be injective, and it follows that each map from any I p̄HGM,T ′
∗ (X), including

T ′ = T , to lim−→T ′∈T ′ I
p̄HGM,T ′
∗ (X) will be injective (see [71, Proposition VIII.5.18.ii]).

Unfortunately, the proof that each ν : I p̄HGM,T
∗ (X)→ I p̄HGM,T ′

∗ (X) is surjective for full

T will need to be a bit more roundabout and utilize the PL intersection homology as an

intermediary.

Lemma 3.3.23. If T is a full triangulation of X, then the canonical map β : I p̄HGM,T
∗ (X)→

I p̄HGM
∗ (X) is surjective.

Corollary 3.3.24. Suppose T is a full triangulation of a PL filtered space and that T ′ is

any subdivision of T . Then the subdivision maps ν : I p̄HGM,T
∗ (X) → I p̄HGM,T ′

∗ (X) and

β : I p̄HGM,T
∗ (X)→ I p̄HGM

∗ (X) are isomorphisms.

Proof. ν is injective by Lemma 3.3.21, and β is injective by Corollary 3.3.22. By Lemma

3.3.23, β is onto. To obtain surjectivity of ν, notice that β factors through ν, i.e. β is the

composite

I p̄HGM,T
∗ (X)

ν−→ I p̄HGM,T ′

∗ (X)
∼=−→ I p̄HGM

∗ (X),

where the second map is also the canonical map to the direct limit and hence an isomorphism

by Lemma 3.3.23 (replacing T with T ′) . Since β is surjective, so must be ν.

This corollary includes the statement of Theorem 3.3.20 and so proves the theorem.

Now we turn to proving Lemmas 3.3.21 and 3.3.23. We will need one further small lemma

before we begin.

Lemma 3.3.25. Suppose T is a full triangulation of a PL filtered space. The interior of a

simplex σ is contained in the stratum S if and only if

1. all vertices of σ are contained in the closure S̄ (in particular every vertex is in a stratum

R such that10 R ≺ S), and

10Recall from Section 2.2.2 that R ≺ S if R ⊂ S̄.
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2. at least one vertex of σ is contained in S.

Proof. Suppose the interior of σ is contained in S. Then the closure of σ (which includes all

the vertices of σ) is contained in the closure of S. Furthermore, if no vertex of σ is contained

in S, then every vertex is contained in some stratum R with R ≺ S, R 6= S. So every vertex

of σ is contained in some skeleton that does not contain S. But this is a contradiction as T

is a full triangulation.

Conversely, suppose the two conditions are met. Suppose S ⊂ X i − X i−1. Since every

vertex of σ is contained in X i, the fullness of T implies that σ is contained in X i. Since σ

has at least one vertex in S, this implies that σ is not contained in X i−1. It follows that

the interior must actually be in S as a simplex cannot intersect multiple strata of the same

formal dimension without violating connectedness of the simplex.

Proof of Lemma 3.3.21. We have already seen in Lemma 3.3.15 that ν takes allowable chains

to allowable chains. We must construct µ. We will first define µ as a chain map CT ′
∗ (X)→

CT
∗ (X), and then we will check that µ preserves allowability. Finally, we will see that it

provides a left inverse to ν.

Suppose T triangulates X by the simplicial complex K and that K ′ is the subdivision

corresponding to T ′. We can assume that the vertices of K have been given a total order by

the Well-Ordering Principle.

Let σ be a simplex of K, and let Sσ be the stratum of X containing the interior of σ.

By Lemma 3.3.25, there must be some vertex v of σ such that v ∈ Sσ. For each σ, let the

vertex of σ in Sσ that is greatest in the order be called vσ.

Now, each vertex w of K ′ is contained within the interior of some simplex σw of K. We

define µ̄ on vertices by µ̄(w) = vσw ; see Figure 3.10. Since, by the definition of subdivision,

each simplex of K ′ is contained within some simplex of K, this description of µ̄ on vertices

is enough to extend µ̄ to a simplicial map K ′ → K, and hence µ̄ induces a chain map

µ̄ : CT ′
∗ (X)→ CT

∗ (X).

Let us verify that µ̄ restricts to a well-defined chain map µ : I p̄CGM,T ′
∗ (X)→ I p̄CGM,T

∗ (X).

For this it suffices to show that the image of an allowable simplex inK ′ is an allowable simplex

of K.

Suppose σ′ ∈ K ′. If µ̄(σ′) is degenerate, i.e. if µ̄ is not injective on the vertices of σ′,

then µ̄(σ′) represents 0 in the chain group and is automatically allowable. So assume µ̄(σ′)

is nondegenerate. As T is already full, so is T ′, and we have shown in Lemma 3.3.25 that,

for any simplex, the stratum containing the interior of that simplex is determined entirely

by the vertices of the simplex. But by construction, if v is a vertex of σ′, then v and µ̄(v) are

contained in the same stratum of X. Therefore the data assigning to each vertex the stratum

containing it is the same for σ′ and µ̄(σ′). Thus, the interiors of the faces (of all dimensions)

of σ′ and µ̄(σ′) are contained in corresponding strata, and so the dimension of intersection

of µ̄(σ′) with each stratum of X must be the same as the dimension of intersection of σ with

that stratum. So µ̄(σ′) must be allowable if σ′ is, and the restriction of µ̄ to intersection

chains provides the intersection chain map µ.

Lastly, we will verify that µ̄ν̄ = id. This will imply that µν = id upon restricting to the

intersection chains. The argument will be inductive over dimension of simplices. In fact, we
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Figure 3.10: An illustration of the map µ̄ showing a 2-simplex σ of K and two smaller 2-

simplices of K ′. The map µ̄ takes each vertex of a simplex of K ′ to a vertex of K contained

in the same stratum.

claim that if an i-simplex σ ∈ K is triangulated as a complex K ′σ in K ′, then exactly one

i-simplex of Kσ, call it ησ, maps onto σ under µ (compatibly with orientation), while all

other i-simplices of Kσ map to degenerate simplices and hence have trivial image under µ.

This will suffice due to the description of the subdivision map given by Lemma 3.3.1.

To start the induction, it is evident by construction that µ̄ν̄(v) = v for each vertex of

K, and this is consistent with the claimed properties. Now, suppose we have verified the

claim for all simplices of dimension up through i− 1, and let σ be an i-simplex of K. Recall

that vσ is the vertex of σ that all vertices of K ′ in the interior of σ will map to under µ̄.

Let τ be the i − 1 face of σ that does not contain vσ, and let ητ be the i − 1 simplex of

K ′ contained in τ that maps onto τ under µ̄; such an ητ exists by the induction hypothesis.

The simplex ητ must be an i − 1 face of a unique i-simplex s of K ′σ, which we claim must

be the desired ησ. Let w be the vertex of s that is not contained in τ . We claim that w

must map to vσ, which would verify that s maps onto σ; it would also provide the necessary

compatibility with orientation as, by assumption, ητ and s are oriented compatibly with τ

and σ and we have µ̄ orientation preserving from ητ to τ . Now, w certainly maps to vσ if

w is in the interior of σ or if w = vσ. Otherwise, w is contained in another i − 1 face of σ

that is not τ . But since vσ is contained in the stratum Sσ, in fact so must be at least all of

σ− τ . Since vσ is the highest in the ordering of vertices among all vertices of σ contained in

Sσ, then vσ must also be the image of all vertices of K ′σ contained in σ− τ (as all faces of σ

containing such vertices also contain vσ). Thus µ̄(w) = vσ.

It remains to show that no other i-simplex of K ′σ maps onto σ by µ̄. By the preceding

argument, any simplex, say t, with more than one vertex in σ−τ must map multiple vertices

to vσ, and hence must be degenerate. But the only other possibility is to have all but at

most one vertex in τ . Clearly no i-simplex t can have all of its vertices in τ , thus the only

possibility is to have an i− 1 face of t in τ . But now except for the ησ we have constructed,
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no such simplex can have its i− 1 face in τ be ητ , and so for any other i-simplex t, the i− 1

face in τ must degenerate under µ̄ by the induction hypothesis, and so µ̄(τ) = 0.

This completes the proof.

Proof of Lemma 3.3.23. Let [ξ] be an element of I p̄HGM
i (X). The class [ξ] can be represented

by a cycle ξ ∈ I p̄CGM,T ′

i (X) for some subdivision T ′ of T . Let ν be the subdivision map

I p̄CGM,T
∗ (X) → I p̄CGM,T ′

∗ (X), and let µ and µ̄ be the left inverses constructed in the proof

of Lemma 3.3.21. We claim that the images of ξ and µ(ξ) are homologous in I p̄CGM,
∗ (X),

which then demonstrates that [ξ] is in the image of β : I p̄HGM,T
∗ (X) → I p̄HGM

∗ (X). The

reason we need to go into I p̄CGM∗ (X) to find the homology, rather than finding it directly in

I p̄CGM,T ′
∗ (X), will become clear from the construction.

Once again, suppose T triangulates X by the simplicial complex K and that K ′ is the

subdivision corresponding to T ′. We can assume that the vertices of K have been given a

total order by the Well-Ordering Principle.

Let |ξ| be the support of ξ, and let I be the interval [0, 1]. Consider the space I × |ξ|,
and provide it with the standard prism triangulation based on the triangulation of |ξ| in K ′
(see, e.g. [125, Section 2.1] and Figure 3.11). In other words, suppose {0}×|ξ| and {1}×|ξ|
are triangulated just as |ξ| is triangulated in K ′, and for each simplex σ = [v0, . . . , vi] of

|ξ|, let I × σ be triangulated by the i + 1 simplices of the form [u0, . . . , u`, w`, . . . , wi] and

their faces, where uj, wj are respectively the copies of vj in {0} × σ and {1} × σ. That this

is indeed a triangulation is shown in [125] or follows from Lemma B.6.3, below. If the i-

simplex σ = [v0, . . . , vi] has coefficient m in ξ, then let the i+1 simplex [u0, . . . , u`, w`, . . . , wi]

have coefficient (−1)`m in order to obtain a simplicial chain Ξ on the space I × |ξ|. Then

∂Ξ = {1} × ξ − {0} × ξ, recalling that ξ is a cycle; see the proof of [125, Theorem 2.10].

Figure 3.11: The prism triangulation of a 2-simplex

Now we construct a piecewise linear map γ from I × |ξ| to X. For each vertex v of ξ, set

γ({0} × v) = v ∈ X and let γ({1} × v) = µ̄(v) ∈ X. Since every I × τ gets mapped into

a single simplex of K, this determines γ as a linear map on each simplex of I × |ξ|, and so

overall we obtain a piecewise linear map. The image of Ξ as a PL chain represents a chain
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[γ(Ξ)] ∈ Ci+1(X) such that

∂[γ(Ξ)] = [µ(ξ)]− [ξ] ∈ Ci(X),

where [·] denotes the class of a chain in the direct limit C∗(X). We notice, by the way, that

the reason we need to descend all the way to C∗(X) is that γ will not necessarily be simplicial

with respect to T or T ′.

It only remains to show that γ(Ξ) is allowable. In order to do this, it suffices by Lemma

3.3.18 to show that |γ(Ξ)| satisfies the necessary inequalities. As we already know that

∂[γ(Ξ)] = [µ(ξ)]− [ξ] is allowable, we need only check the allowability condition with respect

to |γ(Ξ)|, itself. For this, it will suffice to show that if σ is an i + 1 simplex of I × |ξ| then

|[γ(σ)]| satisfies the allowability conditions in X, as then the required dimension conditions

will also be true over a finite union of such σ. To do so, we claim that γ is stratum-preserving

in the sense that if x is a point in |ξ|, then γ maps all of I × {x} to the same stratum of

X. This will suffice to finish the proof as follows: Assume that τ is an i-simplex of ξ. We

know that dim(τ ∩ S) ≤ i − codim(S) + p̄(S) for any stratum S because τ is allowable.

But assuming the claim, we will have dim(γ(I × τ) ∩ S) ≤ dim(τ ∩ S) + 1, as only points

(t, y) ∈ I × τ such that y ⊂ S can map to S under γ. Thus, in particular, if σ is an i + 1

simplex of I × τ , we have

dim(γ(σ) ∩ S) ≤ dim(γ(I × τ) ∩ S) ≤ dim(τ ∩ S) + 1 ≤ i+ 1− codim(S) + p̄(S).

So σ is an allowable i+ 1 simplex!

Now we must prove the claim. So, for any dimension k, let τ be a k-dimensional face of a

simplex of |ξ| in the triangulation K ′, and let π : I × |ξ| → |ξ| be the projection. By Lemma

3.3.25, the interior of τ is contained in whatever stratum Sτ of X has the property that all

vertices of τ are contained in S̄τ , and at least one vertex of τ is contained in Sτ . Consider

now the simplices of I× τ ⊂ I×|ξ| that intersect π−1(̊τ), where τ̊ is the interior of τ . These

are the k + 1 simplices of the form [u0, . . . , u`, w`, . . . , wk] and the k-simplices of the form

[u0, . . . , u`, w`+1, . . . , wk]; all other simplices in the triangulation of I × τ are contained in

π−1(I × |∂τ |) (the vertices of these other simplices all project to vertices of a proper face of

τ). Now recall γ(uj) is simply the corresponding vertex vj of τ in X and γ(wj) = µ̄(vj), and

by construction vj and µ̄(vj) always lie in the same stratum of X. Therefore all of the γ(uj)

and γ(wj) lie in S̄τ and, for at least one index m, γ(wm) and γ(um) are contained in Sτ .

Therefore, again by Lemma 3.3.25, the interiors of the k + 1 and k simplices that intersect

π−1(I × τ̊) are all contained in Sτ . Furthermore, the interiors of τ and µ(τ) are contained in

Sτ and thus all of γ(I× τ̊) is contained in Sτ . As the interiors of the faces (of all dimensions)

of the simplices of |ξ| partition |ξ|, the claim follows.

3.4 Singular intersection homology

For ordinary homology, singular homology presents many advantages over simplicial homol-

ogy, at the cost of trading a manageable number of simplices (finite on a compact simplicial
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space) for an uncountable number of simplices (on a space that is not a point) and thus

of not being computable combinatorially. That said, many other properties, particularly

homotopy properties, become much more transparent for singular homology, and of course

singular homology applies to more general classes of spaces that might not even be triangula-

ble. Singular intersection homology faces many of the same trade-offs. Singular intersection

homology applies to more general spaces, and it will become easier to prove some theorems,

at the expense of computation at first becoming more complicated. Ultimately, singular

intersection homology will provide a setting for our most general duality results.

In this section, X will be any filtered space, not necessarily simplicial or PL. Let S∗(X)

be the complex of singular chains of X. Recall that a singular simplex σ ∈ Si(X) is

a continuous function σ : ∆i → X, where ∆i is the standard geometric i-dimensional

simplex. For definiteness, we could suppose that ∆i is embedded in Ri with vertices

(0, . . . , 0), (1, 0, . . . , 0), . . . , (0, . . . , 0, 1), though we will typically use the more generic no-

tation [v0, . . . , vi] and think of ∆i as an abstract space. In any case, we will always assume

that ∆i comes with a fixed ordering of its vertices. The boundary formula is then

∂σ =
i∑

k=0

(−1)kσ|[v0,...,v̂k,...,vi],

where v̂k indicates that we remove the vertex vk so that [v0, . . . , v̂k, . . . , vi] represents a

geometric i − 1 simplex and σ|[v0,...,v̂k,...,vi] represents a singular i − 1 simplex11. Then we

obtain ∂ : Si(X) → Si−1(X) by extending linearly, with ∂ ◦ ∂ = 0 so that S∗(K) is a chain

complex. The ith singular homology group is

Hi(K) =
ker(∂ : Si(X)→ Si−1(X))

im(∂ : Si+1(X)→ Si(X))
.

Note that we follow the fairly common practice of writing Hi for both simplicial and singular

homology, which is justified by the isomorphism between the two when X is the underlying

space of a simplicial complex [181, Section 34].

Just as in the simplicial case, we wish to define a subcomplex I p̄SGM∗ (X) ⊂ S∗(X) for

each perversity p̄. A little thought will make the reader leery of trying to use dimension

of intersection to measure allowability since the images of singular simplices might now be

quite complex (think of pathological things like space-filling curves). Instead, we have the

following pleasant adaptation of the simplicial notion of allowability introduced by Henry

King12 [139].

11If we really want to think of ∆i−1 as a fixed space, we could replace σ|[v0,...,v̂k,...,vi] with the composition

of σ with the embedding ∆i−1 ↪→ ∆i that takes ∆i−1 to the face of ∆i spanned by {v0, . . . , v̂k, . . . , vi} by

an order-preserving map of vertices; see [181, Section 29]. We will usually leave these inclusion maps as

implicit.
12As in the original work of Goresky-MacPherson in [105, 106], King assumes that all strata of the same

(co)dimension take the same perversity value. However, he dispenses with the other requirements of a

Goresky-MacPherson perversity (except that it should be 0 on regular strata) and calls these loose perver-

sities.
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Definition 3.4.1. Let X be a filtered space endowed with a general perversity p̄, and let

S∗(X) be the singular chain complex of X.

We deem a singular i-simplex σ : ∆i → X to be p̄-allowable if, for all strata S of X,

σ−1(S) ⊂ {i− codim(S) + p̄(S) skeleton of ∆i}. (3.2)

Here codim(S) is the formal codimension of S in the filtered space X, while the skeleta of ∆i

are its simplicial skeleta. If inequality (3.2) is satisfied for some σ and some S, we say that

σ is p̄-allowable with respect to the stratum S. If the perversity p̄ has been fixed in advance,

we will sometimes simply say that σ is allowable.

A chain ξ ∈ Si(X) is p̄-allowable if all of the simplices13 in ξ and all of the simplices of

∂ξ are p̄-allowable.

Let I p̄SGM∗ (X) ⊂ S∗(X) be the chain complex of p̄-allowable chains, which we call the

(perversity p̄ singular) intersection chain complex. Let the (perversity p̄ singular) intersection

homology groups be the homology groups H∗(I
p̄SGM∗ (X)). At the risk of some possible confu-

sion with the simplicial homology groups, we will generally denote these also by I p̄HGM
∗ (X).

The analogous notation is always justified when working with ordinary homology because

the simplicial and singular homology groups always agree on simplicial spaces. While we

have already seen by Example 3.2.10 that this cannot always be the case here, we will have

agreement with the simplicial intersection homology of “most” triangulations via Theorem

5.4.2, which says that singular and PL intersection homology are isomorphic, and Theorem

3.3.20, which said that PL and simplicial intersection homology agree for full triangulations.

Between this fact and contextual clues, we hope the reader will not be too misled by the

notation.

Notice that if X is a simplicial filtered space and the singular simplex σ → X is simply

the inclusion of one of the i simplices in the triangulation of X, then this definition of

allowability corresponds exactly to our simplicial allowability conditions.

Let us compute some examples:

Example 3.4.2. Let X = X0 be a point. In this case, there is only one stratum, X itself, and

it is a regular stratum so p̄(X) = 0 for any perversity p̄. There is exactly one simplex in each

dimension, the unique map σi : ∆i → X. In this case, σ−1
i (X) = ∆i, and the allowability

condition then becomes that

∆i ⊂ {i− codim(X) + p̄(X) skeleton of ∆i} = {i skeleton of ∆i}.

So every singular simplex is allowable, and I p̄SGM∗ (X) = S∗(X), the ordinary chain complex.

As for simplicial intersection homology, we can observe that the allowability condition is

vacuous when it comes to regular strata:

Lemma 3.4.3. Let σ be a singular i-simplex of a filtered space X, and let S be a regular

stratum of X. Then the allowability condition (3.2) is always satisfied.

13By saying that “σ is a simplex in ξ” or that “σ belonging to ξ,” we mean that σ is a simplex in ξ with

non-zero coefficient. In other words, if we write ξ =
∑
j njσj for nj ∈ Z and the σj singular simplices such

that σj 6= σ` if j 6= `, then we mean that σ = σk for some k such that nk 6= 0.
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Proof. In this case, the same computation as performed in Example 3.4.2 shows that the

allowability requirement becomes that σ−1(S) ⊂ {i skeleton of ∆i}. This is satisfied trivially.

Example 3.4.4. Suppose X = Xn is a filtered space that is filtered trivially so that there

are only regular strata; see Example 2.2.28. Then it follows from the preceding lemma that

I p̄SGM∗ (X) = S∗(X).

Remark 3.4.5. Lemma 3.4.3 allows us to provide further justification for setting p̄(S) = 0 for

all regular strata. We see from the lemma that with p̄(S) = 0 all simplices are allowable with

respect to all regular strata. Furthermore, if p̄(S) = m for any m ≥ 0, then it is easy to see

that the same conclusion will hold, so as mentioned in Remark 3.1.2, any choice of p̄(S) ≥ 0

for regular strata would provide the same intersection chains, but we choose p̄(S) = 0 for

definiteness and convenience.

By contrast if S is regular and p̄(S) ≤ −1, then for an i-simplex to be allowable with

respect to S, we would need

σ−1(S) ⊂ {i+ p̄(S) skeleton of ∆i},

where i+ p̄(S) ≤ i− 1. In other words, at most the i− 1 skeleton of ∆i could map to S (and

less of it if p̄(S) < −1). But since X −ΣX is an open subset of X, σ−1(X −ΣX) must be an

open subset of ∆i, and so the allowability condition can only be satisfied if σ−1(X −Σ) = ∅,
i.e. if the image of σ is in ΣX . In other words, I p̄HGM

∗ (X) would not see that regular stratum,

so it is equal to I p̄HGM
∗ (X − S). Therefore having regular strata with negative perversities

is the same as working on spaces without those strata, and we could just as well have taken

that view from the beginning and worked on a different space.

Altogether, this makes it reasonable to always have p̄(S) = 0 for regular strata.

Example 3.4.6. Suppose p̄(S) ≤ codim(S) − 2 for all singular strata S (this is a common

condition to require for a perversity). Then i−codim(S)+p̄(S) ≤ i−2 and so the allowability

condition requires

σ−1(S) ⊂ {i− 2 skeleton of ∆i}

for all singular strata. So if i = 0 or 1, no i-simplex may intersect any singular stratum. Con-

sequently, we must have that I p̄HGM
0 (X) ∼= Zm, where m is the number of path components

of X − ΣX .

Example 3.4.7. Let M be a compact n − 1 dimensional manifold, and let X = Xn = cM

manifold stratified by {v} ⊂ X, where v is the vertex of the cone. Since all simplices are

allowable with respect to the regular stratum, the allowability condition for an i-simplex

becomes

σ−1({v}) ⊂ {i− n+ p̄({v}) skeleton of ∆i}.

If i < n− p̄({v}) then the image of σ cannot contain v at all, and so for14 i < n− p̄({v})− 1

we have I p̄SGMi (X) = Si(X − {v}), and so I p̄HGM
i (X) = Hi(X − {v}) ∼= Hi(M).

14The extra −1 is because homology in dimension i depends on chains in degrees i and i+ 1.
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For i ≥ n− p̄({v}), each i-simplex is allowed to map at least a vertex to v, and possibly

more depending on dimension. To compute I p̄HGM
i (X), suppose that σ is an allowable i-

simplex. Let c̄σ : ∆i+1 → X be the (singular) cone on σ. This is defined as follows; see

Figure 3.12: Since X is the cone cX = [0, 1)×M/ ∼, every point in X can be described as

a pair (t, z), where t ∈ [0, 1), z ∈ M (with z non-unique if t = 0). In particular, if x ∈ ∆i,

then σ(x) = (σI(x), σM(x)), where σI is the composition of σ with the projection to [0, 1)

and similarly for σM , letting σM(x) be arbitrary if σI(x) = 0. Now, think of ∆i+1 as the

closed cone on ∆i, i.e.

∆i+1 = c̄∆i = [0, 1]×∆i/ ∼,
and each point of ∆i+1 can be written (s, x) with s ∈ [0, 1] and x ∈ ∆i (again non-uniquely

if s = 0). Define the cone c̄σ so that c̄σ(s, x) = (sσI(x), σM(x)). Then c̄σ(1, x) =

(σI(x), σM(x)) = σ(x), and c̄σ(0, x) = (0, σM(x)) = v. We also note that if σ(x) =

(0, σM(x)) = v, then c̄σ(s, x) = (0, σM(x)) = v for all s. This map is readily seen to be

continuous, and so c̄σ is a singular i+ 1 simplex.

Figure 3.12: A singular 1-simplex and its singular cone

We next claim that if σ is a p̄-allowable i-simplex then so is c̄σ, provided i ≥ n−p̄({v})−1.

The key issue, of course, is to compute (c̄σ)−1({v}). This set certainly includes the cone

vertex (0, x) ∈ ∆i+1. Otherwise, it consists of the points (s, x) such that σ(x) = v. Suppose

x is contained in the j-skeleton of ∆i. Then each point (s, x) is contained in at most the

j+1 skeleton of ∆i+1. So if j ≥ −1 and σ−1({v}) is contained in the j-skeleton of ∆i (letting

the −1 skeleton be empty), then (c̄σ)−1({v}) is contained in the j + 1-skeleton of ∆i+1. If σ

is allowable, then

σ−1({v}) ⊂ {i− n+ p̄({v}) skeleton of ∆i},
and we have just see that if i− n+ p̄({v}) ≥ −1, which is precisely the case we’re in, then

(c̄σ)−1({v}) ⊂ {i+ 1− n+ p̄({v}) skeleton of ∆i+1}.
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But this is okay because c̄σ is an i+1 simplex! So the increase in the dimension of intersection

with the skeleton of the model simplex is offset by the increase in the dimension of the simplex

itself, and if the i-simplex σ is allowable then so is c̄σ when i ≥ n− p̄({v})− 1.

Notice that we do need to be careful to have i − n + p̄({v}) ≥ −1 since there is no

difference between j-skeletons of ∆i for j < 0; in fact in all these cases saying that σ−1({v}) ⊂
{j skeleton of ∆i} simply means that v isn’t in the image of σ. However in all these cases

(c̄σ)−1({v}) is contained in the 0 skeleton of ∆i+1, regardless.

Now, let us see what this tells us about intersection homology. Let c̄ act on chains as the

linear extension of its action on simplices. Suppose ξ ∈ I p̄SGMi (X) is an allowable i-cycle for

i ≥ n− p̄({v})− 1, which puts us in the situation i−n+ p̄({v}) ≥ −1. Thus c̄ξ is allowable.

Furthermore, if i > 0 then since ξ is a cycle we will have ∂(c̄ξ) = ξ. In fact, notice that on

each i-simplex, i > 0, ∂(c̄σ) = σ − c̄(∂σ), just as for simplicial simplices, and so in general

∂(c̄ξ) = ξ − c̄(∂ξ). So if ξ is a cycle, it bounds c̄ξ, and I p̄HGM
i (X) = 0, as we’d expect for a

cone!

There is one last case to be careful about: when i = 0. This case is fundamentally

different even for ordinary homology because while the cone on an i-cycle ξ, i > 0, always

has ∂ξ = ξ, and so c̄ξ provides a null-homology of ξ, this is not always true in the 0-cycle

case, because if σ is a singular 0-simplex, then ∂(c̄σ) = σ − σv, where σv is the singular

0-simplex with image v. So for ordinary homology we just get a homology from any singular

simplex to σv. But we can’t even do this in intersection homology because even if σ and c̄σ

are allowable as simplices, the chain c̄σ might not be allowable, as σv might not be allowable.

That said, if we continue to assume that 0 ≥ n − p̄({v}) − 1 so that c̄σ is allowable as a

simplex, then if σ1, σ2 are any two allowable 0 simplices, then the cone c̄(σ2 − σ1) will have

allowable boundary σ2−σ1, and so any two allowable 0 simplices are allowably homologous.

Since there are allowable simplices in the regular stratum X−{v}, we have I p̄HGM
0 (X) ∼= Z.

Altogether, we have computed the following:

I p̄HGM
i (X) ∼=


0, i ≥ n− p̄({v})− 1, i 6= 0,

Z, i ≥ n− p̄({v})− 1, i = 0,

Hi(M), i < n− p̄({v})− 1.

Example 3.4.8. Let X = X1 = S1, the circle and let x0 ∈ S1 be any point. Suppose X is

filtered as {x0} ⊂ X. Then X has two strata: the regular stratum X−{x0} and the singular

stratum {x0}. We wish to compute I p̄HGM
∗ (X). As this computation will become much

simpler once we have established some general properties of singular intersection homology

in the next chapter, we limit ourselves here to the calculations that can be carried out in

fairly short order.

We have already seen, in Lemma 3.4.3, that all simplices are allowable with respect to

regular strata, so we have to check allowability at {x0}, where p̄({x0}) could be any fixed

integer. An i-simplex σ : ∆i → X is allowable if it satisfies the conditions
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σ−1({x0}) ⊂ {i− codim({x0}) + p̄({x0}) skeleton of ∆i}
= {i− 1 + p̄({x0}) skeleton of ∆i}

Already things have become much more complicated for singular intersection homology!

If i−1+p̄({x0}) ≥ i, i.e. if p̄({x0}) ≥ 1, then any simplex is allowable and so I p̄SGM∗ (X) =

S∗(X) and I p̄HGM
∗ (X) = H∗(X) in all degrees.

If i − 1 + p̄({x0}) < 0, i.e. if i < 1 − p̄({x0}), then no simplex whose image contains

x0 is allowable. In this case I p̄SGMi (X) = Si(X − {x0}), which implies that I p̄HGM
i (X) ∼=

Hi(X − {x0}) for i in the range i < −p̄({x0}); we cannot draw this conclusion regarding

i = −p̄({x0}) because we do not know yet about I p̄SGM1−p̄({x0})(X).

What about the other cases with p̄({x0}) ≤ 0? This is more complex, and we will defer

the full computation until after we have developed some tools; see Example 4.4.22.

As for ordinary singular homology, we have begun to see that singular intersection ho-

mology can be difficult to compute “by hand.” Therefore, we would like to have some of the

standard tools of homology available to us — long exact sequences, homotopy invariance,

excision, etc. We will begin to explore these properties, and whether or not they carry over,

in the next chapter.

Remark 3.4.9. Before moving on to investigate properties of intersection homology groups,

it is useful to make an important observation about the chain complexes I p̄SGM∗ (X) that

we will need to keep in mind. The ordinary singular chain groups Si(X) are free groups

generated by the i-dimensional singular simplices. Since I p̄SGMi (X) ⊂ Si(X) by definition,

each I p̄SGM∗ (X) is also a free group; see [147, Theorem III.7.1]. However, I p̄SGM∗ (X) does

not necessarily have a basis of singular simplices since we know that an allowable simplex of

Si(X) is not necessarily allowable as a chain because its boundary might not be an allowable

chain. Hence I p̄SGM∗ (X) has some basis of allowable chains, but in general we will not know

what it is. This necessitates some care.

Similar remarks apply for simplicial intersection chain complexes. On the other hand,

PL intersection chains are already more complex because the groups C∗(X) are themselves

only direct limits of free groups and so in general it is not clear whether they are free even

in the non-intersection case.
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Chapter 4

Basic properties of singular and PL

intersection homology

In this chapter we establish the basic properties of intersection homology. We will see that

many of the axioms of ordinary homology persist, though often in modified forms that are

suitable to the study of stratified spaces.

In treatments of classical homology, it is sufficient to develop properties for singular ho-

mology and then call upon the equivalence of singular and simplicial homology on simplicial

spaces to transfer the properties to simplicial homology, sometimes with some minor mod-

ifications. Unfortunately, even establishing the equivalence of singular and simplicial/PL

intersection homology will require knowing that certain properties hold for both theories.

Thus we will have to develop these properties independently. Fortunately, however, the proof

techniques in the two settings often complement each other, so we will be able to proceed in

close parallel.

In the piecewise linear world, we will restrict our attention to PL intersection homology

rather than simplicial intersection homology. This is justified by the isomorphism we have

already established in Theorem 3.3.20 between PL and simplicial intersection homology for

most triangulations, but it is also necessary due to the limitations of the simplicial theory.

For example, a simplicial Mayer-Vietoris sequence akin to the one for ordinary simplicial

homology as in, for example, [181, Theorem 25.1] would be problematic. To see this, suppose

that K is a simplicial complex with subcomplexes K1, K2 such that K = K1∪K2. The usual

surjectivity of the map C∗(K1)⊕C∗(K2)→ C∗(K) that occurs in establishing the simplicial

homology Mayer-Vietoris sequence depends upon the ability to break up a chain in K into

the sum of chains in K1 and K2. But breaking up chains creates new boundaries, and so

with a fixed triangulation we can not always break apart an allowable chain into a sum of

allowable chains. By contrast, as PL intersection chains are not based on fixed triangulations

and as open subsets of PL spaces are again PL spaces (by contrast with simplicial complexes),

there is more flexibility, and it turns out the PL intersection homology can be treated more

analogously to the singular theory. Consequently, there is a PL Mayer-Vietoris sequence in

intersection homology that we develop in Section 4.4.

In Section 4.1, we study the behavior of intersection homology under stratified maps.
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Not every such map induces a well-defined function on intersection homology; rather, the

particular perversities under consideration for the domain and codomain must play a roll.

But with the right assumptions, topological maps f : X → Y can induce homomorphisms

f : I p̄HGM
∗ (X)→ I q̄HGM

∗ (Y ). Furthermore, the induced algebraic map will not generally be

independent of the homotopy class of f , so intersection homology is not a true generalized

homology theory. However, we will see that the algebraic maps induced by f, g : X → Y are

the same if f and g are homotopic in an appropriately stratified sense.

In Section 4.2, we compute the intersection homology of a cone on a filtered space. This

seemingly innocuous specific computation turns out to be of vital importance throughout all

of intersection homology theory, as this is the archetype of a local computation on a CS set.

There is a general precept that global homological properties follow from piecing together

local homological properties, and the cone computation provides the local input data.

From here, we move on to other properties that one might expect from something called

a homology theory: relative intersection homology and the long exact sequence of a pair in

Section 4.3 and Mayer-Vietoris sequences and excision in Section 4.4.

4.1 Stratified maps, homotopies, and homotopy equiv-

alences

So far we have set up intersection homology of filtered spaces, but we have not yet considered

morphisms of intersection homology groups induced by maps of spaces.

If we try to define a homomorphism f∗ : I p̄HGM
∗ (X) → I p̄HGM

∗ (Y ) for an arbitrary

continuous map f : X → Y of filtered spaces, we immediately run into trouble. For one

thing, as we have defined them, perversities are dependent upon the filtration of the space,

so without further conditions it does not necessarily make sense to have the same perversity

p̄ defined on both X and Y . Even if we take p̄ to be a GM-perversity, so that it depends

only on the codimensions of the strata and so can be applied to multiple spaces, there are

still difficulties. As the simplest example, suppose X is a point with the trivial filtration

so that there is one regular stratum and Y is any space with a nonempty singular stratum

S ⊂ Y = Y n. Let f : X → Y be any map that takes the point X into S. We have

previously computed in Example 3.4.2 that any singular i-simplex σ is allowable in X with

respect to any perversity. But there is no reason to expect that f(σ) ∈ Si(Y ) is allowable

with respect to p̄ and S. In fact, this will only be possible if i ≤ i − codim(S) + p̄(S), i.e.

if p̄(S) ≥ codim(S). Thus in general it is not possible to set up a fully general functoriality

with respect to any single perversity and map between filtered spaces.

Similarly, intersection homology will not be a homotopy invariant of spaces. For example,

let X = cM be the open cone on the n− 1 manifold M . Then X is contractible to a point,

and we have seen in Example 3.4.2 that every intersection homology group of the point

(trivially filtered) is the same as the ordinary homology group of the point. However, as

seen in Example 3.4.7, the intersection homology of a cone is not always the homology of a

point.

That said, certainly one should be able to set up some reasonable situations in which one
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obtains homomorphisms of intersection homology groups, and that is what we turn to now.

Of course in the most general situation, one could simply consider all maps f : X → Y

between filtered spaces with respective perversities p̄ and q̄ that take all allowable simplices

to allowable simplices. This would certainly yield maps of intersection homology groups. In

practice, however, there are more specific classes of maps that seem sufficiently useful for

the required purposes.

Recall from Definition 2.9.1 that f : X → Y is a stratified map of filtered spaces if for

each stratum S ⊂ X there is a unique stratum T ⊂ Y such that f(S) ⊂ T . We impose

further limitations as follows:

Definition 4.1.1. A map f : X → Y is GM stratified with respect to p̄, q̄ (or (p̄, q̄)GM -

stratified) if

1. the image of each stratum of X is contained in a single stratum of Y , i.e. if T ⊂ Y is

a stratum, then f−1(T ) is a union of strata of X;

2. if the stratum S ⊂ X maps to the stratum T ⊂ Y , then

p̄(S)− codimX(S) ≤ q̄(T )− codimY (T ).

Remark 4.1.2. When we get to non-GM intersection homology in Chapter 6 we will need

the further condition that f(ΣX) ⊂ ΣY . At that point we will remove the “GM” decoration

and call such maps (p̄, q̄)-stratified. See Definition 6.3.2.

Here are two important examples:

Example 4.1.3. Let X be an open subset of the filtered space Y with the subspace filtration

X i = X ∩ Y i, and let p̄ be the perversity on X inherited by the perversity q̄ on Y . In other

words, if S is a stratum of X and S ⊂ T for a stratum T of Y , then p̄(S) = q̄(T ). Then the

inclusion X ↪→ Y is GM stratified with respect to p̄, q̄.

Example 4.1.4. Let Y = X×Z, where Z is any trivially filtered space and Y has the product

filtration. Then the strata of Y have the form S ×Z for S a stratum of X and for any such

stratum S ⊂ X, the codimension of S in X equals the codimension of S × Z in Y . Let

f : X → Y = X × Z be the inclusion f(x) = (x, z0) for some fixed point z0 ∈ Z, and

suppose Y has the perversity q̄ defined so that q̄(S × Z) = p̄(S) for any stratum S of X.

Then f is (p̄, q̄)GM -stratified. More generally, if f is a normally nonsingular inclusion (recall

Definition 2.9.8), then the same considerations apply if the perversities are compatible in

this way in a neighborhood of the image of X.

Example 4.1.5. A stratified map f : X → Y is called placid1 if for each stratum T ⊂ Y we

have codimX(S) ≥ codimY (T ) for each stratum S ⊂ f−1(T ). If p̄ is a GM perversity (see

Section 3.1.1) and f is placid, then f is (p̄, p̄)GM -stratified. For this we observe that if p̄ is a

GM perversity and if codimY (T ) ≤ codimX(S), then p̄(S)− p̄(T ) ≤ codimX(S)−codimY (T )

by the growth condition on GM perversities. So p̄(S)− codimX(S) ≤ p̄(T )− codimY (T ), as

required.

1See [108, Section 4].
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Proposition 4.1.6. If X, Y are filtered spaces and f : X → Y is (p̄, q̄)GM -stratified, then f

induces a chain map of singular intersection chain complexes2 f : I p̄SGM∗ (X)→ I q̄SGM∗ (Y ).

If, furthermore, X, Y are PL filtered spaces and f is a PL map that is (p̄, q̄)GM -stratified,

then f induces a chain map f : I p̄CGM∗ (X)→ I q̄CGM∗ (Y ) of PL intersection chain complexes.

In either case, we obtain corresponding maps of intersection homology groups.

Proof. In both cases, there are the usual maps of chain complexes induced on the ordi-

nary singular and PL chains by maps of spaces. Since the intersection chain complexes are

subcomplexes, we need only check that allowability of simplices is preserved.

First consider the singular intersection chains. If σ : ∆i → X is a p̄-allowable simplex,

then f(σ) is just the composition fσ. So we must consider (fσ)−1(T ) = σ−1f−1(T ) for

singular strata T of Y . Now

σ−1f−1(T ) ⊂ ∪{S|f(S)⊂T}σ
−1(S).

So, as σ is p̄-allowable, for each such S we have

σ−1(S) ⊂ {i− codim(S) + p̄(S) skeleton of ∆i}
⊂ {i− codim(T ) + q̄(T ) skeleton of ∆i},

where we have used the definition of being (p̄, q̄)GM -stratified. But then the union of the

σ−1(S) such that S ⊂ f−1(T ) is also in the i− codim(T ) + q̄(T ) skeleton of ∆i, and so σ is

allowable.

The PL version is perhaps even simpler. If σ is a p̄-allowable simplex in some triangulation

of X, then the image of σ under f is a PL subset of Y , though not necessarily a simplex

because f might be simplicial only with respect to some subdivision of the triangulation with

respect to which σ is given. But whatever the dimension of σ ∩ S is for a stratum S ⊂ X,

dim(f(σ ∩ S)) ≤ dim(σ ∩ S) simply by the properties of PL maps. So

dim(f(σ) ∩ T ) ≤ dim
(
∪{S|f(S)⊂T}f(σ ∩ S)

)
≤ dim

(
∪{S|f(S)⊂T}σ ∩ S

)
≤ max
∪{S|f(S)⊂T}

{i+ p̄(S)− codimX(S)}

≤ i− codimY (T ) + q̄(T ),

again utilizing the definitions. Thus each i-simplex of f(σ) must be allowable, which suffices

for the proof.

Remark 4.1.7. Although we have not strictly set up a categorical structure, we remark that

basic functorial properties do apply. In particular, if f : X → Y is (p̄, q̄)GM -stratified and

g : Y → Z is (q̄, r̄)GM -stratified, then we easily verify that gf : X → Z is (p̄, r̄)GM -stratified

and that we can therefore also compose the resulting chain maps and maps of intersection

2We abuse notation by letting the same symbol f stand for maps of spaces and for the algebraic homo-

morphisms they induce. We hope context will reduce the confusion while this practice will slightly reduce

notational clutter.
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homology groups to obtain composition maps that agree that those induced by gf . Similarly,

the identity map X → X is (p̄, p̄)GM -stratified for any perversity p̄ on X and induces the

identity map on intersection chains and intersection homology.

Given the proposition, there are evident corollaries, such as the following:

Corollary 4.1.8. If f : X → Y is a stratified homeomorphism3 and the perversities p̄ on X

and q̄ on Y correspond (i.e. p̄(S) = q̄(T ) if f(S) = T ), then I p̄HGM
∗ (X) ∼= I q̄HGM

∗ (Y ). The

corresponding fact holds for PL spaces, PL stratified homeomorphisms, and PL intersection

homology.

Proof. In this case, the maps f and f−1 are respectively GM stratified with respect to the

appropriate perversities, and since ff−1 and f−1f are identity maps, functoriality implies

that f and f−1 induce isomorphisms of the intersection chain complexes.

We now adapt definition 2.9.10 concerning stratified homotopies to add in the perversity

information.

Definition 4.1.9. Let X, Y be filtered spaces with respective perversities p̄, q̄. Let I be

the trivially-filtered unit interval, and let I × X be given the product filtration. Abusing

notation, we also let I ×X have the perversity p̄ such that p̄(I × S) = p̄(S) for any stratum

S ⊂ X.

1. A (p̄, q̄)GM -stratified map H : I × X → Y is called a GM stratified homotopy (with

respect to p̄, q̄), and

2. if f = H|{0}×X and g = H|{1}×X then f and g are GM stratified homotopic (with

respect to p̄, q̄) stratified maps.

We note that as the codimension of S in X is the same as the codimension of I × S in

I ×X, the maps f and g of the definition are indeed (p̄, q̄)GM -stratified.

The proof that (p̄, q̄)GM -stratified homotopies induce the same maps of intersection ho-

mology is precisely the same as the proof for ordinary homology provided we can demonstrate

allowability.

Proposition 4.1.10. Suppose f, g : X → Y are (p̄, q̄)GM -stratified homotopic (p̄, q̄)GM -

stratified maps. Then f and g induce chain homotopic chain maps I p̄SGM∗ (X)→ I q̄SGM∗ (Y )

and so f = g : I p̄HGM
∗ (X) → I q̄HGM

∗ (Y ). If X, Y, f, g are PL and f, g are PL (p̄, q̄)GM -

stratified homotopic, then they induce chain homotopic chain maps I p̄CGM∗ (X)→ I q̄CGM∗ (Y )

and so f = g : I p̄HGM
∗ (X)→ I q̄HGM

∗ (Y ).

Proof. It suffices to show that the identity homotopy id : I × X → I × X between the

inclusion maps j0 : X ↪→ {0} ×X ⊂ I ×X and j1 : X ↪→ {1} ×X ⊂ I ×X induces chain

homotopy operators P : I p̄SGMi (X)→ I p̄SGMi+1 (I ×X) and P : I p̄CGMi (X)→ I p̄CGMi+1 (I ×X).

3See Definition 2.9.3.
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For suppose that P is a chain homotopy operator, i.e. ∂P = j1− j0−P∂. Then as H induces

chain maps by Proposition 4.1.6, we have

∂HP = H∂P = Hj1 −Hj0 −HP∂ = g − f −HP∂,

and so HP is a chain homotopy between f and g. Similarly HP is a chain homotopy in the

PL case.

Next, recall that the strata of I ×X all have the form I × S, where S is a stratum of X

and that codimI×X(I × S) = codimX(S). Together with our convention p̄(I × S) = p̄(S), it

is not difficult to check that j0 and j1 are (p̄, p̄)GM -stratified. In fact, this is a special case of

Example 4.1.4.

Now, as for ordinary homology, the idea is to construct a chain homotopy operator by a

prism construction as in the proof of Lemma 3.3.23; see [125, proof of Theorem 2.10] for more

details. Recall from Lemma 3.3.23 that if ∆i = [v0, . . . , vi] then we can triangulate the prism

I×∆i so that the i+1 simplices of the prism will be of the form [u0, . . . , u`, w`, . . . , wi], where

uj, wj are respectively the copies of vj in {0}×∆i and {1}×∆i. In fact, if η = [vm0 , . . . , vmk ],

with the vma vertices of ∆i, is a face of ∆i, then I×η ⊂ I×∆i is triangulated as a subcomplex

by the k + 1 simplices [um0 , . . . , umb , wmb , . . . , vmk ] and their faces. A thorough proof of this

will follow from Corollary B.6.5 in our discussion below of the more general Eilenberg-Zilber

shuffle triangulation of ∆p × ∆q. Consequently, we observe that if (∆i)k is the simplicial

k-skeleton of ∆i, then I×(∆i)k ⊂ I×∆i is triangulated as a subcomplex of the k+1 skeleton

of the prism triangulation. In what follows, we always assume I ×∆i has this triangulation.

We will construct P and P as chain homotopy operators on the ordinary singular and PL

chain complexes, obtaining the intersection versions by restriction to the allowable chains.

Let σ : ∆i → X be a singular simplex. We will define P (σ), from which P is defined

in general by extending linearly. Let τ` : ∆i+1 → [u0, . . . , u`, w`, . . . , wi] be the simplicial

homeomorphism determine by the order preserving bijection of the vertices; this embeds

∆i+1 as one of the simplices of the prism triangulation of I ×∆i. Let P (σ) be the singular

chain in I × X given by P (σ) =
∑

j(id × σ)τj. Then it is not difficult to compute (or see

[125]) that ∂P = j1 − j0 − P∂, so P has the form of a chain homotopy operator. We must

show that if σ is allowable then the i+ 1 simplices of P (σ) are allowable. This is sufficient,

because if ξ is an allowable chain, then we will have P (ξ) and P (∂ξ) consisting of allowable

simplices, but also ∂P (ξ) = j1(ξ)− j0(ξ)− P (∂ξ) will consist of allowable simplices because

j0 and j1 are (p̄, p̄)GM -stratified. Therefore, we will have P (ξ) ∈ I p̄SGMi+1 (I ×X).

So we must show that if σ is allowable then each (id×σ)τj : ∆i+1 → I×X is an allowable

singular simplex of I ×X with its product filtration and the corresponding perversity as in

Definition 4.1.9. As τj : ∆i+1 → I ×∆i is a simplicial embedding, to check the allowability

condition on (id× σ)τj it suffices to show for each stratum S of X that (id× σ)−1(I × S) is

contained in the i + 1− codimI×X(I × S) + p̄(I × S) skeleton of the prism triangulation of

I ×∆i. Using the correspondences between perversities and codimensions of I ×S in I ×X
and S in X, this means we must show that

(id× σ)−1(I × S) ⊂ {i+ 1− codimX(S) + p̄(S) skeleton of I ×∆i}.
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Now observe that

(id× σ)−1(I × S) = I × σ−1(S).

And as σ is allowable, then σ−1(S) ⊂ {i− codim(S) + p̄(S) skeleton of ∆i}, so that

(id× σ)−1(I × S) ⊂ I × {i− codim(S) + p̄(S) skeleton of ∆i}.

But we have already noted that the product of I with the k-skeleton of ∆i is contained in

the k + 1 skeleton of I ×∆i.

This completes the proof for singular intersection homology.

For the PL case, the central idea is basically the same. We will start with a simplicial

construction and show that it is compatible with passing to PL chains. So suppose that

we choose some fixed admissible triangulation T of X and that I × X is given the prism

triangulation based on the preceding construction over each simplex; see Theorem B.6.6. We

will construct

PT : I p̄CGM,T
i (X)→ I p̄CGM,I×T

i+1 (I ×X),

where I × T denote the prism triangulation based on T . Analogously to the singular case,

suppose σ = [v0, . . . , vi] is a simplex of X, and let τj = [u0, . . . , uj, wj, . . . , wi] in I × X,

where the uj and wj are the copies of vj in {0} ×X and {1} ×X. We let PT (σ) =
∑
τj in

I ×X and extend PT linearly to simplicial chains. As above, we have ∂PT = j1 − j0 − PT∂
so that PT is a chain homotopy between j0 and j1. So if σ being allowable implies that the

i+1 simplices of PT (σ) are allowable, then it follows just as for the argument in the singular

case that PT takes intersection chains to intersection chains.

If σ is allowable,

dim(σ ∩ S) ≤ i− codim(S) + p̄(S),

and so

dim(I × (σ ∩ S)) ≤ i+ 1− codim(S) + p̄(S).

But then certainly

dim(τj ∩ (I × S)) ≤ dim(I × (σ ∩ S)) ≤ i+ 1− codim(S) + p̄(S).

So each τj is allowable, as desired.

Unfortunately, the operators PT do not commute with the subdivision operators, as the

reader can check with some easy examples. However, to obtain P from the PT we can show

that if σ is a simplex in the triangulation T and σ′ is a subdivision in the triangulation T ′

then the images of PT (σ) and PT ′(σ
′) agree in the PL chain complex. For this we use Lemma

3.3.10, observing that the supports of PT (σ) and PT ′(σ
′) are both I × |σ|, the supports of

∂PT (σ) and ∂PT ′(σ
′) are both

∂(I × |σ|) = (I × |∂σ|) ∪ (∂I × |σ|),

and both chains represent the fundamental class generator of Hi+1(I × |σ|, ∂(I × |σ|)). So

PT (σ) and PT ′(σ
′) represent the same PL chains.

137



Analogously to ordinary homology, the preceding result quickly implies the following

corollary, which says that stratified homotopy equivalences (Definition 2.9.10) induce iso-

morphisms of intersection homology:

Corollary 4.1.11. Suppose f : X → Y is a stratified homotopy equivalence and that p̄ on

X and q̄ on Y agree in the sense that if S and T are strata of X and Y , respectively, then

p̄(S) = q̄(T ) if f(S) ⊂ T . Then f induces an isomorphism I p̄HGM
∗ (X) ∼= I q̄HGM

∗ (Y ). The

analogous result holds in the PL category.

Proof. Recall that by Definition 2.9.10 a stratified homotopy equivalence f : X → Y is

assumed to map each stratum of X to a stratum of Y of the same codimension. Furthermore,

by Remark 2.9.11 such an f establishes a bijection between the strata of X and the strata of

Y . So if S and T are strata of X and Y such that f(S) ⊂ T , then for any singular simplex

∆i → X, we have

(fσ)−1(T ) = σ−1(f−1(T )) = σ−1(S).

So using the correspondence of codimensions and perversities, fσ is q̄-allowable if σ is p̄-

allowable, and thus f is (p̄, q̄)GM -stratified. Similarly, if g : Y → X is the stratified homotopy

inverse of f , then g is (q̄, p̄)GM -stratified. The compositions fg and gf are stratified homo-

topic to identity maps by assumption, and using the product filtrations and perversities as

in Definition 4.1.9 on I ×X and I × Y , the homotopies are also GM stratified with respect

to the perversities. So as the identity maps certainly induce isomorphisms on intersection

homology, so do the compositions fg and gf by the Proposition 4.1.10. Consequently each of

f and g is an isomorphism. A similar argument shows the same thing in the PL category.

Remark 4.1.12. In such situations, especially when X is a subset of Y , we will tend to abuse

notation and use the same perversity symbol p̄ for the perversities on both spaces. Then the

result of the previous corollary would be written I p̄HGM
∗ (X) ∼= I p̄HGM

∗ (Y ).

Example 4.1.13. As X is stratified homotopy equivalent to Rn×X when Rn is given the trivial

filtration and Rn×X is given the product filtration, we have I p̄HGM
∗ (Rn×X) ∼= I p̄HGM

∗ (X),

with the isomorphism induced either by inclusion X ↪→ Rn ×X, x → (z, x) for some fixed

z ∈ Rn, or by collapse Rn ×X → X, (z, x)→ x.

4.2 The cone formula

In Example 3.4.7, we computed the intersection homology of the open cone on a manifold. In

this section, we will extend this example to the cone on a filtered space. This computation

turns out to be phenomenally important: we know that every point of a CS set has a

neighborhood of the form Rk×cL, so once we know how to compute the intersection homology

of a cone, the stratified homotopy invariance of Corollary 4.1.11 tells us how to compute

the intersection homology of all these distinguished neighborhoods. A general principle of

topology is that to understand something about a space it is often useful to study the pieces

it is made of and how these pieces fit together; for example one sees this notion at work

in the Mayer-Vietoris sequence. Another powerful example of this principle is at work in
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sheaf theory, which is precisely a machine for piecing local information together into global

information. The intersection homology of distinguished neighborhoods of points constitutes

the local information, and so this computation provides the foundation for the sheaf theoretic

approach to intersection homology. While we will not travel down the sheaf-theoretic road

here, we will see similar ideas at play in our “Mayer-Vietoris arguments” of the next chapter.

Via these, the intersection homology of cones is a critical stepping stone for almost all of our

major theorems.

So, let X = Xn−1 be a compact n− 1 dimensional filtered space, and consider the open

cone cX with its cone filtration as in Example 2.2.11. The strata of cX will be the cone

vertex v and strata of the form (0, 1)× S for S a stratum of X. If p̄ is a perversity on cX,

define a perversity p̄X on X such that if S is a stratum of X then p̄X(S) = p̄((0, 1) × S).

For any fixed t ∈ (0, 1), the inclusion map X ↪→ cX that takes x ∈ X to (x, t) preserves

codimensions and perversities, and so it is (p̄X , p̄)
GM -stratified. Therefore, it induces a map

I p̄XSGM∗ (X)→ I p̄SGM∗ (cX).

We will demonstrate the following theorem, which turns out to be completely analogous

to the computation when X is a manifold:

Theorem 4.2.1. If X = Xn−1 is a compact filtered space of formal dimension n− 1, then

I p̄HGM
i (cX) ∼=



0, i ≥ n− p̄({v})− 1, i 6= 0,

Z, i ≥ n− p̄({v}), i = 0,

Z, i = n− p̄({v})− 1, i = 0, I p̄XHGM
0 (X) 6= 0,

0, i = n− p̄({v})− 1, i = 0, I p̄XHGM
0 (X) = 0,

I p̄XHGM
i (X), i < n− p̄({v})− 1.

Furthermore, the isomorphisms of the last case are induced by inclusion. An equivalent

conclusion holds for PL intersection homology when X is a compact PL filtered space.

If p̄({v}) ≤ n−2, for example if n > 1 and p̄ is a GM perversity, then n− p̄({v})−1 ≥ 1

and the special behavior in low dimensions is avoided. In that case we obtain the much

simpler formula

I p̄HGM
i (cX) ∼=

{
0, i ≥ n− p̄({v})− 1,

I p̄XHGM
i (X), i < n− p̄({v})− 1.

Before providing the proof, we make a few remarks.

Remark 4.2.2. The simpler formula in the case p̄({v}) ≤ n − 2 is consistent with what we

will see later when we perform the analogous cone computations for non-GM intersection

homology but arbitrary perversities. So the complication of the additional cases in Theorem

4.2.1 might be taken as a first indication that our present definition of intersection homology

isn’t quite right for arbitrary perversities.

Remark 4.2.3. The special case where i = n− p̄({v})− 1, i = 0, and I p̄XHGM
0 (X) = 0 is not

usually noted in the literature. Presumably this is because one is usually most interested

in spaces that possess regular strata, and so this case does not arise, as regular strata must
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contain allowable 0-simplices, implying that I p̄XHGM
0 (X) 6= 0. So, for example, this case is

unnecessary when working only with stratified pseudomanifolds by Remark 2.4.3. However,

as noted in Remarks 2.2.15 and 2.2.27, spaces with no regular strata will be unavoidable for

us in general; see Section 4.3, below, for more details.

It is easy to overlook this special case, and, indeed, the author is not aware of any prior

reference to it, including in his own work or in [139], where singular intersection homology

was first introduced.

Remark 4.2.4. Notice that the larger the value of p̄(v), the more chains in cX are allowable

and so the more intersection homology groups are 0, thus agreeing with our expectations for

the ordinary homology of a cone.

Proof of Theorem 4.2.1. The proof mirrors the argument of Example 3.4.7 nearly completely.

We begin by checking the allowability condition at {v}, for which the condition for an

i-simplex becomes

σ−1({v}) ⊂ {i− n+ p̄({v}) skeleton of ∆i}.

If i < n− p̄({v}) then the image of σ cannot contain v at all, and so in this range we have

I p̄SGMi (cX) = I p̄SGMi (cX − {v}). Therefore, for i < n− p̄({v})− 1, we obtain4

I p̄HGM
i (cX) = I p̄HGM

i (cX − {v}) ∼= I p̄HGM
i ((0, 1)×X).

Note: the extra −1 is because homology in dimension i depends on chains in dimension i and

i + 1. But now by Corollary 4.1.11 and Example 4.1.13, the inclusion X → I ×X induces

an isomorphism

I p̄XHGM
i (X)→ I p̄HGM

i ((0, 1)×X).

For i ≥ n− p̄({v})− 1, we again consider c̄σ, the singular cone on σ; see Example 3.4.7.

We claim that if σ is a p̄-allowable i-simplex then so is c̄σ, provided i − n + p̄({v}) ≥ −1.

Let us recall the definition of c̄σ: We think of ∆i+1 as the closed cone on ∆i, i.e. ∆i+1 =

c̄∆i = [0, 1] × ∆i/ ∼, and write each point of ∆i+1 as (s, x) with s ∈ [0, 1] and x ∈ ∆i,

non-uniquely if s = 0. Similarly, we give cX coordinates (t, z), where t ∈ [0, 1), z ∈ X,

with z non-unique if t = 0. Then we can write σ(x) = (σI(x), σX(x)) and define c̄σ so that

c̄σ(s, x) = (sσI(x), σX(x)). We define c̄ on chains by extending linearly, and, furthermore,

this operator satisfies ∂c̄(σ) = σ − c̄(∂σ).

Now, consider the allowability of σ̄ with respect to {v}. The argument here is identical

to that of Example 3.4.7: The set (c̄σ)−1({v}) includes the cone vertex (0, x) ∈ ∆i+1 and

also the points (s, x) such that σ(x) = v. If x is contained in the j-skeleton of ∆i. Then each

point (s, x) is contained in at most the j+ 1 skeleton of ∆i+1. So if σ−1({v}) is contained in

the j-skeleton of ∆i for j ≥ −1, then (c̄σ)−1({v}) is contained in the j + 1-skeleton of ∆i+1

for j ≥ −1. If σ is allowable, then

σ−1({v}) ⊂ {i− n+ p̄({v}) skeleton of ∆i},
4Here we slightly abuse notation and use p̄ also to stand for the perversity on cX − {v} that evaluates

on strata exactly as it would thinking of them as strata of cX; see Section 4.3, below, for a more general

discussion of subsets of filtered spaces.
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and we have just see that if i− n+ p̄({v}) ≥ −1 then

σ−1({v}) ⊂ {i+ 1− n+ p̄({v}) skeleton of ∆i}.

As c̄σ is an i+ 1 simplex, c̄σ is allowable at {v}.
Next, let S be a stratum of X, and let us consider (c̄σ)−1((0, 1)×S). Owing to the cone

construction, a point (s, x), s 6= 0, of ∆i+1 maps to (0, 1)× S if and only if σ(x) ∈ S. As we

have already noted that (c̄σ)(0, x) = v, it follows that

(c̄σ)−1((0, 1)× S) = (0, 1]× σ−1(S) ⊂ ∆i+1.

But if σ is allowable, σ−1(S) lies in the i−codim(S)+p̄(S) skeleton of ∆i, so (0, 1)×σ−1(S) is

contained in the 1+ i−codim(S)+ p̄(S) skeleton of ∆i+1. But this shows that c̄σ is allowable

with respect to S. It now follows just as in Example 3.4.7 that if i ≥ n − p̄({v}) − 1 and

i > 0, then I p̄HGM
i (cX) = 0 because if ξ is an allowable cycle then ξ = ∂c̄ξ.

Finally, when i = 0 ≥ n− p̄({v})− 1, we again have to be careful, as in Example 3.4.7,

because the cone on a singular 0-simplex generally has two boundary simplices. But again

if σ1, σ2 are any two allowable 0-simplices, then the cone c̄(σ2 − σ1) will have allowable

boundary σ2 − σ1, and so any two allowable 0-simplices are allowably homologous. So if

there exists an allowable 0-simplex in cX, then we have I p̄HGM
0 (X) ∼= Z. This will occur if

p̄(T ) ≥ codimcX(T ) for any stratum T ⊂ cX, in particular if X, and hence cX, has a regular

stratum. There are two possibilities for this. Either

1. p̄({v}) ≥ n (i.e. if 0 ≥ n− p̄({v})), in which case the unique 0-simplex with image {v}
is itself allowable, or

2. p̄(T ) ≥ codimcX(T ) for some T = (0, 1)×S, in which case p̄X(S) ≥ codimX(S) and so

S also allows 0-simplices in X and I p̄XHGM
0 (X) 6= 0.

The last remaining possibility is if 0 = n − p̄({v}) − 1 and p̄(T ) < codim(T ) for all

strata of cX. Then neither cX nor X can have an allowable 0-simplex. Thus we must have

I p̄HGM
0 (cX) = I p̄XHGM

0 (X) = 0. This finishes the proof for singular intersection homology.

Now suppose X is a PL filtered space. The argument here is almost completely the same!

In fact, except for minor modifications, the only difference is that we need to define a PL

version of the cone operator c̄. For this, first suppose we identify X with some simplicial

complex in Rm via some triangulation, and then identify c̄X with a simplicial complex in

Rm+1 by embedding Rm as {0} ×Rm ⊂ Rm+1 and letting the point (1, 0, . . . , 0) be the cone

vertex v. Then c̄X is obtained by coning off the simplices of X to v; see Lemma B.5.1,

Corollary B.5.2, and their proofs. The open cone cX is the PL subspace c̄X − X, and it

has a triangulation T in which each simplex is contained linearly in some simplex of the

triangulation of c̄X by Example B.4.2. Now, suppose σ is an oriented i-simplex in some

subdivision of T . Every PL chain is a linear combination of such simplices. If we order the

vertices of σ consistently with the orientation, then we can associate to σ some embedding

j : ∆i = [v0, . . . , vi] ↪→ cX. Now extend j linearly to a map c̄j from [z, v0, . . . , vi] = ∆i+1 = c̄∆i

to Rm+1 by taking the new vertex z of c̄∆i to the vertex v of cX. As c̄j is linear on ∆i+1,
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it is a PL map, using Definition B.2.15, the compactness of ∆i+1 and the local-finiteness of

the triangulations, and Definition B.1.24. Using Lemma 3.3.9, if [∆] is the class of ∆i+1 as

an element of Ci+1(∆i+1), then (c̄j) takes [∆] to a PL chain we call c̄σ ∈ Ci+i(cX). Clearly,

∂(c̄σ) = σ − c̄(∂σ) as PL chains, where c̄(∂σ) is defined by applying the same procedure to

the simplices of ∂σ.

This gives us our PL cone operator c̄, and from here the intersection homology compu-

tations are completely analogous to those for the singular chain case. We invite the reader

to work through the details in this setting as a good exercise.

4.3 Relative intersection homology

We now turn to relative intersection homology groups. For simplicity, we begin by discussing

the singular chain case, though the same discussion applies in the PL setting.

Recall that if X is any space and Y ⊂ X then the ordinary relative singular homology

H∗(X, Y ) is defined to be the homology of the chain complex S∗(X, Y ) = S∗(X)/S∗(Y ).

This quotient makes sense, as each singular i-chain of Y is also an i-chain of X, and so

each Si(Y ) is naturally a subgroup of Si(X). Furthermore, the boundary map on X takes

i-chains of Y to i − 1 chains of Y , and so S∗(Y ) is a subcomplex of S∗(X). It follows that

∂ : Si(X, Y )→ Si−1(X, Y ) is well defined, yielding the chain complex S∗(X, Y ).

Suppose now that X is a filtered space with perversity p̄ and that Y ⊂ X. We might

then expect to define I p̄SGM∗ (X, Y ) as I p̄SGM∗ (X)/I p̄SGM∗ (Y ), but now there is a question of

precisely what I p̄SGM∗ (Y ) should mean, as to define the p̄-intersection chains on a space it

must be a filtered space and the perversity should be defined with respect to that filtration.

It turns out that there are two natural, though ultimately equivalent, ways to proceed:

1. Define a filtration on Y and a perversity p̄Y , obtained in a canonical way from the

filtration on X and p̄, so that I p̄Y SGM∗ (Y ) is defined and such that it can be identified

with a subcomplex of I p̄SGM∗ (X). Then let

I p̄SGM∗ (X, Y ) = I p̄SGM∗ (X)/I p̄Y SGM∗ (Y ).

2. Rather than giving Y its own filtration and perversity information, we can define

I p̄SGM∗ (Y ⊂ X) to be the intersection of complexes I p̄SGM∗ (X) ∩ S∗(Y ) ⊂ S∗(X).

Another way to say this is that

I p̄SGM∗ (Y ⊂ X) = {ξ ∈ I p̄SGM∗ (X) | |ξ| ⊂ Y }.

Then we can let

I p̄SGM∗ (X, Y ) = I p̄SGM∗ (X)/I p̄SGM∗ (Y ⊂ X).
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The appeal of the latter approach is that it does not require putting a filtration on Y

that might not be intrinsically well-suited to Y . However, both perspectives will be useful,

and it turns out that there is a natural way to give Y a filtration and perversity p̄Y such that

I p̄Y SGM∗ (Y ) = I p̄SGM∗ (Y ⊂ X). Before proceeding to the official definitions, let us consider

an example that illustrates what “not intrinsically well-suited” can mean.

Example 4.3.1. Suppose X is a filtered space with perversity p̄ and that x ∈ X is a point,

which we can view as a subspace {x} ⊂ X. As a space in its own right, the most natural fil-

tration for {x} would be the trivial filtration as a 0-dimensional manifold. In that case, there

is only a regular stratum, determining the perversity, say q̄, with q̄({x}) = 0. Furthermore,

then I q̄SGM∗ ({x}) = S∗({x}) as we know all simplices are allowable with respect to regular

strata. But if x is contained in a singular stratum of X, then singular chains with image in

{x} might not be allowable in I p̄SGM∗ (X). Then we will not have I q̄SGM∗ ({x}) ⊂ I p̄SGM∗ (X),

and so we cannot define a relative intersection chain complex I p̄SGM∗ (X, {x}) as a quotient.

By contrast, I p̄SGM∗ ({x} ⊂ X) is defined as a subcomplex of I p̄SGM∗ (X); it is generated

in degree i by the singular simplex σi : ∆i → {x} if σi is p̄-allowable in X. So if, as claimed,

there is a filtration of {x} and a perversity p̄{x} such that I p̄{x}SGM∗ ({x}) = I p̄SGM∗ ({x} ⊂ X),

it must not necessarily be the natural filtration as a 0-manifold. In particular, the formal

dimension may be > 0, the only other filtration option for a single point.

It turns out that while the filtration and perversity on Y that get us I p̄Y SGM∗ (Y ) =

I p̄SGM∗ (Y ⊂ X) might not be the most intrinsically natural to Y , they are the ones inher-

ited from the information on X in the simplest possible way. We provide this in the next

definition. In Section 4.3.1, we will discuss situations for which these inherited filtrations

on subspaces do correspond to more natural inherent filtrations. Historically, such examples

have been important.

Definition 4.3.2. Suppose X is a filtered space endowed with a perversity p̄, and suppose

Y ⊂ X is an arbitrary subspace. Recall from Example 2.2.9 the subspace filtration Y i =

Y ∩X i, which gives Y the same formal dimension as X. We define the subspace perversity

p̄Y on Y with the subspace filtration by p̄Y (S) = p̄(T ) if S is a stratum of Y contained in the

stratum T ⊂ X. We will also say that this filtration and perversity on Y are inherited from

X, that the filtration and perversity are the restrictions of the filtration and perversity from

X to Y , or that (X, Y ) is a filtered pair. We will use these terminologies interchangeably.

Whenever we discuss a subspace Y ⊂ X, we will automatically assume it is endowed

with the inherited filtration and perversity unless noted otherwise. We will also generally

denote p̄Y simply as p̄ unless there is some danger of confusion, though we will continue to

be rather pedantic in this section while first working out the details.

Remark 4.3.3. Suppose X is a filtered space and Y ⊂ X is given the subspace filtration.

Then

Y i − Y i−1 = Y ∩X i − Y ∩X i−1 = Y ∩ (X i −X i−1).

So if S is a formally i-dimensional stratum of Y , then it is contained in a formally i-

dimensional stratum, say T , of X. And as Y is given the same formal dimension as X
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in the subspace filtration, we then have codimY (S) = codimX(T ), as well as p̄Y (S) = p̄(T )

(which is just the definition of p̄Y ).

Here is a first way in which the subspace filtration and perversity provide compatibility

between the intersection chains of Y and those of X:

Lemma 4.3.4. If X is a filtered space with perversity p̄ and Y ⊂ X is given the subspace

filtration and perversity, then the inclusion j : Y ↪→ X is (p̄Y , p̄)
GM -stratified.

Proof. It is immediate from the definition of the subspace filtration and Remark 4.3.3 that j

takes strata of Y into strata of X of the same codimension. Furthermore, by the definition

of the subspace perversity, p̄Y (S) = p̄(T ) if S is a stratum of Y contained in the stratum

T ⊂ X. So for any such strata, we have p̄Y (S) − codimY (S) = p̄(T ) − codimX(T ), thus

satisfying the definition for j to be (p̄Y , p̄)
GM -stratified.

Corollary 4.3.5. Suppose X is a filtered space with a perversity p̄ and that Y ⊂ X is given

the subspace filtration and perversity. Then I p̄Y SGM∗ (Y ) = I p̄SGM∗ (Y ⊂ X). Similarly, if X

is PL and Y is a PL subspace, then I p̄Y CGM∗ (Y ) = I p̄CGM∗ (Y ⊂ X), letting

I p̄CGM∗ (Y ⊂ X) = I p̄CGM∗ (X) ∩ C∗(Y ) ⊂ C∗(X).

Proof. By the preceding lemma and Proposition 4.1.6, the inclusion j induces maps of sin-

gular and PL intersection chain complexes, in fact commutative diagrams

I p̄Y SGM∗ (Y )
j
- I p̄SGM∗ (X) I p̄Y CGM∗ (Y )

j
- I p̄CGM∗ (X)

S∗(Y )
?

∩

⊂
j
- S∗(X)

?

∩

C∗(Y )
?

∩

⊂
j
- C∗(X).

?

∩

And so we can identify I p̄Y SGM∗ (Y ) with its image under j as a subcomplex of I p̄SGM∗ (X),

and similarly in the PL case. In particular, the chains in the image of I p̄Y SGM∗ (Y ) under j are

intersection chains of X and supported in Y , and so, suppressing the map j in the notation,

I p̄Y SGM∗ (Y ) ⊂ I p̄SGM∗ (Y ⊂ X) and, in the PL case, I p̄Y CGM∗ (Y ) ⊂ I p̄CGM∗ (Y ⊂ X).

Conversely, suppose ξ ∈ I p̄SGMi (Y ⊂ X), i.e. that ξ ∈ I p̄SGMi (Y ) ∩ Si(Y ). The claim

that ξ ∈ I p̄Y SGM∗ (Y ) is simply the claim that ξ satisfies its allowability requirements with

respect to the inherited filtration and perversity p̄Y on Y . But if S is a stratum of Y

contained in a stratum T of X, then from the definition of p̄Y and Remark 4.3.3, we see

that the condition of being p̄Y -allowable with respect to S is precisely the condition of

being p̄-allowable with respect to T . And we know that all such allowabilities hold by the

assumption that ξ ∈ I p̄SGMi (X). So I p̄SGM∗ (Y ⊂ X) ⊂ I p̄Y SGM∗ (Y ) and, similarly in the PL

case, I p̄CGM∗ (Y ⊂ X) ⊂ I p̄Y CGM∗ (Y ).

Remark 4.3.6. Earlier in this section, we made the observation that I p̄SGM∗ (Y ⊂ X) can also

be described as {ξ ∈ I p̄SGM∗ (X) | |ξ| ⊂ Y }. Of course similarly

I p̄CGM∗ (Y ⊂ X) = {ξ ∈ I p̄CGM∗ (X) | |ξ| ⊂ Y }
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if Y is a PL subspace of the PL filtered space X. But notice now that the latter complex is

still well defined if Y is any subspace of X, PL or not. Of course in this case it is possible

that C∗(Y ), and hence I p̄Y CGM∗ (Y ), may not be defined, as Y might not even be triangulable.

In this case, we will adopt the definitions

I p̄Y CGM∗ (Y ) = I p̄CGM∗ (Y ⊂ X) = {ξ ∈ I p̄CGM∗ (X) | |ξ| ⊂ Y }.

In this case, Corollary 4.3.5 will not generally apply, but we can still use I p̄CGM∗ (Y ⊂ X) to

define relative chains and relative homology.

Definition 4.3.7. If X is a filtered space with perversity p̄ and Y ⊂ X with the subspace

filtration and perversity, we define the relative singular intersection chain complex by

I p̄SGM∗ (X, Y ) = I p̄SGM∗ (X)/I p̄SGM∗ (Y ⊂ X) = I p̄SGM∗ (X)/I p̄Y SGM∗ (Y ).

If X is PL and Y is any subspace, we let

I p̄CGM∗ (X, Y ) = I p̄CGM∗ (X)/I p̄CGM∗ (Y ⊂ X) = I p̄CGM∗ (X)/I p̄Y CGM∗ (Y ).

We let I p̄HGM
∗ (X, Y ) and I p̄HGM

∗ (X, Y ) be the corresponding relative intersection homology

groups.

In what follows, we will stick with the I p̄SGM∗ (X)/I p̄Y SGM∗ (Y ) and I p̄CGM∗ (X)/I p̄Y CGM∗ (Y )

version of the notation, although, past this section, we will simplify the notation a bit further

by writing p̄Y simply as p̄.

The following is now an immediate consequence of standard homological algebra; see

[125, Theorem 2.16] or [181, Lemma 24.1]:

Theorem 4.3.8. If X is a filtered space with perversity p̄ and Y ⊂ X with the subspace

filtration and perversity, there is a short exact inclusion/quotient sequence

0→ I p̄Y SGM∗ (Y )→ I p̄SGM∗ (X)→ I p̄SGM∗ (X, Y )→ 0,

and, hence, a long exact intersection homology sequence

· · · → I p̄YHGM
i (Y )→ I p̄HGM

i (X)→ I p̄HGM
i (X, Y )→ · · · .

Analogous statements hold for PL intersection chains and PL intersection homology.

4.3.1 Further commentary on subspace filtrations

We have just seen that subspace filtrations on subspaces of filtered spaces lead naturally to

relative intersection homology and long exact sequences of the pair. This justifies our use

of subspace filtrations. But it also demonstrates our claims in Remarks 2.2.15, 2.2.27, and

4.2.3 that filtered spaces with no regular strata are unavoidable when treating subsets of

more reasonable spaces:
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Example 4.3.9. Consider, the space X = X2 = S2 q S1 of Remark 2.2.15. This is a 2-

dimensional manifold stratified space filtered by X1 = S1 ⊂ S2 q S1 = X. If we let

Y = X1 = S1 ⊂ X and wish to consider the relative intersection chain complex I p̄SGM∗ (X, Y )

for some perversity p̄ on X, then we will need the subcomplex I p̄Y SGM∗ (Y ), which consists of

the chains of I p̄SGM∗ (X) contained in Y . But with the subspace filtration, Y is treated as a

formally 2-dimensional filtered space whose only non-empty stratum is the singular stratum

S1 with codimension 1. With this filtration, S1 has no regular strata.

It is similarly not hard to come up with less artificial, e.g. connected, examples.

However, there are important situations in which such “bad” behavior does not occur

or in which a subspace filtration gives intersection homology groups on the subspace that

agree with those arising from a more natural filtration with more natural dimensions. The

simplest of these situations occurs for open subsets of pseudomanifolds:

Example 4.3.10. By Lemma 2.4.10, an open subset U of an n-dimensional stratified pseudo-

manifold X is an n-dimensional stratified pseudomanifold with its inherited filtration.

More generally, suppose X is any n-dimensional manifold stratified space such that the

union of its n-dimensional strata is dense in X, and let U ⊂ X be an open set. In this case,

the intersection of U with the i-dimensional strata of X will be i-dimensional manifolds, so

U is also a manifold stratified space. The union of the n-dimensional strata of U will be

dense in U , and so the filtration of U inherited from X is n-dimensional, topologically and

not just formally.

In these examples, U has regular strata and the subspace dimensions are consistent with

treating U as a pseudomanifold or manifold stratified space in its own right.

Another important case with many applications is that of normally nonsingular sub-

spaces:

Example 4.3.11. Normally non-singular subspaces provide another useful class of subspaces

for which intersection homology can often be computed using the intuitive dimensions of the

subspace.

First, suppose Z is a k-dimensional filtered spaces, and consider the product Rm×Z with

the product filtration, where Rm is trivially filtered with one regular stratum of dimension m

comprising all of Rm. The formal dimension of Rm×Z is m+ k. Recall that, as in Example

2.2.25, there is a bijection between strata S ⊂ Z and the strata Rm × S ⊂ Rm × Z; if S is

a j-dimensional stratum of Z, then Rm × S is a j + k-dimensional stratum of Rm × Z. It

follows that the codimension of S in Z is equal to the codimension of Rm × S in Rm × Z.

Now, suppose instead that we began with the product filtration on Rm × Z and wanted

to consider Ẑ = {0}×Z as a subset. In the subspace filtration we consider Ẑ to have formal

dimension m + k, and similarly the i-dimensional strata of Ẑ will be the intersection of Ẑ

with the i-dimensional strata of Rm × Z. This is disconcerting: for example, if Z were a

manifold stratified space, then an i-dimensional manifold stratum S in Z thought of as a

stratum, say Ŝ, in Ẑ would have to have formal dimension m + i, and so Ẑ could not be a

manifold stratified space!

However, we notice that the codimension of a stratum S in Z is nonetheless the same

as the codimension of the corresponding stratum Ŝ in Ẑ, namely m + k − (m + i) = k − i.
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Furthermore, suppose that p̄ is a perversity on Z that we extend to a perversity p̄× on Rm×Z
so that p̄×(Rm×S) = p̄(S). Then, as defined above, the restriction of p̄× to Ẑ, which we will

denote p̄Ẑ , must have p̄Ẑ(Ŝ) = p̄×(Rm × S) = p̄(S). Given this correspondence of perversity

values and codimensions, we see that Z is stratified homeomorphic5 to Ẑ and

I p̄SGM∗ (Z) = I p̄ẐSGM∗ (Ẑ).

In fact, the inclusion map Z → Rm × Z is a stratified homotopy equivalence, so altogether

we have

I p̄
×
HGM
∗ (Rm × Z) ∼= I p̄HGM

∗ (Z) ∼= I p̄ẐHGM
∗ (Ẑ).

In other words, if we start with a filtered space Z with perversity p̄ and then want to

treat Z as a subspace of Rm × Z with the subspace filtration and subspace perversity of

the product perversity p̄×, then this is equivalent, for intersection homology purposes, to

working with Z and p̄ themselves.

At first this example might seem somewhat artificial, but recall from Definition 2.9.8 that

a normally nonsingular inclusion with trivial normal bundle is a stratified inclusion i : Z ↪→ X

such that, for some m, the map i extends to a filtered homeomorphism ī, from Rm×Z with

the product filtration (Rm filtered trivially) onto some neighborhood of i(Z). Let Y = i(Z),

the normally nonsingular subspace given the subspace filtration. If p̄ is a perversity on X, p̄Z
is the perversity on Z such that p̄(T ) = p̄Z(S) if i(S) ⊂ T , and p̄Y is the subspace perversity

on Y , then the preceding argument shows I p̄Y SGM∗ (Y ) = I p̄ZSGM∗ (Z). In fact, as Y and Z

are stratified homeomorphic, the only real differences between these two expressions are the

formal dimensions of the spaces and the strata, though the codimensions of corresponding

strata are the same. However, if, for example, Z is a stratified pseudomanifold, then it

may make sense to study Z from that perspective, in which case I p̄ZSGM∗ (Z) is the more

natural chain complex. Our computation here shows that the two perspectives, Z as its

own space or Z as a subspace, agree as far as intersection chains are concerned. While

for simplicity we have here treated only the normally nonsingular inclusions with trivial

bundle neighborhoods, the arguments extend directly to more general normally nonsingular

inclusions.

We have already seen this example in play when computing the intersection homology

of a cone in Theorem 4.2.1. Starting with X = Xn−1 as the initially-given filtered space

and forming the n-dimensional cone cX as in Example 2.2.11, we computed that if p̄ is a

perversity on cX then I p̄HGM
i (cX) ∼= I p̄XHGM

i (X) in the degree range i < n − p̄({v}) − 1,

where p̄X(S) = p̄((0, 1)×S) for S a stratum of X. We have a normally nonsingular inclusion

X → {t0} ×X ⊂ cX = [0, 1)×X/ ∼,

for any choice of t0 ⊂ (0, 1); see Example 2.9.9. Alternatively, we can let X̂ = {t0} × X

thought of with its subspace filtration, in which case dim(X̂) = n. So we have perspectives

in which X can be considered to have dimension n− 1 or dimension n. But nonetheless

I p̄XSGM∗ (X) = I p̄X̂SGM∗ (X̂),

5See Definition 2.9.3.
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and the isomorphism I p̄HGM
∗ (cX) ∼= I p̄XHGM

∗ (X) (in the appropriate degrees) is induced by

the equivalent inclusions of these subcomplexes into I p̄SGM∗ (X).

Consequently, in what follows we will tend to elide the distinction between what we here

call X and X̂ as we have seen that the distinction is not usually relevant for intersection

homology purposes.

Example 4.3.12. An important example combining both open subsets and normally nonsin-

gular subspaces occurs when X is an n-dimension stratified pseudomanifold (endowed with

perversity p̄) and U is a distinguished neighborhood of a point x ∈ Xn−k. Then U is itself an

n-dimensional stratified pseudomanifold by Lemma 2.4.10. Furthermore, U is filtered home-

omorphic to the n-dimensional stratified pseudomanifold Rn−k×cLk−1, where Lk−1 is a k−1

dimensional stratified pseudomanifold, which we can identify with a normally nonsingular

subspace of Rn−k × cLk−1. By the preceding examples, assuming we choose compatible per-

versities, the intersection chain complex of the link L thought of as a subspace is isomorphic

to the intersection chain complex thinking of L as a k − 1 dimensional filtered space in its

own right. In later sections, we will simply label these complexes as I p̄SGM∗ (L).

Treating L as a stratified pseudomanifold, all notions of dimension correspond with what

we would expect topologically; there is no need for formal dimensions, except perhaps in the

intermediate steps that we can now bury.

Example 4.3.13. Finally, another useful example of a “reasonably behaved” subset occurs

when Y = ∂X is the boundary of an n-dimensional ∂-stratified pseudomanifold. This isn’t

quite a normally nonsingular subspace, as Y only has a collar neighborhood filtered home-

omorphic to [0, 1)× Y in X. However, exactly the same sorts of arguments apply as in the

preceding examples and demonstrate that the intersection chain complex I p̄∂XSGM∗ (∂X) ob-

tained by thinking of ∂X as a subspace is equal to the intersection chain complex I p̄Y SGM∗ (Y )

obtained by thinking of ∂X = Y as an n−1 dimensional stratified pseudomanifold in its own

right with appropriately compatible perversities. This example is particular pleasing as the

density of the union of the regular strata is one of the key defining properties of a stratified

pseudomanifold, and so we would certainly rather think of ∂X as being n − 1 dimensional

than as inheriting the formal dimension n from X.

4.3.2 Stratified maps revisited

Suppose (X,A) and (Y,B) are filtered pairs. So X and Y are filtered spaces and A ⊂ X

and B ⊂ Y inherit the subspace filtration and subspace perversities from X and Y . Suppose

that f : X → Y is a (p̄, q̄)GM -stratified map that takes A into B. Using Proposition 4.1.6,

f takes p̄ intersection chains on X supported in A to q̄ intersection chains on Y supported

in B. Thus f induces maps I p̄HGM
∗ (X,A) → I q̄HGM

∗ (Y,B). In other words, we have the

following relative version of Proposition 4.1.6:

Proposition 4.3.14. If (X,A) and (Y,B) are filtered pairs, f : X → Y is (p̄, q̄)GM -stratified,

and f(A) ⊂ B, then f induces a chain map f : I p̄SGM∗ (X,A) → I q̄SGM∗ (Y,B). If, further-

more, X, Y are PL filtered spaces, A,B are PL subspaces, and f is a PL map that is (p̄, q̄)GM -
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stratified, then f induces a chain map f : I p̄CGM∗ (X,A)→ I q̄CGM∗ (Y,B). We thus obtain cor-

responding maps f : I p̄HGM
∗ (X,A)→ I q̄HGM

∗ (Y,B) and f : I p̄HGM
∗ (X,A)→ I q̄HGM

∗ (Y,B).

From here, it is not difficult to modify the arguments of the various results of Section 4.1

so that they hold for such maps of relative intersection homology groups. Thus we have the

following:

Corollary 4.3.15. If f : X → Y is a stratified homeomorphism that is also a homeomor-

phism of pairs f : (X,A)→ (Y,B) and the perversities p̄ on X and q̄ on Y correspond, then

I p̄HGM
∗ (X,A) ∼= I q̄HGM

∗ (Y,B). The corresponding fact holds for PL spaces, PL stratified

homeomorphisms, and PL intersection homology.

This follows from the naturality of long exact sequences, Corollary 4.1.8, and the Five

Lemma.

Proposition 4.3.16. Suppose (X,A) and (Y,B) are filtered pairs and f, g : X → Y are

(p̄, q̄)GM -stratified maps that are (p̄, q̄)GM -stratified homotopic via a (p̄, q̄)GM -stratified ho-

motopy taking the pair (I × X, I × A) to (Y,B). Then f and g induce chain homotopic

maps I p̄SGM∗ (X,A) → I q̄SGM∗ (Y,B) and so f = g : I p̄HGM
∗ (X,A) → I q̄HGM

∗ (Y,B). The

analogous result holds in the PL category.

The proof here is the same as that of Proposition 4.1.10 by using prism operators and

noting that if |σ| ⊂ A then |P (σ)| ⊂ I × A.

Corollary 4.3.17. Suppose (X,A) and (Y,B) are filtered pairs and that f : X → Y is a

stratified homotopy equivalence that restricts to a stratified homotopy equivalence A → B.

Suppose that the values of p̄ on X and q̄ on Y agree on corresponding strata. Then f

induces an isomorphism I p̄HGM
∗ (X,A) ∼= I q̄HGM

∗ (Y,B). The analogous result holds in the

PL category.

The corollary follows from Corollary 4.1.11, the naturality of the long exact homology

sequence, and the Five Lemma.

4.3.3 Reduced intersection homology and the relative cone for-

mula

Our main goal in this section is to compute the relative intersection homology groups

I p̄HGM
∗ (cX, cX − {v}), which are an important complement to the cone intersection ho-

mology groups we computed in Theorem 4.2.1. For the relative groups, it is useful to have

reduced intersection homology available.

Reduced intersection homology

Definition 4.3.18. Let X be a filtered space with perversity p̄. Let a : S0(X)→ Z be the

augmentation homomorphism such that a(σ) = 1 for each singular 0-simplex σ : ∆0 → X.

Let S̃∗(X) be the augmented chain complex with S̃i(X) = Si(X) for i ≥ 0, S−1(X) = Z,
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and a serving as the boundary map S̃0(X)→ S̃−1(X); see [181, Section 29] or [125, Section

2.1]. We define the augmented intersection chain complex I p̄S̃GM∗ (X) ⊂ S̃∗(X) to be the

subcomplex of S̃∗(X) with I p̄S̃GMi (X) = I p̄SGMi (X) for i ≥ 0, and I p̄S̃GM−1 (X) = Z. We

define the reduced singular intersection homology groups by I p̄H̃GM
i (X) = H∗(I

p̄S̃GM∗ (X))

for i ≥ 0, and we set I p̄H̃GM
−1 (X) = 0 by definition.

The reduced PL intersection homology groups I p̄H̃GM
∗ (X) = 0 are defined analogously.

Remark 4.3.19. The reason for declaring I p̄H̃GM
−1 (X) = 0 by definition is to avoid having

I p̄H̃GM
−1 (X) = Z if there are no p̄-allowable 0-simplices in X.

Proposition 4.3.20. For any filtered space X and perversity p̄, we have I p̄HGM
i (X) ∼=

I p̄H̃GM
i (X) for i > 0 and I p̄HGM

0 (X) = I p̄H̃GM
0 (X)⊕Z if I p̄HGM

0 (X) 6= 0. If I p̄HGM
0 (X) =

0, then I p̄H̃GM
0 (X) 6= 0. And similarly for PL intersection homology.

Proof. We notice that there is a surjective chain map I p̄S̃GM∗ (X) to I p̄SGM∗ (X) that is the

identity map in non-negative degrees and with kernel complex K∗ consisting only of the

group Z in degree −1. The homology of K∗ vanishes except in degree −1, so from the

long exact homology sequence associated to our short exact sequence of chain complexes,

I p̄HGM
i (X) = I p̄H̃GM

i (X) for i > 0. In low degrees, we obtain the exact sequence

0 - I p̄H̃GM
0 (X) - I p̄HGM

0 (X) - Z - H−1(I p̄S̃GM∗ (X)) - 0.

So clearly if I p̄HGM
0 (X) = 0 then I p̄H̃GM

0 (X) = 0, and incidentally H−1(I p̄S̃GM∗ (X)) ∼= Z,

as this is the case in which no 0-simplex is allowable so I p̄SGM0 (X) = 0. If I p̄HGM
0 (X) 6= 0,

then there is an allowable 0-simplex, say σ0, and so a splitting s : Z→ I p̄HGM
0 (X) such that

s(m) = mσ0. Therefore, I p̄HGM
0 (X) = I p̄H̃GM

0 (X)⊕ Z.

As for ordinary homology, if Y ⊂ X is a filtered subspace, we can form the reduced

pair I p̄S̃GM∗ (X, Y ), which is identical to I p̄S̃GM∗ (X, Y ) because the inclusion I p̄S̃GM∗ (Y ) →
I p̄S̃GM∗ (X) is the identity on Z in degree −1. We then get a corresponding long exact

homology sequence, though note that due to our convention it is only exact at I p̄H0(X, Y ) if

H−1(I p̄S̃∗(Y )) = 0, i.e. if there is an allowable 0-simplex in Y or, equivalently, if I p̄H0(Y ) 6= 0.

The relative cone formula

Now let us compute the relative cone intersection homology groups.

Let X be a compact n − 1 dimensional filtered space, and let cX be the open cone on

X. In Theorem 4.2.1, we computed the intersection homology of cX. We will now compute

the intersection homology groups I p̄HGM
∗ (cX, cX − {v}), where v is the cone point. As

cX − {v} ∼= (0, 1)×X, we have

I p̄HGM
∗ (cX − {v}) ∼= I p̄HGM

∗ ((0, 1)×X) ∼= I p̄HGM
∗ (X),

by the preservation of intersection homology under stratified homeomorphisms and stratified

homotopy equivalences. Notice that we have begun to embrace using p̄ as the notation for all

150



suitably compatible perversities as threatened in Definition 4.3.2. Via these isomorphisms,

the long exact sequence of the pair is isomorphic to

→ I p̄HGM
i (X)

j−→ I p̄HGM
i (cX)→ I p̄HGM

i (cX, cX − {v})→ I p̄HGM
i−1 (X)→,

where j stands for the inclusion map into a level set x → (t0, x) for fixed t0 ∈ (0, 1). By

Theorem 4.2.1 this inclusion is an isomorphism for i < n−p̄({v})−1, and so I p̄HGM
i (cX, cX−

{v}) = 0 for i < n− p̄({v})− 1.

For i ≥ n − p̄({v}) − 1, i > 0, Theorem 4.2.1 tells us that I p̄HGM
i (cX) = 0. And so in

these cases I p̄HGM
i (X) ∼= I p̄HGM

i+1 (cX, cX−{v}). Alternatively stated, for i > n− p̄({v})−1,

i > 1, we have I p̄HGM
i (cX, cX − {v}) ∼= I p̄HGM

i−1 (X).

Next we consider I p̄HGM
i (cX, cX − {v}) for i = n − p̄({v}) − 1 > 0. In this case,

I p̄HGM
n−p̄({v})−1(cX) = 0 and I p̄HGM

n−p̄({v})−2(X)→ I p̄HGM
n−p̄({v})−2(cX) is an isomorphism. Thus

I p̄HGM
n−p̄({v})−1(cX, cX − {v}) = 0.

This leaves the following low-dimensional cases to check:

1. I p̄HGM
1 (cX, cX − {v}), when 1 > n− p̄({v})− 1,

2. I p̄HGM
0 (cX, cX − {v}), when 0 ≥ n− p̄({v})− 1.

Observe that in both cases 0 ≥ n− p̄({v})− 1.

In all of these remaining cases, I p̄HGM
1 (cX) = 0, and so the tail of the exact sequence is

0→ I p̄HGM
1 (cX, cX − {v})→ I p̄HGM

0 (X)→ I p̄HGM
0 (cX)→ I p̄HGM

0 (cX, cX − {v})→ 0.

In the special case when I p̄HGM
0 (cX) = 0, which can only happen if 0 = n− p̄({v})− 1

and I p̄HGM
0 (X) = 0, we must have I p̄HGM

1 (cX, cX − {v}) = I p̄HGM
0 (cX, cX − {v}) = 0.

Otherwise I p̄HGM
0 (cX) ∼= Z. If the only allowable 0-simplex of cX is contained in {v},

which will happen if 0 ≥ n−p̄({v}) and I p̄HGM
0 (X) = 0, then we must have I p̄HGM

1 (cX, cX−
{v}) = 0 and I p̄HGM

0 (cX, cX − {v}) ∼= Z.

Finally, if I p̄HGM
0 (cX) ∼= Z but there are allowable 0-simplices in X, then any such 0-

simplex is a generator so I p̄HGM
0 (X) → I p̄HGM

0 (cX) is a surjection. So I p̄HGM
0 (cX, cX −

{v}) = 0. Furthermore, as I p̄HGM
0 (cX) ∼= Z we must have I p̄H̃GM

0 (cX) ∼= 0. So the reduced

intersection homology long exact sequence becomes

0→ I p̄HGM
1 (cX, cX − {v})→ I p̄H̃GM

0 (X)→ 0,

and so I p̄HGM
1 (cX, cX − {v}) ∼= I p̄H̃GM

0 (X).

We have now computed the following results for the special low-dimensional cases:

1. If 1 > n − p̄({v}) − 1, then I p̄HGM
1 (cX, cX − {v}) ∼= I p̄H̃GM

0 (X). This also includes

the two cases above in which I p̄HGM
1 (cX, cX − {v}) = 0, since in both those cases

I p̄HGM
0 (X) = 0 and hence I p̄H̃GM

0 (X) = 0.

2. If 0 ≥ n − p̄({v}) − 1, then I p̄HGM
0 (cX, cX − {v}) = 0 = I p̄H̃GM

−1 (X) unless 0 ≥
n− p̄({v}) and I p̄HGM

0 (X) = 0, in which case I p̄HGM
0 (cX, cX − {v}) ∼= Z.
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Assembling these results, we have shown the following.

Theorem 4.3.21. If X is a compact n− 1 dimensional filtered space then

I p̄HGM
i (cX, cX − {v}) ∼=


I p̄H̃GM

i−1 (X), i ≥ n− p̄({v}), i 6= 0

I p̄H̃GM
i−1 (X) = 0, i ≥ n− p̄({v}), i = 0, I p̄HGM

0 (X) 6= 0,

Z, i ≥ n− p̄({v}), i = 0, I p̄HGM
0 (X) = 0,

0, i < n− p̄({v}).

If p̄({v}) ≤ n−1, for example if n > 1 and p̄ is a GM perversity, then n− p̄({v}) ≥ 1 and

the special behavior in low dimensions is avoided. In that case we obtain the much simpler

formula

I p̄HGM
i (cX, cX − {v}) ∼=

{
I p̄H̃GM

i−1 (X), i ≥ n− p̄({v})
0, i < n− p̄({v}).

Equivalent formulas holds for PL intersection homology when X is PL.

Remark 4.3.22. As for Theorem 4.2.1 (see Remark 4.2.3), the oddities in the low-dimensional

cases I p̄XHGM
0 (X) = 0 do not seem to have been previously noticed in the literature. How-

ever, such cases do not arise if all spaces possess regular strata, for example when working

only with stratified pseudomanifolds.

4.4 Mayer-Vietoris sequences and excision

As we have already seen many times, properties of intersection homology can often be

developed quite analogously to the corresponding properties for ordinary homology with

just some extra care to ensure that allowability of chains is not compromised. In some sense

this is also true when treating Mayer-Vietoris sequences and excision, however in this case

the extra care needed is a bit more subtle and complex, and we must be careful to avoid

what might be called the standard mistake of intersection homology.

The issue is the following: Suppose ξ ∈ Si(X) is an ordinary singular i-chain. We may

write ξ =
∑m

j=1 cjσj for some collection of singular simplices {σj} and some coefficients

cj ∈ Z. It is quite usual in chain arguments to break ξ into pieces, for example ξ =

(
∑k

j=1 cjσj) + (
∑m

j=k+1 cjσj). Suppose now that ξ is a chain that is allowable with respect to

some perversity p̄. By definition, each σj is an allowable simplex and, furthermore, each i−1

simplex of ∂ξ is allowable. However, there is no reason to suppose that all the i−1 simplices

of either ∂(
∑k

j=1 cjσj) or ∂(
∑m

j=k+1 cjσj) are allowable. There might be i − 1 simplices of

each of these that are not allowable but that cancel each other out in ∂ξ.

Here is a simple example: Consider the real line stratified as the 1-dimensional manifold

stratified space {0} ⊂ R. Suppose p̄({0}) = 0. Let σ1 be the orientation-preserving linear

homeomorphism ∆1 → [−1, 0] ⊂ R, and let σ2 be the orientation-preserving linear homeo-

morphism ∆1 → [0, 1] ⊂ R. Then for each singular simplex, σ−1
j ({0}) lies in the 0-skeleton

of ∆1, and so each σj is allowable, as dim(σj)−codim({0})+ p̄({0}) = 1−1+0 = 0. Further-

more, the chain σ1 +σ2 is allowable since each simplex is allowable and ∂(σ1 +σ2) = τ1−τ−1,
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where τα is the singular 0-simplex mapping ∆0 to α ∈ R. The 0-simplices τ1 and τ−1 have

image in the regular stratum and so are allowable. However, neither σ1 nor σ2 are allowable

as chains because each of their boundaries contains τ0, which is not allowable as in this case

dim(τ0)− codim({0}) + p̄({0}) = 0− 1 + 0 = −1.

This is clearly a difficulty when discussing excision. Suppose K ⊂ U ⊂ X and the

closure of K is contained in the interior of U . The idea behind the excision isomorphism

H∗(X,U) ∼= H∗(X−K,U−K) in ordinary homology is that one can first perform subdivisions

to make simplices of a chain as small as necessary and then “throw away” the simplices of the

chain that intersect K; proofs of excision (e.g. in [125]) make this intuition precise. However,

we must be careful when throwing away simplices not to leave exposed boundaries that are

not allowable.

Similarly, in proving the existence of the Mayer-Vietoris exact sequence for a pair U, V

with U ∪ V = X, it is necessary to demonstrate that the inclusion S∗(U) + S∗(V ) →
S∗(X) induces an isomorphism on homology. Again the basic idea of the proof first involves

subdividing chains of S∗(X) to make them small enough so that every simplex fits inside

one of U or V (which does not affect homology, which is preserved under subdivisions) and

then showing that in fact S∗(U)+S∗(V ) is isomorphic to the complex of such chains of small

simplices. But this requires showing that every chain made of small simplices can be written

as the sum of a chain in U and a chain in V . For ordinary chains, there is no problem — just

split the chain up into two chains, say one containing all the simplices that are contained

completely in U and one containing all the rest (so all the simplices contained in both U and

V get grouped into the chain in S∗(U)). But again intersection chains require much more

care to make sure we are not creating unallowable boundary faces.

In this section we work through the intersection homology details. Ultimately, analogues

of the ordinary homology arguments can be made to work out, but only with a good deal of

care. We will first work through the PL intersection homology to get a feel for the arguments.

Then we will turn to singular intersection homology, which will require a deeper investigation

of singular subdivision.

4.4.1 PL excision and Mayer-Vietoris

We begin with the PL theory. Throughout this section, X is a PL filtered space with

perversity p̄. By an allowable simplex of C∗(X) we mean an allowable simplex with respect

to some admissible triangulation of X and the perversity p̄. Of course as an element of

C∗(X), the simplex σ is identified with any chain obtained from σ via subdivision, but we

will not mean by this language that σ is allowable as a chain, and so we cannot write

σ ∈ I p̄CGM∗ (X). If we want σ to be allowable as a chain, we will say so explicitly or we will

write σ ∈ I p̄CGM∗ (X).

The key to avoiding the aforementioned perils of breaking up chains is provided by the

following lemma.

Lemma 4.4.1. Let σ be an allowable i-simplex of X. Suppose τ is an i− 1 simplex of some

subdivision of σ such that for each face η of σ we have dim(τ ∩ η) < dim(η); see Figure 4.1.

Then τ is an allowable simplex.
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Figure 4.1: In the shown subdivision of the 2-simplex σ, the 1-simplex τ satisfies the hypothe-

ses of the lemma, but the 1-simplex γ does not because γ has a 0 dimensional intersection

with a vertex of σ.

Proof. Let S be a stratum of X, and let d = i − codim(S) + p̄(S). As σ is allowable,

dim(σ ∩ S) ≤ d. Since the filtration of X is compatible with the triangulation containing σ,

this means that σ ∩ S must be contained in the simplicial d skeleton of σ, i.e. the union of

the faces of σ of dimension ≤ d. We can label this simplicial skeleton σd. As τ ⊂ σ, we then

have τ ∩ S ⊂ σ ∩ σd. In particular, τ ∩ S ⊂ τ ∩ σd. But, by assumption, the intersection

of τ with any d-dimensional face of σ must have dimension < d, and so dim(τ ∩ S) < d. In

other words, dim(τ ∩ S) ≤ i− 1− codim(S) + p̄(S), so τ is allowable.

So now the idea is to always break up chains in such a way that any new boundary face

created has the form described in the lemma. Luckily, there are plenty such boundary faces

due to our next lemma.

Lemma 4.4.2. Let σ be a simplicial i-simplex, and let σ′ be its barycentric subdivision. Let

τ be an i − 1 simplex of σ′ that does not contain a vertex of σ. Then for each face η of σ,

dim(τ ∩ η) < dim(η).

Proof. Each such simplex must have the form τ = [σ̂1, . . . , σ̂i], where σj is a j-dimensional

face of σ and σ̂j is its barycenter (see, e.g. [181, Section 15]). Thus τ ∩ σk = [σ̂1, . . . , σ̂k],

which has dimension k−1, and if η is a face of σ such that η 6= σi for any i, then τ∩η = ∅.

We can now demonstrate PL excision. As for singular homology, the excision isomorphism

will have the form I p̄HGM
∗ (X − K,U − K)

∼=−→ I p̄HGM
∗ (X,U) for subsets K ⊂ U ⊂ X such

that K̄ ⊂ Ů . The subspaces U and K do not necessarily have to be PL; see Remark 4.3.6.

Theorem 4.4.3. Let X be a PL filtered space, and suppose K ⊂ U ⊂ X are subsets such that

K̄ ⊂ Ů . Then inclusion induces an isomorphism I p̄HGM
∗ (X −K,U −K)

∼=−→ I p̄HGM
∗ (X,U).

Proof. Let us first show that the map on intersection homology is surjective. Let [ξ] ∈
I p̄HGM

i (X,U) be an allowable relative cycle. It will suffice to show that if ξ is a chain

representing [ξ] in some triangulation of X then there is a subdivision ξ′′′ of ξ such that

ξ′′′ = x + y with x, y allowable chains and such that x is supported in X − K and y is
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supported in U . In this case, ξ and x represent the same element of I p̄HGM
i (X,U) and x is

in the image of I p̄HGM
i (X −K,U −K).

Let us choose a triangulation T of X such that [ξ] can be represented by a chain ξ in T .

Suppose σ is an i-simplex of ξ. The simplex σ is covered by the two open sets A = σ ∩ Ů
and B = σ ∩ (X − K̄). By a Lebesgue number argument (cf. the proof of [181, Theorem

16.1]), there exists a number d(σ), such that if σ′ is the d(σ)-th barycentric subdivision of

σ, then every i-simplex of σ′ is contained in either A or B. Let D = maxσ∈ξ{d(σ)}, where

the maximum is taken over all i-simplices of ξ. Since ξ has only a finite number of such

simplices, D is well defined.

Now, let us consider the Dth barycentric subdivision T ′ of T . Let ξ′ denote the image

of ξ under this subdivision; then [ξ] = [ξ′] ∈ I p̄HGM
i (X,U). Let z consist of the simplices

of ξ′ (with their coefficients) in T ′ that intersect K̄. By construction, z must be contained

in Ů and ξ′ − z is contained in X −K. So if we were looking to prove excision in ordinary

homology, we’d be done; see Figure 4.2. However, we have no reason to expect that z and

ξ′ − z will be allowable. This requires another level of work; see Figure 4.3.

Figure 4.2: A subdivision of a 2-simplex into simplices contained in Ů and simplices in X−K̄.

The simplex intersecting K is shaded. The 1-simplexes bounding the shaded simplex might

not all be allowable.

Let |z| be the support of z, i.e. the union of the simplices of z. Since |z| ⊂ Ů , we can

emulate our previous argument to obtain a further barycentric subdivision T ′′ such that every

simplex of ξ′′ is contained in Ů or X − |z|. We will need to perform one more barycentric

subdivision taking us from T ′′ to T ′′′.

Let z′′′ denote the images of z under the subdivision to T ′′′. Let y consist of the simplices

(with coefficients) of ξ′′′ that intersect |z| = |z′′′|. By the construction, every simplex of y

intersects |z| and so is not in X − |z| and so is contained in Ů . Let x = ξ′′′ − y. Then

|x| ∈ X − |z| ⊂ X −K. It therefore only remains to show that y is an allowable chain, as

ξ′′′ is an allowable chain by Lemma 3.3.15 and so this will also imply that x = ξ′′′ − y is an
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Figure 4.3: After further subdivisions, we form a chain with more shaded simplices, designed

so that the new simplices in the boundary will satisfy the conditions of Lemma 4.4.2 and so

be allowable. Note that possible neighboring 2-simplices are not shown, so some boundary

simplices in the figure, such as the upper left 1-simplex, may not be allowable but, if not,

will not be part of the boundary of the entire chain.

allowable chain.

Now, by the proof of Lemma 3.3.15, since each i-simplex of ξ′′′ is allowable, so is each

i-simplex of y. So we need only check the simplices of ∂y. Some of the simplices of ∂y are

simplices of ∂ξ′′′, and so these are allowable. The only simplices of concern, then, are the

simplices that are in ∂y but not in ∂ξ′′′. In other words, these are simplices that must occur

in canceling pairs in ∂y and ∂x. Let τ be such an i− 1 simplex occurring in ∂y and ∂x. We

claim that τ cannot contain a vertex of the triangulation T ′′. It will follow by Lemmas 4.4.2

and 4.4.1 that τ is allowable.

To prove the claim, we first note that τ cannot contain a vertex of T ′′ in |z| = |z′′′|
because |x| ∩ |z| = ∅ by construction. So suppose that τ contains a vertex of T ′′ not in

|z′′′|. Let σ′′′ be any i-simplex of T ′′′ with τ as a face. Then σ′′′ also contains v. Suppose

σ′′′ is contained in the i-simplex σ′′ of T ′′. As |z| is a subcomplex of T ′′ and v /∈ |z|, the

intersection of |z| with σ′′ must be in the opposite face of σ′′ from v, i.e. the i − 1 face

spanned by the vertices of σ′′ not including v. But since we are in a barycentric subdivision,

σ′′′ cannot intersect both v and this opposite face, and so σ′′′ cannot be contained in y. But

this contradicts τ being a simplex of ∂y. So τ cannot contain a vertex of T ′′. This completes

the proof of the claim and hence the argument that the inclusion map induces a surjective

map on intersection homology.

But the proof of injectivity is completely analogous! Suppose ξ represents an element

of I p̄HGM
i (X −K,U −K) and that ξ is a relative boundary in X, i.e. there is an allowable

chain ζ in X such that ∂ζ = ξ + ρ, with ρ an allowable chain supported in U . Suppose all

these chains are represented simplicially in a triangulation T . By an argument analogous to

that above, we can find a subdivision ζ ′′′ of ζ such that ζ ′′′ = µ + ν, |ν| ⊂ Ů , µ ⊂ X −K,
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and µ and ν both allowable. Then

∂µ = ∂ζ ′′′ − ∂ν = ξ′′′ + ρ′′′ − ∂ν.

Both ρ′′′ and ∂ν are contained in U , and, in fact, since µ and ξ′′′ are contained in X−K, then

so is ρ′′′−∂ν, which must then be in U−K. So ξ′′′ is a relative boundary in (X−K,U−K),

and so represents 0 in I p̄HGM
i (X −K,U −K).

Similar arguments allow us to formulate a Mayer-Vietoris sequence.

Theorem 4.4.4. Suppose U, V ⊂ X such that Ů ∪ V̊ = X. Then there is an exact Mayer-

Vietoris sequence

→ I p̄HGM
i (U ∩ V )→ I p̄HGM

i (U)⊕ I p̄HGM
i (V )→ I p̄HGM

i (X)→ I p̄HGM
i−1 (U ∩ V )→ .

Here U , V , and U ∩ V inherit their filtrations and perversities from X. There is similarly a

Mayer-Vietoris sequence in reduced intersection homology.6

Proof. The standard arguments (see, e.g. [181, Section 33] or [125, Section 2.2]) demonstrate

that there is a short exact sequence

0→ I p̄CGMi (U ∩ V )
φ−→ I p̄CGMi (U)⊕ I p̄CGMi (V )

ψ−→ I p̄CGMi (U) + I p̄CGMi (V )→ 0.

To explain the notation, we let I p̄CGM∗ (U) + I p̄CGM∗ (V ) be the subcomplex of I p̄CGM∗ (X)

generated by allowable chains supported in U or in V , and let jA,B stand for the inclusion

map of spaces A ↪→ B. Then we let

φ(ξ) = (jU∩V,U(ξ),−jU∩V,V (ξ))

and

ψ(ξ, η) = jU,X(ξ) + jV,X(η).

In the reduced case we simply extend this short exact sequence to degree −1, where the

short exact sequence becomes

0→ Z φ−→ Z⊕ Z ψ−→ Z→ 0

with φ(a) = (a,−a) and ψ(a, b) = a+ b.

The short exact sequence yields a long exact homology sequence. What needs to be shown

is that the inclusion map ψ : I p̄CGMi (U) + I p̄CGMi (V ) → I p̄CGMi (X) yields an isomorphism

on homology. The argument in the reduced case is the same, so we focus on the unreduced

case.

The proof is basically the same as the argument we used to prove excision. Notice that

if x ∈ X is contained in the closure of X − V , it cannot be contained in the interior of V ,

so it must be contained in the interior of U . Therefore X − V ⊂ Ů . Thus the argument

6Due to our conventions about reduced intersection homology, the reduced sequence will only be exact

at I p̄HGM0 (X) if I p̄HGM0 (U ∩ V ) 6= 0; see Section 4.3.3.
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of Theorem 4.4.3 shows how we can take an allowable cycle ξ in X, subdivide it to an

appropriate ξ′′′, and then break it into two allowable pieces ξ′′′ = x+ y, where y is contained

in Ů and x is contained in X −X − V ⊂ V . So y ∈ I p̄CGMi (U) and x ∈ I p̄CGMi (V ), and this

shows that ψ is surjective on homology.

Similarly, if x+y is a cycle in I p̄CGMi (U)+I p̄CGMi (V ) that bounds a chain ζ in X, then we

can similarly split up an appropriate ζ ′′′ as ζ ′′′ = µ+ν and still have ∂ζ ′′′ = ∂(µ+ν) = x′′′+y′′′,

so x+y is homologically trivial in I p̄CGMi (U)+I p̄CGMi (V ). So ψ is injective on homology.

4.4.2 Singular subdivision, excision, and Mayer-Vietoris

We now turn to the singular versions of excision and the Mayer-Vietoris sequence. The basic

ideas are similar to those we have already explored in the PL case, but there are additional

technicalities. For one thing, we have not yet discussed subdivision of singular simplices,

which will be a necessary, though technically complex, component of the proof. We turn to

that next, though the reader not particularly interested in the technical detail may just want

to skim ahead, noting Theorem 4.4.18, which concerns excision, and Theorem 4.4.19, which

concerns Mayer-Vietoris sequences. Following the proof of Theorem 4.4.19, we resume with

some important examples that we encourage the reader not to skip.

Some of the results in this section are based on [85].

Singular subdivision

What should it mean for a singular chain to have a subdivision? The basic idea is that if

σ : ∆i → X is a singular simplex, then we will build a singular chain σ̂, which we shall

call a singular subdivision of σ, patterned upon a simplicial subdivision ∆̂i of ∆i. Roughly

speaking, σ̂ will be the sum over the restriction of σ to each of the i-simplices of ∆̂i. Then

if ξ =
∑

a naσa is a singular chain, and if we think of each σa as a map σa : ∆i
a → X, where

∆i
a is simply an indexed copy of ∆i, then we can construct a singular subdivision ξ̂ of ξ via

singular subdivisions σ̂a of each σa, each possibly patterned on a different subdivision ∆̂i
a of

∆i
a. However, we must take care to ensure that there is compatibility among simplices that

share boundaries. This will be necessary so that the “boundary of the subdivision is the

subdivision of the boundary.”

To distinguish the domain polyhedron ∆i from the singular simplices that will arise, we

refer to ∆i, or more generally any simplex in a simplicial complex, as a “geometric simplex.”

We will assume that the standard geometric simplex ∆i is given an ordering of its vertices

and write ∆i = [v0, . . . , vi] with vj < vk if and only if j < k.

There will be three steps involved in constructing a singular subdivision of a singular

simplex. First we will perform a simplicial subdivision of ∆i to a simplicial complex ∆̂i, which

yields a subdivision chain map C∗(∆
i)→ C∗(∆̂

i) as discussed in Section 3.3.1. Then we will

use an ordering on the vertices of ∆̂i to construct a chain map7 C∗(∆̂
i)→ S∗(|∆̂i|) = S∗(|∆i|).

7We will be a bit careful here by writing |∆i| for the underlying space of ∆i. This is because we also

treat ∆i as a simplicial complex within the current discussion.
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We will define the singular subdivision of ∆i to be the image of the canonical generator of

Ci(∆
i) under these chain maps. Finally, if σ : |∆i| → X is a singular simplex, we will apply

the induced chain map σ : S∗(|∆i|) → S∗(X). The image of the singular subdivision of ∆i

under the chain map σ will be our σ̂.

To carry out this program, we first need to discuss how an ordering on the vertices of a

simplicial complex K provides a chain map C∗(K)→ S∗(|K|).

Singular chains from ordered simplicial complexes. Suppose that K is a simplicial

complex with an ordering on its vertices. Such an ordering can always be found by the

Well-Ordering Principle. In fact, we only need a partial ordering that restricts to a total

ordering on each simplex of K, and in practice this is often what we will have. Recall

from our review in Section 3.2 that the simplicial chain group Ci(K) is generated by the i-

simplices of K, each with a fixed orientation, where an orientation of a simplex of K is just an

equivalence class of orderings on its vertices. Furthermore, if σ is such an oriented simplex,

then we identify the oriented simplex that has the same underlying geometric simplex but the

opposite orientation with −σ as an element of Ci(K). But now if each geometric simplex of

K has a total ordering given on its vertices, that ordering provides a canonical orientation,

and so we have canonical generators of Ci(K). We can use these to define a chain map

φ : C∗(K)→ S∗(|K|)
So now let τ = [w0, . . . , wi] be such a generator, i.e. τ is an oriented simplex of K with

the unique vertex ordering such that wj < wk if and only if j < k. Then we can let φ(τ)

be the singular i-simplex φ(τ) : |∆i| → |K| that is the linear embedding determined by

φ(τ)(vj) = wj for all j. In other words, φ(τ) is just the embedding that takes the standard

i-simplex |∆i| = |[v0, . . . , vi]| linearly homeomorphically onto τ in K in a manner preserving

the vertex ordering. This construction defines φ on the generators of Ci(K), and, since Ci(K)

is free on such generators, extending linearly provides a homomorphism Ci(K) → Si(|K|)
for each i. But these homomorphisms are also compatible with the boundary maps: We

know8

∂τ = ∂[w0, . . . , wi] =
i∑

k=0

(−1)k[w0, . . . , ŵk, . . . , wi],

and each [w0, . . . , ŵk, . . . , wi] is again oriented compatibly with the ordering of the ver-

tices of K. But also by the definition of the singular chain complex we have ∂(φ(τ)) =∑i
k=0(−1)kφ(τ) ◦ fk, where fk is the face inclusion fk : ∆i−1 → ∆i that takes ∆i−1 to the

face of ∆i omitting vk by a linear homeomorphism that is order-preserving on the vertices.

8Be careful to recall that the hat in such expressions denotes omission, not subdivision. We apologize that

the symbolˆ is used for two purposes in this section—to denote omission of vertices in boundary formulas

but otherwise to denote subdivisions. We hope the contexts are sufficiently different to avoid confusion.
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Observe that φ(τ) ◦ fk is precisely φ([w0, . . . , ŵk, . . . , wi]). So

∂(φ(τ)) =
i∑

k=0

(−1)kφ(τ) ◦ fk

=
i∑

k=0

(−1)kφ([w0, . . . , ŵk, . . . , wi])

= φ

(
i∑

k=0

(−1)k[w0, . . . , ŵk, . . . , wi]

)
= φ(∂τ).

Thus φ is a chain map C∗(K)→ S∗(|K|).
For later reference, we state our conclusion as a proposition:

Proposition 4.4.5. Suppose that K is a simplicial complex with a partial ordering on its

vertices that restricts to a total ordering on each simplex. Then there is a chain map φ :

C∗(K)→ S∗(|K|) defined so that if τ = [w0, . . . , wi] is an i-simplex of K with vertices ordered

as written and similarly ∆i = [v0, . . . , vi], then φ(τ) : |∆i| → |K| is the linear embedding

onto τ in K determined by φ(τ)(vj) = wj for all j.

The map φ induces an isomorphism from simplicial homology to singular homology. We

will not provide a proof here; see [219, Section 4.4 and Theorem 4.6.8].

While we will not need it quite yet, we observe that the map φ of Proposition 4.4.5

restricts to a chain map of intersection chain complexes:

Corollary 4.4.6. Suppose that K is a filtered simplicial complex, i.e. that |K| is filtered such

that each skeleton of the filtration is a subcomplex of K. Suppose further that K possesses a

partial ordering on its vertices that restricts to a total ordering on each simplex. Let p̄ be a

perversity on |K|. Then φ restricts to a chain map φ : I p̄CGM
∗ (K)→ I p̄SGM∗ (|K|).

Proof. As we already know by Proposition 4.4.5 that φ is a chain map and as I p̄CGM
∗ (K) ⊂

C∗(K), it suffices to verify that φ takes p̄-allowable simplices to p̄-allowable singular simplices.

So suppose σ is a p̄-allowable i-simplex of K. Then for any stratum S of |K|, we have

dim(σ ∩ S) ≤ i− codim(S) + p̄(S). As each skeleton of the filtration is a subcomplex of K,

each stratum is a union of interiors of simplices of K, and so σ ∩ S is a union of interiors

of faces of σ. Therefore, the assumption dim(σ ∩ S) ≤ i − codim(S) + p̄(S) implies that

σ ∩ S lies in some k-skeleton of σ with k ≤ i− codim(S) + p̄(S). By definition, the singular

simplex φ(σ) is the linear embedding of ∆i onto σ determined by the vertex ordering. In

particular, φ(σ) is a simplicial isomorphism onto σ. So φ(σ)−1(S) = φ(σ)−1(σ ∩ S) must be

contained in the k-skeleton of ∆i. Therefore, φ(σ) is p̄-allowable.

Singular subdivision of singular simplices. Now, let us consider ∆i as a simplicial

complex with ordered vertices [v0, . . . , vi], and let ∆̂i be a simplicial subdivision of ∆i. We

suppose a partial ordering on the vertices of ∆̂i such that the vertices of each simplex of

160



∆̂i are totally ordered. It will be convenient for what will come later to always choose our

partial orderings so that they have the following additional properties:

1. The ordering on the vertices of ∆i is preserved.

2. For each vertex w of ∆̂i, let d(w) be the smallest dimension of a face of ∆i that contains

w. This is equivalent to saying that w is contained in the interior of a face of dimension

d(w). We now require of our ordering of the vertices of ∆̂i that if d(w1) < d(w2) then

w1 < w2.

Definition 4.4.7. Let ∆i be the standard i-simplex, and let ∆̂i be a simplicial subdivision of

∆i given a partial ordering on its vertices satisfying the above conditions. Let λ : C∗(∆
i)→

C∗(∆̂
i) be the subdivision chain map as in Lemma 3.3.1, and let φ : C∗(∆̂

i) → S∗(|∆̂i|) =

S∗(|∆i|) be our chain map from simplicial to singular chains obtained using the ordering of

the vertices. Let o denote the generator of Ci(∆
i) consistent with the orientation given by

the ordering of the vertices of ∆i. We will call φ(λ(o)) a singular subdivision of ∆i based on

the subdivision ∆̂i.

If σ : |∆i| → X is a singular simplex, then we define the singular subdivision σ̂ of σ based

on ∆̂i to be the image of φ(λ(o)) under the chain map σ : S∗(|∆i|)→ S∗(X) induced by σ.

Figure 4.4: A singular simplex σ (left) and a singular subdivision σ̂ (right). We think of the

figure on the right as being the sum of compositions of σ with (signed) embeddings ∆i → ∆i.

Suppose ∆̂i is a subdivision of ∆i and that we let {δij} be the collection of i-simplices of ∆̂i.

Further, suppose we let ij : ∆i → ∆i be the unique order-preserving linear embedding that

takes ∆i onto δij. Then from Lemma 3.3.1 and the definitions, we can describe the singular

subdivision of ∆i based on the subdivision ∆̂i explicitly as the singular chain s =
∑

sgn(ij)ij,

where sgn(ij) is 1 if the orientation of δij induced by the ordering of its vertices agrees with

the orientation of ∆i and −1 if it disagrees. If σ : |∆i| → X is a singular simplex, the

singular subdivision of σ based on ∆̂i is then σ̂ = σ(s) =
∑

sgn(ij)σ ◦ ij.
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Let fk again be the order-preserving linear embedding ∆i−1 → ∆i that takes ∆i−1 to the

i − 1 face of ∆i omitting vk. If σ : |∆i| → X is a singular simplex, then the compositions

τk = σ ◦fk are the faces of σ. If ∆̂i is a subdivision of ∆i, it determines a subdivision of each

face of ∆i by restriction, and for each k this induces a subdivision of ∆i−1 via the simplicial

homeomorphism fk between ∆i−1 and the kth face of ∆i. Based on these subdivisions of

∆i−1, we can form the singular subdivisions τ̂k just as σ̂ was defined above.

Lemma 4.4.8. With the notation just established, we have ∂σ̂ =
∑i

k=0(−1)kτ̂k.

Proof. We have the following commutative diagram using the subdivision ∆̂i of ∆i for the

top row and its restriction to the kth face for the bottom row.

C∗(∆
i) ⊂

λ
- C∗(∆̂

i) ⊂
φ
- S∗(|∆̂i|)

σ
- S∗(X)

C∗(∆
i−1)

fk

∪

6

⊂
λ
- C∗(∆̂

i−1)

fk

∪

6

⊂
φ
- S∗(|∆̂i−1|)

fk

∪

6

τk- S∗(X).

=

6

Now let oi = [v0, . . . , vi] be the generator of Ci(∆
i) determined by the ordering of the

vertices of ∆i, and let oi−1
k be the analogous generator of Ci−1(∆i−1

k ), where ∆i−1
k is an indexed

copy of ∆i−1. Then we have fk(o
i−1
k ) = [v0, . . . , v̂k, . . . , vi], and so ∂oi =

∑i
k=0(−1)kfk(o

i−1
k ).

From the above diagram, the definitions, and the fact that λ, φ, and σ are all chain maps,

we have

∂σ̂ = ∂σφλ(oi)

= σφλ∂(oi)

= σφλ

(
i∑

k=0

(−1)kfk(o
i−1
k )

)

=
i∑

k=0

(−1)kσφλfk(o
i−1
k )

=
i∑

k=0

(−1)kτkφλ(oi−1
k )

=
i∑

k=0

(−1)kτ̂k,

as desired.

Singular subdivision of singular chains. Next we want to extend from subdivision of

singular simplices to subdivision of singular chains.
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Definition 4.4.9. Let ξ be a singular i-chain of X given by ξ =
∑

a naσa with na ∈ Z and

each σa a singular i-simplex of X. For each σa, let ∆i
a represent a copy of the standard

i-simplex so that σa : |∆i
a| → X. We say that the subdivisions ∆̂i

a of ∆i
a are compatible with

respect to ξ if the following condition holds: Suppose that σa and σb are singular simplices

of ξ and that they have i − 1 faces τa,j and τb,k such that τa,j = τb,k as singular simplices,

i.e. τa,j : |∆i−1|
fj
↪−→ |∆i| σa−→ X equals τb,k : |∆i−1|

fk
↪−→ |∆i| σb−→ X, where the first map in each

composition is the order-preserving embedding of the appropriate face. Then the singular

subdivisions τ̂a,j and τ̂b,k based on the restrictions of the subdivisions ∆̂i
a and ∆̂i

b are required

to be equal as chains. Note that a may equal b so this condition may impose compatibilities

among the subdivisions of the faces of the same singular i-simplex.

When such compatible subdivisions of the ∆i
a are given, we denote the associated singular

subdivisions of the σa by σ̂a and we call ξ̂ =
∑

a naσ̂a a singular subdivision of ξ.

The reason for the compatibility requirement is as follows. Suppose that ξ =
∑
naσa is

a singular i-chain. Then by Lemma 4.4.8 we have

∂ξ̂ =
∑
a

na∂σ̂a =
∑
a

na
∑
k

(−1)kτ̂a,k.

On the other hand, suppose we consider

∂ξ =
∑
a

na∂σa =
∑
a

na
∑
k

(−1)kτa,k.

We would like to be able to say that ∂ξ̂ = (∂ξ)̂, where (∂ξ)̂ indicates a singular subdivision

of ∂ξ, by taking each τa,k to the singular subdivision τ̂a,k, which will be an i−1 chain. What

the compatibility condition tells us is that if τa,k is a face of the singular simplex σa of ξ,

then the τ̂a,k obtained using the restriction of the subdivision ∆̂i
a to its kth face is the same

as the singular subdivision that would be determined using the subdivision of any singular

i-simplex of ξ that has the singular i− 1 simplex τa,k (though labeled differently) as a face.

So the compatibility lets us define the τ̂a,k, and hence (∂ξ)̂, unambiguously and in such a

way that ∂ξ̂ = (∂ξ)̂.

Note that we have only defined singular subdivision of a chain. We do not claim that

anything we have done so far necessarily results in a chain map S∗(X)→ S∗(X). Nonetheless,

there are such examples:

Example 4.4.10. The standard example of singular subdivision is given by the barycentric

subdivision of singular chains for which we let ∆̂i be the barycentric subdivision of ∆i for

all singular simplices of all dimensions; see Example B.1.13 or, more generally, [181, Section

31]. In this case, there is a natural partial ordering on the vertices of ∆̂i: if vτ denotes the

barycenter of the face τ of ∆i, then we let vτ1 < vτ2 if dim(τ1) < dim(τ2). For each fixed

dimension d, each simplex of ∆̂i has at most one vertex that is the barycenter of a face of

∆i of dimension d, so this partial ordering gives a total ordering on each simplex of ∆̂i. The

uniformity of the construction over all dimensions ensures compatibility among simplices

in any chain, and so in this case we have a subdivision chain map T : S∗(X) → S∗(X).
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Iterations of T are then also subdivision chain maps. Similarly, we can find natural vertex

orderings for generalized barycentric subdivisions, in which not every face is subdivided at

each step (see [181, Section 16]), though in this case it takes more care to ensure compatibility

among simplices.

Remark 4.4.11. A slightly more general concept, which will be useful below, are chain maps

T : S∗(X) → S∗(X) such that for each singular simplex σ the chain T (σ) is a singular

subdivision of σ. The reason this is more general is that for a chain ξ we do not require

that T (ξ) be a singular subdivision in the sense defined above. The difference is that we do

not require here complete compatibility among all common faces of simplices. It is a good

exercise to think through why such compatibility is not forced by T being a chain map!

We will see below in Corollary 4.4.15 that the restriction of such a chain map to T :

I p̄SGM∗ (X) → I p̄SGM∗ (X) is chain homotopic to the identity. The advantage of our less

general definition above of a singular subdivision of a chain is that it does not require the

existence of such a subdivision chain map defined for all chains. We will show in Proposition

4.4.14 that an intersection cycle and any singular subdivision represent the same intersection

homology class.

Remark 4.4.12. We note for future use that the idea of constructing a singular subdivision

of a singular simplex σ : |∆i| → X based on a subdivision ∆̂i of ∆i can be extended to

define singular chains starting with any simplicial complex K, a subdivision K ′ of K given

a partial ordering on its vertices that restricts to a total ordering on each simplex, and a

map f : |K| → X. Given this information and an i-chain ξ ∈ Ci(K), then we can apply

analogues of λ and φ together with f to obtain a chain in Si(X), i.e. we use the composition

C∗(K)
λ−→ C∗(K

′)
φ−→ S∗(|K ′|) = S∗(|K|)

f−→ S∗(X).

In particular, we will utilize below singular chains based on triangulations of prisms in order

to create homologies.

Singular subdivision of intersection chains. Let us now return to intersection homol-

ogy. We would like the singular subdivision of a p̄-allowable chain to be itself allowable:

Lemma 4.4.13. Let ξ̂ be a singular subdivision of the i-chain ξ ∈ I p̄SGMi (X). Then ξ̂ ∈
I p̄SGMi (X).

Proof. By assumption, for each σ in ξ and each stratum S of X, we have σ−1(S) contained

in the i− codim(S) + p̄(S) skeleton of ∆i. Similarly, for each i− 1 simplex τ in ∂ξ, we have

τ−1(S) contained in the i − 1 − codim(S) + p̄(S) skeleton of ∆i−1. Now ξ̂ is composed of

singular i-simplices of the form σij where ij : ∆i → ∆i is a linear embedding. Let us denote

the image ij(∆
i) by δij. Then the intersection of δij with an r-dimensional face F of ∆i will

be the face f of δij spanned by the vertices of δij in F . Clearly, we must have dim(f) ≤ r.

Therefore, the inverse image under i−1
j of the r-skeleton of ∆i must lie in the r-skeleton of
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the domain ∆i. So now

(σij)
−1(S) = i−1

j σ−1(S)

⊂ i−1
j ({i− codim(S) + p̄(S) skeleton of ∆i})

⊂ {i− codim(S) + p̄(S) skeleton of ∆i}.

Thus each σij is allowable, and ξ̂ is composed of allowable i-simplices. Similarly, the simplices

in ∂ξ̂ are allowable since we have seen ∂ξ̂ is a singular subdivision of ∂ξ, so the above

arguments hold analogously for ∂ξ.

Our goal now is to prove the following proposition. The proof, unfortunately, is a bit

long and technical, and we wouldn’t blame the reader for skipping it at a first pass.

Proposition 4.4.14. Let ξ be a p̄-allowable chain representing an element of I p̄HGM
i (X,A),

where A is a possibly empty subset of X. Then ξ is intersection homologous to any singular

subdivision ξ̂, so ξ and ξ̂ represent the same element of I p̄HGM
i (X,A).

Proof. Ultimately, we want to make a prism argument, so we need to construct the relevant

prisms for the current situation. Therefore, as a first step in the proof, we will show that if

∆̂i is a subdivision of ∆i then we can construct the following objects in a standardized way:

1. A triangulation K of the prism [0, 1] × |∆i| such that {0} × |∆i| is triangulated as a

subcomplex identical to ∆i and {1}× |∆i| is triangulated as a subcomplex identical to

∆̂i.

2. For each face F = [vj0 , . . . , vjm ] of ∆i = [v0, . . . , vi] of dimension m, we define a

chain ΓF ∈ Cm+1(K), which must satisfy the following property. Let C∗(F ) be the

oriented simplicial chain complex associated to F , treating F as the simplicial complex

consisting of F and its faces, and let C∗(F̂ ) be the chain complex associated to the

subdivision of F determined by restricting ∆̂i to F . We identify C∗(F ) and C∗(F̂ ) with

subcomplexes of C∗(K) via the identifications in the definition of K. Let oF be the

generator of Cm(F ) given by the ordering of the vertices of F . Let λF : C∗(F )→ C∗(F̂ )

be the subdivision map as in Lemma 3.3.1. Let Fk be the face of F obtained by

removing the kth vertex. Then the chain ΓF must satisfy

∂ΓF = λF (oF )− oF −
m∑
k=0

(−1)kΓFk .

We will be most interested in the chain ΓF where F is the unique top dimensional face

of ∆i, though we need to consider all faces due to the inductive nature of the construction.

In this case, stated roughly, what we have claimed is that we can triangulate the prism

[0, 1]×|∆i| and give it an i+ 1-chain whose boundary is the difference between the standard

generator of Ci(∆
i) at the bottom and its subdivision determined by the simplicial subdivi-

sion ∆̂i at the top, modulo a chain supported in [0, 1]× |∂∆i|. We are also claiming that we
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can perform the construction in a certain standardized way that will eventually lead us to

compatibility along boundaries of simplices in chains.

So let us begin by constructing the triangulation K of [0, 1] × |∆i|. We have already

declared that {0} × |∆i| will be triangulated as ∆i, i.e. it is just the standard simplex (as

a simplicial complex), and that we triangulate {1} × |∆i| according to the subdivision ∆̂i.

So we have given a triangulation of the “top and bottom” of each prism [0, 1] × |∆i|. We

extend this triangulation inductively on the dimensions of faces of ∆i:

1. For each 0-simplex v of ∆i, we triangulate [0, 1]× v as c̄[({0} × v)q ({1} × v)], where

c̄ represents the closed cone, with the cone vertex appearing at {1/2} × v.

2. Now suppose for a face F of ∆i we have inductively constructed a triangulation of

[0, 1] × |∂F |. Together with the trivial triangulation of {0} × |F | as a face of ∆i and

the triangulation of {1}× |F | as a subcomplex of ∆̂i, we then have a triangulation LF
of ({0}×|F |)∪ ({1}×|F |)∪ ([0, 1]×|∂F |), which is the boundary of the prism I×|F |.
Now triangulate [0, 1]× |F | by taking the closed cone on LF with the new cone vertex

positioned at {1/2} × {bF}, where bF is the barycenter of F .

Figure 4.5: The stages in a triangulation of [0, 1] × |∆1| based on a subdivision ∆̂1 of ∆1

that can be seen at the top of each square.

This inductive procedure terminates with a triangulation of [0, 1] × |∆i| that depends

only on knowing ∆̂i. See Figure 4.5.

Now let us construct the chains ΓF , which we also do inductively.

1. If F is a 0-simplex of ∆i. Let (0, F ) and (1, F ) be the copies of F in {0} × |∆i| and

{1} × |∆i|, respectively. Let u be the new vertex in our triangulation of [0, 1] × |F |.
Let ΓF be the simplicial chain [(0, F ), u] + [u, (1, F )]. Then

∂ΓF = [u]− [(0, F )] + [(1, F )]− [u] = [(1, F )]− [(0, F )].

But [(0, F )] is precisely oF in this case, and [(1, F )] = λ(oF ). So ΓF satisfies the desired

formula as F has no faces.

2. Suppose now that we have defined ΓF for all faces of dimension < m and that F has

dimension m. The simplicial chain

ζF = λ(oF )− oF −
m∑
k=0

(−1)kΓFk ∈ Cm(K)
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is thus defined and supported in the boundary of [0, 1]× |F |. Let uF be the additional

vertex added in defining the triangulation of [0, 1]×|F | by coning off the triangulation

of its boundary. We define ΓF to be c̄ζF , the simplicial chain obtained by appending

uF as the new first vertex of each simplex; see Example 3.2.12 and [181, Section

8]. In other words, if [w0, . . . , wm] is a simplex of ζF , then we let c̄([w0, . . . , wm]) =

[uF , w0, . . . , wm]. Then c̄ acts on the chain ζF by extending this construction linearly.

With this definition, ∂(c̄ζF ) = ζF − c̄(∂ζF ). But we claim that ∂ζF = 0, and so

∂ΓF = ∂(c̄ζF ) = ζF , which is precisely what we want. To see that ∂ζF = 0, we first

observe that ∂oF =
∑m

k=0(−1)koFk by the definition of the simplicial boundary map,

and we compute

∂ζF = ∂

(
λ(oF )− oF −

m∑
k=0

(−1)kΓFk

)

= ∂λ(oF )− ∂oF −
m∑
k=0

(−1)k∂ΓFk

= λ(∂oF )− ∂oF −
m∑
k=0

(−1)k

(
λ(oFk)− oFk −

m−1∑
`=0

(−1)`ΓFk,`

)

= λ

(
m∑
k=0

(−1)koFk

)
−

m∑
k=0

(−1)koFk −
m∑
k=0

(−1)kλ(oFk)

+
m∑
k=0

(−1)koFk +
m∑
k=0

(−1)k
m−1∑
`=0

(−1)`ΓFk,`

=
m∑
k=0

(−1)k
m−1∑
`=0

(−1)`ΓFk,` .

Here Fk,` is the `th face of the kth face of F . But then the form of the last sum is

exactly the form of the sum obtained when we take the boundary of the boundary of

a simplex. Hence the same cancellations occur, and the sum is 0.

Next, suppose that σ : |∆i| → X is a singular simplex and that σ̂ is a singular subdivision

of σ based on ∆̂i. Let us fix F as the top face of ∆i, i.e. the unique i-dimensional face. We can

choose a partial ordering on the vertices of the corresponding triangulation K of [0, 1]×|∆i|
by letting each new vertex in the inductive constructive be greater in the ordering than the

previously added vertices. Let φ : C∗(K)→ S∗(|K|) be our map that uses the vertex ordering

to assign to a canonically oriented simplex a singular simplex. Then let p : [0, 1]×|∆i| → |∆i|
be the projection. We define a singular chain P (σ) = σpφ(ΓF ), where p and σ act as chain

maps

S∗(|K|)
p−→ S∗(|∆i|) σ−→ S∗(X).
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We compute ∂P (σ).

∂P (σ) = ∂(σpφ(ΓF ))

= σpφ(∂ΓF )

= σpφ

(
λ(oF )− oF −

m∑
k=0

(−1)kΓFk

)

= σpφλ(oF )− σpφ(oF )−
m∑
k=0

(−1)kσpφ(ΓFk).

But thinking through the maps we see that σpφ(oF ) is just the singular chain σ, and σpφλ(oF )

is our singular subdivision σ̂ of σ. And if we let ∂kσ be the kth face of σ, then σpφ(ΓFk)

is the same singular chain we would obtain by constructing P (∂kσ) using the subdivision of

the kth face of ∆i obtained by restricting ∆̂i. So we have

∂P (σ) = σ̂ − σ −
m∑
k=0

(−1)kP (∂kσ).

Next, let us check that if σ is a p̄-allowable singular i-simplex then the i+ 1 simplices of

P (σ) will be allowable. Each such singular i+ 1 simplex η has the form σpφ(γ), where γ is

an i+ 1 simplex of K (with its canonical orientation). The singular simplex φ(γ) is a linear

embedding j : ∆i+1 → |K| that takes ∆i+1 homeomorphically onto γ; in fact j is a simplicial

isomorphism onto γ. So for the stratum S of X, we have η−1(S) = j−1p−1σ−1(S). Since σ is

allowable, σ−1(S) is in the i− codim(S) + p̄(S) skeleton of ∆i, and so

p−1σ−1(S) ⊂ [0, 1]× {i− codim(S) + p̄(S) skeleton of ∆i},

which by construction must lie in the i−codim(S)+p̄(S)+1 skeleton of our simplicial complex

K. In particular, p−1σ−1(S) intersects γ in at most its i + 1 − codim(S) + p̄(S) skeleton.

And since j is just a simplicial isomorphism from from ∆i+1 onto γ, we have j−1p−1σ−1(S)

contained in the i+ 1− codim(S) + p̄(S) skeleton of ∆i+1. Thus η is a p̄-allowable simplex.

Equipped with these prismatic tools, we can now return to subdivision of singular chains.

Suppose that ξ ∈ I p̄SGMi (X) is a chain with |∂ξ| ⊂ A and that ξ̂ is a singular subdivision.

We will construct a chain Ξ ∈ I p̄SGMi+1 (X) such that ∂Ξ = ξ̂ − ξ + ω, where ω ∈ I p̄SGMi (X)

and |ω| ⊂ A. This will prove the proposition.

Suppose that ξ =
∑

a naσa, and let ∆i
a be the domain simplex for σa with subdivision
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∆̂i
a and prism triangulation Ka. We let Ξ =

∑
a naP (σa), and then we have

∂Ξ = ∂

(∑
a

naP (σa)

)
=
∑
a

na∂P (σa)

=
∑
a

na

(
σ̂a − σa −

m∑
k=0

(−1)kP (∂kσa)

)

=
∑
a

naσ̂a −
∑
a

naσa −
∑
a

na

m∑
k=0

(−1)kP (∂kσa)

= ξ̂ − ξ −
∑
a

na

m∑
k=0

(−1)kP (∂kσa).

Thus we have ∂Ξ = ξ̂ − ξ + ω, if we set ω = −
∑

a na
∑m

k=0(−1)kP (∂kσa).

To see that |ω| ⊂ A, we note that by the assumption that ξ̂ is a singular subdivision of ξ,

the subdivisions of the i-simplices of ξ are compatible along their boundaries. Furthermore,

our construction of the triangulations were consistent in that if corresponding i− 1 faces of

∆i
s and ∆i

t are subdivided in the same way in ∆̂i
s and ∆̂i

t, then there will be correspondingly

equal subdivisions of the subcomplexes of Ks and Kt over those i− 1 faces. It follows that

whatever cancellations of i−1 simplices occur when we take ∂ξ are mirrored by cancellations

of terms in ω, and so the only remaining terms in ω will similarly be those for which ∂kσa
remains in ∂ξ. But by assumption |∂ξ| ⊂ A so the remaining ∂kσa are all in A. The map P

clearly preserves supports; hence |ω| ⊂ A.

It remains to check the allowability. Since ξ and ξ̂ are allowable and since ∂ω = ∂ξ− ∂ξ̂,
it remains only to check that the i+ 1 simplices of Ξ are allowable and that the i-simplices

of ω are allowable. But as each σa is allowable, we have seen this implies that each i + 1

simplex of the corresponding P (σa) is allowable. Similarly, we know that each i-simplex of

ω is contained in a chain of the form P (∂kσa), where ∂kσa is an i − 1 simplex of ∂ξ and so

allowable. It follows again by our above argument that the i-simplices of each P (∂kσa) are

thus allowable.

In the case where we actually have a chain map that produces singular subdivisions, we

can say a bit more. The following corollary will be useful below in Section 7.1.

Corollary 4.4.15. Suppose that T : S∗(X) → S∗(X) is a chain map that restricts to a

singular subdivision on each singular simplex. Then the induced map T : I p̄SGM∗ (X,A) →
I p̄SGM∗ (X,A) is chain homotopic to the identity for any subset A ⊂ X.

Proof. First, assume A = ∅. By the proof of Lemma 4.4.13, the image under T of each

allowable simplex is allowable, and since T is a chain map, if ξ ∈ I p̄SGM∗ (X), then T (ξ) ∈
I p̄SGM∗ (X). The argument that T is chain homotopic to the identity follows from the con-

struction of the proof of Proposition 4.4.14: For a simplex σ, recall the chain P (σ) con-

structed in that proof. As T gives us a singular subdivision of every simplex, we can in this
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setting extend P to a homomorphism Si(X)→ Si+1(X) for every i. Then, by construction,

we have

∂P (σ) = T (σ)− σ −
m∑
k=0

(−1)kP (∂kσ)

= T (σ)− σ − P

(
m∑
k=0

(−1)k∂kσ

)
= T (σ)− σ − P (∂σ) .

Thus for each chain ξ ∈ Si(X), we have ∂P (ξ) = T (ξ) − ξ − P (∂ξ). If ξ ∈ I p̄SGMi (X),

then we know that all the simplices of ξ, T (ξ), P (ξ), and P (∂ξ) are allowable, using again

Lemma 4.4.13 together with the allowability of the simplices of ξ and ∂ξ and the properties

established for P . It follows that P (ξ) ∈ I p̄SGMi+1 (X). Therefore P provides a chain homotopy

between the restriction of T to I p̄SGM∗ (X) and the identity.

If A 6= ∅, then since subdivision takes simplices supported in A to chains supported in A,

the chain map T therefore induces a chain map from I p̄SGM∗ (X,A) to itself. Furthermore,

since P also preserves (or reduces) support, the prism operator P is well defined as a map

I p̄SGM∗ (X,A) → I p̄SGM∗+1 (X,A). The above boundary formula for P holds in this setting

up to intersection chains supported in A, so P also induces a chain homotopy between

T : I p̄SGM∗ (X,A)→ I p̄SGM∗ (X,A) and the identity.

Excision

Now that we have established that subdivision of singular chains preserves intersection ho-

mology classes, we can demonstrate excision by using barycentric subdivision to ensure that

chains are composed of small simplices and then breaking the chains into pieces, being care-

ful to ensure that the pieces are each allowable chains. The proof is analogous to that in

the PL setting, beginning with a version of Lemma 4.4.2, which provided a way to recognize

boundary simplices as allowable if they are sufficiently “interior”:

Definition 4.4.16. Suppose σ : ∆i → X is a singular simplex. Let ∆̂i be the barycentric

subdivision of ∆i. Let γ be an i− 1 simplex of ∆̂i that does not contain any of the vertices

of ∆̂i. If we let i : ∆i−1 → ∆i be the vertex-order-preserving embedding of γ, then we call

the singular simplex σi : ∆i−1 → X a completely interior simplex of σ. More generally, we

call σi interior if the corresponding γ is not contained in ∂∆i.

Lemma 4.4.17. If σ is an allowable singular i-simplex, and τ is a completely interior i− 1

simplex of σ, then τ is allowable.

Proof. The proof is completely analogous to that of Lemma 4.4.1. By Lemma 4.4.2, the

intersection of γ with every face η of ∆i has dimension less than dim(η). So the intersection

of γ with the k-skeleton of ∆i must be contained in the k − 1 skeleton of ∆̂i, or in other

words,

i−1(k skeleton of ∆i) ⊂ {k − 1 skeleton of ∆i−1}.
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By assumption, if S is a stratum of X, then σ−1(S) is contained in the i− codim(S) + p̄(S)

skeleton of ∆i, so it follows that τ−1(S) = i−1σ−1(S) is contained in the i−1−codim(S)+p̄(S)

skeleton of ∆i. So τ is allowable.

Theorem 4.4.18. Let X be a filtered space, and suppose K ⊂ U ⊂ X such that K̄ ⊂ Ů .

Then inclusion induces an isomorphism I p̄HGM
∗ (X −K,U −K)

∼=−→ I p̄HGM
∗ (X,U).

Proof. We first show that inclusion induces a surjection on intersection homology. Let ξ ∈
I p̄SGMi (X) be a chain representing an element of I p̄HGM

i (X,U). The strategy is essentially

the same as for PL subdivision. We first replace ξ by a subdivision ξ̂ such that ξ̂ = x + y

where x and y are allowable singular chains, x is supported in X − K̄ and y is supported

in U . Then, applying Proposition 4.4.14, the chains x and ξ represent the same element of

I p̄HGM
i (X,U), but x is in the image of I p̄HGM

i (X −K,U −K).

We will perform an iterated barycentric subdivision of ξ via the singular subdivision

technique discussed above. Let β be the operator that replaces a chain with its singular

barycentric subdivision, and let βk denote the kth iteration of β. As ξ has only a finite

number of simplices and as simplices are compact, an easy Lebesgue number argument as

in [181, Theorem 31.3] suffices to show that there is an m such that βmξ consists entirely

of singular simplices with image in X − K̄ or Ů , which together constitute an open cover of

X. If we were working with ordinary homology, this would be sufficient. However, we will

need to employ techniques analogous to those we used to demonstrate PL excision, and so

we need a slight buffer around the simplices that intersect K. Let Z be the union of the

images of all the simplices of βmξ whose images intersect K̄; note that Z is compact and

Z ⊂ Ů . We can now further subdivide βmξ to obtain βMξ such that every simplex of βMξ

lies in X − (K̄ ∪ Z) or Ů . We let ξ̂ = βM+1ξ.

To explain our plan, note again that if we were working with ordinary homology, we’d be

content to let y consist of the sum of all the simplices of βmξ (with their coefficients) whose

images intersect K̄. The problem here is that this might create unallowable boundaries. So

the purpose of the extra subdivisions is to make sure that we have enough extra singular

simplices forming a “halo” around those touching K̄, but still inside Ů , that we can cut the

halo simplices along completely interior faces (see Definition 4.4.16) of one further subdivi-

sion, ensuring allowability of the new boundaries by Lemma 4.4.17. This is the program we

now undertake in detail.

Let A be the set of singular simplices σj in βMξ such that the image of σj intersects K̄,

and let B ⊃ A be the set of singular simplices of βMξ that share a singular vertex with a

simplex in A. By sharing a singular vertex, we mean that there is a point of X that is the

common image of some vertex of each of the domain simplices. Since every simplex of A
must be contained in a singular subdivision of a simplex with support in Z, the support of

every simplex of B must intersect Z, and it follows from the construction that every simplex

of B has image in Ů . Furthermore, every simplex of βMξ not in B is contained in X − K̄.

Conceptually, A is the core of simplices that intersect K̄, while B −A is our “halo.”

We now let y consist of the following simplices of ξ̂ = βM+1ξ (along with the coefficients

they have in ξ̂); see Figure 4.6:

1. If σ ∈ A, then all i-simplices of the singular barycentric subdivision of σ are in y.
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2. Suppose σ ∈ B −A is an i-simplex with a vertex v that is shared with a simplex in A
in the sense described above. Then we place every i-simplex of the singular barycentric

subdivision of σ that contains the vertex v in y. Since there is some room for confusion,

let us describe this in more detail. We are assuming that σ : ∆i → X is a simplex of

βMξ and that v is a vertex of ∆i such that there is some other simplex σ2 : ∆i
2 → X

of βMξ with σ2(∆i
2) ∩ K̄ 6= ∅ and a vertex v2 ∈ ∆i

2 such that σ(v) = σ2(v2). This is

what we abbreviate as “sharing the vertex v.” Then we consider all the i simplices in

the barycentric subdivision of ∆i that contain v, and we let the corresponding singular

simplices in the singular barycentric subdivision of σ be in y. This does not mean that

an i-simplex of the subdivision gets to be in y if one of its new vertices (one that arises

from the subdivision of ∆i and isn’t an original vertex of ∆i) gets mapped to the same

image as some vertex of some simplex of βMξ.

In either case, each simplex σ′ of ξ̂ that qualifies for y is given the same coefficient it would

have in ξ̂. All simplices of y must have image that intersects Z, so |y| ⊂ Ů . Furthermore, it

follows from the construction that y contains all the simplices of ξ̂ that intersect K̄. Since ξ

is allowable, it follows from Lemma 4.4.13 that ξ̂ = βM+1ξ is allowable. So if y is allowable

then x = ξ̂ − y is also allowable and is contained in X − K̄, so we will be finished with the

proof of surjectivity.

Figure 4.6: The construction of the chain y from the chain ξ̂. The simplices with bold outlines

are simplices of βMξ. The smaller simplices are from its barycentric subdivision ξ̂ = βM+1ξ.

The chains may have other simplices that are not shown. Among those simplices shown, the

shaded ones are part of y because, for each one, the vertex it shares with the simplex from

which it is subdivided is also shared by a simplex of βMξ that intersects K.

We must show that y is allowable. As ξ̂ is allowable, each i-simplex of y is allowable.

We need to check ∂y. Let τ be an i− 1 simplex in ∂y. Then τ occurs in the boundary of a

singular simplex of ξ̂; of course, τ might occur as the boundary of multiple such simplices.
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The form of our argument will be to show that either τ is allowable or that, in fact, the

coefficient of τ in ∂y is 0 so that τ is not in ∂y after all. There are three cases to consider.

See Figure 4.7.

Figure 4.7: Demonstrating the three cases of i − 1 simplices that we must consider for ∂y:

completely interior, interior but not completely interior, and non-interior. The second case

cannot actually contribute a simplex to ∂y due to cancellations. Similarly, any non-allowable

non-interior i − 1 simplices must be contained in faces that are non-allowable prior to the

subdivision. Such faces must already cancel in βMξ, and they will contribute corresponding

cancellations in ∂y due to the construction of y.

First, let σ′τ be an i-simplex of y of which τ is a boundary face, and suppose that στ
is an i-simplex of βMξ of which σ′τ is a simplex of the singular subdivision βστ . If τ is a

completely interior simplex to στ , then τ is allowable by Lemma 4.4.17. Otherwise, we must

have that τ shares a vertex v with στ , and this must also be a vertex that στ shares with a

simplex in A (possibly στ itself as στ may be in A). This is because an i-simplex δ in the

barycentric subdivision ∆̂i of ∆i shares exactly one vertex with ∆i, and any i − 1 simplex

that does not share that vertex will be the domain of a completely interior singular simplex

of στ : ∆i → X.

Next, suppose that τ is interior to στ but not completely interior. Then τ is a face of

a σ′τ that contains the vertex v of στ . But all singular i-simplices in the subdivision of στ
containing v are in y, and so, τ being internal, there must actually be two such i-simplices

in y, both in the singular subdivision of στ and possessing τ as a common face. So these

copies of τ cancel out in computing ∂y, and such a τ is not a concern for allowability of ∂y.

Finally, we must consider the case in which τ appears non-internally in the singular

subdivision of some simplex στ . In this case, τ is contained in some i−1 face Fτ of στ . If Fτ
is a simplex of ∂βMξ, then Fτ is allowable and hence so is τ . More generally, τ is allowable

if Fτ is allowable for any reason, by Lemma 4.4.13. If Fτ is not allowable, then all the copies

of Fτ must cancel in ∂βMξ. But since Fτ contains τ , Fτ must contain the vertex v that στ
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shares with some simplex in A. But then this implies that every simplex of βMξ that has

Fτ as a face is in B. Since the coefficients of Fτ must cancel out to 0 in ∂βMξ, it follows also

that all coefficients of τ arising from its appearance in subdivisions of Fτ cancel out (since all

i-simplices containing v of the subdivisions of the i-simplices that have Fτ as a face appear

in y). Considering then all possible faces Fτ in which τ appears, the same arguments show

overall that, if τ is not allowable, its coefficient in ∂y must be 0.

This completes the proof of surjectivity. The proof of injectivity now follows from the

proof of surjectivity, just as in the PL case in Theorem 4.4.3:

Figure 4.8: A schematic of the chains arising in the injectivity argument. We do not indicate

the subdivisions in the picture or its labeling.

Suppose ξ ∈ I p̄SGMi (X −K) represents an element of I p̄HGM
i (X −K,U −K) and that

ξ is a relative boundary in X, i.e. there is an allowable chain ζ such that ∂ζ = ξ + ρ, with ρ

an allowable chain supported in U . We can now subdivide ζ as in the proof of surjectivity:

construct analogous A and B, and let ν be the part of ζ̂ = βM+1ζ consisting of simplices

that share a vertex with a simplex of βMζ in A. Let µ = ζ̂ − ν. Then by exactly the same

arguments as above, µ and ν are allowable, ν is supported in U , and µ is supported in X−K;

see Figure 4.8. Then

∂µ = ∂ζ̂ − ∂ν = βM+1ξ + βM+1ρ− ∂ν.

Let us write

∂µ− βM+1ξ = βM+1ρ− ∂ν. (4.1)

Both βM+1ρ and ∂ν are contained in U , and µ and βM+1ξ are contained in X − K. So

both sides of (4.1) are in U ∩ (X − K) = U − K. Putting this all together, we have

µ ∈ I p̄SGMi+1 (X − K) with ∂µ = βM+1ξ + (βM+1ρ − ∂ν), the term βM+1ξ representing the
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same class as ξ in I p̄HGM
i (X −K,U −K) by Proposition 4.4.14, and the term βM+1ρ− ∂ν

allowable and supported in U −K. Thus ξ = 0 in I p̄HGM
i (X −K,U −K).

Mayer-Vietoris

As in the PL setting, our hard work on excision also pays off with Mayer-Vietoris sequences:

Theorem 4.4.19. Let X be a filtered space and suppose X = U∪V , where U, V are subspaces

such that X = Ů ∪ V̊ . Then there is an exact Mayer-Vietoris sequence

→ I p̄HGM
i (U ∩ V )→ I p̄HGM

i (U)⊕ I p̄HGM
i (V )→ I p̄HGM

i (X)→ I p̄HGM
i−1 (U ∩ V )→ .

There is also an analogous Mayer-Vietoris sequence in reduced intersection homology.9

Proof. There is a short exact sequence

0→ I p̄SGMi (U ∩ V )
φ−→ I p̄SGMi (U)⊕ I p̄SGMi (V )

ψ−→ I p̄SGMi (U) + I p̄SGMi (V )→ 0,

and this yields a long exact homology sequence. Analogously to the PL case, we here have

that I p̄SGM∗ (U) + I p̄SGM∗ (V ) is the subcomplex of I p̄SGM∗ (X) generated by allowable chains

supported in U or in V , and, if we let jA,B stand for the inclusion map of spaces A ↪→ B,

then φ(ξ) = (jU∩V,U(ξ),−jU∩V,V (ξ)) and ψ(ξ, η) = jU,X(ξ) + jV,X(η). In the reduced case we

extend this short exact sequence to degree −1, where it is

0→ Z φ−→ Z⊕ Z ψ−→ Z→ 0

with φ(a) = (a,−a) and ψ(a, b) = a+ b. What needs to be shown is that the inclusion map

ψ : I p̄SGM∗ (U) + I p̄SGM∗ (V ) → I p̄SGM∗ (X) (extended by the identity Z → Z in degree −1

in the reduced case) yields an isomorphism on homology. We focus on the unreduced case,

with the argument in the reduced case being the same.

The proof is basically the same as the argument we used to prove excision. The argument

of Theorem 4.4.18 shows how we can take an allowable cycle ξ in X and subdivide it into

a chain ξ̂ representing the same intersection homology class and such that ξ̂ = x + y, with

x, y allowable and such that y is contained in Ů and x is contained in X − (X − V̊ ) = V̊ ,

i.e. y ∈ I p̄SGMi (U) and x ∈ I p̄SGMi (V ). This shows that ψ is surjective on homology.

Similarly, if y + x is a cycle in I p̄SGMi (U) + I p̄SGMi (V ) that bounds a chain ζ in X, then

we can split up a subdivision ζ̂ as ζ̂ = ν + µ with ν ∈ I p̄SGMi+1 (U) and µ ∈ I p̄SGMi+1 (V ).

Then ∂ζ̂ = ∂(µ + ν) = x̂ + ŷ, where x̂, ŷ are the induced subdivisions of x and y. So

x̂ + ŷ = 0 ∈ H∗(I p̄SGMi (U) + I p̄SGMi (V )). But we can show that x̂ + ŷ represents the same

homology class as x + y in H∗(I
p̄SGMi (U) + I p̄SGMi (V )) using the argument from the proof

of Corollary 4.4.15. If we assume that we have been using barycentric subdivisions, then

9Due to our conventions about reduced intersection homology, the reduced sequence will only be exact

at I p̄HGM
0 (X) if I p̄HGM

0 (U ∩ V ) 6= 0; see Section 4.3.3.
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we have our prism operator P , which by construction preserves supports: |P (ξ)| ⊂ |ξ|. So

|P (x)| ⊂ V , |P (y)| ⊂ U , and

∂(P (x) + P (y)) = ∂P (x) + ∂P (y)

= x̂− x− P (∂x) + ŷ − y − P (∂y)

= (x̂+ ŷ)− (x+ y)− P (∂x+ ∂y)

= (x̂+ ŷ)− (x+ y),

as ∂x + ∂y = ∂(x + y) = 0 by assumption. So x + y and x̂ + ŷ represent the same class in

H∗(I
p̄SGMi (U) + I p̄SGMi (V )). Since we have shown that x̂ + ŷ is trivial in Hi(I

p̄SGM∗ (U) +

I p̄SGM∗ (V )), so is x+ y. Thus ψ is injective.

Within the proof of the theorem, we demonstrated that the inclusion map ψ : I p̄SGMi (U)+

I p̄SGMi (V )→ I p̄SGMi (X) induces an isomorphism on homology. Below, in Proposition 6.5.1

of Section 6.5, we will prove the stronger statement that if V is a covering of X such that the

interiors of the elements of V constitute an open covering of X and if we let I p̄SGM,V
∗ (X) =∑

V ∈V

I p̄SGM∗ (V ) ⊂ I p̄SGM∗ (X), then the inclusion I p̄SGM,V
∗ (X) ↪→ I p̄SGM∗ (X) is a chain ho-

motopy equivalence. For PL chains, the corresponding inclusion I p̄CGM,V
∗ (X) ↪→ I p̄CGM∗ (X)

will be shown to be an isomorphism.

Examples

We now turn to some important applications of the tools we have now developed. First

we compute the intersection homology of a suspension. Then we compute the intersection

homology of a ∂-stratified pseudomanifold whose boundary has been coned off.

Example 4.4.20. Let us use the Mayer-Vietoris sequence to compute the intersection homol-

ogy of the suspension of a compact filtered space. Let X be an n− 1 dimensional compact

filtered space, and let SX = [−1, 1] ×X/ ∼ be the suspension of X. We filter SX so that

(SX)i = S(X i−1) and (SX)0 = {n, s}, the north and south suspension vertices; in partic-

ular, SX has dimension n. Let p̄ be a perversity on SX; for simplicity, let us also assume

that p̄({n}) = p̄({s}) = p and that I p̄HGM
0 (X) 6= 0 (for example if X, and hence also SX,

possesses a regular stratum). We leave it as a fun exercise for the reader to consider the cases

p̄({n}) 6= p̄({s}) or I p̄HGM
0 (X) = 0. We will also use p̄ to denote the perversity restricted to

X.

We will use the reduced Mayer-Vietoris sequence for the two pieces U = [−1, 1)×X/ ∼∼=
cX and V = (−1, 1] × X/ ∼∼= cX of the suspension. Then the intersection of these two

pieces is U ∩ V ∼= (−1, 1)×X, and we know from stratified homotopy invariance (Corollary

4.1.11) that I p̄HGM
∗ ((−1, 1) ×X) ∼= I p̄HGM

∗ (X), induced by inclusion. We also know from

Theorem 4.2.1 that, since we’ve assumed X has regular strata and hence I p̄HGM
0 (X) 6= 0,

I p̄HGM
i (cX) ∼=


0, i ≥ n− p− 1, i 6= 0,

Z, i = 0 ≥ n− p− 1,

I p̄Hi(X), i < n− p− 1,
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where the isomorphisms in dimensions i < n − p − 1 are induced by inclusions. It follows

that the reduced intersection homology is

I p̄H̃GM
i (cX) ∼=

{
0, i ≥ n− p− 1,

I p̄H̃i(X), i < n− p− 1.

This gives us the computations of I p̄H̃GM
∗ (U) and I p̄H̃GM

∗ (V ).

So for i ≥ n − p − 1, we see that I p̄H̃GM
i (U) = I p̄H̃GM

i (V ) = 0, and so in this range

from the reduced Mayer-Vietoris sequence we must have I p̄H̃GM
i (X) ∼= I p̄H̃GM

i+1 (SX), via the

Mayer-Vietoris boundary map and the stratified homotopy equivalence of (−1, 1)×X with

X. In other words, for i > n−p−1, we have I p̄H̃GM
i (SX) ∼= I p̄H̃GM

i−1 (X). If i = 0 ≥ n−p−1,

we also get I p̄H̃0(SX) = 0.

If i < n− p− 1, the inclusion maps I p̄H̃GM
i (U ∩V )→ I p̄H̃GM

i (U) and I p̄H̃GM
i (U ∩V )→

I p̄H̃GM
i (V ) are each isomorphisms (via the cone formula and stratified homotopy invariance),

so the maps

φ : I p̄H̃GM
i (U ∩ V )→ I p̄H̃GM

i (U)⊕ I p̄HGM
i (V )

of the Mayer-Vietoris sequence just have the form of an “anti-diagonal” map G → G ⊕ G,

g → (g,−g). So in this degree range, the Mayer-Vietoris sequence splits into short exact

sequences of the form

G ⊂
φ
- G⊕G

ψ
-- G

with φ(g) = (g,−g) and ψ(g, h) = g + h. Hence we have I p̄H̃GM
i (SX) ∼= I p̄H̃i(X) for

i < n− p− 1, induced by inclusion.

Finally, we must compute I p̄H̃GM
n−p−1(SX) for n− p− 1 > 0. We have seen that

I p̄H̃GM
n−p−2(U ∩ V )→ I p̄H̃GM

n−p−2(U)⊕ I p̄H̃GM
n−p−2(V )

is injective, and we have IH̃GM
n−p−1(U) = IH̃GM

n−p−1(V ) = 0, so IH̃GM
n−p−1(SX) = 0 for n−p−1 ≥

1.

Altogether, we have shown the following:

I p̄H̃GM
i (SX) =


I p̄H̃GM

i−1 (X), i > n− p− 1,

0, i = n− p− 1

I p̄H̃GM
i (X), i < n− p− 1.

Rewriting in terms of unreduced intersection homology for SX, and using I p̄H0(SX) 6= 0,

as we have assumed there are allowable 0̄-simplices in X, we obtain the following:

Theorem 4.4.21. If X is an n − 1 dimensional compact filtered space with I p̄HGM
0 (X) 6= 0

and p̄ is a perversity on SX that takes the same value p at the two suspensions points, then

I p̄HGM
i (SX) ∼=


I p̄H̃GM

i−1 (X), i > n− p− 1, i 6= 0,

0, i = n− p− 1, i 6= 0,

Z, i = 0 ≥ n− p− 1,

I p̄HGM
i (X), i < n− p− 1.
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Notice that this agrees with the computation of Example 3.2.13, as we have assumed

that there are always allowable singular 0-simplices.

It is interesting to compare this calculation to that for the suspension in ordinary ho-

mology. In that case, we have H̃i(SX) ∼= H̃i−1(X) for all i; see [181, Theorem 33.2] or [125,

Section 2.2, Exercise 32]. So, for suspensions, intersection homology behaves like ordinary

homology above a certain degree that depends on the perversity of the suspension points,

shifting all the groups of the original space up by a degree. However, in intersection homol-

ogy there is a transition degree at which the group is 0, and below that degree the groups

are as though the suspension had not been done at all. The reason for some of the odd

behavior in degree 0 is that when 0 should be the transition degree we can’t quite manage

I p̄HGM
0 (SX) = 0, assuming there are regular strata, which then must contain allowable

0-cycles (when the transition degree is below 0, i.e. when 0 > n − p − 1, we will still have

I p̄HGM
0 (SX) ∼= Z, and we could just as well have written I p̄H̃GM

0 (SX) = I p̄H̃GM
−1 (SX) = 0

in our table). This defect in degree 0 will be corrected when we turn to non-GM intersection

homology in Chapter 6; in particular, see Theorem 6.3.13.

Example 4.4.22. Here is another important example that includes, as a special case, a singular

intersection homology version of Example 3.2.12. Let X be a compact n-dimensional ∂-

stratified pseudomanifold with ∂X 6= ∅. As a special case, X may be a ∂-manifold as in

Example 3.2.12, though now we do not assume a triangulation. Let X+ = X ∪∂X c̄(∂X). In

other words, X+ is X but with its boundary coned off. This space is filtered homeomorphic

to the quotient space X/∂X in which we collapse ∂X to a point. Let v be the cone point.

Let p̄ be a perversity on X+, which restricts to a perversity on X that we continue to call p̄.

We have an inclusion map of pairs (X, ∂X) ↪→ (X+, c̄(∂X)), which induces a map of long

exact sequences

- I p̄HGM
i (∂X) - I p̄HGM

i (X) - I p̄HGM
i (X, ∂X) -

- I p̄HGM
i (c̄(∂X))
?

- I p̄HGM
i (X+)
?

- I p̄HGM
i (X+, c̄(∂X))

∼=
?

- .

To see that the rightmost vertical map in the diagram is an isomorphism for all i, we use

excision to excise a small cone neighborhood of the cone point in I p̄HGM
i (X+, c̄(∂X)) and

then apply a stratified homotopy equivalence to retract what remains of c̄(∂X) back to ∂X.

We can now use the cone formula (Theorem 4.2.1) and the stratified homotopy equiv-

alence of c̄(∂X) with c(∂X) to compute I p̄HGM
i (c̄(∂X)). To simplify things somewhat, we

will assume that p̄({v}) ≤ n − 2; see Remark 4.2.2. This allows us to avoid some messy

cases when i = 0, 1, and it also provides a formula that’s consistent with what we will get

for non-GM intersection homology and arbitrary perversities later in Example 6.3.15. We

encourage the reader to compute the more general cases as an exercise.

So, assuming p̄({v}) ≤ n − 2 (so that n − p̄({v}) − 1 ≥ 1), Theorem 4.2.1 and Remark
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4.2.2 give us

I p̄HGM
i (c̄(∂X)) ∼=

{
0, i ≥ n− p̄({v})− 1,

I p̄HGM
i (∂X), i < n− p̄({v})− 1.

From the long exact sequences, it follows immediately that

I p̄HGM
i (X+) ∼= I p̄HGM

i (X+, c̄(∂X)) ∼= I p̄HGM
i (X, ∂X)

for i > n− p̄({v})− 1.

The cone formula also tells us that the isomorphism I p̄HGM
i (c̄(∂X)) ∼= I p̄HGM

i (∂X) when

i < n− p̄({v})− 1 is induced by inclusion, so we get I p̄HGM
i (X) ∼= I p̄HGM

i (X+) by the Five

Lemma when i < n− p̄({v})− 1.

This leaves the case i = n− p̄({v})− 1. In this case, the diagram reduces to

- I p̄HGM
i (∂X) - I p̄HGM

i (X) - I p̄HGM
i (X, ∂X)

∂∗- I p̄HGM
i−1 (∂X) -

- 0
?

- I p̄HGM
i (X+)
?

- I p̄HGM
i (X+, c̄(∂X))

∼=
? ∂∗- I p̄HGM

i−1 (c̄(∂X))

∼=
?

- ,

so we can identify I p̄HGM
n−p̄({v})−1(X+) with the kernel of the boundary map

∂∗ : I p̄HGM
n−p̄({v})−1(X, ∂X)→ I p̄HGM

n−p̄({v})−2(∂X).

Equivalently, from the long exact sequences, this is the image of the inclusion-induced

I p̄HGM
n−p̄({v})−1(X)→ I p̄HGM

n−p̄({v})−1(X, ∂X).

So, summarizing, we have computed

I p̄HGM
i (X+) ∼=


I p̄HGM

i (X, ∂X), i > n− p̄({v})− 1,

im(I p̄HGM
i (X)→ I p̄HGM

i (X, ∂X)), i = n− p̄({v})− 1,

I p̄HGM
i (X), i < n− p̄({v})− 1.

In the special case where X is a (trivially filtered) compact oriented n-dimensional ∂-

manifold M with ∂M 6= ∅, and continuing to assume p̄({v}) ≤ n− 2, this reduces to

I p̄HGM
i (M+) ∼=


Hi(M,∂M), i > n− p̄({v})− 1,

im(Hi(M)→ Hi(M,∂M)), i = n− p̄({v})− 1,

Hi(M), i < n− p̄({v})− 1.

This example provides a tantalizing glimpse of Poincaré duality results to come as we know

that

Hi(M ;Q) ∼= Hom(Hn−i(M,∂M ;Q),Q)

and

im(Hi(M ;Q)→ Hi(M,∂M ;Q)) ∼= Hom(im(Hn−i(M ;Q)→ Hn−i(M,∂M ;Q)),Q)
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as consequences of Lefschetz duality. Thus it would appear that, at least with field co-

efficients, finding a duality between I p̄HGM
i (X) and I q̄HGM

n−i (X) is a matter of choosing

perversities such that the dual groups line up properly. This intuition will be validated

below in Chapter 8.

The reader may now want to apply the computations of this example to complete Example

3.4.8. Recall that Example 3.4.8 dealt with X = X1 = S1, the circle, and a point x0 ∈ S1.

The space X is filtered as {x0} ⊂ X. Such a space arises as in our example here by

letting our ∂-stratified pseudomanifold be I, the standard closed interval with its trivial

filtration. In order to consider all the possible cases, the reader will want to explore the

options p̄({v}) > n− 2 as well.

Relative Mayer-Vietoris sequences

Once one has a Mayer-Vietoris sequence, it is not difficult to formulate a relative version.

Theorem 4.4.23. Suppose X = U ∪V , where U, V are subspaces such that X = Ů ∪ V̊ . Let

A ⊂ X, let C = A∩U , and let D = A∩ V . Then there is an exact Mayer-Vietoris sequence

→ I p̄HGM
i (U ∩ V,C ∩D)→ I p̄HGM

i (U,C)⊕ I p̄HGM
i (V,D)→ I p̄HGM

i (X,A)→ .

Similarly, there is an analogous PL intersection homology sequence.

Proof. As the proofs are equivalent, we focus on singular chains.

Consider the diagram

0 - I p̄SGM∗ (C ∩D) - I p̄SGM∗ (C)⊕ I p̄SGM∗ (D) - I p̄SGM∗ (C) + I p̄SGM∗ (D) - 0

0 - I p̄SGM∗ (U ∩ V )
?

- I p̄SGM∗ (U)⊕ I p̄SGM∗ (V )
?

- I p̄SGM∗ (U) + I p̄SGM∗ (V )
?

- 0.

The top and bottom rows are Mayer-Vietoris short exact sequences of chain complexes, and

each vertical map is an inclusion of complexes. Therefore, applying the Snake Lemma10 [196,

Corollary 6.12] in each degree yields a short exact sequence

0 - I p̄SGM∗ (U ∩ V,C ∩D) - I p̄SGM∗ (U,C)⊕ I p̄SGM∗ (V,D) -
I p̄SGM∗ (U) + I p̄SGM∗ (V )

I p̄SGM∗ (C) + I p̄SGM∗ (D)
- 0

and a corresponding long exact homology sequence. It only remains to show that

Hi

(
I p̄SGM∗ (U) + I p̄SGM∗ (V )

I p̄SGM∗ (C) + I p̄SGM∗ (D)

)
∼= I p̄HGM

i (U ∩ V,C ∩D).

10Famously, a partial proof of the Snake Lemma opens the 1980 film It’s My Turn. Unfortunately, the

author knows of no film references to intersection homology.
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But now we have yet another diagram of short exact sequences

0 - I p̄SGM∗ (C) + I p̄SGM∗ (D) - I p̄SGM∗ (U) + I p̄SGM∗ (V ) -
I p̄SGM∗ (U) + I p̄SGM∗ (V )

I p̄SGM∗ (C) + I p̄SGM∗ (D)
- 0

0 - I p̄SGM∗ (A)
?

- I p̄SGM∗ (X)
?

- I p̄SGM∗ (X,A)
?

- 0.

We have already established that the middle vertical map induces an isomorphism on ho-

mology in the proof of Theorem 4.4.19, and similarly the lefthand vertical map induces an

isomorphism on homology using that the union of the interiors of C and D in A cover A

(this is an easy exercise in point set topology). Therefore, by the Five Lemma, the righthand

vertical map also induces homology isomorphisms.
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Chapter 5

Mayer-Vietoris arguments and further

properties of intersection homology

A basic question in topology is how to compute invariants of a space from invariants of

subspaces. The standard tool for this purpose is the Mayer-Vietoris sequence. In the first

section of this chapter, we examine a generalization that will be useful for proving many of

the theorems that occur later in the book, including Künneth theorems and Poincaré duality.

Following Bott and Tu [29], we refer to these techniques as “Mayer-Vietoris arguments.”

The basic idea is that we want to know that if two homology theories agree on small

pieces of a space, then they agree on the space as a whole. Roughly speaking, this is a

generalization of the principle that if we know that X = U ∪ V and that two homology

theories agree on U , V , and U ∩ V , then they agree on X by applying the Five Lemma to

a diagram of Mayer-Vietoris sequences (assuming sufficiently natural compatibility amongst

the theories). Such arguments will provide a means to prove theorems about CS sets without

the need to rely on on sheaf theory or on acyclic models arguments, which are often used

for ordinary homology but that have no appropriate analogue for intersection homology.

After introducing the Mayer-Vietoris arguments in Section 5.1, we provide some easy first

applications in Section 5.1.1 by showing that for sufficiently large perversities intersection

homology is simply ordinary homology and that intersection homology behaves well with

respect to normalization maps. For the remainder of the chapter, we turn to more complex

applications.

In Section 5.2, we prove that there is a Künneth theorem for the intersection homology

of the product of a stratified space with a manifold; we will see a more general Künneth

theorem later in Chapter 6. This section contains an appendix that provides the technical

details of the construction of the cross product using “Eilenberg-Zilber shuffles.” In Section

5.3, we introduce intersection homology with coefficients. We will see that the Universal

Coefficient Theorem does not hold in general but that it can be recovered by assuming that

the space satisfies certain “locally torsion-free” hypotheses. Section 5.4 contains a proof

that PL and singular intersection homology are isomorphic on PL CS sets, and Section 5.5

demonstrates that for certain perversities the intersection homology groups of a CS set do

not depend upon the choice of stratification as a CS set. Finally, in Section 5.6, we consider
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finite generation of the intersection homology groups.

5.1 Mayer-Vietoris arguments

Suppose X is a space and that O is the category whose objects are open subsets of X (so

Ob(O) is the topology of X) and whose morphisms are inclusion maps of these subsets.

Suppose that one has two functors F,G from O to some other category, such as the category

of abelian groups, and that one wants to know whether these two functors are equivalent

in the sense that F (U) ∼= G(U) for all U ∈ O. In intersection homology settings, one

most often sees this question at work within sheaf theory (see [106, 28, 11], among others).

Without getting into the details of sheaf theory, one often starts with data showing (roughly

stated) that two types of sheaf cohomology agree in neighborhoods of each point of X and

then uses this to conclude that more global sheaf cohomology groups must be isomorphic.

Since we do not want to introduce sheaves, we will need Mayer-Vietoris arguments. For

ordinary homology and cohomology, such techniques are put to much use for “good covers”

of manifolds by Bott and Tu in [29]; see in particular [29, Section I.5] and also [38, Lemma

V.9.5]. The first use of similar arguments for intersection homology seems to be in King

[139], where arguments of this type were used to compute Künneth theorems (for which one

factor is a manifold), to prove topological invariance of intersection homology (given certain

conditions on perversities), and to provide a general comparison principle for intersection

homology theories [139, Theorem 10]. Saralegi [204] later used these techniques to prove a

de Rham theorem for intersection homology, and Friedman and McClure made use of similar

ideas in providing a non-sheaf theoretic proof of Poincaré duality for singular intersection

homology on pseudomanifolds [100] patterned after the Poincaré duality proof for manifolds

in Hatcher [125]. The following theorems are modifications of these prior arguments that we

hope will prove to be more general; in particular, they incorporate modifications that will

be necessary for our applications.

We begin with a Mayer-Vietoris argument for manifolds in Theorems 5.1.1 and 5.1.2. We

then turn to a version for CS sets in Theorem 5.1.4.

Theorem 5.1.1. Let M be the category whose objects are manifolds and whose morphisms

are open inclusions, and let Ab∗ be the category of graded abelian groups. Let F∗, G∗ :M→
Ab∗ be covariant functors and let Φ : F∗ → G∗ be a natural transformation. Suppose that Φ

has the following three properties:

1. Φ : F∗(U)→ G∗(U) is an isomorphism for U homeomorphic to Rn or ∅,

2. F∗ and G∗ admit exact Mayer-Vietoris sequences, i.e. if U, V are open submanifolds of

a manifold then there is an exact sequence

→ Fi(U ∩ V )→ Fi(U)⊕ Fi(V )→ Fi(U ∪ V )→ Fi−1(U ∩ V )→,

and similarly for G∗, such that Φ induces a commutative diagram of such sequences,
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3. if {Uα} is an increasing collection of open submanifolds of a manifold M (meaning

that the indices α are taken from a totally ordered set and α < β implies Uα ⊂ Uβ) and

Φ : F∗(Uα) → G∗(Uα) is an isomorphism for each α, then Φ : F∗(∪αUα) → G∗(∪αUα)

is an isomorphism.

Then Φ : F∗(M)→ G∗(M) is an isomorphism for every manifold M .

The theorem remains true using instead the categoryMPL of PL manifolds and inclusion

of open subsets, using in condition (1) the requirement that U be PL homeomorphic to Rn.

Proof. For a manifold M , let P (M) be the statement that Φ : F∗(M) → G∗(M) is an

isomorphism.

We will first demonstrate the conclusion of the theorem for manifolds that are open

subsets of Rn. Note that since Rn is a PL manifold, so are all such open submanifolds [197,

Example 1.9].

So let M be an open subset of Rn. M must possess a countable dense set, and taking

open convex PL balls about the points of that dense set provides a countable covering V by

open convex sets, each PL homeomorphic to Rn. Furthermore, as the intersection of open

PL convex sets is open PL convex, each non-empty finite intersection Vβ1 ∩ · · · ∩ Vβm of

elements of V is PL homeomorphic1to Rn.

By assumption (1), the statement P (Vβ1 ∩ · · · ∩ Vβm) is true for each such intersection of

elements of V , and in particular P (Vβ) is true for each Vβ ∈ V .

Next we will show that P (U) is true for any U that is the finite union of finite intersections

of elements of V , i.e. for U = ∪ki=1Ui, where each Ui has the form Ui = ∩`ij=1Vi,j, Vi,j ∈ V . As

the base case, we have already seen that P (U) is true when k = 1. Now assume that P (U)

is true for the union of fewer than k finite intersections of elements of V , k > 1. We notice

that

Uk ∩ (∪k−1
i=1Ui) = ∪k−1

i=1 (Uk ∩ Ui),
1It turns out, as of the time of writing, that even a proof that an open convex subset of Rn is homeomorphic

to Rn is hard to find in the literature, so much so that math reference web sites seem to comment on the

obscurity [182]. A proof of topological homeomorphism written in 2012 appears as [103]. We require the

stronger PL statement, which follows2from the yet stronger statement that every open star-shaped region

of Rn is C∞-diffeomorphic (and hence PL homeomorphic) to Rn. This is also apparently a well-known folk

theorem, though, as observed by Bruce Evans in a Mathematics Stack Exchange post [78], “Most books

don’t prove it. Some say that it is hard and others give it as an exercise.” Evans outlines an argument in

his post, while an explicit proof due to Stefan Born appears as [80, Theorem 237]. Since, for our purposes,

it is sufficient to have only a C1-diffeomorphism from a bounded convex open subset of Rn to Rn, we can

also cite Gromov [117, I.4.C1].
2This is yet another seemingly well-known fact that is difficult to pin down authoritatively. It seems

to follow from J.H.C. Whitehead’s proof of the existence and uniqueness of smooth triangulations of C1

manifolds [242], an expository treatment of which can be found in Munkres’s [179]. Here is an argument:

let f : M → N be a diffeomorphism of C1 manifolds. By [179, Theorem 10.6], M and N each possess C1

triangulations, say via maps k : |K| → M and ` : |L| → N , where K and L are simplicial complexes. The

composition fk provides another C1 triangulation of N ; see [179, Theorem 8.4]. Now, by [179, Theorem

10.5], since fk : |K| → N and ` : |L| → N are two C1 triangulation of N , there exist subdivisions of K and

L that are “linearly isomorphic.” Via the definitions given on page 70 of [179], this means precisely that |K|
and |L| are PL homeomorphic, and hence so are M and N by Remark B.2.16.
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and since each Ui is a finite intersection of elements of V , the same is true of each Uk ∩ Ui,
i < k. So P (Uk ∩ (∪k−1

i=1Ui)) holds by induction, as does P (∪k−1
i=1Ui). Since P (Uk) holds by

assumption (1), it follows now from assumption (2) and the Five Lemma that P (U) is true.

Now, let Wk = ∪i≤kVi, where the indices now reflect that V is countable, so we can

choose a bijection of V with the natural numbers to obtain an order. It follows from the last

paragraph that each P (Wk) is true, and hence by assumption (3), P (∪Wk) = P (M) must

be true. This completes the proof for the case where M is an open subset of Rn.

Now, we let M be an arbitrary (non-empty) n-dimensional manifold (which we assume

to be Hausdorff, but not necessarily second countable). Let U be the collection of open sets

of M for which P (U) holds. Since every point of M has a neighborhood homeomorphic

to Rn, U is non-empty by condition (1). The set U is partially ordered by inclusion, and

assumption (3) implies that every totally ordered collection {Uα} has an upper bound in U ,

namely ∪αUα. By Zorn’s lemma, it follows that U has a maximal element. If this maximal

element is M , then we are finished, so suppose that there is a maximal element W of U
such that W 6= M . Suppose x ∈ M −W , and let V be a neighborhood of x homeomorphic

to Rn. Then V ∩ W is homeomorphic to an open subset of Rn (possibly empty) and so

P (V ∩W ) holds by the argument above. Furthermore, P (W ) is true by assumption and

P (V ) holds because V ∼= Rn. Therefore P (V ∪W ) holds by assumption (2) and the Five

Lemma, contradicting the maximality of W . It follows that in fact W = M , and P (M) is

true.

The argument given in the last paragraph continues to hold in MPL if we assume M to

be a (non-empty) PL manifold, using that every point has a neighborhood PL homeomorphic

to Rn.

The technique of the proof yields the following variant of the theorem, which provides a

useful alternative perspective:

Theorem 5.1.2. Let MM be the category whose objects are homeomorphic to open subsets

of a given n-dimensional manifold M and whose morphisms are homeomorphisms and in-

clusions, and let Ab∗ be the category of graded abelian groups. Let F∗, G∗ : MM → Ab∗
be covariant functors and let Φ : F∗ → G∗ be a natural transformation such that F∗, G∗,Φ

satisfy the conditions of Theorem 5.1.1 with respect to MM . Then Φ : F∗(M) → G∗(M) is

an isomorphism.

The theorem remains true using the category MM,PL of open subsets of a given PL n-

manifold M using in condition (1) the requirement that U be PL homeomorphic to Rn.

Proof. Since M is a manifold, it has an open subset homeomorphic to Rn and so all open

subsets of Rn are homeomorphic to open subsets of M , so the first part of the proof of

Theorem 5.1.2 goes through unchanged. Then we observe that the conclusion of Theorem

5.1.2 for the space M only utilizes open subsets of M .

We will use Theorem 5.1.1 below to prove Theorem 5.2.25, which is a Künneth theorem

for intersection homology of spaces of the form X ×M , where X is a filtered space and M

is an unfiltered manifold. The reader who is interested in seeing an immediate application

of Theorem 5.1.1 could safely peek ahead to that theorem at this point.
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We next provide a Mayer-Vietoris argument for CS sets. This theorem is a variation of

a theorem of King [139, Theorem 10] that we have adapted a bit to suit the purposes for

which we will need it.

Remark 5.1.3. The theorem does utilize the local structure available in CS sets, and so

going forward to applications there will be things we can prove for CS sets that are not

accessible for arbitrary filtered spaces by these techniques. However, it is sometimes possible

to extend the applications to some spaces that are not CS sets, particularly to ∂-stratified

pseudomanifolds, which are of particular interest. We will not provide these extensions every

time, but for a good example of the typical arguments involved in such generalizations see

Corollary 5.4.5.

Theorem 5.1.4. Let FX be the category whose objects are filtered homeomorphic to open

subsets of a given CS set X and whose morphisms are filtered homeomorphisms and inclu-

sions. Let Ab∗ be the category of graded abelian groups. Let F∗, G∗ : FX → Ab∗ be covariant

functors, and let Φ : F∗ → G∗ be a natural transformation such that F∗, G∗,Φ satisfy the

conditions listed below.

1. F∗ and G∗ admit exact Mayer-Vietoris sequences as in Theorem 5.1.1 and Φ induces

a commutative diagram of these sequences.

2. If {Uα} is an increasing collection of open subspaces of X and Φ : F∗(Uα) → G∗(Uα)

is an isomorphism for each α, then Φ : F∗(∪αUα)→ G∗(∪αUα) is an isomorphism,

3. If L is a compact filtered space such that X has an open subset filtered homeomorphic

to Ri × cL and Φ : F∗(Ri × (cL − {v})) → G∗(Ri × (cL − {v})) is an isomorphism

(where v is the cone vertex), then so is Φ : F∗(Ri × cL)→ G∗(Ri × cL),

4. if U is empty or an open subset of X contained within a single stratum and homeo-

morphic to Euclidean space3, then Φ : F∗(U)→ G∗(U) is an isomorphism.

Then Φ : F∗(X)→ G∗(X) is an isomorphism.

If X is a PL CS set and FX,PL is the category whose objects are filtered PL homeo-

morphic to open subsets of X and whose morphisms are filtered PL homeomorphisms and

inclusions, the theorem remains true if we replace the homeomorphisms in the conditions

with PL homeomorphisms.

Proof. Suppose X is a CS set. Let M be the union of the strata of X with depth 0, i.e. the

strata that are not contained in the closure of any other strata. Then we can think of M as a

disjoint union of (not necessarily connected) manifolds M i, one for each dimension i such that

X has non-empty strata of dimension i of depth 0. Each M i itself is a disjoint union of strata

of dimension i. Then every point in M has a neighborhood homeomorphic to a Euclidean

space. By assumption (4), for any such neighborhood U , the map Φ : F∗(U)→ G∗(U) is an

isomorphism. It follows now from Theorem 5.1.2 and assumptions (2) and (1) that Φ is an

3Note that it is possible for a CS set to have open Euclidean subsets of various dimensions; for example,

let X = S2 ∨ S1, filtered by {x0} ⊂ S1 ⊂ X, where x0 is the basepoint of the wedge.
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isomorphism on each M i, and in fact on any open submanifold of M i. But since X must

have finite formal dimension, an induction using property (1), the ∅ hypothesis of property

(4), and the Five Lemma implies that Φ is an isomorphism on all of M, or in fact any open

subspace of M.

The proof for arbitrary open Y ⊂ X will now proceed by induction on the depth of Y

(recall Definition 2.2.29). We have just established the theorem for all Y of depth 0, so we

assume that we have verified the theorem for open subsets of X of depth < K for some

K > 0. We must show that this implies the theorem for Y of depth K. The proof will then

be completed by induction up through the depth of X. For the remainder of the proof, let

Y be an open subspace of X of depth K.

As in the proof of Theorem 5.1.1, the condition on unions of chains of subspaces allows

us to conclude by Zorn’s Lemma that there is a largest open subset W of Y on which Φ is

an isomorphism. Using the induction assumption, if Ymin is the union of minimal strata in

the partial ordering on strata (i.e. the strata S for which there do not exist strata T with

T ≺ S), then Y − Ymin has depth less than K, so Φ is an isomorphism on Y − Ymin. This

implies Y − Ymin ⊂ W , since if not there would be a point y ∈ Y − Ymin, y /∈ W . But then

y has an open neighborhood U in Y of depth < K and W ∩ U then also has depth < K, so

by the Mayer-Vietoris sequences and the Five Lemma, the map Φ would be an isomorphism

on W ∪ U , a contradiction.

Now we want to show that W = Y , again by a contradiction argument, assuming there is

some y ∈ Ymin, y /∈ W . By the definition of a CS set, the point y has an open neighborhood

N that is filtered homeomorphic to Rm × cL if y is contained in a stratum of dimension m;

note that L 6= ∅, as we have assumed y is in a stratum of depth > 0. Since Rm×(cL−{v}) has

depth < K, the map Φ is also an isomorphism on it by the assumption on depth. But then

Φ is an isomorphism on N by assumption (3). So if we can show that Φ is an isomorphism

on W ∩N , then by the Mayer-Vietoris sequences and the Five Lemma, it will follow that Φ

is an isomorphism on W ∪N , contradicting the maximality of W .

So we consider W ∩N . Let V = Ymin ∩W ∩N . Since W includes all of Y − Ymin, then

W ∩ N is homeomorphic to the disjoint union of Rm × (cL − {v}) and V . We can also

describe W ∩N up to homeomorphism as the (not disjoint) union of Rm × (cL− {v}) with

V × cL. Both Rm × (cL− {v}) and the intersection

(Rm × (cL− {v})) ∩ (V × cL) ∼= V × (cL− {v})

are homeomorphic to open subsets of Y − Ymin and so have depth < K; thus Φ is an iso-

morphism on these sets by the induction hypothesis. So to use the Mayer-Vietoris sequences

and the Five Lemma to show that Φ is an isomorphism on W ∩ N , we only need to show

that Φ is an isomorphism on V × cL. For this we will use Theorem 5.1.2, with the man-

ifold in the statement of the theorem being V and, for open U ⊂ V , the functors will be

F̂∗(U) = F∗(U × cL) and Ĝ∗(U) = G∗(U × cL) and Φ̂ will be Φ restricted to sets of this

form. The second and third hypotheses of Theorem 5.1.2 follow immediately from the cor-

responding statements for Φ, and the first hypothesis is satisfied since we have already seen

in the preceding paragraph that Φ must be an isomorphism on any U × cL with U ⊂ Ymin
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homeomorphic to Rm. Theorem 5.1.2 then provides that Φ̂ is an isomorphism on all of V ,

which is equivalent to the statement that Φ : F∗(V × cL)→ G∗(V × cL) is an isomorphism.

The proof in the PL case is identical.

Remark 5.1.5. Theorem 5.1.4 implies, and in some ways generalizes, King’s [139, Theorem

10]. Let us explain the relation.

The first main difference is that King assumes his functors are defined on a category

of all filtered spaces whose maps are open inclusions and inclusions 0 ×X → Rk ×X. His

conclusion then hold for all CS sets. By contrast, our theorem essentially proves the theorem

one CS set at a time. An immediate benefit is that we do not need to make sure our functors

are defined for all filtered sets but only on spaces filtered homeomorphic to subsets of the

particular CS set X. This does not necessarily weaken the conclusion since the arbitrariness

of the X in the statement of Theorem 5.1.4 allows for the possibility that we might draw

conclusions for all CS sets, provided F∗, G∗, and Φ possess the hypothesized properties in

this generality. However, our version of the theorem is in some sense more flexible, since if

one can produce F∗, G∗, and Φ that satisfy the hypothesized conditions on some particular

class of CS set possessing a property that is preserved by taking open subsets (e.g. PL CS

sets, pseudomanifolds, oriented CS sets, or locally torsion free CS sets (see Definition 5.3.9)),

then one can use Theorem 5.1.4 to draw conclusions just for the spaces in this class.

The second main difference is that in place of condition (3), King has the conditions

• the inclusion 0×X ↪→ Rk ×X induces isomorphisms on F∗ and G∗,

• if L is a compact filtered space and Φ is an isomorphism on L, then Φ is an isomorphism

on cL,

• if Φ is an isomorphism on the filtered space L, then Φ is an isomorphism on M × L
for a manifold M .

The first two of these properties can be used to imply our hypothesis (3), though not nec-

essarily vice versa. The last property here would be used in King’s version of the theorem

to provide the last isomorphism of the proof of the Theorem 5.1.4, but here we instead use

(3), induction, and an appeal to Theorem 5.1.2.

The following lemma will be a useful way, in practice, to conclude that condition (2) of

Theorem 5.1.4 holds.

Lemma 5.1.6. Let FX be the category whose objects are homeomorphic to open subsets of

a given CS set X and whose morphisms are filtered homeomorphisms and inclusions. Let

Ab∗ be the category of graded abelian groups. Let F∗, G∗ : FX → Ab∗ be functors, and let

Φ : F∗ → G∗ be a natural transformation. Suppose that if {Uα} is an increasing collection

of open subspaces of X then the natural maps lim−→α
F∗(Uα)→ F∗(∪αUα) and lim−→α

G∗(Uα)→
G∗(∪αUα) are isomorphisms. Then if Φ : F∗(Uα) → G∗(Uα) is an isomorphism for each α,

the map Φ : F∗(∪αUα)→ G∗(∪αUα) is an isomorphism.
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Proof. The naturality of Φ implies that we have a commutative diagram

lim−→
α

F∗(Uα) - F∗(∪αUα)

lim−→
α

G∗(Uα)

lim−→α
Φ

?
- G∗(∪αUα).

Φ

?

By assumption, the horizontal maps are isomorphism, and the left vertical map is an isomor-

phism since we have assumed each Φ : F∗(Uα) → G∗(Uα) is. Hence the righthand vertical

arrow is also an isomorphism.

To accompany this lemma, it is worth adding another lemma:

Lemma 5.1.7. If X is a filtered space with perversity p̄ and {Uα} is an increasing collec-

tion of open subspaces of X then the natural map f : lim−→α
I p̄HGM

∗ (Uα) → I p̄HGM
∗ (∪αUα)

is an isomorphism. Similarly, if X is PL then lim−→α
I p̄HGM

∗ (Uα) → I p̄HGM
∗ (∪αUα) is an

isomorphism.

Proof. This lemma is well-known for ordinary homology and the proof for intersection ho-

mology is identical: if [ξ] ∈ I p̄HGM
∗ (∪αUα), then [ξ] is represent by some specific cycle ξ,

which has compact support. Hence ξ is contained in Uk for some k. It follows that the image

of the element of I p̄HGM
∗ (Uk) represented by ξ under the natural maps

I p̄HGM
∗ (Uk)→ lim−→

α

I p̄HGM
∗ (Uα)→ I p̄HGM

∗ (∪αUα)

represents [ξ], so f is surjective.

Similarly, if [ξ] ∈ lim−→α
I p̄HGM

∗ (Uα) and f([ξ]) = 0, then ξ is represented by a cycle

ξ contained in some Uk, and ξ bounds some Ξ in I p̄SGM∗ (∪αUα). But Ξ must also have

compact support and so is contained in U` for some ` ≥ k. But it then follows that [ξ] =

0 ∈ lim−→α
I p̄HGM

∗ (Uα).

The argument in the PL case is the same.

5.1.1 First applications: high perversities and normalization

Let us provide two fairly straightforward applications of Mayer-Vietoris arguments.

High perversities

As a first application of Mayer-Vietoris arguments on CS sets, we will prove the following

proposition:

Proposition 5.1.8. Let X be a CS set and p̄ a perversity such that

1. every point in X has a neighborhood filtered homeomorphic to Rk × cL such that

I p̄HGM
0 (cL) ∼= Z and I p̄HGM

i (cL) = 0 for i > 0, and
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2. the only strata of depth 0 are regular strata.

Then I p̄HGM
∗ (X) ∼= H∗(X), and similarly for PL intersection homology.

Before proving the proposition, we observe that the conditions required are not as ex-

traordinary as they might at first seem. In fact, we have the following corollary, the first

part of which was first demonstrated for PL stratified pseudomanifolds in [105].

Corollary 5.1.9. The conditions of Lemma 5.1.8 hold if X is a normal4 stratified pseudo-

manifold and p̄ is the top perversity t̄ such that t̄(S) = codim(S)−2 for each singular stratum.

So, in particular, if X is a normal stratified pseudomanifold, then I t̄HGM
∗ (X) ∼= H∗(X).

Furthermore, the conditions hold for an arbitrary (not necessarily normal) stratified pseu-

domanifolds if p̄(S) ≥ t̄(S) for all strata and p̄(S) > t̄(S) for any stratum containing a point

that has a link that is not connected.

Proof. The condition that the only depth 0 strata are regular strata holds for all stratified

pseudomanifolds by the definition, Definition 2.4.1, which requires that the union of the

regular strata of X be dense in X.

For the first condition, assuming X is normal, we utilize the cone formula (Theorem

4.2.1). If X has dimension n and x is in a stratum of dimension i (hence codimension n− i),
then L has dimension n− i− 1, so I t̄HGM

∗ (Ri × cL) ∼= I t̄HGM
∗ (cL) is trivial except when

∗ < n− i− t̄(S)− 1 = n− i− (codim(S)− 2)− 1 = n− i− (n− i) + 1 = 1.

Therefore, the only non-trivial group can be I t̄HGM
0 (cL) ∼= I t̄HGM

0 (L). As follows from

Example 3.4.6, I t̄HGM
0 (L) ∼= Zm, where m is the number of regular strata of L. But by

Lemma 2.6.3, L is itself a normal stratified pseudomanifolds, and since it is connected, it

has only one regular stratum, again by Lemma 2.6.3. Therefore, m = 1.

Finally, if there are strata for which the links are not connected, we need only observe

that

• if p̄(S) > t̄(S), then 0 ≥ n− i− p̄(S)− 1, and

• I p̄HGM
0 (L) 6= 0, as L is a stratified pseudomanifold by Lemma 2.4.11 and so possesses

regular strata (and therefore allowable 0-simplices).

Thus again I p̄HGM
0 (L) ∼= Z by Theorem 4.2.1.

Proof of Proposition 5.1.8. We apply Theorem 5.1.4 with F∗(U) = I p̄HGM
∗ (U), G∗(U) =

H∗(U), and Φ induced by the inclusion I p̄SGM∗ (U) → S∗(U); the proof in the PL case is

equivalent. The first condition of the theorem holds because the short exact Mayer-Vietoris

sequence of intersection chain complexes maps to the corresponding ordinary short exact

Mayer-Vietoris sequence of chain complexes, yielding a commutative diagram. This implies

the commutative diagram of long exact homology sequences. Also, since the only strata of

depth 0 are regular strata, the only Euclidean open sets of X contained in a single stratum

4Recall from Definition 2.6.1 that this means that the link of any point is connected.
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must all be subsets of regular strata, and so also the last condition is fulfilled tautologically,

as all simplices in regular strata are allowable by Lemma 3.4.3. For the second condition,

we invoke Lemmas 5.1.7 and 5.1.6, noting that the version of Lemma 5.1.7 for ordinary

homology is standard (the proof is identical).

For the third condition, consider for a distinguished neighborhood the map

Φ : I p̄HGM
∗ (Ri × cL)→ H∗(Ri × cL)

induced by inclusion, under the assumption that

I p̄HGM
∗ (Ri × (cL− {v}))→ H∗(Ri × (cL− {v}))

is an isomorphism. We wish to show that

I p̄HGM
∗ (Ri × cL)→ H∗(Ri × cL)

is an isomorphism; in fact, we will not even need the assumption. By homotopy invariance

of homology, H∗(Ri × cL) is trivial except for H0(Ri × cL) ∼= Z. By stratified homotopy

invariance of intersection homology I p̄HGM
∗ (Ri × cL) ∼= I p̄HGM

∗ (cL), and by assumption,

I p̄HGM
0 (cL) ∼= Z and I p̄HGM

i (cL) = 0 for i > 0. So abstractly

I p̄HGM
0 (Ri × cL) ∼= Z ∼= H0(Ri × cL),

but it is now not difficult to observe that a generator for the former group, given by some

0-simplex, maps to a generator of the latter group. Technically, this is not quite enough yet

to finish the proof as Theorem 5.1.4 requires the third condition to hold for all neighborhoods

of the form Rk × cL, while we have only assumed here that each point of X has at least one

distinguished neighborhood satisfying the hypothesis. However, there are two solutions to

this problem: One is to invoke Lemma 5.3.13, to be proven below, which states that every

distinguished neighborhood of a point in a CS set has the same perversity p̄ intersection

homology. The other is to observe that, in fact, the proof of Theorem 5.1.4 only requires

its condition (3) to hold for some distinguished neighborhood of each point, so in fact this

hypothesis of the theorem could be weakened.

Remark 5.1.10. Corollary 5.1.9 is not true for a general CS set with perversity t̄, even for

ones for which every points has a connected link. For example, let X = S2qS1, the disjoint

union filtered by S1 ⊂ X. Then by the computations of Example 3.4.6, no allowable 0 or

1 simplices may intersect S1. It follows that we must have I t̄HGM
1 (X) = 0, while of course

H1(X) ∼= Z.

The normality condition is also critical, assuming perversity t̄. For example the cone

X on the disjoint union S2 q S2 is a stratified pseudomanifold. But H0(X) ∼= Z, while

I t̄HGM
0 (X) ∼= Z⊕ Z.
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Normalization

In Section 2.6 we discussed normal pseudomanifolds and normalizations. We claimed there

that intersection homology is preserved under normalization, at least with some minor re-

strictions. We here provide and prove the technical statement.

To see why we need some restriction on perversities, suppose that X = S2∨S2, the wedge

of two spheres, filtered as {v} ⊂ X with v the wedge point. In this case the normalization

is X̃ = S2 q S2. If we choose perversities that are too high, then intersection homology will

degenerate into ordinary homology by the preceding example, and we will have I p̄HGM
0 (X) ∼=

Z while I p̄HGM
0 (X̃) ∼= Z⊕ Z. In fact, this problem will occur if any 1-simplices are allowed

to intersect v at their endpoints, i.e. if 1 − codim({v}) + p̄({v}) = −1 + p̄({v}) ≥ 0, or if

p̄({v}) ≥ 1 = codim({v})−1. A generalization of this argument shows that to get the desired

result in general we must limit ourselves to perversities such that p̄(S) ≤ codim(S) − 2 for

all singular strata S, which was one of the original Goresky-MacPherson requirements.

Proposition 5.1.11. Let X be a stratified pseudomanifold, and let π : X̃ → X be a nor-

malization. Suppose p̄ is a perversity on X such that p̄(S) ≤ codim(S) − 2 for all singular

strata S, and let p̃ be the perversity on X̃ defined so that p̃(S̃) = p̄(S) if π(S̃) ⊂ S. Then

the map π : I p̃HGM
∗ (X̃)→ I p̄HGM

∗ (X) is an isomorphism.

Proof. If U is an open subsets ofX, letG∗(U) = I p̄HGM
∗ (U), and let F∗(U) = I p̃HGM

∗ (π−1(U)).

We let Φ : F∗ → G∗ be the map induced by p. The proposition will follow from Theorem

5.1.4 once we have verified the conditions on F∗, G∗, and Φ.

The Mayer-Vietoris sequences for F∗ and G∗ are just the intersection homology Mayer-

Vietoris sequences in X or X̃, which we know exist from Theorem 4.4.19. The map π

induces a natural transformation between the sequences because we have maps of the short

exact Mayer-Vietoris sequences at the chain level. So the first condition holds. The fourth

condition holds trivially because π is a homeomorphism when restricted to the regular strata.

The second condition on increasing collections of open sets follows from Lemmas 5.1.6 and

5.1.7 applied to I p̄HGM
∗ (Uα) and I p̃HGM

∗ (π−1(Uα)).

For the third condition, we suppose that

p : I p̃HGM
∗ (π−1(Rk × (cL− {v})))→ I p̄HGM

∗ (Rk × (cL− {v}))

is an isomorphism for each distinguished neighborhood Rk×cL of a point x in a stratum S of

X. From Definition 2.6.8 and stratified homotopy invariance, this is equivalent to assuming

that the normalization map πL : L̃ → L on the link L induces an intersection homology

isomorphism. Given this and recalling our notation from Definition 2.6.8 that the Kj are

the connected components of L̃ and that π−1(Rk×cL) ∼= Rk×qcKj, condition three reduces

to showing that we have an isomorphism π : I p̃HGM
∗ (Rk × qcKj) → I p̄HGM

∗ (Rk × cL). Up

to isomorphisms induced by stratified homotopy equivalence, this reduces to considering the

diagram
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I p̃HGM
i (qKj) - I p̃HGM

i (qcKj)

I p̄HGM
i (L)
?

- I p̄HGM
i (cL)
?

with the horizontal maps induced by inclusions. The lefthand vertical map is precisely our

assumed isomorphism I p̃HGM
i (L̃) → I p̄HGM

i (L). From our assumptions about p̄, if v is

the cone point of cL, we have dim(L)− p̄(v) = codim(S)− 1− p̄({v}) ≥ 1. So by the cone

formula (Theorem 4.2.1), I p̄HGM
i (cL) vanishes for i ≥ dim(L)−p(v). Furthermore, from the

definition of p̃, the groups I p̃HGM
i (qcKj) vanish in the same range. Also by the cone formula,

the two horizontal maps, and so then also the righthand vertical map, are isomorphisms

in the complementary range i < dim(L) − p(v). Therefore, π : I p̃HGM
i (Rk × qcKj) →

I p̄HGM
i (Rk × cL) is an isomorphism for all i, which is what we needed to show.

5.2 Cross products and the Künneth theorem with a

manifold factor

In this section, we develop cross products for intersection chains. This will lead in Section

5.2.4 to a Künneth theorem that holds for products M × X, where X is a filtered space,

M is an n-manifold with the trivial filtration, and M × X is given the product filtration

(M ×X)i = M ×X i−n. We will show that the perversity p̄ intersection homology of M ×X
is related by a Künneth formula to the ordinary homology of M and to the intersection

homology of X with a corresponding perversity. The precise statement is in Theorem 5.2.25.

Later, in Section 6.4.7, we will consider another, more general, Künneth theorem for products

of arbitrary CS sets, each with their own perversity.

We begin with the cross product for singular intersection chains in Section 5.2.1 and then

treat the PL cross product in Section 5.2.2. Section 5.2.3 develops the basic properties of

the cross products, and the Künneth theorem involving a manifold factor comes in Section

5.2.4.

5.2.1 The singular chain cross product

For ordinary singular homology theory, the key morphism for topological Künneth theorems

is the Eilenberg-Zilber cross product map

ε : S∗(X)⊗ S∗(Y )→ S∗(X × Y ).
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In modern algebraic topology texts, the preference seems to be to construct this map ab-

stractly using the method of acyclic models5 (see [181, 219]). Unfortunately, this is insuffi-

cient for our purposes, as we have seen that even contractible spaces might have non-trivial

intersection homology, depending on how they are filtered, and so we don’t have the needed

acyclicity. Luckily, there do exist concrete versions of the cross product, sometimes called

Eilenberg-Zilber “shuffle products.” Most sources (e.g. [155]) prefer to describe this map

from the point of view of simplicial sets. However, a statement purely from the point of view

of singular homology can be found as an exercise in Dold [71, Exercise VI.12.26.2].

The basic idea is analogous to that of the prism construction used in homotopy arguments:

if σ ∈ Sp(X) and τ ∈ Sq(Y ) are singular simplices, then together they provide a product

map

σ × τ : ∆p ×∆q → X × Y.

If we have a suitable triangulation T of ∆p ×∆q with an ordering of the vertices, if {δp+qk }
is the collection of p + q simplices of T , and if ηk : ∆p+q ↪→ ∆p × ∆q is the vertex-order-

preserving embedding of ∆p+q onto δk, then this yields an element ε(σ ⊗ τ) of Sp+q(X × Y )

by

ε(σ ⊗ τ) =
∑
±(σ × τ) ◦ ηk.

Here the signs must be chosen appropriately, and of course the triangulations for various p

and q must be chosen in such a way that the construction extends to a chain map. The

standard such set of triangulations is described in terms of shuffles.

Let p, q be non-negative integers. Then a (p, q)-shuffle is a partition of the ordered set

[1, 2, . . . , p + q] into two disjoint ordered sets µ = [µ1, . . . , µp] and ν = [ν1, . . . , νq] with

µi < µi+1 for each i and similarly for the νj. The idea is that this partition (µ, ν) tells us

how to shuffle together two ordered sets, of respective cardinalities p and q, to form a new

ordered set of cardinality p+ q: the elements of the first set occupy the spots labeled by the

µs and the elements of the second set are placed in the spots corresponding to the νs. So,

for example, if we have ordered sets [A,B,C] and [α, β], and a (3, 2)-shuffle ([2, 3, 5], [1, 4]),

then we can shuffle our sets by this prescription to get the ordered set [α,A,B, β, C]. Note

that the elements A,B,C go in spots 2, 3, 5 as prescribed by the contents of µ, while α, β go

in the spots 1, 4 as prescribed by the contents of ν.

Another way to think of a (p, q)-shuffle is to imagine a walk on a p×q grid, where columns

are labeled left to right by {0, . . . , p} and the rows are labeled bottom to top by {0, . . . , q}.
Then there is a bijection between (p, q)-shuffles and walks along the grid from (0, 0) to (p, q)

in which each step must move one unit either up or to the right: on the ith step, if i ∈ µ we

move to the right and if i ∈ ν we move up. Conversely, given such a path, if we move right

on ith step then we put i ∈ µ and if we move up on the ith step, we put i ∈ ν.

To see how shuffles give us triangulation of products, let us label ∆p = [u0, . . . , up],

∆q = [v0, . . . , vq], and ∆p+q = [w0, . . . , wp+q], again as simplices with ordered vertices. Let

ηµ : ∆p+q → ∆p take the vertex wi ∈ ∆p+q to the vertex uj ∈ ∆p if µj ≤ i < µj+1 (letting

5By contrast, the Alexander-Whitney map, which is a chain homotopy inverse for the cross product, is

often constructed explicitly, but it will not be useful for constructing intersection homology and cohomology

products. See Section 7.2 for a detailed discussion.
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µ0 = 0 and µp+1 = p+ q + 1), and define ην : ∆p+q → ∆q analogously. We obtain a map

ηµν = (ηµ, ην) : ∆p+q → ∆p ×∆q

by extending linearly from what this map must do to vertices, and it is a linear embedding.

We denote the image of ηµν by δµν , and we claim that the δµν , as (µ, ν) ranges over all

(p, q)-shuffles, are the p+ q simplices of a triangulation of ∆p ×∆q.

To try to understand this triangulation even better, let us see explicitly where the vertices

{wi} of ∆p+q get mapped by ηµν . Since ν0 = µ0 = 0 by definition, w0 gets mapped to (u0, v0).

Now, if 1 ∈ µ, then w1 gets mapped to (u1, v0), and if 1 ∈ ν, then w1 gets mapped to (u0, v1).

In general, if wi = wj+k goes to (uj, vk), then wi+1 will go to either (uj+1, vk) or (uj, vk+1)

depending respectively on whether i + 1 is in µ or ν. In terms of walks on planar grids, if

(µ, ν) is a shuffle, then the sequence of labels of the grid points of the corresponding walk

gives the sequence of vertices of δµν , with the point (j, k) on the grid indicating the vertex

(uj, vk). This is the same principle we saw at work in constructing prisms for homotopy

arguments, except those always have the form ∆1 × ∆q, so there are only two choices for

vertices of ∆1 and so only one possible step “to the right.”

Proving that this construction does indeed yield a triangulation of ∆p × ∆q and that

it leads to a chain map is nontrivial, but it is also a bit of a diversion from our main

development, so we include the details in the appendix in Section B.6 along with our more

general development of PL spaces. More specifically, we show that if K and L are simplicial

complexes with given vertex partial orderings that restrict to total orderings on each simplex

then there is a triangulation denoted K×L of |K|×|L| described locally in terms of shuffles.

Furthermore, we define in Section B.6.5 a chain map of simplicial chain complexes

./: C∗(K)⊗ C∗(L)→ C∗(K × L).

This simplicial cross product is defined so that if σ is a simplex of K oriented by the vertex

ordering on K and if τ is similarly a vertex of L, then

σ ./ τ =
∑

sgn(µ, ν)δµν ,

where the sum is taken over all (p, q)-shuffles with δµν oriented according to the vertex

ordering coming from the shuffle construction and with sgn(µ, ν) denoting the sign of the

permutation from [1, 2, . . . , p+ q] to [µ1, µ2, . . . , µp, ν1, ν2, . . . , νq], i.e. 1 if the permutation is

even and −1 if the permutation is odd. Furthermore, it is shown in Proposition B.6.8 that

σ ./ τ is a fundamental class for the space σ×τ , i.e. it is the generator of Hp+q(σ×τ, ∂(σ×τ))

compatible with the product orientation.

To get from this to our singular cross product, let σ1 : ∆p → X and σ2 : ∆q → Y

be singular simplices. Treating ∆p and ∆q as simplicial complexes, the shuffle product

construction gives us a triangulation of ∆p × ∆q and an element of Cp+q(∆
p × ∆q) arising

as the image under ./ of the generators of Cp(∆
p) and Cq(∆

q) given by the vertex ordering

(abusing notation, we also denote these generators as ∆p and ∆q). We again write

∆p ./ ∆q =
∑

sgn(µ, ν)δµν ∈ Cp+q(∆p ×∆q).
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As the δµν also have vertex orderings, we can apply the chain map φ : C∗(∆
p × ∆q) →

S∗(∆
p × ∆q) of Proposition 4.4.5 that takes a k-simplex s of a simplicial complex to the

embedding ∆k → s determined by the vertex orderings of ∆k and s. In this setting, φ takes

δµν to ηµν . Then we let

ε(σ1 ⊗ σ2) = (σ1 × σ2)φ(∆p ./ ∆q) =
∑

sgn(µ, ν)(σ1 × σ2) ◦ ηµν .

Proposition 5.2.1. Suppose σ1 ∈ Sp(X) and σ2 ∈ Sq(Y ). Then the sum over (p, q)-shuffles

ε(σ1 ⊗ σ2) =
∑

sgn(µ, ν)(σ1 × σ2) ◦ ηµν

extends linearly to a chain map

ε : S∗(X)⊗ S∗(Y )→ S∗(X × Y ).

Proof. We need to show that ε commutes with boundaries. This is a consequence of the

following observations:

1. The map σ1 × σ2 : S∗(∆
p × ∆q) → S∗(X × Y ) and the map φ : C∗(∆

p × ∆q) →
S∗(∆

p ×∆q) are both chains maps, as is ./ by Proposition B.6.7.

2. Suppose F is a face of ∆p orG is a face of ∆q. The restriction of the shuffle triangulation

of ∆p × ∆q to F × ∆q agrees with the shuffle product triangulation on ∆p−1 × ∆q,

identifying ∆p−1 with F according to the vertex orderings, and the analogous statement

holds for ∆p ×G. See Section B.6.4.

Putting these facts together with the definitions demonstrates that ε is a chain map.

Definition 5.2.2. We refer to the map ε : S∗(X)⊗S∗(Y )→ S∗(X×Y ) as the cross product.

We will also employ the notation ε(x⊗ y) = x× y.

The following observation, which comes fairly directly from the definitions, will be useful

below. In particular, we will demonstrate an intersection homology version in Corollary

5.2.16, which will be useful for proving the PL version of our generalized Künneth Theorem

(Theorem 6.4.7).

Lemma 5.2.3. Suppose K and L are simplicial complexes with given vertex partial orderings

that restrict to total orderings on each simplex. Let φK : C∗(K) → S∗(|K|), φL : C∗(L) →
S∗(|L|), and φK×L : C∗(K × L)→ S∗(|K × L|) be the respective simplicial-to-singular chain

maps of Proposition 4.4.5. Then there is a commutative diagram of chain maps

C∗(K)⊗ C∗(L)
./
- C∗(K × L)

S∗(|K|)⊗ S∗(|L|)

φK ⊗ φL

? ε
- S∗(|K × L|).

φK×L

?
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Proof. The vertical arrows represent chain maps by Proposition 4.4.5, the top arrow is a

chain map by Proposition B.6.7, and the bottom arrow is a chain map by Proposition 5.2.1.

The complex C∗(K) ⊗ C∗(L) is generated by elements of the form σ ⊗ τ , with σ and τ

respectively simplices of K and L with their given vertex orderings. For such elements,

commutativity of the diagram follows directly from the definitions, identifying σ and τ

with standard simplices ∆p and ∆q via linear embeddings into K and L and consequently

identifying σ×τ with ∆p×∆q by a linear homeomorphism, inducing a simplicial isomorphism

between the Eilenberg-Zilber shuffle triangulation of ∆p ×∆q and that of σ × τ .

We now discuss the cross product for intersection chains.

Lemma 5.2.4. If X and Y are filtered spaces, the cross product restricts to a chain map

ε : I p̄SGM∗ (X) ⊗ I q̄SGM∗ (Y ) → IQSGM∗ (X × Y ) if Q(S × T ) ≥ p̄(S) + q̄(T ) for all strata

S ⊂ X and T ⊂ Y .

Proof. First recall that we know that I p̄SGM∗ (X) and I q̄SGM∗ (X) are free complexes, so flat;

see Remark 3.4.9. Therefore I p̄SGM∗ (X) ⊗ I q̄SGM∗ (Y ) ⊂ S∗(X) ⊗ S∗(Y ), so it makes sense

to restrict the cross product to a map I p̄SGM∗ (X)⊗ I q̄SGM∗ (Y )→ S∗(X × Y ). Our claim is

that if Q satisfies the given hypotheses then the image lies in IQSGM∗ (X × Y ).

Suppose σ1 ∈ Si(X) and σ2 ∈ Sj(Y ) are respectively p̄ and q̄ allowable simplices, and

consider σ1 × σ2. We want to show that each i+ j simplex of the chain σ1 × σ2 is allowable

(and then we will consider boundaries). Such a simplex corresponds to the composition

∆i+j ηµν−−→ ∆i ×∆j σ1×σ2−−−→ X × Y.

Now, if S ⊂ X and T ⊂ Y are strata, by the allowability assumptions,

σ−1
1 (S) ⊂ {i− codimX(S) + p̄(S) skeleton of ∆i}

and

σ−1
2 (T ) ⊂ {j − codimY (T ) + q̄(T ) skeleton of ∆j}.

If we let a = i− codimX(S) + p̄(S) and b = j − codimY (T ) + q̄(T ), then σ−1
1 × σ−1

2 (S × T )

lies in (∆i)a × (∆j)b, where (∆i)a is the a-skeleton of ∆i and similarly for (∆j)b. But the

triangulation of ∆i × ∆j coming from the cross product construction triangulates (∆i)a ×
(∆j)b as a subcomplex6, which must have dimension a + b. Thus any i + j simplex in our

triangulation of ∆i ×∆j can intersect (∆i)a × (∆j)b in at most its a + b skeleton. But this

implies that (σ1 × σ2)−1(S × T ) must lie in the a+ b skeleton of ∆i+j, and

a+ b = i− codimX(S) + p̄(S) + j − codimY (T ) + q̄(T )

= i+ j − codimX×Y (S × T ) + p̄(S) + q̄(T ).

So σ1 × σ2 is allowable with respect to any perversity Q such that Q(S × T ) ≥ p̄(S) + q̄(T ).

6We will see this in the detailed construction of the cross product in the appendix. See, in particular,

Corollary B.6.5.

197



This shows that the cross product of two allowable simplices is allowable with the given

assumptions on perversities. Now, suppose ξ1, ξ2 are allowable chains in the respective

spaces. Since ξ1⊗ ξ2 can be written as a sum (with coefficients) of terms of the form σ1⊗σ2

in S∗(X) ⊗ S∗(Y ) and since ε is the linear extension of how it acts on tensor products of

simplices, the above argument implies that each singular simplex of ξ1 × ξ2 is Q-allowable.

Next, consider that

∂(ξ1 ⊗ ξ2) = (∂ξ1)⊗ ξ2 + (−1)|ξ1|ξ1 ⊗ (∂ξ2),

where |ξ1| occurring in an exponent denotes the degree of ξ1. Since ∂ξ1 and ∂ξ2 are allowable,

we see that (∂ξ1)⊗ξ2 and ξ1⊗(∂ξ2) are each contained in I p̄SGM∗ (X)⊗I q̄SGM∗ (Y ). Therefore,

by the preceding argument, each singular simplex of (∂ξ1)× ξ2 is Q-allowable, and similarly

for ξ1 × (∂ξ2). But since ε is a chain map,

∂(ξ1 × ξ2) = (∂ξ1)× ξ2 + (−1)|ξ1|ξ1 × (∂ξ2),

so ∂(ξ1 × ξ2) also consists of Q-allowable simplices. Therefore, we conclude that ξ1 × ξ2 is a

Q-allowable chain.

Corollary 5.2.5. Under the assumptions of Lemma 5.2.4, if also A ⊂ X and B ⊂ Y , the

cross product induces maps

I p̄SGM∗ (X,A)⊗ I q̄SGM∗ (Y,B) -
IQSGM∗ (X × Y )

IQSGM∗ (A× Y ) + IQSGM∗ (X ×B)
- IQSGM∗ (X × Y, (A× Y ) ∪ (X ×B)).

Proof. By the lemma, the cross product takes I p̄SGM∗ (A) ⊗ I q̄SGM∗ (Y ) to IQSGM∗ (A × Y )

and I p̄SGM∗ (X)⊗ I q̄SGM∗ (B) to IQSGM∗ (X ×B). So by basic algebra and the multilinearity

of the cross product, the image in

IQSGM∗ (X × Y )

IQSGM∗ (A× Y ) + IQSGM∗ (X ×B)

of the cross product of generators of I p̄SGM∗ (X,A) and I q̄SGM∗ (Y,B) is independent of the

choice of coset representative. The second map is just a quotient map that is well defined

because

IQSGM∗ (A× Y ) + IQSGM∗ (X ×B) ⊂ IQSGM∗ ((A× Y ) ∪ (X ×B)).

Abusing notation, we will also use the symbol ε to refer to the map of the corollary or

ξ1 × ξ2 to refer to the image of ξ1 ⊗ ξ2.

Remark 5.2.6. As for ordinary homology, the chain cross product induces a product on

homology

I p̄HGM
∗ (X,A)⊗ I q̄HGM

∗ (Y,B)→ H∗(I
p̄SGM∗ (X,A)⊗ I q̄SGM∗ (Y,B))

ε−→ IQHGM
∗ (X × Y, (A× Y ) ∪ (X ×B)).
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The first map comes from basic algebra by noticing that if x ∈ C∗ and y ∈ D∗ are cycles,

then x ⊗ y is a cycle in C∗ ⊗D∗, while altering x and y in their homology classes does not

alter the homology class of x ⊗ y. In particular, (∂z) ⊗ y = ∂(z ⊗ y) if y is a cycle, and

x⊗ ∂z = (−1)|x|∂(x⊗ z) if x is a cycle. Therefore an element of H∗(C∗)⊗H∗(D∗) yields a

well-defined element of H∗(C∗ ⊗D∗).
Remark 5.2.7. In the special case where the space Y is filtered trivially, then all strata are

regular and there is only one perversity q̄ = 0̄ on Y . Thus I q̄SGM∗ (Y,B) = S∗(Y,B). In this

case, the requirements of the form Q(S × T ) ≥ p̄(S) + q̄(T ) become Q(S × Y ) ≥ p̄(S). In

particular, if we define Q on X × Y as the product perversity with Q(S × Y ) = p̄(S) and

then abusively relabel Q to p̄, we obtain from Corollary 5.2.5 cross products of the form

I p̄SGM∗ (X,A)⊗ S∗(Y,B)
ε−→ I p̄SGM∗ (X × Y, (A× Y ) ∪ (X ×B))

S∗(Y,B)⊗ I p̄SGM∗ (X,A)
ε−→ I p̄SGM∗ (Y ×X, (B ×X) ∪ (Y × A)).

5.2.2 The PL cross product

If X and Y are PL spaces, then the product X × Y is a PL space by Proposition B.5.3 in

Appendix B. Furthermore, given specific triangulations of X and Y and choices of vertex

orderings for each, the Eilenberg-Zilber shuffle product gives a triangulation of X × Y by

Theorem B.6.6 that is compatible with this PL structure. Also in Section B.6.5 of the

appendix, as discussed in the preceding section, we construct a simplicial cross product

./: C∗(K) ⊗ C∗(L) → C∗(K × L) for simplicial complexes K and L with chosen vertex

orderings, and ./ is shown to be a chain map in Proposition B.6.7. In this section, we

discuss a PL cross product of the form C∗(X) ⊗ C∗(Y ) → C∗(X × Y ). Unfortunately, the

shuffle product triangulations do not behave particularly well with respect to subdivision;

see Figure B.2 on page 734. Therefore, we pursue a mixed approach, first defining the PL

cross product by identifying PL chains with singular homology classes and then applying

the singular homology cross product; this definition has the advantage of being independent

of the choice of triangulation. Then we will show that this PL product does agree with the

simplicial product when the triangulations are fixed, and this will allow us to see that the

PL product is a chain map.

We begin with the definition via the singular product: If ξ ∈ Cp(X) and η ∈ Cq(Y ),

then by Lemma 3.3.10 we can identify ξ and η with elements [ξ] ∈ Hp(|ξ|, |∂ξ|) and [η] ∈
Hq(|η|, |∂η|), respectively. The singular homology cross product then produces an element

[ξ]× [η] ∈ Hp+q(|ξ| × |η|, (|∂ξ| × |η|) ∪ (|ξ| × |∂η|)),

and we let the PL chain cross product ξ×η be the PL chain corresponding to this homology

class, again via Lemma 3.3.10.

Definition 5.2.8. The PL cross product × : C∗(X)⊗C∗(Y )→ C∗(X×Y ) is defined so that

if ξ ∈ Cp(X) and η ∈ Cq(Y ) then ξ × η is the PL chain corresponding to

[ξ]× [η] ∈ Hp+q(|ξ| × |η|, (|∂ξ| × |η|) ∪ (|ξ| × |∂η|))

under the isomorphism of Lemma 3.3.10.
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We should verify that this is a homomorphism and a chain map. To do so, we will

show that this product can be described using the Eilenberg-Zilber shuffle construction if we

choose triangulations of X and Y containing representatives of ξ and η and with orderings

of their vertices. However, notice again that a benefit of Definition 5.2.8 is that it does not

rely on any choices of triangulations and so is automatically independent of such choices.

Proposition 5.2.9. Let K and L be simplicial complexes with partial orders on their vertices

restricting to total orders on each simplex, and let K × L be the simplicial complex with

|K×L| = |K|× |L| given by the shuffle product triangulation. Let ξ ∈ Cp(K) and η ∈ Cq(L)

represent PL chains in |K| and |L|, respectively. Then the PL chain in Cp+q(|K × L|)
represented by ξ ./ η ∈ Cp+q(K × L) is equal to the PL cross product ξ × η.

Proof. Suppose ξ =
∑
aiσi and η =

∑
bjτj. Then by definition we can write the simplicial

product ξ ./ σ in the form ∑
ij

aibjσi ./ τj =
∑
ijµν

aibjsgn(µ, ν)δijµν ,

where the δijµν are the simplices determined by the (p, q)-shuffles in the product triangulation

of σi × τj. By the proof of Proposition B.6.8, each sgn(µ, ν)δijµν is oriented consistently with

the product orientation of σi × τj determined by the orientations of σi and τj coming from

the vertex orderings.

Now, let us consider the PL product ξ × η represented by

[ξ]× [η] ∈ Hp+q(|ξ| × |η|, (|∂ξ| × |η|) ∪ (|ξ| × |∂η|)).

The triangulation K ×L contains |ξ| × |η| and (|∂ξ| × |η|)∪ (|ξ| × |∂η|) as subcomplexes by

Corollary B.6.5. Therefore, by our discussion in the Realization subsection of Section 3.3.2,

the chain ξ× η can also be represented by a simplicial chain of the form
∑

ijµν c
ij
µνδ

ij
µν , where

the corresponding σi and τj range over just those simplices in ξ and η, respectively. By

Remark 3.3.14, each cijµν is determined by the value of ξ× η in Hp+q(|ξ|× |η|, |ξ|× |η|− {z}),
where z is contained in the interior of δijµν and we use the product orientation of σi × τk to

determine the sign. But if x ∈ σi and y ∈ τj are such that (x, y) = z ∈ σi × τj, we have a

commutative diagram

Hp(|ξ|, |∂ξ|)⊗Hq(|η|, |∂η|)
×
- Hp+q(|ξ| × |η|, (|∂ξ| × |η|) ∪ (|ξ| × |∂η|))

Hp(|ξ|, |ξ| − {x})⊗Hq(|η|, |η| − {y})
? ×

∼=
- Hp+q(|ξ| × |η|, |ξ| × |η| − {z})

?

Hp(σi, σi − {x})⊗Hq(τj, τj − {y})

∼=
6

×
∼=

- Hp+q(σi × τj, σi × τj − {z}).

∼=
6
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Here the lower vertical maps are isomorphisms by excision, and the bottom horizontal map

is an isomorphism by the Künneth Theorem. As the coefficient of σi in ξ is ai and the

coefficient of τj in η is bj, the coefficient cijµν is ±aibj according as the orientation of δijµν
agrees or disagrees with the product orientation of σi× τj. But, by the proof of Proposition

B.6.8, the δijµν whose orientations agree with this product orientation are those whose signs

are 1. So we can conclude that cijµν = sgn(µ, ν)aibj.

Therefore, the two cross products agree.

Corollary 5.2.10. The PL cross product is a chain map.

Proof. As the simplicial cross product is bilinear by definition, it follows from Proposition

5.2.9 that the PL cross product is a homomorphism; to add two chains we just work in a

triangulation containing both. Similarly, Proposition 5.2.9 implies that the compatibility

with boundaries proven for simplicial chains in Proposition B.6.7 carries over to the same

conclusion for PL chains. So the PL cross product is a chain map.

Corollary 5.2.11. Let K and L be simplicial complexes with partial orders on their vertices

restricting to total orders on each simplex, and let K × L be the simplicial complex with

|K ×L| = |K| × |L| given by the shuffle product triangulation. Then there is a commutative

diagram of chain maps

C∗(K)⊗ C∗(L)
./
- C∗(K × L)

C∗(|K|)⊗ C∗(|L|)
? ×

- C∗(|K × L|),
?

with the vertical maps the canonical ones induced by taking simplicial chains to the PL chains

they represent.

Proof. Corollary 5.2.10 and Proposition B.6.7 show that the horizontal maps are chain maps.

The commutativity follows immediately from Proposition 5.2.9 as C∗(K)⊗C∗(L) is generated

by elements of the form ξ ⊗ η.

As for the singular cross product, the simplicial and PL cross products restrict to cross

products of intersection chains, and we have the following versions of Lemma 5.2.4 and

Corollary 5.2.5.

Lemma 5.2.12. If X and Y are PL filtered spaces, the PL cross product restricts to a chain

map

I p̄CGM∗ (X)⊗ I q̄CGM∗ (Y )
×−→ IQCGM∗ (X × Y )

if Q(S × T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y . Similarly, if K and L are

simplicial complexes triangulating X and Y with partial orders on their vertices restricting

to total orders on each simplex, the simplicial cross product restricts to a chain map

I p̄CGM
∗ (K)⊗ I q̄CGM

∗ (L)
./−→ IQCGM

∗ (K × L)
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under the same condition on perversities.

Corollary 5.2.13. Under the assumptions of Lemma 5.2.12, if also A ⊂ X and B ⊂ Y are

subsets, the PL cross product induces maps

I p̄CGM∗ (X,A)⊗ I q̄CGM∗ (Y,B) -
IQCGM∗ (X × Y )

IQCGM∗ (A× Y ) + IQCGM∗ (X ×B)
- IQCGM∗ (X × Y, (A× Y ) ∪ (X ×B)).

The proofs are essentially the same as for Lemma 5.2.4 and Corollary 5.2.5, although

since we don’t know that the complexes IC∗ and C∗ are free, we need a different argument

to see that

I p̄CGM∗ (X)⊗ I q̄CGM∗ (Y ) ⊂ C∗(X)⊗ C∗(Y ).

For this, we observe that these groups are torsion free, and therefore they are flat Z-modules,

as Z is a Dedekind domain. Thus the desired inclusion holds. It will be useful to note for

later that the same argument will apply for coefficients in any Dedekind domain; see Section

A.4.2. Beyond this, the arguments that the perversities work out are completely analogous

to the singular case.

Remark 5.2.14. Analogously to our observation in Remark 5.2.6, the chain cross products

induce products on homology

I p̄HGM
∗ (X,A)⊗ I q̄HGM

∗ (Y,B)→ H∗(I
p̄CGM∗ (X,A)⊗ I q̄CGM∗ (Y,B))

ε−→ IQHGM
∗ (X × Y, (A× Y ) ∪ (X ×B)),

and similarly in the simplicial case.

Using Lemma 5.2.12 to restrict the diagram of Corollary 5.2.11 to the intersection chain

complexes, we obtain the following:

Corollary 5.2.15. Let X and Y be PL filtered spaces, and suppose K and L are simplicial

complexes triangulating X and Y with partial orders on their vertices restricting to total

orders on each simplex. Let p̄, q̄, and Q be respective perversities on X, Y , and X ×Y such

that Q(S× T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y . Then there is a commutative

diagram of chain maps7

I p̄CGM
∗ (K)⊗ I q̄CGM

∗ (L)
./
- IQCGM

∗ (K × L)

I p̄CGM∗ (X)⊗ I q̄CGM∗ (Y )
? ×

- IQCGM∗ (X × Y ),
?

with the vertical maps the canonical ones induced by taking simplicial chains to the PL chains

they represent.

7Here we identify |K| with X via the triangulating homeomorphism, and similarly for the other spaces.
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Finally, this is a convenient time to observe a similar relationship between the simplicial

and singular cross products:

Corollary 5.2.16. Let X and Y be PL filtered spaces, and suppose K and L are simplicial

complexes triangulating X and Y with partial orders on their vertices restricting to total

orders on each simplex. Let p̄, q̄, and Q be respective perversities on X, Y , and X ×Y such

that Q(S× T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y . Then there is a commutative

diagram of chain maps8

I p̄CGM
∗ (K)⊗ I q̄CGM

∗ (L)
./
- IQCGM

∗ (K × L)

I p̄SGM∗ (X)⊗ I q̄SGM∗ (Y )

φK ⊗ φL
? ε

- IQSGM∗ (X × Y ),

φK×L

?

with the vertical maps being the simplicial-to-singular chain maps of Proposition 4.4.5 and

Corollary 4.4.6.

Proof. By Lemma 5.2.3, the diagram commutes for ordinary chains, and so it will also

commute for the restriction to intersection chains if the maps are all well defined. But the

vertical arrows are chain maps by Corollary 4.4.6, the top arrow is a chain map by Lemma

5.2.12, and the bottom arrow is a chain map by Lemma 5.2.4.

5.2.3 Properties of the cross product

In this section, we will develop some of the basic properties of the singular and PL cross

products. We will primarily make the arguments in the singular setting, as the PL arguments

are analogous. When the PL case requires something different, we will indicate so; otherwise,

we will not mention the PL proofs explicitly.

Proposition 5.2.17 (Naturality). Let (X,A), (Y,B), (X ′, A′) and (Y ′, B′) be pairs of fil-

tered spaces and subsets. Let f : X → X ′ and g : Y → Y ′ be maps with f(A) ⊂ A′ and

f(B) ⊂ B′. Suppose p̄, q̄, p̄′, q̄′ are respective perversities on X, Y,X ′, Y ′ and that P and Q

are respective perversities on X × Y and X ′ × Y ′ such that P (S × T ) ≥ p̄(S) + q̄(T ) for

all strata S ⊂ X and T ⊂ Y and Q(S ′ × T ′) ≥ p̄′(S ′) + q̄′(T ′) for all strata S ′ ⊂ X ′ and

T ′ ⊂ Y ′. Finally, suppose that f is (p̄, p̄′)GM -stratified, g is (q̄, q̄′)GM -stratified, and f × g is

(P,Q)GM -stratified. Then the following diagram commutes:

IPSGM∗ (X × Y, (A× Y ) ∪ (X ×B)) �
ε

I p̄SGM∗ (X,A)⊗ I q̄SGM∗ (Y,B)

IQSGM∗ (X ′ × Y ′, (A′ × Y ′) ∪ (X ′ ×B′))

f × g

?
�
ε
I p̄
′
SGM∗ (X ′, A′)⊗ I q̄′S∗(Y ′, B′).

f ⊗ g

?

8Again, we here identify |K| with X via the triangulating homeomorphism, and similarly for the other

spaces.
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In other words, if x ∈ I p̄SGM∗ (X,A) and y ∈ I q̄SGM∗ (Y,B), then f(x)×g(y) = (f×g)(x×y).

Similarly for the PL cross product.

Remark 5.2.18. Notice that it is possible in Proposition 5.2.17 to have X = X ′ and Y = Y ′

with the maps being identity maps. In this case, the lemma becomes a statement about

naturality with respect to change of perversity.

Proof. The hypotheses of the lemma guarantee that all the maps in the diagram are well

defined. For commutativity, as all the maps involved are restrictions of the corresponding

chain maps on complexes of ordinary singular chains, it suffices to verify commutativity of

the diagram for ordinary singular chains. But S∗(X,A)⊗ S∗(Y,B) is generated by elements

represented by tensor products of singular simplices of the form σ ⊗ τ with σ : ∆i → X

and τ : ∆j → Y for some i, j. But acting on σ ⊗ τ , the image of the maps left then down

is represented by applying the spatial map (f × g)(σ × τ) = (fσ)× (gτ) to to the singular

chain version (i.e. the image under the map φ of Proposition 4.4.5) of the fundamental class

∆p ./ ∆q, while the map down then left similarly applies (fσ)× (fτ) to φ(∆p ./ ∆q).

In the PL case, it would be challenging to prove this lemma from the simplicial viewpoint,

but using the homological description of PL chains and maps from Lemmas 3.3.10 and 3.3.13,

the naturality for the PL chain cross product follows from the naturality of the singular

homology cross product.

Proposition 5.2.19 (Associativity). Suppose X, Y , and Z are filtered spaces with respective

perversities p̄, q̄, and r̄ and subspaces A ⊂ X, B ⊂ Y , Z ⊂ C. Suppose, furthermore, that

• P is a perversity on X × Y such that P (S × S ′) ≥ p̄(S) + q̄(S ′) for all strata S ⊂ X

and S ′ ⊂ Y ,

• Q is a perversity on Y ×Z such that Q(S ′× S ′′) ≥ q̄(S ′) + r̄(S ′′) for all strata S ′ ⊂ Y

and S ′′ ⊂ Z,

• R is a perversity on X × Y × Z such that R(S × S ′ × S ′′) ≥ P (S × S ′) + r̄(S ′′) and

R(S × S ′ × S ′′) ≥ p̄(S) +Q(S ′ × S ′′) for all strata S ⊂ X, S ′ ⊂ Y , and S ′′ ⊂ Z.

Then the following diagram commutes

I p̄SGM∗ (X,A)⊗ I q̄SGM∗ (Y,B)⊗ I r̄SGM∗ (Z,C)
ε⊗ id

- IPSGM∗ (X × Y, (A× Y ) ∪ (X ×B))⊗ I r̄SGM∗ (Z,C)

I p̄SGM∗ (X,A)⊗ IQSGM∗ (Y × Z, (B × Z) ∪ (Y × C))

id⊗ ε

? ε
- IRSGM∗ (X × Y × Z, (A× Y × Z) ∪ (X ×B × Z) ∪ (X × Y × C)).

ε

?

In other words, if x ∈ I p̄SGM∗ (X,A), y ∈ I q̄SGM∗ (Y,B), z ∈ I r̄SGM∗ (Z,C), then (x×y)×z =

x× (y × z).

Similarly for the PL cross product.
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Proof. We first observe that all of the maps of the diagram are well-defined by Lemma 5.2.4

and Corollary 5.2.5, noting that

[A× (Y × Z)] ∪ [X × ((B × Z) ∪ (Y × C))] = (A× Y × Z) ∪ (X ×B × Z) ∪ (X × Y × C)

and analogously for the terms on the right.

To verify the commutativity of the diagram, we recall that each group appearing in the

diagram is a subgroup of the corresponding ordinary singular chain group, so it suffices to

verify commutativity in that setting. There, S∗(X,A)⊗S∗(Y,B)⊗S∗(Z,C) is generated by

elements of the form σ⊗ τ ⊗η, where σ : ∆p → X, τ : ∆q → Y , and η : ∆r → Z are singular

simplices. So the lemma reduces to showing that (σ × τ)× η = σ × (τ × η).

Tracing through the definitions, the chain (σ×τ)×η is the singular chain that is obtained

by applying the chain map corresponding to the spatial map σ× τ × η to the singular chain

version (i.e. the image under the map φ of Proposition 4.4.5) of the fundamental class

(∆p ./ ∆q) ./ ∆r, which is made up of the p + q + r simplices found by first applying

the Eilenberg-Zilber shuffle triangulation to ∆p×∆q and then applying the Eilenberg-Zilber

shuffle triangulation to each δp+q×∆r, where δp+q is one of the resulting p+q simplices of the

triangulation of ∆p ×∆q. Similarly, σ× (τ × η) applies the chain map corresponding to the

spatial map σ×τ ×η to the singular chain version of the fundamental class ∆p ./ (∆q ./ ∆r)

that comes by applying the Eilenberg-Zilber process first to ∆q × ∆r. In both cases, by

Proposition B.6.8 the fundamental classes are those corresponding to the product orientation

of ∆p × ∆q × ∆r with each factor given its standard orientation. Therefore, it suffices to

verify that it does not matter in what order we perform the iterated Eilenberg-Zilber shuffle

processes.

We must verify that both iterative procedures for triangulating ∆p × ∆q × ∆r result

in the same triangulation, which we can check by looking at the p + q + r simplices of

this triangulation. In our earlier descriptions of the triangulation process, we provided the

vertices of the p + q + r simplices of the triangulation. Looking at this prior description

again, we know that if we first triangulate ∆p×∆q, each p+ q simplex will have its vertices

determined by a (p, q)-shuffle. We have noted that there is a bijection between (p, q)-shuffles

and walks in a p × q grid consisting of steps up and steps right and with the labels of the

grid points determining the vertices of a p + q simplex in ∆p ×∆q. Now, the triangulation

of ∆p×∆q ×∆r comes by taking each of the p+ q simplices δ of ∆p×∆q and triangulating

δ ×∆r using (p + q, r)-shuffles. If we have fixed a (p, q)-shuffle and think of it as a path in

a p × q grid, then the resulting (p + q, r)-shuffles corresponds to walks in a p × q × r grid

where each step is either a horizontal step dictated by the fixed (p, q)-shuffle or a vertical

step. The corresponding triangulation of δ×∆r comes by considering the p+ q+ r simplices

with vertices labeled by the grid coordinates. As we work through all (p, q)-shuffles and all

corresponding (p + q, r)-shuffles, we see that the collection of all p + q + r simplices of the

triangulation of ∆p ×∆q ×∆r correspond to the collection of all paths on a p × q × r grid

in which each step increases a single coordinate by 1. An analogous argument beginning

with (q, r)-shuffles and then, for each such shuffle, considering (p, q + r)-shuffles results in

the same symmetrical description of what we should call (p, q, r)-shuffles. So we see that

both procedures yield the same triangulation of ∆p ×∆q ×∆r.
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Proposition 5.2.20 (Commutativity). Suppose X and Y are filtered spaces with respective

perversities p̄ and q̄ and subspaces A ⊂ X and B ⊂ Y . Suppose, furthermore, that P is a

perversity on X ×Y such that P (S×T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y and

that Q the a perversity on Y ×X with Q(T × S) = P (S × T ). Then the following diagram

commutes

I p̄SGM∗ (X,A)⊗ I q̄SGM∗ (Y,B)
ε
- IPSGM∗ (X × Y, (A× Y ) ∪ (X ×B))

I q̄SGM∗ (Y,B)⊗ I p̄SGM∗ (X,A)

τ

? ε
- IQSGM∗ (Y ×X, (B ×X) ∪ (Y × A)),

t

?

where τ is the standard (signed!) interchange map of tensor product factors and t is induced

by the topological interchange map t : X × Y → Y × X given by t(x, y) = (y, x). In other

words, t(x× y) = (−1)|x||y|y × x.

Similarly for the PL cross product.

Proof. Notice that τ is a chain map: if x ⊗ y is a generator of the tensor product, then we

have

τ∂(x⊗ y) = τ((∂x)⊗ y + (−1)|x|x⊗ ∂y)

= (−1)(|x|−1)|y|y ⊗ ∂x+ (−1)|x|+|x|(|y|−1)(∂y)⊗ x
= (−1)(|x|−1)|y|y ⊗ ∂x+ (−1)|x||y|(∂y)⊗ x
= (−1)|x||y|(∂y)⊗ x+ (−1)|x||y|+|y|y ⊗ ∂x
= (−1)|x||y|((∂y)⊗ x+ (−1)|y|y ⊗ ∂x)

= (−1)|x||y|∂(y ⊗ x)

= ∂(τ(x⊗ y)).

It is also clear that t takes P -allowable chains to Q allowable chains and so induces a

well-defined chain map.

Once again, all of the maps of the diagram are well-defined by Lemma 5.2.4 and Corollary

5.2.5, and, as in the proof of Proposition 5.2.19, it suffices to verify commutativity for a tensor

product of ordinary singular simplices σ ⊗ η with σ : ∆p → X and η : ∆q → Y .

We know that ε acts on σ ⊗ τ by applying the spatial map σ × η to the singular chain

version (i.e. the image under the map φ of Proposition 4.4.5) of the fundamental class

∆p ./ ∆q made up of simplices from the Eilenberg-Zilber (p, q)-shuffle triangulation. On the

other hand, the map τ takes σ⊗ η to (−1)pqη⊗ σ, and then ε acts by applying (−1)pqη× σ
to the singular chain version of the fundamental class for ∆q×∆p made up of simplices from

the Eilenberg-Zilber (q, p)-shuffle triangulation. So we need to see that applying t ◦ (σ × η)

to the singular chain coming from the (p, q)-shuffle triangulation of ∆p ×∆q gives the same

chain as applying (−1)pqη × σ to the (q, p)-shuffle triangulation of ∆q ×∆p.
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We consider the following diagram, with t∆ : ∆p×∆q → ∆q×∆p denoting the interchange

map with t∆(x, y) = (y, x):

∆p ×∆q σ × η- X × Y

∆q ×∆p

t∆

? η × σ
- Y ×X

t

?

The diagram clearly commutes, and, together with our above descriptions of tε(σ ⊗ η) and

ετ(σ ⊗ η), this implies that the lemma will follow if we can show that t∆ takes the (p, q)-

shuffle fundamental class of ∆p ×∆q to (−1)pq times the (q, p)-shuffle fundamental class of

∆q ×∆p.

To prove this claim, we notice that for every (p, q)-shuffle there is a corresponding (q, p)-

shuffle; in fact, if we identify (p, q)-shuffles as planar walks with only steps up or right on

a p× q grid, then the corresponding (q, p)-shuffle is the walk on the q × p grid obtained by

flipping the p × q grid along its southwest to northeast axis. Moreover, the map t∆ takes

the vertices of a p+ q simplex of ∆p×∆q given by a (p, q)-shuffle to the vertices of ∆q ×∆p

of the corresponding (q, p)-shuffle. As t∆ is a linear map, it thus takes our (p, q)-shuffle

triangulation of ∆p × ∆q to the (q, p)-shuffle triangulation of ∆q × ∆p. It only remains to

consider orientations. The singular triangulation of ∆p×∆q obtained by the Eilenberg-Zilber

shuffle process is constructed to conform to the product orientation of ∆p ×∆q. Similarly,

the triangulation of ∆q × ∆p conforms to the product orientation of ∆q × ∆p. Identifying

the two spaces via t∆, the orientations differ by a sign of (−1)pq, owing to the interchange

of factors, as desired.

Proposition 5.2.21 (Unitality). Suppose X is a filtered space with perversity p̄ and subspace

A ⊂ X. Let pt be the space with one point, and let σ0 : ∆0 → pt be the unique singular 0

simplex in S0(pt). Then if ξ ∈ I p̄SGMi (X,A), we have

σ0 × ξ = ξ × σ0 = ξ ∈ I p̄SGMi (pt×X, pt× A) = I p̄SGMi (X × pt, A× pt) = I p̄SGMi (X,A).

Similarly for the PL cross product.

Proof. This follows immediately from the definitions, noting that the Eilenberg-Zilber tri-

angulations yield ∆p ×∆0 = ∆0 ×∆p = ∆p as simplicial complexes.

Remark 5.2.22. The next property of cross products involves the boundary map ∂∗ of long

exact homology sequences. As this map lowers degree by one, we will treat it as a degree −1

map for the purposes of sign conventions. So, for example, if ξ ∈ Hi(X) and η ∈ Hj(Y,B),

for appropriate spaces, then (id ⊗ ∂∗)(ξ ⊗ η) = (−1)iξ ⊗ ∂∗(η) ∈ Hi(X) ⊗ Hj−1(B). We

note that this convention is not always followed in the literature; compare, for example, the

following results with Statements VI.2.11, VI.2.12, and VI.2.13 in [71].

207



Proposition 5.2.23 (Stability). Suppose X and Y are filtered spaces with respective per-

versities p̄ and q̄ and subspaces A ⊂ X and B ⊂ Y . Suppose that Q is a perversity on X×Y
such that Q(S × T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y . Then the following

diagram commutes:

I p̄HGM
i (X,A)⊗ I q̄HGM

j (Y,B)
ε
- IQHGM

i+j (X × Y, (A× Y ) ∪ (X ×B))

IQHGM
i+j−1((A× Y ) ∪ (X ×B))

∂∗

?

IQHGM
i+j−1((A× Y ) ∪ (X ×B), X ×B)

?

I p̄HGM
i−1 (A)⊗ I q̄HGM

j (Y,B)

∂∗ ⊗ id

? ε
- IQHGM

i−1+j(A× Y,A×B).

6

Here, the unlabeled maps of the diagram are induced by the inclusions

((A× Y ) ∪ (X ×B), ∅)→ ((A× Y ) ∪ (X ×B), X ×B)

and

(A× Y,A×B)→ ((A× Y ) ∪ (X ×B), X ×B).

In other words, if ξ ∈ I p̄HGM
i (X,A) and η ∈ I q̄HGM

j (Y,B), then

(∂∗ξ)× η = ∂∗(ξ × η) ∈ IQHGM
i+j−1((A× Y ) ∪ (X ×B), X ×B).

Analogously, and via a similar diagram,

ξ × ∂∗η = (−1)i∂∗(ξ × η) ∈ IQHGM
i+j−1((A× Y ) ∪ (X ×B), A× Y ).

Similarly for the PL cross product.

Proof. Recall that, via the standard “zig-zag” construction of the boundary map of the long

exact sequence of a pair, if ξ is a chain representing an element of I p̄HGM
i (X,A), then the

image of this element in I p̄HGM
i−1 (A) under the map ∂∗ is represented by ∂ξ, and similarly for

any other ∂∗ map. Now, I p̄HGM
i (X,A)⊗ I q̄HGM

j (Y,B) is generated by elements of the form

ξ⊗ η with ξ a chain representing an element of I p̄HGM
i (X,A) and η a chain representing an

element of I q̄HGM
j (Y,B). The image of ξ⊗η in IQHGM

i+j−1((A×Y )∪(X×B), X×B) working

counterclockwise around the diagram, is represented by (∂ξ)×η. The image working around
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the diagram clockwise is ∂(ξ × η), which, as the cross product is a chain map, is equal to

(∂ξ) × η + (−1)iξ × ∂η. But now ξ × ∂η is contained in X × B. Therefore, (∂ξ) × η and

(∂ξ)× η+ (−1)iξ× ∂η represent the same element in IQHGM
i+j−1((A× Y )∪ (X ×B), X ×B).

Analogously, (∂ξ)× η is contained in A× Y , and so ∂(ξ × η) and (−1)iξ × ∂η represent

the same element in IQHGM
i+j−1((A × Y ) ∪ (X × B), A × Y ). But the latter also represents

(−1)i times the cross product of ξ with ∂∗η.

Similarly, we have the following lemma:

Proposition 5.2.24 (Stability). Suppose X and Y are filtered spaces with respective per-

versities p̄ and q̄ and subspaces A ⊂ X and B ⊂ Y . Suppose that Q is a perversity on X×Y
such that Q(S × T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y . Then the following

diagram commutes:

I p̄HGM
i (X,A)⊗ I q̄HGM

j (Y,B)
ε

- IQHGM
i+j (X × Y, (A× Y ) ∪ (X ×B))

IQHGM
i+j−1((A× Y ) ∪ (X ×B))

∂∗

?

IQHGM
i+j−1((A× Y ) ∪ (X ×B), A×B)

?

(I p̄HGM
i−1 (A)⊗ I q̄HGM

j (Y,B))⊕ (I p̄HGM
i (X,A)⊗ I q̄HGM

j−1 (B))

(∂∗ ⊗ id) + (id⊗ ∂∗)

? ε⊕ ε
- IQHGM

i−1+j(A× Y,A×B)⊕ IQHGM
i−1+j(X ×B,A×B).

i1 + i2

6

Here, the unlabeled map of the diagram is induced by the inclusions

((A× Y ) ∪ (X ×B), ∅)→ ((A× Y ) ∪ (X ×B), A×B)

and i1 + i2 denotes the sum of the two inclusion maps

(A× Y,A×B)→ ((A× Y ) ∪ (X ×B), A×B)

and

(X ×B,A×B)→ ((A× Y ) ∪ (X ×B), A×B).

In other words, if ξ ∈ I p̄HGM
i (X,A) and η ∈ I q̄HGM

j (Y,B), then

∂∗(ξ)× η + (−1)iξ × ∂∗(η) = ∂∗(ξ × η) ∈ IQHGM
i+j−1((A× Y ) ∪ (X ×B), A×B).

Similarly for the PL cross product.
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Proof. As in the proof of Proposition 5.2.23, we consider a tensor product ξ ⊗ η of chains

representing a generator of I p̄HGM
i (X,A) ⊗ I q̄HGM

j (Y,B). Chasing the diagram counter-

clockwise and using that (id⊗ ∂∗)(ξ ⊗ η) = (−1)iξ ⊗ ∂∗η, the chain ξ ⊗ η gets taken first to

((∂ξ)⊗ η)⊕ (−1)i(ξ ⊗ ∂η) then to ((∂ξ)× η)⊕ (−1)i(ξ × ∂η), and finally to

((∂ξ)× η) + (−1)i(ξ × ∂η) ∈ IQHGM
i+j−1((A× Y ) ∪ (X ×B), A×B).

Chasing the other way, and using that ε is a chain map, we get ∂(ξ×η) = (∂ξ)×η+(−1)iξ×
∂η. So the chain representatives agree.

5.2.4 Künneth theorem when one factor is a manifold

Now that we have a cross product, in this section we will prove a Künneth theorem for

intersection homology in the case where one factor of the product is a trivially filtered

manifold M and the other is a filtered space X. We will not be able to obtain a more general

Künneth theorem until we have redefined intersection homology slightly in Section 8, but this

version of the Künneth theorem nonetheless has important applications, including the proof

of topological invariance of intersection homology with Goresky-MacPherson perversities;

see Section 5.5.

Versions of the Künneth theorem presented here seem to have been known quite early

on; the special case for perversity m̄, the space X a Witt space9, and real coefficients10 is a

special case of [106, Section 6.3] of Goresky-MacPherson, while Siegel has a proof in the PL

category for Witt spaces with rational coefficients in [217]. A proof for singular intersection

homology was provided by King [139]. We provide a different proof, though one that is very

consonant with other techniques developed elsewhere in King’s paper.

Theorem 5.2.25. Suppose X is a filtered space with perversity p̄X and that M is an n-

dimensional manifold with its trivial filtration. Filter M × X with the product filtration so

that (M ×X)i = M ×X i−n, and define a perversity p̄ on M ×X whose value on the stratum

R × S, for R a connected component of M , is p̄X(S). Then the cross product induces an

isomorphism H∗(S∗(M) ⊗ I p̄XSGM∗ (X))
∼=−→ I p̄HGM

∗ (M × X). If X is a PL filtered space

and M is a PL manifold, then the same conclusion holds replacing singular chains with PL

chains.

Proof. The singular and PL proofs are identical, so we will only provide the argument for

singular intersection homology.

Before starting on the main body of the proof, we observe that for any x0 ∈ M the

inclusion of X into M×X by identifying it with {x0}×X is a normally nonsingular inclusion;

see Definition 2.9.8. In particular, the codimension of a stratum S in X is the same as the

codimension of M ×S in M ×X, so I p̄XHGM
∗ (X) is isomorphic to the intersection homology

group I p̄HGM
∗ (X) obtained by thinking of X as a subspace of M×X and using the inherited

filtration and perversity. See Example 4.3.11 for a full discussion of this scenario. We will

use this identification of intersection homology groups without further explicit mention.

9See Section 9.1.1, below.
10See Section 5.3, below.
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Now, to prove the theorem, we will apply the Mayer-Vietoris argument Theorem 5.1.1.

We fix X and define functors from M to Ab∗ as follows: Let F∗(M) = H∗(S∗(M) ⊗
I p̄XSGM∗ (X)), let G∗(M) = I p̄HGM

∗ (M×X), and let the natural transformation Φ : F∗ → G∗
be induced by the cross product (see Remark 5.2.7). We must verify that the conditions of

Theorem 5.1.1 are satisfied.

We first consider the cross product S∗(Rn) ⊗ I p̄XSGM∗ (X) → I p̄SGM∗ (Rn × X). By the

naturality of the cross product, we have the following commutative diagram:

S∗({0})×⊗I p̄XSGM∗ (X)
×
- I p̄SGM∗ ({0} ×X) = I p̄XSGM∗ (X)

S∗(Rn)⊗ I p̄XSGM∗ (X)
? ×

- I p̄SGM∗ (Rn ×X).
?

in which the vertical maps are induced by inclusion. These vertical maps induce homology

isomorphisms by stratified homotopy invariance and the algebraic Künneth theorem11. Also,

the top horizontal map induces a homology isomorphism because of σ0 is the generator of

H∗({0}) = H0({0}) ∼= Z and if ξ ∈ I p̄XSGMi (X), then σ0 × ξ = ξ by Proposition 5.2.21.

Therefore the bottom map also induces a homology isomorphism. These arguments are

invariant up to homeomorphism, and so this computation also applies to subsets of M that

are homeomorphic to Rn.

Next suppose that {Uα} is a sequence of open subsets of M ordered by inclusion and

such that S∗(Uα)⊗I p̄XSGM∗ (X)
×−→ I p̄SGM∗ (Uα×X) induces homology isomorphisms for each

α. Consider the commuting diagrams of the form

H∗(S∗(Uβ)⊗ I p̄XSGM∗ (X))
×
- I p̄HGM

∗ (Uβ ×X)

H∗(S∗(∪αUα)⊗ I p̄XSGM∗ (X))
? ×

- I p̄HGM
∗ (∪αUα ×X),

?

where Uβ is a particular one of the {Uα}. Suppose [ξ] ∈ I p̄HGM
∗ (∪αUα ×X), represented by

the cycle ξ. Since ξ consists of a finite number of singular simplices, the union of the images

of the simplices of ξ is compact and so must be contained in some Uβ ×X. Hence [ξ] is in

the image of I p̄HGM
∗ (Uβ ×X). But the top line of diagram is an isomorphism for any fixed

β by assumption, and so it follows that the bottom map must be surjective.

Similarly, suppose that [η] ∈ H∗(S∗(∪αUα)⊗ I p̄XSGM∗ (X)) maps to 0 in I p̄HGM
∗ (∪αUα ×

X). By definition, η =
∑

j xj ⊗ ξj for some xj ∈ S∗(∪αUα) and ξj ∈ I p̄SGM∗ (X), so we are

11To apply the algebraic Künneth theorem, we observe that the chain complexes S∗ and C∗ and their

submodules are all torsion-free, and hence flat, Z-modules; see [237, Theorem 3.6.3] for the Künneth theorem

and Section A.4.2 for the fact that torsion-free implies flat for Dedekind domains, including Z.
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assuming [
∑
xj × ξj] = 0. Let ζ be a chain in I p̄SGM∗ (∪αUα × X) with ∂ζ =

∑
xj × ξj.

Then, again by a compactness argument, there is a β such that all the xj are supported

in Uβ and ζ is supported in Uβ × X. So then
∑
xj × ξj also represents 0 as an element

of I p̄HGM
∗ (Uβ × X). Since the top arrow is an isomorphism, there must be an element

µ ∈ S∗(Uβ)⊗I p̄XSGM∗ (X) whose boundary is
∑

j xj⊗ξj. But then this must hold also under

the inclusion of S∗(Uβ)⊗ I p̄XSGM∗ (X) into S∗(∪αUα)⊗ I p̄SGM∗ (X) and so [η] = 0.

Altogether, we have now shown that if S∗(Uα)⊗ I p̄XSGM∗ (X)
×−→ I p̄SGM∗ (Uα×X) induces

homology isomorphisms for each α, then H∗(S∗(∪αUα)⊗I p̄XSGM∗ (X))
×−→ I p̄HGM

∗ (∪αUα×X)

is an isomorphism.

Finally, consider the following diagram:

0 - S∗(U ∩ V )⊗ I p̄XSGM∗ (X) - (S∗(U)⊗ I p̄XSGM∗ (X))⊕ (S∗(V )⊗ I p̄XSGM∗ (X)) - (S∗(U) + S∗(V ))⊗ I p̄XSGM∗ (X) - 0

0 - I p̄SGM∗ ((U ∩ V )×X)

×

?
- I p̄SGM∗ (U ×X)⊕ I p̄SGM∗ (V ×X)

×⊕×

?
- I p̄SGM∗ (U ×X) + I p̄SGM∗ (V ×X)

×

?
- 0.

The bottom row is a Mayer-Vietoris short exact sequence, while the top row is obtained by

tensoring the short exact Mayer-Vietoris sequence

0 - S∗(U ∩ V ) - S∗(U)
⊕

S∗(V ) - S∗(U) + S∗(V ) - 0

with I p̄XSGM∗ (X) and then summing over degrees (recall that (A∗⊗B∗)i = ⊕j+k=iAj ⊗Bk).

Since each I p̄XSGMj (X) is Z-torsion free, it is a flat Z-module, so tensoring with I p̄SGMj (X)

preserves exactness. This diagram yields a map of long exact sequences in homology. By

the proof of Theorem 4.4.19 (or Theorem 4.4.4 in the PL case), the inclusion

I p̄SGM∗ (U ×X) + I p̄SGM∗ (V ×X)→ I p̄SGM∗ (U ×X) + I p̄SGM∗ ((U ∪ V )×X)

induces a homology isomorphism, so the bottom row has the form of a long exact Mayer-

Vietoris sequence for G∗. Similarly, by the same arguments, or classically, S∗(U) +S∗(V ) ↪→
S∗(U ∪ V ) induces a homology isomorphism, and it follows from the algebraic Künneth

theorem and the Five Lemma that the map

(S∗(U) + S∗(V ))⊗ I p̄XSGM∗ (X)→ S∗(U ∪ V )⊗ I p̄XSGM∗ (X)

induced by inclusion is also a homology isomorphism. So, again, substituting the homology

of the latter expression for that of the former in the long exact sequence yields a long exact

sequence of Mayer-Vietoris form for the functor F∗. We observe that the cross product

continues to induce the isomorphism of exact sequences with these substitutions via the

diagram

Hi((S∗(U) + S∗(V ))⊗ I p̄XSGM∗ (X))
∼=- Hi(S∗(U ∪ V )⊗ I p̄XSGM∗ (X))

Hi(I
p̄SGM∗ (U ×X) + I p̄SGM∗ (V ×X))

×

? ∼= - I p̄Hi((U ∪ V )×X).

×

?
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Thus the cross product induces a map of long exact Mayer-Vietoris sequences.

Given these verifications, Theorem 5.1.1 now implies the theorem.

Corollary 5.2.26. Under the assumptions of Theorem 5.2.25, if A ⊂ X then the cross

product induces an isomorphism H∗(S∗(M)⊗I p̄XSGM∗ (X,A))
∼=−→ I p̄HGM

∗ (M×X,M×A). If

X is a PL filtered space and M is a PL manifold, then the same conclusion holds replacing

singular chains with PL chains.

Proof. Consider the short exact sequence

0 - I p̄XSGM∗ (A) - I p̄XSGM∗ (X) - I p̄XSGM∗ (X,A) - 0.

As S∗(M) is torsion-free, and hence flat, tensoring with S∗(M) preserves exactness, and we

obtain a diagram of short exact sequences

0 - S∗(M)⊗ I p̄SGM∗ (A) - S∗(M)⊗ I p̄SGM∗ (X) - S∗(M)⊗ I p̄SGM∗ (X,A) - 0

0 - I p̄SGM∗ (M × A)

×

?
- I p̄SGM∗ (M ×X)

×

?
- I p̄SGM∗ (M ×X,M × A)

×

?
- 0.

It is not difficult to verify that this diagram commutes by looking at cross products of

generators. The diagram then induces a map of long exact sequences, and the corollary

follows from Theorem 5.2.25 and the Five Lemma.

Remark 5.2.27. If we assume the subset A of Corollary 5.2.26 is open and that U is an

open subset of the manifold M then one can further show that the cross product induces an

isomorphism

H∗(S∗(M,U)⊗ I p̄XSGM∗ (X,A))
∼=−→ I p̄HGM

∗ (M ×X, (M × A) ∪ (U ×X)).

This follows from Theorem 5.2.25 by the same argument as that presented below to show

that the more general relative Künneth Theorem for non-GM intersection homology (Theo-

rem 6.4.13) follows from the absolute Künneth Theorem for non-GM intersection homology

(Theorem 6.4.7). As the proof is a bit more involved than that for Corollary 5.2.26 alone,

we refer the reader to that argument rather than reproduce the details here.

5.3 Intersection homology with coefficients and univer-

sal coefficient theorems

So far, we have managed to show that intersection homology satisfies many of the key

properties of ordinary homology. In this section, we will explore a topic whose translation to

intersection homology is more problematic, namely intersection homology with coefficients.

Part of the issue is that there are two possible competing definitions of intersection homology

with coefficients.
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5.3.1 Definitions of intersection homology with coefficients

Perhaps the simplest approach to intersection homology with coefficients would be to consider

I p̄SGM∗ (X) ⊗ G for some abelian group G. Indeed, one could do this, and then of course

the algebraic Universal Coefficient Theorem would give us split short exact sequences of the

form

0→ I p̄HGM
i (X)⊗G→ Hi(I

p̄SGM∗ (X)⊗G)→ I p̄HGM
i−1 (X) ∗G→ 0,

where ∗ denotes the torsion product Tor1(·, ·).
However, there is a more intriguing and ultimately more useful option, which is captured

in the following definition:

Definition 5.3.1. Let G be an abelian group and X a filtered space with perversity p̄.

Define the complex of intersection chains with coefficients in G, denoted I p̄SGM∗ (X;G), to

be the subcomplex of S∗(X;G) = S∗(X) ⊗ G such that ξ ∈ I p̄SGM∗ (X;G) if each simplex

of12 ξ is p̄-allowable and each simplex of ∂ξ is p̄-allowable. In other words, we simply mirror

the definition of the intersection chain complex I p̄SGM∗ (X) in terms of allowability, but using

S∗(X;G) as our starting point rather than S∗(X).

If X is a PL filtered space, then we can similarly define for each admissible triangulation T

the subcomplex I p̄CCM,T
∗ (X;G) ⊂ CT

∗ (X;G) = CT
∗ (X)⊗G consisting of chains ξ ∈ CT

∗ (X;G)

such that each simplex of ξ and ∂ξ is p̄-allowable. Subdivision CT
∗ (X) → CT ′

∗ (X) induces

a subdivision map CT
∗ (X;G) → CT ′

∗ (X;G) by functoriality, and by the argument proving

Lemma 3.3.15, each such map takes I p̄CCM,T
∗ (X;G) to I p̄CCM,T ′

∗ (X;G). We can then let

I p̄CGM∗ (X;G) = lim−→T∈T I
p̄CGM,T
∗ (X;G), where T is the set of admissible triangulations of

X compatible with the filtration.

Remark 5.3.2. As the direct limit functor is exact and commutes with tensor products we

have I p̄CGM∗ (X;G) ⊂ C∗(X;G) ∼= C∗(X)⊗G. In particular, I p̄CGM∗ (X;G) is the subcomplex

of chains in C∗(X;G) representable by p̄-allowable simplicial chains.

Remark 5.3.3. More generally, if M is an R-module for some commutative ring with unity

R, then we can similarly define I p̄SGM∗ (X;M) ⊂ S∗(X;M), where S∗(X;M) = S∗(X)⊗ZM .

Here we use that an R-module is also a Z-module via the unique ring morphism Z → R

taking 1 to the unity of R. We will not pursue this level of generality in what follows.

Comparing the options

The chain complexes I p̄SGM∗ (X;G) and I p̄SGM∗ (X) ⊗ G do not yield the same homology

groups! We will provide a concrete example in a moment, but let us first consider why this

is plausible even though allowability of a simplex is no different in I p̄SGM∗ (X;G) than in

I p̄SGM∗ (X)⊗G. The issue is what happens when we take boundaries.

For example, suppose that ξ is a singular chain in S∗(X) and that ∂ξ = 2η, for some

other chain η. Suppose every simplex of ξ is allowable, but that η contains simplices that

12Analogously to the case with Z coefficients, we say that σ is a simplex of the chain ξ ∈ S∗(X;G) if σ

appears as one of the σi when we write ξ as a finite sum of the form
∑
i giσi with each gi ∈ G, gi 6= 0, and

no σi repeated.
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are not allowable. So ξ /∈ I p̄SGM∗ (X). Suppose that consequently13 ξ ⊗ 1 /∈ I p̄SGM∗ (X)⊗Z2.

However, ξ⊗ 1 will definitely be an element of I p̄SGM∗ (X;Z2): by assumption every simplex

of ξ (and hence every simplex of ξ⊗ 1) is allowable, and now the boundary vanishes with Z2

coefficients. In fact, ξ⊗ 1 is a cycle in I p̄SGM∗ (X;Z2) and may well represent an intersection

homology class.

Conversely, suppose there are chains η ∈ Si(X), ξ ∈ Si+1(X) that that ξ ⊗ 1, η ⊗ 1 ∈
I p̄SGM∗ (X;G) and ∂(ξ ⊗ 1) = η⊗ 1. It might nonetheless be possible that ξ is not allowable

as an element of I p̄SGMi+1 (X); for example, perhaps G is 2-torsion and ∂ξ = η + 2ζ for some

chain ζ ∈ Si(X) containing non-allowable simplices. In this case, η ⊗ 1 represents a trivial

element of I p̄HGM
i (X;G), but it might not be trivial in Hi(I

p̄SGM∗ (X)⊗G).

Let us look at an important concrete example where this latter situation occurs quite

explicitly:

Example 5.3.4. Let X = X3 be the cone c(RP 2) with the perversity 0̄ that assigns 0 to the

cone vertex v, which is the only singular stratum. We first use homological tools to compute

I 0̄HGM
∗ (c(RP 2);Z2) and H∗(I

0̄SGM∗ (c(RP 2))⊗ Z2).

The cone computation of Theorem 4.2.1 is easily generalized to include coefficient groups

(see Theorem 5.3.5, below) to establish that

I 0̄HGM
i (c(RP 2);Z2) ∼=

{
0, i ≥ 2,

I 0̄HGM
i (RP 2;Z2), i < 2.

Since RP 2 is an unfiltered manifold, I 0̄H∗(RP 2) = H∗(RP 2). Therefore, I 0̄HGM
0 (c(RP 2);Z2) ∼=

I 0̄HGM
1 (c(RP 2);Z2) ∼= Z2 and I 0̄HGM

i (c(RP 2);Z2) = 0 otherwise.

On the other hand, with Z coefficients

I 0̄HGM
i (c(RP 2)) ∼=

{
0, i ≥ 2,

I 0̄HGM
i (RP 2), i < 2,

and now from the ordinary homology computations we have that I 0̄HGM
0 (c(RP 2)) ∼= Z,

I 0̄HGM
1 (c(RP 2)) ∼= Z2, and I 0̄HGM

i (c(RP 2)) = 0 otherwise. The algebraic universal coeffi-

cient theorem then shows that

H0(I 0̄SGM∗ (c(RP 2))⊗ Z2) ∼= Z2,

H1(I 0̄SGM∗ (c(RP 2))⊗ Z2) ∼= Z2,

H2(I 0̄SGM∗ (c(RP 2))⊗ Z2) ∼= Z2,

Hi(I
0̄SGM∗ (c(RP 2))⊗ Z2) = 0, i > 2.

This does not agree with the computation of I 0̄HGM
i (c(RP 2);Z2) when i = 2.

So why the difference? Homologically, we can see the issue from the cone formula of

Theorem 4.2.1 and its analogue with coefficients. From these cone formulas, we see that

13This is not automatic; for example if all coefficients of ξ are even then ξ ⊗ 1 = 0 ∈ I p̄SGM∗ (X) ⊗ Z2

whether ξ is an intersection chain or not.

215



there is a sharp transition between degrees 1 and 2. In degrees below 2, the intersection

homology of the cone on X agrees with the intersection homology of X itself, above that

degree it is 0. But the Universal Coefficient Theorem references not just the homology in

a given degree, but it reaches into a lower dimension to pull out torsion information. As a

result, as we have seen in this example, the Universal Coefficient Theorem can then cause

nontrivial homology to appear above the cutoff dimension where the homology of a cone

should be zero. Since all CS sets are cones locally (or products of cones with Euclidean

space), we can expect this local issue to percolate into a failure of the universal coefficient

theorem in general.

What is going on at the chain level? Let η be a cycle in RP 2 representing the generator

of H1(RP 2) ∼= Z2. Identifying RP 2 with {1/2}×RP 2 ⊂ c(RP 2), then η is also a generator of

I 0̄H1(c(RP 2)), while η ⊗ 1 is a generator of both I 0̄H1(c(RP 2);Z2) and H1(I 0̄S∗(c(RP 2))⊗
Z2). These groups are all isomorphic to Z2. Notice that η does not bound in c(RP 2) with

any coefficients because it certainly does not bound in RP 2, and it cannot bound in c(RP 2)

because if we compute 2 − codim({v}) − 0̄({v}) = 2 − 3 − 0 = −1, we see that no 2-chain

can intersect the cone vertex.

Now, let ξ ∈ S2(RP 2) be a chain such that ∂ξ = 2η. Then ξ ⊗ 1 represents a cycle in

I p̄SGM2 (c(RP 2);Z2), but it bounds c̄ξ⊗1 since we see from the dimension computation that a

singular 3-cycle with a vertex at v is allowable. Thus ξ⊗1 represents 0 in I p̄SGM2 (c(RP 2);Z2).

But c̄ξ is not allowable as a chain in I p̄SGM2 (c(RP 2)), now with Z coefficients. This is because

∂(c̄ξ) = ξ − c̄∂ξ = ξ − 2c̄η. But c̄η is not allowable, as we have seen that 2-chains may not

intersect the cone vertex. Therefore, ξ ⊗ 1 does not bound c̄ξ ⊗ 1 in I p̄SGM∗ (RP 2) ⊗ Z2.

Technically, this is not sufficient to demonstrate that ξ represents the non-trivial element of

H2(I p̄SGM∗ (RP 2)⊗Z2), as we have only shown that ξ⊗ does not bound c̄ξ⊗1 and not that it

can never bound. However, this example should give some idea of the additional intricacies

of working with coefficients.

Since H∗(I
p̄SGM∗ (X) ⊗ G) can always be computed from I p̄HGM

∗ (X) via the universal

coefficient theorem, the much more interesting groups are I p̄H∗(X;G), and so we shall

focus on them. From now on, “intersection homology with coefficients” will always mean

H∗(I
p̄S∗(X;G)) with I p̄S∗(X;G) as defined in Definition 5.3.1.

Basic properties of intersection homology with coefficients

As mentioned in Example 5.3.4, the entire argument of the proof of Theorem 4.2.1 can be

copied nearly verbatim to establish the following generalization:

Theorem 5.3.5. If X is a compact filtered space of formal dimension n− 1, then

I p̄HGM
i (cX;G) ∼=



0, i ≥ n− p̄({v})− 1, i 6= 0,

G, i ≥ n− p̄({v}), i = 0,

G, i = n− p̄({v})− 1, i = 0, I p̄XHGM
0 (X;G) 6= 0,

0, i = n− p̄({v})− 1, i = 0, I p̄XHGM
0 (X;G) = 0,

I p̄HGM
i (X;G), i < n− p̄({v})− 1,
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and similarly in the PL setting.

Likewise, all of our preceding work generalizes, mostly in the evident ways. Our dis-

cussion of simplicial-versus-PL intersection homology, behavior under GM stratified maps,

stratified homotopy invariance, relative intersection homology, the long exact sequences of

pairs, subdivisions, Mayer-Vietoris sequences, and excision can be generalized to statements

about I p̄HGM
i (X;G) nearly verbatim, as can the obvious generalizations of Propositions

5.1.8 and 5.1.11. The one place where we must be slightly more careful is when considering

cross products and the Künneth theorem because there are places where we assumed we

were working with free or flat chain complexes. In particular, we used freeness in Lemma

5.2.4 to argue that I p̄SGM∗ (X)⊗ I q̄SGM∗ (Y ) ⊂ S∗(X)⊗S∗(Y ), which is necessary to have the

cross product defined. We also used flatness multiple times in the proof of Theorem 5.2.25,

including where it is needed to invoke the algebraic Künneth theorem, which itself does not

hold for arbitrary rings. In order to extend to more general coefficients, we will need to put

in place some restrictions.

First, notice that if R is a commutative ring with unity then S∗(X;R) ∼= S∗(X) ⊗Z R,

and we can extend the cross product to

ε : S∗(X;R)⊗R S∗(Y ;R)→ S∗(X × Y ;R)

by

ε((x⊗Z r)⊗R (y ⊗Z s)) = (x× y)⊗Z rs.

Since r, s ∈ R live in degree 0,

∂ε((x⊗ r)⊗R (y ⊗ s)) = ∂((x× y)⊗Z rs)
= (∂(x× y))⊗Z rs
= ((∂x)× y + (−1)|x|x× (∂y))⊗Z rs
= ((∂x)× y)⊗Z rs+ (−1)|x|(x× (∂y))⊗Z rs
= ε(((∂x)⊗Z r)⊗R (y ⊗Z s) + (−1)|x|(x⊗Z r)⊗R ((∂y)⊗Z s))
= ε(∂((x⊗Z r)⊗R (y ⊗Z s))),

where in these equations we have used ε in the sense defined here and × for the cross product

with integer coefficients. This shows that our new, more general, ε is still a chain map.

From here on, we will again use ε and × interchangeably to denote the cross product, letting

context determine which coefficients are meant. Additionally, when fully in the setting of R

coefficients, we will often write ⊗ rather than ⊗R.

Now, to extend the cross product to intersection chains with coefficients, we assume

that R is a Dedekind domain. When working with coefficient rings in what follows, we will

often require them to be Dedekind domains due to the nice homological algebra properties

they possess. Recall that a Dedekind domain is an integral domain with the property that

every submodule of a projective R-module is projective14. In particular, principal ideal

14This is essentially taken as the definition of a Dedekind domain in Cartan-Eilenberg [49, Section VII.5
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domains and fields are Dedekind domains. It is also true that any torsion-free module over

a Dedekind domain is flat; in fact, this is true more generally of Prüfer domains15[146,

Proposition 4.20], which could equally well be used below for the arguments where only this

property of Dedekind domains is needed.

Since each Si(X;R) and Ci(X;R) is an R-torsion free R-module for any R, so will be

their respective submodules I p̄SGMi (X;R) and I p̄CGMi (X;R). So if R is a Dedekind domain

(or, more generally, a Prüfer domain), these R-modules will be flat. In fact, as Si(X;R)

is a free R-module, I p̄SGMi (X;R) is projective, though in proofs for which we want to run

parallel arguments for singular and PL chains, we will focus on the flatness. Therefore,

for the purpose of short exact sequences of tensor products, I p̄SGMi (X;R) has the same

properties we needed before when we used that I p̄SGMi (X) is flat as an abelian group. In

particular, since we have an inclusion I q̄SGMj (Y ;R) ↪→ Sj(Y ;R), tensoring with the flat

module I p̄SGMi (X;R) yields an inclusion

I p̄SGMi (X;R)⊗R I q̄SGMj (Y ;R) ↪→ I p̄SGMi (X;R)⊗R Sj(Y ;R),

and similarly since Sj(Y ;R) is flat, tensoring it with the inclusion I p̄SGMi (X;R) ↪→ Si(X;R)

yields an inclusion

I p̄SGMi (X;R)⊗R Sj(Y ;R) ↪→ Si(X;R)⊗ Sj(Y ;R).

Summing over indices, we obtain once again

I p̄SGM∗ (X;R)⊗R I q̄SGM∗ (Y ;R) ⊂ S∗(X;R)⊗R S∗(Y ;R),

which allows us to restrict the cross product to intersection chain complexes. The properties

of section 5.2.3 follow.

We can now generalize Theorem 5.2.25 to the following:

Theorem 5.3.6. Suppose X is a filtered space with perversity p̄X and that M is an n-

dimensional manifold with its trivial filtration. Filter M × X with the product filtration so

that (M ×X)i = M ×X i−n, and define a perversity p̄ on M ×X whose value on M × S is

p̄(S). Let R be a Dedekind domain. Then the cross product induces an isomorphism

H∗(S∗(M ;R)⊗R I p̄XSGM∗ (X;R))
∼=−→ I p̄HGM

∗ (M ×X;R).

If X is a PL filtered space and M is a PL manifold, then the same conclusion holds

replacing singular chains with PL chains.

Proof. The proof is essentially the same as that of Theorem 5.2.25.

and Theorem I.5.4]. Exercise 20 to Section 4 of Chapter VII of [30] shows that this property can be derived

from other defining properties of Dedekind domains. A short literature search reveals that there are a very

large number of equivalent definitions for Dedekind domains! See Appendix A.4.2 for more about Dedekind

domains.
15Prüfer domains satisfy the more general property that submodules of finitely-generated projective mod-

ules are projective. A module over a Prüfer domain is torsion free if and only if it is flat [146, Proposition

4.20].
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Remark 5.3.7. The assumption that R be Dedekind is not needed in the proof of Theorem

5.3.6 to define the cross product for singular chains since S∗(M ;R) is free for any manifold,

which is sufficient to have

S∗(M ;R)⊗R I p̄SGM∗ (X;R) ⊂ S∗(M ;R)⊗R S∗(X;R)

for any ring.

Corollary 5.3.8. Under the assumptions of Theorem 5.3.6, if A ⊂ X, then the cross product

induces an isomorphism

H∗(S∗(M ;R)⊗R I p̄SGM∗ (X,A;R))
∼=−→ I p̄HGM

∗ (M ×X,M × A;R).

If X is a PL filtered space and M is a PL manifold, then the same conclusion holds

replacing singular chains with PL chains.

The proof is the same as that for Corollary 5.2.26, using Theorem 5.3.6 in place of

Theorem 5.2.25.

5.3.2 Universal coefficient theorems

A natural question to ask is under what circumstances might it be true that I p̄SGM∗ (X;G)

and I p̄SGM∗ (X) ⊗ G have the same homology groups? This would be a useful property,

for then we could use the universal coefficient theorem for computations; at the same time,

knowing when this property fails tells us when I p̄HGM
∗ (X;G) really is fundamentally different

from I p̄HGM
∗ (X). Surprisingly enough, it turns out that the situation of Example 5.3.4 is

essentially the only thing that can go wrong.

Recall that in Example 5.3.4 we saw a situation where I p̄HGM
∗ (cX;G) � H∗(I

p̄SGM∗ (cX)⊗
G) because the way the universal coefficient theorem blends information from two dimensions

contradicts the strict truncation we see in the cone formula of Theorem 5.3.5. In particular,

in the first dimension in which the cone formula tells us that I p̄HGM
i (cX;G) must be 0

(namely dimension i = n − p̄({v}) − 1 if X has dimension n − 1), the universal coefficient

computation reaches down to provide a possibly nontrivial term in Hi(I
p̄SGM∗ (cX)⊗G) that

comes from the torsion of I p̄HGM
i−1 (cX). However, if I p̄HGM

i−1 (cX) ∗G = 0, we eliminate this

problem. This discussion motivates the following definition, which is a slight generalization

of that provided by Goresky and Siegel [111], who first considered this issue. We give the

definition now for an arbitrary Dedekind domain R, though we will be mainly focused on

the case R = Z until later chapters.

Definition 5.3.9. Let X be a CS set, R a Dedekind domain, and M an R-module. We say

that X is locally (p̄, R;M)GM -torsion free if for each point x ∈ X and for each link16 L of

x we have I p̄HGM
dim(L)−p̄(S)−1(L;R) ∗R M = 0, where S is the stratum of X containing x and

16We will show below in Corollary 5.3.14 that I p̄HGM
dim(L)−p̄(S)−1(L;R) depends only on the stratum S and

not the specific choices of x ∈ S or link L of x.
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∗R denotes the torsion product over R, i.e. Tor1
R(·, ·). If we only impose the condition for all

points in a stratum S ⊂ X, we say that X is locally (p̄, R;M)GM -torsion free along S.

If I p̄HGM
dim(L)−p̄(S)−1(L;R) ∗RM = 0 for all R-modules M , we simply say that X is locally

(p̄, R)GM -torsion free, and this is equivalent to asking that I p̄HGM
dim(L)−p̄(S)−1(L;R) be flat as

an R-module by [147, Theorem XVI.3.11]. In particular, this means that I p̄HGM
dim(L)−p̄(S)−1(L)

is torsion free (as an R-module) by [146, Proposition 4.20].

Remark 5.3.10. Notice that since dim(L) + dim(S) + 1 = n, the condition can be rewritten

as I p̄HGM
codim(S)−p̄(S)−2(L;R) ∗M = 0, which more closely approximates the original definition

in [111].

Remark 5.3.11. We could define locally torsion free PL CS sets similarly, but as we will

soon see that PL and singular intersection homology are isomorphic for PL CS sets, this is

unnecessary. A locally (p̄, R;M)GM -torsion free PL CS set is simply a CS set that is both a

PL filtered space and locally (p̄, R;M)GM -torsion free in the sense above.

For the remainder of this section, we will concentrate mostly on Z-modules, i.e. abelian

groups, but we invite the reader to formulate the appropriate generalizations.

Example 5.3.12. Of course if X is a manifold, trivially filtered, then every link is ∅ and so

X is trivially locally (p̄,Z)GM -torsion free for any p̄.

More generally17, all CS sets are locally (t̄,Z)GM -torsion free, where t̄ is the top perversity

such that t̄(S) = codim(S) − 2 for any singular stratum S. To see this, we observe that if

S is a stratum and L is a link of a point in S, then dim(X) = dim(S) + dim(L) + 1, so

codim(S) = dim(L) + 1. Therefore,

dim(L)− t̄(S)− 1 = dim(L)− (codim(S)− 2)− 1

= dim(L)− (dim(L) + 1− 2)− 1

= 0.

But by Example 3.4.6, we have that I t̄HGM
0 (L) is free abelian, and so I t̄HGM

0 (L) ∗ G = 0

for any abelian group G. This argument also carries over to coefficients in any Dedekind

domain R and generalizes to any perversity p̄ with p̄ ≥ t̄.

As defined, the locally torsion free condition seems to require checking the algebraic

properties of I p̄HGM
∗ (L) for all possible links of all points of X. The next lemma and its

corollary show that these groups depend only on the stratum containing x and not on the

specific choice of x or its distinguished neighborhood or link. Therefore, the condition of

the Definition 5.3.9 can be alternatively stated as requiring only that each stratum contains

some point with some link such that I p̄HGM
dim(L)−p̄(S)−1(L) ∗G = 0.

Lemma 5.3.13. Let X be a CS set and x ∈ X. For i = 1, 2, let Ni
∼= Rk × cLi be

distinguished neighborhoods of x. Then I p̄HGM
∗ (L1) ∼= I p̄HGM

∗ (L2) and I p̄HGM
∗ (N1) ∼=

I p̄HGM
∗ (N2).

17I first learned this from [56], but there may be earlier occurrences.
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Proof. The statement I p̄HGM
∗ (N1) ∼= I p̄HGM

∗ (N2) follows from I p̄HGM
∗ (L1) ∼= I p̄HGM

∗ (L2)

because stratified homotopy invariance and the cone formula imply that the intersection

homology of a distinguished neighborhood depends only on that of the link.

To prove I p̄HGM
∗ (L1) ∼= I p̄HGM

∗ (L2), first we claim that for any such distinguished

neighborhoods Ni, there is another distinguished neighborhood N ′2 ⊂ N2 such that also

N ′2 ⊂ N1 and N ′2 ↪→ N2 is a stratified homotopy equivalence. We will prove this claim

below. We note now though that if x is contained in the stratum S then the stratified

homotopy equivalence N ′2 ↪→ N2 of the claim restricts to a stratified homotopy equivalence

N ′2 − (N ′2 ∩ S) ↪→ N2 − (N2 ∩ S) as we are simply removing corresponding strata from each

space.

Next, we observe for i = 1, 2 that Ni − (Ni ∩ S) ∼= Rk × (cLi − {vi}), which is stratified

homotopy equivalent to Li. So it suffices to show that I p̄H∗(N1 − (N1 ∩ S)) ∼= I p̄H∗(N2 −
(N2 ∩ S)).

Now, let V = N2 − (N2 ∩ S) and U = N1 − (N1 ∩ S). Replacing N2 with N ′2 and the

corresponding V ′ = N ′2 − (N ′2 ∩ S), we have V ′ ⊂ U . But then by repeating the argument

with the roles of the indices interchanged, we can assume there is a U ′ ⊂ V ′ with U ′ ↪→ U a

stratified homotopy equivalence. And, then running the argument again, we have a V ′′ ⊂ U ′

with V ′′ ↪→ V a stratified homotopy equivalence. In other words, we can have a sequence of

spaces

V ′′
f
↪−→ U ′

g
↪−→ V ′

h
↪−→ U,

such that the inclusions hg : U ′ ↪→ U and gf : V ′′ ↪→ V ′ are stratified homotopy equivalences

and so induce isomorphisms of intersection homology. Therefore, the induced map g :

I p̄HGM
∗ (U ′) → I p̄HGM

∗ (V ′) must be surjective and injective and so an isomorphism. But

V ′ is stratified homotopy equivalent to V , which is stratified homotopy equivalent to L2,

and similarly U ′ is stratified homotopy equivalent to L2. Hence, the intersection homology

groups of L1 and L2 must be isomorphic.

To finish the proof, we must demonstrate our earlier claim about shrinking distinguished

neighborhoods. Suppose x is contained in the stratum S. For simplicity of argument, via

the given homeomorphisms let us identify N2 canonically with Rk × cL2, and let us assume

that x = (0, v), where 0 is the origin of Rk. Then N1∩N2∩S is an open subset of Rk and so

contains a closed disk Dr of some radius r around the origin. N2 is then stratified homotopy

equivalent to D̊r×cL2. Furthermore, sinceN1∩(Dr×cL2) must be a neighborhood ofDr×{v}
in Dr × cL2 and, since Dr is compact, the Tube Lemma [180, Lemma 26.8] implies there

must be a neighborhood W of v in cL2 such that Dr ×W ⊂ N1 ∩ (Dr × cL2). Furthermore,

using the compactness of L2, the definition of the quotient topology, and the Tube Lemma

again, there is some s, 0 < s ≤ 1, such that v ∈ cL2 has a neighborhood of the form

csL2 = ([0, s)× L2/ ∼) ⊂ cL2 = ([0, 1)× L2/ ∼)

and such that csL2 ⊂ W ; see Figure 5.1. Thus D̊r × csL2 ⊂ N1 ∩ N2, and the inclusion

D̊r × csL2 ↪→ Rk × cL2 is a stratified homotopy equivalence (in the cone direction, we can

retract along the cone lines). So we let N ′2 = D̊r × csL2.
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Figure 5.1: Given an open neighborhood W of the vertex of a cone with compact link L, we

can always find a cone csL ⊂ W : If q : [0, 1)× L→ cL is the quotient map, then q−1(W ) is

a neighborhood of {0}×L in [0, 1)×L. As L is compact, by the Tube Lemma there is an s

such that [0, s)× L ⊂ q−1(W ). Then q([0, s)× L) = csL is a neighborhood of v in W .

Corollary 5.3.14. Let X be a CS set. Then the intersection homology I p̄HGM
∗ (L) of a

link L of a point x in a stratum of S depends only on S. In other words, all links for

any distinguished neighborhoods of any points in S have isomorphic intersection homology

groups.

Proof. Let S be a stratum of X, and let x0 ∈ S. The preceding lemma shows that all

possible links of a given point in S have isomorphic intersection homology. Let W be the

set of points of S whose links have intersection homology isomorphic to that of the links of

x0. We will show that W is both open and closed as a subset of S. Since S is connected,

this will imply W = S.

Let x be any point in W , and let N ∼= Rk × cL be a distinguished neighborhood of x.

Then the image under this homeomorphism of all points of the form (z, v) ⊂ Rk×cL, with v

representing the cone vertex, share this distinguished neighborhood and hence have filtered

homeomorphic choices of links. So each such point has a link whose intersection homology

is isomorphic to that of a link of x, which is in turn isomorphic to the intersection homology

of the link of x0. This shows that W must be open.

Next, suppose y is a point in the closure of W , and let N ∼= Rk × cL be a distinguished

neighborhood of y. The neighborhood N must contain a point z ∈ W . But then y and z

share a distinguished neighborhood and hence a link. So the intersection homology of the

links of y must agree with that of the links of z, which agree with the intersection homology

of the links of x0. So y ∈ W , and W must be closed.
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We will now use our Mayer-Vietoris argument (Theorem 5.1.4) to show that

I p̄HGM
∗ (cX;G) ∼= H∗(I

p̄SGM∗ (X)⊗G)

for locally (p̄,Z;G)GM -torsion free CS sets. We first state the theorem and then prove some

easy but important corollaries before moving on to the proof of the theorem.

Theorem 5.3.15 (Universal Coefficients). Suppose X is a locally (p̄,Z;G)GM -torsion free

CS set. Then I p̄HGM
∗ (X;G) ∼= H∗(I

p̄SGM∗ (X) ⊗ G). If X is also PL then I p̄HGM
∗ (X;G) ∼=

H∗(I
p̄CGM∗ (X)⊗G).

Remark 5.3.16. While we state and prove the theorem here for a coefficient group G, the

theorem generalizes to the statement that I p̄H∗(X;M) ∼= H∗(I
p̄S∗(X;R)⊗RM), and simi-

larly in the PL setting, if X is a locally (p̄, R;M)-torsion free CS set for a Dedekind domain

R and R-module M .

Corollary 5.3.17. For any CS set and any field F of characteristic 0, we have I p̄HGM
∗ (X;F ) ∼=

I p̄HGM
∗ (X)⊗Z F . If X is also PL then I p̄HGM

∗ (X;F ) ∼= I p̄HGM
∗ (X)⊗Z F .

Proof of Corollary. As F is Z-torsion free, any space automatically satisfies the locally tor-

sion free condition with respect to F by [181, Theorem 54.4.c], so the result follows from

Theorem 5.3.15 and the algebraic Universal Coefficient Theorem.

Corollary 5.3.18. For any CS set and any abelian group G, we have I t̄HGM
∗ (X;G) ∼=

H∗(I
t̄SGM∗ (X)⊗G). If X is also PL then I t̄HGM

∗ (X;G) ∼= H∗(I
t̄CGM∗ (X)⊗G).

Proof of Corollary. This follows immediately from Example 5.3.12 and Theorem 5.3.15.

Proof of Theorem 5.3.15. The singular and PL proofs are the same, so we give the singular

proof.

We will use the Mayer-Vietoris argument (Theorem 5.1.4) with F∗(U) = H∗(I
p̄SGM∗ (U)⊗

G) and G∗(U) = I p̄HGM
∗ (U ;G). The natural transformation Φ : F∗(U) → G∗(U) is in-

duced by the inclusion map I p̄SGM∗ (U)⊗G→ I p̄SGM∗ (U ;G); notice that if ξ is allowable in

I p̄SGM∗ (U), then ξ⊗ g will be allowable in I p̄SGM∗ (U ;G), and I p̄SGM∗ (U)⊗G is generated by

terms of this form.

We must show that the conditions of Theorem 5.1.4 hold.

Condition 1: Notice that we have a commutative diagram with exact rows

0 - I p̄SGM∗ (U ∩ V )⊗G - (I p̄SGM∗ (U)⊕ I p̄SGM∗ (V ))⊗G - (I p̄SGM∗ (U) + I p̄SGM∗ (V ))⊗G - 0

0 - I p̄SGM∗ (U ∩ V ;G)
?

- I p̄SGM∗ (U ;G)⊕ I p̄SGM∗ (V ;G)
?

- I p̄SGM∗ (U ;G) + I p̄SGM∗ (V ;G)
?

- 0.
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To make sense of the sum terms, we identify I p̄SGM∗ (U)+I p̄SGM∗ (V ) as a subset of I p̄SGM∗ (U∪
V ) and I p̄SGM∗ (U ;G) + I p̄SGM∗ (V ;G) as a subset of I p̄SGM∗ (U ∪ V ;G). The top row is exact

by tensoring the short exact sequence of free groups18

0 - I p̄SGM∗ (U ∩ V ) - I p̄SGM∗ (U)⊕ I p̄SGM∗ (V ) - I p̄SGM∗ (U) + I p̄SGM∗ (V ) - 0

with G, and the bottom sequence is exact by our standard Mayer-Vietoris arguments. The

lefthand map is induced by inclusion. Furthermore, by distributivity of tensor products over

direct sums,

(I p̄SGM∗ (U)⊕ I p̄SGM∗ (V ))⊗G ∼= (I p̄SGM∗ (U)⊗G)⊕ (I p̄SGM∗ (V )⊗G),

and so we may interpret the middle vertical map as a direct sum of inclusions, and so the

middle map on homology corresponds to Φ. It is not difficult to check by hand that the

left square commutes using that all groups are subgroups of the corresponding groups of the

form19 S∗(W )⊗G. Finally, we have a commutative diagram

(I p̄SGM∗ (U) + I p̄SGM∗ (V ))⊗G - I p̄SGM∗ (U ∪ V )⊗G

I p̄SGM∗ (U ;G) + I p̄SGM∗ (V ;G)
?

- I p̄SGM∗ (U ∪ V ;G).
?

Commutativity is again easy to check by viewing all groups as subgroups of S∗(U ∪ V )⊗G.

The top map induces homology isomorphisms by the proof of Theorem 4.4.4 and the alge-

braic Universal Coefficient Theorem, and the bottom induces isomorphisms by the analogue

of Theorem 4.4.4 with coefficients. So the resulting long exact Mayer-Vietoris homology

sequences are compatible with Φ.

Condition 2: This property is satisfied for both F∗ and G∗ using Lemma 5.1.6, minor mod-

ifications of the arguments in the proof of Lemma 5.1.7, the Universal Coefficient Theorem,

and the Five Lemma.

Condition 3: We must show that if L is a compact filtered space such that X has an open

subset filtered homeomorphic to Ri× cL and Φ : F∗(Ri× (cL−{v}))→ G∗(Ri× (cL−{v}))
is an isomorphism, then so is Φ : F∗(Ri × cL)→ G∗(Ri × cL).

18If we were working with the various I p̄SGM∗ as R-modules for a Dedekind domain R, we would instead

use here and elsewhere in the argument (in particular in invoking the algebraic Universal Coefficient Theorem

[237, Theorem 3.6.1]) that these are all flat R-modules; see the discussion preceding Theorem 5.3.6.
19Note that if ξ is not allowable in S∗(W ), then no multiple of ξ can be allowable either, and so

S∗(W )/I p̄SGM∗ (W ) is torsion free. Hence S∗(W )/I p̄SGM∗ (W ) is flat, as torsion free implies flat over any

Dedekind domain; see Section A.4.2. Thus S∗(W )/I p̄SGM∗ (W ) ∗ G = 0 ([196, Theorem 7.2]). Hence,

I p̄SGM∗ (W )⊗G ⊂ S∗(W )⊗G by the torsion/tensor product exact sequence; see [196, Corollary 7.3].
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Using the stratified homotopy invariance of both functors F∗ and G∗, this is equivalent to

assuming that H∗(I
p̄SGM∗ (L)⊗G)→ I p̄HGM

∗ (L;G) is an isomorphism and needing to verify

that, as a consequence, H∗(I
p̄SGM∗ (cL) ⊗ G) → I p̄HGM

∗ (cL;G) is an isomorphism. By the

assumption that X is locally (p̄,Z;G)GM -torsion free, we must have I p̄HGM
dim(L)−p̄(S)−1(L)∗G =

0.

Consider the commutative diagram induced by inclusions

Hi(I
p̄SGM∗ (L)⊗G) - I p̄HGM

i (L;G)

Hi(I
p̄SGM∗ (cL)⊗G)

?
- I p̄HGM

i (cL;G).
?

By assumption, the top horizontal map is an isomorphism for all i. Via the cone formula

(Theorem 5.3.5), the righthand map is an isomorphism for all i < dim(L)− p̄(S). Similarly,

by Theorem 4.2.1, I p̄HGM
i (L) → I p̄HGM

i (cL) is an isomorphism in the same range, and

hence this is also true of the lefthand map using the Universal Coefficient Theorem. Hence

the bottom map is also an isomorphism in this range.

For i ≥ dim(L) − p̄(S), i 6= 0, by Theorem 5.3.5, I p̄HGM
i (cL;G) = 0. But this is also

true of Hi(I
p̄SGM∗ (cL) ⊗ G) using Theorem 4.2.1, the Universal Coefficient Theorem, and

the assumption that I p̄HGM
dim(L)−p̄(S)−1(L) ∗ G = 0 (here is where the assumption that X is

locally (p̄,Z;G)GM -torsion free pays off!).

Finally, if i = 0 ≥ dim(L)− p̄(S), then I p̄HGM
0 (cL) ∼= Z or 0, so H0(I p̄SGM∗ (cL)⊗G) ∼= G

or 0, respectively, by the Universal Coefficient Theorem. Similarly, I p̄HGM
i (cL;G) ∼= G or 0

in the corresponding situations by Theorem 5.3.5; note that I p̄HGM
0 (cL;G) = 0 if and only

if there are no allowable 0-simplices in cL, which is precisely when I p̄HGM
0 (cL) = 0. In both

non-trivial cases, the elements of the groups can be represented in the form σ0 ⊗ g, where

σ0 is any allowable 0-simplex and g ∈ G, so the bottom map of the diagram is again an

isomorphism.

Thus Φ : Hi(I
p̄SGM∗ (cL)⊗G)→ I p̄HGM

i (cL;G) is an isomorphism for all i.

Condition 4: If U = ∅, F∗(U) = G∗(U) = 0, so suppose U ⊂ X is an open subset of

X homeomorphic to Euclidean space and contained within a stratum S. Since the images

of simplices of S∗(U) are contained completely in S and cannot intersect other strata, the

allowability condition for an i-simplex is that

∆i ⊂ {i− codim(S) + p̄(S) skeleton of ∆i},

or, in other words, that i ≤ i − codim(S) + p̄(S). But this is simply the condition that

p̄(S) ≥ codim(S), which is independent of i. So, depending on the value of p̄(S) and

the codimension of S, either all simplices are allowable or none are! If none are, then

I p̄SGM∗ (U)⊗G = 0 = I p̄SGM∗ (U ;G), and if all are,

I p̄SGM∗ (U)⊗G = S∗(U)⊗G = S∗(U ;G) = I p̄SGM∗ (U ;G).

So either way Φ is an isomorphism on U .
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Corollary 5.3.19. Suppose X is a locally (p̄,Z;G)GM -torsion free CS set and that A ⊂ X

is also a locally (p̄;G)GM -torsion free CS set, in particular if A is an open subset of X.

Then I p̄HGM
∗ (X,A;G) ∼= H∗(I

p̄SGM∗ (X,A) ⊗ G). If X is PL and A is a PL subset, then

I p̄HGM
∗ (X,A;G) ∼= H∗(I

p̄CGM∗ (X,A)⊗G).

Proof. Consider the diagram

0 - I p̄SGM∗ (A)⊗G - I p̄SGM∗ (X)⊗G - I p̄SGM∗ (X,A)⊗G - 0

0 - I p̄SGM∗ (A;G)
?

- I p̄SGM∗ (X;G)
?

- I p̄SGM∗ (X,A;G)
?

- 0.

The top row is obtained by tensoring the short exact sequence of the pair (X,A) with G.

Since I p̄SGM∗ (X,A) is a subgroup of S∗(X,A), which is torsion free, the group I p̄SGM∗ (X,A)

is also torsion free and hence flat. Therefore, tensoring with G preserves exactness [196,

Corollary 7.3]. The bottom row is exact by the definition of I p̄SGM∗ (X,A;G) as the quotient

I p̄SGM∗ (X;G)/I p̄SGM∗ (A;G). The vertical maps are those of the proof of Theorem 5.3.15. It

is straightforward that the lefthand vertical square commutes, and so the right hand vertical

map is induced as the quotient map; commutativity of the righthand square follows.

The corollary now follows from the ensuing diagram of long exact sequences, Theorem

5.3.15, and the Five Lemma.

Here is one final corollary for this section. It says that Bockstein maps exist when

appropriate torsion free conditions are met.

Corollary 5.3.20. Suppose

0→ G1 → G2 → G3 → 0

is a short exact sequence of abelian groups and that X is a CS set that is locally (p̄,Z;G1)GM -

torsion free and (p̄,Z;G3)GM -torsion free. Then there are Bockstein homomorphisms

β : I p̄HGM
i (X;G3)→ I p̄HGM

i−1 (X;G1).

Similarly in the PL setting.

Proof. As I p̄SGM∗ (X) is a complex of flat modules tensoring the complex with the exact

sequence of abelian groups yields a short exact sequence of chain complexes. The connecting

map of the associated long exact homology sequences has the form

β : Hi(I
p̄SGM∗ (X)⊗G3)→ Hi−1(I p̄SGM∗ (X)⊗G1).

But if X satisfies the given torsion free conditions, Theorem 5.3.15 allows us to identify these

groups with I p̄HGM
i (X;G3) and I p̄HGM

i−1 (X;G1).

Remark 5.3.21. It appears at first that we do not need X to be well-behaved with re-

spect to G2 in order to define our Bockstein map, but the Snake Lemma implies that if

I p̄HGM
dim(L)−p̄(S)−1(L) ∗Gj = 0 for j = 1, 3, then this also holds for j = 2. So for X to satisfy

the hypotheses, it must also be locally (p̄,Z;G2)GM -torsion free.
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5.4 Equivalence of PL and singular intersection homol-

ogy on PL CS sets

In this section, we will show that for a PL CS set X, the PL intersection homology groups

I p̄HGM
∗ (X;G) are isomorphic to the singular intersection homology groups I p̄HGM

∗ (X;G).

This fact is certainly well known via sheaf theory [106]. A proof without sheaf theory is

suggested in King [139], utilizing King’s Theorem 10. However, on close examination, it

was not completely clear to the author precisely what King had in mind for an “ordered PL

theory,” at least not without requiring some significant additional work to verify that such a

theory would have the needed properties. So here we take a slightly different route (though

no doubt this is not very far from what King had in mind).

We have already seen in Section 4.4.2 that there are ways to assign a singular chain to

a simplicial chain, at least given additional vertex ordering information. Now we need to

further build in the subdivisions inherent in the PL setting. It will be a bit easier to work

with barycentric subdivisions, because then we can control in precisely what order we add

new vertices, and we will see that we are free to work entirely with just the barycentric

subdivision of some starting triangulation of our space X. We will also need to compute

PL intersection homology groups of various open subsets U of X in order to employ Mayer-

Vietoris arguments, and we will show that we can also compute the intersection homology of

these subsets using only simplices coming from the barycentric subdivisions of our starting

triangulation; this is the content of Lemma 5.4.1. With these tools, we will then describe

a map from the PL intersection chains of U to an analogous limit complex of the singular

chain complex. Then in Theorem 5.4.2, we will use Theorem 5.1.4 (which is itself similar to

King’s Theorem 10) to show that PL and singular intersection homology agree on PL CS

sets. It seems reasonable to conjecture that such an isomorphism holds more generally for

any PL filtered set, though we will not pursue such a result here.

The techniques of this section are not particular to the coefficients, so to keep the notation

from getting even more cluttered than necessary we will use the notation for Z coefficients

(meaning that we keep G tacit) in the proofs, though, for completeness we, provide the full

notation in the statements of the theorems.

5.4.1 Barycentric subdivisions and maps from PL chains to sin-

gular chains

Our first result is applicable to PL filtered spaces in general. Suppose U ⊂ X is an open

subset of a PL filtered space. Let T be a particular triangulation of X, and let T i be the

ith barycentric subdivision of T . The subdivision maps CT i

∗ (X) → CT i+1

∗ (X) form a direct

system, whose limit we denote CT∗ (X). Restricting to intersection chains, we similarly have

I p̄CGM,T
∗ (X) as the limit of the I p̄CGM,T i

∗ (X). We have chain maps, in fact an inclusions,

CT∗ (X) → C∗(X) and I p̄CGM,T
∗ (X) → I p̄CGM∗ (X). If we let I p̄CGM,T

∗ (U) ⊂ I p̄CGM,T
∗ (X) be

the subcomplex consisting of chains supported in U , then we also have a monomorphism

θ : I p̄CGM,T
∗ (U) → I p̄CGM∗ (U). Notice that elements of I p̄CGM,T

∗ (U) are not defined with
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respect to any fixed triangulation of U , but are rather defined with respect to triangulations

of X and have their support in U .

Lemma 5.4.1. For a PL filtered space X with open subset U , the map θ : I p̄CGM,T
∗ (U ;G)→

I p̄CGM∗ (U ;G) defined above induces isomorphisms θ : I p̄HGM,T
∗ (U ;G)→ I p̄HGM

∗ (U ;G).

Proof. The proof utilizes the techniques used to prove Theorem 3.3.20.

We begin with surjectivity. Let ξ be a simplicial chain representing an element of

I p̄HGM
∗ (U). By the definition of PL chains, there is some triangulation T1 of X such that

ξ is represented as a simplicial chain with respect to T1. Utilizing the compactness of the

support of ξ, we can find an iterated barycentric subdivision T i of our fixed starting trian-

gulation T such that every simplex of T i that intersects |ξ| is contained in U . Let T ′1 be

a common subdivision of T i and T1, and let ξ′ be the subdivision of ξ in the triangulation

T ′1. Since we may assume that i > 0, we may assume without loss of generality that T i is

a full triangulation. The proof of Lemma 3.3.23, then shows how to construct an allowable

homology in I p̄CGM∗ (X) from ξ′ to an element of I p̄CGM,T i

∗ (X). Furthermore, the argument

shows that the homology will be supported in a the subcomplex of T i containing |ξ|. So, in

particular, this homology is contained within U and demonstrates that θ must be surjective.

For injectivity, we similarly suppose [ξ] is a cycle in I p̄CGM,T
∗ (U) whose image in I p̄CGM∗ (U)

bounds an allowable PL chain [η]. Let T i be a barycentric subdivision of T with i sufficiently

large that [ξ] can be represented by a simplicial chain in T i and such that every simplex

of T i that intersects |η| is contained in U . Let T1 be a triangulation with respect to which

[η] can be represented by a simplicial chain η. Let T ′1 be a common refinement of T i and

T1 in which the images ξ′ of ξ and η′ of η satisfy ∂η′ = ξ′. Then Lemma 3.3.21 provides a

chain map µ : I p̄C
GM,T ′1
∗ (X) → I p̄CGM,T i

∗ (X) which is a left inverse to the subdivision map;

in particular it takes ξ′ back to ξ in T i. Once again, the proof of Lemma 3.3.21 shows

that µ keeps the image of each simplex of T ′1 within the simplex of T i containing it, and so

|µ(η′)| ⊂ U . Furthermore, as µ is a chain map, we have ∂(µ(η′)) = µ(∂η′) = µ(ξ′) = ξ.

This completes the proof of the lemma.

We make the following observations concerning the intersection homology groups I p̄HGM,T
∗ (U)

for a triangulation T of a PL filtered space X of which U is an open subset:

1. By the same arguments used in Section 4.4.1, we have excision I p̄HGM,T
∗ (U,A) ∼=

I p̄HGM,T
∗ (U − K,A − K) for K ⊂ A ⊂ U with the closure of K in U contained in

the interior of A in U (which is equal to the interior of A in X, since U is open in X).

For example, if [ξ] ∈ I p̄HGM,T
∗ (U,A) is represented by a chain ξ in some subdivision of

T that is also contained in U , then we can use the same construction as in the proof of

Theorem 4.4.3 to find a further barycentric subdivision of T with respect to which we

can split the image of ξ into two p̄-allowable pieces, one contained in U − K̄ and the

other contained in A. The rest of the argument for excision is then exactly as in the

proof of Theorem 4.4.3. Similarly, minor modifications to the proof of Theorem 4.4.4

establish that, for two open subsets U, V ⊂ X, there are Mayer-Vietoris sequences

→ I p̄HGM,T
∗ (U ∩ V )→ I p̄HGM,T

∗ (U)⊕ I p̄HGM,T
∗ (V )→ I p̄HGM,T

∗ (U ∪ V )→ .
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2. Via the standard compactness of chains argument as in Lemma 5.1.7, if Uα is an

increasing sequence of open subsets of X, then lim−→ I p̄HGM,T
∗ (Uα) ∼= I p̄HGM,T

∗ (∪Uα).

Now, continuing to assume we have a triangulation T of X, we may choose a total

ordering of the vertices of T and use this to construct a chain map φ : CT
∗ (X)→ S∗(X) by

Proposition 4.4.5. Recall that if ∆i = [v0, . . . , vi] is the standard simplex with fixed vertex

order and if τ = [w0, . . . , wi] is an i-simplex of T with its vertex order, then φ(τ) : ∆i → X

is just the linear map determined by taking each vj to wj. If T 1 is the first barycentric

subdivision of T , we can partially order the vertices of T 1 consistently with the vertices of T

by making each barycenter of a j-simplex smaller in order than a barycenter of a k-simplex

if j < k; see Example 4.4.10. This is enough to prescribe a commutative diagram

CT
∗ (X) - S∗(X)

CT 1

∗ (X)

ν

?

- S∗(X),

ν

?

where the vertical maps are barycentric subdivision operators.

Continuing this process, we obtain a map CT∗ (X)→ S∗(X), where S∗(X) is the limit of

S∗(X) under the barycentric subdivision maps, and similarly, applying Corollary 4.4.6, we

obtain maps ψ : I p̄CGM,T
∗ (X)→ I p̄SGM

∗ (X), where I p̄SGM
∗ (X) is the limit of the complexes

I p̄SGM∗ (X) under subdivision. This is all well defined as the barycentric subdivisions of PL

and singular intersection chains are allowable by Lemmas 3.3.15 and 4.4.13. If U ⊂ X is open,

then since the image of I p̄CGM,T
∗ (U) ⊂ I p̄CGM,T

∗ (X) under ψ consists of chains supported in

U , the map ψ restricts to a chain map ψ : I p̄CGM,T
∗ (U) → I p̄SGM

∗ (U), where I p̄SGM
∗ (U) ⊂

I p̄SGM
∗ (X) is the limit under barycentric subdivisions of I p̄SGM∗ (U). By Lemma 4.4.14,

the barycentric subdivision map I p̄SGM∗ (U)→ I p̄SGM∗ (U) induces the identity on homology,

and so by the commutativity of direct limits with homology functors, H∗(I
p̄SGM
∗ (U)) ∼=

I p̄HGM
∗ (U).

5.4.2 The isomorphism of PL and singular intersection homology

We now proceed on to the main theorem of this section. In the statement, we don’t assume

that all of X is a CS set but only an open subset on which we will show that PL and

singular intersection homology are isomorphic. This extra generality will be utilized below

in the corollaries to the theorem.

Theorem 5.4.2. Let X be a PL filtered space with triangulation T , and let W ⊂ X be an

open subset of X such that W is a PL CS set. Then the composition I p̄HGM
∗ (W ;G)

θ−1

−−→
I p̄HGM,T

∗ (W ;G)
ψ−→ H∗(I

p̄SGM
∗ (W ;G)) is an isomorphism. In particular, I p̄HGM

∗ (W ;G) ∼=
I p̄HGM

∗ (W ;G), and if X is a PL CS set then I p̄HGM
∗ (X;G) ∼= I p̄HGM

∗ (X;G).

Proof. As the proof is the same for any coefficients, we work with Z coefficients for ease of

notation.
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The last sentence of the statement of the theorem follows from the preceding statements

and our prior observation that H∗(I
p̄SGM
∗ (W )) ∼= I p̄HGM

∗ (W ).

The proof will use the Mayer-Vietoris argument of Theorem 5.1.4 with FW being our

domain category. Recall that this is the category whose objects are filtered homeomorphic

to open subsets W and whose morphisms are filtered homeomorphisms and inclusions. Our

functors on open sets U ⊂ W are F∗(U) = I p̄HGM
∗ (U) and G∗(U) = H∗(I

p̄SGM
∗ (U)). We let

Φ = ψθ−1. Notice that Φ is a natural transformation on the category of open subsets of W

using the commutativity of diagrams of the form

I p̄HGM
∗ (V ) �

θ
∼=

I p̄HGM,T
∗ (V )

ψ
- H∗(I

p̄SGM
∗ (V ))

I p̄HGM
∗ (U)
?

�
θ
∼=

I p̄HGM,T
∗ (U)
? ψ

- H∗(I
p̄SGM
∗ (U))
?

for V ⊂ U . Similarly, we obtain a natural transformation of Mayer-Vietoris sequences. It is

also not difficult to observe, in the usual way as in Lemma 5.1.7, that if {Uα} is an increasing

collection of open subspaces of X ∈ F then the natural maps lim−→α
F∗(Uα)→ F∗(∪αUα) and

lim−→α
G∗(Uα)→ G∗(∪αUα) are isomorphisms. Hence, using Lemma 5.1.6, conditions (1) and

(2) of Theorem 5.1.4 are satisfied.

Next suppose U is an open subset of W that is contained in a single stratum S and

PL homeomorphic to Euclidean space (or empty). By the same argument as in the proof20

of Theorem 5.3.15, either every chain in U is allowable or none are, depending only on the

codimension of S and p̄(S). If no chains can be allowable, then all homology groups are 0 and

condition (4) of Theorem 5.1.4 holds trivially. If all chains are allowable, then, using Lemma

5.4.1, I p̄HGM,T
∗ (U) ∼= I p̄HGM

∗ (U) ∼= H∗(U) and H∗(I
p̄SGM
∗ (U)) ∼= I p̄HGM

∗ (U) ∼= H∗(U).

Since U is PL homeomorphic to Euclidean space, these groups are all trivial except for

H0(U) ∼= H0(U) ∼= Z. In all cases the generator is represented by a single vertex (simplicial

or singular), so it follows from the constructions that Φ is an isomorphism on U . Thus we

have verified hypothesis (4) of Theorem 5.1.4.

Finally, we need to check condition (3) of Theorem 5.1.4. Let N ∼= Ri × cL be a distin-

guished neighborhood in W such that we have the diagram

I p̄HGM
∗ (Ri × (cL− {v}))

Φ
- H∗(I

p̄SGM
∗ (Ri × (cL− {v})))

I p̄HGM
∗ (Ri × cL)

? Φ
- H∗(I

p̄SGM
∗ (Ri × cL)).
?

In order for Φ, which uses the triangulation T of X, to be well defined here, we are tacitly

identifying Ri × cL with an open subset N of W . We assume that the top map is an

20See the discussion of the proof of Condition 4 starting on page 225.
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isomorphism in all dimensions. As we know thatH∗(I
p̄SGM
∗ (V )) ∼= I p̄HGM

∗ (V ) for any V , the

vertical maps can be computed from stratified homotopy invariance and the cone formula; for

these computations, the triangulation of X is not involved. Furthermore, we know that these

computations are identical for PL intersection homology and singular intersection homology.

In particular, the map on the left is isomorphic to the map induced by inclusion I p̄HGM
∗ (L)→

I p̄HGM
∗ (cL), and the same is true of the singular intersection homology. In the range of

dimensions for which the cone formulas tell us that these vertical maps are isomorphisms,

the commutativity of the diagram implies that the bottom map is also an isomorphism.

In cases where the cone formula forces the bottom groups to be 0, the bottom map is an

isomorphism trivially. Finally, in any of the special cases in which I p̄HGM
0 (Ri × cL) ∼=

I p̄HGM
0 (N) and H0(I p̄SGM

∗ (Ri × cL)) ∼= H0(I p̄SGM
∗ (N)) are forced to each be isomorphic

to Z, Lemma 5.4.1 shows that there must be an allowable 0-simplex in N that generates

both I p̄HGM,T
0 (N) and I p̄HGM

0 (N), and Φ then takes this 0-simplex to a singular 0-simplex

generating H0(I p̄SGM
∗ (N)). So the bottom map of the diagram is an isomorphism in all

dimensions, verifying condition (3) of Theorem 5.1.4.

This completes our verification of the assumptions of Theorem 5.1.4, and the conclusion

follows from that theorem.

Two relative versions of Theorem 5.4.2 follow almost immediately:

Corollary 5.4.3. Let X be a PL CS set, and let W be an open subset. Then I p̄HGM
∗ (X,W ;G) ∼=

I p̄HGM
∗ (X,W ;G).

Proof. Consider the following diagram of short exact sequences, where T is a triangulation

of X:

0 - I p̄CGM∗ (W ) - I p̄CGM∗ (X) - I p̄CGM∗ (X,W ) - 0

0 - I p̄CGM,T
∗ (W )

θ

6

- I p̄CGM,T
∗ (X)

θ

6

- I p̄CGM,T
∗ (X,W )

θ

6

- 0

0 - I p̄SGM
∗ (W )

ψ

?
- I p̄SGM

∗ (X)

ψ

?
- I p̄SGM

∗ (X,W )

ψ

?
- 0.

In each case row, the rightmost non-trivial group is defined to be the quotient under the

evident inclusion of the leftmost group into the middle group.

This diagram induces a commutative diagram of long exact homology sequences. By

Lemma 5.4.1 applied to W and X and by the Five Lemma, we obtain an isomorphism of

the top two long exact sequences. It follows then that ψθ−1 is well defined from the top long

exact sequence to the bottom long exact sequence, so now by Theorem 5.4.2 and the Five
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Lemma, I p̄HGM
∗ (X,W ) ∼= H∗(I

p̄SGM
∗ (X,W )). But now by the exactness of the direct limit

functor,

H∗(I
p̄SGM
∗ (X,W )) = H∗(I

p̄SGM
∗ (X)/I p̄SGM

∗ (W ))

= H∗(lim−→ I p̄SGM∗ (X)/ lim−→ I p̄SGM∗ (W ))

∼= H∗(lim−→(I p̄SGM∗ (X)/I p̄SGM∗ (W )))

∼= lim−→H∗(I
p̄SGM∗ (X)/I p̄SGM∗ (W ))

∼= I p̄HGM
∗ (X,W ),

as we know that the subdivision operator induces isomorphisms on intersection homology,

and hence on relative intersection homology by another application of the Five Lemma.

Corollary 5.4.4. Let X be a PL CS set with closed PL subset A such that A is itself a PL

CS set in its inherited filtration. Then I p̄HGM
∗ (X,A;G) ∼= I p̄HGM

∗ (X,A;G).

Proof. This time we assume that we begin with a triangulation T of X such that A is

triangulated as a subcomplex. Once again, we have a diagram of short exact sequences

0 - I p̄CGM∗ (A) - I p̄CGM∗ (X) - I p̄CGM∗ (X,A) - 0

0 - I p̄CGM,T
∗ (A)

θ

6

- I p̄CGM,T
∗ (X)

θ

6

- I p̄CGM,T
∗ (X,A)

θ

6

- 0

0 - I p̄SGM
∗ (A)

ψ

?
- I p̄SGM

∗ (X)

ψ

?
- I p̄SGM

∗ (X,A)

ψ

?
- 0,

where, as before, I p̄CGM,T
∗ (A) denotes those chains of I p̄CGM,T

∗ (X) supported in A. Since

the barycentric subdivisions of the restriction of T to A are compatible with restricting the

barycentric subdivisions of T in all of X to A, the left and center vertical maps all induce

isomorphisms on homology by Lemma 5.4.1 and Theorem 5.4.2. The corollary now follows

from two applications of the Five Lemma to the resulting long exact sequences.

Even though ∂-stratified pseudomanifolds are not technically CS sets, the following shows

that the results of this section apply to them as well.

Corollary 5.4.5. Suppose X is a PL ∂-stratified pseudomanifold. Then the composition

I p̄HGM
∗ (X;G)

θ−1

−−→ I p̄HGM,T
∗ (X;G)

ψ−→ H∗(I
p̄SGM
∗ (X;G))

∼=−→ I p̄HGM
∗ (X;G) is an isomor-

phism.
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Proof. Let X − ∂X be the interior of X, and consider the following diagram in which the

vertical maps are induced by inclusions:

I p̄HGM
∗ (X − ∂X) �

θ
I p̄HGM,T

∗ (X − ∂X)
ψ
- H∗(I

p̄SGM
∗ (X − ∂X)) �

∼=
I p̄HGM

∗ (X − ∂X)

I p̄HGM
∗ (X)
?

�
θ

I p̄HGM,T
∗ (X)
? ψ

- H∗(I
p̄SGM
∗ (X))
?

�
∼=

I p̄HGM
∗ (X)
?

Commutativity can be seen at the chain level. The maps θ are both isomorphisms by Lemma

5.4.1, and the composition along the top is an isomorphism by Theorem 5.4.2. The leftmost

and rightmost vertical maps are isomorphisms by stratified homotopy invariance (Corollary

4.1.11); the homotopy equivalence of the inclusion of X − ∂X into X utilizes the collaring

of the boundary21. It follows that the composition along the bottom of the diagram is an

isomorphism, as desired.

While Theorem 5.4.2 and its corollaries provide isomorphisms between singular and PL

intersection homology, in practice one prefers simplicial intersection homology as being the

most directly computable. While PL techniques were necessary for our proofs in this section

given their good functorial properties and the ability to work on open subsets of a larger

PL space, our final results, together with our work from Section 3.3.4, allow us to recover a

direct isomorphism between simplicial and singular intersection homology.

Corollary 5.4.6. Let X be a PL CS set or a PL ∂-stratified pseudomanifold, and let T be

a full triangulation of X compatible with the filtration and with an ordering on its vertices.

Then the canonical chain map φ : I p̄CGM,T
∗ (X;G)→ I p̄SGM∗ (X;G) from simplicial to singu-

lar intersection chains determined using the ordering of the vertices induces an isomorphism

on intersection homology.

Proof. The map φ is well defined by Proposition 4.4.5 and Corollary 4.4.6.

By thinking through the definitions of the maps, we have the following commutative

diagram

I p̄CGM,T
∗ (X;G)

φ
- I p̄SGM∗ (X;G)

I p̄CGM∗ (X;G) �
θ�

I p̄CGM,T
∗ (X;G)

? ψ
- I p̄SGM

∗ (X;G)
?

The map θ is a quasi-isomorphism (i.e. it induces homology isomorphisms) by Lemma 5.4.1,

while the diagonal map is a quasi-isomorphism by Theorem 3.3.20. Therefore, the lefthand

21In fact, identifying the collar neighborhood of ∂X with [0, 1) × ∂X, we see that both X and X − ∂X
have stratified deformation retractions to X − ([0, 1/2)× ∂X).
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vertical map is a quasi-isomorphism by commutativity of the diagram. The righthand vertical

map is a quasi-isomorphism by our discussion preceding the proof of Theorem 5.4.2, while

ψ is a quasi-isomorphism as a consequence of Theorem 5.4.2 or Corollary 5.4.5: the theorem

or corollary demonstrate that θ−1ψ is a homology isomorphism, but so is θ, hence ψ is as

well. Thus three of the four sides of the square are quasi-isomorphisms, which implies that

the top is.

5.5 Topological invariance

The definition of the intersection chains uses the stratification of the space to define which

chains are allowable. The following fact is therefore quite remarkable: for certain perversities,

the intersection homology groups do not depend on the stratification of a CS set, only on

the underlying homeomorphism type of the space.

To even begin to make sense of this claim, we cannot work with our arbitrary perversities,

which are also defined with reference to the stratification. Instead, we follow the original

Goresky-MacPherson definition and use perversities that depend only on the codimension

of the strata. Then it makes sense to apply such a perversity to multiple stratifications

of the same space. Thus, throughout this section, we think of a perversity as a function

p̄ : {1, 2, 3, . . .} → Z with the input corresponding to the codimension of a stratum; as

perversities are always 0 on the codimension zero (regular) strata, we omit mention of them

or take p̄(0) = 0 if needed explicitly. Additionally, since we must have a notion of codimension

that depends only on the homeomorphism type of the space, we fold the formal dimension

of the CS set into the data concerning its homeomorphism type.

Invariance of PL intersection homology under restratification of PL pseudomanifolds

(keeping fixed the PL structure) was proven in [105], where Goresky and MacPherson in-

troduced intersection homology. More general topological invariance, i.e. the dependence of

intersection homology only on perversity and topological homeomorphism type, was first

proven for pseudomanifolds by Goresky and MacPherson in [106] using the techniques of

sheaf theory. That proof proceeds by finding axiomatic characterizations for sheaf com-

plexes whose hypercohomology groups are isomorphic to the intersection homology groups.

They first find such an axiomatic characterization in terms of a stratification, but then they

show that this axiomatic characterization is equivalent to other ones that do not rely on

the stratification. A good source for this material is [28, Section V], in which the details

concerning constructibility of sheaf complexes are carried out a bit more carefully than in

[106] (see, in particular, [28, Remark V.3.16]). The proof of topological invariance of singular

intersection homology that we provide here is a modification of that found by King [139]

and applies more broadly to CS sets. Note that our CS sets follow the definition of Sieben-

mann [216] and so are more general than those of King [139], which assume dimensional

homogeneity.

Given the equivalence of PL and singular intersection homology on PL spaces demon-

strating in the preceding section, we will focus here only on singular homology, with the

analogous PL result following from Theorem 5.4.2.
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5.5.1 What perversities work?

Let X be a CS set of a fixed formal dimension, and let p̄ be a perversity p̄ : {1, 2, . . .} → Z.

If we want I p̄HGM
∗ (X) to be a topological invariant, then p̄ still cannot be arbitrary. To

see this, consider a basic distinguished neighborhood of the form R × cL for a compact

filtered space L with regular strata. This space is homeomorphic to c(SL), the cone on the

suspension of L; see Figures 2.7 and 2.8. However, these two descriptions give rise to two

different filtrations based on the filtration of L. The natural strata of R × cL are R × {v},
where v is the cone vertex, and R× (0, 1)× S, where S is a stratum of L. For c(SL), if we

think of SL as a quotient of [−1, 1] × L and cL as a quotient of [0, 1) × L, then there are

three types of strata:

1. {w}, where w is the cone point of c(SL),

2. (0, 1) × {v−1} and (0, 1) × {v1}, where v−1, v1 are the vertices of the suspension SL,

and

3. (0, 1)× (−1, 1)× S for each stratum S of L.

Now, suppose L has dimension k− 2. By Theorem 4.2.1, and using the stratified homotopy

invariance, we have

I p̄HGM
i (R× cL) ∼=


0, i ≥ k − 2− p̄(k − 1), i 6= 0,

Z, i = 0 ≥ k − 2− p̄(k − 1),

I p̄Hi(L), i < k − 2− p̄(k − 1).

Similarly,

I p̄HGM
i (c(SL)) ∼=


0, i ≥ k − 1− p̄(k), i 6= 0,

Z, i = 0 ≥ k − 1− p̄(k),

I p̄Hi(SL), i < k − 1− p̄(k),

and by Theorem 4.4.21, if I p̄HGM
0 (L) 6= 0 then

I p̄HGM
i (SL) =


I p̄H̃GM

i−1 (L), i > k − p̄(k − 1)− 2, i 6= 0,

0, i = k − p̄(k − 1)− 2, i 6= 0,

I p̄HGM
i (L), i < k − p̄(k − 1)− 2,

Z, i = 0 ≥ k − p̄(k − 1)− 2.

Now, what can we determine from this? Ignoring for the moment possible complications

in low dimensions, we see that I p̄HGM
i (R× cL) = 0 when i ≥ k− 2− p̄(k− 1). Furthermore,

I p̄HGM
k−3−p̄(k−1)(R× cL) ∼= I p̄HGM

k−3−p̄(k−1)(L). So at least assuming that 0 ≤ k−3− p̄(k−1) ≤
k − 2, it would not be hard to rig up an example where I p̄HGM

k−3−p̄(k−1)(R× cL) 6= 0, or, for

that matter, with I p̄HGM
i (R× cL) 6= 0 for all i ≤ k − 3− p̄(k − 1). For example, suppose L

is the product of k − 2 circles. On the other hand, I p̄HGM
i (c(SL)) = 0 for i ≥ k − 1− p̄(k).
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So in order for topological invariance to hold, we should need k−3− p̄(k−1) < k−1− p̄(k),

or in other words, p̄(k) ≤ p̄(k − 1) + 1.

On the other hand, again ignoring low-dimensional issues, we see that I p̄HGM
i (c(SL)) = 0

for i ≥ k − 1 − p̄(k) and also for i = k − p̄(k − 1) − 2, regardless of how k − p̄(k − 1) − 2

compares to k − 1 − p̄(k). Once again, it is easy to choose L so that I p̄HGM
i (c(SL)) is

non-zero for all other dimensions ≥ 0 and < k. Thus we will run into contradictions if there

is a dimension j such that k − p̄(k − 1) − 2 < j < k − 1 − p̄(k), for then I p̄HGM
j (c(SL))

need not be 0, but I p̄HGM
i (R × cL) = 0. So to avoid these contradictions we must have

k − p̄(k − 1)− 2 ≥ k − 1− p̄(k)− 1, or in other words, p̄(k) ≥ p̄(k − 1).

Together, these two arguments show that we must have

p̄(k − 1) ≤ p̄(k) ≤ p̄(k − 1) + 1. (5.1)

This is one of the conditions for p̄ to be a GM perversity (see Definition 3.1.4), and now

we see the reason for it. It turns out that this condition is sufficient to obtain topological

invariance so long as p̄(1) ≥ 0.

The reader might also have expected the condition (5.1) to place some stronger limitations

on p̄(1) given that we have declared p̄(0) = 0. However, note that by Remark 3.4.5 we obtain

identical intersection chain complexes by replacing p̄(0) = 0 with p̄(0) = m for any m ≥ 0.

So if p̄(1) ≥ 0, we could for example set p̄(0) = p̄(1) without changing the intersection chain

complexes at all but now satisfying (5.1).

On the other hand, to see what goes wrong if p̄(1) < 0 we first observe that it is not

possible to have p̄(0) = 0 and p̄(1) < 0 together with (5.1). For a concrete example of

this ruining topological invariance, the reader should work through the preceding discussion

taking L = ∅ with dim(∅) = −1 (or, essentially the same thing, just consider some different

filtrations of the real line).

But what if to adapt to p̄(1) < 0 we were to break precedent and allow p̄(0) < 0 in order

to satisfy (5.1)? In this case (5.1) implies that p̄(k) < k for all k. Then if σ is an allowable

i-simplex, we have σ−1(S) ⊂ {i− codim(S) + p̄(S) skeleton of ∆i} for all strata. But then if

codim(S) = k, we have i− codim(S) + p̄(S) = i− k+ p̄(k) < i for all S. This means that no

stratum, regular or singular, can intersect the image of the interior of ∆i. So no allowable

simplices can exists, so all intersection homology groups are trivial for any filtration! This

might be topological invariance, but not a particularly useful one. So we’ll stick with (5.1)

and p̄(1) ≥ 0.

5.5.2 The statement of the theorem and some corollaries

So let’s officially state the invariance theorem. Then, in the remainder of this section we

make some observations and prove some corollaries. We will prove the theorem itself in the

next section.

Theorem 5.5.1. Suppose X is a CS set of formal dimension n and that p̄ : {1, 2, . . .} → Z is

a perversity such that p̄(1) ≥ 0 and p̄(k−1) ≤ p̄(k) ≤ p̄(k−1)+1 for all k ≥ 2. Let X be |X|
with its intrinsic filtration22 and the same formal dimension n. Then for any abelian group

22See Section 2.10.
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G the identity map of spaces induces an isomorphism I p̄HGM
∗ (X;G) → I p̄HGM

∗ (X;G). It

follows that I p̄HGM
∗ (X;G) is independent (up to isomorphism) of the choice of stratification

of X as a CS set of formal dimension n. In particular, if X ′ is another CS set of formal

dimension n that is topologically homeomorphic to X (not necessarily filtered homeomorphic),

then I p̄HGM
∗ (X;G) ∼= I p̄HGM

∗ (X ′;G).

More generally, if A is an open subset of X and (|X|, |A|) ∼= (|X ′|, |A′|) as topological

spaces, then I p̄HGM
∗ (X,A;G) ∼= I p̄HGM

∗ (X ′, A′;G).

Remark 5.5.2. The version of the invariance theorem in King [139] does not explicitly mention

formal dimensions as it is implicit that each space is meant to be taken with its topological

dimension. However, as we have remarked already, it will be useful for us to not maintain

this assumption; see Remark 2.2.15.

Remark 5.5.3. The relative version of the theorem is stated only for open subsets. This is

because the proof will rely upon intrinsic filtrations, and we know by Lemma 2.10.10 that

the restriction of an intrinsic filtration to an open subspace is the intrinsic filtration of the

subspace. One could not necessarily expect such nice behavior for arbitrary subspaces

We now turn to some corollaries of Theorem 5.5.1. The next four results are all about

distinguished neighborhoods in CS sets and boundary collars in ∂-stratified pseudomanifolds.

In this section we apply these results to deduce that the property of being locally torsion free

is independent of stratification. These will also be useful later in Chapter 8 in showing that

homeomorphic spaces have isomorphic Poincaré and Lefschetz duality maps; for example,

see Theorem 8.3.12.

Corollary 5.5.4. Let X and X ′ be two n-dimensional CS set stratifications of the same un-

derlying topological space, say |X|. Let x ∈ |X|, and let N,N ′ be distinguished neighborhoods

of x in X and X ′, respectively. Suppose that p̄ : {1, 2, . . .} → Z is a perversity such that

p̄(1) ≥ 0 and p̄(k−1) ≤ p̄(k) ≤ p̄(k−1)+1 for k ≥ 2. Then I p̄HGM
∗ (N ;F ) ∼= I p̄HGM

∗ (N ′;G).

This corollary follows immediately from the theorem and Corollary 2.10.2. It is interest-

ing to compare this corollary with Lemma 5.3.13, which provides the same conclusion for

arbitrary perversities but only when X and X ′ are the same stratification.

The next result is a more specific variant of the corollary that we will need later.

Lemma 5.5.5. Let X and X ′ be CS sets and with |X| = |X ′|, and suppose that p̄ :

{1, 2, . . .} → Z is a perversity such that p̄(1) ≥ 0 and p̄(k−1) ≤ p̄(k) ≤ p̄(k−1)+1 for k ≥ 2.

Take x ∈ |X|. Let U and V ′ be distinguished neighborhoods of x in X and X ′, respectively.

Let U ′ denote |U | with the filtration it inherits from X ′, let V denote V ′ in the filtration

inherited from X, and let U∗ and V ∗ be |U | and |V ′| in their intrinsic filtrations. Sup-

pose that |V | ⊂ |U |. Then inclusion induces isomorphisms I p̄HGM
∗ (V ;G) → I p̄HGM

∗ (U ;G),

I p̄HGM
∗ (V ′;G) → I p̄HGM

∗ (U ′;G), and I p̄HGM
∗ (V ∗;G) → I p̄HGM

∗ (U∗;G) for any abelian

group G. Furthermore, the lemma remains true replacing the various spaces U , V , etc. with

the deleted neighborhoods U − {x}, V − {x}, etc.

Proof. By shrinking U as in the proof of Lemma 5.3.13, there is a distinguished neighborhood

U1 of x in |V | such that U1 ↪→ U is a stratified homotopy equivalence, and then similarly
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there is a V ′1 with |V ′1 | ⊂ |U1| and V ′1 ↪→ V ′ a stratified homotopy equivalence. We can form

U ′1 and V by again letting the primed spaces get their filtrations from X ′ while all those

without primes get their filtrations from X. Similarly, asterisks denote the intrinsic filtration

with all intrinsic filtrations inherited from X. Altogether, we have

|V1| ⊂ |U1| ⊂ |V | ⊂ |U |,

and this leads to the commutative diagram

I p̄HGM
∗ (V1;G) - I p̄HGM

∗ (U1;G) - I p̄HGM
∗ (V ;G) - I p̄HGM

∗ (U ;G)

I p̄HGM
∗ (V ∗1 ;G)

∼=
?

- I p̄HGM
∗ (U∗1 ;G)

∼=
?

- I p̄HGM
∗ (V ∗;G)

∼=
?

- I p̄HGM
∗ (U∗;G)

∼=
?

I p̄HGM
∗ (V ′1 ;G)

∼=
6

- I p̄HGM
∗ (U ′1;G)

∼=
6

- I p̄HGM
∗ (V ′;G)

∼=
6

- I p̄HGM
∗ (U ′;G).

∼=
6

The vertical maps are all isomorphism by Theorem 5.5.1.

Now, by stratified homotopy invariance, the composition I p̄HGM
∗ (U1;G)→ I p̄HGM

∗ (U ;G)

is an isomorphism, as is the composition I p̄HGM
∗ (V ′1 ;G) → I p̄HGM

∗ (V ′;G). Together with

the isomorphisms in the diagram, this is sufficient to conclude that I p̄HGM
∗ (U∗1 ;G) →

I p̄HGM
∗ (V ∗;G) is surjective and injective, so an isomorphism. It follows that all hor-

izontal arrows in the middle column of the diagram are isomorphisms. Together with

our two composite isomorphisms, this implies that I p̄HGM
∗ (V ;G) → I p̄HGM

∗ (U ;G) and

I p̄HGM
∗ (V ′1 ;G) → I p̄HGM

∗ (U ′1;G) are isomorphisms, and it follows now that every map in

the diagram is an isomorphism.

The proof of the last statement concerning the deleted neighborhoods is identical, noticing

that we can choose our stratified homotopy equivalences in the preceding argument to fix

x.

For ∂-stratified pseudomanifolds, there are the following results about collars:

Lemma 5.5.6. Let p̄ : {1, 2, . . .} → Z be a perversity such that p̄(1) ≥ 0 and p̄(k − 1) ≤
p̄(k) ≤ p̄(k − 1) + 1 for k ≥ 2, and let X and X ′ be ∂-stratified pseudomanifolds with

(|X|, |∂X|) = (|X ′|, |∂X ′|). Suppose |∂X| = |∂X ′| is hereditarily paracompact. Let U and V ′

be filtered collar neighborhoods respectively of ∂X in X and of ∂X ′ in X ′. Let U ′ denote |U |
with the stratification it inherits from X ′, and let V denote V ′ in the stratification inherited

from X. Suppose that |V | ⊂ |U |. Then inclusion induces isomorphisms I p̄HGM
∗ (V ;G) →

I p̄HGM
∗ (U ;G) and I p̄HGM

∗ (V ′;G)→ I p̄HGM
∗ (U ′;G).

Note, we do not include statements about X in the lemma because we do not have intrinsic

filtrations in this setting; see Remark 2.10.24.
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Proof. The proof is very analogous to that of Lemma 5.5.5. Using Lemma 2.7.8, we can find

filtered collars U1 and V ′1 so that again |V1| ⊂ |U1| ⊂ |V | ⊂ |U |, the inclusion U1 ↪→ U is a

stratified homotopy equivalence, etc. Let Ů1, denote U1 − ∂X, and similarly for the other

sets. It remains true that the inclusion Ů1 ↪→ Ů is a stratified homotopy equivalence and

analogously for V̊1 ↪→ V̊ ′. As Ů , V̊ ′, Ů1, V̊
′

1 are all CS sets, there are intrinsic filtrations, and

repeating the diagram chase of the proof of Lemma 5.5.5 shows that the inclusions induce

isomorphisms I p̄HGM
∗ (V̊ ;G)→ I p̄HGM

∗ (Ů ;G) and I p̄HGM
∗ (V̊ ′;G)→ I p̄HGM

∗ (Ů ′;G).

Finally, we have maps

I p̄HGM
∗ (V̊ ;G) - I p̄HGM

∗ (Ů ;G)

I p̄HGM
∗ (V ;G)
?

- I p̄HGM
∗ (U ;G).
?

We have just show that the top map is an isomorphism, but so are the vertical maps by

stratified homotopy invariance. The conclusion follows.

Corollary 5.5.7. Let p̄ : {1, 2, . . .} → Z be a perversity such that p̄(1) ≥ 0 and p̄(k − 1) ≤
p̄(k) ≤ p̄(k − 1) + 1 for k ≥ 2, and let X and X ′ be ∂-stratified pseudomanifolds with

(|X|, |∂X|) = (|X ′|, |∂X ′|) and |∂X| paracompact. Suppose |∂X| = |∂X ′| is compact. Let V ′

be a stratified collar neighborhood of ∂X ′, and let V denote V ′ in the stratification inherited

from X. Then inclusion induces isomorphisms I p̄HGM
∗ (∂X;G)→ I p̄HGM

∗ (V ;G).

Proof. The set V is an open neighborhood of ∂X, so we can find a filtered collar U of ∂X

in V by Lemma 2.7.8. Now consider the composition I p̄HGM
∗ (∂X;G) → I p̄HGM

∗ (U ;G) →
I p̄HGM

∗ (V ;G). The first map is an isomorphism by stratified homotopy invariance, and the

latter is an isomorphism by Lemma 5.5.7. The result follows.

In the next example, we show that in the absence of condition (5.1) on the perversity then

even whether or not a space is locally (p̄, R;M)GM -torsion free can depend on the filtration.

We’ll then prove that in the presence of condition (5.1) being locally (p̄, R;M)GM -torsion

free is a property of the space.

Example 5.5.8. Consider the space X = X5 = R × c(RP 3) stratified as R × {v} ⊂ X.

Then RP 3 is a link of each point in the singular stratum R× {v}, and I 0̄HGM
3−0̄(S)−1(RP 3) =

H2(RP 3) = 0. So X is locally (0̄,Z)GM -torsion free. But now let’s restratify this space

as Y with {(0, v)} ⊂ R × {v} ⊂ Y , and let p̄ be a perversity on Y that remains 0 on the

1-dimensional strata. Then the suspension S(RP 3) is a link of (0, v), and the cone points of

the suspension lie in the 1-dimensional strata, so, by Theorem 4.4.21,

I p̄HGM
i (S(RP 3)) =


I p̄HGM

i−1 (RP 3), i > 3,

0, i = 3,

I p̄HGM
i (RP 3), i < 3.
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In particular, then I p̄HGM
1 (S(RP 3)) ∼= H1(RP 3) ∼= Z2. So if we take p̄({(0, v)}) = 2, we’ll

have I p̄HGM
dim(S(RP 3))−p̄({(0,v)})−1(S(RP 3)) ∼= Z2, and Y is not locally (p̄,Z)-torsion free.

Proposition 5.5.9. Let p̄ : {1, 2, . . .} → Z be a perversity such that p̄(1) ≥ 0 and p̄(k−1) ≤
p̄(k) ≤ p̄(k − 1) + 1 for k ≥ 2, and let X and X ′ be CS sets with |X| = |X ′|. Then X is

locally (p̄, R;M)GM -torsion free if and only if X ′ is.

Proof. We will show that X is locally (p̄, R;M)GM -torsion free if and only if X is, where X

is |X| with its intrinsic filtration (see Section 2.10). As X and X ′ have the same intrinsic

filtration, the result will follow.

First, assume that X is locally (p̄, R;M)GM -torsion free. Recall that every stratum S of

X is a union of strata of X of dimension ≤ dim(S). So let S be a stratum of X of codimension

`, so that the dimensions of its links are ` − 1, and let x be a point of X contained in a

stratum T of X with T ⊂ S and dim(S) = dim(T ). Let L be a link of x in X and let L
be a link of x in X. As dim(S) = dim(T ), we have dim(L) = dim(L ) = ` − 1. In this

case, the locally torsion free condition is a statement about intersection homology in degree

`− 1− p̄(`)− 1 = `− p̄(`)− 2. By the cone formula (Theorem 5.3.5), I p̄HGM
`−p̄(`)−2(cL;R) ∼=

I p̄HGM
`−p̄(`)−2(L;R) and I p̄HGM

`−p̄(`)−2(cL ;R) ∼= I p̄HGM
`−p̄(`)−2(L ;R). It follows that if N and N

are distinguished neighborhoods of x in X and X, respectively, we have

I p̄HGM
`−p̄(`)−2(L;R) ∼= I p̄HGM

`−p̄(`)−2(N ;R) ∼= I p̄HGM
`−p̄(`)−2(N;R) ∼= I p̄HGM

`−p̄(`)−2(L ;R),

using Corollary 5.5.4 for the middle isomorphism. As we have assumed that X is locally

(p̄, R;M)GM -torsion free, the link L of x in X satisfies the required intersection homology

torsion condition, and so L also satisfies the required torsion condition. Since the locally

torsion free condition is satisfied for a link at one point in S, it is satisfied at all points

in S by Corollary 5.3.14. As S was an arbitrary stratum of X, it follows that X is locally

(p̄, R;M)GM -torsion free.

Conversely, suppose X is locally (p̄, R;M)GM -torsion free. Let x ∈ X be a point with

distinguished neighborhood N ∼= Rk × cL. Suppose dim(L) = ` − 1. As observed in the

preceding paragraph, we have I p̄HGM
`−p̄(`)−2(L;R) ∼= I p̄HGM

`−p̄(`)−2(N ;R). Now, let N be a distin-

guished neighborhood of x in X. By Corollary 5.5.4., I p̄HGM
`−p̄(`)−2(N ;R) ∼= I p̄HGM

`−p̄(`)−2(N;R).

But N ∼= Rm × cL for some link L and some Rm with m ≥ k, since the stratifica-

tion of X is coarser than that of X. Let dim(L ) = d − 1. By stratified homotopy

invariance, I p̄HGM
`−p̄(`)−2(N;R) ∼= I p̄HGM

`−p̄(`)−2(cL ;R). So, altogether, I p̄HGM
`−p̄(`)−2(L;R) ∼=

I p̄HGM
`−p̄(`)−2(cL ;R). If m = k, then dim(L ) = ` − 1 as well, and, by the cone for-

mula again, I p̄HGM
`−p̄(`)−2(L;R) ∼= I p̄HGM

`−p̄(`)−2(L ;R), which shows that L satisfies the re-

quired torsion condition as L does by assumption. So suppose m > k, which implies that

d − 1 = dim(L ) < ` − 1. We will show that I p̄HGM
`−p̄(`)−2(cL ;R) is isomorphic to 0, R,

or I p̄HGM
d−p̄(d)−2(L ;R). This will suffice, as we have assumed that X is locally (p̄, R;M)GM -

torsion free and as R is a free.

To prove our claim, it is sufficient, by the cone formula, to verify that ` − p̄(`) − 2 ≥
d − p̄(d) − 2, i.e. that ` − d ≥ p̄(`) − p̄(d). But this is a consequence of having p̄(k − 1) ≤
p̄(k) ≤ p̄(k − 1) + 1 for all k ≥ 2.
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5.5.3 Proof of topological invariance

In this section we prove Theorem 5.5.1. The proof is the same for all coefficient systems, so

we provide the details only for Z coefficients.

We begin with one preliminary observation. Let X be a CS set, and recall the intrinsic

filtration X of |X| constructed in Section 2.10. If X has formal dimension n, then we will

assume that X is also given formal dimension n. This allows us to construct a comparison

map I p̄HGM
∗ (X) → I p̄HGM

∗ (X). Indeed, the finer the stratification of a space, the more

difficult it is for a simplex to be allowable, so we have the following lemma:

Lemma 5.5.10. Suppose that X is a CS set and that X ′ is a coarsening of X, meaning

that X and X ′ have the same underlying topological space but that each stratum of X ′ is a

union of strata of X. Suppose X and X ′ have the same formal dimension, and let p̄ be a

perversity that depends only on codimension and such that p̄(k − 1) ≤ p̄(k) ≤ p̄(k − 1) + 1

for k ≥ 2. Then I p̄SGM∗ (X) ⊂ I p̄SGM∗ (X ′).

Proof. Suppose that S is a stratum of X of codimension k and that T is the stratum of

X ′ of codimension j ≤ k containing S. If σ is an allowable i-simplex with respect to

S, then σ−1(S) ⊂ {i − k + p̄(k) skeleton of ∆i}. By the assumption on the perversities,

p̄(k) ≤ p̄(j) + (k − j), so i − k + p̄(k) ≤ i − k + p̄(j) + (k − j) = i − j + p̄(j), so σ is also

allowable with respect to T . Hence there is an inclusion I p̄SGM∗ (X) ↪→ I p̄SGM∗ (X ′).

Remark 5.5.11. This lemma implies that the identity map id : X → X ′ is (p̄, p̄)GM -stratified

with respect to the two filtrations.

We will show that if X is the intrinsic filtration of X, then the inclusion I p̄SGM∗ (X) ↪→
I p̄SGM∗ (X) induces an isomorphism on homology. Then if X ′ is any other stratification of X

(not necessarily a coarsening of X), we see that I p̄HGM
∗ (X) ∼= I p̄HGM

∗ (X ′) via the composite

I p̄HGM
∗ (X)

∼=−→ I p̄HGM
∗ (X)

∼=←− I p̄HGM
∗ (X ′).

More generally, if X ′ is another n-dimensional CS set that is topologically homeomorphic

to X, say by h : |X ′| → |X|, then h must yield a filtered homeomorphism h : X′ → X, as

follows from the purely topological character of the definition of the intrinsic filtration.

Therefore, we will have I p̄HGM
∗ (X) ∼= I p̄HGM

∗ (X) ∼= I p̄HGM
∗ (X′) ∼= I p̄HGM

∗ (X ′).

Once we have shown that I p̄SGM∗ (X) ↪→ I p̄SGM∗ (X) induces an isomorphism on homology,

the claimed relative result will follow as we will have maps of short exact sequences

0 - I p̄SGM∗ (A) - I p̄SGM∗ (X) - I p̄SGM∗ (X,A) - 0

0 - I p̄SGM∗ (A)
?

- I p̄SGM∗ (X)
?

- I p̄SGM∗ (X,A)
?

- 0.

The left side of the diagram commutes because the local nature of the definition of the

intrinsic filtration implies that the intrinsic filtration A of the open set |A| is the restriction
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to |A| of the intrinsic filtration of X. The commutativity of the right side then follows

from the induced map on quotients. So once we have proven the theorem in the absolute

case, the relative case will follow from the Five Lemma applied to the induced diagrams

of long exact sequences. This then extends to the setting (|A|, |X|) ∼= (|A′|, |X ′|) just as

I p̄HGM
∗ (X) ∼= I p̄HGM

∗ (X) implies I p̄HGM
∗ (X) ∼= I p̄HGM

∗ (X ′) whenever |X| ∼= |X ′|.
To prove Theorem 5.5.1 it remains to show that I p̄SGM∗ (X) ↪→ I p̄SGM∗ (X) induces homol-

ogy isomorphisms. The argument is by an induction on depth; see Definition 2.2.29. In fact,

following King [139], the proof proceeds by an intertwined set of inductions on the following

three statements:

P (d): The comparison map I p̄HGM
∗ (X) → I p̄HGM

∗ (X) is an isomorphism for all CS sets X

of depth ≤ d.

Q(d): The comparison map I p̄HGM
∗ (X) → I p̄HGM

∗ (X) is an isomorphism for all CS sets X

filtered homeomorphic to M × cW , where M is a trivially-filtered manifold and W is

a compact filtered space of depth ≤ d.

R(d): The comparison map I p̄HGM
∗ (X) → I p̄HGM

∗ (X) is an isomorphism for all CS sets X

filtered homeomorphic to Rk × cW , where Rk is trivially filtered and W is a compact

filtered space of depth ≤ d.

We will show P (d) ⇒ R(d), R(d) ⇒ Q(d), and P (d) ∧ Q(d) ⇒ P (d + 1). So, for a CS

set of depth n, it will follow from P (n) that I p̄HGM
∗ (X) ∼= I p̄HGM

∗ (X). To get the induction

started, we notice that P (0) is trivial, since if X has depth 0 then X = X. We follow the

arguments of King’s in [139] closely for the first two implications. For the third, we follow

King’s basic idea but generalize using Zorn’s lemma so that we do not need to assume second

countability of our manifolds. To set notation throughout the argument, we declare that

manifolds are assumed trivially filtered unless stated otherwise and cones and products are

always given the respective cone or product filtrations. Furthermore, if Z is any filtered

space, we write Z∗ for |Z| with its intrinsic filtration, recalling that |X| is the topological

space underlying the filtered space X. For example, spaces written Rm × cL will always be

filtered using the cone and product filtrations starting from a given filtration of L and the

trivial filtration of Rm, while the intrinsic filtration of |Rm× cL| will be written (Rm× cL)∗.

R(d)⇒ Q(d) : This is the simplest step of the argument. Let dim(M) = k, and consider

M × cW , where W is a compact filtered space of depth ≤ d. By Lemma 2.10.11, there is a

coarsening Z of cW such that (M×cW )∗ ∼= M×Z and (Rk×cW )∗ ∼= Rk×Z. By assumption,

I p̄HGM
∗ (Rk× cW )→ I p̄HGM

∗ (Rk×Z) is an isomorphism, and using the stratified homotopy

invariance of intersection homology, it follows that in fact we must have an isomorphism

I p̄HGM
∗ (cW )→ I p̄HGM

∗ (Z). But then it follows that I p̄HGM
∗ (M × cW )→ I p̄HGM

∗ (M × Z)

is an isomorphism using the Künneth Theorem (Theorem 5.2.25) and naturality of the

isomorphisms involved.

P(d)⇒ R(d) : This is perhaps the most challenging part of the argument.

Consider Rk×cW , whereW is a compact filtered space of depth≤ d. In this case, Rk×cW
has depth ≤ d + 1. We need to show that I p̄HGM

∗ (Rk × cW ) → I p̄HGM
∗ ((Rk × cW )∗) is an
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isomorphism under the assumption that I p̄HGM
∗ (X)→ I p̄HGM

∗ (X) is an isomorphism for all

CS sets X of depth ≤ d.

Let w be the cone point of cW , and let y = (0, w) ∈ Rk × cW . Note that |Rk × {w}| is

not necessarily a stratum of (Rk × cW )∗. However, since the intrinsic filtration (Rk × cW )∗

is a CS set, y will nonetheless have some distinguished neighborhood N ⊂ (Rk×cW )∗; let us

suppose this distinguished neighborhood N is filtered homeomorphic to Rm× cL for some m

and some compact filtered space L and that y = (0, v), where v is the cone point of cL. Since

Rk ×{w} is a stratum of Rk × cW and (Rk × cW )∗ is coarser, the intersection of |Rk ×{w}|
with N must be contained in the stratum of N homeomorphic to Rm × {v}.

Now treating Rj as cSj−1 with 0 as the cone point, up to topological homeomorphism

we have |Rk × cW | ∼= |cSk−1 × cW | ∼= |c(Sk−1 ∗W )| with y as the cone point, and similarly

|N| ∼= |Rm×cL| ∼= |c(Sm−1∗L)|; see Section 2.11. Since our neighborhood N of y is contained

in |Rk × cW |, we can conclude from Lemma 2.10.1 that in fact

|Rk × cW | ∼= |c(Sk−1 ∗W )| ∼= |c(Sm−1 ∗ L)| ∼= |Rm × cL|,

with each homeomorphism fixing y. Let h : |Rk × cW | → |Rm × cL| be the composite

homeomorphism; see Figure 5.2.

Figure 5.2: On the left, we have Rk × cW , which (topologically) contains the subspace |N|.
In the intrinsic filtration (Rk × cW )∗, we have N ∼= Rm × cL, shown on the right. But we

also have a topological homeomorphism h from all of |Rk × cW | to |Rm × cL|.

Since the intrinsic filtration of a CS set is determined locally and purely topologically and

since N is an open subset of the intrinsic filtration (Rk × cW )∗, it follows that the images of

the skeleta of Rk × cL under h−1 also provide the intrinsic filtration of |Rk × cW |. In other

words, h provides a filtered homeomorphism (Rk × cW )∗ → Rm × cL. So we have arrived

at the following diagrams. The diagram of maps of spaces on the left leads to the diagram

of intersection homology groups on the right taking filtrations into account; the dashed map

is induced by the composite of the other two maps in the diagram as maps of intersection

chains. The vertical homology map is an isomorphism because it is induced by a filtered

homeomorphism.
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|Rk × cW |
id
- |(Rk × cW )∗| I p̄HGM

∗ (Rk × cW ) - I p̄HGM
∗ ((Rk × cW )∗)

|Rm × cL|

h ∼=

?

h
∼=

-

I p̄HGM
∗ (Rm × cL)

h ∼=
?

h

-

We need to show the maps on the right all isomorphisms. Let us set s = dimW and

t = dimL. Then k + s = m+ t, and since m ≥ k we have also t ≤ s.

The easy case now is in the degree range i ≥ s − p̄(s + 1), i 6= 0. In this case, by the

assumption on perversities and since t ≤ s, we have p̄(s + 1) − p̄(t + 1) ≤ s − t, so also

i ≥ s − p̄(t + 1) + t − s = t − p̄(t + 1). So by stratified homotopy invariance and the cone

formula, using that the codimensions of the cone points are respectively s+ 1 and t+ 1, we

have in this range I p̄HGM
i (Rk × cW ) = 0 and I p̄HGM

i (Rm × cL) = 0, so they must agree.

For the other cases, we will need to understand a bit more about how the strata of

Rk × cW and Rm × cL interact via the map h. This will put us in a position to reframe

the problem, as well as to apply the hypothesis P (d) to the space Rk × cW − Rk × {w} ∼=
Rk × (cW − {w}) ∼= Rk+1 ×W , which has depth d.

So let us begin by examining h : |Rk × cW | → |Rm × cL| a bit more. Our previous

observation that the intersection of |Rk × {w}| ⊂ |Rk × cW | with |N| must be contained

in the stratum of N homeomorphic to Rm × {v} now translates into the observation that

h(Rk×{w}) ⊂ Rm×{v}; see Figure 5.3. Conversely, as h−1(Rm× cL) provides the intrinsic

filtration of |Rk × cW |, the space h−1(Rm × {v}) must be a union of strata of Rk × cW ,

including the stratum Rk×{w}. Since the skeleta of Rk×cW , all have the form Rk×cW j for

some skeleton W j of W (possibly empty), then h−1(Rm × {v}) must have the form Rk × cA
for some closed set A ⊂ W since h−1(Rm × {v}) must be a closed subset and a union of

strata including Rk × {w}. We note for later that as Rm − {0} has the homology of an

m−1 sphere, this must also be true of |Rk× cA|−{(0, w)}, which is homotopy equivalent to

Sk−1 ∗A, the kth suspension of A. Since suspension increases the dimension of each reduced

homology group by 1, it follows that A must be a homology m− 1− k sphere.

Now we can return to homology groups. We next consider the following commutative di-

agram whose upper left horizontal map is the comparison map we want to be an isomorphism

and whose vertical maps are induced by inclusions.

I p̄HGM
∗ (Rk × cW ) - I p̄HGM

∗ ((Rk × cW )∗)
∼=
h

- I p̄HGM
∗ (Rm × cL)

I p̄HGM
∗ (Rk × cW − Rk × {w})

6

∼=- I p̄HGM
∗ ((Rk × cW − Rk × {w})∗)

6

∼=
h
- I p̄HGM

∗ (Rm × cL− h(Rk × {w})).

6

(5.2)

We have already seen that the top right horizontal map is an isomorphism as it is induced

by a filtered homeomorphism. Similarly, the bottom right horizontal map is the filtered
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Figure 5.3: The image h(Rk × {w}) is contained in the stratum Rm × {v}.

homeomorphism obtained by restricting the domain and codomain, so it also induces an

isomorphism. The bottom left horizontal map is an isomorphism by the induction hypothesis

P (d), as Rk × cW − Rk × {w} = Rk × (cW − {w}) has depth d. The middle vertical map

is well defined because it is induced by the open inclusion, and the intrinsic filtration of an

open subset is the restriction of the intrinsic filtration of the whole space.

Let us now consider the degree range i < s− p̄(s+ 1). In this range, the lefthand vertical

map of diagram (5.2) is an isomorphism by stratified homotopy invariance and the cone

formula. So to show that the top left horizontal map is an isomorphism, which is our goal,

it suffices to show the righthand vertical map is an isomorphism. For this, we will analyze

I p̄HGM
∗ (Rm × cL− h(Rk × {w})) using the pair

(Rm × cL− h(Rk × {w}),Rm × cL− Rm × {v}).

If we excise h(Rk × {w})× (cL− {v}) from this pair, we remove everything else lying over

h(Rk × {w}) in Rm × cL; see again Figure 5.3. The result is the pair

((Rm × {v} − h(Rk × {w}))× cL, (Rm × {v} − h(Rk × {w}))× (cL− {v}))
= ((Rm × {v} − h(Rk × {w}))× (cL, cL− {v})).

By the excision property, we thus have an isomorphism induced by inclusion

I p̄HGM
∗ ((Rm × {v} − h(Rk × {w}))× (cL, cL− {v}))

→ I p̄HGM
∗ (Rm × cL− h(Rk × {w}),Rm × cL− Rm × {v}).

But via h, we have

|Rm × {v} − h(Rk × {w})| ∼= |Rk × cA− Rk × {w}| = |Rk × (cA− {w})| ∼= |Rk+1 × A|.
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As this is an open subset of Rm, it is a manifold (trivially filtered). Abusing notation by

letting |Rk+1 × A| denote this trivially filtered manifold, we obtain

I p̄HGM
∗ ((Rm×{v}−h(Rk×{w}))×(cL, cL−{v})) ∼= I p̄HGM

∗ (|Rk+1×A|×(cL, (cL−{v}))).

But A is a homology m − 1 − k sphere, so it follows from the Künneth theorem (Theorem

5.2.25) that

I p̄HGM
i (|Rk+1 × A| × (cL, cL− {v})) ∼= I p̄HGM

i (cL, cL− {v})⊕ I p̄HGM
i−m+1+k(cL, cL− {v}),

and by Theorem 4.3.21, I p̄HGM
i−m+1+k(cL, cL− {v}) = 0 if i−m+ 1 + k ≤ t− p̄(t+ 1).

With these computations available, let us consider the commutative diagram of long

exact sequences

I p̄HGM
i (Rm × cL− Rm × {v})

?
- I p̄HGM

i (L− {v})
?

I p̄HGM
i (Rm × cL− h(Rk × {w}))

?
- I p̄HGM

i (cL)
?

I p̄HGM
i (Rm × cL− h(Rk × {w}),Rm × cL− Rm × {v})

?
- I p̄HGM

i (cL, cL− {v})
?

? ?

induced by the projection Rm × cL → {z} × cL for some z /∈ h(Rk × {w}). Such maps

are well defined on intersection homology as they preserve codimension of strata. The top

horizontal map is an isomorphism by stratified homotopy invariance. We have just seen that

the bottom horizontal map is an isomorphism if i − m + 1 + k ≤ t − p̄(t + 1), using that

our projection is compatible with the excision inclusion and that via the Künneth theorem

the elements of the I p̄HGM
i (cL, cL − {v}) summand are the cross products σz × ξ, where

σz : ∆0 → {z} is the unique singular 0-simplex and ξ ∈ I p̄HGM
i (cL, cL − {v}). In fact, by

the same reasoning the map

I p̄HGM
i (Rm × cL− h(Rk × {w}),Rm × cL− Rm × {v}) - I p̄HGM

i (cL, cL− {v})
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is a surjection in any degree. So using the general version of the Five Lemma23, this is enough

to establish that the middle horizontal map of the diagram is an isomorphism whenever

i−m+ 1 + k ≤ t− p̄(t+ 1).

Now we look at

I p̄HGM
∗ (Rm × cL)

I p̄HGM
∗ ({z} × cL)

-

I p̄HGM
∗ (Rm × cL− h(Rk × {w}))

6

-

.

The downward diagonal is an isomorphism by stratified homotopy invariance. If i < s −
p̄(s+1), then i−m+1+k < s−m+k+1− p̄(s+1) ≤ s−m+k+1− p̄(t+1) = t+1− p̄(t+1),

the range in which we have just shown that the upward diagonal is an isomorphism. So the

vertical arrow is an isomorphism when i < s− p̄(s+ 1). By our prior work, this establishes

I p̄HGM
∗ (Rk × cW )→ I p̄HGM

∗ ((Rk × cW )∗) is an isomorphism in this range.

Finally, we need to consider the case i = 0 ≥ s − p̄(s + 1). In this case, we have

s ≤ p̄(s + 1) ≤ p̄(t + 1) + s − t, so also 0 ≥ t − p̄(t + 1). So, by the cone formula,

I p̄HGM
0 (Rk × cW ) and I p̄HGM

0 (Rm× cL) are each isomorphic to either Z or 0 depending on

whether or not there is an allowable 0-simplex. If I p̄HGM
0 (Rk × cW ) ∼= Z, then there is an

allowable 0-simplex σ0 in Rk×cW . Since we identify Rm×cL as a coarsening of Rk×cW via

h and since coarsening preserves allowability by Lemma 5.5.10, the simplex h(σ0) is allowable

in I p̄SGM0 (Rm × cL), and so also I p̄HGM
0 (Rm × cL) ∼= Z. Thus h induces an isomorphism

I p̄HGM
0 (Rk× cW )→ I p̄HGM

0 (Rm× cL). Conversely, suppose there is an allowable 0-simplex

σ0 in I p̄SGM0 (Rm × cL) so that I p̄HGM
0 (Rm × cL) ∼= Z. Suppose the image of σ0 lies in a

stratum T of Rm × cL. Since allowability depends only on the stratum and the perversity,

we see that then any singular 0-simplex ∆0 → T is also allowable. Now, since Rm × cL is

a coarsening of Rk × cW via the homeomorphism h, it follows that h−1(T ) is a union of

strata of Rk × cW , and if T has dimension j, at least one of these strata of Rk × cW , say

the stratum S, must also have dimension j, since T and h−1(T ) are j-manifolds. But now

codim(S) = codim(T ), so p̄(S) = p̄(T ), and we see that any 0-simplex with image in S must

be allowable in Rk × cW . Therefore, I p̄HGM
0 (Rk × cW ) ∼= Z and h induces the isomorphism

I p̄HGM
0 (Rk × cW )→ I p̄HGM

0 (Rm × cL).

23Recall that the most general version of the Five Lemma only requires a diagram

A - B - C - D - E

A′

a

?
- B′

b

?
- C ′

c

?
- D′

d

?
- E′

e

?

with exact rows, b and d isomorphisms, a surjective, and e injective to conclude that c is an isomorphism;

see the proof of the Five Lemma in [125, Section 2.1].
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So we have seen that I p̄HGM
0 (Rk × cW ) → I p̄HGM

0 (Rm × cL) is an isomorphism in all

cases. This finishes the proof that P (d)⇒ R(d).

P(d) and Q(d)⇒ P(d + 1): This final verification is essentially a Mayer-Vietoris ar-

gument. However, the setting doesn’t quite fit the situation of Theorem 5.1.4, so we work

through the details.

Suppose X is a CS set of depth d + 1. By Lemma 2.10.11, if V is any open subset

of X, then its intrinsic filtration V ∗ is the restriction to V of the intrinsic filtration of X,

hence for any open subsets V ⊂ Y ⊂ X, the morphisms I p̄HGM
∗ (V ) → I p̄HGM

∗ (V ∗) and

I p̄HGM
∗ (Y ) → I p̄HGM

∗ (Y ∗) are compatible, i.e. they form a commutative square with the

inclusion maps. Let U be the largest open subset of X such that I p̄HGM
∗ (U)→ I p̄HGM

∗ (U∗)

is an isomorphism. Such a U exists by Zorn’s lemma, since if {Uα} is any increasing sequence

of open sets such that I p̄HGM
∗ (Uα) → I p̄HGM

∗ (U∗α) is an isomorphism for each α, then also

I p̄HGM
∗ (∪αUα)→ I p̄HGM

∗ (∪αU∗α) = I p̄HGM
∗ ((∪αUα)∗), using Lemmas 5.1.6 and 5.1.7. Notice

that U is non-empty since X must contain an open set of depth 0, and we have already

observed that P (0) is trivial.

We will show that U = X, which will complete the proof. We first observe that if

X(d + 1) is the union of the strata of X of depth d + 1, then X − X(d + 1) ⊂ U . In

fact, by P (d), I p̄HGM
∗ (N) → I p̄HGM

∗ (N∗) is an isomorphism for any open subset N of

X−X(d+1). So if x ∈ X−X(d+1), but x /∈ U , then for any open neighborhood Nx of x in

X −X(d+ 1), both I p̄HGM
∗ (Nx)→ I p̄HGM

∗ (N∗x) and I p̄HGM
∗ (Nx ∩U)→ I p̄HGM

∗ ((Nx ∩U)∗)

are isomorphisms. So using Mayer-Vietoris sequences, the Five Lemma, and the definition

of U , also I p̄HGM
∗ (Nx∪U)→ I p̄HGM

∗ ((Nx∪U)∗) is an isomorphism, which would contradict

the maximality of U . So X −X(d+ 1) ⊂ U .

Now suppose x ∈ X − U , so in particular x ∈ X(d + 1). Since X is a CS set, x has a

neighborhood N filtered homeomorphic to Rk× cL for some compact filtered L, which must

have depth≤ d. Let Y = N∩X(d+1)∩U ; this is an open subset of Rk×{v} and so a manifold

with trivial filtration. Since U contains all of X−X(d+ 1), the set Y has a neighborhood in

U homeomorphic to Y ×cL, and in fact N ∩U ∼= (Y ×cL)∪ (Rk× (cL−{v})), where v is the

cone vertex of cL. The intersection (Y ×cL)∩(Rk×(cL−{v})) ∼= Y ×(cL−{v}). By P (d), we

have I p̄HGM
∗ (Rk × (cL− {v})) ∼= I p̄HGM

∗ ((Rk × (cL− {v}))∗) and I p̄HGM
∗ (Y × (cL− v)) ∼=

I p̄HGM
∗ ((Y × (cL − v))∗). By Q(d), we have I p̄HGM

∗ (Y × cL) ∼= I p̄HGM
∗ ((Y × cL)∗). So

using the long exact Mayer-Vietoris sequences and the Five Lemma, also I p̄HGM
∗ (N ∩ U) ∼=

I p̄HGM
∗ ((N ∩ U)∗). But now I p̄HGM

∗ (U) ∼= I p̄HGM
∗ (U∗) by assumption and I p̄HGM

∗ (N) ∼=
I p̄HGM

∗ (N∗) by Q(d). So another Mayer-Vietoris and Five Lemma argument shows that

I p̄HGM
∗ (N ∪ U) ∼= I p̄HGM

∗ ((N ∪ U)∗).

But this contradicts the maximality of U if U 6= X, and so we must have U = X.

This completes the proof of Theorem 5.5.1.

5.6 Finite generation

It is often useful to know that the homology groups of certain “nice” compact spaces, such as

manifolds, are finitely generated. We can obtain such a theorem for the intersection homology
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of CS sets assuming that the local intersection homology groups are finitely generated. By an

inductive argument, this implies that the intersection homology groups of compact stratified

pseudomanifolds are finitely generated. Using the results of Section 5.4, it suffices to limit our

discussion in this section to singular intersection homology; by Theorem 5.4.2, the following

results will also hold in the PL setting.

Here is the relevant local definition. Note its similarities to our locally torsion free

conditions.

Definition 5.6.1. A CS set X is called locally (p̄,Z;G)GM -finitely-generated if G is a finitely

generated abelian group and, for each point x ∈ X, there is a link L of X such that

I p̄HGM
i (L;G) is finitely generated for each i.

Arguments completely analogous to those of Lemma 5.3.13 show that I p̄HGM
i (L;M)

being finitely generated is really a property of the stratum containing x. In other words, if

it is true of some link of some point in the stratum S, then it is true of all links of all points

in S.

Remark 5.6.2. The following proposition only requires that every point have a distinguished

neighborhood N ∼= Rk × cL such that each I p̄HGM
i (N ;G) is finitely generated. Thus, as

I p̄HGM
i (N ;G) ∼= I p̄HGM

i (L;G) only for some i, and is 0 otherwise, we do not need the full

force of Definition 5.6.1 here. We will, however, need the stronger assumptions below when

we discuss general Künneth theorems; see Section 6.4.1.

Proposition 5.6.3. Suppose X is a locally (p̄,Z;G)GM -finitely-generated CS set. Suppose

U ⊂ W are open subsets of X, that Ū ⊂ W , and that Ū is compact. Then the image of

I p̄HGM
i (U ;G) in I p̄HGM

i (W ;G) is finitely generated. In particular, if X is compact, then

each I p̄HGM
i (X;G) is finitely generated.

Proof. The proof of this proposition is taken from [28, Theorem V.3.5].

We first observe that the last claim follows from the general situation by taking U =

W = X. To prove the first statement, we will perform an induction on i. The proposition is

clearly true when i < 0. So we suppose that the statement holds for all i < k and consider

degree k.

We assume that W is fixed and let EW be the set of open subsets U ⊂ W such that Ū is

compact in W . Let E iW be the set of U ∈ EW such that im(I p̄HGM
i (U ;G)→ I p̄HGM

i (W ;G))

is finitely generated. We want to show that EkW = EW under the induction hypothesis

E iW = EW for all i < k. Suppose that V ∈ EkW and that U ⊂ V . Then im(I p̄HGM
k (U ;G) →

I p̄HGM
k (W ;G)) ⊂ im(I p̄HGM

k (V ;G) → I p̄HGM
k (W ;G)). So if V ∈ EkW , then U ∈ EkW , using

that Z is a Noetherian ring so that any submodule of a finitely generated module over Z (i.e.

of any finitely generated abelian group) is finitely generated; see [147, Chapter X]. Therefore,

it suffices to show that every compact set K ⊂ W has an open neighborhood V ⊃ K with

V in EkW .

As X is a CS set, every point x ∈ W has an open neighborhood N homeomorphic

to Rj × cL for some j and L that has compact closure in W ; if necessary, take a distin-

guished neighborhood homeomorphic to Rj× cL and then let N be a smaller open neighbor-

hood D̊r × csL within that (in the notation of Lemma 5.3.13) with closure homeomorphic
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to Dr × c̄sL. We know from stratified homotopy invariance and the cone formula that

I p̄HGM
k (N ;G) ∼= I p̄HGM

k (Rj × cL;G) is either 0 or isomorphic to I p̄HGM
k (L;G) or G, all

of which we have assumed to be finitely generated. So, again using that Z is Noetherian,

the image of I p̄HGM
k (N ;G) in I p̄HGM

k (W ;G) is finitely generated [147, Proposition X.1.1].

Therefore, N ∈ EkW . So now if K is any compact subset of W , there are U1, . . . , Um ∈ EkW
that cover K. We want to show that there is a single U ∈ EkW covering K, so we will show

that we can do an induction to decrease the number of elements of EkW needed to cover K.

Suppose we can show that any compact K ′ ⊂ W that can be covered by two elements of

EkW can be covered by one element of EkW and that K is covered by U1, . . . , Um ∈ EkW . Then

K ′ = K −
⋃m−2
j=1 Uj is compact and contained in Um−1 ∪ Um. So our assumption implies

there is a U ′m−1 ∈ EkW with K ′ ⊂ U ′m−1, and therefore K ⊂ U1 ∪ · · · ∪ Um−2 ∪ U ′m−1. Thus,

we could inductively reduce the number of elements of EkW needed to cover K down to one.

So, it remains to show that we can reduce covers of compact subspaces by two elements of

EkW to covers by one element.

So let U1, U2 ∈ EkW with K ⊂ U1∪U2. Let V1 be a neighborhood of K−U2 with V̄1 ⊂ U1.

As K − U2 is compact and contained in U1, such a V1 exists by Corollary 2.3.18. Then

K ⊂ V1 ∪ U2, and we can let V2 be an open neighborhood of K − V1 such that V̄2 ⊂ U2 for

the same reasons; see Figure 5.4. Then K ⊂ V1 ∪ V2, and we claim V1 ∪ V2 ⊂ EkW .

Figure 5.4: The open coverings of the argument

As V̄1 ⊂ U1 and V̄2 ⊂ U2, we have V1 ∪ V2 = V̄1∪ V̄2 ⊂ Ū1∪ Ū2. As U1, U2 ∈ EkW , it follows
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that V1 ∪ V2 is compact. Now, consider the following diagram:

I p̄HGM
k (V1;G)⊕ I p̄HGM

k (V2;G) - I p̄HGM
k (V1 ∪ V2;G) - I p̄HGM

k−1 (V1 ∩ V2;G)

I p̄HGM
k (U1;G)⊕ I p̄HGM

k (U2;G)
? α

- I p̄HGM
k (U1 ∪ U2;G)

β

? δ
- I p̄HGM

k−1 (U1 ∩ U2;G)

γ

?

I p̄HGM
k (W ;G).

�

νµ

-

The rows of this diagram are from the Mayer-Vietoris sequences. Our claim is that im(νβ)

is finitely generated. The image of µ is finitely generated because U1, U2 ∈ EkW , and so

im(να) is finitely generated. As ν(im(β)∩ im(α)) ⊂ im(να), the subgroup ν(im(β)∩ im(α))

is finitely generated. We also have im(β)
im(β)∩im(α)

∼= im(δβ) ⊂ im(γ). But we claim that im(γ)

is finitely generated by the induction hypothesis. Notice that

V1 ∩ V2 ⊂ V̄1 ∩ V̄2 ⊂ U1 ∩ U2 ⊂ Ū1 ∩ Ū2.

So the closure of the open set V1∩V2 is contained in the open set U1∩U2. Also, as U1, U2 ∈ EW ,

the closures Ū1 and Ū2 are compact, so V1 ∩ V2 is compact as a closed subset of Ū1 ∩ Ū2.

Therefore, im(γ) is finitely generated in dimension k − 1 by the induction assumption.

So, now ν(im(β) ∩ im(α)) and im(β)
im(β)∩im(α)

are finitely generated, and we can consider the

diagram of short exact sequences

0 - im(β) ∩ im(α) - im(β) -
im(β)

im(β) ∩ im(α)
- 0

0 - ν(im(β) ∩ im(α))

ν

?
- ν(im(β))

ν

?
- ν(im(β))/ν(im(β) ∩ im(α))

?
- 0.

The commutativity of the left square induces the vertical map on the right, which is well-

defined and surjective. Therefore, the bottom right group is finitely generated as a quotient

of a finitely generated group. And, lastly, the finite generation of the outer terms in the

bottom short exact sequence implies that ν(im(β)) = im(νβ) is finitely generated [147,

Proposition X.1.2].

Corollary 5.6.4. If G is a finitely generated abelian group and X is a compact recursive CS

set, in particular if X is a compact stratified pseudomanifold, then I p̄HGM
i (X;G) is finitely

generated for all i.

Proof. By Proposition 5.6.3, I p̄HGM
i (X;G) will be finitely generated if the intersection ho-

mology groups of the links are all finitely generated. But these must be lower depth compact
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recursive CS sets, so the result follows by induction on depth. In the base case, a depth 0

compact CS sets is a compact manifold, so all the links must be empty and the proof of the

proposition applies directly.

Remark 5.6.5. Similar results to those in this section hold by replacingG with a finitely gener-

ated module M over a Noetherian ring R. Then analogous assumptions on the I p̄HGM
i (L;M)

lead to analogous conclusions about I p̄HGM
i (X;M). We treat these sorts of coefficients more

explicitly in the setting of non-GM intersection homology; see Definition 6.3.38, Proposition

6.3.39, and Corollary 6.3.40.
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Chapter 6

Non-GM intersection homology

We now turn to “non-GM intersection homology,” I p̄H∗(X), a variant version of intersection

homology that is better suited to working with completely general perversities and that will

be necessary for our Poincaré duality results. While not the same as I p̄HGM(X) in general,

we do have I p̄H∗(X) ∼= I p̄HGM
∗ (X) when p̄ ≤ t̄, i.e. when p̄(S) ≤ codim(S)−2 for all singular

strata S, so the two theories are the same in many important cases, including when p̄ is a

GM perversity (see Section 3.1.1).

We begin the chapter by explaining in detail why this variant is necessary before pro-

ceeding on to the official definitions in Section 6.2. Section 6.3 is about the properties of

IH∗(X), most of which mirror those of IHGM
∗ (X). In fact, we largely cite our previous re-

sults, asking the reader to check that the proofs extend. For those instances that do require

some modification of a previous argument, we indicate the needed changes. We also take

the opportunity in Section 6.3.3 to provide a short discussion of intersection homology with

local coefficient systems.

In Section 6.4, we prove a Künneth theorem relating the intersection homology of the

product of two CS sets to the intersection homology of the individual spaces. See Theorem

6.4.7 for details. As we will see in Remark 6.4.12, this Künneth theorem is not true in

general using GM intersection homology. This further motivates our introduction of non-

GM intersection homology.

Section 6.5 contains some further technical propositions about splitting chains into pieces

that will be needed in later chapters.

6.1 Motivation for non-GM intersection homology

In order to proceed on to discuss intersection homology versions of Poincaré duality and

a general Künneth theorem, it is first necessary to modify the Goresky-MacPherson inter-

section homology, which is the theory we have been using thusfar. Our modified PL and

singular intersection chain complexes will be denoted simply I p̄S∗ and I p̄C∗, and the homol-

ogy groups will be denoted I p̄H∗ and I p̄H∗. Note that we have dropped the GM from the

notation. As we go along, we will explain why the modified definition is necessary and why

we consider it to be the “right” definition for intersection homology.
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Before providing the definition, we record the following facts that will be verified below:

1. For perversities p̄ for which p̄ ≤ t̄, i.e. p̄(S) ≤ codim(S) − 2 for all singular strata S,

our new intersection homology groups I p̄H∗ will be identical to the GM intersection

homology groups I p̄HGM
∗ considered to this point. In particular, this will be true for

any GM-perversity on any pseudomanifold without codimension one strata. In fact,

we will show in Proposition 6.2.9 the stronger fact that if p̄(S) ≤ codim(S) − 2 then

I p̄S∗(X;G) ∼= I p̄SGM∗ (X;G).

2. Versions of all our previous theorems will hold for I p̄H∗ with the exception of the

topological invariance. If p̄ is a perversity on a CS set X with p̄(S) > codim(S) − 2

for some singular stratum S, it will no longer be true in general that I p̄H∗(X) is

independent of the stratification of X.

3. If X is a compact oriented pseudomanifold, then we will see in Chapter 8 that there

are intersection homology versions of Poincaré duality. With field coefficients F , for

example, these can be formulated for I p̄H∗(X;F ) for any perversity p̄ but not neces-

sarily for I p̄HGM
∗ (X;F ) except in those cases where I p̄HGM

∗ (X;F ) ∼= I p̄H∗(X;F ) as

in the preceding remark.

To illustrate this last point, let us provide a sample computation. Looking ahead to

Theorem 8.5.11, if we let F = Q, then one consequence of Poincaré duality on a compact

oriented n-dimensional pseudomanifold X is an isomorphism

I p̄Hi(X;Q) ∼= Hom(IDp̄Hn−i(X;Q),Q) (6.1)

that corresponds to the nonsingularity of the intersection pairing on manifolds (see [71,

Section VIII.13]). Recall that Dp̄ is defined so that

Dp̄(S) = t̄(S)− p̄(S) = codim(S)− 2− p̄(S)

for singular strata S.

For our example, let ST be the suspension of the trivially filtered torus T = S1 × S1.

The only singular strata of ST are the two suspensions points {n, s}. Let p̄ be the perversity

such that p̄({n}) = p̄({s}) = 2, which is one less than the codimension of the singular strata.

Then Dp̄({n}) = Dp̄({s}) = −1.

Employing our suspension computation of Theorem 4.4.21, together with the Universal

Coefficient Theorem for Q coefficients (Corollary 5.3.17), we have the following results:

I p̄HGM
i (ST ;Q) ∼=


Q, i = 3,

Q⊕Q, i = 2,

0, i = 1,

Q, i = 0,

IDp̄HGM
i (ST ;Q) ∼=


0, i = 3,

Q, i = 2,

Q⊕Q, i = 1,

Q, i = 0.
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Note the asymmetry that prevents (6.1) from being possible for all i. By contrast, we

will see below in Theorem 6.3.13 that the following formulas hold:

I p̄Hi(ST ;Q) ∼=


Q, i = 3,

Q⊕Q, i = 2,

Q, i = 1,

0, i = 0,

IDp̄Hi(ST ;Q) ∼=


0, i = 3,

Q, i = 2,

Q⊕Q, i = 1,

Q, i = 0,

and the restored symmetry is a reflection of Poincaré duality between I p̄H∗ and IDp̄H∗
To get a first idea of where the problem lies with IHGM

∗ , let us consider a related situation

we studied in Example 4.4.22. There, we let M be a trivially filtered compact n-dimensional

∂-manifold with ∂M 6= ∅, and we studied the intersection homology of M+ = M ∪∂M
c̄(∂M) ∼= M/∂M . Under the assumption that p̄({v}) ≤ n− 2, where v is the cone point, we

computed that

I p̄HGM
i (M+) ∼=


Hi(M,∂M), i > n− p̄({v})− 1,

im(Hi(M)→ Hi(M,∂M)), i = n− p̄({v})− 1,

Hi(M), i < n− p̄({v})− 1.

We also noted that this formula hints at the coming duality theorems because, assuming M

is oriented, Lefschetz duality provides a nonsingular pairing of the groups Hi(M,∂M ;F ) and

Hn−i(M ;F ) with field coefficients F . But we see here that for large i the group I p̄HGM
i (M+)

is not behaving like an absolute homology group, it is behaving like the relative homology

group Hi(M,∂M). And the larger p̄({v}) is, the more degrees i for which this is the case.

If we did let p̄({v}) ≥ n− 1, then we might expect to also see relative homology behavior in

degree 0, but this is not what happens. In fact, if M is connected then I p̄HGM
0 (M+) ∼= Z by

Example 3.4.6. We could also arrive at this conclusion using the Mayer-Vietoris sequence

and the cone formula as in the computation of Example 4.4.22.

In fact, the same “problem” can be observed in the cone formula itself, as we noted in

Remark 4.2.2. Recall that if X is a compact n− 1 dimensional filtered space and we assume

that X has regular strata (so that I p̄HGM
0 (X) 6= 0), then Theorem 4.2.1 gives

I p̄HGM
i (cX) ∼=


0, i ≥ n− p̄({v})− 1, i 6= 0,

Z, i = 0 ≥ n− p̄({v})− 1,

I p̄HGM
i (X), i < n− p̄({v})− 1.

Notice that “most” of the cases here follow a fairly simple formula: There is a cut-off

dimension at n − p̄({v}) − 1. At this dimension and above, the intersection homology of

the cone is 0. Below this dimension, we simply recover the intersection homology of X.

The smaller the value of p̄({v}), the more of I p̄HGM
i (X) we recover; the greater the value

of p̄({v}), the more of I p̄HGM
i (X) gets killed to 0. The discrepancy from this nice pattern

arises as p̄({v}) gets so big as to be ≥ n− 1. Following the pattern, we would expect in this

situation that all of the intersection homology groups of the cone should vanish, but rather we
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maintain the stable situation that I p̄HGM
0 (cX) ∼= Z no matter how large p̄({v}) gets beyond

this point. Once again, this reflects intersection homology behaving like absolute homology

and not relative homology, even though we have seen hints that it would be “better” for it

to behave like relative intersection homology when the degree is high compared to a cut-off

degree depending on the perversity1.

So how do we modify our definitions to ensure that I p̄H0(cX) = 0 for large enough

p̄({v})? The idea is to replace I p̄SGM∗ with a chain complex that does behave a bit more

like the relative chain complex, in particular something like S∗(cX, {v}) = 0, at least in low

degrees when p̄({v}) is large enough. This gives H0(cX, {v}) = 0 because all 0-simplices are

homologous to the 0-simplex at v, which is trivial in the relative chain group. Unfortunately,

however, for a general n-dimensional filtered space X, the solution is not quite as simple

as replacing I p̄SGM∗ (X) with I p̄SGM∗ (X,ΣX) ∼= I p̄SGM∗ (X)/I p̄SGM∗ (ΣX), where ΣX is the

singular locus of X (see Definition 2.2.13). By our definitions in Section 4.3, the most natural

meaning for I p̄SGM∗ (ΣX) in this context would be as the chain complex of p̄-allowable chains

on X that are supported in ΣX . If, for example, p̄(S) = codim(S)−1 for all singular S, which

is one of the perversities we’re concerned about, then this would mean that any allowable

i-simplex must have σ−1(S) contained in the i− codim(S) + p̄(S) skeleton of ∆i. But with

our assumptions,

i− codim(S) + p̄(S) = i− codim(S) + codim(S)− 1 = i− 1,

which implies that any allowable simplex must map the interior of ∆i to a regular stratum.

So I p̄SGM∗ (ΣX) = 0! This is clearly no good, as we’d just have I p̄SGM∗ (X,ΣX) = I p̄SGM∗ (X)

again. But we also don’t want to quotient out by chains that are not contained in the

singular set, because then we will start to lose the absolute homology behavior we need for

lower degrees. What to do?

In the next section, we discuss two solutions2 to defining I p̄S∗(X) so that it provides the

behavior that we want in all degrees. These were introduced independently by the author in

[85] and by Saralegi in [204]. The two approaches look different at first, but they turn out to

be essentially identical (though that of the author has a slightly broader applicability to local

coefficient situations, see [85]). We will first present the author’s original description, though

in somewhat different language; then we will discuss Saralegi’s version of the definition. Since

coefficients will play an important role in what follows, we use coefficients in an abelian group

G throughout the discussion.

1The bad behavior of IHGM
∗ on cones also deviates from the Goresky-MacPherson sheaf-theoretic de-

scription of intersection homology. Lamentably, a discussion of this is beyond the purview of this book, but

see [91] for an expository account.
2In the setting of subanalytic chains, an alternative solution obtained by throwing away the singular set

altogether and working with locally-finite chains on the regular strata was first hinted at in unpublished

lecture notes of MacPherson’s [156]. In this case, ΣX becoming something like an “end” of X−ΣX off which

boundaries of infinite chains vanish. However, once one begins using infinite chains, it changes the structure

of the theory in other ways. This is not all bad, as this is in fact the key to connecting the chain theory and

sheaf theory formalisms of intersection homology! But we will not pursue this here.
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6.2 Definitions of non-GM intersection homology

We have just seen in the preceding discussion that we wish to alter the intersection chain

complex so that it yields, in the appropriate circumstances, something more like relative

homology groups than absolute homology groups. To gain further insight, it is interesting

to analyze just why it is that the absolute homology of a cone does not vanish in degree 0

even as it does vanish in all other degrees. So suppose ξ is an i-cycle in cX with i > 0. Then

we know that the singular cone c̄ξ (see Example 3.4.7) provides a null-homology of ξ — it is

a chain whose boundary is ξ. However, suppose σ is a 0-simplex in cX − {v}. We can still

form the cone c̄σ, but now ∂c̄σ = σ − σv, where σv is the 0-simplex whose image is v; we

have already observed this phenomenon before when computing the intersection homology

of the cone. The result is that c̄σ does not provide a null-homology, but simply a homology

from σ to σv. Therefore every 0-simplex is homologous to the cone point, but neither is

null-homologous. Hence H0(cX) ∼= Z, due to this special property of 0-cycles compared to

cycles of higher dimensions. On the other hand, H0(cX, {v}) does vanish because c̄σ gives

a homology from σ to σv, which is declared to represent 0 in S0(X, {v}).
So, continuing to think about cones, we want something like the following: When the

perversity at {v} is large, we want the relative homology behavior, i.e. c̄σ should somehow

provide a homology from σ to something trivial. When the perversity at {v} is small, we

want something more like the absolute behavior. We will first achieve the former goal by

brute force: we will simply declare that boundary pieces of allowable simplices that land in

the singular strata should vanish. Remarkably, this then works out in all perversity ranges

because when the perversity is small the allowability requirements will “keep simplices away

from the singular strata” so that our mandated vanishings don’t come into play. But for high

perversities, this extra vanishing of boundaries in Σ provides exactly the relative behavior

we need.

6.2.1 First definition of IH∗

Throughout this section, let X be an n-dimensional filtered space with perversity p̄ and

singular locus Σ = ΣX , and let G be an abelian group.

There are essentially two pieces to our first definition of the non-GM intersection chain

complex I p̄S∗(G;X). Unlike the definition of the ordinary relative chain complex S∗(X,Σ;G),

this definition will not use quotient complexes, but we will impose some similar properties

by hand. We do use quotient complexes in our other definitions, given below.

First, inspired by the behavior of S∗(X,Σ;G), we want to make sure that no simplices

are contained completely in Σ. To this end, we let S p̄i (X;G) ⊂ Si(X;G) be generated by

the p̄-allowable i-simplices σ with support |σ| 6⊂ |Σ|. We do not yet place a requirement on

the boundaries of such chains because our second step will be to alter the definition of the

boundary map.

To further mirror relative chain behavior, we need that any part of the boundary of a

chain in S p̄i (X;G) that is contained in Σ must be treated as trivial. We do this by brute

force by altering the boundary map. Suppose that σ is a p̄-allowable i-simplex and that
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∂σ =
∑i

j=0(−1)jσj with σj the jth face of σ (i.e. σj = σ|[0,...,ĵ,...,i]). We define

∂̂σ =
∑
|σj |6⊂ΣX

(−1)jσj.

In other words, ∂̂σ is obtained from ∂σ by throwing out the simplices with image in Σ;

see Figure 6.1. If we extend ∂̂ linearly to ∂̂ : S p̄i (X;G) → Si−1(X;G), we see that ∂̂ξ for

ξ ∈ S p̄i (X;G) can also be described by taking ∂ξ and then throwing out any simplices with

support in Σ. So if we write ∂ξ =
∑
gττ with each gτ ∈ G, then we can separate out this

boundary chain into two pieces ∂ξ =
∑
|τ |⊂ΣX

gττ +
∑
|τ |6⊂ΣX

gττ ; then ∂̂ξ =
∑
|τ |6⊂ΣX

gττ .

Figure 6.1: Left: a 2-simplex σ with one facet in Σ. Right: ∂̂σ omits the simplex contained

in Σ.

If X is a PL filtered space with triangulation T , we can define simplicial chain groups

CT,p̄
i (X) with a modified boundary map ∂̂ determined analogously by taking the usual bound-

ary map and then throwing out any terms coming from simplices contained in Σ. We will

show below that in both the singular and simplicial settings we have ∂̂∂̂ = 0 so that we can

define the non-GM intersection chain complex as follows:

Definition 6.2.1 (Non-GM intersection homology (first definition)). Let I p̄Si(X;G) con-

sist of those chains in S p̄i (X;G) whose image under ∂̂ is contained in S p̄i−1(X;G), i.e.

such that each simplex of ∂̂ξ is p̄-allowable. This gives a chain complex I p̄S∗(X;G) with

chain groups I p̄Si(X;G) and with boundary map ∂̂. These are the perversity p̄ (non-

GM) intersection chain complexes, and the (non-GM) intersection homology groups are

I p̄H∗(X;G) = H∗(I
p̄S∗(X;G)).

Simplicial and PL chain complexes I p̄CT
∗ (X;G) and I p̄C∗(X;G) = lim−→ I p̄CT

∗ (X;G) and

homology groups I p̄HT
∗ (X) = H∗(I

p̄CT
∗ (X;G)) and I p̄H∗(X;G) = H∗(I

p̄C∗(X;G)) are de-

fined analogously.

Remark 6.2.2. Important Note: Throughout this chapter we continue to use the notation

∂̂ for the boundary map of the chain complex I p̄S∗(X;G). However, once we have become
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more used to the notion, we will relapse to using the generic notation ∂ for this chain

complex unless we specifically need to emphasize the distinction between different geometric

boundary maps.

There is a bit of work still required to ensure that the preceding definitions all make

sense. First, we verify that we always have ∂̂∂̂ = 0 so that we do have chain complexes.

Then we’ll check that subdivision does induce chain maps I p̄CT
∗ (X;G) → I p̄CT ′

∗ (X;G) so

that I p̄C∗(X;G) is well defined.

Lemma 6.2.3. I p̄S∗(X;G) and I p̄CT
∗ (X;G) are chain complexes.

Proof. The argument is the same for both, so we focus on the singular chain case.

We first note that if ξ, η ∈ S p̄i (X), then so is ξ+ η. Furthermore, if ∂ξ =
∑
|σj |⊂ΣX

cjσj +∑
|σj |6⊂ΣX

cjσj and ∂η =
∑
|τk|⊂ΣX

dkτk +
∑
|τk|6⊂ΣX

dkτk, then ∂̂ξ =
∑
|σj |6⊂ΣX

cjσj and ∂̂η =∑
|τk|6⊂ΣX

dkτk, so certainly ∂̂ξ + ∂̂η = ∂̂(ξ + η). It is also evident from the construction that

the image of ∂̂ applied to I p̄Si(X;G) lies in I p̄Si−1(X;G), so long as ∂̂∂̂ = 0.

Lastly, we observe that ∂̂2 = 0: By definition, ∂ξ = ∂̂ξ + ζ, where ζ consists of simplices

in ΣX , so we have ∂̂ξ = ∂ξ − ζ. Analogously then, ∂̂(∂̂ξ) = ∂(∂̂ξ) − ζ2 = ∂(∂ξ − ζ) − ζ2,

where ζ2 contains the simplices of ∂(∂̂ξ) contained in ΣX . But then

∂̂(∂̂ξ) = ∂(∂ξ − ζ)− ζ2

= ∂∂ξ − ∂ζ − ζ2

= 0− ∂ζ − ζ2.

But since all simplices of ∂ζ and ζ2 lie in ΣX and since ∂̂(∂̂ξ) can contain no such simplices,

we must have −∂ζ − ζ2 = 0.

Lemma 6.2.4. Subdivision induces chain maps I p̄CT
∗ (X;G)→ I p̄CT ′

∗ (X;G), and so I p̄H∗(X;G) =

lim−→H∗(I
p̄CT
∗ (X;G)) is well defined.

Proof. Recall that all admissible triangulations of X are assumed compatible with the fil-

tration.

If σ is an allowable i-simplex of the triangulation T and |σ| 6⊂ Σ, then every i-simplex s in

any subdivision of σ is allowable by Lemma 3.3.15 and also not contained in Σ (else Σ would

intersect the interior of σ and thus contain σ). So subdivision takes allowable simplices not

contained in Σ to chains composed of allowable simplices not contained in Σ.

It thus remains only to verify that the maps ∂̂ commutes with subdivision. Let σ be an

i-simplex in the triangulation T and σ′ the image of σ in the subdivision T ′ of T . On the one

hand, the chain ∂̂σ′ is obtained from ∂σ′ by throwing out the i− 1 simplices of ∂σ′ that are

contained in Σ. On the other, if (∂̂σ)′ is the subdivision of ∂̂σ, then this chain differs from

(∂σ)′ = ∂σ′ in that it is missing the i− 1 simplices of ∂σ′ contained in the i− 1 simplices of

∂σ that are contained in Σ. So we show that the i − 1 simplices of ∂σ′ that are contained

in Σ are precisely the i − 1 simplices of ∂σ′ contained in the i − 1 simplices of ∂σ that are

contained in Σ.

259



If τ is an i− 1 face of σ with τ ⊂ Σ, then clearly any simplex of the induced subdivision

(or any subdivision) τ ′ of τ is contained in Σ. Conversely, suppose some i− 1 simplex t of σ′

is contained in Σ. If t is not contained in some i−1 face τ of σ, then Σ intersects the interior

of σ and so σ ⊂ Σ, a contradiction as σ ∈ S p̄i (X) implying that |σ| 6⊂ Σ. If t is contained in

some i − 1 face τ of σ, then similarly all of τ must be contained in Σ. This completes the

proof of the claim.

6.2.2 Second definition of IH∗

A more formal formulation of I p̄S∗(X;G), closer to the definition of Saralegi of [204], is as

follows: Let Ap̄Si(X;G) be the subgroup of Si(X;G) generated by the allowable simplices

of X (with no assumption on boundaries or containment in ΣX). Then I p̄SGMi (X;G) can

be described as Ap̄Si(X;G) ∩ ∂−1(Ap̄Si−1(X;G)). Instead, let

I p̄S ′i(X;G) =
(Ap̄Si(X;G) + Si(ΣX ;G)) ∩ ∂−1(Ap̄Si−1(X;G) + Si−1(ΣX ;G))

Si(ΣX ;G)
. (6.2)

The idea is that we add to the allowable simplices all of the singular simplices living in ΣX

in order to quotient them out, but we do this in such a way as to maintain a chain complex.

If we had just used Ap̄Si(X;G)+Si(ΣX ;G)
Si(ΣX ;G)

, not only would this just be the same as the quotient

of Ap̄Si(X;G) by any allowable simplices supported in ΣX , but we could also have some

elements whose boundaries contain non-allowable simplices that are not contained in ΣX , so

we would not have a chain complex. The definition we have provided for I p̄S ′i(X;G) clearly

does not have this problem. Additionally, we note that I p̄S ′i(X;G) is well defined because

Si(ΣX ;G) ⊂ Ap̄Si(X;G) + Si(ΣX ;G)

and also

Si(ΣX ;G) ⊂ ∂−1(Ap̄Si−1(X;G) + Si−1(ΣX ;G))

as every boundary of an element of Si(ΣX ;G) lies in Si−1(ΣX ;G).

We define I p̄CT,′
∗ (X;G) analogously, and let I p̄C′∗(X;G) = lim−→(I p̄CT,′

∗ (X;G)). This is well

defined as subdivision preserves each of the component groups in the simplicial analogue of

(6.2).

Despite the different approaches, these definitions in fact yield isomorphic chain com-

plexes to those defined previously:

Lemma 6.2.5. I p̄S∗(X;G) ∼= I p̄S ′∗(X;G), and similarly for the simplicial and PL versions.

Proof. As I p̄S∗(X;G) ⊂ S p̄∗(X;G) ⊂ Ap̄S∗(X;G), we will have canonical inclusion induced

homomorphisms i : I p̄Si(X;G)→ I p̄S ′i(X;G) provided we also have

I p̄Si(X;G) ⊂ ∂−1(Ap̄Si−1(X;G) + Si−1(ΣX ;G)).

But if ξ ∈ I p̄S∗(X;G), then by definition ∂ξ = ∂̂ξ + η, where |η| ⊂ ΣX and ∂̂ξ must be

composed of allowable simplices by definition of I p̄S∗(X;G). So indeed ∂ξ ∈ Ap̄Si−1(X) +
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Si−1(ΣX ;G). The inclusion i is also a chain map since ∂i(ξ) will be represented by ∂ξ = ∂̂ξ+η,

which is equivalent in I p̄S ′∗(X;G) to ∂̂ξ, because |η| ⊂ Si−1(X;G). But ∂̂ξ also represents

i(∂̂ξ).

Next we observe that i is injective since by definition I p̄S∗(X;G) ⊂ S p̄∗(X;G) and

S p̄∗(X;G) consists of simplices whose images do not lie completely in ΣX .

Finally, we show that i is surjective. Let

x ∈ (Ap̄Si(X;G) + Si(ΣX ;G)) ∩ ∂−1(Ap̄Si−1(X;G) + Si−1(ΣX ;G)).

By definition, x can be written as a sum ξ+η with ξ ∈ Ap̄Si(X;G) and η ∈ Si(ΣX ;G). This

decomposition is not necessarily unique, but we may assume that ξ contains no simplices

contained completely in ΣX , which will make the decomposition unique. We claim that in

fact ξ represents an element of I p̄Si(X;G) so that i(ξ) = x. We only need to show that

∂̂ξ ⊂ S p̄i−1(X;G). But we know that

∂x = ∂(ξ + η) ∈ Ap̄Si−1(X;G) + Si−1(ΣX ;G),

hence any simplex of ∂(ξ + η) = ∂ξ + ∂η that is not contained in ΣX must be allowable. As

η is contained in Σ, any simplex of ∂(ξ + η) not contained in Σ must be part of ∂ξ, and this

includes all of the simplices of ∂̂ξ. Thus all simplices of ∂̂ξ are allowable, as required.

The proof for the simplicial/PL versions is the same.

Remark 6.2.6. It will be useful for later to record the following facts from the proof of the

lemma: Suppose x is a chain representing an element of I p̄S ′∗(X;G), and let ξ be the chain

obtained by throwing away any terms in x coming from simplices contained in ΣX . Then

ξ and x represent the same element of I p̄S ′∗(X;G) and ξ also represents the corresponding

element of I p̄S∗(X;G). In particular, we can always represent an element of I p̄S ′∗(X;G) by

an element of I p̄S∗(X;G), and we typically assume that we do so.

Ordinarily, we might be concerned about creating new unallowable boundary terms when

we start throwing away pieces of chains, but since any such new boundary simplices must

be contained in ΣX , they do not contribute to ∂̂ and so causes no problems.

This lemma demonstrates that our two approaches to non-GM intersection chains via

I p̄S∗(X;G) and I p̄S ′∗(X;G) are equivalent, and hence yield the same intersection homology

groups, which we will denote I p̄H∗(X;G) in either setting. The author has some preference

for the first definition since it avoids a complicated quotient formula and eliminates the

ambiguities that arise when dealing with quotient groups. It is also suited for handling local

coefficient systems that don’t extend to Σ (see Section 6.3.3). Another benefit of the first

definition is that it allows us to easily convert proofs we have already given for properties

of I p̄HGM
∗ (X;G) to proofs of properties of I p̄H∗(X;G), which we shall do later in this

chapter. However, the second definition certainly has the advantage of a clear mathematical

formula. It also highlights that the non-GM intersection chain complexes can be thought

of as subcomplexes of the relative chain complexes S∗(X,ΣX ;G), though, once again, we

will show shortly that this approach does recover I p̄HGM
∗ for perversities with p̄ ≤ t̄. In

this case, the perversity conditions limit the behavior of chains near ΣX sufficiently that the

quotienting out of the chains in Σ becomes irrelevant for the homology computation.
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As we proceed, we will feel free to use whichever of I p̄S∗(X;G) or I p̄S ′∗(X;G) better

suits the task at hand. Before moving on, however, we present a third equivalent definition,

which is Saralegi’s from [204]. Beyond the historical interest, this definition also has a very

nice use in proving Proposition 6.2.9, below.

Remark 6.2.7. Important note: Analogously to our comments in Remark 6.2.2 concerning

the notation ∂̂, once we move on to later chapters in which the precise definition of the

singular intersection chain complex is less relevant, we will revert to the notation I p̄S∗(X;G)

with boundary map written simply ∂ except in those instances where it is necessary to utilize

the distinction between I p̄S∗(X;G) and I p̄S ′∗(X;G) explicitly.

6.2.3 Third definition of IH∗

Next, we provide Saralegi’s definition of intersection chains, which is a version of our second

definition. The main difference is that instead of including and then quotienting out all of

S∗(ΣX ;G), instead we only include and quotient out the allowable chains on those strata for

which the perversity is “too big.” Following our cone computations above, this is reasonable,

since these are the strata for which distinguished neighborhood computations will be affected

by the “faulty” cone formula.

We will denote Saralegi’s chain complex from [204] as3 I p̄S ′′∗ (X;G). To define it, we

continue to let Ap̄Si(X;G) denote the groups generated by the p̄-allowable i-simplices of

X, and we let X p̄ denote the closure of the union of the singular strata S of X such that

p̄(S) > codim(S) − 2. Then, for a perversity q̄, let Aq̄Si(X
p̄;G) be generated by the q̄-

allowable i-simplices with support in X p̄. We then define

I p̄S ′′i (X;G) =
(Ap̄Si(X;G) + Ap̄+1Si(X

p̄;G)) ∩ ∂−1 (Ap̄Si−1(X;G) + Ap̄+1Si−1(X p̄;G))

Ap̄+1Si(X p̄;G) ∩ ∂−1Ap̄+1Si−1(X p̄;G)
.

Here p̄+ 1 is the perversity such that (p̄+ 1)(S) = p̄(S) + 1 for all singular strata S, while of

course we must have (p̄ + 1)(R) = 0 for R a regular stratum. Once again, there analogous

simplicial and PL chain complexes.

We show that I p̄S ′′∗ (X;G) is also isomorphic to I p̄S∗(X;G).

Lemma 6.2.8. The chain map

i : I p̄S ′′∗ (X;G)→ I p̄S ′∗(X;G)

induced by the inclusion Ap̄+1S∗(X
p̄;G) ↪→ S∗(Σ) is an isomorphism. Hence,

I p̄S∗(X;G) ∼= I p̄S ′∗(X;G) ∼= I p̄S ′′∗ (X;G).

Similarly for the simplicial/PL versions.

Proof. The argument relies on the following two facts:

3Saralegi’s original notation was SC p̄∗ (X,Xq̄;G), where q̄ = Dp̄.
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1. If σ is a p̄-allowable i-simplex, then each i − 1 simplex of ∂σ is p̄ + 1 allowable:

By definition, for each singular stratum S the preimage σ−1(S) is contained in the

i − codim(S) + p̄(S) skeleton of ∆i. But if F is any i − 1 face of ∆i, then σ|−1
F (S) =

σ−1(S)∩F ⊂ σ−1(S), and so this set must also be contained in the i−codim(S)+ p̄(S)

skeleton of F . We now simply observe that i− codim(S) + p̄(S) = i− 1− codim(S) +

p̄(S) + 1. So σ|F is a p̄+ 1 allowable i− 1 simplex.

2. If σ is a p̄ or p̄ + 1 allowable simplex with |σ| ⊂ Σ, then |σ| ⊂ X p̄: As p̄-allowable

implies p̄+1 allowable, it suffices to assume the latter. So suppose σ is a p̄+1 allowable

j-simplex, and let S be a singular stratum with p̄(S) ≤ codim(S) − 2. By definition,

σ−1(S) is contained in the

j − codim(S) + p̄(S) + 1 ≤ j − codim(S) + codim(S)− 2 + 1 = j − 1

skeleton of ∆j. So σ cannot take any points of the interior of ∆j to S. As |σ| ⊂ Σ, it

follows that σ must map the interior of ∆j to X p̄, and hence it takes all of ∆j to X p̄,

as X p̄ is a closed set.

Now we prove that i is injective.

Suppose the chain ξ represents an element of I p̄S ′′i (X;G) and that i(ξ) = 0. This means

that |ξ| ⊂ Σ. We claim that this implies that |ξ| ⊂ X p̄. Indeed, by definition, ξ can

be written as a sum ξ = x + y with x ∈ Ap̄Si(X;G) and y ∈ Ap̄+1Si(X
p̄;G). Certainly

|y| ⊂ X p̄ ⊂ Σ by definition, and so we also have |x| = |ξ − y| ⊂ |ξ| ∪ |y| ⊂ Σ. So by

item (2), we have |x| ⊂ X p̄, and it follows that |ξ| = |x + y| ⊂ |x| ∪ |y| ⊂ X p̄. Also, by

definition, every simplex of x and y is p̄+ 1 allowable, as p̄-allowable implies p̄+ 1-allowable,

so ξ ∈ Ap̄+1Si(X
p̄;G). Next, we have by definition, ∂ξ ∈ Ap̄Si−1(X;G) + Ap̄+1Si−1(X p̄;G),

and our assumption that |ξ| ⊂ Σ implies that |∂ξ| ⊂ Σ. So by the same argument as for ξ

itself, we must have ∂ξ ∈ Ap̄+1Si−1(X p̄;G). So

ξ ∈ Ap̄+1Si(X
p̄;G) ∩ ∂−1(Ap̄+1Si−1(X p̄;G)),

which implies then that ξ = 0 ∈ I p̄S ′′∗ (X;G). This completes the proof that i is injective.

For surjectivity, let ξ ∈ I p̄S ′i(X;G) be represented by the sum x+y with x ∈ Ap̄Si(X;G)

and y ∈ Si(Σ;G). We may assume that all simplices of x+ y that have image in Σ are part

of y so that no simplex of x has image in Σ. As y ∈ Si(Σ;G) and ∂y ∈ Si−1(Σ;G), the

chain y represents 0 in I p̄S ′∗(X;G). So ξ can be represented by x ∈ Ap̄Si(X;G) alone. We

also know ∂ξ = ∂x ∈ Ap̄Si−1(X;G) + Si−1(Σ;G). To show i surjective, we need to verify

that in fact ∂x ∈ Ap̄Si−1(X;G) + Ap̄+1Si−1(X p̄;G), as this will imply that x represents an

element of I p̄S ′′i (X;G). As every simplex of x is p̄-allowable, item (1) above tells us that ∂x

consists of p̄ + 1 allowable simplices, and we can write ∂x = a + b with a ∈ Ap̄Si−1(X;G)

and b ∈ Si−1(Σ;G). As ∂x and a consist of p̄ + 1 allowable simplices, so must b = ∂x − a,

and so each simplex of b is supported in X p̄ by (2). Thus ∂x decomposes as desired.

6.2.4 Non-GM intersection homology below the top perversity

Saralegi’s definition gives us perhaps the shortest route towards seeing that I p̄S∗(X;G) ∼=
I p̄SGM∗ (X;G) when p̄(S) ≤ t̄(S) for all singular strata S.
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Proposition 6.2.9. Let X be a filtered space. If p̄(S) ≤ t̄(S) for all singular strata S of X,

then I p̄S∗(X;G) ∼= I p̄SGM∗ (X;G), and similarly for the PL versions.

Proof. If p̄(S) ≤ t̄(S), then p̄(S) ≤ codim(S)− 2. So there are no singular strata on which

p̄(S) > codim(S)− 2, and so X p̄ is empty! So

I p̄S ′′∗ (X;G) = Ap̄S∗(X;G) ∩ ∂−1(Ap̄S∗−1(X;G)),

which is precisely I p̄SGM∗ (X;G). The result now follows from Lemma 6.2.8. The PL argu-

ment is identical.

Remark 6.2.10. Here is another way to prove Proposition 6.2.9, this time working with

I p̄S∗(X;G) directly. Recall that S p̄∗(X;G) is the complex generated by the p̄-allowable

simplices. If p̄ ≤ t̄, then for every i, we have

i− codim(S) + p̄(S) ≤ i− codim(S) + codim(S)− 2 = i− 2.

So in order for an i-simplex σ to be allowable, σ−1(S) must be contained in the i−2 skeleton

of ∆i for any singular stratum S, and so σ−1(ΣX) ⊂ {i− 2 skeleton of ∆i}. But this implies

that no i or i−1 dimensional face of σ can be contained completely in ΣX . This in turn tells

us that ∂̂ = ∂ when applied to elements of S p̄(X;G). By definition, I p̄S∗(X;G) consists of

those elements ξ ∈ S p̄∗(X;G) such that ∂̂ξ ∈ S p̄∗(X;G). But in this case, this means precisely

that every simplex of ξ must be allowable and every simplex of ∂ξ must be allowable. But

this is precisely the definition of I p̄SGM∗ (X;G).

So when p̄(S) ≤ t̄(S) for all singular strata of X, we get nothing new. However, when

p̄(S) > t̄(S) for some S, we indeed get something different. One way to see this is to

observe that when p̄(S) > t̄(S) for some S, the groups I p̄H∗(X;G) are not always topological

invariants for a CS set even if the conditions of Theorem 5.5.1 hold; i.e. I p̄H∗(X;G) may

depend on the filtration.

Example 6.2.11. Let R be the unfiltered real line, and let 0̄ be the zero perversity. Then

I 0̄S∗(R) = I 0̄SGM∗ (R) = S∗(R), so

I 0̄H0(R) = I 0̄HGM
0 (R) = H0(R) ∼= Z.

Now suppose we form the CS set X by filtering R instead as {0} ⊂ R, keeping the

perversity 0̄. The conditions of Theorem 5.5.1 hold, so

I 0̄HGM
0 (X) ∼= I 0̄HGM

0 (R) ∼= H0(R) ∼= Z.

But now, let σx be the 0-simplex with image at x 6= 0 ∈ R. Let ex be the linear 1-simplex with

boundary σx− σ0. Then e−1
x ({0}) is in the 0-skeleton of ∆1, and 1− codim({0}) + 0̄({0}) =

1 − 1 + 0 = 0, so ex is allowable. Furthermore, ∂̂ex = σx. So ex gives a null-homology of

σx in I 0̄S∗(X), and therefore I 0̄H0(X) = 0. In particular, I 0̄H0(X) � I 0̄HGM
0 (X), and so

I 0̄H0(X) � I 0̄H0(R).
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Remark 6.2.12. As we have seen that non-GM intersection homology can behave more like

relative homology than absolute homology, and in particular that it can be trivial in degree

0, the non-GM intersection chain complex does not necessarily possess an augmentation map

a : I p̄S0(X;G)→ G so that

I p̄S1(X;G)
∂−→ I p̄S0(X;G)

a−→ G→ 0

is exact. Of course if p̄ ≤ t̄, then I p̄S∗(X;G) ∼= I p̄SGM∗ (X;G) and so there is an augmentation

map in this case by Definition 4.3.18.

6.2.5 A new cone formula

Of course, the groups I p̄S∗(X) should not equal I p̄SGM∗ (X) in all cases because the entire

point of introducing I p̄S∗(X) was to modify the cone formula. Let us now verify that we

have done that successfully.

Theorem 6.2.13. If X is a compact filtered space of formal dimension n− 1, then

I p̄Hi(cX;G) ∼=

{
0, i ≥ n− p̄({v})− 1,

I p̄Hi(X;G), i < n− p̄({v})− 1.

Furthermore, the isomorphisms of the last case are induced by inclusion. An equivalent

conclusion holds for PL intersection homology when X is a compact PL filtered space.

Proof. The proof is nearly exactly the same as that of Theorems 4.2.1 and 5.3.5 except for

the special computations that were required in dimension 0. We outline the arguments again,

highlighting the necessary modifications.

If ξ is an i-cycle in I p̄Si(cX;G) for i ≥ n − p̄({v}) − 1, i > 0, then, as in the proof of

Theorem 4.2.1, we can check that c̄ξ is allowable and its boundary is ξ: As ξ ∈ I p̄Si(cX;G),

it has no simplices in ΣcX and therefore neither does c̄ξ. As we assume that ξ is an i-cycle,

we have ∂̂ξ = 0. As a chain in S∗(cX;G), we will have ∂ξ = ∂̂ξ + η, where η is contained in

ΣcX . So then ∂(c̄ξ) = ξ − c̄(∂ξ) = ξ − c̄(∂̂ξ + η). Since η is supported in ΣcX , so is c̄η, and

we have assumed that ∂̂ξ = 0. Therefore, ∂̂(c̄ξ) = ξ, using that no simplex of ξ is contained

in ΣcX . The allowability of the simplices of c̄ξ follows from the allowability of the simplices

of ξ as in the proof of Theorem 4.2.1.

But now, remarkably, the argument of the preceding paragraph continues to hold even

if i = 0 ≥ n − p̄({v}) − 1, which wasn’t the case in the proof of Theorem 4.2.1: With this

perversity assumption, if σ is an allowable 0-simplex in cX not contained in ΣcX , so that

gσ ∈ I p̄S0(cX;G), then ∂(gσ) = g∂σ = g(σ − σv), where σv is the 0-simplex with image

in the cone vertex v. But then we have ∂̂(gσ) = gσ since σv has image in ΣcX . Thus any

gσ ∈ I p̄S0(cX;G) is null-homologous in I p̄S∗(cX;G), and I p̄H0(cX;G) = 0.

Finally, for i < n − p̄({v}) − 1, the chain c̄ξ is not allowable, and in fact no allowable

simplex can intersect {v} by the arguments in the proof of Theorem 4.2.1. So I p̄Hi(cX;G) ∼=
I p̄Hi(cX−{v};G). We will see below in Corollary 6.3.8 that, just as for I p̄HGM

∗ , the groups

I p̄H∗ are stratified homotopy invariants, and this completes the proof.

The PL argument is analogous using the modifications indicated in the proof of Theorem

4.2.1.
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6.2.6 Relative non-GM intersection homology and the relative

cone formula

The relative intersection homology groups are defined just as we defined the relative GM-

intersection homology groups. If Y ⊂ X, we let I p̄S∗(Y ;G) be the subcomplex of I p̄S∗(X;G)

consisting of chains supported in Y or, equivalently, the complex defined natively in Y by

using the filtration and perversity inherited from X (cf. Section 4.3). Then we let

I p̄S∗(X, Y ;G) = I p̄S∗(X;G)/I p̄S∗(Y ;G)

and

I p̄Hi(X, Y ;G) = H∗(I
p̄S∗(X, Y ;G)).

Of course it follows that there is a long exact sequence of pairs for intersection homology:

- I p̄Hi+1(X, Y ;G) - I p̄Hi(Y ;G) - I p̄Hi(X;G) - I p̄Hi(X, Y ;G) - .

Remark 6.2.14. It will be useful below to notice that, for each i, the complex I p̄S∗(X, Y ;G)

is a subcomplex of S∗(X, Y ;G). Indeed, there are evident maps

I p̄Si(X, Y ;G) = I p̄Si(X;G)/I p̄Si(Y ;G)→ S p̄i (X;G)/S p̄i (Y ;G)

→ Si(X;G)/Si(Y ;G) ∼= Si(X, Y ;G).

To see that this composition is injective, we just need to observe that if x ∈ I p̄Si(X, Y ;G)

does not represent 0, then x has a representative chain containing a simplex that is not

supported in Y , and so the image of x under this sequence of maps cannot be 0.

The following corollary is an immediate consequence of the long exact sequence of pairs.

Corollary 6.2.15. If X is a compact n− 1 dimensional filtered space then

I p̄Hi(cX, cX − {v};G) ∼=

{
I p̄Hi−1(X;G), i > n− p̄({v})− 1,

0, i ≤ n− p̄({v})− 1.

An equivalent conclusion holds for PL intersection homology when X is a compact PL filtered

space.

For some of our arguments below, it will be more useful to work with I p̄S∗(X;G) in the

form I p̄S ′∗(X;G). As these complexes are isomorphic, of course it follows that if we define

I p̄S ′∗(X, Y ;G) to be I p̄S ′∗(X;G)/I p̄S ′∗(Y ;G) then

I p̄S ′∗(X, Y ;G) =
I p̄S ′∗(X;G)

I p̄S ′∗(Y ;G)
∼=
I p̄S∗(X;G)

I p̄S∗(Y ;G)
= I p̄S∗(X, Y ;G),

but it is also useful to have a better look at the form that I p̄S ′∗(X, Y ;G) takes from the

definitions. In other words, we have
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I p̄S ′i(X, Y ;G) =

(Ap̄Si(X;G)+Si(ΣX ;G))∩∂−1(Ap̄Si−1(X;G)+Si−1(ΣX ;G))
Si(ΣX ;G)

(Ap̄Si(Y ;G)+Si(ΣY ;G))∩∂−1(Ap̄Si−1(Y ;G)+Si−1(ΣY ;G))
Si(ΣY ;G)

,

where ΣY = Y ∩ ΣX .

Now, we notice that

Si(ΣX ;G) ∩ [(Ap̄Si(Y ;G) + Si(ΣY ;G)) ∩ ∂−1(Ap̄Si−1(Y ;G) + Si−1(ΣY ;G))] = Si(ΣY ;G).

Indeed, Si(ΣY ;G) is generated by the singular simplices in ΣY = Y ∩ ΣX , and these are

certainly all contained in both ΣX and in the expression in the square brackets. On the

other hand, any chain in the left side of the expression is both a singular chain in ΣX and a

singular chain in Y (from the expression in brackets), so it must be in Si(ΣY ;G). But now

by basic group theory, if C,D,E are abelian groups, then

C
D
E

D∩E

∼=
C
D

D+E
D

∼=
C

D + E
.

So

I p̄S ′i(X, Y ;G) =
(Ap̄Si(X;G) + Si(ΣX ;G)) ∩ ∂−1(Ap̄Si−1(X;G) + Si−1(ΣX ;G))

Si(ΣX ;G) + (Ap̄Si(Y ;G) + Si(ΣY ;G)) ∩ ∂−1(Ap̄Si−1(Y ;G) + Si−1(ΣY ;G))
.

(6.3)

6.3 Properties of Ip̄H∗(X;G)

In this section, we establish for I p̄H∗(X;G) versions of the properties we have already ob-

tained for I p̄HGM
∗ (X;G). In most cases, the proofs of these properties translate easily, and

so we largely omit them except to focus on necessary modifications. More detailed proofs of

most statements, written directly for I p̄H∗, can be found in [85]. When the arguments in the

singular chain and PL chain cases are analogous, we give only the singular chain argument.

We will also feel free to work with either chain complex I p̄S∗(X;G) or I p̄S ′∗(X;G) according

to whichever is more convenient at the time. At the end of this section, in Subsections 6.3.2

and 6.3.3, we explore two other properties of non-GM intersection homology—dimensional

homogeneity and intersection homology with local coefficients.

We begin with a general property that will be utilized often and that is most easily seen

from the I p̄S∗ perspective.

Lemma 6.3.1. Suppose X is a filtered space, A ⊂ X, and R is a Dedekind domain; in

particular, this includes the case R = Z. Then each I p̄Si(X,A;R) ∼= I p̄S ′i(X,A;R) and

any of their submodules are projective R-modules and each I p̄Ci(X,A;R) ∼= I p̄C′i(X,A;R)

and any of their submodules are flat R-modules. If R is a field, then I p̄Si(X,A;R) and

I p̄Ci(X,A;R) are each free.
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Proof. By construction, I p̄Si(X;R) ⊂ Si(X;R), and the inclusion induces a map I p̄Si(X,A;R)→
Si(X,A;R). If the image of a chain ξ ∈ I p̄Si(X,A;R) is 0 in Si(X,A;R), then ξ must be

contained in A, but this would force ξ to be 0 in I p̄Si(X,A;R). Therefore, I p̄Si(X,A;R) ⊂
Si(X,A;R). But Si(X,A;R) is a free R-module, generated by the singular simplices not con-

tained in A. Therefore, as R is Dedekind, I p̄Si(X,A;R) and any submodule of I p̄Si(X,A;R)

is projective [49, Section VII.5 and Theorem I.5.4].

For I p̄Ci(X,A;R), we cannot make the same argument, as Ci(X,A;R) does not appear

to be free in general. However, I p̄Ci(X,A;R) is R-torsion free, and so, as R is Dedekind,

I p̄Ci(X,A;R) is flat [146, Proposition 4.20]. Similarly, any submodule of I p̄Ci(X,A;R) is

torsion free and so flat.

The claims when R is a field are immediate, as all vector spaces are free modules.

Of course, these properties extend to I p̄S ′i(X,A;R) and I p̄C′i(X,A;R) by the isomor-

phisms of Lemma 6.2.5.

6.3.1 Basic properties

We now turn to adapting properties of GM intersection homology for non-GM intersection

homology.

Maps and homotopies

We first define (p̄, q̄)-stratified maps. As mentioned in Remark 4.1.2, we need one additional

condition beyond those for a map to be (p̄, q̄)GM -stratified (see Definition 4.1.1), namely

that such a map takes singular strata to singular strata. We will not have chain maps in

general without such a condition, as the reader can verify by considering a manifold M , a

point x ∈M , and the identity map id from the filtered space {x} ⊂M to the unfiltered M .

If we have an allowable simplex with non-zero boundary in {x}, then id will not be a chain

map. Our additional condition will ensure that we do have chain maps, though this is still

sometimes possible even when our new condition fails, as we will see below in Lemma 7.3.16.

So let us make an official definition:

Definition 6.3.2. A map f : X → Y is stratified with respect to p̄, q̄ (or (p̄, q̄)-stratified) if

1. f(ΣX) ⊂ ΣY ;

2. the image of each stratum of X is contained in a single stratum of Y , i.e. if T ⊂ Y is

a stratum, then f−1(T ) is a union of strata of X;

3. if the stratum S ⊂ X maps to the stratum T ⊂ Y , then p̄(S) − codim(S) ≤ q̄(T ) −
codim(T ).

Right away, we see that if a map of filtered pairs f : (X,A)→ (Y,B) is a (p̄, q̄)-stratified

map, it induces a chain map f : I p̄S ′∗(X,A;G) → I q̄S ′∗(Y,B;G). This follows from the

definitions of the I p̄S ′∗ complexes because f takes ΣX to ΣY and because Proposition 4.1.6

shows that the second and third conditions of the definition guarantee that p̄-allowable
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simplices in X are taken to q̄-allowable simplices in Y . Via the isomorphisms IS∗ ∼= IS ′∗,

this means that we also have a chain map that we briefly denote f̂ : I p̄S∗(X,A;G) →
I q̄S∗(Y,B;G); once we have established this map, we will also call it f . We will show that

these chain maps possess all of the expected properties, but first it will be useful to develop

an explicit description of f̂ . This takes a bit of care because a simplex of S p̄∗(X;G) might be

taken under f into ΣY , and such simplices are not allowed in elements of S q̄∗(Y ;G). However,

we can rectify this problem by just defining f̂ : S p̄(X;G) → S q̄(Y ;G) so that f̂(σ) = 0 if

|fσ| ⊂ ΣY .

Lemma 6.3.3. Suppose f : (X,A) → (Y,B) is a (p̄, q̄)-stratified map. The map f̂ is

a well-defined chain map f̂ : I p̄S∗(X,A;G) → I q̄S∗(Y,B;G) that is equivalent to f :

I p̄S ′∗(X,A;G) → I q̄S ′∗(Y,B;G) via the isomorphisms IS∗ ∼= IS ′∗ of Lemma 6.2.5. The

analogous result holds in the PL setting.

Proof. We first consider the case A = B = ∅ and verify that f̂ : I p̄Si(X;G) → I q̄Si(Y ;G)

is well defined for each i. Suppose ξ ∈ I p̄Si(X;G). As already noted, f takes p̄-allowable

simplices of X to q̄-allowable simplices of Y by the proof of Proposition 4.1.6, and setting

f̂(σ) = 0 if |fσ| ⊂ ΣY means that f̂(ξ) ∈ S q̄i (Y ;G). So we only need verify that ∂̂f̂(ξ) ∈
S q̄i−1(Y ;G).

By assumption, we can write ∂ξ = a+ b with |b| ⊂ ΣY and with each simplex of a being

p̄-allowable. Suppose f(ξ) = x + y with |y| ⊂ ΣY and no simplex of x supported in ΣY ; by

definition, f̂(ξ) = x and ∂̂f̂(ξ) is obtained by taking ∂x and throwing away any simplices

contained in ΣY . So it suffices to show that all simplices of ∂x not contained in ΣY are

q̄-allowable. But now

∂x = ∂(f(ξ)− y) = f(∂ξ)− ∂y = f(a+ b)− ∂y = f(a) + [f(b)− ∂y].

The term on the right consists of simplices support in ΣY , while every simplex of a is p̄-

allowable so that every simplex of f(a) is q̄-allowable, as required.

Now that we have shown that f̂ : I p̄Si(X;G) → I q̄Si(Y ;G) is well defined, it is easy to

verify that the following diagram commutes:

I p̄Si(X;G)
iX
∼=
- I p̄S ′i(X;G)

I q̄Si(Y ;G)

f̂

? iY
∼=
- I q̄S ′i(Y ;G),

f

?

where iX and iY are the isomorphisms of Lemma 6.2.5. In particular, we have f̂ = i−1
Y f iX .

As i−1
Y f iX is a chain map, so is f̂ .

The relative version of f̂ is then defined by taking quotients.
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Notation: Now that we have established the chain map f̂ : I p̄S∗(X,A;G)→ I q̄S∗(Y,B;G)

and shown that it is equivalent to f : I p̄S ′∗(X,A;G) → I q̄S ′∗(Y,B;G), we will remove the

hat and refer to both maps with the notation f .

Remark 6.3.4. In settings where we know that maps f : X → Y take strata of X to strata

of Y of the same codimension, such as if f is a stratified homeomorphism or a stratified

homotopy equivalence, then we have f−1(ΣY ) = ΣX . In this case, simplices of S p̄∗(X;G)

cannot get taken into ΣY and so f : I p̄S∗(X,A;G) → I q̄S∗(Y,B;G) can be defined in the

obvious way without having to kill any simplices manually. The reader would not lose much

by taking this as an additional simplifying assumption in what is to come.

Noting that the same discussion carries over to the PL setting, we can conclude our

discussion so far as follows:

Proposition 6.3.5. If X, Y are filtered spaces, f : X → Y is (p̄, q̄)-stratified, and A ⊂ X

and B ⊂ Y with f(A) ⊂ B, then f induces a chain map f : I p̄S∗(X,A;G)→ I q̄S∗(Y,B;G).

If, furthermore, X, Y are PL filtered spaces and f is a PL map that is (p̄, q̄)-stratified, then f

induces a chain map f : I p̄C∗(X,A;G)→ I q̄C∗(Y,B;G) of PL intersection chain complexes.

In either case, we obtain corresponding maps of intersection homology groups.

The following corollary is now immediate as in the GM setting; see Corollary 4.1.8.

Corollary 6.3.6. If f : X → Y is a stratified homeomorphism that is also a homeomorphism

of pairs f : (X,A) → (Y,B) and if the perversities p̄ on X and q̄ on Y correspond (i.e.

p̄(S) = q̄(T ) if f(S) = T ), then I p̄H∗(X,A;G) ∼= I q̄H∗(Y,B;G). The corresponding fact

holds for PL spaces, PL stratified homeomorphisms, and PL intersection homology.

Now we turn to homotopies.

Proposition 6.3.7. Suppose f, g : X → Y are (p̄, q̄)-stratified maps that are (p̄, q̄)-stratified

homotopic via a (p̄, q̄)-stratified homotopy (I×X, I×A)→ (Y,B). Then f and g induce chain

homotopic chain maps I p̄S∗(X,A;G) → I q̄S∗(Y,B;G) and so f = g : I p̄H∗(X,A;G) →
I q̄H∗(Y,B;G). The analogous result holds in the PL setting.

Proof. The proofs of the analogous results in Propositions 4.1.10 and 4.3.16 for IHGM
∗ fol-

lowed the standard proofs (e.g. [125, Theorem 2.10]) that homotopic maps topological maps

induce chain homotopic chain maps. In particular, we showed that there is a prism operator

P : I p̄SGMi (X)→ I p̄SGMi+1 (I×X) such that ∂P = j1−j0−P∂, where j0 : X ↪→ {0}×X ⊂ I×X
and j1 : X ↪→ {1} ×X ⊂ I ×X are the inclusion maps. We will argue that the same con-

struction gives an analogous operator P : I p̄S ′i(X)→ I p̄S ′i+1(I ×X;G), from which the rest

of the argument is the same.

Recall that P is defined on simplices and then extended linearly, so the same argument

works with any coefficient group. By construction, |P (σ)| = I × |σ| ⊂ I × X, and thus

if |σ| ⊂ ΣX then |P (σ)| ⊂ I × ΣX = ΣI×X . Furthermore, we know from the proof of

Proposition 4.1.10 that if σ is allowable then P (σ) is composed of allowable simplices. So,

P takes Ap̄Si(X;G) to Ap̄Si+1(I × X;G) and Si(ΣX ;G) to Si+1(I × ΣX ;G). Thus, by the
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definition of I p̄S ′∗(X;G), it only remains to show that if ξ is a chain representing an element

of I p̄S ′i(X;G) then ∂P (ξ) ∈ Ap̄Si(I ×X;G) + Si(ΣI×X ;G). But

∂P (ξ) = j1(ξ)− j0(ξ)− P (∂ξ).

As ∂ξ ∈ Ap̄Si−1(X;G) + Si−1(ΣX ;G) by assumption, we get P (∂ξ) ∈ Ap̄Si(I × X;G) +

Si(ΣI×X ;G) by the arguments just given above. Meanwhile, j0 and j1 are (p̄, p̄)-stratified

using our convention p̄(I × S) = p̄(S) (see the proof of Proposition 4.1.10) and that they

take ΣX to I ×ΣX = ΣI×X . So j0 and j1 take Ap̄Si(X;G) to Ap̄Si(I ×X;G) and Si(ΣX ;G)

to Si(ΣI×X ;G). Altogether then, ∂P (ξ) ∈ Ap̄Si(I ×X;G) + Si(I × ΣX ;G).

That stratified homotopy equivalences induce intersection homology isomorphisms now

follows just as for Corollaries 4.1.11 and 4.3.17.

Corollary 6.3.8. Suppose (X,A) and (Y,B) are filtered pairs and that f : X → Y is a

stratified homotopy equivalence that restricts to a stratified homotopy equivalence A → B.

Suppose that the values of p̄ on X and q̄ on Y agree on corresponding strata. Then f

induces an isomorphism I p̄H∗(X,A;G) ∼= I q̄H∗(Y,B;G). The analogous result holds in the

PL category.

Subdivision, excision, and Mayer-Vietoris

Next we turn to singular subdivision. Of course subdivision is built into the PL category, as

verified in Lemma 6.2.4, and so does not require further work at this point.

Proposition 6.3.9. Let ξ be a chain representing a cycle in I p̄S ′i(X,A;G). Then ξ is

intersection homologous to any singular subdivision ξ′, so ξ and ξ′ represent the same element

of I p̄Hi(X,A;G). Similarly, if ξ ∈ I p̄Si(X,A;G) is a cycle, then any chain obtained by

subdividing ξ and then throwing out any terms corresponding to simplices supported in ΣX

represents the same element as ξ in I p̄Hi(X,A;G)

Proof. First, suppose ξ ∈ I p̄S ′i(X,A;G) is a cycle. By assumption, ξ consists of simplices

that are p̄-allowable or contained in ΣX . By Lemma 4.4.13, if σ is a p̄-allowable simplex,

then each simplex in any subdivision of σ is also p̄-allowable, and clearly if |σ| ⊂ ΣX then

the same is true of any simplex in any subdivision of σ. Furthermore, each simplex of ∂ξ

is either p̄-allowable or contained in ΣX , and so similarly, as singular subdivision commutes

with boundaries, ∂(ξ′) = (∂ξ)′ also consists of simplices that are allowable or contained in

ΣX . So singular subdivisions of chains in I p̄S ′∗(X,A;G) are chains in I p̄S ′∗(X,A;G).

To see that ξ and ξ′ represent the same homology class, recall that the non-GM argument

of Proposition 4.4.14 involved a prism argument. Analogously to our observation in the

proof of Proposition 6.3.7, such arguments carry over to the non-GM setting because we

already know that such prisms over allowable simplices are composed of allowable simplices

and because they preserve supports of chains so that a prism over a simplex in Σ is also

contained in Σ. So the homology Ξ constructed as in the proof of Proposition 4.4.14 is an

element of I p̄S ′i+1(X,A;G) with ∂Ξ = ξ′ − ξ + ω, in this case with ω ⊂ A ∪ Σ because

|∂ξ| ⊂ A ∪ Σ as ξ is a (relative) cycle.
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For ξ ∈ I p̄Si(X,A;G) a cycle, we recall that ξ also represents an element of I p̄S ′i(X,A;G).

If ξ′ is a subdivision, then we have just seen that ξ′ is homologous to ξ in I p̄S ′i(X,A;G).

But I p̄S∗(X,A;G) and I p̄S ′∗(X,A;G) are chain isomorphic by Lemma 6.2.5, and by Remark

6.2.6 the chains in I p̄Si(X,A;G) corresponding to ξ and ξ′ are respectively ξ itself and the

chain ξ′′ obtained by throwing away from ξ′ the terms corresponding to simplices supported

in Σ. So ξ′′ also and ξ represent the same element of I p̄Hi(X,A;G).

The following corollary derives from the tools of Proposition 6.3.9, just as Corollary 4.4.15

follows from the tools of Proposition 4.4.14.

Corollary 6.3.10. Suppose that T : S∗(X) → S∗(X) is a chain map that restricts to a

singular subdivision on each singular simplex. Then the induced map T : I p̄S ′∗(X,A;G) →
I p̄S ′∗(X,A;G) is chain homotopic to the identity for any subset A ⊂ X. Similarly, the map

I p̄S∗(X,A;G)→ I p̄S∗(X,A;G) that applies T and then throws out simplices contained in Σ

is chain homotopic to the identity.

Using Proposition 6.3.9 and the properties of PL subdivision, singular and PL excision

and Mayer-Vietoris sequences follow for non-GM intersection homology almost exactly as

in the proofs of Theorems 4.4.3, 4.4.4, 4.4.18, and 4.4.19: One takes a sufficiently iterated

barycentric subdivision of an i-chain and then splits it into pieces in such a way that the

new boundary i− 1 simplices carved out of the interiors of the allowable i-simplices are also

allowable. That part of the argument is identical to those of Section 4.4. Simplices contained

in ΣX do not necessarily contribute allowable new boundary pieces when they are split, but

any such new boundary simplex must also be contained in ΣX and so can be thrown out

when taking boundaries. We leave the reader to think through the prior arguments in greater

detail and note that they still apply in the non-GM setting.

Theorem 6.3.11. Let X be a filtered space, and suppose K ⊂ U ⊂ X such that K̄ ⊂ Ů .

Then inclusion induces an isomorphism I p̄H∗(X − K,U − K;G)
∼=−→ I p̄H∗(X,U ;G). The

equivalent results holds in the PL context.

Theorem 6.3.12. Let X be a filtered space and suppose X = U∪V , where U, V are subspaces

such that X = Ů ∪ V̊ . Then there is an exact Mayer-Vietoris sequence

→ I p̄Hi(U ∩ V ;G)→ I p̄Hi(U ;G)⊕ I p̄Hi(V ;G)→ I p̄Hi(U ∪ V ;G)→ I p̄Hi−1(U ∩ V ;G)→ .

The equivalent results holds in the PL context. There are also reduced intersection homology

Mayer-Vietoris sequences and relative Mayer-Vietoris sequences analogous to those stated in

Theorem 4.4.23.

Applying the Mayer-Vietoris sequence, we obtain the suspension formula for I p̄H∗:

Theorem 6.3.13. If X is an n− 1 dimensional compact filtered space and p̄ is a perversity

on SX that takes the same value p on the two suspensions points, then

I p̄Hi(SX;G) =


I p̄Hi−1(X;G), i > n− p− 1,

0, i = n− p− 1,

I p̄Hi(X;G), i < n− p− 1,
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and similarly in the PL setting.

Proof. We can write SX as the union of two cones cX. The intersection is homeomorphic

to (−1, 1) × X, which is stratified homotopy equivalent to X. By Theorem 6.2.13, the

inclusion X ↪→ cX induces an intersection homology isomorphism for i < n− p− 1. In the

Mayer-Vietoris sequence, this becomes the antidiagonal map

I p̄Hi(X;G) ↪→ I p̄Hi(cX;G)⊕ I p̄Hi(cX;G) ∼= I p̄Hi(X;G)⊕ I p̄Hi(X;G)

that takes ξ to ξ ⊕−ξ. Thus, by basic algebra, we have I p̄Hi(SX;G) ∼= I p̄Hi(X;G) in this

degree range. For i ≥ n − p − 1, I p̄Hi(cX;G) = 0, so we get I p̄Hi(SX;G) ∼= I p̄Hi−1(X;G)

for i > n− p− 1, and I p̄Hn−p−1(SX;G) = 0.

Remark 6.3.14. Notice that this formula is a little cleaner than that of Theorem 4.4.21 since

no reduced homology groups are needed.

Example 6.3.15. In Example 4.4.22, we considered a compact n-dimensional ∂-stratified

pseudomanifold X with ∂X 6= ∅ and defined X+ = X ∪∂X c̄(∂X). Under the assumption

that p̄({v}) ≤ n− 2, we showed that

I p̄HGM
i (X+) ∼=


I p̄HGM

i (X, ∂X), i > n− p̄({v})− 1,

im(I p̄HGM
i (X)→ I p̄HGM

i (X, ∂X)), i = n− p̄({v})− 1,

I p̄HGM
i (X), i < n− p̄({v})− 1.

The assumption about p̄({v}) was a simplification to avoid the special cases that can

occur in computing I p̄HGM
0 (c̄(∂X)) if p̄({v}) is allowed to be greater than n−2; see Theorem

4.2.1 and Remark 4.2.2. These special cases vanish, however, if we replace GM intersection

homology with non-GM intersection homology. In this case, analogous arguments to those

applied in Example 4.4.22, which can also be applied with arbitrary coefficients, yield

I p̄Hi(X
+;G) ∼=


I p̄Hi(X, ∂X;G), i > n− p̄({v})− 1,

im(I p̄Hi(X;G)→ I p̄Hi(X, ∂X;G)), i = n− p̄({v})− 1,

I p̄Hi(X;G), i < n− p̄({v})− 1,

for any perversity p̄ on X+. We also, once again, can take X = M to be a trivially-filtered

manifold to get for any perversity p̄ on M+

I p̄Hi(M
+;G) ∼=


Hi(M,∂M ;G), i > n− p̄({v})− 1,

im(Hi(M ;G)→ Hi(M,∂M ;G)), i = n− p̄({v})− 1,

Hi(M ;G), i < n− p̄({v})− 1.

Applications of Mayer-Vietoris arguments

Using the I p̄S∗ incarnation of the non-GM intersection chain complex, the following version

of Lemma 5.1.7 has an identical proof to that lemma and will be useful for Mayer-Vietoris

arguments.
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Lemma 6.3.16. If X is a filtered space with perversity p̄ and {Uα} is an increasing collection

of open subspaces of X then the natural map f : lim−→α
I p̄H∗(Uα;G) → I p̄H∗(∪αUα;G) is an

isomorphism.

Using Lemma 6.3.16, one can apply Mayer-Vietoris arguments for non-GM intersection

homology to prove results such as the following generalization of Proposition 5.1.11 concern-

ing normalization:

Proposition 6.3.17. Let X be a stratified pseudomanifold, and let π : X̃ → X be a nor-

malization4. Suppose p̄ is a perversity on X, and let p̃ be the perversity on X̃ defined so that

p̃(S̃) = p̄(S) if π(S̃) ⊂ S. Then the map π : I p̃H∗(X̃;G)→ I p̄H∗(X;G) is an isomorphism.

The proof, using a Mayer-Vietoris argument, is the same as that of Proposition 5.1.11,

using Lemma 6.3.16 and the non-GM cone formula (Theorem 6.2.13). In this case, we do

not need to limit the perversities as we did for Proposition 5.1.11.

Our first application of Mayer-Vietoris arguments in Section 5.1.1 showed that I p̄HGM
∗ (X) ∼=

H∗(X) when X is a normal stratified pseudomanifolds and p̄ ≥ t̄. That result won’t be true

for non-GM intersection homology; rather one can prove the slightly less interesting result

that if X is a stratified pseudomanifold then I p̄H∗(X;G) ∼= H∗(X,ΣX ;G) if p̄ > t̄ (so in this

case there is a stronger perversity requirement). The argument is the same as for Proposition

5.1.8 and Corollary 5.1.9, applying the Mayer-Vietoris argument of Theorem 5.1.4 together

with the observation that the assumptions imply I p̄H∗(cL;G) = H∗(cL,ΣcL;G) = 0 when

L 6= ∅ is a link of a singular stratum of X.

Mayer-Vietoris arguments also let us quickly prove the following related result that will be

useful in our very brief discussion of local coefficients in Section 6.3.3. This proposition says

that increasing the value of a perversity on a singular stratum S past t̄(S)+1 = codim(S)−1

does not further alter the intersection homology groups. Note that the result would be trivial

if we instead used t̄(S)+2 = codim(S), as for this perversity value and above the allowability

condition for S is always satisfied.

Proposition 6.3.18. Let X be a CS set, and let p̄ be a perversity on X. Define the perversity

p̂ on X so that for each singular stratum S we have

p̂(S) = min{p̄(S), codim(S)− 1}.

Then the inclusion I p̂S∗(X;G) ↪→ I p̄S∗(X;G) induces an isomorphism I p̂H∗(X;G) ∼= I p̄S∗(X;G).

Proof. The proof is by Mayer-Vietoris argument, Theorem 5.1.4. The only condition that

does not follow immediately from the established properties of non-GM intersection ho-

mology is the condition about distinguished neighborhoods. But via stratified homotopy

invariance, the hypothesis there amounts to the assumption that the proposition holds

for the link. In this case, if L is the link of a stratum S for which p̄(S) = p̂(S) then

I p̄H∗(cL;G) ∼= I p̂H(cL;G) thanks to the cone formula (Theorem 6.2.13). Otherwise, we

must have p̄(S) ≥ codim(S)− 1 and then I p̄H∗(cL;G) = I p̂H(cL;G) = 0, again by the cone

formula. The conclusion follows from Theorem 5.1.4.

We call the perversity p̂ of the proposition an efficient perversity.

4Recall Section 2.6.
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Cross products

Next we turn to cross products and a version of Theorem 5.3.6, the Künneth Theorem with

one factor a manifold. Cross products can be described equally well in the I p̄S∗ or I p̄S ′∗
incarnations of non-GM intersection chains. We begin with the former.

If R is a commutative ring with unity, then we know from Lemma 5.2.4 and the discussion

preceding Theorem 5.3.6 that the classical cross product

S∗(X;R)⊗R S∗(Y ;R)→ S∗(X × Y ;R)

restricts to a cross product

I p̄SGM∗ (X;R)⊗R I q̄SGM∗ (Y ;R)→ IQSGM∗ (X × Y ;R),

if Q(S×T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y . We claim that similarly we have

a cross product

I p̄S∗(X;R)⊗R I q̄S∗(Y ;R)→ IQS∗(X × Y ;R).

As I p̄Si(X;R) ⊂ Si(X;R) for all i, and similarly for Y , this cross product is certainly defined.

We must check that it remains a chain map. For this, let x ∈ I p̄Si(X;R) and y ∈ I q̄Sj(Y ;R).

This implies that no simplex of x or y is contained in ΣX or ΣY , respectively. Suppose

∂x = ∂̂x + ξ and ∂y = ∂̂y + η, where |ξ| ⊂ ΣX and |η| ⊂ ΣY . Then since the cross product

is a chain map on ordinary chains, we have

∂(x× y) = (∂x)× y + (−1)ix× (∂y)

= (∂̂x+ ξ)× y + (−1)ix× (∂̂y + η)

= (∂̂x)× y + ξ × y + (−1)ix× (∂̂y) + (−1)ix× η.

Since |ξ| ⊂ ΣX and |η| ⊂ ΣY , we have |x× η| ⊂ X × ΣY ⊂ ΣX×Y and |ξ × y| ⊂ ΣX × Y ⊂
ΣX×Y . Since no simplex of x, y, ∂̂x, or ∂̂y is contained in ΣX or ΣY , no simplex of (∂̂x)× y
or x × (∂̂y) will be contained in ΣX×Y . This last fact can be seen by observing that in the

singular subdivisions of ∆i×∆j by shuffles used in the construction of the cross product each

i+ j simplex of the triangulation of ∆i ×∆j projects onto both ∆i and ∆j by the standard

projections; this is an immediate consequence of the definition of the shuffle product in

Section 5.2. Therefore,

∂̂(x× y) = (∂̂x)× y + (−1)ix× (∂̂y),

showing that the cross product is indeed a chain map

I p̄S∗(X;R)⊗R I q̄S∗(Y ;R)→ IQS∗(X × Y ;R)

if Q(S × T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y .

Analogously, if x and y are chains representing elements of I p̄S ′i(X;R) and I q̄S ′j(Y ;R),

respectively, then we can write x = ax + bx and y = ay + by with ax ∈ Ap̄Si(X;R), bx ∈
Si(ΣX ;R), ay ∈ Ap̄Sj(Y ;R), and by ∈ Sj(ΣY ;R). Then

x× y = ax × ay + bx × ay + ax × by + bx × by,
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and the first term on the right is in AQSi+j(X×Y ;R) while the others are in Si+j(ΣX×Y ;R).

As each of ∂x and ∂y decomposes into allowable simplices and simplices in ΣX or ΣY ,

the boundary ∂(x × y) decomposes similarly. Hence the cross product also is well defined

I p̄S ′∗(X;R)⊗R I q̄S ′∗(Y ;R)→ IQS ′∗(X × Y ;R).

These cross products extend to relative cross products

I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R)→ IQS∗(X × Y, (A× Y ) ∪ (X ×B);R)

by the arguments of Corollary 5.2.5.

Similarly, following the development of Section 5.2.2, we obtain a non-GM simplicial

cross product and a non-GM PL cross product

I p̄C∗(X,A;R)⊗ I q̄C∗(Y,B;R)→ IQC∗(X × Y, (A× Y ) ∪ (X ×B);R)

based upon the ordinary singular cross product via our Useful Lemma, Lemma 3.3.10. The

argument that such PL products and their boundaries behave as desired is the same as

that above for the singular product. Note, however, that when we apply Lemma 3.3.10 to

represent an i-chain ξ as a homology class, it is the usual boundary ∂ (and not ∂̂) that

appears in the expression Hi(|ξ|, |∂ξ|).
We also have compatibility among the simplicial, singular, and PL cross products as in

Corollaries 5.2.15 and 5.2.16. We will first need to discuss the relationship between these

three types of homology more generally, below, so we postpone these results to Corollaries

6.3.36 and 6.3.37.

Recall by Lemma 6.3.1 that if R is a Dedekind domain then each I p̄Si(X,A;R) is a

projective R-module and each I p̄Ci(X,A;R) is a flat module. In this case, the properties of

the cross product established in Section 5.2.3 hold for non-GM intersection homology IH∗.

The proofs are the same, although we note that in the non-GM analogues of the stability

properties, Propositions 5.2.23 and 5.2.24, the boundary maps of the long exact sequences

of the pair are determined on chains by applying the boundary maps of I p̄S∗(X,A;R) or

I p̄S ′∗(X,A;R) (or their PL versions), as appropriate. We state this all as a theorem:

Theorem 6.3.19. If R is a Dedekind domain, then the properties of the cross product

established in Section 5.2.3, including naturality, associativity, commutativity, unitality, and

stability hold for non-GM singular intersection homology with coefficients in R.

The non-GM cross product yields the following Künneth Theorem:

Theorem 6.3.20. Suppose X is a filtered space with perversity p̄X and that M is an n-

dimensional manifold with its trivial filtration. Filter M × X with the product filtration so

that (M ×X)i = M ×X i−n, and define a perversity p̄ on M ×X whose value on the stratum

R× S, for R a connected component of M , is p̄X(S). Let R be a Dedekind domain. Then

the cross product induces an isomorphism H∗(S∗(M ;R)⊗ I p̄XS∗(X;R))
∼=−→ I p̄H∗(M ×X;R)

(or H∗(S∗(M ;R) ⊗ I p̄XS ′∗(X;R))
∼=−→ I p̄H∗(M ×X;R)). If X is a PL filtered space and M

is a PL manifold, then the same conclusion holds replacing singular chains with PL chains.

The relative version of this theorem (analogous to Corollary 5.2.26) also holds.
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Just as for Theorems 5.2.25 and 5.3.6, this is an application of the Mayer-Vietoris ar-

gument Theorem 5.1.1 with F∗(M) = H∗(S∗(M ;R)⊗R I p̄XS∗(X;R)), G∗(M) = I p̄H∗(M ×
X;R), and natural transformation F∗ → G∗ induced by the cross-product. The relative

version follows just as in Corollary 5.2.26.

Coefficients

Now we turn to local torsion conditions and the Universal Coefficient Theorem in non-GM

intersection homology, beginning with a non-GM version of Definition 5.3.9.

Definition 6.3.21. Let X be a CS set, R a Dedekind domain, and M an R-module. We

say that X is locally (p̄, R;M)-torsion free if for each point x ∈ X and for each link L of

x we have I p̄Hdim(L)−p̄(S)−1(L;R) ∗R M = 0, where S is the stratum of X containing x and

∗R denotes the torsion product over R, i.e. Tor1
R(·, ·). If we only impose the condition for all

points in a stratum S ⊂ X, we say that X is locally (p̄, R;M)-torsion free along S.

If I p̄Hdim(L)−p̄(S)−1(L;R) ∗RM = 0 for all R-modules M , we simply say that X is locally

(p̄, R)-torsion free, and this is equivalent to asking that I p̄Hdim(L)−p̄(S)−1(L;R) be flat as an

R-module by [147, Theorem XVI.3.11]. In particular, this means that I p̄Hdim(L)−p̄(S)−1(L) is

torsion free (as an R-module) by [146, Proposition 4.20].

As noted in Remark 5.3.11, we do not define a separate PL version of the locally torsion

free condition as the fact that PL and singular intersection homology are isomorphic for PL

CS sets makes it unnecessary. A locally (p̄, R;M)-torsion free PL CS set is simply a CS set

that is both a PL filtered space and locally (p̄, R;M)-torsion free.

Example 6.3.22. As in Example 5.3.12, if X is a CS set with a perversity p̄ such that p̄ ≥ t̄,

then X is locally (p̄, R)-torsion free for any Dedekind domain R. This is because in this case

dim(L)− p̄(S)− 1 ≤ 0, and I p̄H0(L;R) ∼= I p̄HGM
0 (L;R) is always free.

As for the GM locally torsion free conditions, the non-GM condition does not depend

on the choice of distinguished neighborhood by the following versions of Lemma 5.3.13 and

Corollary 5.3.14.

Lemma 6.3.23. Let X be a CS set and x ∈ X. For i = 1, 2, let Ni
∼= Rk × cLi be

distinguished neighborhoods of x. Then I p̄H∗(L1) ∼= I p̄H∗(L2) and I p̄H∗(N1) ∼= I p̄H∗(N2).

Corollary 6.3.24. Let X be a CS set. Then the intersection homology I p̄H∗(L) of a link L of

a point x in a stratum of S depends only on S. In other words, all links for any distinguished

neighborhoods of any points in S have isomorphic intersection homology groups.

The proofs are the same as for Lemma 6.3.23 and Corollary 6.3.24.

We then have a Universal Coefficient Theorem proven in the same way as Theorem 5.3.15;

see also Remark 5.3.16.

Theorem 6.3.25. Suppose X is a locally (p̄, R;M)-torsion free CS set for a Dedekind do-

main R and R-module M . Then I p̄H∗(X;M) ∼= H∗(I
p̄S∗(X;R) ⊗R M). If X is also PL

then I p̄H∗(X;M) ∼= H∗(I
p̄C∗(X;R) ⊗R M). In particular, if G is an abelian group and X

is a locally (p̄,Z;G)-torsion free CS set, then I p̄H∗(X;G) ∼= H∗(I
p̄S∗(X)⊗ G), and if X is

also PL then I p̄H∗(X;G) ∼= H∗(I
p̄C∗(X)⊗G).
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Corollary 6.3.26. For any CS set and any field F of characteristic 0, we have I p̄H∗(X;F ) ∼=
I p̄H∗(X)⊗Z F . If X is also PL then I p̄H∗(X;F ) ∼= I p̄H∗(X)⊗Z F .

Corollary 6.3.27. Suppose X is a locally (p̄, R;M)-torsion free CS set for a Dedekind

domain R and R-module M and that A ⊂ X is also a locally (p̄, R;M)-torsion free CS set,

in particular if A is an open subset of X. Then I p̄H∗(X,A;M) ∼= H∗(I
p̄S∗(X,A;R)⊗RM).

If X is PL and A is a PL subset, then I p̄H∗(X,A;G) ∼= H∗(I
p̄C∗(X,A)⊗G).

Example 6.3.28. The property of a space being locally torsion free can depend on whether

or not we are employing GM or non-GM intersection homology. Of course, if we use a

perversity for which p̄(S) ≤ codim(S) − 2 then we know the two theories will be the same,

but for a perversity that violates this condition, we can find spaces that are p̄-torsion free

with respect to one type of intersection homology but not the other. Here we construct such

an example.

Let X = X5 = S(RP 2 × S(S1)). Of course S(S1) ∼= S2, but we give it the filtration

induced by the suspension and label the suspension points {n, s}. We let RP 2 have its trivial

manifold filtration, give RP 2 × S(S1) the product filtration, and then we again stratify X

itself as a suspension, with suspension points {n0, s0}. So ultimately there are three nontrivial

skeleta:

X0 = {n0, s0} ⊂ X3 = S(RP 2 × {n, s}) ⊂ X5 = X.

We will define a perversity p̄ on X that depends only on codimension and such that p̄(2) = 1.

We will choose p̄(5) below. As usual, we use the same notation p̄ for the restricted perversities

on subspaces.

By the suspension computations, Theorem 4.4.21 and Theorem 6.3.13,

I p̄HGM
i (S(S1)) =


Z, i = 2,

0, i = 1,

Z, i = 0,

I p̄Hi(S(S1)) =


Z, i = 2,

Z, i = 1,

0, i = 0.

Next, let us apply the Künneth theorems with one manifold factor (Theorems 5.2.25 and
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6.3.20) to get

I p̄HGM
i (RP 2 × S(S1)) =



0, i = 4,

Z2, i = 3,

Z, i = 2,

Z2, i = 1,

Z, i = 0,

I p̄Hi(RP 2 × S(S1)) =



0, i = 4,

Z2, i = 3,

Z⊕ Z2, i = 2,

Z, i = 1,

0, i = 0.

But now RP 2 × S(S1) is the link of the suspension points of X, and the locally torsion free

condition says that the intersection homology of these links must be torsion free in degree

dim(L) − p̄(5) − 1 = 3 − p̄(5). So then if we take p̄(5) = 1, then X is locally (p̄,Z)GM -

torsion free but not locally (p̄,Z)-torsion free. And if we take p̄(5) = 2, then X is locally

(p̄,Z)-torsion free but not locally (p̄,Z)GM -torsion free.

We could come up with orientable examples similarly using odd-dimensional projective

spaces.

Agreement of singular and PL intersection homology

All the material of Section 5.4 also carries over to provide an equivalence between PL and

singular intersection homology on PL spaces.

We first note that the basic comparison maps are still well defined, generalizing Corollary

4.4.6:

Lemma 6.3.29. Suppose that K is a filtered simplicial complex, i.e. that |K| is filtered such

that each skeleton of the filtration is a subcomplex of K. Suppose further that K possesses

a partial ordering on its vertices that restricts to a total ordering on each simplex. Let p̄

be a perversity on |K|. Then the simplicial-to-singular chain map φ of Proposition 4.4.5

restricts to a chain map φ : I p̄C ′∗(K;G) → I p̄S ′∗(|K|;G). Consequently, φ also induces a

simplicial-to-singular chain map φ : I p̄C∗(K;G)→ I p̄S∗(|K|;G).

Proof. Adding in the coefficient groups, which do not alter the proofs of Proposition 4.4.5 or

Corollary 4.4.6, the map φ : C∗(K;G) → S∗(|K|;G) clearly takes simplices supported in Σ

to simplices supported in Σ by definition, and the proof of Corollary 4.4.6 shows that it takes

allowable simplices to allowable singular simplices. As φ : C∗(K;G)→ S∗(|K|;G) is a chain

map, this is sufficient to show that φ induces a well-defined chain map φ : I p̄C ′∗(K;G) →
I p̄S ′∗(|K|;G). The last statement follows from the isomorphisms of Lemma 6.2.5.
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Given such comparison maps, the major results of Section 5.4 also hold in the non-GM

setting. The proofs require also developing non-GM versions of the results in Section 3.3.4.

These are left to the reader, noting that all subdivision maps, their inverses, and all of our

prism constructions preserve allowability and take chains in Σ to chains in Σ. One arrives

at the following non-GM version of Theorem 3.3.20:

Theorem 6.3.30. Suppose T is a full triangulation of a PL filtered space and that T ′ is any

subdivision of T . Then the maps induced by subdivision I p̄HT
∗ (X;G) → I p̄HT ′

∗ (X;G) are

isomorphisms, as is the canonical map I p̄HT
∗ (X;G)→ I p̄H∗(X;G) .

With these tools, one can obtain the following versions of Theorem 5.4.2 and Corollaries

5.4.3, 5.4.4, 5.4.5, and 5.4.6.

Theorem 6.3.31. Let X be a PL CS set with triangulation T . Then the composition5

I p̄H∗(W ;G)
φ−1

−−→ I p̄HT
∗ (W ;G)

ψ−→ H∗(I
p̄S∗(W ;G))

is an isomorphism for any open set W ⊂ X. In particular, I p̄H∗(X;G) ∼= I p̄H∗(X;G).

Corollary 6.3.32. Let X be a PL CS set, and let A be an open subset. Then I p̄H∗(X,A;G) ∼=
I p̄H∗(X,A;G).

Corollary 6.3.33. Let X be a PL CS set with closed PL subset A such that A is itself a PL

CS set in its inherited filtration. Then I p̄H∗(X,A;G) ∼= I p̄H∗(X,A;G).

Corollary 6.3.34. Suppose X is a PL ∂-stratified pseudomanifold. Then I p̄H∗(X;G)
∼=−→

I p̄HGM
∗ (X;G).

Corollary 6.3.35. Let X be a PL CS set or a PL ∂-stratified pseudomanifold, and let T be

a full triangulation of X compatible with the filtration and with an ordering on its vertices.

Then the chain maps φ : I p̄CT
∗ (X;G) → I p̄S∗(X;G) and φ : I p̄CT,′

∗ (X;G) → I p̄S ′∗(X;G) of

Lemma 6.3.29 induce isomorphisms on intersection homology.

While we’re discussing the relationships between simplicial, singular, and PL non-GM

intersection homology, we note that we also have versions of Corollaries 5.2.15 and 5.2.16

relating the different types of cross products. We state the non-GM versions in a moment

as Corollaries 6.3.36 and 6.3.37. For these, we already know that the non-GM products are

well defined, as discussed earlier in this section starting on page 275. We have just seen in

Lemma 6.3.29 that the simplicial-to-singular comparison maps carry over to the non-GM

context, and the simplicial-to-PL maps were shown to exist in Lemma 6.2.4. So all the maps

of the next two corollaries are known to be well-defined chain maps. The commutativity then

follows from Corollary 5.2.11 and Lemma 5.2.3, respectively, as each non-GM intersection

chain group is a subgroup of the corresponding ordinary chain group. Furthermore, none of

the preceding arguments are disrupted by including coefficients in R.

5See Section 5.4 for the definition of these maps, which adapt readily to the non-GM setting.
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Corollary 6.3.36. Let X and Y be PL filtered spaces, and suppose K and L are simplicial

complexes triangulating X and Y with partial orders on their vertices restricting to total

orders on each simplex. Let p̄, q̄, and Q be respective perversities on X, Y , and X ×Y such

that Q(S× T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y . Then there is a commutative

diagram of chain maps

I p̄C∗(K;R)⊗ I q̄C∗(L;R)
./
- IQC∗(K × L;R)

I p̄C∗(X;R)⊗ I q̄C∗(Y ;R)
? ×

- IQC∗(X × Y ;R),
?

with the vertical maps the canonical ones induced by taking simplicial chains to the PL chains

they represent.

Corollary 6.3.37. Let X and Y be PL filtered spaces, and suppose K and L are simplicial

complexes triangulating X and Y with partial orders on their vertices restricting to total

orders on each simplex. Let p̄, q̄, and Q be respective perversities on X, Y , and X ×Y such

that Q(S× T ) ≥ p̄(S) + q̄(T ) for all strata S ⊂ X and T ⊂ Y . Then there is a commutative

diagram of chain maps

I p̄C∗(K;R)⊗ I q̄C∗(L;R)
./
- IQC∗(K × L;R)

I p̄S∗(X;R)⊗ I q̄S∗(Y ;R)

φK ⊗ φL

? ε
- IQS∗(X × Y ;R),

φK×L

?

with the vertical maps being the simplicial-to-singular chain maps of Lemma 6.3.29.

Finite generation

Similarly, the results of Section 5.6 carry over, using the following definition. As noted in

Remark 5.6.5, we expand here to finitely generated modules over Noetherian rings.

Definition 6.3.38. A CS set X is called locally (p̄, R;M)-finitely generated if R is a Noethe-

rian ring, M is a finitely generated R-module, and, for each point x ∈ X, there is a link L

of X such that I p̄Hi(L;M) is finitely generated as an R-module for each i. When M = R,

we will simply say that X is locally (p̄, R)-finitely generated. If the CS set X is locally

(p̄, R)-finitely generated for all p̄, we will simply say that X is locally R-finitely generated.

Arguments completely analogous to those of Lemma 5.3.13 (and Lemma 6.3.23) show

that this definition is equivalent to requiring that each I p̄Hi(L;M) be finitely generated for

every link L in X.
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Then we obtain the following proposition, noting that the proof of Proposition 5.6.3 goes

through with only minor modifications. We also note that the only properties of abelian

groups utilized in the proof of Proposition 5.6.3 are those arising from them being modules

over the Noetherian ring Z.

Proposition 6.3.39. Let R be a Noetherian ring, and suppose X is a locally (p̄, R;M)-

finitely generated CS set. Suppose U ⊂ W are open subsets of X, that Ū ⊂ W , and that Ū is

compact. Then the image of I p̄Hi(U ;M) in I p̄Hi(W ;M) is finitely generated. In particular,

if X is compact, then each I p̄Hi(X;M) is finitely generated.

Corollary 6.3.40. If R is a Noetherian ring, M is a finitely generated R-module, and X is

a compact recursive CS set, in particular if X is a compact stratified pseudomanifold, then

I p̄Hi(X;M) is finitely generated for all i.

6.3.2 Dimensional homogeneity

The trade-off for non-GM intersection homology being the theory that will provide a more

general Künneth Theorem and Poincaré duality is that it does not “see” lower-dimensional

pieces of a space. More precisely, suppose X is a CS set, and let X• denote the closure of the

union of the regular strata ofX. In other words, X• is the union of the strata S ofX such that

there exists a regular stratumR with S ≺ R. We will show that I p̄H∗(X;G) ∼= I p̄H∗(X
•;G).

In fact, more is true: the intersection homology of the closures of the regular strata do

not interact. More precisely, we will see that if {Rα} are the regular strata of X, then

I p̄H∗(X;G) ∼= ⊕αI p̄H∗(R̄α;G) with the isomorphism being the sum of the maps induced by

inclusion.

Example 6.3.41. Here are two examples illustrating the concept of X•.

1. Let X = X2 be the one-point union (wedge product) of S2 and S1 with the filtration

{v} ⊂ S1 ⊂ X, where {v} is the wedge point. Then X• ∼= S2 with filtration {v} ⊂ S2.

2. If X is a CS set with formal dimension n but every non-empty stratum of X has

dimension < n, then X has no regular strata and X• = ∅. For example, if X = S2 but

is given formal dimension 6, then X• = ∅.

If X is a PL filtered space, the fact that I p̄H∗(X;G) ∼= I p̄H∗(X
•;G) is not difficult to

see. In fact, consider the inclusion map I p̄C∗(X
•;G) → I p̄C∗(X;G). Since X• is a closed

union of strata of X, it is a subcomplex of any admissible triangulation of X compatible

with the filtration. By definition, no simplex (with respect to some triangulation) σ of a

chain in I p̄C∗(X;G) can be contained in ΣX , so every such simplex must have its interior in a

regular stratum. This implies that σ is contained in X•. Thus the inclusion I p̄C∗(X
•;G)→

I p̄C∗(X;G) is also onto, so in fact I p̄C∗(X
•;G) = I p̄C∗(X;G) and then clearly I p̄H∗(X

•;G) =

I p̄H∗(X;G). In fact, the same argument demonstrates that every allowable simplex must

be contained in the closure of a single regular stratum Rα. So if ξ ∈ I p̄Ci(X;G), there is

a unique decomposition of ξ as ξ =
∑

α ξα, where ξα contains the simplices that intersect

Rα. Furthermore, for each α, the boundary ∂ξα consists of simplices with interior in Rα and
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simplices with interior in Σ. The simplices in Σ do not contribute to ∂̂, while the simplices in

Rα must also be simplices of ∂̂ξ, asRα∩|ξβ| = ∅ for α 6= β and so no cancellations may occur

among the different ∂̂ξα. As ∂̂ξ consists of allowable simplices, so then does each ∂̂ξα, and so

ξα ∈ I p̄C∗(R̄α;G). Thus I p̄C∗(X;G) = ⊕αI p̄C∗(R̄α;G) and I p̄H∗(X;G) = ⊕αI p̄H∗(R̄α;G).

We state this result as a lemma:

Lemma 6.3.42. If X is a PL filtered space and X• denotes the closure of the union of the

regular strata of X, then I p̄C∗(X
•;G) = I p̄C∗(X;G) and so I p̄H∗(X

•;G) = I p̄H∗(X;G). Fur-

thermore, if {Rα} is the collection of regular strata of X, then I p̄C∗(X;G) = ⊕αI p̄C∗(R̄α;G)

and I p̄H∗(X;G) = ⊕αI p̄H∗(R̄α;G).

Example 6.3.43. Since the space in item (1) of Example 6.3.41 can be assumed to be PL, we

see that I p̄H∗(X;G) ∼= I p̄H∗(S
2;G), where S2 is filtered as above.

In both cases of item (2) of Example 6.3.41, I p̄H∗(X;G) = 0.

The corresponding conclusion for singular intersection homology is more difficult to

achieve. For one thing, a singular simplex that is not contained in ΣX might nonethe-

less have its image intersect X − X•, for example a singular 1-simplex might have both

endpoints in regular strata of X but pass through strata of X −X• in between. In order to

draw upon local structure arguments, we must limit ourselves to CS sets, which will let us

utilize Mayer-Vietoris arguments to get our desired results.

If X is a CS set (or, even more generally, a manifold stratified space) with n-dimensional

regular strata, and we let X• denote the closure of the union of the regular strata of X,

then, by Proposition 2.2.20, X• is itself a manifold stratified space whose strata comprise

a subset of the strata of X. It turns out that if X is a CS set, then X• is itself a CS set,

which we will show below in Lemma 6.3.45. Furthermore, by definition, every point of X•

is contained in the closure of an n-dimensional stratum, but we can show something a bit

more technical: if X• 6= ∅, each distinguished neighborhood in X• is n-dimensional (using

cohomological dimension as our dimension theory). This can be interpreted as a dimensional

homogeneity property, akin to the sense in which an n-manifold is dimensionally homoge-

neous because every point has a neighborhood homeomorphic to n-dimensional Euclidean

space. We will demonstrate this property below in Lemma 6.3.46. First, these lemmas

motivate the following definition:

Definition 6.3.44. If X is a CS set, let X• denote the CS set that is the closure of the

union of the regular strata of X. We call X• the homogenization of X. If X• = X, we say

that X is dimensionally homogeneous.

After stating and proving Lemmas 6.3.45 and 6.3.46, we will show in Proposition 6.3.47

that if X is a CS set with homogenization X•, then I p̄H∗(X;G) ∼= I p̄H∗(X
•;G).

Lemma 6.3.45. If X is a CS set and R is any union of regular strata of X, then the

closure R̄ is a CS set. In particular, the homogenization X• is a CS set. If X is a stratified

pseudomanifold, then so is R̄.
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Proof. The statement concerning X• follows from the first statement by letting R be the

union of all the regular strata of X.

Since R̄ is a union of strata of X by Proposition 2.2.20, R̄ is automatically manifold

stratified. So we must check that R̄ is locally cone-like: Suppose x ∈ R̄ has distinguished

neighborhood N in X filtered homeomorphic to Ri × cL by a filtered homeomorphism h :

N → Ri × cL. Since R̄ is a union of strata of X, the set N ∩ R̄ is a union of strata of N

and h(N ∩ R̄) must be a union of strata of Ri × cL. Since x ∈ R̄, the entire stratum of

N containing x must be in R̄, so h(N ∩ R̄) must contain Ri × {v}; it now follows from the

structure of the filtration of Ri × cL that h(N ∩ R̄) must have the form Ri × cL̂, where L̂

is a union of strata of L. If we identify L with {0} × {1/2} × L ⊂ Ri × cL, then L̂ is the

intersection of L with h(N ∩ R̄) in Ri × cL. Since R̄ is closed in X, the set N ∩ R̄ is closed

in N and h(N ∩ R̄) is closed in Ri × cL; therefore, since L is compact, L̂ = L ∩ h(N ∩ R̄)

must also be compact. So R̄ is a CS set.

Note that, in general, L̂ is not required to be a CS set, as L itself is not required to

be a CS set. However, suppose now that X is a stratified pseudomanifold, which implies

that L is a stratified pseudomanifold by Lemma 2.4.11. Our subspace R̄ is the closure of

its regular strata, by definition, so we only need to show that the links L̂ are also stratified

pseudomanifolds. But a point-set argument shows that L̂ is itself the closure of the union

of the regular strata of L that h−1 takes into R. So it suffices to observe that the argument

of the preceding paragraph holds replacing X with L, which has smaller depth than X.

Repeating this argument iteratively, eventually we get to links that have depth 0, i.e. they’re

manifolds, and in this case it’s clear that the closure of a union of connected components of

a manifold is a manifold.

We now state and prove Lemma 6.3.46, which shows that if X is an n-dimensional CS set

and X• is non-empty, then every distinguished neighborhood of X• has topological dimension

n. This justifies our claim that X• is dimensionally homogeneous. This lemma is technical

and uses some sheaf theory, including several citations to results in [37] that we will not

explain in detail. Except for one later lemma, Lemma 8.1.9, the argument here will not

be needed again and can be safely skipped by those not wishing to think too much about

sheaf-theoretic dimension theory.

Lemma 6.3.46. Suppose X is an n-dimensional CS set and that R is a non-empty union of

regular strata of X. Then every distinguished neighborhood N in R̄ has dimZN = n, where

dimZN is the cohomological dimension with Z coefficients (see [37, Definition II.16.6]). In

particular, if X has a non-empty regular stratum, then every distinguished neighborhood N

in X• has dimZN = n

Proof. This argument is a straightforward generalization of that appearing for pseudomani-

folds in [100, Proposition 7.3], which was due to Jim McClure.

We saw in Lemma 2.3.8 that the stratification of every CS set is locally finite, and so if

N ∼= Ri × cL then L is a compact filtered space with finitely many strata. We also observe

that since any open subset of a CS set is also a CS set, N is locally compact (every point has

a neighborhood homeomorphic to Di × c̄L, where Di is the closed disk and c̄L is the closed
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cone on the compact space L), as is each skeleton of N , being a closed subset of a locally

compact Hausdorff space [180, Corollary 29.3].

Since N ⊂ R̄, we must have N intersect a regular stratum of X, and thus N must

contain an open subspace M homeomorphic to a (non-empty) n-manifold. By [37, Corollary

II.16.28], we have dimZ(M) = n, and by [37, Theorem II.16.8], dimZ(N) ≥ dimZ(M) = n

(here we use that N is locally compact and hence locally paracompact).

Next, we will show that dimZ(N) ≤ dimZ(M) = n. In fact, we will show that if Y is

any CS set, then the i-skeleton Y i of Y satisfies dimZ(Y i) ≤ i. As N = Nn, this will suffice.

The proof will be by induction on i. In case i = 0, the space Y 0 is a discrete collection

of points, and so a 0-manifold, and we can again apply [37, Corollary II.16.28]. We now

assume by induction hypothesis that dimZ(Y i−1) ≤ i − 1. If Y i − Y i−1 is empty, then we

have dimZ(Y i) = dimZ(Y i−1) ≤ i− 1 by hypothesis, so we assume that Y i − Y i−1 6= ∅.
Let c denote the family of compact supports, and let dimc,Z be as in [37, Definition II.16.3].

Then dimZ(Z) is equal to dimc,Z(Z) for any locally compact space Z by [37, Definition

II.16.6], since c is paracompactifying for locally compact spaces (see [37, page 22]) and the

extent E(c) (i.e. the union of the elements of c; see [37, page 22]) is equal to Z as every point

has a compact neighborhood.

Now, by [180, Corollary 29.3], since Y i−1 and Y i are closed in Y , they are each locally

compact, and since Y i − Y i−1 is open in Y i, we see Y i − Y i−1 is also locally compact. Thus

we have an equality

dimc,Z(Y i) = max{dimc|Y i−1,Z(Y i−1), dimc|Y i−Y i−1,Z(Y i − Y i−1)}

by [37, Exercise II.11, see also the solution on page 461], utilizing again that c is paracom-

pactifying on locally compact spaces. And using the discussion of the preceding paragraph,

this becomes

dimZ(Y i) = max{dimZ(Y i−1), dimZ(Y i − Y i−1)}.

We have assumed that dimZ(Y i−1) ≤ i − 1 by induction, and, since Y i − Y i−1 is an i-

manifold, we know dimZ(Y i − Y i−1) ≤ i by [37, Corollary II.16.28]. Altogether, this shows

that dimZ(Y i) ≤ i, as desired.

We are now ready for the main result of this section:

Proposition 6.3.47. Let X be a CS set, and let {Rα} be the regular strata of X. Then the

inclusion maps induce isomorphisms

⊕αI p̄H∗(R̄α;G) - I p̄H∗(X;G)

I p̄H∗(X
•;G).

-

-

The analogous result holds in the PL category.
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Remark 6.3.48. As I p̄H = I p̄HGM if p̄ ≤ t̄ by Proposition 6.2.9, Proposition 6.3.47 holds for

GM intersection homology, as well, under this perversity restriction. However, Proposition

6.3.47 is not true of GM intersection homology in general. For example, suppose X has more

than one regular stratum and that p̄ is large enough on some stratum to allow a singular

1-simplex to run from one regular stratum to another, say from R1 to R2. Then

I p̄HGM
0 (R1 ∪R2) ∼= I p̄HGM

0 (R̄1) ∼= I p̄HGM
0 (R̄2) ∼= Z.

Proof of Proposition 6.3.47. The PL claim has already been demonstrated in Lemma 6.3.42.

For singular intersection homology, we will apply Theorem 5.1.4 to get the isomorphisms

⊕αI p̄H∗(R̄α;G) → I p̄H∗(X;G) and I p̄H∗(X
•;G) → I p̄H∗(X;G). The third isomorphism

follows from the evident commutativity of the diagram.

For each open set U ⊂ X, let D∗(U) = I p̄H∗(U ;G), let F∗(U) = I p̄H∗(U∩X•;G), and let

E∗(U) = ⊕αI p̄H∗(U∩R̄α;G). Let Φ : F∗ → D∗ be induced by inclusion, and let Ψ : E∗ → D∗
be the sum of the maps induced by inclusion of the R̄α. Of course D∗ admits the standard

Mayer-Vietoris sequence by Theorem 6.3.12, and if U, V are two open sets of X, then U ∩X•
and V ∩ X• are two open subsets of X• with (U ∩ X•) ∩ (V ∩ X•) = (U ∩ V ) ∩ X• and

(U ∩X•) ∪ (V ∩X•) = (U ∪ V ) ∩X•, so F∗ admits a Mayer-Vietoris sequence coming from

the intersection homology on X•. Compatibility of the short exact Mayer-Vietoris sequences

at the chain level shows that Φ induces a map of homology Mayer-Vietoris sequences. For

E∗, we have the direct sum of the Mayer-Vietoris sequences similarly associated to U ∩ R̄α

and V ∩R̄α, and the direct sum of similarly associated maps to the Mayer-Vietoris sequence

for D∗. This demonstrates condition (1) of Theorem 5.1.4.

Condition (2) follows from Lemma 5.1.6 using Lemma 6.3.16, applied on X for D∗ and

on X• for F∗, noting that an increasing sequence of open subsets {Uβ} in X yields and

increasing sequence of open subsets {Uβ ∩X•} in X•. Once again, the analogous argument

is true for each summand of E∗, and so for the direct sum.

Next we look at condition (4) of Theorem 5.1.4. If U is empty, then E∗(U) = F∗(U) =

D∗(U) = 0, trivially. If U is an open subset homeomorphic to Euclidean space and contained

within a regular stratum of X, then U is contained in a single Rα, say R0, and U ∩ R0 =

U ∩X• = U , so Φ is certainly an isomorphism on such sets, as is Ψ because all summands

will be 0 except for I p̄H∗(U ∩R̄0;G) = I p̄H∗(U ;G). If U is an open subset of X contained in

any one singular stratum S, then we must have S ∩R̄α = S ∩X• = ∅ for all α, for otherwise

S would have to be a stratum of some R̄α (since we have seen that each R̄α, and so also X•,

is a union of strata of X), in which case every neighborhood of every point of S would have

to intersect some regular stratum of X, meaning that U could not be open. So, in this case,

U ∩ R̄α = U ∩X• = ∅ for all α and E∗(U) = F∗(U) = 0. But similar, since U ⊂ ΣX we have

I p̄S∗(U ;G) = 0, as simplices of I p̄S∗(X;G) = 0 cannot be contained in ΣX by definition,

and therefore D∗(U) = I p̄H∗(U ;G) = 0. Thus Φ and Ψ must again be isomorphisms in this

case, trivially.

Finally, consider condition (3). Suppose we have an open subset U of X filtered homeo-

morphic to Ri×cL. It is convenient to identify U with Ri×cL via the homeomorphism. Fur-

ther suppose that Φ : F∗(Ri×(cL−{v}))→ D∗(Ri×(cL−{v})) and Ψ : E∗(Ri×(cL−{v}))→
D∗(Ri × (cL− {v})) are isomorphisms (where v is the cone vertex). By definition, such an
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open set U is a distinguished neighborhood of all points of U contained in Ri × {v}. Let x

be such a point in U , and first suppose x /∈ X•, so also x /∈ R̄α for all α. Then the stratum

containing x is not contained in X• (or any R̄α), and, by the partial ordering on the strata

of X and the fact that X• (or R̄α) is closed, it follows that none of the strata that intersect

U can be contained in X• (or any R̄α), and therefore they do not intersect X• (or R̄α).

This means that E∗(U) = F∗(U) = 0, as U ∩ X• = U ∩ R̄α = ∅, but also D∗(U) = 0, as

U ∩X• = ∅ implies that U ⊂ ΣX . Thus Φ and Ψ are trivially isomorphisms on U .

Next, suppose that x ∈ X•, so the stratum of U containing the homeomorphic image of

Ri × {v} is contained in X•. Consider the commutative diagram

⊕αI p̄H∗((Ri × (cL− {v})) ∩ R̄α;G)
∼=- I p̄H∗((Ri × (cL− {v})) ∩X•;G)

∼=- I p̄H∗(Ri × (cL− {v});G)

⊕αI p̄H∗((Ri × cL) ∩ R̄α;G)
?

- I p̄H∗((Ri × cL) ∩X•;G)
?

- I p̄H∗(Ri × cL;G),
?

where the top maps are isomorphisms by assumption. By the arguments in the proof of

Lemma 6.3.45, the space (Ri× cL)∩X• has the form Ri× cL̂, where L̂ is, roughly speaking,

the intersection of L with X•. Similarly, each R̄α that has a non-empty intersection with

Ri × cL intersects it in a space of the form Ri × cL̂α. Of course it is possible for some α

to have R̄α ∩ (Ri × cL) = ∅, in which case the corresponding terms on the left side of the

diagram are trivial.

Employing stratified homotopy invariance, the diagram is isomorphic to the diagram

⊕αI p̄H∗(L̂α;G)
∼=- I p̄H∗(L̂;G)

∼=- I p̄H∗(L;G)

⊕αI p̄H∗(cL̂α;G)

?
- I p̄H∗(cL̂;G)

?
- I p̄H∗(cL;G).

?

But now we can employ the cone formula (Theorem 4.2.1). Recall that the cut-off dimension

of the cone formula depends only on p̄({v}) and the codimension of the cone vertex. Since

all strata inherit their formal dimensions from X, the codimension of the cone vertex in cL

with the inherited filtration is the same as the codimension of the cone vertex in cL̂, or in

any cL̂α, with the inherited filtrations. In particular, since the stratum containing x has

dimension i (by our assumption that the distinguished neighborhood of x in X has the form

Ri× cL), the cone vertex inherits codimension n− i in cL, in cL̂, and in each cL̂α. The cone

formula now says that in degrees ≥ n− i− 1− p̄({v}) the groups I p̄H∗(cL;G), I p̄H∗(cL̂;G),

and all of the I p̄H∗(cL̂α;G) vanish, so the horizontal maps on the bottom of the diagram are

trivially isomorphic. In degrees < n− i− 1− p̄({v}), the other part of the cone formula tells

us that all the vertical maps are isomorphisms (trivially so for the summands on the left for

which R̄α ∩ (Ri× cL) = ∅). Thus the bottom maps of the diagram are isomorphisms in this

range as well. Therefore, Φ : F∗(U)→ D∗(U) and Ψ : E∗(U)→ D∗(U) are isomorphisms in

all degrees, and this establishes condition (3) of Theorem 5.1.4.
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We have now verified all conditions of Theorem 5.1.4, which we can now invoke to con-

clude that Φ and Ψ are isomorphisms on X.

The following corollary says that a version of the proposition carries down to the links,

which we recall need not themselves be CS sets. This will be used below in the proof of

Theorem 6.4.7. We leave the reader to formulate and prove a direct sum decomposition

formula in this setting such as the one in the proposition, noting that the intersection of a

regular stratum Rα of X with an open set U may be the union of multiple disjoint regular

strata of U .

Corollary 6.3.49. Suppose X is a CS set and x ∈ X•. Let L be a link of x in X, and let

L̂ be the link of x in X• as constructed in the proof of Lemma 6.3.45. Then I p̄H∗(L;G) ∼=
I p̄H∗(L̂;G)

Proof. Let N be a distinguished neighborhood of x in X, which we identify with Ri× cL via

a filtered homeomorphism. Then, as shown in the proof of Lemma 6.3.45, we have N ∩X• ∼=
Ri×cL̂ with L̂ ⊂ L a union of strata of L. We claim that (Ri×(cL−{v}))• ∼= Ri×(cL̂−{v}).
Then by the preceding proposition we have I p̄H∗(Ri × (cL − {v});G) ∼= I p̄H∗(Ri × (cL̂ −
{v});G), which applying stratified homotopy invariance becomes I p̄H∗(L;G) ∼= I p̄H∗(L̂;G).

For the claim that (Ri× (cL−{v}))• ∼= Ri× (cL̂−{v}), we already know that Ri× cL̂ ∼=
N ∩ X•. We also know that the regular strata of N are the connected components of the

intersections of N with the regular strata of X. As every point in Ri × cL̂ is in X•, each is

in the closure of a regular stratum of X and so of a regular stratum of N , as N is open in

X. Thus Ri× (cL̂−{v}) ⊂ (Ri× (cL−{v}))•, noting that Ri× (cL−{v}) contains all the

regular strata of N unless L = ∅, in which case the corollary holds vacuously. Conversely,

if x ∈ (Ri × (cL − {v}))•, then x is in the closure of a regular stratum of Ri × (cL − {v})
and hence of a regular stratum of X. So x ∈ X•, which implies that x ∈ Ri × cL̂. So

(Ri × (cL − {v}))• ⊂ Ri × (cL̂ − {v}). We conclude (Ri × (cL − {v}))• = Ri × (cL̂ − {v})
as desired.

To conclude this section, we provide one more lemma, which will be useful in the next

section.

Lemma 6.3.50. If X and Y are CS sets, then the product of the homogenizations X•× Y •
is the homogenization (X × Y )• of X × Y .

Proof. From the definition of the product stratification, the regular strata of X × Y are the

products of the regular strata of X and Y . If either X or Y has no regular strata, then its

corresponding homogenization is empty and so is the homogenization of X × Y . So assume

that all of the spaces have regular strata. If x ∈ X• and y ∈ Y •, then every neighborhood

U of x in X and every neighborhood V of y in Y intersect regular strata, so the product

neighborhood U × V intersects a regular stratum of X × Y . Since such neighborhoods are

cofinal among neighborhoods of (x, y), the point (x, y) must be in (X × Y )•.

Conversely, if (x, y) ∈ (X×Y )•, then every neighborhood of (x, y) intersects some regular

stratum of X × Y , so in particular every neighborhood of the form U × V has this property,
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where U is a neighborhood of x in X and V is a neighborhood of y ∈ Y . But if (u, v) ⊂ U×V
is contained in a regular stratum, so are u ∈ U and v ∈ V . Therefore, x and y are contained

respectively in the closures of regular strata of X and Y , so (x, y) ∈ X• × Y •.

6.3.3 Local coefficients

In this section, we pause to mention briefly an interesting feature of intersection homology

theory that was observed already by Goresky and MacPherson in [105, Section 2.2] concern-

ing intersection homology with local coefficients. Recall that ordinary homology with local

coefficients over a space X can be defined by thinking of the coefficients of simplices as living

not just in a group but in a bundle of groups over X, which allows for the coefficients to

“twist” as we move around the space. The extra wrinkle that arises in intersection homol-

ogy is that it is possible to define intersection homology with local coefficients even if the

coefficient bundle is only defined over X −ΣX . In particular, it need not extend to all of X.

To see the value of this, recall that if the underlying space of a classical stratified pseu-

domanifold X is actually a manifold and if p̄ is a GM perversity, then I p̄HGM
∗ (X) ∼= H∗(X)

by Theorem 5.5.1. But suppose now that G is a local coefficient system with fiber group G

that is defined on X−Σ but that does not extend to all of X. Then H∗(X;G) is not defined,

but I p̄HGM
∗ (X;G) will be and it will not generally be isomorphic to H∗(X;G). In this way,

intersection homology gives us new stratification-dependent invariants of X, even when X

is a manifold. This technique has been used, for example, to study versions of knot theory

in [46, 82]. More generally, on both manifolds and pseudomanifolds, intersection homology

with local coefficients allows for the definition of extended versions of many of the invariants

to be studied below, including twisted signature and twisted L-classes [47, 20, 14]. In fact,

intersection homology with local coefficients is ubiquitous, especially in the sheaf theoretic

approach to intersection homology where it can be formulated more naturally into the basic

definitions of the theory. See, e.g. [28, Chapter V].

While intersection homology with local coefficients is important, we have chosen not to

integrate it into our treatment throughout the book, which would have led to even more

technical clutter. However, given the basics that we have developed, adding in local coeffi-

cients does not pose large technical challenges, and we leave it to the interested reader to fill

in the necessary adaptations. Some of the details can be found in [81, Section 2] and [85,

Section 2].

Turning to some specifics, we first provide a sketch of the needed background, referring

the reader to [125, Section 3.H], [241, Chapter VI], or [67, Chapter 5] for more thorough treat-

ments. Recall that there are (at least!) two ways to define homology with local coefficients

on a space X. One way is principally algebraic: Let us suppose that X is path connected (or

each component can be treated separately) with universal cover X̃, let π = π1(X), and let

M be a left Z[π]-module. Then the deck transformations of X̃ induce a right Z[π] module

structure on S∗(X̃), and one can define the singular chain complex with coefficients in M to

be S∗(X;M) = S∗(X̃)⊗Z[π] M . While straightforward, this is not the definition that adapts

most easily to intersection chains, and so we will turn to the more geometric construction.
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For some results and further applications on variants of intersection homology from this

more algebraic perspective, see [163, 99].

Fixing an abelian group G, a bundle of groups (or local system of coefficients) G over X

is a covering space p : G → X such that all fibers p−1(x) are isomorphic to G. Each x ∈ X
is further assumed to have a neighborhood U and a homeomorphism p−1(U) ∼= U ×G that

takes each fiber over U isomorphically to G. In fancier language, G is a fiber bundle whose

transition functions are automorphisms of G; the bundle G can also be considered to be a

locally constant sheaf. Over a path connected and semi-locally simply connected space, the

data of a bundle of groups is equivalent to the data of a group G with a π1(X) action (see

[67, Lemma 4.7] or [241, Section VI.6]), and this is the link between the two definitions of

homology with local coefficients.

Given a bundle of groups p : G → X and a singular simplex σ : ∆k → X, we define a

coefficient of σ in G to be a lift n : ∆k → G, i.e. a map such that pn = σ. Since G is a

covering space and ∆k is contractible, to specify a coefficient for σ it is sufficient to specify

a lift of σ over any point of ∆k. Using the group structures on the fibers, it is possible

to add coefficients fiberwise, and one can check that this yields a well-defined addition on

coefficients. The singular chain complex S∗(X;G) can then be defined to consist of the finite

the formal sums
∑
niσi with each ni being a coefficient of σi. The addition on coefficients

makes S∗(X;G) into an abelian group in the evident way. Furthermore, if ni is a coefficient

of the singular k-simplex σi, then the restriction of ni to any face τ of ∆k is a coefficient for

τ . This allows for the definition of boundary maps, and S∗(X;G) becomes a chain complex

with homology groups denoted H∗(X;G), the homology groups with coefficients in the local

system G.

For intersection homology, we can define intersection chains with local coefficients over X

just as above, limiting ourselves to chains composed of p̄ allowable simplices whose boundaries

are also composed of p̄ allowable simplices. But, as noted above, what really makes this

interesting is that, with minor restrictions on the perversities, this procedure makes sense

even if G is only defined over X − Σ. In particular, we will assume that our perversities

satisfy p̄(S) ≤ codim(S) − 1 for each singular stratum S. As seen in Proposition 6.3.18,

this is not really a limitation on the possible intersection homology groups with constant

coefficients, but it will be useful here.

Consider a p̄ allowable simplex σ : ∆k → X. Since σ is allowable, for each singular

stratum S we have that σ−1(S) is contained in the k − codim(S) + p̄(S) ≤ k − 1 skeleton

of ∆k. In particular, σ takes the interior of ∆k to X − Σ, and so specifying a lift to G of

any point in the interior of ∆k determines a lift of σ over all of σ−1(X − Σ), which is a

contractible subset of ∆k. We can let such a lift define a coefficient of σ. Notice that the

allowability really is playing a role here, as if G does not extend over Σ and if σ is a (not

allowable) simplex with image in Σ, then we would not have a way to define a coefficient

for Σ. Furthermore, even though the k − 1 faces of an allowable k-simplex may not be

allowable, the restriction of a coefficient of σ to a k − 1 face τ does still give a partial lift of

τ over τ−1(X −Σ), and these “partial coefficients” can still be used to compute boundaries.

If τ−1(X − Σ) is empty, then the image of τ is contained in Σ, and we can consider the

coefficient to be 0 as in our first definition of non-GM intersection chains I p̄S∗. Thus, given
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a chain of allowable simplices and coefficients ξ =
∑
niσi, the chain ∂ξ is well defined from ξ

as a sum over simplices with partial coefficient lifts, dropping the terms which go to 0 because

they come from boundary simplices contained in Σ. If all simplices of ∂ξ are allowable, then

each of those simplices will have a coefficient lift defined over its interior, and in this case

we define ξ to be an intersection chain with local coefficients in G. It is not hard to check

that ∂2 = 0, and we obtain a chain complex I p̄S∗(X;G) and homology groups I p̄H∗(X;G).

Given that we are willing to work with partial lifts, the reader might well wonder why

we place any limitation on the perversities. This is probably not strictly necessary, but it

does allow us to avoid having to work with some more serious pathologies. For example,

if we allow perversities to be so high that they place no restrictions on the allowability of

simplices, then it is possible for σ−1(X − Σ) to have infinite components: for example, let

X = R, let Σ = {0}, and let σ : ∆1 = [0, 1] → X be given by σ(t) = t sin(1/t) for t 6= 0

and σ(0) = 0. Such simplices would have uncountably many partial coefficient lifts, even

if the group G is finite. On the other hand, if σ : ∆2 → R2 takes ∂∆2 around the origin

with non-zero winding number but G has nontrivial monodromy around the origin, then no

continuous lifts of σ|σ−1(R2−{0}) exist except the one to the 0-element of G in each fiber and

so such a σ cannot be a given any non-trivial coefficient at all.

Example 6.3.51. Let X = S2 = S(S1), stratified as {n, s} ⊂ S2, with n, s being the suspen-

sion points. Let G be the bundle of coefficients over S2−{n, s} ∼= (0, 1)×S1 with fiber Z but

with nontrivial monodromy so that traveling along a generator of π1(S2 − {n, s}) ∼= π1(S1)

takes m in the fiber Z to −m. It is not difficult to verify that the basic properties of inter-

section homology continue to hold with local coefficients, and so as by Theorem 6.3.13, if

p̄({n}) = p̄({s}) = p, we have

I p̄Hi(X;G) =


Hi−1(S1;G|S1), i > 1− p,
0, i = 1− p,
Hi(S

1;G|S1), i < 1− p.

So, for example, if p = 0, we have I p̄H0(X;G|S1) ∼= H0(S1;G|S1) ∼= Z2, while I p̄H2(X;G|S1) ∼=
H1(S1;G|S1) = 0. These computations of H∗(S

1;G|S1) can be done using CW homology with

local coefficients [67, Chapter 5] by constructing S1 as a 0-cell e0 and a 1-cell e1 and then

observing that with these coefficients ∂e1 = 2e0.

Notice that such groups do not arise as intersection homology groups with any con-

stant coefficients or from ordinary homology with local coefficients. In fact, as S2 is simply

connected, any coefficient system defined on the entire space must be constant.

Example 6.3.52. As a more sophisticated example, let X = Sn, and let K ⊂ Sn be a

PL submanifold that is PL homeomorphic to Sn−2. Let Λ be the ring of rational Laurent

polynomials Λ = Q[Z] = Q[t, t−1], and let π1(Sn − K) act on Λ so that if g ∈ Λ and if a

loop γ in Sn−K has linking number ` with K then γ(g) = t`g. This determines a bundle of

coefficients Γ over Sn−K with fiber Λ. If p̄ is a GM perversity and K is locally flat, meaning

that each point x ∈ K has a neighborhood U in Sn such that (U,U ∩K) ∼= (Rn,Rn−2), with

the latter being the standard pair, then the Λ-modules I p̄H∗(X; Γ) are isomorphic to the

classical Alexander modules of the knot K with rational coefficients [151]. If K is not locally
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flat, then these are the intersection Alexander modules of the knot and have properties

analogous to those of the classical Alexander modules. Analogous modules can be defined

for links and hyperplane complements. For more, see [46, 82, 165].

Although we will not pursue this topic further in this book, there are also versions

of intersection cohomology with local coefficient systems and versions of Poincaré duality.

For a non-sheaf approach to some such results, see [163]. For sheaf-theoretic duality with

local coefficients, see, for example, [106, 28, 46]; for applications of such duality to twisted

signatures and L-classes see [46, 47, 20, 14]. For use of local coefficients in a “universal”

duality theorem, see [99, 163]. Most of these results utilize coefficients in local systems of

fields. A detailed study of the most general possible results over more general rings and

using singular chain techniques remains to be written.

6.4 A general Künneth theorem

We next turn toward establishing a more general Künneth theorem that is not limited by the

assumption that one factor of the product space must be a trivially-filtered manifold. This

will be possible using the non-GM intersection homology groups. Early Künneth theorems

focused primarily on attempts to determine for which GM perversities p̄ it is true that

I p̄H∗(X × Y ;R) ∼= H∗(I
p̄S∗(X;R)⊗R I p̄S∗(Y ;R)).

Recall that GM perversities are functions of codimension alone, so the formula makes sense.

In [106], Goresky and MacPherson provided a sheaf-theoretic proof, based on the work

of Cheeger [59] on L2-cohomology, that such a formula holds for p̄ = m̄, the lower middle

perversity, using field coefficients and Witt spaces (see Definition 9.1.2 and Section 9, below).

This result was generalized by Cohen, Goresky, and Ji [62], who, also using sheaf theory but

now for coefficients in a principal ideal domain and for arbitrary compact pseudomanifolds,

showed that such a formula holds whenever p̄ satisfies the condition p̄(a) + p̄(b) ≤ p̄(a+ b) ≤
p̄(a) + p̄(b) + 1. They also show that this can be extended to p̄(a) + p̄(b) ≤ p̄(a + b) ≤
p̄(a) + p̄(b) + 2 provided one of X or Y is locally (p̄, R)-torsion free (see Definition 6.3.21).

In [87], the situation was generalized further to consider for what perversities p̄, q̄, Q (not

necessarily Goresky-MacPherson perversities) it is true that the cross product induces an

isomorphism

H∗(I
p̄S∗(X;R)⊗R I q̄S∗(Y ;R))

∼=−→ IQH∗(X × Y ;R)

for stratified pseudomanifolds X, Y . The arguments in [87] were also sheaf-theoretic. We

provide here a further generalization to CS sets using singular chains.

We will first consider a key example, the product of cones. This example will allow us

to demonstrate what perversities Q may arise in the Künneth theorem; the reader will also

not be surprised by this point that cone computations will play an important role later in

the proof. Then, we will state the Künneth theorem, Theorem 6.4.7, and prove it using the

computations of the key example and a Mayer-Vietoris argument.

Throughout this section we let R be a Dedekind domain, which includes the possibility

that R is a PID or a field. Recall that this assumption implies that I p̄S∗(X;R), I p̄C∗(X;R),
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and any of their submodules are flat by Lemma 6.3.1. Once again, we will focus primarily

on singular intersection homology and then show that a PL version of the theorem follows

using the equivalence of singular and PL intersection homology.

6.4.1 A key example: the product of cones

We seek to understand what conditions are necessary and sufficient on the product space

perversity Q in order for the map

H∗(I
p̄S∗(X;R)⊗ I q̄S∗(Y ;R))→ IQH∗(X × Y ;R)

to be an isomorphism. We will do this by considering the key example of a product of cones

cX×cY , under the assumption that the Künneth theorem already holds for product subsets

of smaller depth. This situation will then play an important role in the inductive Mayer-

Vietoris argument for the general case of the Künneth theorem. We have already seen in the

proof of Lemma 5.2.4 that we must in general have Q(S × S ′) ≥ p̄(S) + q̄(S ′) in order for

the cross product to be well defined. We will see that this condition, in addition to others, is

imposed separately by other considerations in our example. The following discussion will be

somewhat technically involved, so the reader more interested in the final answers might skip

ahead to the statement of Lemma 6.4.3, or even Theorem 6.4.7 (our Künneth Theorem),

and then continue on to later sections.

So to understand what Q may be, we consider cX × cY , where X, Y are (non-empty)

compact filtered sets of respective dimensions n − 1 and m − 1 and cX × cY is given the

product filtration. Given that CS sets are locally products of this form (with additional

Euclidean factors that do not influence the intersection homology), this is a good starting

place.

Recall from Section 2.11 that if A,B are filtered spaces, then we define the product

filtration on A × B so that (A × B)i = ∪j+k=iA
j × Bk. If A and B have respective formal

dimensions n and m, then this product has formal dimension n + m. By Lemma 2.11.1,

the strata of A × B each have the form S × T , where S is a stratum of A and T is a

stratum of B. We also recall from Corollary 2.11.5 that we have a filtered homeomorphism

cX×cY ∼= c(X ∗Y ), where X ∗Y is the join of X and Y ; see Section 2.11 for more discussion

of this fact and the definition of the filtration of a join. We suppose cX and cY have been

endowed with respective perversities p̄, q̄.

We will need to compare H∗(I
p̄S∗(cX;R) ⊗ I q̄S∗(cY ;R)) with IQH∗(cX × cY ;R) ∼=

IQH∗(c(X ∗ Y );R). We will assume as an induction hypothesis that we already have a

Künneth isomorphism for any open subset of cX × cY − {v × w} of the form U × V , for

open U ⊂ cX and open V ⊂ cY . Here v and w are the respective cone points of cX and cY ,

and so any such product subspace has depth less than that of cX × cY . We will discuss this

assumption in detail later in the proof of Theorem 6.4.7 (in particular, see Footnote 10 on

page 305), but such an induction hypothesis is reasonable taking as base cases the products

where at least one factor is a manifold.

With all of these assumptions, we will see that the cross product induces an isomorphism

H∗(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R))

∼=−→ IQH∗(cX × cY ;R)
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when we have the following conditions on Q:

p̄({v}) + q̄({w}) ≤ Q({v × w}) ≤ p̄({v}) + q({w}) + 1. (6.4)

Furthermore, if the torsion product I p̄Hn−p̄({v})−2(X;R) ∗ I q̄Hm−q({w})−2(Y ;R) = 0, then we

can weaken this condition to

p̄({v}) + q̄({w}) ≤ Q({v × w}) ≤ p̄({v}) + q({w}) + 2. (6.5)

We will also see that these conditions are necessary, in general.

Necessity of our conditions on Q. Getting to work, we can easily write downHi(I
p̄S∗(cX;R)⊗

I q̄S∗(cY ;R)) using the cone formula and the algebraic Künneth theorem [126, Theorem

V.2.1]:

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R)) (6.6)

∼=
⊕
j+k=i

Hj(I
p̄S∗(cX;R))⊗Hk(I

q̄S∗(cY ;R))

⊕
⊕

j+k=i−1

Hj(I
p̄S∗(cX;R)) ∗Hk(I

q̄S∗(cY ;R))

∼=
⊕
j+k=i

j<n−p̄({v})−1
k<m−q̄({w})−1

I p̄Hj(X;R)⊗ I q̄Hk(Y ;R)

⊕
⊕

j+k=i−1
j<n−p̄({v})−1
k<m−q̄({w})−1

I p̄Hj(X;R) ∗ I q̄Hk(Y ;R).

A useful first observation here is that each tensor product term will be 0 unless simulta-

neously j ≤ n− p̄({v})− 2 and k ≤ m− q̄({w})− 2, so Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R)) will

have no tensor product terms if i > n + m − p̄({v}) − q({w}) − 4. Similarly, each torsion

product term will be 0 unless simultaneously j ≤ n− p̄({v})− 2 and k ≤ m− q̄({w})− 2, so

Hi(I
p̄S∗(cX;R)⊗I q̄S∗(cY ;R)) will have no torsion product terms if i−1 > n+m− p̄({v})−

q({w})− 4, i.e. if i > n+m− p̄({v})− q({w})− 3. So, if i ≥ n+m− p̄({v})− q({w})− 2,

then Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R)) = 0.

The more challenging computation is the one for IQH∗(cX×cY ;R) ∼= IQH∗(c(X∗Y );R).

By the cone formula, we will have

IQHi(cX × cY ;R) ∼= IQHi(c(X ∗ Y );R)

∼=

{
0, i ≥ n+m−Q({v × w})− 1,

IQHi(X ∗ Y ;R), i < n+m−Q({v × w})− 1.

Given this computation, we can see why it is in general necessary to have

p̄({v}) + q({w}) ≤ Q({v × w}) ≤ p̄({v}) + q({w}) + 1
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in order to have any hope of an isomorphism between Hi(I
p̄S∗(cX;R) ⊗ I q̄S∗(cY ;R)) and

IQH∗(cX×cY ;R): We have just seen that Hi(I
p̄S∗(cX;R)⊗I q̄S∗(cY ;R)) = 0 if i ≥ n+m−

p̄({v})−q({w})−2; but it is also not hard to arrange for Hn+m−p̄({v})−q({w})−3(I p̄S∗(cX;R)⊗
I q̄S∗(cY ;R)) to be non-zero. In particular, we have

Hn+m−p̄({v})−q({w})−3(I p̄S∗(cX;R)⊗I q̄S∗(cY ;R)) = I p̄Hn−p̄({v})−2(X;R)∗I q̄Hm−q({w})−2(Y ;R),

which could (generically) be non-zero, for example, by choosing X and Y to be manifolds

with torsion in their homology modules of appropriate dimensions. For i < n+m− p̄({v})−
q({w}) − 3, we can obtain non-trivial non-torsion elements in all dimensions by letting X

and Y be products of circles. On the other hand, we must have IQHi(c(X ∗Y );R) = 0 if i ≥
n+m−Q({v×w})−1. So we need to have n+m−Q({v×w})−1 ≥ n+m−p̄({v})−q({w})−2,

i.e. that

Q({v × w}) ≤ p̄({v}) + q({w}) + 1.

If we happen to be in a situation where we know that I p̄Hn−p̄({v})−2(X;R)∗I q̄Hm−q({w})−2(Y ;R) =

0, either by an assumption on the spaces or working withR being a field, thenHi(I
p̄S∗(cX;R)⊗

I q̄S∗(cY ;R)) will vanish when i ≥ n+m− p̄({v})− q({w})−3. So in this case we only need

n+m−Q({v×w})−1 ≥ n+m− p̄({v})−q({w})−3, or Q({v×w}) ≤ p̄({v})+q({w})+2.

This provides the upper bounds on Q({v × w}) we claimed in conditions (6.4) and (6.5).

We already know that the lower bound p̄({v}) + q({w}) ≤ Q({v×w}) is necessary in order

for the cross product to be well defined; see also Remark 6.4.4 below. So, together, this

establishes the general necessity of (6.4), or (6.5) if the torsion vanishing condition holds.

Remark 6.4.1. Thinking ahead to the sufficiency of conditions (6.4) or (6.5), one might ex-

pect that these still offer too much flexibility and that we would need to choose Q so that

the dimension “cutoff’ in the cone formula agrees with what we would expect from our com-

putation of Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R)). However, we will see below that IQHi(X ∗Y ;R)

turns out to be zero automatically in certain dimensions (reminiscent of the computation of

the intersection homology of a suspension), and this provides the additional flexibility.

Sufficiency of our conditions on Q. Now we turn to showing that our conditions (6.4)

and (6.5) (with the torsion condition) on Q are sufficient to obtain a Künneth isomorphism.

We have seen Hi(I
p̄S∗(cX;R) ⊗ I q̄S∗(cY ;R)) = 0 for i ≥ n + m − p̄({v}) − q({w}) − 2

and IQHi(cX × cY ;R) = 0 for i ≥ n + m − Q({v × w}) − 1. Assuming Q({v × w}) ≥
p̄({v}) + q({w}), we have n+m−Q({v×w})−1 ≤ n+m− p̄({v})− q({w})−1. Therefore,

for i ≥ n+m−p̄({v})−q({w})−1 both Hi(I
p̄S∗(cX;R)⊗I q̄S∗(cY ;R)) and IQHi(cX×cY ;R)

must be trivial, and we can focus on i ≤ n + m − p̄({v}) − q({w}) − 2 for the rest of the

discussion.

Note that when Q({v×w}) = p̄({v})+q({w}), the range i ≤ n+m−p̄({v})−q({w})−2 is

exactly the range where IQHi(cX×cY ;R) is not forced to be 0 by cone formula considerations

alone. If Q({v × w}) = p̄({v}) + q({w}) + 1 then IQHi(cX × cY ;R) is also automatically 0

in dimension i = n + m− p̄({v})− q({w})− 2. If Q({v × w}) = p̄({v}) + q({w}) + 2 then

IQHi(cX × cY ;R) is also automatically 0 in dimension i = n + m − p̄({v}) − q({w}) − 3.
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Below these dimensions, and under our assumptions about Q, the module IQHi(cX×cY ;R)

is never automatically zero by the cone formula alone. To organize our thoughts going

forward, it is helpful to separate out these observations into cases in terms of the degree i,

given our conditions on Q:

1. If i ≥ n+m− p̄({v})−q({w})−1, then Hi(I
p̄S∗(cX;R)⊗I q̄S∗(cY ;R)) and IQHi(cX×

cY };R) are both 0. These are the only degrees in which Hi(I
p̄S∗(cX;R)⊗I q̄S∗(cY ;R))

is always 0.

2. If i ≤ n + m− p̄({v})− q({w})− 4, then IQHi(cX × cY ;R) is never automatically 0

from the cone formula alone under any of our conditions on Q.

3. If i = n + m − p̄({v}) − q({w}) − 3 then IQHi(cX × cY ;R) = 0 if Q({v × w}) =

p̄({v}) + q({w}) + 2 but not necessarily otherwise.

4. If i = n + m − p̄({v}) − q({w}) − 2 then IQHi(cX × cY ;R) = 0 if Q({v × w}) =

p̄({v})+q({w})+1 or Q({v×w}) = p̄({v})+q({w})+2 but not necessarily otherwise.

So we will need to compute IQHi(cX × cY ;R) in those settings where it is not forced to

be 0 by the cone formula. In those cases, again by the cone formula, it will be isomorphic

to IQHi(X ∗ Y ;R) ∼= IQHi(cX × cY − {v × w};R). So, we need to know something about

these modules. But, we have

cX × cY − {v × w} ∼= (cX × (cY − {w})) ∪ ((cX − {v})× cY ),

while

(cX × (cY − {w})) ∩ ((cX − {v})× cY ) ∼= (cX − {v})× (cY − {w}).
As each of cX × (cY − {w}), (cX − {v})× cY , and (cX − {v})× (cY − {w}) is a product

of open subsets of depth less than that of cX × cY , we can utilize our induction hypothesis

that there is a Künneth isomorphism for these products. Furthermore, this decomposition

of cX × cY − {v × w} allows us to utilize a Mayer-Vietoris sequence. Therefore, we have

the following diagram with the long exact Mayer-Vietoris sequence along the right side

(coefficients tacit):

Hi(I
p̄S∗(cX − {v})⊗ I q̄S∗(cY − {w}))

ε
∼=

- IQHi((cX − {v})× (cY − {w}))

Hi(I
p̄S∗(cX)⊗ I q̄S∗(cY − {w}))⊕Hi(I

p̄S∗(cX − {v})⊗ I q̄S∗(cY ))
? ε⊕ ε

∼=
- IQHi(cX × (cY − {w}))⊕ IQHi((cX − {v})× (cY ))

MV

?

IQHi(cX × cY − {v × w})
?

?

(6.7)
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Note the map in the diagram that we have labeled MV .

Now, consider the terms in the exact sequence. The simplest term is the intersection

term, IQHi((cX − {v}) × (cY − {w});R), which, by the induction assumption and the

algebraic Künneth Theorem, is isomorphic via the cross product map to6

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY − {w};R)) (6.8)

∼=
⊕
j+k=i

Hj(I
p̄S∗(cX − {v};R))⊗Hk(I

q̄S∗(cY − {w};R))

⊕
⊕

j+k=i−1

Hj(I
p̄S∗(cX − {v};R)) ∗Hk(I

q̄S∗(cY − {w};R)).

In the Mayer-Vietoris sequence, this maps to the direct sum term IQHi((cX × (cY −
{w});R)) ⊕ IQH∗((cX − {v}) × cY ;R), which, again using the induction assumptions, is

isomorphic to

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R))⊕Hi(I

p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R)).

Using the algebraic Künneth theorem and the cone formula, this becomes⊕
j+k=i

j<n−p̄({v})−1

I p̄Hj(cX − {v};R)⊗ I q̄Hk(cY − {w};R) (6.9)

⊕
⊕

j+k=i−1
j<n−p̄({v})−1

I p̄Hj(cX − {v};R) ∗ I q̄Hk(cY − {w};R)

⊕
⊕
j+k=i

k<m−q̄({w})−1

I p̄Hj(cX − {v};R)⊗ I q̄Hk(cY − {w};R)

⊕
⊕

j+k=i−1
k<m−q̄({w})−1

I p̄Hj(cX − {v};R) ∗ I q̄Hk(cY − {w};R).

Notice that each summand here also occurs as a summand of (6.8). In fact, we claim

that the maps

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY − {w};R))→ Hi(I

p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R))

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY − {w};R))→ Hi(I

p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R))

induced by the space inclusions correspond to the obvious projections onto summands. It

turns out that this is really not so obvious7, even given the nice topological situation, as

the splittings guaranteed by the algebraic Künneth theorem are not required to be preserved

under morphisms (see [126, Section V.2]). Luckily, however, this naive expectation does turn

6Of course, we could write, e.g. I p̄Hj(X;R) rather than I p̄Hj(cX − {v};R) in these formulas, but the

latter forms will be better suited to the somewhat delicate argument we have coming up.
7This is an oversight in the proof of the Künneth Theorem in [87]; however, as we will see here, the result

stated there does hold.
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out to hold. This will be the upshot of some technical work we will do below in Section 6.4.5,

culminating in the following technical lemma. Although this lemma plays a critical role at

several points in the remainder of our key example, its proof goes a bit far afield while we

already have a few balls up in the air; hence, we put the proof aside until Section 6.4.5, after

we have finished the rest of our discussion of the Künneth theorem.

Here is a statement of the lemma:

Lemma 6.4.2. Given a Dedekind domain R and compact filtered sets X = Xn−1 and Y =

Y m−1, there are splittings of

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY − {w};R))

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R)))

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R))

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y ;R))

into direct sums of tensor products I p̄Hj(cX − {v};R) ⊗ I q̄Hk(cY − {w};R) and torsion

products I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(cY − {w};R), both with j + k = i, such that the maps

in the diagram

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(Y − {w};R))

i⊗ id
- Hi(I

p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R)))

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R))

id⊗ ī

? i⊗ id
- Hi(I

p̄S∗(cX;R)⊗ I q̄S∗(cY ;R))

id⊗ ī

?

induced by the inclusions i : cX − {v} ↪→ cX and ī : cY − {w} ↪→ cY each restrict on

each tensor or torsion product summand either to the 0 map or to an isomorphism with the

corresponding summand in the codomain. Furthermore, which of these options is determined

in the obvious way by the cone formula Theorem 6.2.13; for example, the tensor product

summand I p̄Hj(cX−{v};R)⊗ I q̄Hk(cY −{w};R) maps to 0 in Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y −

{w};R))) when j ≥ n−p̄({v})−1 and isomorphically to a corresponding summand otherwise.

So, given this lemma, let us examine the Mayer-Vietoris sequence of diagram (6.7) in

dimensions i ≤ n+m−p̄({v})−q({w})−2. It will be useful to adopt the following temporary

notation: Let Tj,k, for j + k = i, denote the tensor product summand I p̄Hj(cX − {v};R)⊗
I q̄Hk(cY −{w};R) of Hi(I

p̄S∗(cX −{v};R)⊗ I q̄S∗(cY −{w};R)), and similarly let Tj,k, for

j+ k = i− 1, denote the torsion product summand I p̄Hj(cX −{v};R) ∗ I q̄Hk(cY −{w};R).

Lemma 6.4.2 says that under the maps from Hi(I
p̄S∗(cX − {v};R) ⊗ I q̄S∗(cY − {w};R))

to Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R)) and Hi(I

p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R)) induced

by inclusion, each of the Tj,k or Tj,k summands is taken either to 0 or isomorphically to

the appropriate corresponding summand, depending on whether or not the corresponding

summand in the codomain vanishes due to the cone formula.

We claim that the restriction of the map MV of diagram (6.7) to each Tj,k or Tj,k is

injective if i < n+m− p̄({v})− q({w})−2, which will imply that, for all i in this range, the
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Mayer-Vietoris sequence breaks up into short exact sequences, each in the single degree i.

Since the mapMV takes each summand Tj,k or Tj,k of (6.8) either to 0 or to the corresponding

term(s) in (6.9), we need only check that, in this range, each such summand appears in the

expression (6.9). Each tensor product term Tj,k with i = j + k does not occur in (6.9)

if and only if j ≥ n − p̄({v}) − 1 and k ≥ m − q̄({w}) − 1; in this case, we must have

i ≥ m+n− p̄({v})− q̄({w})− 2. Each torsion product term Tj,k with i− 1 = j+ k does not

occur in (6.9) if and only if j ≥ n− p̄({v})−1 and k ≥ m− q̄({w})−1; in this case, we must

have i ≥ m+n−p̄({v})−q̄({w})−1. So if i < m+n−p̄({v})−q̄({w})−2, each summand Tj,k
or Tj,k does appear in (6.9), and MV must be injective when restricted to the corresponding

summand of (6.8). So MV is injective in the desired range i < n+m− p̄({v})− q({w})− 2.

So now for i < m + n − p̄({v}) − q̄({w}) − 2, the Mayer-Vietoris sequence breaks into

short exact sequences in each degree, and there are two possibilities for what happens to

each summand Tj,k or Tj,k of Hi(I
p̄S∗(cX−{v};R)⊗I q̄S∗(cY −{w};R)). If Tj,k or Tj,k occur

in both Hi(I
p̄S∗(cX;R) ⊗ I q̄S∗(cY − {w};R)) and Hi(I

p̄S∗(cX − {v};R) ⊗ I q̄S∗(cY ;R)),

then, up to isomorphism, MV restricts on the summand to the anti-diagonal map of the

form G→ G⊕G, x→ (x,−x). However, if only one copy of Tj,k or Tj,k occurs in the middle

Mayer-Vietoris term, then MV takes the summand Tj,k or Tj,k isomorphically to this copy.

It follows that IQHi(cX × cY − {v × w};R) will be isomorphic to the direct sum of those

Tj,k and Tj,k for which the first situation occurs, i.e. of those Tj,k and Tj,k present in both

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R)) and Hi(I

p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R)).

Let us compute when this happens. From the cone formulas, we will have two copies of

Tj,k or Tj,k in (6.9) if both j < n− p̄({v})− 1 and k < m− q̄({w})− 1. So we see that for

i < m+ n− p̄({v})− q̄({w})− 2, we have

IQHi(cX × cY − {v × w};R) ∼=
⊕
j+k=i

j<n−p̄({v})−1
k<m−q̄({w})−1

I p̄Hj(cX − {v};R)⊗ I q̄Hk(cY − {w};R)

(6.10)

⊕
⊕

j+k=i−1
j<n−p̄({v})−1
k<m−q̄({w})−1

I p̄Hj(cX − {v};R) ∗ I q̄Hk(cY − {w};R).

But this is exactly isomorphic to Hi(I
p̄S∗(cX;R)⊗I q̄S∗(cY ;R)) as computed in (6.6), and

we will show below, after cleaning up some other details, that this isomorphism is induced

by the cross product.

Summing up, we can now update our list of facts beginning on page 296 as follows, again

given the assumptions (6.4) or (6.5) concerning Q:

1. If i ≥ n+m− p̄({v})−q({w})−1, then Hi(I
p̄S∗(cX;R)⊗I q̄S∗(cY ;R)) and IQHi(cX×

cY };R) are both 0.

2. If i ≤ n+m−p̄({v})−q({w})−4, then IQHi(cX×cY ;R) ∼= IQHi(cX×cY −{v×w};R),

and this is isomorphic to Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R)) (we have yet to see that the

isomorphism is induced by the cross product).
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3. If i = n + m − p̄({v}) − q({w}) − 3 and Q({v × w}) ≤ p̄({v}) + q̄({w}) + 1, then

again IQHi(cX × cY ;R) ∼= IQHi(cX × cY − {v × w};R), and this is isomorphic to

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R)). If Q({v×w}) = p̄({v})+ q̄({w})+2, then IQHi(cX×

cY ;R) ∼= IQHi(c(X ∗ Y );R) must be 0 from the cone formula, but, in this dimension

Hi(I
p̄S∗(cX;R)⊗I q̄S∗(cY ;R)) ∼= I p̄Hn−p̄({v})−2(X;R)∗I q̄Hm−q̄({w})−2(Y ;R), so we will

still have an isomorphism if this torsion term vanishes.

It remains only to consider i = n+m− p̄({v})− q({w})− 2. We have already computed

that Hi(I
p̄S∗(cX;R) ⊗ I q̄S∗(cY ;R)) = 0 in this dimension. We will show that IQHi(cX ×

cY − {v × w};R) also vanishes due to our assumptions about Q. Returning to our Mayer-

Vietoris sequence of (6.7), since MV is injective in lower degrees, this group is the image

of the term before it in the Mayer-Vietoris sequence. But if we look at (6.9), we see that

unless i = j + k ≤ n − p̄({v}) − 2 + m − q̄({w}) − 2 = m + n − p̄({v}) − q̄({w}) − 4, it

is impossible to have two copies of a tensor product summand Tj,k in (6.9). But we are

assuming i = m+ n− p̄({v})− q̄({w})− 2, so each tensor product summand Tj,k occurs at

most once in (6.9). Therefore, again using Lemma 6.4.2, the map MV takes Tj,k in (6.8)

either to 0 or to the lone corresponding summand in (6.9), and so the summand does not

survive into IQHm+n−p̄({v})−q̄({w})−2(cX × cY − {v × w};R). Similarly, if Tj,k is a torsion

produce summand, it is impossible to have two copies of Tj,k in (6.9) unless i− 1 = j + k ≤
n− p̄({v})−2+m− q̄({w})−2 = m+n− p̄({v})− q̄({w})−4. Since this is also not the case,

the map of the corresponding Tj,k to (6.9) must again be 0 or an isomorphism onto a lone

summand, so there is again no contribution to IQHm+n−p̄({v})−q̄({w})−2(cX×cY −{v×w};R).

Thus IQHm+n−p̄({v})−q̄({w})−2(cX × cY − {v × w};R) = 0, as desired.

The cross product. We have now shown, under the assumption (6.4) or (6.5), that the

modules Hi(I
p̄S∗(cX;R) ⊗ I q̄S∗(cY ;R)) and IQHi(cX × cY ;R) ∼= IQHi(c(X ∗ Y );R) are

isomorphic in all degrees. Let us confirm that this isomorphism is induced by the cross

product.

The cases where the isomorphism is not trivial are those in degrees i ≤ m+n− p̄({v})−
q̄({w}) − 3 with Q({v × w}) ≤ p̄({v}) + q̄({w}) + 1. In this case, IQHi(cX × cY ;R) ∼=
IQHi(cX×cY −{v×w};R) due to the cone formula. In this range, our preceding discussion

using the Mayer-Vietoris sequence of diagram (6.7) shows that up to isomorphism this group

is isomorphic to the direct sum of some of the groups Tj,k and Tj,k. In particular, the groups

Tj,k and Tj,k that appear as summands in IQHi(cX × cY − {v × w};R) are those that

appear in both IQHi((cX − {v})× cY ;R) and IQHi(cX × (cY − {w});R) and then survive

to IQHi(cX × cY − {v × w};R) in the quotient by the image of the anti-diagonal map.

Thus all of IQHi(cX × cY − {v × w};R) is in the image of the inclusion-induced map from

IQHi((cX − {v})× cY ;R).

By the naturality of the cross product (Proposition 5.2.17) we have a commutative dia-

gram
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Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R))

ε
∼=
- IQHi((cX − {v})× cY ;R)

IQHi(cX × cY − {v × w};R)

??

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R))

?? ε
- IQHi(cX × cY ;R).

∼=
?

Technically, Proposition 5.2.17 only gives us the commutativity of a diagram with the middle

right term removed, but the inclusion-induced map IQHi((cX−{v})×cY ;R)→ IQHi(cX×
cY ;R) certainly factors through IQHi(cX × cY − {v × w};R). The surjectivity of the left

vertical arrow comes from the cone formula and Lemma 6.4.2. The top horizontal arrow is

an isomorphism by the induction hypothesis. The bottom right isomorphism comes from

the cone formula in all degrees we are presently considering, and we saw in the preceding

paragraph that the upper right arrow is surjective. It follows directly from the diagram that

ε : Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R))→ IQHi(cX × cY ;R)

is surjective.

We must show that the bottom map ε is also injective. The top left module is a direct

sum of terms Tj,k = I p̄Hj(cX − {v};R) ⊗ I q̄Hk(cY − {w};R) with j + k = i and Tj,k =

I p̄Hj(cX−{v};R)∗I q̄Hk(cY −{w};R) with j+k = i−1, all with k ≤ m− q̄({w})−2 as we

here have only the full cone cY . By Lemma 6.4.2, the left vertical map is the projection to

those summands with also j ≤ n− p̄({v})− 2. But we know from our preceding arguments

with the Mayer-Vietoris sequence that the Tj,k and Tj,k summands with both j ≤ n −
p̄({v}) − 2 and k ≤ m − q̄({w}) − 2 are precisely the summands that survive the map

from IQHi((cX − {v})× cY ;R) to IQHi(cX × cY − {v × w};R). So, in other words, every

summand of Hi(I
p̄S∗(cX;R) ⊗ I q̄S∗(cY ;R)) is the image of a summand of Hi(I

p̄S∗(cX −
{v};R) ⊗ I q̄S∗(cY ;R)) that maps isomorphically to a summand of IQHi(cX × cY ;R) by

traveling right then down in the diagram. So the bottom horizontal map must be injective.

We can now wrap up the discussion thus far with a formal statement of our conclusions

for our key example:

Lemma 6.4.3. Let R be a Dedekind domain. Let X, Y be non-empty compact filtered spaces

of respective dimensions n− 1,m− 1. Let p̄ and q̄ be respective perversities on cX and cY .

Suppose a perversity Q is chosen on cX×cY such that for any open subset of cX×cY−{v×w}
of the form U ×V , with U ⊂ cX and V ⊂ cY , we have an isomorphism induced by the cross

product

H∗(I
p̄S∗(U ;R)⊗ I q̄S∗(V ;R))

×−→ IQH∗(U × V ;R).
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Then the cross product induces an isomorphism

H∗(I
p̄S∗(cX;R)⊗ I q̄S∗(cY ;R))

×−→ IQH∗(cX × cY ;R)

if (and, in general, only if) Q({v × w}) equals p̄({v}) + q̄({w}) or p̄({v}) + q̄({w}) + 1.

If I p̄Hn−p̄({v})−2(X;R) ∗ I q̄Hm−q̄({w})−2(Y ;R) = 0, then we can also use Q({v × w}) =

p̄({v}) + q̄({w}) + 2.

Remark 6.4.4. As a side note, the Mayer-Vietoris sequence and Lemma 6.4.2 allow us to

see that we need to have Q({v × w}) ≥ p̄({v}) + q({w}) for more reasons than just the

well-definedness of the cross product: Indeed, if Q({v × w}) < p̄({v}) + q({w}), then

n + m − p̄({v}) − q({w}) − 1 < n + m − Q({v × w}) − 1, so from the cone formula

IQHn+m−p̄({v})−q({w})−1(cX × cY ;R) ∼= IQHn+m−p̄({v})−q({w})−1(cX × cY − {v × w};R). To

study this group, let us consider the map MV in dimension i = n+m− p̄({v})−q({w})−2.

Suppose that I p̄Hn−p̄(v)−1(X;R) ⊗ I q̄Hm−q̄(w)−1(Y ;R) 6= 0, which is certainly a possibility

(for example, if p̄ = q̄ = 0̄ and X, Y are oriented stratified pseudomanifolds, this could be

the tensor product of the fundamental classes of X and Y ; see Section 8.1, below). This

tensor product corresponds to a summand in Hi(I
p̄S∗(cX − {v};R) ⊗ I q̄S∗(cY − {w};R)),

but we see that its image must vanish in

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R))⊕Hi(I

p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R)),

since j = n − p̄(v) − 1 and k = m − q̄(w) − 1 are both above the cutoff dimensions in

the corresponding cone formulas. So IQHn+m−p̄({v})−q({w})−1(cX × cY ;R) could be non-zero.

But Hn+m−p̄({v})−q({w})−1(I p̄S∗(cX;R)⊗ I q̄S∗(cY ;R)) remains 0, as we computed previously

directly from (6.6).

6.4.2 The Künneth Theorem

In this section, we produce our Künneth Theorem, relating H∗(I
p̄S∗(X;R) ⊗R I q̄S∗(Y ;R))

with IQH∗(X × Y ;R) for arbitrary CS sets X and Y with respective perversities p̄ and q̄.

Our key example, studied in the preceding section, suggests that the perversity Q should

be defined so that Q(S × T ) = p̄(S) + q̄(T ) or Q(S × T ) = p̄(S) + q̄(T ) + 1 for singular

strata S ⊂ X and T ⊂ Y . If S is a regular stratum of X, then the Künneth theorem with

a manifold factor (Theorem 5.2.25) tells us that that we need to be more restrictive and

take Q(S × T ) = p̄(S) + q̄(T ) = q̄(T ). Similarly, if T is a regular stratum, we should use

Q(S × T ) = p̄(S) + q̄(T ) = p̄(S). We further expect that Q(S × T ) = p̄(S) + q̄(T ) + 2

should also be acceptable for a product of singular strata so long as an appropriate torsion

vanishing condition is met.

To simplify further statements, we introduce the following definition:

Definition 6.4.5. If Q is a perversity on X × Y satisfying the following properties, then

we will say that Q is (p̄, q̄)-compatible8:

8Note that we leave the underlying spaces X and Y tacit in the notation, although the definitions of p̄

and q̄, as well as the local torsion properties, of course depend on the spaces.
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1. if S ⊂ X is a regular stratum and T ⊂ Y is any stratum, then Q(S × T ) = q̄(T ),

2. if S ⊂ X is any stratum and T ⊂ Y is a regular stratum, then Q(S × T ) = p̄(S),

3. if S ⊂ X and T ⊂ Y are both singular strata, then Q(S × T ) = p̄(S) + q̄(T ) or

Q(S × T ) = p̄(S) + q̄(T ) + 1,

4. if for each point x × y ∈ S × T there are a distinguished neighborhood of x in X of

the form Ra × cL1 and a distinguished neighborhood of y in Y of the form Rb × cL2

such that I p̄Hdim(L1)−p̄(S)−1(L1;R)∗I q̄Hdim(L2)−q̄(T )−1(L2;R) = 0, then condition (3) on

Q(S × T ) may also include the possibility Q(S × T ) = p̄(S) + q̄(T ) + 2. In particular,

this is the case if X is locally (p̄, R)-torsion free along9 the singular stratum S or Y is

locally (q̄, R)-torsion free along the singular stratum T . Recall that by Lemma 6.3.24

this condition really depends only on S and T and not on the choices of x, y, L1, or

L2.

Remark 6.4.6. If S ⊂ X and T ⊂ Y are both regular strata, then p̄(S) = q̄(T ) = 0, and

so both conditions (1) and (2) of the definition are consistent with the expectation that

Q(S × T ) = 0 on the regular stratum S × T of X × Y .

Furthermore, if Y = M is an unfiltered manifold then q̄ must be the trivial perversity

that is 0 on each connected component R of M , and for any stratum S × R of X × Y ,

we must have Q(S × R) = p̄(S) for any (p̄, q̄)-compatible perversity Q. This is consistent

with the perversities appearing in the Künneth Theorem for which one factor is a manifold

(Theorem 6.3.20).

It will turn out that this definition is precisely what works, and we obtain the following

Künneth theorem:

Theorem 6.4.7 (Künneth Theorem). Let X, Y be CS sets with respective perversities p̄, q̄,

and let R be a Dedekind domain. Let Q be a (p̄, q̄)-compatible perversity defined on X × Y .

Then the cross product induces an isomorphism

H∗(I
p̄S∗(X;R)⊗R I q̄S∗(Y ;R))

×−→ IQH∗(X × Y ;R).

The analogous result holds for PL intersection homology if X and Y are PL CS sets.

Remark 6.4.8. Using our observation about perversities in Remark 6.4.6, we see that this

Künneth Theorem reduces to Theorem 6.3.20 if either of the factors is an unfiltered manifold.

Remark 6.4.9. The theorem applies as stated to stratified pseudomanifolds, which are CS

sets, but it also applies to ∂-stratified pseudomanifolds: if X is a ∂-stratified pseudomanifold,

then X is stratified homotopy equivalent to the stratified pseudomanifold X − ∂X, and

similarly for Y . So these interiors can be used as intersection homology substitutes for the

full spaces in the following arguments. See Section 7.3.10 for more details.

9See Definition 6.3.21.
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Proof of Theorem 6.4.7. At first we will focus on singular intersection homology.

It will be simpler to work with dimensionally homogeneous CS sets, which can be done

as follows: As observed in Lemma 6.3.50, X• × Y • = (X × Y )•, so by the naturality of the

cross product we have a commutative diagram

H∗(I
p̄S∗(X

•;R)⊗R I q̄S∗(Y •;R))
×
- IQH∗((X × Y )•;R)

H∗(I
p̄S∗(X;R)⊗R I q̄S∗(Y ;R))

? ×
- IQH∗(X × Y ;R)

?

in which the vertical maps are induced by inclusions. By Proposition 6.3.47, the algebraic

Künneth Theorem [237, Theorem 3.6.3] (which applies as all intersection chain modules

are flat by Lemma 6.3.1), and the Five Lemma, the vertical maps are both isomorphisms.

Therefore, it will suffice to show that the top horizontal map is an isomorphism. Equivalently,

as the homogenization of a CS set is a CS set by Lemma 6.3.45, we will assume in the following

argument that all spaces are dimensionally homogeneous, and the result in general follows

from this diagram. Note that due to Corollary 6.3.49 that our finite generation and torsion

free conditions on the links of X and Y carries over to the links of X• and Y •.

The proof will proceed by an induction on the depth of X × Y using Mayer-Vietoris

arguments.

If the depth of X × Y is 0, then X and Y both have depth 0, and the theorem reduces

to the standard Künneth theorem for ordinary homology.

If the depth of X × Y is 1, then one of X or Y is a manifold, and the theorem reduces

to the Künneth theorem with a manifold factor (Theorem 6.3.20).

So now assume that the depth of X × Y is K > 1 and that we have proven the theorem

in all cases where the depth of X × Y is < K.

Sill assuming that X×Y has depth K, we will first prove the special case of the theorem

in which Y is a CS set of the form Y = Rj × cL for some compact filtered L . We will use

a Mayer-Vietoris argument (Theorem 5.1.4) with functors defined on the open subsets of X.

For U ⊂ X, we let F∗(U) = H∗(I
p̄S∗(U ;R) ⊗R I q̄S∗(Y ;R)) and G∗(U) = IQH∗(U × Y ;R)

with the natural transformation Φ corresponding to the cross product. The functor G∗
admits Mayer-Vietoris sequences by Theorem 6.3.12. The argument that F∗ admits Mayer-

Vietoris sequences is essentially the same as that in the proof of Theorem 5.2.25: If we begin

with the Mayer-Vietoris short exact sequence for I p̄S∗( · ;R) for subsets of X, then we can

tensor it with with I q̄S∗(Y ;R), which is flat and so preserves exactness. The associated

long exact sequence is the desired Mayer-Vietoris sequence for F∗. Also as in the proof of

Theorem 5.2.25, the transformation Φ induces a map of short exact sequences, and hence

a map of long exact sequences, even after replacing terms of the form H∗((I
p̄S∗(U ;R) +

I p̄S∗(V ;R))⊗R I q̄S∗(Y ;R)) with the isomorphic terms H∗(I
p̄S∗(U ∪ V ;R)⊗R I q̄S∗(Y ;R)).

The second condition of Theorem 5.1.4 follows, as usual, from Lemmas 5.1.6 and 5.1.7,

in the case of F∗ using the algebraic Künneth Theorem and the commutativity of tensor

products with direct limits and homology.
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The last condition of Theorem 5.1.4 is trivial if U is empty. Otherwise, it is a consequence

of Theorem 6.3.20, as the assumption that X is dimensionally homogeneous ensures that an

open subset U of X can be contained in a single stratum of X only if U is an open subset

of a regular stratum of X and so a trivially-filtered manifold of the dimension of X.

Finally, we consider condition (3) of Theorem 5.1.4. By our induction on depth, the

hypothesis that Φ : F∗(Ri × (cL − {v})) → G∗(Ri × (cL − {v})) be an isomorphism is

automatically fulfilled by the induction hypothesis whenever Ri × cL is (homeomorphic to)

a distinguished neighborhood of a point in a singular stratum of X. We need to show that

Φ : F∗(Ri×cL)→ G∗(Ri×cL) is an isomorphism. But this is precisely the content of Lemma

6.4.3, up to the additional Euclidean space factors, which are not relevant to the computation

due to the stratified homotopy invariance of intersection homology and naturality of the cross

product. The hypotheses of the lemma are also satisfied due to the induction on depth10.

And so Theorem 5.1.4 proves the special case Y = Rj × cL .

Now we can move on to the general case of arbitrary CS sets X × Y of depth K. We

again use Theorem 5.1.4, this time with functors defined on the open subsets of Y . For

U ⊂ Y , we let F∗(U) = H∗(I
p̄S∗(X;R)⊗R I q̄S∗(U ;R)) and G∗(U) = IQH∗(X × U ;R) with

the functor Φ corresponding to the cross product. By the exact same reasoning as above, we

have a commuting diagram of Mayer-Vietoris sequences, the condition on ascending chains of

open sets holds, and the last condition of Theorem 5.1.4 is a consequence of Theorem 6.3.20,

as the dimensional homogeneity assumption on Y again implies that if U is a non-empty

open subset of Y contained in a single stratum, then U is a trivially-filtered manifold of the

dimension of Y . For condition (3) of 5.1.4, the hypothesis that Φ : F∗(Ri × (cL − {v})) →
G∗(Ri× (cL−{v})) be an isomorphism (now for Ri× cL a distinguished neighborhood of a

point in a singular stratum of Y ) is again automatically fulfilled by the induction hypothesis

on depth, and we need to show that Φ : F∗(Ri × cL) → G∗(Ri × cL) is an isomorphism.

But this is exactly the special case of the theorem proven above for which the first factor

is arbitrary but the second factor is the product of a Euclidean space and a cone. Since an

open subset of a space Z has depth less than or equal to that of Z, our proof of the special

case is allowable here. The theorem now follows for singular intersection homology from

Theorem 5.1.4.

10 More precisely, if U ⊂ cL and V ⊂ cL are such that U × V ⊂ cL× cL − {v × w}, then naturality of

the cross product provides a diagram

I p̄S∗(U ;R)⊗ I q̄S∗(V ;R)
ε - IQS∗(U × V ;R)

I p̄S∗(Ri × U ;R)⊗ I q̄S∗(Rj × V ;R)

?
ε- IQS∗(Ri × U × Rj × V ;R).

?

The vertical maps all induce homology isomorphisms by stratified homotopy invariance and the algebraic

Künneth Theorem, and the bottom horizontal map induces a homology isomorphism by induction, using

that all the spaces are (filtered homeomorphic to) open subsets of CS sets and so are themselves CS sets.

Therefore, the top map is also a homology isomorphism, fulfilling the hypotheses of Lemma 6.4.3.
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If X and Y are PL CS sets, suppose K and L are full simplicial complexes triangulating X

and Y compatibly with their filtrations and with partial orders on their vertices restricting to

total orders on each simplex. Then putting together the commutative diagrams of Corollaries

6.3.36 and 6.3.37, we get the commutative diagram

I p̄C∗(X;R)⊗R I q̄C∗(Y ;R)
×
- IQC∗(X × Y ;R)

I p̄C∗(K;R)⊗R I q̄C∗(L;R)

6

./
- IQC∗(K × L;R)

6

I p̄S∗(X;R)⊗R I q̄S∗(Y ;R)

φK ⊗ φL
? ε

- IQS∗(X × Y ;R).

φK×L

?

We know that maps of the form I p̄C∗(K;R) → I p̄C∗(X;R) induce isomorphisms on ho-

mology by Theorem 6.3.30, and the maps of the form I p̄C∗(K;R) → I p̄S∗(X;R) induce

isomorphisms on homology by Corollary 6.3.35, identifying |K| with X via the triangulating

homeomorphism (and similarly for the other spaces). As all modules are flat, the vertical

arrows on the left therefore also induce homology isomorphisms by the naturality of the

algebraic Künneth theorem and the Five Lemma. We have seen that the bottom map is an

isomorphism on homology, thus the other horizontal maps are isomorphisms on homology

as well.

As a corollary, and applying also the algebraic Künneth theorem, we obtain the following

version of the theorem with coefficients in a field.

Corollary 6.4.10. Let X, Y be CS sets with respective perversities p̄, q̄. Let F be a field.

Let Q be a (p̄, q̄)-compatible perversity defined on X ×Y . Then the cross product induces an

isomorphism

I p̄H∗(X;F )⊗F I q̄H∗(Y ;F )
×−→ IQH∗(X × Y ;F ).

The analogous result holds for PL intersection homology if X and Y are PL CS sets.

Example 6.4.11. Here is an example that will be useful below in Chapter 9 in our discussion

of Witt signatures.

Let n̄ be the upper-middle Goresky-MacPherson perversity defined by n̄(S) =
⌈

codim(S)−2
2

⌉
(Definition 3.1.10). As n̄ depends only on codimension, we may also write simply n̄(k) =⌈
k−2

2

⌉
. We claim that if X and Y are CS sets, each given the perversity n̄, then n̄ as a

perversity on X × Y is (n̄, n̄)-compatible.

Let S ⊂ X and T ⊂ Y be strata. If S is regular, then codimX×Y (S × T ) = codimY (T ).

If we call this common codimension `, then the compatibility condition in this case reduces

to n̄(`) = n̄(`). Things work out analogously if T is regular. So suppose S and T are both
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singular. If codimX(S) = k and codimY (T ) = `, then it suffices to show n̄(k) + n̄(`) ≤
n̄(k + `) ≤ n̄(k) + n̄(`) + 1. This can be seen from the following table:

k ` n̄(k) n̄(`) n̄(k) + n̄(`) n̄(k + `)

even even k
2
− 1 `

2
− 1 k+`

2
− 2 k+`

2
− 1

odd even k+1
2
− 1 `

2
− 1 k+`+1

2
− 2 k+`+1

2
− 1

even odd k
2
− 1 `+1

2
− 1 k+`+1

2
− 2 k+`+1

2
− 1

odd odd k+1
2
− 1 `+1

2
− 1 k+`

2
− 1 k+`

2
− 1

In each case n̄(k) + n̄(`) ≤ n̄(k+ `) ≤ n̄(k) + n̄(`) + 1, and so n̄ is (n̄, n̄)-compatible and the

Künneth Theorem applies to provide an isomorphism

H∗(I
n̄S∗(X;R)⊗R I n̄S∗(Y ;R))

×−→ I n̄H∗(X × Y ;R).

Remark 6.4.12. This Künneth Theorem (Theorem 6.4.7) is not true if we replace IH∗ with

IHGM
∗ . For example, let X and Y each be a cone on a torus S1 × S1. Let p̄({v}) = 5 and

q̄({w}) = 0. Using the cone formula (Theorem 4.2.1),

I p̄HGM
i (X) ∼=

{
Z, i = 0,

0, otherwise,

and

I q̄HGM
i (Y ) ∼=


Z, i = 0,

Z⊕ Z, i = 1,

0, otherwise,

and so also

Hi(I
p̄SGM∗ (X)⊗ I q̄SGM∗ (Y )) ∼=


Z, i = 0,

Z⊕ Z, i = 1,

0, otherwise.

But if we take Q({v × w}) = p̄({v}) + q̄({w}) = 5, then, again by Theorem 4.2.1, we

have

IQHGM
i (X × Y ;R) ∼=

{
Z, i = 0,

0, otherwise.

Conceivably, there may be some way to modify the theorem so that Q provides some kind

of additional truncation if perversities get “too big” for Theorem 4.2.1 to apply (which is

essentially the problem here) and hence some way to extend the Künneth theorem to IHGM
∗ ,

but we will not pursue this here.

307



6.4.3 A relative Künneth theorem

Having established our general Künneth theorem as Theorem 6.4.7, we now turn to proving

a relative version of the theorem. We will not need to work from scratch, instead we will use

Theorem 6.4.7 along with some homological algebra.

Theorem 6.4.13 (Künneth Theorem). Let X, Y be CS sets with respective perversities p̄, q̄,

and let R be a Dedekind domain. Let A ⊂ X and B ⊂ Y be open11 subspaces, and let

Q be a (p̄, q̄)- compatible perversity defined on X × Y . Then the cross product induces an

isomorphism

H∗(I
p̄S∗(X,A;R)⊗R I q̄S∗(Y,B;R))

×−→ IQH∗(X × Y, (A× Y ) ∪ (X ×B);R).

The analogous result holds for PL intersection homology if X and Y are PL CS sets.

Proof. Consider the following diagram, in which we leave the R coefficients tacit:

0 - I p̄S∗(A)⊗R I q̄S∗(Y ) - I p̄S∗(X)⊗R I q̄S∗(Y ) - I p̄S∗(X,A)⊗R I q̄S∗(Y ) - 0

0 - IQS∗(A× Y )

×

?
- IQS∗(X × Y )

×

?
- IQS∗(X × Y,A× Y )

×

?
- 0.

The top row is the short exact p̄-intersection chain sequence of the pair (X,A) tensored over

R with I q̄S∗(Y ;R). Since each I q̄Si(Y ;R) is flat, the sequence remains exact. The second

row is the short exact Q-intersection chain sequence of the pair (X×Y,A×Y ). The vertical

maps are all induced by the chain cross product, and the diagram commutes by naturality

of the cross product. In the resulting diagram of long exact homology sequences, the cross

product induces isomorphisms on the absolute homology terms by Theorem 6.4.7, observing

that the links of A and B are all also links of X and Y . So

× : H∗(I
p̄S∗(X,A;R)⊗R I q̄S∗(Y ;R))→ IQH∗(X × Y,A× Y ;R)

is also an isomorphism, by the Five Lemma.

Similarly, we now have the diagram, again with coefficients tacit,

0 - I p̄S∗(X,A)⊗R I q̄S∗(B) - I p̄S∗(X,A)⊗R I q̄S∗(Y ) - I p̄S∗(X,A)⊗R I q̄S∗(Y,B) - 0

0 - IQS∗(X ×B,A×B)

×

?
- IQS∗(X × Y,A× Y )

×

?
- IQS∗(X × Y )/(IQS∗(A× Y ) + IQS∗(X ×B))

×

?
- 0.

This time, the top row comes from tensoring the short exact q̄-intersection chain sequence of

the pair (Y,B) with I p̄S∗(X,A;R). The sequence stays exact as I p̄S∗(X,A;R) is also flat.

11It might be possible to prove this theorem in greater generality, but this will be a convenient assumption

for us to utilize our previous results.
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The bottom row in the diagram is exact via some basic algebra: The inclusionX×B ↪→ X×Y
induces an injection IQS∗(X ×B,A×B;R)→ IQS∗(X × Y,A× Y ;R). Then

IQS∗(X × Y,A× Y ;R)

IQS∗(X ×B,A×B;R)
∼=
IQS∗(X × Y ;R)/IQS∗(A× Y ;R)

IQS∗(X ×B;R)/IQS∗(A×B;R)

∼=
IQS∗(X × Y ;R)/IQS∗(A× Y ;R)

(IQS∗(A× Y ;R) + IQS∗(X ×B;R))/IQS∗(A× Y ;R)

∼=
IQS∗(X × Y ;R)

(IQS∗(A× Y ;R) + IQS∗(X ×B;R))
,

using in the last isomorphism the third isomorphism theorem and in the middle isomorphism

the second isomorphism theorem, as

IQS∗(A× Y ;R) ∩ IQS∗(X ×B;R) = IQS∗(A×B;R).

The diagram of short exact sequences yields a diagram of long exact sequences in homology,

and the maps corresponding to the first two vertical maps of the short exact sequence are

isomorphisms by the case demonstrated above in which only one factor in the Künneth

theorem was a relative homology module. By the Five Lemma, we get isomorphisms

H∗(I
p̄S∗(X,A;R)⊗RI q̄S∗(Y,B;R))

×−→ H∗(I
QS∗(X×Y ;R)/(IQS∗(A×Y ;R)+IQS∗(X×B;R))).

Finally, there is a map of the short exact sequence

0→ IQS∗(A× Y ;R) + IQS∗(X ×B;R)→ IQS∗(X × Y ;R)

→ IQS∗(X × Y ;R)/(IQS∗(A× Y ;R) + IQS∗(X ×B;R))→ 0

to the short exact Q-intersection chain sequence of the pair (X × Y, (A × Y ) ∪ (X × B)).

The induced map

H∗(I
QS∗(A× Y ;R) + IQS∗(X ×B;R))→ IQH∗((A× Y ) ∪ (X ×B);R)

is an isomorphism by the argument used to prove the Mayer-Vietoris sequence of Theorem

6.3.12; see the proof of Theorem 4.4.19. So, by the Five Lemma, we at last obtain the

isomorphisms

H∗(I
p̄S∗(X,A;R)⊗R I q̄S∗(Y,B;R))

×−→ H∗(I
QS∗(X × Y ;R)/(IQS∗(A× Y ;R) + IQS∗(X ×B;R)))

∼= IQH∗(X × Y, (A× Y ) ∪ (X ×B);R).

The argument for PL intersection homology is analogous.

6.4.4 Applications of the Künneth Theorem

This section contains some rather immediate applications of the intersection homology

Künneth Theorem.
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One important consequence of Theorems 6.4.7 and 6.4.13, and one that will play a signif-

icant role in the next chapter, is that the singular chain cross product ε is a chain homotopy

equivalence. As we use here that the singular intersection chain modules are projective

(Lemma 6.3.1), we will not be able to extend this result to PL chains, which we only know

to be flat.

Theorem 6.4.14. Let X, Y be CS sets with respective perversities p̄, q̄, let A ⊂ X and

B ⊂ Y be open subspaces, let R be a Dedekind domain, and let Q be a (p̄, q̄)-compatible

perversity on X × Y . Then the cross product

ε : I p̄S∗(X,A;R)⊗R I q̄S∗(Y,B;R)→ IQS∗(X × Y, (A× Y ) ∪ (X ×B);R)

is a chain homotopy equivalence.

Proof. We first recall that each I p̄Si(X,A;R), I q̄Sj(Y,B;R), and IQSk(X × Y, (A × Y ) ∪
(X×B);R) is a projective R-module; see Lemma 6.3.1. It follows that each I p̄Si(X,A;R)⊗
I q̄Sj(Y,B;R) is projective. In fact, if P and S are projective R-modules, then there are

R-modules U and V such that P ⊕ U and S ⊕ V are each free (recall that a module is

projective if and only if it is a direct summand of a free module; see Lemma A.4.1). Thus

(P ⊕ U)⊗ (S ⊕ V ) is free [147, Corollary XVI.2.4]. But then

(P ⊕ U)⊗ (S ⊕ V ) ∼= (P ⊗ (S ⊕ V ))⊕ (U ⊗ (S ⊕ V ))
∼= (P ⊗ S)⊕ (P ⊗ V )⊕ (U ⊗ S)⊕ (U × V ),

so P ⊗ S is a direct summand of a free module.

Since each I p̄Si(X,A;R)⊗I q̄Sj(Y,B;R) is projective, so is⊕i+j=kI p̄Si(X,A;R)⊗I q̄Sj(Y,B;R),

and therefore I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R) is a complex of projectives. Under the assump-

tions of Theorem 6.4.13, the cross product induces a quasi-isomorphism of these complexes

of projectives. This is sufficient for ε to be a chain homotopy equivalence. This last fact is

well known, and we provide a proof as Lemma A.4.3 in Appendix A.

For our next two applications of the Künneth theorem, we examine when the product of

locally torsion free spaces is locally torsion free in its own right (with respect to appropriate

perversities) and similarly when the product of locally finitely generated spaces is locally

finitely generated (recall Definition 6.3.38).

Proposition 6.4.15. Suppose X and Y are CS sets with respective perversities p̄ and q̄. Let

Q be a (p̄, q̄)-compatible perversity on X × Y . Then X × Y is locally (Q,R)-torsion free if

and only if X is locally (p̄, R)-torsion free and Y is locally (q̄, R)-torsion free.

Proof. Let S × T be a stratum of X × Y , let K be the link of S in X and let L be the link

of T in Y . Then the join K ∗ L is the link of S × T in X × Y . If S is a regular stratum of

X, then K = ∅, and similarly for T and L. Recall that the join with the empty set is the

identity construction, e.g. K ∗ ∅ = K.

By definition, X × Y is locally (Q,R)-torsion free if for any such S × T the torsion

product of IQHdim(K∗L)−Q(S×T )−1(K ∗ L;R) with any R-module vanishes, or, equivalently
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by [147, Theorem XVI.3.11], if this intersection homology module is flat. Recall that this

expression makes sense as we can restrict the perversity Q on X×Y to the link K ∗L, which

we can consider embedded in X × Y . The locally torsion free conditions for X and Y can

be similarly restated.

If K = ∅, i.e. S is a regular stratum, then Q(S×T ) = q̄(T ) and Q restricts to q̄ on L, so

the condition that IQHdim(K∗L)−Q(S×T )−1(K ∗L;R) be flat reduces to I q̄Hdim(L)−q̄(T )−1(L;R)

being flat, which is the condition for Y to be locally (q̄, R)-torsion free along T . Therefore,

we see that if X × Y is locally (Q,R)-torsion free, it follows that Y is locally (q̄, R)-torsion

free. The analogous argument holds when L = ∅. Thus if X × Y is locally (Q,R)-torsion

free, we must also have that X is locally (p̄, R)-torsion free and Y is locally (q̄, R)-torsion

free. Conversely, if X is locally (p̄, R)-torsion free and Y is a locally (q̄, R)-torsion free, then

X × Y is locally (Q,R)-torsion free along strata S× T for which one of S or T is regular. It

remains to show that if X and Y are each locally torsion free then X × Y is locally torsion

free along products of singular strata.

So suppose that X and Y are both locally torsion free and that neither K nor L is empty.

To best mesh with our earlier computations, suppose dim(K) = m− 1 and dim(L) = n− 1.

Then

dim(K ∗ L)−Q(S × T )− 1 = m+ n− 1− (p̄(S) + q̄(T ) + C)− 1

= m+ n− p̄(S)− q̄(T )− 2− C,

where C ∈ {0, 1, 2}. Note that C = 2 is allowed because of the torsion free hypotheses on X

and Y . Now let us apply equation (6.10) and the computations below it on page 300, which

hold by our assumption that Q is (p̄, q̄)-compatible.

First, we have computed that

IQHm+n−p̄(S)−q̄(T )−2(K ∗ L;R) = IQHm+n−p̄(S)−q̄(T )−2(cK × cL− {v × w};R) = 0,

where v, w are the respective cone vertices. This is certainly torsion free.

Then, by equation (6.10) and deleting terms that must vanish, we obtain12

IQHm+n−p̄(S)−q̄(T )−4(K ∗ L;R) ∼=
(
I p̄Hm−p̄(S)−2(K;R)⊗R I q̄Hn−q̄(T )−2(L;R)

)
⊕
(
I p̄Hm−p̄(S)−3(K;R) ∗R I q̄Hn−q̄(T )−2(L;R)

)
⊕
(
I p̄Hm−p̄(S)−2(K;R) ∗R I q̄Hn−q̄(T )−3(L;R)

)
and

IQHm+n−p̄(S)−q̄(T )−3(K ∗ L;R) ∼= I p̄Hm−p̄(S)−2(K;R) ∗R I q̄Hn−q̄(T )−2(L;R).

Recalling that dim(K) = m− 1 and dim(L) = n− 1, we see that the locally torsion free

conditions on X and Y imply that I p̄Hm−p̄(S)−2(K;R) and I q̄Hn−q̄(T )−2(L;R) are both flat.

12In this expression K ∗ L denotes the join of spaces and we use ∗R for the torsion product over R.
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It follows that all the torsion product terms vanish and that the tensor product term is flat

as a tensor product of flat modules. Therefore, we obtain that IQHm+n−p̄(S)−q̄(T )−C(K ∗L;R)

is flat for C ∈ {0, 1, 2}, as desired.

Proposition 6.4.16. Suppose X and Y are CS sets and that R is a Noetherian ring. Let

X and Y have respective perversities p̄ and q̄, and let Q be a (p̄, q̄)-compatible perversity on

X×Y . Then X×Y is locally (Q,R)-finitely generated if and only if X is locally (p̄, R)-finitely

generated and Y is locally (q̄, R)-finitely generated.

Proof. Let S × T be a stratum of X × Y , let K be the link of S in X and let L be the link

of T in Y . Then the join K ∗ L is the link of S × T in X × Y .

By definition, X × Y is locally (Q,R)-finitely generated if, for any such S × T and each

i, the modules IQHi(K ∗ L;R) are all finitely generated. Recall that this expression makes

sense as we can restrict the perversity Q on X × Y to the link K ∗L, which we can consider

embedded in X × Y .

If K = ∅, i.e. S is a regular stratum, then Q(S×T ) = q̄(T ) and Q restricts to q̄ on L, so

the condition that IQHi(K ∗L;R) be finitely generated for all i reduces to I q̄Hi(L;R) being

finitely generated for all i, which is the condition for Y to be locally (q̄, R)-finitely generated

along T . Therefore, we see that if X × Y is locally (Q,R)-finitely generated, it follows that

Y is locally (q̄, R)-finitely generated. The analogous argument holds when L = ∅. Thus if

X ×Y is locally (Q,R)-finitely generated, we must also have that X is locally (p̄, R)-finitely

generated and Y is locally (q̄, R)-finitely generated. Conversely, if X is locally (p̄, R)-finitely

generated and Y is locally (q̄, R)-finitely generated, then X × Y is locally (Q,R)-finitely

generated along strata S × T for which one of S or T is regular. It remains to show that if

X and Y are each locally finitely generated then X × Y is locally finitely generated along

products of singular strata.

So, now, suppose that X and Y are both locally finitely generated and that neither K

nor L is empty. We need for the intersection homology modules IQHi(K ∗L;R) to be finitely

generated for all i. But in our discussion in Section 6.4.1, we saw that IQHi(K ∗ L;R) ∼=
IQHi(cK × cL − {v × w};R), where v, w are the respective cone vertices. Furthermore,

cK × cL − {v × w} is the union of (cK − {v}) × cL and cK × (cL − {w}), which have

intersection (cK−{v})× (cL−{w}), and there is a Mayer-Vietoris sequence involving these

spaces. If dim(S) = s, then Rs× cK and Rs× (cK −{v}) are open sets of the CS set X (up

to filtered homeomorphism), and so up to Euclidean factors, which don’t affect intersection

homology computations, cK and cK − {v} are open subsets of X and so can be treated as

possessing the same local torsion properties asX, and analogously for Y , cL, and cL−{w}. In

particular, the product perversity Q is (p̄, q̄)-compatible on these products, and the Künneth

theorem (Theorem 6.4.7) applies to IQHi((cK − {v})× cL;R), IQHi(cK × (cL− {w});R),

and IQHi((cK − {v}) × (cL − {w});R) as in the argument of Footnote 10 in the proof of

Theorem 6.4.7. Therefore, using also the cone formula and stratified homotopy invariance,

each of these modules is a finite direct sum of tensor and torsion products of modules of the

form I p̄Hj(K;R) or I q̄Hk(L;R), each of which is finitely generated by hypothesis. So the

terms on either side of IQHi(K ∗L;R) in the Mayer-Vietoris sequence are finitely generated,
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and so, as R is Noetherian, IQHi(K ∗ L;R) must also be finitely generated, using the basic

properties of Noetherian modules; see [147, Section X.1].

As a final application in this section, we prove the following lemma, which will be useful

to have when we study Poincaré duality in Chapter 8. We could prove this lemma more

geometrically using stratified homotopy invariance, but this is a nice application of the

Künneth Theorem that lets us avoid the details of such an argument.

Lemma 6.4.17. Let R be a Dedekind domain, let D ⊂ C be compact convex subsets of Rk,

let L be a compact filtered space, and suppose cL is a CS set. For 0 ≤ s < 1, let c̄s be the

closed subcone [0, s]× L/ ∼ in cL = [0, 1)× L/ ∼; if s = 0 then c̄0L = {v}, the cone vertex.

Then for 0 ≤ t ≤ s < 1, the inclusion-induced map I p̄Hi(Rk×cL, (Rk×cL)−(C× c̄sL);R)→
I p̄Hi(Rk× cL, (Rk× cL)− (D× c̄tL);R) is an isomorphism. In particular, if C contains the

origin of Rk, then I p̄Hi(Rk × cL, (Rk × cL) − (C × c̄sL);R) → I p̄Hi(Rk × cL, (Rk × cL) −
{(0, v)};R) is an isomorphism.

Proof. Let B be a closed ball centered at a point z ∈ D such that B has large enough positive

radius to contain D in its interior B̊. Without loss of generality, let us suppose that z is the

origin 0 ∈ Rk. Then there is a deformation retraction r : I×Rk → Rk that retracts Rk−{0}
to Rk − B̊ by retracting outward along rays from the origin. As D is convex, any point in

Rk −D must stay in Rk −D throughout the retraction, as if x ∈ Rk −D and r(u, x) ∈ D,

then the entire line segment from 0 to r(u, x) must be in D by convexity, but by construction

x would also be in this line segment, a contradiction. Hence r restricts to a deformation

retraction of Rk − D to Rk − B̊, and so the inclusion Rk − B̊ ↪→ Rk − D is a homotopy

equivalence. We can choose B large enough to contain C as well, and so Rk − B̊ ↪→ Rk −C
is also a homotopy equivalence. From the diagram

Rk − B̊ ⊂ - Rk − C

Rk −D,
?

∩
⊂

-

the inclusion Rk − C ↪→ Rk − D is also a homotopy equivalence. Similarly, the inclu-

sion cL − c̄sL ↪→ cL − c̄tL is a stratified homotopy equivalence by retractions outward

along the cone lines. So by (stratified) homotopy invariance, the inclusion-induced maps

H∗(Rk,Rk−C;R)→ H∗(Rk,Rk−D;R) and I p̄H∗(cL, cL− c̄sL;R)→ I p̄H∗(cL, cL− c̄tL;R)

are isomorphisms.

Next we observe that (Rk × (cL − c̄sL)) ∪ ((Rk − C) × cL) = (Rk × cL) − (C × c̄sL),

and similarly using D and c̄tL. By the intersection homology Künneth Theorem and the

algebraic Künneth Theorem, we obtain a short exact sequence (coefficients tacit)
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0→ ⊕j+`=iHj(Rk,Rk − C)⊗H`(cL, cL− c̄sL)

→ I p̄Hi(Rk × cL, (Rk × cL)− (C × c̄sL))

→ ⊕j+`=i−1Hj(Rk,Rk − C) ∗H`(cL, cL− c̄sL)→ 0,

and analogously for our other product space. But the cross product and the algebraic

Künneth Theorem are natural in their inputs, so the inclusion

(Rk × cL, (Rk × cL)− (C × c̄sL)) ↪→ (Rk × cL, (Rk × cL)− (D × c̄tL)

induces a map of short exact sequences, and we have just seen that the maps of end terms

are isomorphisms. The lemma therefore follows by the Five Lemma, with the last statement

of the lemma being just a special case of the more general statement.

6.4.5 Some technical stuff: the proof of Lemma 6.4.2

In this section, we prove Lemma 6.4.2, which played a critical technical role in the proof

of Lemma 6.4.3, the key example of the Künneth Theorem for the product of two cones.

The proof of Lemma 6.4.2 uses explicitly that that the singular intersection chain groups

are projective R-modules for R a Dedekind domain, and so we do not provide a parallel PL

development. We could demonstrate a PL version of the lemma following from the singular

version using simplicial intersection homology as an intermediate, as we did for the proof

of the Künneth Theorem itself, but as that theorem was our primary goal we will leave PL

versions of Lemma 6.4.2 for the interested reader to develop.

Algebra of the algebraic Künneth theorem

What we will really need to prove Lemma 6.4.2 is some control over the cycles that represent

homology classes in the homology of the tensor product of the intersection chain complexes

of cones and deleted cones (cones with their vertices removed). To achieve this, we will need

to develop a detailed understanding of the splitting of the short exact sequence guaranteed

by the algebraic Künneth Theorem, and this in turn hinges upon a good understanding of

the proof of that theorem. So we will begin by reviewing that proof. Then we discuss the

splitting issues and prove a lemma, Lemma 6.4.19, that gives our desired result concerning

the representation of homology classes; unfortunately, we won’t be in a position to state this

lemma precisely until we have developed some further notation. In the next subsection we

will utilize Lemma 6.4.19 to prove Lemma 6.4.2.

Review of the algebraic Künneth theorem. Suppose that C∗ and D∗ are chain com-

plexes of projective modules over the Dedekind domain R. Then the algebraic Künneth
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Theorem (e.g. [237, Theorem 3.6.3]) states that there is a short exact sequence, natural in

the inputs C∗ and D∗,

0 -
⊕
j+k=i

Hj(C∗)⊗Hk(D∗) - Hi(C∗ ⊗D∗) -
⊕

j+k=i−1

Hj(C∗) ∗Hk(D∗) - 0,

where Hj(C∗) ∗ Hk(D∗) denotes the torsion product. Furthermore, this sequence splits.

However, the splitting is not natural.

Given an element
∑

[xa]⊗ [ya] ∈ Hj(C∗)⊗Hk(D∗), where here xa ∈ Cj and ya ∈ Dk are

cycles, the image of this element in Hi(C∗ ⊗D∗) is represented by
∑
xa ⊗ ya. Our current

goal in reviewing the proof of the Künneth Theorem is to be able to say something about the

cycles in C∗⊗D∗ representing the elements of
⊕

j+k=i−1Hj(C∗) ∗Hk(D∗) under some choice

of splitting. In order to do this, we will review the proof of the algebraic Künneth theorem.

We will begin by following the proof in [126, Section V.2] with a few minor modifications

in the details to pay closer attention to the splitting into summands and under the slightly

different assumptions that R is a Dedekind domain and that C∗ and D∗ are chain complexes

of projective R-modules. The discussion in [126] makes the more general assumption that

C∗ and D∗ consist of flat modules but the stronger assumption that R is a PID; however,

the argument there still goes through with our assumptions.

Proof of the Künneth exact sequence. Continuing to let C∗ and D∗ be chain complexes

of projectives over a Dedekind domain, we begin with some notation. Let

Zp = ker(∂C∗ : Cp → Cp−1)

Bp = im(∂C∗ : Cp+1 → Cp)

Z̄p = ker(∂D∗ : Dp → Dp−1)

B̄p = im(∂D∗ : Dp+1 → Dp).

In general, for any construction we make with C∗, the same notation occurring with a bar

will denote the analogous construction for D∗. As submodules of projective modules over a

Dedekind domain, the modules Zp, Z̄p, Bp, and B̄p are each projective for any p. We let Z∗
be the complex consisting of the modules Zp and with trivial boundary maps (i.e. each is the

0 homomorphism) and similarly for B∗. We also define a complex B′∗ with B′p = Bp−1 and

all boundary maps trivial. The boundary map of C∗ takes x ∈ Cp to ∂C∗(x) ∈ Bp−1 = B′p.

This also determines a degree 0 chain map β : C∗ → B′∗. In fact, we have an exact sequence

of degree 0 chain maps

0 - Z∗
i
- C∗

β
- B′∗ - 0, (6.11)

with i the inclusion. The other advantage of introducing the modules B′p is that, as each is

projective, this short exact sequence splits in each degree (noncanonically and not necessarily

compatibly among degrees), so that we can write Cp ∼= Zp ⊕ B′p for each p. This will be

important below when we get to splittings of the Künneth exact sequence.

315



We also have the evident inclusion maps

B′p+1 = Bp
j
↪−→ Zp

i
↪−→ Cp.

Now, as D∗ consists of projective modules, tensoring the sequence (6.11) with D∗ pre-

serves exactness, and we obtain a short exact sequence

0 - Z∗ ⊗D∗
i⊗ id
- C∗ ⊗D∗

β ⊗ id
- B′∗ ⊗D∗ - 0.

This short exact sequence yields a homology long exact sequence

ωi- Hi(Z∗ ⊗D∗)
i⊗ id
- Hi(C∗ ⊗D∗)

β ⊗ id
- Hi(B

′
∗ ⊗D∗)

ωi−1 - .
(6.12)

Next we compute Hi(B
′
∗ ⊗D∗) and Hi(Z∗ ⊗D∗) a bit more explicitly. As B′∗ has trivial

boundary maps, the complex B′∗⊗D∗ has boundary maps given by ∂B′∗⊗D∗(b⊗d) = (−1)|b|b⊗
∂D∗d, where |b| is the degree of b in B′∗. We already know by definition that in each degree

we have (B′∗ ⊗ D∗)i =
⊕

j+k=iB
′
j ⊗ Dk, but this boundary computation shows that the

restriction of the boundary map to B′j ⊗ Dk has image in B′j ⊗ Dk−1. Thus, the complex

B′∗ ⊗D∗ is the direct sum of complexes Bj,∗ of the form

- B′j ⊗Dk+1
- B′j ⊗Dk

- B′j ⊗Dk−1
- ,

with Bj,k = B′j ⊗Dk in degree j + k and again with ∂Bj,∗(b⊗ d) = (−1)jb⊗ ∂D∗d; note that

the same sign (−1)j occurs in all degrees. In other words, up to the extra sign (−1)j in the

boundary maps, the complex Bj,∗ is just the tensor product of the chain complex D∗ with

the module B′j, treated as an object with degree j, or, equivalently, we can think of B′j as

representing a complex whose only non-zero module is B′j in degree j. In any case, we have

altogether B′∗ ⊗D∗ ∼= ⊕jBj,∗.
Furthermore, as B′j is projective, tensoring with it preserves kernels and images, and so

ker(B′j ⊗Dk

∂Bj,∗−−−→ B′j ⊗Dk−1) = B′j ⊗ Z̄k

im(B′j ⊗Dk+1

∂Bj,∗−−−→ B′j ⊗Dk) = B′j ⊗ B̄k

Now, as Hk(D∗) = Z̄k/B̄k by definition, we have a short exact sequence

0 - B̄k

j̄
- Z̄k

η̄
- Hk(D∗) - 0,

and tensoring with the projective B′j gives the short exact sequence

0 - B′j ⊗ B̄k

id⊗ j̄
- B′j ⊗ Z̄k

id⊗ η̄
- B′j ⊗Hk(D∗) - 0.

But we have just identified B′j ⊗ B̄k and Bj ⊗ Z̄k as the respective image and kernel of

boundary maps of Bj,∗. So we see that

Hj+k(Bj,∗) ∼= B′j ⊗Hk(D∗).
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Therefore,

Hi(B
′
∗ ⊗D∗) ∼= Hi

(⊕
j

Bj,∗

)
∼=
⊕
j

B′j ⊗Hi−j(D∗) =
⊕
j+k=i

B′j ⊗Hk(D∗).

A similar argument shows that Hi(Z∗ ⊗ D∗) ∼=
⊕

j+k=i Zj ⊗ Hk(D∗). So the long exact

sequence (6.12) becomes

ωi-
⊕
j+k=i

Zj ⊗Hk(D∗)
i⊗ id
- Hi(C∗ ⊗D∗)

β ⊗ id
-
⊕
j+k=i

B′j ⊗Hk(D∗)
ωi−1 - .

(6.13)

From the standard zig-zag computation of the boundary map of a long exact sequence,

the connecting map ωi−1 corresponds to the direct sum of inclusions ωj−1,k : B′j⊗Hk(D∗) ↪→
Zj−1 ⊗Hk(D∗) induced by the maps B′j

j
↪−→ Zj−1 (see the proof of [126, Theorem V.2.1] for

more details, though this is also an easy diagram chase exercise). But we have an exact

sequence

0 - B′j
j
- Zj−1

η
- Hj−1(C∗) - 0,

so the complex whose only nontrivial terms are B′j
j−→ Zj−1 in degrees 0 and 1 is a projective

resolution of Hj−1(C∗). So, tensoring with Hj(D∗) and by the definition of the torsion

product, we have exact sequences

0 - Hj−1(C∗) ∗Hk(D∗) - B′j ⊗Hk(D∗)
ωj−1,k- Zj−1 ⊗Hk(D∗)

η ⊗ id
- Hj−1(C∗)⊗Hk(D∗) - 0.

Taking direct sums and letting ωi−1 =
⊕

j+k=i ωj−1,k, we see that

im(β ⊗ id) = ker(ωi−1) =
⊕
j+k=i

ker(ωj−1,k) ∼=
⊕
j+k=i

Hj−1(C∗) ∗Hk(D∗)

and

ker(β ⊗ id) = im(i⊗ id) ∼= cok(ωi) ∼=
⊕
j+k=i

cok(ωj,k) ∼=
⊕
j+k=i

Hj(C∗)⊗Hk(D∗).

Hence the Künneth short exact sequence.

It is worth observing again here that if an element of Hj(C∗)⊗Hk(D∗) is represented by

[z] ⊗ [z̄] with z a cycle in C∗ and z̄ a cycle in D∗ (and all generators of Hj(C∗) ⊗ Hk(D∗)

have such a form), then the image of this element in H∗(C∗ ⊗D∗) is represented by z ⊗ z̄,

as we see from chasing through our various sequences.
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Splitting

Next we verify that the Künneth short exact sequence splits and examine the splittings.

We have noted in considering diagram (6.11) that as each B′j is projective, there must exist

(non-canonical) splittings Cj ∼= Zj⊕B′j for each j, though these splitting will not necessarily

be compatible across degrees. Let us fix a specific splitting for each j, and thus identify

B′j with a specific submodule of Cj; for the remainder of the discussion, we treat B′j as a

submodule of Cj via this splitting without further comment.

Remark 6.4.18. With this convention, the map j : B′j → Zj−1 can be identified with the

restriction of the boundary map in C∗ to the summand B′j.

Let φj : Cj → Zj be the projections determined by our choices of splittings. By definition,

with i : Zj → Cj the inclusion, we have that φji : Zj → Zj is the identity, and we also

have ker(φj) = B′j. Similarly, we choose splittings that let us identify Dk
∼= Z̄k ⊕ B̄′k and

corresponding projection φ̄k : Dk → Z̄k. Using the distributivity of tensor products over

direct sums, we have

Cj ⊗Dk
∼= (Zj ⊕B′j)⊗ (Z̄k ⊕ B̄′k)
∼= (Zj ⊗ Z̄k)⊕ (Zj ⊗ B̄′k)⊕ (B′j ⊗ Z̄k)⊕ (B′j ⊗ B̄′k),

so that each φj ⊗ φ̄k is a projection to a summand of each Cj ⊗ Dk, and putting these

together, we obtain a splitting projection⊕
j+k=i

φj ⊗ φ̄k :
⊕
j+k=i

Cj ⊗Dk →
⊕
j+k=i

Zj ⊗ Z̄k.

To obtain a homomorphism Hi(C∗ ⊗ D∗) →
⊕

j+k=iHj(C∗) ⊗ Hk(D∗) that splits our

inclusion
⊕

j+k=iHj(C∗)⊗Hk(D∗)→ Hi(C∗⊗D∗) (given, as observed, by [z]⊗ [z̄]→ [z⊗ z̄]),

we proceed as in the proof of [181, Lemma 58.1]: Let ρj be the composition Cj
φj−→ Zj

η−→
Hj(C∗), with ρ̄k defined similarly. If E∗ is the chain complex with Hj(C∗) in degree j and all

boundary maps trivial, then the maps given by ρj in degree j give a chain map ρ : C∗ → E∗,

as boundaries in C∗ go to 0 in E∗. Define Ē∗ and ρ̄ : D∗ → Ē∗ similarly. These induce chain

maps ρ⊗ ρ̄ : C∗ ⊗D∗ → E∗ ⊗ Ē∗ and thus homomorphisms Hi(C∗ ⊗D∗)→ Hi(E∗ ⊗ Ē∗) =⊕
j+k=iHj(C∗)⊗Hk(D∗), with the last equality due to the triviality of the boundary maps

of E∗ and Ē∗. As ρ ⊗ ρ̄ takes [z ⊗ z̄] to [z] ⊗ [z̄], this is our desired projection, which

demonstrates the splitting of the Künneth exact sequence.

Among other things, the arguments so far show that we can represent the homology

classes in the summand Hj(C∗)⊗Hk(D∗) of Hi(C∗⊗D∗) (with j+k = i) by cycles contained

in the summand Zj⊗ Z̄k of C∗⊗D∗. The more interesting case is the torsion product terms,

and we can now state our main lemma of this section:

Lemma 6.4.19. Suppose j + k = i and that we identify Hj−1(C∗) ∗Hk(D∗) as a summand

of Hi(C∗⊗D∗) via the splitting determined by ρ⊗ ρ̄ as just above. Then any homology class

in this summand can be represented by a cycle contained in (B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′k+1) ⊂
(C∗ ⊗D∗)i.
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Proof. We already know that we have a surjection of the form

Hi(C∗ ⊗D∗)
β⊗id−−−→

⊕
j+k=i

Hj−1(C∗) ∗Hk(D∗)

from the Künneth theorem and that the map

ρ⊗ ρ̄ : Hi(C∗ ⊗D∗)→
⊕
j+k=i

Hj(C∗)⊗Hk(D∗)

is a splitting of Hi(C∗ ⊗ D∗) back to ker(β ⊗ id) ∼=
⊕

j+k=iHj(C∗) ⊗ Hk(D∗). So, via this

splitting, we can identify
⊕

j+k=iHj−1(C∗) ∗Hk(D∗) as ker(ρ⊗ ρ̄).

We first observe that any cycle of C∗ ⊗ D∗ contained in (B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′k+1) ⊂
(C∗ ⊗ D∗)i does indeed live in ker(ρ ⊗ ρ̄), as ρ annihilates B′j and ρ̄ annihilates B̄′k+1 by

the definitions. So any cycle in (B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′k+1) represents an element of the

torsion product summand of Hi(C∗ ⊗ D∗). It remains to show that every element of each

Hj−1(C∗) ∗Hk(D∗) can be represented by such a cycle.

Recall that the identification of the torsion product summand ofHi(C∗⊗D∗) as
⊕

j+k=iHj−1(C∗)∗
Hk(D∗) comes by considering the connecting map of the long exact sequence (6.13) and ob-

serving that

1. the map ωi−1 decomposes as a direct sum of maps ωj−1,k with j + k = i, and

2. the kernel of each ωj−1,k can be identified with Hj−1(C∗) ∗Hk(D∗).

So, what we will do is the following: for each element [ξ] ∈ Hj−1(C∗)∗Hk(D∗) with j+k = i

represented as an element of ker(ωj−1,k), we will show that there is a cycle ξ̃ ∈ (B′j ⊗ Z̄k)⊕
(Zj−1 ⊗ B̄′k+1) ⊂ (C∗ ⊗D∗)i that maps to a cycle representing [ξ] under the map β ⊗ id of

(6.13).

Recall also that ωj−1,k is just the map B′j ⊗ Hk(D∗)
j⊗id−−→ Zj−1 ⊗ Hk(D∗). If we treat

B′j
j−→ Zj−1 as a chain complex Pj−1,∗ with nontrivial entries only in degrees 0 and 1, then its

only nontrivial homology group is H0(Pj−1,∗) ∼= Hj−1(C∗), meaning that Pj−1,∗ is a projective

resolution of Hj−1(C∗). The map B′j ⊗Hk(D∗)
j⊗id−−→ Zj−1 ⊗Hk(D∗) can then be interpreted

as the only nontrivial boundary map of Pj−1,∗ ⊗ Hk(D∗), whence H1(Pj−1,∗ ⊗ Hk(D∗)) =

ker(j⊗ id) is the torsion product Hj−1(C∗)∗Hk(D∗) by definition, and H0(Pj−1,∗⊗Hk(D∗)) =

cok(j ⊗ id) ∼= Hj−1(C∗) ⊗Hk(D∗) by the general theory of derived functors (see, e.g. [126,

Section IV.5]).

But now we will employ another general fact about the derived functors of the tensor

product, namely that they are balanced. While we have used a projective resolution of

Hj−1(C∗) above to obtain Hj−1(C∗) ∗Hk(D∗), we could just as well have used a projective

resolution of Hk(D∗), tensored it on the left with Hj−1(C∗), and taken the first homol-

ogy to obtain the same torsion product Hj−1(C∗) ∗ Hk(D∗) (up to isomorphism); see [126,

Proposition IV.11.1]. Or, we can use both resolutions simultaneously! More precisely, let us

choose the resolution P̄ j−1
k,∗ for Hk(D∗) given by B̄′k+1

(−1)j−1 j̄−−−−−→ Z̄k in degrees 0 and 1. Then
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Hj−1(C∗) ∗ Hk(D∗) can also be computed as H1(Pj−1,∗ ⊗ P̄ j−1
k,∗ ). Furthermore, the isomor-

phism between H1(Pj−1,∗ ⊗ P̄ j−1
k,∗ ) and H1(Pj−1,∗ ⊗Hk(D∗)) is induced by id ⊗ η̄, where we

extend η̄ : Z̄k → Hk(D∗) in the obvious way to a chain map from P̄ j−1
k,∗ to the complex whose

only nontrivial entry is Hk(D∗) in degree 0. This all follows from the proof of [237, Theorem

2.7.2], concerning balancing the Tor and Ext functors13.

The reason for the sign in the definition of P̄ j−1
k,∗ is the following. Recalling that Pj−1,∗ and

P̄ j−1
k,∗ have nontrivial modules only in degrees 0 and 1, the degree 1 module of Pj−1,∗ ⊗ P̄ j−1

k,∗
is (B′j ⊗ Z̄k)⊕ (Zj−1⊗ B̄′k+1). By the definition of the tensor product complex Pj−1,∗⊗ P̄ j−1

∗ ,

the boundary map takes elements b⊗ z̄ ∈ B′j ⊗ Z̄k to

∂(b⊗ z̄) = ∂Pj−1,∗(b)⊗ z̄ − b⊗ ∂P j−1
k,∗

(z̄) = j(b)⊗ z̄,

as |b| = 1 as an element of Pj−1,∗. Similarly, the boundary of an element z⊗ b̄ ∈ Zj−1⊗ B̄′k+1

is

∂(z ⊗ b̄) = ∂Pj−1,∗(z)⊗ b̄+ z ⊗ ∂P j−1
k,∗

(b̄) = (−1)j−1z ⊗ j̄(b̄).

But as observed in Remark 6.4.18, treating B′j as a submodule of Cj, the map j is just the

restriction of ∂C∗ to the summand B′j. So we have ∂(b ⊗ z̄) = ∂C∗(b) ⊗ z̄ and ∂(z ⊗ b̄) =

(−1)j−1z ⊗ ∂D∗(b̄). So the boundary map of Pj−1,∗ ⊗ P̄ j−1
k,∗ acts on (B′j ⊗ Z̄k)⊕ (Zj−1 ⊗ B̄′)

in exactly the same way that the boundary map of C∗⊗D∗ acts on (B′j ⊗ Z̄k)⊕ (Zj−1⊗ B̄′)
if we identify it as a submodule of (C∗ ⊗ D∗)i. In particular, (B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′) has

the same cycles whether we think of it as a submodule of (Pj−1,∗ ⊗ P̄ j−1
k,∗ )1 or of (C∗ ⊗D∗)i.

So, let [ξ] ∈ Hj−1(C∗) ∗ Hk(D∗) = ker(ωj−1,k) ⊂ B′j ⊗ Hk(D∗). Identifying Hj−1(C∗) ∗
Hk(D∗) with H1(Pj−1,∗⊗P̄ j−1

k,∗ ), we know there is a cycle ξ̃ ∈ (B′j⊗Z̄k)⊕(Zj⊗B̄′) representing

[ξ]. Then identifying (B′j ⊗ Z̄k)⊕ (Zj−1 ⊗ B̄′) again as a submodule of (C∗ ⊗D∗)i, the cycle

ξ̃ represents an element of Hi(C∗ ⊗ D∗). It only remains to show that the image of the

corresponding homology class under the map β ⊗ id of diagram (6.13) is [ξ].

As noted, the isomorphism between H1(Pj−1,∗ ⊗ P̄ j−1
k,∗ ) and H1(Pj−1,∗ ⊗ Hk(D∗)) (both

representing Hj−1(C∗) ∗ Hk(D∗)) is induced by id ⊗ η̄. So, by definition, ξ̃ is a cycle in

(B′j ⊗ Z̄k)⊕ (Zj−1⊗ B̄′k+1) with the property that (id⊗ η̄)(ξ̃) represents [ξ]. The map id⊗ η̄
acts trivially on the summand Zj−1⊗ B̄′k+1 because η̄ takes B̄′k+1 to 0. But on the summand

B′j⊗ Z̄k, we know that id⊗ η̄ is just the projection from the cycle module in degree j+k = i

of the complex B′j⊗D∗ to the homology module Hi(B
′
j⊗D∗) ∼= B′j⊗Hk(D∗). In particular,

this tells us that [ξ] is represented in B′j ⊗Hk(D∗) by the B′j ⊗ Z̄k summand of ξ̃.

On the other hand, we must consider how β ⊗ id acts on (B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′) as a

submodule of (C∗⊗D∗)i. In this case, the map β annihilates Zj−1, so β⊗ id also annihilates

Zj−1 ⊗ B̄′k. But β restricts to the identity on B′j, so the image of ξ̃ in B′j ⊗Dk under β ⊗ id

is also represented by the B′j ⊗ Z̄k summand of ξ̃. As this agrees with the computation of

the preceding paragraph, the cycle ξ̃ has the required properties.

13Caution: in [237, Section 2.7], Weibel uses the notation P ⊗ Q to denote the double complex and

Tot⊕(P ⊗Q) for the single complex, i.e. Tot⊕(P ⊗Q)i = ⊕a+b=iPa ⊗Qb.
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Intersection homology products with cones

We now apply the algebra we have been developing to the intersection homology of products.

Let X and Y be filtered spaces, and suppose that X has dimension n − 1 and that R

is a Dedekind domain. We wish to consider i ⊗ id : I p̄S∗(cX − {v};R) ⊗ I q̄S∗(Y ;R) →
I p̄S∗(cX;R) ⊗ I q̄S∗(Y ;R) induced by the inclusion i : cX − {v} → cX. The naturality of

the algebraic Künneth theorem gives us a map of short exact sequences (with R coefficients

tacit)

⊕
i=j+k

I p̄Hj(cX − {v})⊗ I q̄Hk(Y) ⊂- Hi(I
p̄S∗(cX − {v})⊗ I q̄S∗(Y)) --

⊕
i=j+k

I p̄Hj−1(cX − {v}) ∗ I q̄Hk(Y)

⊕
i=j+k

I p̄Hj(cX)⊗ I q̄Hk(Y)

?

⊂ - Hi(I
p̄S∗(cX)⊗ I q̄S∗(Y))

?
--

⊕
i=j+k

I p̄Hj−1(cX) ∗ I q̄Hk(Y).

?

We also know that the inclusion cX − {v} ↪→ cX induces an isomorphism I p̄Hj−1(cX −
{v};R) → I p̄Hj−1(cX;R) for j − 1 < n − p̄({v}) − 1 and that I p̄Hj−1(cX;R) = 0 for

j − 1 ≥ n− p̄({v})− 1. Therefore, naively, we expect that the map

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(Y ;R))→ Hi(I

p̄S∗(cX;R)⊗ I q̄S∗(Y ;R))

should kill the summands

I p̄Hj−1(cX − {v};R)⊗ I q̄Hk(Y ;R)

or

I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(Y ;R)

with j − 1 ≥ n−p̄({v})−1 and take the summands with j − 1 < n−p̄({v})−1 isomorphically

to their counterparts in the codomain.

Unfortunately, the algebraic Künneth exact sequences do not split naturally, in general,

and so it is conceivable for there to be unexpected subtleties. For example, one can construct

maps φ ⊗ ψ : C∗ ⊗ D∗ → C ′∗ ⊗ D′∗ for which, in the ensuing diagram of Künneth exact

sequences, the torsion product summand of Hi(C
′
∗⊗D′∗) is 0 and the tensor product summand

for Hi(C∗ ⊗D∗) is 0, but for which the map Hi(C∗ ⊗D∗)→ Hi(C
′
∗ ⊗D′∗) is not trivial; see

[126, Section V.2]. Therefore, to verify our naive expectations, we cannot rely solely on

algebra but must also utilize the topology involved.

Lemma 6.4.20. Suppose Y is a filtered space, that X is a dimension n − 1 filtered space,

and that R is a Dedekind domain. Consider

i⊗ id : I p̄S∗(cX − {v};R)⊗ I q̄S∗(Y ;R)→ I p̄S∗(cX;R)⊗ I q̄S∗(Y ;R),

321



induced by the inclusion i : cX − {v} → cX. The splittings and naturality of the Künneth

Theorem induce a map (R coefficients tacit)

Hi(I
p̄S∗(cX − {v})⊗ I q̄S∗(Y))∼=

⊕
i=j+k

I p̄Hj(cX − {v})⊗ I q̄Hk(Y)⊕
⊕
i=j+k

I p̄Hj−1(cX − {v}) ∗ I q̄Hk(Y)

Hi(I
p̄S∗(cX)⊗ I q̄S∗(Y))

i⊗ id

?
∼=

⊕
i=j+k

I p̄Hj(cX)⊗ I q̄Hk(Y)⊕
⊕
i=j+k

I p̄Hj−1(cX) ∗ I q̄Hk(Y).

While naturality of the splittings is not a general property of the Künneth theorem, in this

setting the splittings of the Künneth exact sequence can be chosen so that each summand

I p̄Hj(cX−{v};R)⊗I q̄Hk(Y ;R) with j ≥ n− p̄({v})−1 or I p̄Hj−1(cX−{v};R)∗I q̄Hk(Y ;R)

with j − 1 ≥ n− p̄({v})−1 maps to 0 in Hi(I
p̄S∗(cX;R)⊗I q̄S∗(Y ;R)) and so that the other

summands map to corresponding summands with identical chain representatives for homology

classes in Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y ;R)).

Proof. Recall the following facts from the proof of the cone formula in Theorem 4.2.1: If

` < n − p̄({v}) then no allowable simplex can intersect {v} at all, and so in this range we

have I p̄S`(cX;R) = I p̄S`(cX−{v};R). On the other hand, if ` ≥ n− p̄({v}), then simplices

may intersect the vertex. In fact, any cone c̄(ξ) on a chain ξ ∈ I p̄S`(cX−{v};R) is allowable

if either ` ≥ n − p̄({v}) or ` = n − p̄({v}) − 1 with ∂ξ = 0 (the last condition ensures that

∂(c̄(ξ)) remain allowable).

So let us see how this plays out for our map Hi(I
p̄S∗(cX − {v};R) ⊗ I q̄S∗(Y ;R)) →

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y ;R)), working one summand at a time.

First, let us consider the tensor product summands with domain I p̄Hj(cX − {v};R) ⊗
I q̄Hk(Y ;R). By the naturality of the Künneth exact sequences, the tensor product summand⊕

i=j+k I
p̄Hj(cX −{v})⊗ I q̄Hk(Y) of Hi(I

p̄S∗(cX −{v};R)⊗ I q̄S∗(Y ;R)) gets taken to the

tensor product summand
⊕

i=j+k I
p̄Hj(cX)⊗ I q̄Hk(Y) of Hi(I

p̄S∗(cX;R)⊗ I q̄S∗(Y ;R)), so

to understand the map on this summand, it is enough to look at each

i⊗ id : I p̄Hj(cX − {v};R)⊗ I q̄Hk(Y ;R)→
⊕
i=j+k

I p̄Hj(cX)⊗ I q̄Hk(Y).

But this is straightforward: Each tensor product summand I p̄Hj(cX−{v};R)⊗ I q̄Hk(Y ;R)

is generated by elements of the form [z]⊗ [y] ∈ I p̄Hj(cX−{v};R)⊗ I q̄Hk(Y ;R), which map

to the corresponding elements of I p̄Hj(cX;R)⊗I q̄Hk(Y ;R), and which project trivially onto

the other summands I p̄Ha(cX;R)⊗ I q̄Hb(Y ;R) with a 6= j and b 6= k via our splitting maps

φa ⊗ φ̄b :
⊕

r+s=iCr ⊗Ds → Za ⊗ Z̄b of the preceding subsection. So if j ≥ n− p̄({v})− 1,

the summand I p̄Hj(cX−{v};R)⊗ I q̄Hk(Y ;R) maps to I p̄Hj(cX;R)⊗ I q̄Hk(Y ;R) = 0, and

if j < n − p̄({v}) − 1 the summand maps isomorphically to the corresponding summand

I p̄Hj(cX;R) ⊗ I q̄Hk(Y ;R). In fact, since in this latter case we have j < n − p̄({v}), we

are in the range where I p̄Sj(cX;R) = I p̄Sj(cX − {v};R) and so the map takes summand

generators to the precisely corresponding generators in the image.

Now, we must consider the torsion product summands. This is more subtle, as the lack of

natural splitting in the Künneth exact sequences means that we cannot simply assume that
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the torsion product summand
⊕

i=j+k I
p̄Hj−1(cX−{v})∗I q̄Hk(Y) of Hi(I

p̄S∗(cX−{v};R)⊗
I q̄S∗(Y ;R)) maps only to the torsion product summand

⊕
i=j+k I

p̄Hj−1(cX) ∗ I q̄Hk(Y) of

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y ;R)). By Lemma 6.4.19, each element of the summand

I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(Y ;R) ⊂ Hi(I
p̄S∗(cX − {v})⊗ I q̄S∗(Y))

can be represented as a cycle ξ̃ in (B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′k+1), where now we let Zj−1,

Z̄k, B
′
j, and B̄′k+1 be cycle and boundary submodules as in the discussion of the preceding

subsections, taking C∗ = I p̄S∗(cX −{v};R) and D∗ = I q̄S∗(Y ;R). We here assume a choice

of splitting so that B′j is a summand of Cj and similarly for B̄′k+1 and Dk+1. In particular,

then, ξ̃ must be of the form

ξ̃ =
∑
`

b` ⊗ z̄` +
∑
m

zm ⊗ b̄m (6.14)

with b` ∈ B′j, z̄` ∈ Z̄k, zm ∈ Zj−1 and b̄m ∈ B̄′k+1. As ξ̃ is a cycle, we must have

0 = ∂ξ̃ =
∑
`

∂C∗(b`)⊗ z̄` + (−1)j−1
∑
m

zm ⊗ ∂D∗(b̄m), (6.15)

utilizing that the zm and z̄` are cycles. Let us see what homology class [ξ̃] ∈ Hi(I
p̄S∗(cX −

{v})⊗ I q̄S∗(Y)) maps to under i⊗ id.

First, suppose that j − 1 ≥ n− p̄({v})− 1. Let

ζ =
∑
`

(c̄(b`))⊗ z̄` +
∑
m

(c̄(zm))⊗ b̄m ∈ I p̄S∗(cX)⊗ I q̄S∗(Y).

The chain ζ is allowable, by our above observations and recalling that the zm are cycles.

Then we have

∂ζ = ∂

[∑
`

(c̄(b`))⊗ z̄` +
∑
m

(c̄(zm))⊗ b̄m

]
=
∑
`

∂(c̄(b`))⊗ z̄` +
∑
m

(
∂(c̄(zm))⊗ b̄m + (−1)j c̄(zm)⊗ ∂b̄m

)
=
∑
`

(b` − c̄(∂b`))⊗ z̄` +
∑
m

(
zm ⊗ b̄m + (−1)j c̄(zm)⊗ ∂b̄m

)
=
∑
`

b` ⊗ z̄` +
∑
m

zm ⊗ b̄m −
∑
`

c̄(∂b`)⊗ z̄` + (−1)j
∑
m

c̄(zm)⊗ ∂b̄m

= ξ̃ −

[∑
`

c̄(∂b`)⊗ z̄` + (−1)j−1
∑
m

(c̄(zm))⊗ ∂b̄m

]
,

identifying chains in cX − {v} with their images under i in cX. Observe now that ξ̃ − ∂ζ
looks just like our expression (6.15) above for ∂ξ̃ except that the first term in each tensor

product now has a cone in the expression. In other words, ξ̃ − ∂ζ is just the image of

∂ξ̃ = 0 under the homomorphism c̄⊗ id, and so it is trivial. We conclude that the image of
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ξ̃ under i⊗ id is a boundary and so represents 0 in Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y ;R)). Thus, for

j − 1 ≥ n− p̄({v})− 1, each of the I p̄Hj−1(cX −{v};R) ∗ I q̄Hk(Y ;R), j + k = i, summands

of Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(Y ;R)) maps to 0 in Hi(I

p̄S∗(cX;R)⊗ I q̄S∗(Y ;R)).

Next, consider the torsion product summands I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(Y ;R) with

j − 1 < n− p̄({v})− 1. These are also represented by cycles ξ̃ of the form (6.14) and so are

contained in summands of I p̄S∗(cX − {v};R)⊗ I q̄S∗(Y ;R) of the form

[(I p̄Sj(cX − {v};R)⊗ I q̄Sk(Y ;R)]⊕ [(I p̄Sj−1(cX − {v};R)⊗ I q̄Sk+1(Y ;R)].

But in this case j < n − p̄({v}), so here we are in the range where I p̄S∗(cX − {v};R) =

I p̄S∗(cX;R). In particular, we can assume that the splittings into cycles and boundaries

are identical for I p̄S∗(cX −{v};R) and the identical I p̄S∗(cX;R) in this degree range, while

we choose arbitrary splittings into cycles and boundaries of I p̄S∗(cX;R) in higher degrees.

So, for j < n − p̄({v}), the submodules of the form (B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′k+1) are identi-

cal in I p̄S∗(cX − {v};R)⊗ I q̄S∗(Y ;R) and I p̄S∗(cX;R)⊗ I q̄S∗(Y ;R), and they map under

the corresponding β ⊗ id to identical summands of the corresponding ker(ωj−1,k). So the

restriction of the map i⊗ id to I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(Y ;R) followed by projection to

I p̄Hj−1(cX;R)∗ I q̄Hk(Y ;R) can be viewed as the identity isomorphism between correspond-

ing summands. Furthermore, the image of ξ̃ in I p̄S∗(cX;R)⊗I q̄S∗(Y ;R) under i⊗id projects

trivially to every other torsion summand I p̄Ha(cX;R)∗ I q̄Sb(Y ;R) without a = j−1, b = k,

as if we let B′a be the boundary summands of I p̄S∗(cX;R) (so B′a = B′a if a < n− p̄({v}))
then the composition of the map β ⊗ id : C∗ ⊗D∗ →

⊕
j+k=i B

′
∗ ⊗D∗ with the projection

to B′a⊗Db is 0 on elements of (B′j ⊗ Z̄k)⊕ (Zj−1⊗ B̄′k+1) unless a = j − 1. We also already

know that a cycle of this form projects to 0 in any torsion summand under the splitting

maps of the form
⊕

j+k=i φj⊗ φ̄k. So indeed, the homology class represented by ξ̃ maps only

to a class in the summand I p̄Hj−1(cX;R) ∗ I q̄Hk(Y ;R) of Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y ;R)).

Altogether then, we can conclude that with our consistent choices of splittings the map

Hi(I
p̄S∗(cX−{v};R)⊗I q̄S∗(Y ;R))→ Hi(I

p̄S∗(cX;R)⊗I q̄S∗(Y ;R)) is the naive one: it takes

any summand I p̄Hj(cX−{v};R)⊗ I q̄Hk(Y ;R) to 0 if j ≥ n− p̄({v})− 1 and any summand

I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(Y ;R) to 0 if j − 1 ≥ n − p̄({v}) − 1; otherwise it takes each

summand to an identically corresponding summand of Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y ;R)).

We can now prove Lemma 6.4.2, which we state again here for reference:

Lemma. Given a Dedekind domain R and compact filtered sets X = Xn−1 and Y = Y m−1,

there are splittings of

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY − {w};R))

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R)))

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R))

Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y ;R))

into direct sums of tensor products I p̄Hj(cX − {v};R) ⊗ I q̄Hk(cY − {w};R) and torsion

products I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(cY − {w};R), both with j + k = i, such that the maps
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in the diagram

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(Y − {w};R))

i⊗ id
- Hi(I

p̄S∗(cX;R)⊗ I q̄S∗(cY − {w};R)))

Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(cY ;R))

id⊗ ī

? i⊗ id
- Hi(I

p̄S∗(cX;R)⊗ I q̄S∗(cY ;R))

id⊗ ī

?

(6.16)

induced by the inclusions i : cX − {v} ↪→ cX and ī : cY − {w} ↪→ cY each restrict on

each tensor or torsion product summand either to the 0 map or to an isomorphism with the

corresponding summand in the codomain. Furthermore, which of these options is determined

in the obvious way by the cone formula Theorem 6.2.13; for example, the tensor product

summand I p̄Hj(cX−{v};R)⊗ I q̄Hk(cY −{w};R) maps to 0 in Hi(I
p̄S∗(cX;R)⊗ I q̄S∗(Y −

{w};R))) when j ≥ n−p̄({v})−1 and isomorphically to a corresponding summand otherwise.

Proof. The existence of such properties holds independently for each map in the diagram due

to Lemma 6.4.20. However, we must also verify that the choices can be made compatibly.

First, consider the tensor product summands of the expressions in the diagram. The

naturality of the Künneth theorem and the arguments of the proof of Lemma 6.4.20 tell us

that the tensor product summands always map to corresponding tensor product summands,

and, in particular, the chain map i⊗id induces the corresponding tensor product of homology

maps. Therefore, the maps on the tensor product summands behave as expected.

Now we must consider the torsion product summands. For this, we can assume that we

choose once and for all fixed splittings of each I p̄S`(cX−{v};R) and I q̄S`(cY −{w};R) into

cycles and boundaries Z` and B′`, or Z̄` and B̄′`, for all `. As we know that I p̄S`(cX−{v};R) =

I p̄S`(cX;R) for ` < n − p̄({v}) and I q̄S`(cY − {w};R) = I q̄S`(cY ;R) for ` < m − q̄({w}),
we can also assume the splittings for I p̄S`(cX;R) and I q̄S`(cY ;R) are chosen to be the same

in those degrees and arbitrary in higher degrees. Using these choices, we saw in the proof

of Lemma 6.4.20 that each map of diagram (6.16) takes torsion summands in the domain

to corresponding summands in the codomain. In particular, via those arguments, only the

summands I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(cY − {w};R) of Hi(I
p̄S∗(cX − {v};R)⊗ I q̄S∗(Y −

{w};R)) with j − 1 < n− p̄({v})− 1 and k < m− q̄({w})− 1 survive to the bottom right

of the diagram, traveling in either direction, and these are represented in each module of

the diagram by cycles contained in the submodules (B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′k+1), which are

submodules of each chain complex in the diagram due to the assumptions on the ranges of

j and k. So running any element of a summand I p̄Hj−1(cX − {v};R) ∗ I q̄Hk(cY − {w};R)

of Hi(I
p̄S∗(cX − {v};R) ⊗ I q̄S∗(Y − {w};R)) to Hi(I

p̄S∗(cX;R) ⊗ I q̄S∗(cY ;R)) by any

route takes it to an element represented by the same cycle in the corresponding submodule

(B′j ⊗ Z̄k) ⊕ (Zj−1 ⊗ B̄′k+1) of I p̄S∗(cX;R) ⊗ I q̄S∗(cY ;R), and hence to the corresponding

element of the corresponding homology summand. This is the claim of the lemma.
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6.5 Advanced topic: chain splitting

In this section, we prove some technical results that will be needed in later chapters 14. These

all concern splitting intersection chains into small pieces and so are related to the arguments

we made in proving the excision property and the existence of Mayer-Vietoris sequences. As

in those arguments, the standard techniques from ordinary homology are not quite sufficient,

as we need to be very careful to avoid the “standard mistake” of creating faces that are not

allowable in the boundaries when breaking a chain into pieces. The proofs here are based

upon the arguments in [85] for demonstrating an analogue of Proposition 6.5.1. We state

and prove these results both for GM and non-GM intersection chains, though the former

will not be utilized below.

For the convenience of the reader who does not want to read through all of the details,

we first state the main results of this section and then turn to the proofs. The proofs of the

later statements all involve the constructions in the proof of our first statement, Proposition

6.5.1.

Proposition 6.5.1. Let X be a filtered space with perversity p̄. Let V be a covering of X

such that the interiors of the elements of V constitute an open covering of X, let A ⊂ X,

and let

I p̄SV∗ (X,A;G) =
∑
V ∈V

I p̄S∗(V,A ∩ V ;G) ⊂ I p̄S∗(X,A;G).

Define I p̄SGM,V
∗ (X,A;G), I p̄CV∗ (X,A;G), and I p̄CGM,V

∗ (X,A;G) analogously. Then the in-

clusions I p̄SGM,V
∗ (X,A;G) ↪→ I p̄SGM∗ (X,A;G) and I p̄SV∗ (X,A;G) ↪→ I p̄S∗(X,A;G) are

chain homotopy equivalences, and the corresponding inclusions I p̄CGM,V
∗ (X,A;G) ↪→ I p̄CGM∗ (X,A;G)

and I p̄CV∗ (X,A;G) ↪→ I p̄C∗(X,A;G) are isomorphisms.

The same result holds as a statement about R-modules, replacing the abelian group G

with an R-module over a commutative ring with unity R.

The following proposition first appears in this form in [23]:

Proposition 6.5.2. Let X be a filtered space with perversity p̄, and let U be an open cover

of X. Suppose ξ ∈ I p̄SGMi (X;G) ∩ SUi (X;G), i.e. ξ is an intersection chain each of whose

simplices is contained in an element of U . Then ξ ∈ I p̄SGM,U
i (X;G). Similarly, if ξ ∈

I p̄Si(X;G) ∩ SUi (X;G) then ξ ∈ I p̄SUi (X;G).

The same result holds as a statement about R-modules, replacing the abelian group G

with an R-module over a commutative ring with unity R.

Corollary 6.5.3. Let A be an open subset of the filtered space X. Then the maps I p̄SGMi (A;G)→
I p̄SGMi (X;G) and I p̄Si(A;G)→ I p̄Si(X;G) induced by inclusion are split inclusions.

The same result holds as a statement about R-modules, replacing the abelian group G

with an R-module over a commutative ring with unity R.

14Specifically, see the proofs of Theorems 7.1.12 and 7.1.13, Proposition 7.3.59, and Lemmas 7.3.60 and

7.3.61.
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Of course we know this last result is true in the case of I p̄SGMi (X;R) or I p̄Si(X;R) when

R is a Dedekind domain, as in that case I p̄SGMi (X,A;R) or I p̄Si(X,A;R) are projective (see

Lemma 6.3.1). This results is more general as it allows for any coefficients.

We now turn toward proving Propositions 6.5.1 and 6.5.2 and Corollary 6.5.3.

Proof of Proposition 6.5.1. As there is no difference in the proof between working with co-

efficients in an abelian group as opposed to coefficients in an R-module, we will stick with

the former throughout the argument.

Recall that we assume V is a covering of X such that the interiors of the sets in V cover

of X, and we let

I p̄SV∗ (X,A;G) =
∑
V ∈V

I p̄S∗(V,A ∩ V ;G) ⊂ I p̄S∗(X,A;G).

Notice that each I p̄S∗(V,A ∩ V ;G) really does inject into I p̄S∗(X,A;G): the only chains in

the kernel of I p̄S∗(V ;G) → I p̄S∗(X,A;G) are those that are supported in A and V , and

those are 0 in I p̄S∗(V,A ∩ V ;G). Therefore, we can identify the image of I p̄S∗(V,A ∩ V ;G)

as a subgroup of I p̄S∗(X,A;G), and the sum then makes sense. We also observe that

I p̄SV∗ (X,A;G) consists of the elements of ξ ∈ I p̄S∗(X,A;G) that can be represented as a

finite sum of chains ξ =
∑

V ∈V ξV with ξV ∈ I p̄S∗(V ;G). The complex I p̄SGM,V
∗ (X,A;G)

is defined analogously. Proposition 6.5.1 states that the inclusions I p̄SGM,V
∗ (X,A;G) ↪→

I p̄SGM∗ (X,A;G) and I p̄SV∗ (X,A;G) ↪→ I p̄S∗(X,A;G) are chain homotopy equivalences.

Our method of proof will be to construct a singular subdivision map T : S∗(X;G) →
S∗(X;G) satisfying certain properties that will allow us to show that it induces maps on

I p̄SGM∗ (X,A;G) and I p̄S∗(X,A;G) whose images lie in I p̄SGM,V
∗ (X,A;G) and I p̄SV∗ (X,A;G),

respectively. In fact, the induced map on I p̄SGM∗ (X,A;G) will simply be the (relative)

restriction of T , and since its image will lie in I p̄SGM,V
∗ (X,A;G), we obtain a map that

we will denote T̂ : I p̄SGM∗ (X,A;G) → I p̄SGM,V
∗ (X,A;G). We will show that T̂ is a chain

homotopy inverse to the inclusion map.

For I p̄S∗(X,A;G), the entire argument will be more complicated as a consequence of

the fact that I p̄S∗(X,A;G) is not a subcomplex of S∗(X,A;G), as the boundary map ∂̂ is

not compatible with the boundary in S∗(X,A;G); see Section 6.2.1. So as to most directly

utilize the construction of T on S∗(X,A;G), it is therefore more convenient to use instead

the complex I p̄S ′∗(X,A;G), our alternative, though isomorphic (see Lemma 6.2.5), definition

of non-GM intersection chains from Section 6.2.2. In particular, recall from formula (6.3) in

Section 6.2.6 that the relative non-GM intersection chain groups can be written as

I p̄S ′i(X,A;G) =
(Ap̄Si(X;G) + Si(ΣX ;G)) ∩ ∂−1(Ap̄Si−1(X;G) + Si−1(ΣX ;G))

Si(ΣX ;G) + (Ap̄Si(A;G) + Si(ΣA;G)) ∩ ∂−1(Ap̄Si−1(A;G) + Si−1(ΣA;G))
,

where Ap̄Si(X;G) is the subgroup of Si(X;G) generated by p̄ allowable simplices, Ap̄Si(A;G)

is the subgroup of Si(A;G) generated by p̄ allowable simplices, and ΣA = A ∩ ΣX . Given

T : S∗(X : G)→ S∗(X;G), we can restrict T to

(Ap̄Si(X;G) + Si(ΣX ;G)) ∩ ∂−1(Ap̄Si−1(X;G) + Si−1(ΣX ;G)),
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and we will see that the image of the restriction also lies in this group. Similarly,

(Ap̄Si(A;G) + Si(ΣA;G)) ∩ ∂−1(Ap̄Si−1(A;G) + Si−1(ΣA;G))

will be taken to itself, and, since subdivision maps preserve supports, T will furthermore take

Si(ΣX ;G) to itself. Therefore we obtain an induced map T ′ : I p̄S ′∗(X,A;G)→ I p̄S ′∗(X,A;G).

As for the GM theory, we will show that the image of T ′ is contained in I p̄S ′,V∗ (X,A;G),

yielding a map T̄ : I p̄S ′i(X,A;G)→ I p̄S ′,V∗ (X,A;G), which we will show is a chain homotopy

inverse to the inclusion.

Before moving on with this program, we should briefly discuss what exactly we mean

by I p̄S ′,V∗ (X,A;G). By Lemma 6.2.5, we know that I p̄S∗(X;G) ∼= I p̄S ′∗(X;G) and similarly

I p̄S∗(A;G) ∼= I p̄S ′∗(A;G), and therefore the relative complexes are also isomorphic. Now

without the primes, we have that I p̄S∗(V,A∩V ;G)→ I p̄S∗(X,A;G) is an injection because

the only chains in the kernel of I p̄S∗(V ;G) → I p̄S∗(X,A;G) are those that are supported

in A and V , and those are 0 in I p̄S∗(V,A ∩ V ;G). Therefore, we can identify the image of

I p̄S∗(V,A ∩ V ;G) as a subgroup of I p̄S∗(X,A;G). We then have a diagram

I p̄S∗(V,A ∩ V ;G) ⊂- I p̄S∗(X,A;G)

I p̄S ′∗(V,A ∩ V ;G)

∼=

?
- I p̄S ′∗(X,A;G),

∼=

?

so it follows that we can also regard each I p̄S ′∗(V,A∩ V ;G) as a subgroup of I p̄S ′∗(X,A;G).

The sum

I p̄S
′,V
∗ (X,A;G) =

∑
V ∈V

I p̄S ′∗(V,A ∩ V ;G) ⊂ I p̄S ′∗(X,A;G)

therefore makes sense.

In fact, we then obtain a diagram

I p̄SV∗ (X;G) ⊂ - I p̄S∗(X;G)

I p̄S ′,V∗ (X;G)
?

⊂- I p̄S ′∗(X;G).

∼=

?

As the composition right then down is injective, it follows that the left vertical map must

also be injective. It is also surjective, using the individual isomorphisms I p̄S∗(V,A∩V ;G) ∼=
I p̄S ′∗(V,A∩V ;G). So the lefthand vertical map is an isomorphism. It follows that the chain

complex inclusions represented by the top and bottom horizontal maps of the diagram are

isomorphic, and so to show that the top horizontal inclusion is a homotopy equivalence, it

suffices to show that the bottom inclusion is.

The existence of the maps T , T̂ , and T̄ is the subject of the following lemma:
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Lemma 6.5.4. Let V be a covering of X such that X is also covered by the interiors of the

elements of V. Then there exists a singular subdivision chain map T : S∗(X;G)→ S∗(X;G)

that induces chain maps T̂ : I p̄SGM∗ (X,A;G)→ I p̄SGM,V
∗ (X,A;G) and T̄ : I p̄S ′∗(X,A;G)→

I p̄S
′,V
∗ (X,A;G).

The same result holds as a statement about R-modules, replacing the abelian group G

with an R-module over a commutative ring with unity R.

The proof of Lemma 6.5.4 is provided below. First we demonstrate that the existence

of such maps is sufficient to obtain the desired homotopy equivalences and so complete the

proof of Proposition 6.5.1.

First, consider I p̄SGM∗ (X). Let i denote the inclusion I p̄SGM,V
∗ (X;G) ↪→ I p̄SGM∗ (X;G).

Then iT̂ is simply the restriction of the T : S∗(X;G) → S∗(X;G) of the lemma to a

map I p̄SGM∗ (X;G) → I p̄SGM∗ (X;G). By Corollary 4.4.15 (which applies just as well with

coefficients in G) since this restriction of T is a singular subdivision map, the induced map

I p̄SGM∗ (X,A;G)→ I p̄SGM∗ (X,A;G) is chain homotopic to the identity. We will consider T̂ i

below.

Next, let ī : I p̄S ′,V∗ (V,A ∩ V ;G) ↪→ I p̄S ′∗(X,A;G) be the inclusion and consider the

singular subdivision map T ′ = īT̄ : I p̄S ′∗(X,A;G) → I p̄S ′∗(X,A;G) induced by T . Once

again, we know from the proof of Corollary 4.4.15 how to construct chain homotopies P

(based on prism constructions) that show that singular subdivision operators are chain ho-

motopic to the identity; we want to show that such a chain homotopy P descends to a

well-defined chain homotopy operator I p̄S ′∗(X,A;G) → I p̄S ′∗+1(X,A;G). As constructed

in Corollary 4.4.15, the chain homotopy P is defined on any singular simplex of X, it

takes allowable simplices to sums of allowable simplices, and it preserves supports. Thus if

ξ ∈ Ap̄Si(X;G) + Si(ΣX ;G), we will have P (ξ) ∈ Ap̄Si+1(X;G) + Si+1(ΣX ;G), while if also

∂ξ ∈ Ap̄Si−1(X;G) + Si−1(ΣX ;G), we will have

∂P (ξ) = T (ξ)− ξ − P (∂ξ) ∈ Ap̄Si(X;G) + Si(ΣX ;G)

using that T also preserves allowability and supports. Similarly, P will take

(Ap̄S∗(A;G) + S∗(ΣA;G)) ∩ ∂−1(Ap̄S∗−1(A;G) + S∗−1(ΣA;G))

to itself and Si(ΣX ;G) to Si+1(ΣX ;G). Thus, P descends to a chain homotopy I p̄S ′∗(X,A;G)→
I p̄S ′∗+1(X,A;G) between T ′ = īT̄ and the identity.

So we have now shown that iT̂ and īT̄ are chain homotopic to identity maps. Next we

consider T̂ i and T̄ ī.

First, consider T i. Since i is an inclusion map of a subcomplex, i−1 is well-defined on

im(i). We also observe that if ξ is a chain of I p̄SGM∗ (X;G) supported in some V , then the

same is true of both T (ξ) and P (ξ). So if ξ ∈ I p̄SGM,V
∗ (X,A;G) is represented by

∑
ξV

with ξV ∈ I p̄SGM∗ (V ;G), then i−1P i(ξ) is represented by
∑

V ∈V i
−1P i(ξV ), which represents
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an element in I p̄SGM,V
∗ (X,A;G). Now we compute formally

id− T̂ i = i−1i(id− T̂ i)
= i−1i− i−1iT̂ i

= i−1(id− iT̂ )i

= i−1(∂P + P∂)i

= i−1(∂P )i + i−1(P∂)i

= ∂i−1P i + i−1P i∂.

So T̂ i is chain homotopic to the identity via the chain homotopy i−1P i. Altogether, we

have shown that i is a chain homotopy equivalence, completing the proof for GM intersec-

tion chains. The argument for showing that T̄ ī is homotopic to the identity is the same,

recognizing that P preserves supports and takes chains ξV ∈ S∗(V ;G) representing ele-

ments of I p̄S ′∗(V,A ∩ V ;G) ⊂ I p̄S ′∗(X,A;G) to chains that continue to represent elements

in I p̄S ′∗(V,A ∩ V ;G). This follows from the same sorts of arguments applied just above to

show that P descends to a chain homotopy on I p̄S ′∗(X,A;G).

This completes the proof for singular chains.

In the PL situation, we can draw the even stronger conclusion that the inclusion map

I p̄CGM,V
∗ (X,A;G) ↪→ I p̄CGM∗ (X,A;G) is an isomorphism. Once again this inclusion makes

sense because the only chains in the kernel of I p̄C∗(V ;G) → I p̄C∗(X,A;G) are those that

are supported in A and V , and those are 0 in I p̄C∗(V,A ∩ V ;G). So I p̄CGM,V
∗ (X,A;G) ⊂

I p̄CGM∗ (X,A;G). So it suffices to demonstrate that the inclusion is a surjection. For this,

let [ξ] ∈ I p̄CGM∗ (X,A;G), and suppose that we represent [ξ] as a simplicial chain ξ in

some triangulation. Choosing some ordering on the vertices of the triangulation, we can

identify ξ with a singular chain as in Proposition 4.4.5. Now, we can apply the subdivision

map T from our singular chain argument. As T subdivides simplices linearly, the resulting

singular subdivision determines a simplicial subdivision of ξ, which we will also call T (ξ).

Furthermore, as the inclusion of |ξ| into X is a proper PL embedding, by Theorem B.2.19

there is a triangulation of all of X such that some further subdivision, say (T (ξ))′, of T (ξ)

is a simplicial chain with respect to this triangulation. Via the properties of T , we can

write (T (ξ))′ =
∑

V ∈V ξV , with each ξV an element of I p̄CGM∗ (V ;G). But in the PL setting,

every chain is identified with its subdivisions, so in I p̄CGM∗ (X,A;G), we in fact have [ξ] =[∑
V ∈V ξV

]
=
∑

V ∈V [ξV ].

The argument for I p̄C′∗(X,A;G) is the same using T ′ and the fact that subdivisions

preserve allowability and supports.

Now we must prove Lemma 6.5.4.

Proof of Lemma 6.5.4. Once again, there is no difference in the proof between working with

coefficients in an abelian group as opposed to an R-module, so use the former.

We begin by constructing a singular subdivision chain map T : S∗(X) → S∗(X) with

image in SV∗ (X), where SV∗ (X) is defined analogously with I p̄SGM,V
∗ (X;G) but for ordinary

singular chains and Z-coefficients. In fact, the image of T will lie in SU∗ (X) ⊂ SV∗ (X),
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where U is the set of interiors of the elements of V . We later discuss the restriction of T to

intersection chains and the generalization to other coefficients.

We first fix a well-ordering on the set U , which is possible using the Well-Ordering

Theorem; see [180, Section 10]. Suppose that B ⊂ X is a subset that can be contained in

some element U of U . Then let ψ(B) ∈ U be the element of U that is least in the order

among elements of U containing B. If σ : ∆i → X is a singular simplex such that the image

σ(∆i) is contained in some U ∈ U , then define ψ(σ) = ψ(σ(∆i)).

The basic idea of the argument is as follows: we construct T such that, for each ξ ∈ Si(X),

the chain T (ξ) will be a sum of simplices each of which is supported in some element of U .

This alone would allow us to write T (ξ) =
∑

U∈U TU(ξ) by letting TU(ξ) be the sum over

those simplices σ of T (ξ) (with their coefficients) such that ψ(σ) = U . In other words,

if T (ξ) =
∑
niσi, then TU(ξ) =

∑
IU(σi)niσi, where the indicator function IU(σi) is 1 if

ψ(σi) = U and 0 otherwise. See Figure 6.2. Then TU(ξ) is supported in U . Such a T

would be sufficient for working with ordinary singular chains (and this is the essence of such

arguments in standard texts), but since our ultimate goal is to work with intersection chains,

we must be a bit more subtle. In particular, if ξ is an intersection chain, we require that

each of the TU(ξ) be an intersection chain, which means that we must be careful about the

boundaries of the TU(ξ); as any i-simplex in a singular subdivision of a p̄-allowable i-simplex

is p̄-allowable by the proof of Lemma 4.4.13, these boundaries are the only issue. So, as

in our arguments concerning excision and Mayer-Vietoris sequences in Section 4.4, we must

take some extra care to “shield” bad faces to ensure this doesn’t happen.

For this, we will construct T inductively to satisfy the properties in the following list.

After giving this list, we will see why this is sufficient. Then we will see below that we can

indeed construct a T with these properties.

1. T is a chain map S∗(X)→ S∗(X).

2. For each singular simplex σ, the chain T (σ) is a singular subdivision of σ as defined

in Section 4.4.2. Recall that, roughly, this means that if σ : ∆i → X, then there is

some simplicial subdivision ∆̂i of ∆i (with ordered vertices) such that T (σ) is the sum

of the restrictions of σ to each of the i-simplices of ∆i. More technically speaking, we

have T (σ) =
∑

sgn(ij)σ ◦ ij, where each ij : ∆i → ∆i is a linear homeomorphism of the

standard i-simplex onto one of the i-simplices of ∆̂i with the inclusion map determined

by the ordering on the vertices and with sgn(ij) equal to 1 or −1 according to whether

the orientations of ∆i and the image of ij agree or not.

3. The image of each simplex of T (σ) is contained in some element of U .

4. Suppose σ is a singular i-simplex and µ is a simplex (of any dimension) of the subdi-

vision ∆̂i of ∆i as in condition (2). Suppose further that there is some simplex η (of

any dimension) of ∆i such that µ ⊂ η and dim(µ) = dim(η) (in other words, µ is a

top dimensional simplex in the restricted subdivision of ∆̂i to the simplex η of ∆i).

Then ψ(σ(St(µ, ∆̂i))) = ψ(σ(µ)), where St(µ, ∆̂i) is the closed star of µ in ∆̂i, which

consists of all (closed) simplices of ∆̂i that have µ as a face (of any dimension). This
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Figure 6.2: On the top, we see the singular chain T (ξ) contained in X = U ∪ V . If U < V

in the ordering of U = {U, V }, then TU(ξ) is shown on the bottom left and TV (ξ) on the

bottom right.
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condition says that the image under σ of every simplex of ∆̂i that has µ as a face has

the same minimal containing element of U as µ itself does. This is the condition that

will create the necessary “shielding.” See Figure 6.3 for an illustration of this condition

and Figure 6.5, below on page 340, for an illustration of the general of idea of how

these requirements allow us to split intersection chains into intersection chain pieces.

Figure 6.3: Two examples in a subdivision ∆̂2 of ∆2 of simplices µ satisfying the hypothesis

of condition 4 (a 1-simplex on the left and a 0-simplex on the right). The shaded simplices

indicate the closed stars St(µ, ∆̂i). The conclusion of the condition is that the least element

of U containing σ(µ) must also contain the image under σ of the entire star.

Sublemma 6.5.5. There exists a chain map T with these properties.

Next, let us see that if we have a T with the listed properties and restrict it to I p̄SGM∗ (X) ⊂
S∗(X), then the image lies in I p̄SGM,U

∗ (X). By Lemma 4.4.13, subdivisions preserve allowa-

bility, so since T is a chain map we certainly have that T induces a map I p̄SGM∗ (X) →
I p̄SGM∗ (X) ⊂ S∗(X). Suppose ξ ∈ I p̄SGMi (X) and U ∈ U . If T (σ) =

∑
njτj, for a sin-

gular simplex σ, let TU(σ) =
∑
IU(τj)njτj, where IU is the indicator function as defined

above. Extending by linearity, we then have T (ξ) =
∑

U∈U TU(ξ). Although U may contain

infinite elements, this sum is necessarily finite as ξ consists of finitely many simplices, and

hence so does the subdivision T (ξ). Furthermore, by construction, TU(ξ) must consist of

simplices supported in U . It remains to show that each TU(ξ) is an intersection chain under

the assumption that ξ ∈ I p̄SGMi (X).

By Lemma 4.4.13, if ξ ∈ I p̄SGMi (X) then all of the i-simplices of each TU(ξ) will be

allowable, so we are reduced to consider the allowability of the simplices of ∂TU(ξ). Let τ

be an i− 1 simplex of ∂TU(ξ). Each such τ can be identified as the restriction of σ to δ for

some singular simplex σ : ∆i → X of ξ and some i − 1 simplex δ in the subdivision ∆̂i of

∆i. Technically, τ is the composition of σ with the inclusion of ∆i−1 into ∆̂i as δ, but we

will abuse the notation slightly. If τ is allowable, there is no trouble, so let us assume that

τ is not allowable and find a contradiction.

First, let us consider the possibility that τ is an i−1 simplex that comes from the interior

of an i-simplex σ of ξ. In other words, the i−1 simplex δ in the the subdivision ∆̂i associated
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to T (σ) is not contained in ∂∆i. Suppose, furthermore, that for every face η of ∆i it is true

that dim(δ ∩ η) < dim(η). Then by arguments completely analogous to those of Lemma

4.4.1 and Lemma 4.4.17, the simplex τ must in fact be allowable.

Thus, if τ is not allowable there is some face η of ∆i for which it is true that dim(δ∩η) =

dim(η). This includes the possibility that δ is contained in the boundary of ∆i, in which

case dim(δ) = dim(η) = i − 1. The intersection δ ∩ η must be a (not necessarily proper)

face of δ contained in the subdivision of η in ∆̂i and of the same dimension as η, and so

δ ∩ η = µ is a simplex that satisfies the hypotheses of condition (4). Since T is assumed to

satisfy condition (4), it follows that we have ψ(σ(St(µ, ∆̂i))) = ψ(σ(µ)). So, in particular,

δ and any i-simplex γ of ∆̂i of which δ is a face, both of which contain µ as a face, have

their images under σ contained in ψ(σ(µ)). Furthermore, since δ and any such γ contain µ,

their images under σ cannot be contained in an element of U that is smaller in the ordering

because the image under σ of µ cannot be. Thus ψ(τ) = ψ(σ(δ)) = ψ(σ(γ)) = ψ(σ(µ)).

So, in particular, if γ is an i-simplex of ∆̂i of which δ is a face, then the i-simplex σ|γ is

a simplex only of Tψ(τ)(ξ) and not of any other TW (ξ), W ∈ U , assuming it doesn’t cancel

with other simplices so that it does not appear in T (ξ) at all. As we have assumed that τ

occurs as a simplex in ∂TU(ξ), this also tells us that ψ(τ) = U .

Now, consider all the ways that τ can arise as a face of an i-simplex of T (ξ). As we assume

that τ is not allowable, the discussion of the last paragraph holds, ranging across various

possible simplices playing the roles of σ, η, δ, µ, and γ. In all such cases, the conclusion

is that any i-simplex of T (ξ) that contains τ as a boundary simplex must be included in

Tψ(τ)(ξ). But since we have assumed τ is not allowable, we know it does not occur in ∂T (ξ).

Therefore, there must be cancellations that occur among the boundaries of the i-simplices of

T (ξ) that contain τ as a boundary. Since all such simplices are contained in Tψ(τ)(ξ) = TU(ξ),

the coefficients of τ must all cancel in TU(ξ). Therefore, the simplex τ cannot occur in any

∂TU(ξ), which was our desired contradiction. Therefore, we have TU(ξ) ∈ I p̄SGMi (U) for

each U .

It now follows that T restricts to a chain map I p̄SGM∗ (X) → I p̄SGM,U
∗ (X). In fact, the

exact same arguments extend immediately to chains with any coefficients to give a chain

map I p̄SGM∗ (X;G)→ I p̄SGM,U
∗ (X;G).

So now consider the relative situation where we want to show that T induces T̂ :

I p̄SGM∗ (X,A;G) → I p̄SGM,V
∗ (X,A;G). Suppose an element of I p̄SGM∗ (X,A;G) is repre-

sented by ξ + a with ξ ∈ I p̄SGM∗ (X;G) and a ∈ I p̄SGM∗ (A;G). We know that T (ξ) =∑
TU(ξ) with TU(ξ) ∈ I p̄SGM∗ (U ;G), and similarly we must have T (a) =

∑
TU(a) with

TU(a) ∈ I p̄SGM∗ (A ∩ U ;G) because a subdivision of a chain in A will be in A. Therefore,

T (ξ+a) =
∑

U TU(ξ+a) =
∑

U (TU(ξ) + TU(a)) represents an element in I p̄SGM,V
∗ (X,A;G).

If we vary a within I p̄SGM∗ (A;G), we do not change the element that T (ξ + a) represents in

I p̄SGM,V
∗ (X,A;G), so T induces a well-defined T̂ with the desired properties.

Next, we consider

I p̄S ′i(X,A;G) =
(Ap̄Si(X;G) + Si(ΣX ;G)) ∩ ∂−1(Ap̄Si−1(X;G) + Si−1(ΣX ;G))

Si(ΣX ;G) + (Ap̄Si(A;G) + Si(ΣA;G)) ∩ ∂−1(Ap̄Si−1(A;G) + Si−1(ΣA;G))
;

recall again formula (6.3) in Section 6.2.6. We first show that T induces a chain map T ′ :
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I p̄S ′i(X,A;G)→ I p̄S ′i(X,A;G). For convenience of notation, let us denote the “numerator”

of the above expression by B. Since B ⊂ S∗(X;G), the chain map T is defined on elements

of B with image in S∗(X;G); we must show that T takes elements of B to elements of B.

So let ξ ∈ B. Then ξ is a linear combination of allowable simplices and simplices supported

in ΣX , and the same is true of ∂ξ. But the image of T on each allowable simplex is a

chain composed of allowable simplices by Lemma 4.4.13, and the image of T on simplices

supported in ΣX is supported in ΣX . This last statement is due to the fact T preserves (or

reduces) supports because it is a subdivision map. Since T is a chain map, ∂T (ξ) = T (∂ξ),

which then similarly must be composed of allowable simplices and simplices in ΣX . By the

same arguments, T must take simplices of

(Ap̄Si(A;G) + Si(ΣA;G)) ∩ ∂−1(Ap̄Si−1(A;G) + Si−1(ΣA;G))

back into this group, and we already know that it takes Si(ΣX ;G) to itself. So T induces a

well-defined chain map T ′ : I p̄S ′∗(X,A;G)→ I p̄S ′∗(X,A;G).

Now, we must observe that the image of T ′ : I p̄S ′∗(X,A;G)→ I p̄S ′∗(X,A;G) is contained

in I p̄S
′,U
∗ (X,A;G). In fact, if we represent an element of I p̄S ′i(X,A;G) by a chain ξ + s+ a

with ξ ∈ B, s ∈ Si(ΣX ;G), and

a ∈ (Ap̄Si(A;G) + Si(ΣA;G)) ∩ ∂−1(Ap̄Si−1(A;G) + Si−1(ΣA;G)),

then, as above, we have

T (ξ + s+ a) =
∑
U∈U

TU(ξ) + TU(s) + TU(a).

We must show that TU(ξ) + TU(s) + TU(a) ∈ I p̄S ′∗(U,A ∩ U ;G). We first consider TU(ξ).

Preservation of allowability and supports shows that each TU(ξ) is contained in Ap̄S∗(U ;G)+

S∗(ΣU ;G), where ΣU = ΣX ∩U . Next we verify that ∂TU(ξ) ∈ Ap̄Si−1(U ;G) + Si−1(ΣU ;G).

But the preceding arguments for I p̄SGM∗ (X;G) can be used again verbatim to show here that

any simplex of ∂TU(ξ) not contained in ΣX must be allowable. In particular, notice that

if such a simplex τ is not contained in ΣX , no simplex of TU(ξ) having τ as a face can be

contained in ΣX , so there is no disruption to our previous shielding arguments, using that

we know that every simplex of T (ξ) with τ as a face must be allowable. So

TU(ξ) ∈ (Ap̄Si(U ;G) + Si(ΣU ;G)) ∩ ∂−1(Ap̄Si−1(U ;G) + Si−1(ΣU ;G)).

The same argument together with preservation of supports shows that

TU(a) ∈ (Ap̄Si(A ∩ U ;G) + Si(ΣA ∩ U ;G)) ∩ ∂−1(Ap̄Si−1(A ∩ U ;G) + Si−1(ΣA ∩ U ;G)).

Finally, preservation of supports tells us that TU(s) ∈ Si(ΣU ;G). Therefore, each

TU(ξ + s+ a) = TU(ξ) + TU(s) + TU(a)

represents an element of I p̄S ′i(U,A∩U ;G). Furthermore, varying s ∈ Si(ΣX ;G) and a in its

group do not change the element TU(ξ + s + a) ∈ I p̄S ′i(U,A ∩ U ;G). This proves our claim

that T induces a well-defined map T̄ : I p̄S ′∗(X,A;G)→ I p̄S
′,V
∗ (X,A;G).
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Proof of Sublemma 6.5.5. We will construct a subdivision chain map T : S∗(X) → S∗(X)

that satisfies the conditions required. The construction will be inductive over the dimensions

of chains. We first define T : S0(X) → S0(X) to be the identity map. Notice that this is

consistent with the conditions we need to verify. Next, we assume that T : Sj(X)→ Sj(X)

has been constructed for j < i satisfying the required properties. We will show how to

extend T to Si(X).

Let σ : ∆i → X be a singular simplex of Si(X). We will define T (σ). In general,

T is extended to Si(X) by linearity. Since T will be a singular subdivision of σ, we seek

to construct an appropriate subdivision ∆̂i of ∆i (with vertex partial ordering), and this

will determine the subdivision of σ; see Section 4.4.2 for a general discussion of singular

subdivision. By assumption, T (∂σ) has already been defined, so we can assume a subdivision

(with vertex partial ordering) of ∂∆i as given and denote it by ∂∆̂i. We begin by defining

a subdivision15 ∆̂i
1 of ∆i by letting ∆̂i

1 be the cone on ∂∆̂i. In other words, we add the

barycenter v of ∆i as a vertex, and the i-simplices of ∆̂i
1 will be simplices of the form

[w0, . . . , wi−1, v], where [w0, . . . , wi−1] is an i − 1 simplex of ∂∆̂i. See Figure 6.4. We also

assume the new barycenter is placed in the order of vertices after the existing vertices of

∂∆̂i.

Next, we perform on ∆̂i
1 iterated barycentric subdivisions relative to ∂∆̂i. The process

of relative barycentric subdivision is described in detail in [181, Section 16], but here is

the basic idea: Recall that barycentric subdivision of a simplicial complex K is performed

inductively. The barycentric subdivision of the 0-skeleton of K is always just the 0-skeleton

of K. Then assuming the barycentric subdivision K ′ of K has been constructed on the

p− 1 skeleton of K, one subdivides each p-simplex by coning off the barycentric subdivision

of its boundary, analogously to our construction of ∆̂i
1. To obtain ordered simplices in the

subdivision, we let each successive barycenter come later in the order than those added at the

previous stage of construction. For a relative barycentric subdivision, the difference is that

one begins with a subcomplex L ⊂ K and holds L fixed throughout the procedure: Again

the subdivision of the 0-skeleton is just the 0-skeleton itself. Now assume we’ve constructed

a relative barycentric subdivision up through the p − 1 skeleton of K to obtain a p − 1

dimensional complex K ′ with Lp−1 ⊂ K ′. Now let τ be a p-simplex of K. If τ is contained

in L, then also ∂τ ⊂ Lp−1 ⊂ K ′, and we add τ to K ′. If τ is not contained in L, then

we subdivide τ by taking the cone on the subdivision of ∂τ in K ′ that has already been

constructed in the induction. Applying these procedures for all p-simplices of K, we obtain

a p-skeleton for K ′ that contains Lp as a subcomplex. See Figure 6.4. Just as for ordinary

barycentric subdivision, relative barycentric subdivision of K relative to L can be repeated

iteratively.

We will let ∆̂i be such an iterated barycentric subdivision of ∆̂i
1 relative to ∂∆̂i

1 = ∂∆̂i,

and T (σ) will be the singular subdivision of σ based on this subdivision of ∆i. The first

two requirement for T , that it be a singular subdivision map and a chain map, will thus

be satisfied by the construction. To obtain the other conditions, we must ensure that if we

15The reason for this first subdivision ∆̂i
1 is to ensure that we start the process to come with a legitimate

simplicial subdivision of ∆i that restricts to ∂∆̂i on the boundary of ∆i. If ∂∆̂i = ∂∆i then this step can

be omitted by simply defining ∆̂i
1 = ∆i.
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Figure 6.4: Relative barycentric subdivision on a complex of the form ∆̂2
1 (left). Assuming

that the subdivision ∂∆̂2 of ∂∆2 is given, we form ∆̂2
1 by taking the cone on that subdivision

with the cone point at the the barycenter of ∆2. Then the relative barycentric subdivision

does not subdivide any simplex of ∂∆̂2. Observe that the boundary is subdivided identically

in the two complexes.

perform enough iterations of the relative barycentric subdivision then the other conditions

become true. For this, we will prove a modified version of Lemma 16.3 of [181]; our argument

(and some of our notation) will be modified versions of those found in [181].

Let B = ∂∆̂i, which we assume already constructed by induction. By the inductive

argument, the image of each simplex of B under σ is contained in some element of the

open covering U . Furthermore, suppose µ is a j-dimensional simplex of B, j < i, that is

contained in some j-dimensional face of ∆i. By the inductive assumption, if F is any face of

∆i containing µ (as a subset) and if F̂ is the subdivision of F determined by the subdivision

∂∆̂i, then ψ(σ(St(µ, F̂ ))) = ψ(σ(µ)). Since this formula holds over all such F , we see that

in fact ψ(σ(St(µ,B))) = ψ(σ(St(µ, ∂∆̂i))) = ψ(σ(µ)). Now let K = ∆̂i
1, and let sdN(K/B)

denote the Nth iterated barycentric subdivision of K relative to the subcomplex B. We will

show that there is a sufficiently large N such that16

• for every µ in B satisfying the hypotheses of condition (4), ψ(σ(St(µ, sdN(K/B)))) =

ψ(σ(µ)) and

• for every i-simplex ν of sdN(K/B), then σ(ν) is contained in some element of U .

Then if we let ∆̂i = sdN(K/B) and use this to define T (σ), we will have satisfied all the

conditions we need for T .

Here is where we use a slight variation of the method of argument of the proof of [181,

Lemma 16.3]. We assume that B = ∂∆̂i lies in some RK × {0} ⊂ RK × R; in fact, since B

is the boundary if an i-simplex, we can assume that it lies in Ri × {0} ⊂ Ri+1. Then we let

16 If these two conditions are already met for ∆̂i
1 then no further subdivisions are necessary and we can

let ∆̂i = ∆̂i
1.
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p = (0, . . . , 0, 1) and form the join (or, equivalently, the cone) K = p ∗B inside Ri+1 in this

way; from now on, K will denote this specific simplicial complex in Ri+1. Notice that K is

still simplicially isomorphic to our ∆̂i
1, and we identify K with ∆i so that we may speak of

σ : K → X. Let µ be a simplex of B satisfying the hypotheses of condition (4). We observe

that St(µ, sdN(K/B)) ⊂ p∗St(µ,B) for any N because any simplex of a relative subdivision

having µ as a face must be contained within a subdivision of a simplex of ∆̂i
1 that already

has µ as a face. Consider σ−1(ψ(σ(µ))) ⊂ K, which is open in K and, from our previous

observations, contains St(µ,B). Since p ∗ St(µ,B)− σ−1(ψ(σ(µ))) is compact but does not

intersect Ri×{0}, its orthogonal projection to {0}×R has a positive minimum. In particular,

there is an εµ such that any simplex contained in (Ri × [0, εµ)) ∩ (p ∗ St(µ,B)) is contained

in σ−1(ψ(σ(µ))). But now the arguments17 of Step 1 of the proof of [181, Lemma 16.3] show

precisely that, for any given εµ, there is a sufficiently large Mµ such that any simplex of

sdMµ(K/B) that intersects Ri × {0} is contained in the strip Ri × [0, εµ). It follows that in

sdMµ(K/B), the star of µ is contained in σ−1(ψ(σ(µ))), as desired. Since there are a finite

number of such µ in B, it follows that there is an M = maxµ{Mµ} such that in sdM(K/B),

the star of any µ satisfying the hypotheses of (4) is contained in σ−1(ψ(σ(µ))). This is

sufficient for condition (4) because if Y ⊂ Z ⊂ X then ψ(Y ) ≤ ψ(Z) in the ordering, and

we have just shown that σ(St(µ, sdM(K/B))) ⊂ ψ(σ(µ)) so that ψ(σ(St(µ, sdM(K/B)))) ≤
ψ(σ(µ)), while clearly σ(µ) ⊂ σ(St(µ, sdM(K/B))).

It remains to show that we can find an N ≥ M such that every simplex of sdN(K/B)

is contained in σ−1(U) for some U ∈ U . By the preceding paragraph, every simplex of

sdM(K/B) that intersects B has this property. Let Q be the union of the simplices of

sdM(K/B) that do not intersect B, and let P be the union of the simplices of sdN(K/B)

that do intersect B. Then P and Q are finite complexes. As we perform further relative

subdivisions, the simplices subdivided from the simplices in P continue to have the desired

properties, while the simplices in Q, since they do not intersect B, undergo ordinary iterated

barycentric subdivisions. But now we can appeal to the standard arguments: since Q is

compact, it has a Lebesgue number [180, Lemma 27.5] with respect to the covering by σ−1(U),

U ∈ U , and by [181, Theorem 15.4], there is a finitely iterated barycentric subdivision of

Q such that the diameters of the simplices of the subdivision are all less than the Lebesgue

number. It follows that there is such an sdN(K/B) as desired.

This completes the proof of the sublemma.

We have at last finished proving Proposition 6.5.1. The tools we have just developed,

however, can also be used to prove Proposition 6.5.2 and Corollary 6.5.3.

Proof of Proposition 6.5.2. The proof is the same with any coefficients (abelian groups or

17Here is a sketch of the argument: suppose K ′ is a subdivision of K relative to B such that any simplex

of K ′ that intersects B is contained in Ri× [0,m] for some m. There clearly exists such an m ≤ 1. Let δ be a

simplex of sd(K ′/B) that intersect Ri×{0}. Then the vertices of δ are either vertices of B or barycenters of

simplices of K ′ that intersect B. A computation with barycentric coordinates demonstrates that each of these

barycenters must be contained in the strip Ri ×
[
0, ( i

i+1 )m
]
. Iterating the relative barycentric subdivision

N times therefore results in all simplices of the iterated subdivision that intersect B being contained in

Ri ×
[
0, ( i

i+1 )Nm
]
, and for a large enough N we have ( i

i+1 )Nm < ε.
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R-modules), so we provide the argument with G = Z. The argument involves utilizing

the constructions of the proof of Proposition 6.5.1, in particular the subdivision operators

constructed in Lemma 6.5.4 and Sublemma 6.5.5.

First suppose ξ ∈ I p̄SGMi (X)∩SUi (X). As ξ is composed of a finite number of i-simplices,

there is a finite set {U1, . . . , Um} ⊂ U such that each simplex of ξ is contained in some Uj.

We can choose our well-ordering of U such that the elements in {U1, . . . , Um} are the least

elements and such that Uj < Uk when j < k. In particular, we can assume that U1 is the

least element of U . Let us decompose ξ in Si(X) as

ξ =
∑

{σj :|σj |⊂U1}

njσj +
∑

{σk:|σk|6⊂U1}

nkσk = ξ1 + ξ>1.

In other words, the chain ξ1 consists of the simplices of ξ (with their coefficients) with image

in U1, and ξ>1 = ξ − ξ1; neither ξ1 nor ξ>1 are necessarily intersection chains.

Now, let us apply the operator TU1 from the proof of Lemma 6.5.4 to ξ. We have

TU1(ξ) = TU1(ξ1 + ξ>1) = TU1(ξ1) + TU1(ξ>1) ∈ I p̄SGMi (U1).

By the definition of TU1 and the construction of T in the proof of Sublemma 6.5.5 (in

particular see footnote 15 on page 336 and 16 on page 337), as U1 is the least element of

U we may suppose that T (σ) = σ for any σ with support in U1. This then implies that

TU1(ξ1) = ξ1. Also, each simplex of TU1(ξ) − TU1(ξ1) = TU1(ξ>1) must be a simplex from a

singular subdivision of a simplex of ξ>1; such a simplex must have support both in U1 (in

order to be a simplex of TU1(ξ>1)) and in some Uj with j > 1 (as each simplex of ξ>1 is

supported in some Uj with j > 1 and subdivision preserves or reduces supports). See Figure

6.5.

Now consider

ξ = ξ1 + ξ>1

= ξ1 + TU1(ξ>1)− TU1(ξ>1) + ξ>1

= TU1(ξ1) + TU1(ξ>1)− TU1(ξ>1) + ξ>1

= TU1(ξ) + ξ>1 − TU1(ξ>1).

We know that TU1(ξ) ∈ I p̄SGMi (U1) ⊂ I p̄SGMi (X) by the proof of Lemma 6.5.4. So ξ>1 −
TU1(ξ>1) = ξ − TU1(ξ) is also in I p̄SGMi (X). Additionally, we know that each simplex of

ξ>1 − TU1(ξ>1) is contained in an element of {U2, . . . , Um}, and so ξ>1 − TU1(ξ>1) is subject

to the same argument with a finite set of U with smaller cardinality. Continuing inductively,

we see that we can decompose the chain ξ as desired.

If ξ ∈ I p̄Si(X), then ξ also represents a chain in I p̄S ′i(X). The same argument just given

still allows us to write ξ = TU1(ξ) + ξ>1 − TU1(ξ>1), and by Lemma 6.5.4 the chain TU1(ξ)

represents an element of I p̄S ′i(U1) ⊂ I p̄S ′i(X). So ξ − TU1(ξ) = ξ>1 − TU1(ξ>1) represents an

element of I p̄S ′i(X). Let φ : I p̄S ′i(X) → I p̄Si(X) be the isomorphism of Lemma 6.2.5. By

Remark 6.2.6, if η is a chain representing an element of I p̄S ′i(X), then φ(η) is obtained by
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Figure 6.5: At the top we see an intersection chain ξ composed of two simplices, but the

common face of the simplices may not be allowable, so we cannot split ξ along it. We

construct the subdivision T (ξ) (bottom left) using the subdivision operator constructed in

the proof of Lemma 6.5.4. This subdivision preserves the simplex contained entirely in U1

but subdivides the simplex in U2 relative to its intersection with the simplex in U1. Note

that this subdivision satisfies all the properties required in Sublemma 6.5.5. On the bottom

right, we see the resulting intersection chain TU1(ξ).
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throwing out from η any simplices contained in ΣX . So φ(TU1(ξ1)) ∈ I p̄Si(U1) and, for the

same reasons as above, the image

φ(ξ>1 − TU1(ξ>1)) = φ(ξ − TU1(ξ)) = ξ − φ(TU1(ξ)) ∈ I p̄Si(X)

satisfies the hypotheses of the proposition with respect to a covering set of smaller cardinality.

So, once again, an induction completes the argument.

Proof of Corollary 6.5.3. Let U = {A,X} be an open cover of X, and let us order the

cover so that A < X. As observed in the proof of Proposition 6.5.2, we can choose the

subdivision operator T of the proof of Lemma 6.5.4 so that T (σ) = σ for any σ supported

in A. It then follows that the homomorphisms T̂A : I p̄SGMi (X;G) → I p̄SGMi (A;G) and

T̄A : I p̄S ′i(X;G)→ I p̄S ′i(A;G) provide the splittings.
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Chapter 7

Intersection cohomology and products

We now turn to intersection cohomology and its properties and products. The reader should

be cautioned that the term “intersection cohomology” can have a variety of meanings in the

literature, including the following:

1. Sheaf theory almost always uses cohomological indexing, and so one speaks of “sheaf

cohomology” (for the cohomology of a space with coefficients in a sheaf) or “sheaf

hypercohomology” (for the cohomology of a space with coefficients in a complex of

sheaves). In [106], a sheaf complex is introduced whose hypercohomology groups are

the PL intersection homology groups on compact PL pseudomanifolds (see also [85, 90]

for sheaves of singular chains). However, it soon became common to refer to intersec-

tion homology when constructed this way as intersection cohomology, and indeed that

is the title of Borel’s book [28]. On a noncompact space, these hypercohomology

groups compute intersection homology “with closed supports,” also called “homology

of locally-finite chains” or “Borel-Moore homology.” In this setting, a chain may be

composed of infinite numbers of simplices so long as every point has a neighborhood

intersecting only a finite number of them. The usual intersection homology groups can

be recovered from the sheaf theory by considering “hypercohomology with compact

supports.”

2. In the PL setting, some sources (e.g. [110]) use the word “cochain” for what seems

to refer to PL chains with closed support in the complementary dimension. In other

words, they define Ci(X) to be what we might call C∞n−i(X) on a PL space of dimension

n. One sometimes sees cup and cap products given in this language (again, see [110]),

but these seem to be versions of the Goresky-MacPherson intersection product that

we will discuss in Section 8.5 with the cup product taking a pair of chains with closed

support to a chain with closed support and the cap product taking a chain with closed

support and a chain with compact support to a chain with compact support.

3. The various flavors of intersection cohomology defined via differential forms are variants

of de Rham cohomology.

By contrast to these other options, we shall utilize a definition analogous to that for

ordinary singular cohomology by defining intersection cochains in terms of the Hom duals of
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the intersection chains. Such definitions have appeared previously, for example in [31, 100].

One can show using sheaf theory that this yields the same intersection cohomology groups

as the sheaf-theoretic hypercohomology definition of [106] provided we use field coefficients

[31, 98]. However, the intersection cohomology cone formula (Proposition 7.1.5) shows that

these are not quite the same for more general coefficients, as these are evidently not just

the intersection homology modules reindexed. We justify our current definition by its par-

ticipation in the Poincaré duality theorems of the next chapter and by its parallel with the

cohomology theory for manifolds.

After introducing these intersection cohomology groups in Section 7.1 and establishing

their basic properties, we define singular cross, cup, and cap products in Section 7.2. Prod-

ucts of this form were first introduced in [100] with field coefficients, but we here generalize

to coefficients in Dedekind domains. With an Alexander-Whitney construction unavailable

for intersection cochains (as we will discuss below), the algebraic diagonal map that plays

a critical role in the construction of the cup and cap products depends instead upon the

Künneth theorem of the preceding chapter. Section 7.3 is a long section developing the

various properties of these products in analogy with the properties of the classical products;

much of this material is developed for intersection cohomology here for the first time. For

the reader more interested in the final statements than the arguments, a summary of these

properties is provided in Section 7.3.9. Up to that point we consider the properties only for

CS sets, which do not include pseudomanifolds with boundary. We explain how to extend

the results to objects with boundary in Section 7.3.10. To conclude the chapter, we provide

some results about intersection cohomology with compact supports in Section 7.4.

Unfortunately, we will see as we progress through the basic properties of intersection

cohomology in Section 7.1 that it is more difficult to work with PL intersection cohomology

than singular intersection cohomology. The main trouble is that we know from Lemma

6.3.1 that the I p̄Si(X;R) are projective when R is a Dedekind domain, but we only know

that that the I p̄Ci(X;R) are flat. So the PL chains do not behave as well with respect to

dualization under Hom. Furthermore, the complex I p̄Ci(X;R) is defined as a direct limit and

so dualizes to an inverse limit, creating other difficulties. Meanwhile, as noted in Section 1.2,

the advantage of the PL category in terms of allowing us to view chains geometrically and

compute simplicially begins to fall away as we come to intersection cohomology as we do not

know of an Alexander-Whitney-type formula that would allow us to compute intersection

cohomology products combinatorially. Consequently, though we briefly discuss properties

of PL intersection cohomology alongside singular intersection cohomology in Section 7.1,

beginning in Section 7.2 we turn to focusing solely on the singular intersection cohomology

groups for the remainder of the book.

Remark 7.0.1. As per Remarks 6.2.2 and 6.2.7, for the remainder of the book we typically

simply utilize the notation (I p̄S∗(X;G), ∂) for the non-GM intersection chain complex and

its boundary maps, reserving the notations I p̄S ′∗(X;G) or ∂̂ for only those instances where

making such distinctions explicit is critical.
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7.1 Intersection cohomology

So far, we have focused exclusively on intersection homology. It is time to introduce inter-

section cohomology. The definition works with coefficients in any commutative ring with

unity R, though for certain results here and for many results as we progress we will need

to assume that R is a Dedekind domain or a field. Recall that we have already seen such

coefficient restrictions in Sections 5.3 and 6.4.

Definition 7.1.1. Let R be a commutative ring with unity, let (X,A) be a filtered space X

with a subset A, and let p̄ be a perversity on X. We define the singular intersection cochain

complex

Ip̄S
∗(X,A;R) = HomR(I p̄S∗(X,A;R), R).

We will denote the coboundary operator by d. Following the Koszul sign conventions (see

appendix Section A.1), if α ∈ Ip̄S
i(X,A;R) and x ∈ I p̄Si+1(X,A;R), then (dα)(x) =

(−1)i+1α(∂x).

The associated intersection cohomology modules are

Ip̄H
i(X,A;R) = H i(Ip̄S

∗(X,A;R)) = H i(HomR(I p̄S∗(X,A;R), R)).

Similarly, if X is a PL filtered space with PL subspace A, we let Ip̄C
∗(X,A;R) =

HomR(I p̄C∗(X,A;R), R) and

Ip̄H
i(X,A;R) = H i(Ip̄C

∗(X,A;R)) = H i(HomR(I p̄C∗(X,A;R), R))

.

Notice that in our notation both the degree index and the perversity index shift their

subscript/superscript locations. Of course, shifting the degree index is standard; the shifting

of the perversity index is simply meant as an additional visual cue.

Remark 7.1.2. We will not use it here, but for any R-module M one could just as easily

define Ip̄S
∗(X,A;M) = HomR(I p̄S∗(X,A;R),M).

We could also define versions of intersection cohomology based on the complexes I p̄SGM∗ (X)

and I p̄CGM∗ (X), but since our reason for introducing cohomology is to introduce cup prod-

ucts and as these require the Künneth Theorem and so non-GM intersection cohomology,

we will not pursue separately the properties of GM intersection cohomology groups. Recall,

though, that when p̄ ≤ t̄, there is no difference between the GM and non-GM theories, by

Proposition 6.2.9.

Remark 7.1.3. When the ground ring is understood, we will use the notations Hom and ⊗,

rather than the more cumbersome HomR and ⊗R.

When R is a Dedekind domain, the Universal Coefficient Theorem holds:

Theorem 7.1.4. For a Dedekind domain R and for every i, there is a natural exact sequence

0→ Ext(I p̄Hi−1(X,A;R), R)→ Ip̄H
i(X,A;R)→ Hom(I p̄Hi(X,A;R), R)→ 0.

This sequence splits, but not naturally. Additionally, if F is a field, then for PL intersection

cohomology we have Ip̄H
i(X,A;F ) ∼= Hom(I p̄Hi(X,A;F ), F ).
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Proof. This is just an application of the algebraic Universal Coefficient Theorem [237, Section

3.6], for which, for the singular chain case, we only need verify that each I p̄Si(X,A;R) and

∂(I p̄Si(X,A;R)) are projective. But we know this from Lemma 6.3.1.

The difficult with the PL case is that we do not know that I p̄C∗(X;R) is projective, so

we cannot invoke the needed algebraic results. Of course, if R is a field, then all modules are

free, so in this case we can apply the algebraic theorem, with the Ext term vanishing.

Notice that this Universal Coefficient Theorem for cohomology is not inconsistent with

the general failure of the Universal Coefficient Theorem for homology, as discussed in Section

5.3.2. There, we introduced a complex I p̄S∗(X;G) that is not of the form C∗ ⊗ G, and so

the usual homological algebra does not apply. Here, by contrast, we define Ip̄S
∗(X;R) by

applying the Hom(·, R) functor in the standard way.

Given Theorem 7.1.4 and the intersection homology cone formula (Theorem 6.2.13), it is

not difficult to write down a cohomology version of the cone formula:

Proposition 7.1.5. If X is a compact filtered space of formal dimension n− 1 and R is a

Dedekind domain, then

Ip̄H
i(cX;R) ∼=


0, i > n− p̄({v})− 1,

Ext(I p̄Hi−1(X;R), R), i = n− p̄({v})− 1,

Ip̄H
i(X;R), i < n− p̄({v})− 1.

Furthermore, the isomorphisms when i < n− p̄({v})−1 are induced by inclusion. This result

extends to PL intersection cohomology if R is a field.

Proof. The case i > n − p̄({v}) − 1 is immediate from the intersection homology cone

formula and the Universal Coefficient Theorem. When i < n− p̄({v})− 1, the naturality of

the Universal Coefficient Theorem gives us a diagram

0 - Ext(I p̄Hi−1(cX;R), R) - Ip̄H
i(cX;R) - Hom(I p̄Hi(cX;R), R) - 0

0 - Ext(I p̄Hi−1(X;R), R)
?

- Ip̄H
i(X;R)
?

- Hom(I p̄Hi(X;R), R)
?

- 0.

The outer maps are isomorphisms by Theorem 6.2.13, hence so is Ip̄H
i(cX;R)→ Ip̄H

i(X;R)

by the Five Lemma.

When i = n − p̄({v}) − 1, however, I p̄Hi(cX;R) = 0, but I p̄Hi−1(cX;R) might be

non-zero. So

Ip̄H
i(cX;R) ∼= Ext(I p̄Hi−1(cX;R), R) ∼= Ext(I p̄Hi−1(X;R), R),

the last isomorphism again by the homology cone formula.

By Theorem 7.1.4, the argument can be extended to PL intersection cohomology when

using field coefficients.
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Remark 7.1.6. Notice that the intersection cohomology version of the cone formula is not

so clear cut as the homology version in Theorem 6.2.13. In homology, I p̄Hi(cX;R) is either

I p̄Hi(X;R) or 0. But in cohomology Ip̄H
n−p̄({v})−1(cX;R) reaches down one degree to pluck

out the torsion term Ext(I p̄Hn−p̄({v})−2(X;R), R). We have already seen this issue in Section

5.3 in our discussion of the Universal Coefficient Theorem in homology. This led to the

definition of locally torsion free spaces in Section 5.3.2. Similarly, the appearance of this one

seemingly-minor blip will force us to assume our spaces are locally torsion free in order to

get much of the intersection cohomology theory to work out right, including being able to

define cup and cap products and, eventually, Poincaré duality.

Our next goal is to establish the basic properties of intersection cohomology, such as

stratified homotopy invariance, excision, etc., utilizing the properties of intersection ho-

mology (though we reserve discussion of products, including cohomology cross products,

to Section 7.2). Most follow almost directly from the intersection homology versions, in

which case we will just briefly provide the relevant reasons. Some, however, require more

elaboration, which we provide.

Proposition 7.1.7. If X, Y are filtered spaces, f : X → Y is (p̄, q̄)-stratified, and A ⊂ X

and B ⊂ Y with f(A) ⊂ B, then f induces a chain map f ∗ : Iq̄S
∗(Y,B;R)→ Ip̄S

∗(X,A;R).

If, additionally, X, Y are PL filtered spaces and f is a PL map, then f induces a chain map

f ∗ : Iq̄C
∗(Y,B;R) → Ip̄C

∗(X,A;R) of PL intersection chain complexes. In either case, we

obtain corresponding maps of intersection cohomology groups.

Proof. By Proposition 6.3.5, these are the conditions that allow the existence of maps of

intersection chain complexes, and so the f ∗ here are just the resulting Hom duals.

Corollary 7.1.8. If f : X → Y is a stratified homeomorphism that is also a homeomorphism

of pairs f : (X,A) → (Y,B) and the perversities p̄ on X and q̄ on Y correspond, then

Ip̄H
∗(X,A;R) ∼= Iq̄H

∗(Y,B;R). The corresponding fact holds for PL spaces, PL stratified

homeomorphisms, and PL intersection cohomology.

Proof. As for Corollaries 4.1.8 and 6.3.6, the maps induce isomorphisms of the intersection

chain complexes, and so dually they induces isomorphisms of cochain complexes.

Proposition 7.1.9. Suppose f, g : X → Y are (p̄, q̄)-stratified maps that are (p̄, q̄)-stratified

homotopic via a (p̄, q̄)-stratified homotopy taking the pair (I ×X, I × A) to (Y,B). Then f

and g induce chain homotopic chain maps Iq̄S
∗(Y,B;R) → Ip̄S

∗(X,A;R) and so f ∗ = g∗ :

Iq̄H
∗(Y,B;R)→ Ip̄H

∗(X,A;R). The analogous result holds in the PL category.

Proof. By Proposition 6.3.7, f and g induce chain homotopic chain maps of intersection chain

complexes, and so we obtain the corresponding results about cochains by dualizing.

The following corollary is an immediate consequence of the proposition and the fact that

the duals of chain homotopies are (co)chain homotopies (Lemma A.2.2); compare Corollary

6.3.8.
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Corollary 7.1.10. Suppose (X,A) and (Y,B) are filtered pairs and that f : X → Y is a

stratified homotopy equivalence that restricts to a stratified homotopy equivalence A → B.

Suppose that the values of p̄ on X and q̄ on Y agree on corresponding strata. Then f

induces an isomorphism Iq̄H
∗(Y,B;R) ∼= Ip̄H

∗(X,A;R). The analogous result holds in the

PL category.

Theorem 7.1.11. For a filtered space X and subspace A, if R is a Dedekind domain then

there is a long exact sequence

- Ip̄H
i(X,A;R) - Ip̄H

i(X;R) - Ip̄H
i(A;R) - Ip̄H

i+1(X,A;R) - .

The same is true of PL intersection cohomology using field coefficients.

Proof. As R is Dedekind, I p̄Si(X,A;R) is projective by Lemma 6.3.1, and so the short exact

sequence of intersection chain complexes of the pair splits in each dimension by Lemma

A.4.2. Therefore, applying the functor Hom(·, R) preserves exactness to yield the short exact

sequence of the pair for intersection cochains. The existence of the long exact sequence of

intersection cohomology follows by standard homological algebra.

In the PL case, the field coefficients ensure the exactness of the Hom functor.

We now move on to excision and Mayer-Vietoris sequences. It is for these theorems that

we need to utilize our chain splitting propositions of Section 6.5.

Theorem 7.1.12 (Excision). Let X be a filtered space, and suppose K ⊂ U ⊂ X such that

K̄ ⊂ Ů . Then inclusion induces an isomorphism Ip̄H
∗(X,U ;R)

∼=−→ Ip̄H
∗(X−K,U −K;R).

The analogous statement holds for PL chains.

Proof. First consider singular chains. We will show that the inclusion I p̄S∗(X − K,U −
K;R)→ I p̄S∗(X,U ;R) is a chain homotopy equivalence. Let V = {X−K,U} be a covering

of X. Notice that the interiors of the sets of V continue to be a cover by the assumptions

on K and U . By Proposition 6.5.1, the inclusion i : I p̄SV∗ (X;R) → I p̄S∗(X;R) is a chain

homotopy equivalence, and as we will see in the proof of the proposition, we have a homotopy

inverse T such that iT is a singular subdivision map T̂ . In particular, T̂ and T preserve or

reduce supports. Similarly, the chain homotopies involved also preserve or reduce supports.

It follows that i, T , and the chain homotopies descend to maps and chain homotopies relative

to U , so that i induces a chain homotopy equivalence

I p̄SV∗ (X;R)/I p̄S∗(U ;R)→ I p̄S∗(X;R)/I p̄S∗(U ;R) = I p̄S∗(X,U ;R).

But now, applying the second fundamental theorem of algebra and the basic definitions,

I p̄SV∗ (X;R)

I p̄S∗(U ;R)
=
I p̄S∗(X −K;R) + I p̄S∗(U ;R)

I p̄S∗(U ;R)

∼=
I p̄S∗(X −K;R)

I p̄S∗(X −K;R) ∩ I p̄S∗(U ;R)

∼=
I p̄S∗(X −K;R)

I p̄S∗(U −K;R)
∼= I p̄S∗(X −K,U −K;R).
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So I p̄S∗(X − K,U − K;R) and I p̄S∗(X,U ;R) are chain homotopy equivalent. Thinking

through what happens to representative elements, we see that the chain homotopy equiva-

lence is induced by the inclusion map.

The PL case is even more straightforward using the isomorphism given in Proposition

6.5.1 instead of homotopy equivalences.

Theorem 7.1.13 (Mayer-Vietoris sequences). Suppose X = U∪V , where U, V are subspaces

such that X = Ů ∪ V̊ , and that R is a Dedekind domain. Then there is an exact Mayer-

Vietoris sequence

→ Ip̄H
i−1(U ∩ V ;R)→ Ip̄H

i(U ∪ V ;R)→ Ip̄H
i(U ;R)⊕ Ip̄H i(V ;R)→ Ip̄H

i(U ∩ V ;R)→ .

The equivalent results holds in the PL context if R is a field.

Proof. First consider the short exact Mayer-Vietoris sequence of intersection chain com-

plexes, analogous to that in the proof of Theorem 4.4.19. As R is Dedekind and I p̄S∗(U ;R)+

I p̄S∗(V ;R) is a submodule of I p̄S∗(X;R), which is projective by Lemma 6.3.1, this submod-

ule is also projective. So Hom(·, R) preserves the exactness of the short exact sequence, and

thus we obtain a short exact sequence of intersection cochain complexes and consequently a

long exact sequence of cohomology modules. It remains to show that

H i(Hom(I p̄S∗(U ;R) + I p̄S∗(V ;R), R)) ∼= Ip̄H
i(X;R).

But, by Proposition 6.5.1, the chain inclusion I p̄S∗(U ;R) + I p̄S∗(V ;R) ↪→ I p̄S∗(X;R) is

a chain homotopy equivalence, so the Hom dual is also a chain homotopy equivalence and

induces an isomorphism on intersection cohomology.

For PL chains over a field, we use that all short exact sequences of vector spaces split

and then apply the PL part of Proposition 6.5.1.

The relative Mayer-Vietoris sequence requires a bit more work:

Theorem 7.1.14. Suppose X = U ∪ V , where U, V are open subspaces. Let A ⊂ X, let

C = A ∩ U , and let D = A ∩ V . Let R be a Dedekind domain. Then there is an exact

Mayer-Vietoris sequence

→ Ip̄H
i(X,A;R)→ Ip̄H

i(U,C;R)⊕ Ip̄H i(V,D;R)→ Ip̄H
i(U ∩ V,C ∩D;R)→ .

Proof. As in the proof of Theorem 4.4.23, we have a diagram of exact sequences

0 - I p̄S∗(C ∩D;R) - I p̄S∗(C;R)⊕ I p̄S∗(D;R) - I p̄S∗(C;R) + I p̄S∗(D;R) - 0

0 - I p̄S∗(U ∩ V ;R)
?

- I p̄S∗(U ;R)⊕ I p̄S∗(V ;R)
?

- I p̄S∗(U ;R) + I p̄S∗(V ;R)
?

- 0,

with the vertical maps all inclusions. This yields by the snake lemma a short exact sequence
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0 - I p̄S∗(U ∩ V,C ∩D;R) - I p̄S∗(U,C;R)⊕ I p̄S∗(V,D;R) -
I p̄S∗(U ;R) + I p̄S∗(V ;R)

I p̄S∗(C;R) + I p̄S∗(D;R)
- 0.

(7.1)

We claim that each I p̄Si(U ;R)+I p̄Si(V ;R)
I p̄Si(C;R)+I p̄Si(D;R)

is a submodule of I p̄Si(X,A;R) and so is projective,

as the latter module is projective by Lemma 6.3.1. For this, we consider the evident map

I p̄Si(U ;R) + I p̄Si(V ;R)

I p̄Si(C;R) + I p̄Si(D;R)
→ I p̄Si(X;R)

I p̄Si(A;R)
= I p̄Si(X,A;R)

induced by inclusions. If ξ ∈ I p̄Si(U ;R) + I p̄Si(V ;R) maps to 0 in I p̄Si(X,A;R), then we

must have |ξ| ⊂ A. But also every simplex of ξ is contained in U or V . So ξ can be written

in terms of simplices in A ∩ U = C and A ∩ V = D. Note that a priori if we are given

a decomposition of ξ as ξ = ξU + ξV with ξU ∈ I p̄Si(U ;R) and ξV ∈ I p̄Si(V ;R) then it is

not necessarily the case that either ξU or ξV is contained in A, but the fact that |ξ| ⊂ A

means that any simplices of ξU or ξV not contained in A must cancel in ξ. Nonetheless, the

assumptions of Proposition 6.5.2 are met (with U = {C,D}, which is an open1 cover of A),

so we can conclude that there is a decomposition of ξ into ξC + ξD with ξC ∈ I p̄Si(C;R) and

ξD ∈ I p̄Si(D;R). Therefore, the chain ξ represents 0 in I p̄Si(U ;R)+I p̄Si(V ;R)
I p̄Si(C;R)+I p̄Si(D;R)

. This proves the

claim.

It now follows that the short exact sequence (7.1) splits in each degree and so remains

exact after applying the functor Hom(·, R). The associated long exact cohomology sequences

will be our Mayer-Vietoris sequence once we show that

H i

(
Hom

(
I p̄Si(U ;R) + I p̄Si(V ;R)

I p̄Si(C;R) + I p̄Si(D;R)
, R

))
∼= Ip̄H

i(X,A;R). (7.2)

Here we again emulate the proof of Theorem 4.4.23. We have a diagram of exact sequences

0 - I p̄S∗(C;R) + I p̄S∗(D;R) - I p̄S∗(U ;R) + I p̄S∗(V ;R) -
I p̄S∗(U ;R) + I p̄S∗(V ;R)

I p̄S∗(C;R) + I p̄S∗(D;R)
- 0

0 - I p̄S∗(A;R)
?

- I p̄S∗(X;R)
?

- I p̄S∗(X,A;R)
?

- 0,

each of which split in each degree. So applying the Hom(·, R) functor preserves exactness

and yields a commutative diagram of long exact cohomology sequences. We know that the

cohomology maps corresponding to the two left vertical arrows are isomorphisms from the

proof of Theorem 7.1.13, so the isomorphism (7.2) follows by the Five Lemma.

Applying the material of Section 5.4 provides an equivalence between PL and singular

intersection cohomology on PL spaces, though we must again assume field coefficients.

1The need to invoke Proposition 6.5.2 at this point is the reason we have assumed an open cover in our

hypothesis, rather than the more general hypothesis of Theorem 7.1.13. In fact, it would be sufficient here

for U ∩A and V ∩A to be an open cover of A, but it is unclear how to extend the argument to more general

pairs {U, V }.
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Theorem 7.1.15. Let F be a field, and let X be a PL CS set. Then Ip̄H
∗(X;F ) ∼=

Ip̄H
∗(X;F ).

Proof. By the results of Section 5.4, which we have noted in Section 6.3 carry over to non-GM

intersection homology, we have a diagram of maps

I p̄S∗(X;F )
ψ←− I p̄CT∗ (X;F )

φ−→ I p̄C∗(X;F ),

in which each map induces isomorphisms on homology. We also have a map I p̄S∗(X;F )→
I p̄S∗(X;F ) that induces an isomorphism on homology. All chain complexes are bounded

below and, since we work over a field, free. Therefore, all of the maps involved are in fact

chain homotopy equivalences [181, Theorem 46.2]. Dualizing these homotopy equivalences

provides homotopy equivalences of cochain complexes by Corollary A.2.3 and hence the

desired intersection cohomology isomorphism.

Remark 7.1.16. It seems reasonable to expect that the restriction thatR be a field in Theorem

7.1.15 should not be necessary. However, it is not clear how to complete a more general proof,

and so not clear that this is true. One method to pursue such a result would be to attempt

to strengthen the results of Section 5.4 to make φ and ψ chain homotopy equivalences

by constructing chain homotopy inverses. An alternate approach would be to attempt to

find a way to show that I p̄C∗(X;R) is always chain homotopy equivalent to a bounded-

below complex of projective modules, say A∗; if R is Dedekind, then each I p̄Si(X;R) is

already projective by Lemma 6.3.1. We would then have quasi-isomorphisms between A∗
and I p̄S∗(X;R), which would induce a chain homotopy equivalence between them by [237,

Theorem 10.4.8]. Altogether, then, I p̄C∗(X;R) and I p̄S∗(X;R) would be chain homotopy

equivalent.

Alternatively, a “more correct” way to proceed might be to work completely in the derived

category and so define Ip̄S
∗(X,A;R) instead using derived functors as Ip̄S

∗(X,A;R) =

RHomR(I p̄S∗(X,A;R), R) and similarly for Ip̄C
∗. This would have advantages at the expense

of more sophistication. Since we do not expect the reader to be conversant with derived

categories, and since we will not need to work much with PL intersection cohomology, we

will not pursue this here.

We next extend the intersection homology results on topological invariance (Theorem

5.5.1) to cohomology. If we use field coefficients, this theorem implies a PL version via

Theorem 7.1.15.

Theorem 7.1.17. Suppose R is a Dedekind domain, X is a CS set of formal dimension n

with no codimension one strata, and p̄ is a GM perversity. Then Ip̄H
∗(X;R) is independent

(up to isomorphism) of the choice of stratification of X as a CS set of formal dimension n. In

particular, if X ′ is another CS set of formal dimension n that is topologically homeomorphic

to X (not necessarily stratified homeomorphic), then Ip̄H
∗(X;R) ∼= Ip̄H

∗(X ′;R).

More generally, if A is an open subset of X and (X,A) ∼= (X ′, A′), then Ip̄H
∗(X,A;R) ∼=

Ip̄H
∗(X ′, A′;R).
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Proof. The hypotheses on the perversity ensure that I p̄S∗(X;R) ∼= I p̄SGM∗ (X;R) by Proposi-

tion 6.2.9. The condition that there be no codimension one strata is necessary to ensure both

that p̄ ≤ t̄ and that p̄(k) ≥ 0 for all k, which is required for Theorem 5.5.1, which we can now

invoke. Since R is Dedekind, each I p̄Si(X;R) is projective by Lemma 6.3.1, so the homology

isomorphisms of the proof of Theorem 5.5.1 are, in fact, homotopy equivalences. This follows

from [237, Theorem 10.4.8], noting that bounded above cochain complexes are equivalent to

bounded below chain complexes. The Hom(·, R) duals are then also chain homotopy equiva-

lences by Corollary A.2.3, yielding isomorphisms on cohomology. The statement for relative

intersection cohomology follows via a Five Lemma argument as in the proof of Theorem

5.5.1, using the arguments of Theorem 7.1.11 to obtain the diagrams of long exact sequences

from the diagrams of short exact sequences of chain complexes.

As a final observation, we note that there is an intersection cohomology version of Propo-

sition 5.1.8 and Corollary 5.1.9, which told us that the perversity t̄ intersection homology

of a normal stratified pseudomanifold is isomorphic to ordinary homology. Looking ahead

to our duality results, this will imply another result of [105], that for a compact normal

stratified pseudomanifold of dimension n, we have I 0̄Hi(X) ∼= Hn−i(X):

Proposition 7.1.18. Let X be a CS set, R a Dedekind domain, and p̄ a perversity such

that

1. every point has a neighborhood stratified homeomorphic to Rk×cL such that I p̄H0(cL;R) ∼=
R and I p̄Hi(cL;R) = 0 for i > 0, and

2. the only strata of depth 0 are regular strata.

Then Ip̄H
∗(X;R) ∼= H∗(X;R).

In particular, this is the case if X is a normal stratified pseudomanifold and p̄ is the top

perversity t̄, i.e. in this case It̄H
∗(X;R) ∼= H∗(X;R).

This result holds for PL intersection cohomology using field coefficients.

Proof. By Proposition 5.1.8 and Corollary 5.1.9, modified in the evident way for R coeffi-

cients, the assumptions imply that I p̄H∗(X;R) ∼= H∗(X;R). The result for cohomology is

then a consequence of the Universal Coefficient Theorem and the Five Lemma.

Suppose X is a normal, compact, and R-oriented n-dimensional stratified pseudoman-

ifold. Then as all CS sets are locally t̄-torsion free, we will have Poincaré duality for X

by Theorem 8.2.4 below. This will say that It̄H
n−i(X;R) ∼= I 0̄Hi(X;R). Putting this

together with the preceding result, we have that I 0̄Hi(X;R) ∼= Hn−i(X;R), and so also

I 0̄Hi(X;R) ∼= Hn−i(X;R) using Theorem 6.3.31. For Z-coefficients on compact PL pseu-

domanifolds without codimension one strata (in which case I 0̄Hi(X;R) ∼= I 0̄HGM
i (X;R) by

Proposition 6.2.9), this result goes back to [105] and relates to other early results about com-

puting cohomology using sufficiently transverse chains; see e.g. [40, 113, 110]. Together with

Corollary 5.1.9, this observation motivates the notion that intersection homology, at least

on normal pseudomanifolds, filters between ordinary cohomology and ordinary homology as

the perversities range between 0̄ and t̄.
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7.2 Cup, cap, and cross products

In this section, we introduce and study cup and cap products in intersection homology and

cohomology, as well as an intersection cohomology cross product. Broadly, we follow the

construction of intersection cup and cap products in [100], though only field coefficients are

treated there. Here we generalize to allow coefficients in a Dedekind domain and provide a

more comprehensive survey of properties than is found in [100].

We begin in Section 7.2.1 with a review of classical cohomology products together with a

philosophical overview of the approach in the intersection context. The technical definitions

follow in Section 7.2.2. Our extensive study of the properties of the products takes place in

the next section, Section 7.3.

7.2.1 Philosophy

As for ordinary homology/cohomology theory, the advantage of working with cohomology

over homology is that cohomology possesses an internal product. It is well known that sin-

gular cohomology always possesses a cup product, while homology only possesses a product

in certain special situations, such as when we take the homology of a topological group or

H space [71, Section VII.2] or when our space is a manifold, in which case there is an inter-

section product that is Poincaré dual to the cup product. In fact, the singular cup product

can be defined at the level of cochains.

Unfortunately, we will not be able to define a cup product quite so broadly for intersection

cohomology. We will mostly need to work at the level of cohomology (not cochains), and

even when we do so the cup product will not generally be internal, meaning in this case that

the cup product will take a pair of intersection cohomology classes with certain perversities

to an intersection cohomology class with a third perversity. This last property is related to

the formal structure of Poincaré duality for pseudomanifolds that we will discuss in the next

chapter: in the intersection world, Poincaré duality pairs not just dual dimensions but dual

perversities.

In fact, the first products in intersection homology theory were the intersection products

introduced by Goresky and MacPherson [105] for PL stratified pseudomanifolds, generalizing

the intersection product on PL manifolds. Among other results we shall discuss later, they

showed that if p̄ and q̄ are dual GM perversities2 and X is a closed connected oriented n-

dimensional PL stratified pseudomanifold, then there is a nonsingular3 intersection pairing

I p̄HGM
i (X;Q)⊗ I q̄HGM

n−i (X;Q)
t−→ Q.

This was the original form of intersection homology Poincaré duality. When X satisfies these

properties, our cup product pairing over Q, discussed in Section 8.4, will be the Poincaré dual

of this intersection product in cohomology. More generally, we will define our cup product

over Dedekind domains on CS sets.

2Recall Definition 3.1.7.
3We review nonsingular pairings in Section 8.4.
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We will begin our discussion with a conceptual review of the cup product in ordinary

singular homology. This will help us to see both the limitations and the possibilities for the

intersection cohomology cup product.

We start by recalling perhaps the most familiar version of the cup product. If α ∈
Si(X;R), β ∈ Sj(X;R), and σ is an i+ j simplex, then we often see the cup product α ^ β

defined by the formula4

(α ^ β)(σ) = (−1)ijα(σ|[v0,...,vi])β(σ|[vi,...,vi+j ]). (7.3)

Here σ|[v0,...,vi] and σ|[vi,...,vi+j ] are the singular i- and j-simplices obtained by restricting σ to

the “front i-face” and “back j-face” of the standard model i+ j simplex [v0, . . . , vi+j].

Already from the formula (7.3) we see what can go wrong for intersection cohomology.

Suppose α ∈ Ip̄S
i(X;R) and β ∈ Iq̄S

j(X;R). Then we would expect that α ^ β should

be an element of Ir̄S
i+j(X;R) for some appropriate r̄. Suppose now that ξ ∈ I r̄Si+j(X;R).

If some sort of front/back formula were to hold, we would first expect that (α ^ β)(ξ)

should be determined as a linear combination of terms (α ^ β)(σ), where σ is a simplex

of ξ. This is problematic, as we know that σ being a simplex of ξ does not guarantee that

σ ∈ I r̄Si+j(X;R), and so it’s not clear that the expression (α ^ β)(σ) makes any sense,

even abstractly. But even if σ is itself allowable as a chain, there is the further difficulty

that we should not expect the r̄-allowability of σ to tell us anything useful about the p̄ and

q̄ allowability of its various faces. For example, suppose we would like p̄, q̄, and r̄ to all

be GM perversities; the intersection homology Poincaré duality of [105] makes this a not

unreasonable request. Then we know that no 0- or 1-simplex that intersects ΣX can be

allowable (see Example 3.4.6). Therefore, if σ is any singular simplex that maps v0 into ΣX ,

the front 0-face cannot be allowable. Since it is not difficult, in general, to find allowable

singular i+j simplices that map v0 into ΣX , we see that the front face/back face formulation

cannot be used to define (α ^ β)(σ) for α ∈ Ip̄S0(X;R).

Luckily, there are alternatives ways to construct the cup product in cohomology, and

in many ways the oft-used front face/back face formulation is not really the beginning of

the cup product story but one of its nice end products that is simply unavailable to us in

our intersection setting. So we turn to another well-known property of the cup product: if

α ∈ Si(X;R) and β ∈ Sj(X;R), then

α ^ β = d∗(α× β), (7.4)

where d : X → X ×X is the diagonal map given by d(x) = (x, x) and α × β here denotes

the cochain cross product

Si(X;R)⊗ Sj(X;R)
×−→ Si+j(X ×X;R);

4See, for example, [125, Section 3.2] or [181, Section 48]. Unfortunately, many of the modern textbook

sources for algebraic topology leave out the sign. Of course, provided one only cares about cup products

Hi(X;R) × Hj(X;R) → Hi+j(X;R) for fixed i and j, this sign doesn’t really matter up to composition

with the module isomorphism x → −x. However, leaving out the sign ignores the Koszul sign conventions,

which play a more important role when working at the level of complexes (as opposed to the level of groups

or modules). We will err on the side of caution and attempt to maintain the Koszul conventions; see Section

A.1. A treatment of cup products that includes the signs can be found in Section VII.8 of Dold [71].
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see, e.g. [181, Theorem 61.3]. Equation (7.4) can be taken as an alternative definition of the

cup product if we assume that we have first defined a cochain cross product. The cochain

cross product can itself be defined in various ways, including in terms of the cup product

as in [125, Section 3.2] or in terms of front and back faces as in [181, Sections 59-61]. But

there is a more general construction, also consistent with the development in [181, Sections

59-61], which we now review.

First of all, if A,B are R-modules, then there is a natural map

Θ : Hom(A,R)⊗ Hom(B,R)→ Hom(A⊗B,R)

defined so that if α ∈ Hom(A,R), β ∈ Hom(B,R), x ∈ A, and y ∈ B, then

Θ(α⊗ β)(x⊗ y) = (−1)|β||x|α(x)β(y).

In particular, if α ∈ Si(X;R) = Hom(Si(X;R), R) and β ∈ Sj(X;R) = Hom(Sj(X;R), R)

then we obtain an element Θ(α ⊗ β) ∈ Hom(Si(X;R) ⊗ Sj(X;R), R). More generally, the

map Θ extends to a chain map

Θ : Hom(S∗(X;R), R)⊗ Hom(S∗(X;R), R)→ Hom(S∗(X;R)⊗ S∗(X;R), R)

by Lemma 7.2.1, which we will prove below. Secondly, recall that for ordinary homology

and Dedekind domain R the chain complexes S∗(X;R) ⊗ S∗(X;R) and S∗(X × X;R) are

chain homotopy equivalent; this is the Eilenberg-Zilber Theorem (see [219, Theorem 5.3.6]

or [181, Theorem 59.2]). In the direction

ν : S∗(X ×X;R)→ S∗(X;R)⊗ S∗(X;R),

the chain homotopy equivalences are sometimes called Alexander-Whitney maps. If we

choose a specific ν, then we can define a cochain cross product by

α× β = ν∗Θ,

where ν∗ is the Hom(·, R) dual of ν. If we choose a different Alexander-Whitney map, it

will be chain homotopic to ν by the Acyclic Model Theorem (see [219, Theorem 4.2.8.b]

or [181, Theorem 32.1.b]), which is used to prove the existence of ν in [219, 181]. So, the

cochain cross product is well defined up to chain homotopy, which implies that it induces a

well-defined map after taking (co)homology.

Now, putting (7.4) together with our definition of the cochain cross product, we seem to

be claiming that

α ^ β = d∗(α× β) = d∗ν∗Θ(α⊗ β).

This means that if σ is an i+ j simplex then we have

(α ^ β)(σ) = d∗ν∗Θ(α⊗ β)(σ)

= Θ(α⊗ β)(νd(σ)).
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Here d(σ) ∈ Si+j(X ×X;R) and νd(σ) ∈ S∗(X;R)⊗ S∗(X;R). This composition

νd : S∗(X;R)→ S∗(X;R)⊗ S∗(X;R)

is sufficiently useful in its own right that we will below provide it with its own symbol d̄ and

call it the algebraic diagonal map. Since ν is only defined up to chain homotopy, so is d̄.

But if we choose a specific ν and write νd(σ) =
∑

k yk ⊗ zk then we can compute explicitly

(α ^ β)(σ) = Θ(α⊗ β)(νd(σ))

= Θ(α⊗ β)

(∑
k

yk ⊗ zk

)
=
∑
k

(−1)|β||yk|α(yk)β(zk). (7.5)

So what does all this have to do with the front face/back face formula from the beginning

of our discussion? It turns out that a particular Alexander-Whitney map can be given

explicitly by

ν(τ) =

i+j∑
k=0

π1 ◦ τ |[v0,...,vk] ⊗ π2 ◦ τ |[vk,...,vi+j ],

where τ is an i + j simplex in X × X and π1, π2 : X × X → X are the projections to the

two factors (see [181, Theorem 59.5]). If α ∈ Si(X;R) and β ∈ Sj(X;R), then we have

Θ(α⊗ β)(ν(τ)) = Θ(α⊗ β)

(
i+j∑
k=0

π1 ◦ τ |[v0,...,vk] ⊗ π2 ◦ τ |[vk,...,vi+j ]

)

=

i+j∑
k=0

(−1)|β|k α
(
π1 ◦ τ |[v0,...,vk]

)
β
(
π2 ◦ τ |[vk,...,vi+j ]

)
= (−1)ij α

(
π1 ◦ τ |[v0,...,vi]

)
β
(
π2 ◦ τ |[vi,...,vi+j ]

)
,

using that α evaluates to 0 on simplices not of degree i and that |β| = j. In case τ has the

form τ = d(σ), then using that π1d = π2d = id we have

νd(σ) =

i+j∑
k=0

π1dσ|[v0,...,vk] ⊗ π2dσ|[vk,...,vi+j ] =

i+j∑
k=0

σ|[v0,...,vk] ⊗ σ|[vk,...,vi+j ],

and so

(α ^ β)(σ) = Θ(α⊗ β)(νd(σ)) = (−1)ij α
(
σ|[v0,...,vi]

)
β
(
dσ|[vi,...,vi+j ]

)
.

And this is precisely the front face/back face cup product formula!

Let us emphasize again that it might be more appropriate to say that the front face/back

face formulation of the cup product gives us a cup product and not the cup product. The
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point is that the front/back description of the cup product relies upon a particular choice

of Alexander-Whitney map. If we choose another, chain homotopic, Alexander-Whitney

map, we will obtain a different cup product formula at the cochain level. A formula of

the form of (7.5) will still apply, but we might not have such nice explicit expressions for

νd(σ). However, changing ν by a chain homotopy will not change the cup product at the

cohomology level, since of course chain homotopic chain maps yield the same (co)homology

morphisms. In other words, at the cohomology level, we can view the cup product as a

well-defined composition5

H i(X;R)⊗Hj(X;R)
Θ
- H i+j(Hom(S∗(X;R)⊗ S∗(X;R), R))

ν∗
- H i+j(X ×X;R)

d∗
- H i+j(X;R).

(7.6)

The composition of the first two maps is called the cohomology cross product.

With the composition (7.6) laid out, it is perhaps a good time to remind the reader

that this formulation also demonstrates why we have a cup product in cohomology but not

always an analogous internal product in homology: in homology we have the homology cross

product ε : Hi(X;R)⊗Hj(X;R)→ Hi+j(X×X;R), but the diagonal map points the wrong

way Hi+j(X ×X;R)
d←− Hi+j(X;R). So in general there is no way to define a composition

of the homology cross product with the diagonal!

Returning to the stratified world, we see that the composition (7.6) is our hope for

defining a cup product in intersection cohomology. The maps Θ and d are canonical, but

there is some flexibility in the choice of ν∗; we just need some chain homotopy equivalence

ν to play the role of the Alexander-Whitney map. We have seen that we cannot hope for an

intersection cochain analogue to the particular ν defined in terms of front and back faces, but

Theorem 6.4.14 nonetheless promises that our intersection version of the Eilenberg-Zilber

cross product map

ε : I p̄S∗(X;R)⊗ I q̄S∗(X;R)→ IQS∗(X ×X;R)

is a chain homotopy equivalence, given the proper assumptions on X, p̄, q̄, and Q, and so

there are chain homotopy inverses, which we shall denote IAW for “intersection Alexander-

Whitney map.” Although our IAW maps will be defined at the chain level only up to chain

homotopy, it remains true that any two such IAW maps yield the same maps on cohomology6.

So, while we lose the precision of having a specific nice Alexander-Whitney map given by a

front face/back face formula at the cochain level, the general outline of the cohomology cup

product construction still applies!

Historically, the suggestion by Jim McClure that one could obtain a cup product in

intersection cohomology this way led to the author’s work on the Künneth theorem in [87]

5It is not difficult to show that Θ also makes sense as a map on cohomology Hi(X;R) ⊗ Hj(X;R)
Θ−→

Hi+j(Hom(S∗(X;R)⊗ S∗(X;R), R)); see Lemma 7.2.1, below.
6Our choice of IAW as a chain homotopy inverse to ε pins down a chain homotopy class of intersection

Alexander-Whitney maps, but without the Acyclic Model Theorem available here, we do not guarantee that

this is the only chain homotopy class of chain homotopy equivalences!
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(which extended previously known intersection homology Künneth theorems from [106, 62])

and eventually to the construction of cup and cap products in Friedman-McClure [100],

though in [100] we worked only with field coefficients.

Before moving on to the details of the intersection cohomology cup product, we note that

the algebraic diagonal d̄ is the key not only to cup products but also to cap products, as

well as slant products, which are less well known but sometimes useful. The cap product

Hj(X;R)⊗Hi+j(X;R)
_−→ Hi(X;R), α⊗ ξ → α _ ξ, is defined by

α _ ξ = Φ(id⊗ α)d̄(ξ),

where Φ is the canonical isomorphism S∗(X;R)⊗ R → S∗(X;R). So if d̄(ξ) =
∑

k yk ⊗ zk,
then

α _ ξ =
∑
k

(−1)|α||yk|α(zk)yk =
∑
k

(−1)ijα(zk)yk,

as α(zk) = 0 unless |zk| = |α| = j, forcing |yk| = i. See [71, Section VII.12].

7.2.2 Intersection homology cup, cap, and cross products

As seen in the preceding discussion, the three main ingredients needed to product cross, cup,

and cap products are the algebraic map Θ, the Alexander-Whitney map, and the diagonal

map d. We now turn to a careful consideration of each of these objects in the intersection

homology setting, after which we will piece them together into the intersection homology and

cohomology products. We will also want to have relative products available, so we develop

the necessary tools in this generality.

Hom of tensor products

First we consider the purely algebraic map Θ. Once again, if we have chain complexes of

R-modules A∗ and B∗, then we define

Θ : Hom(A∗, R)⊗ Hom(B∗, R)→ Hom(A∗ ⊗B∗, R)

so that if α ∈ Hom(A∗, R), β ∈ Hom(B∗, R), x ∈ A∗, and y ∈ B∗ then

Θ(α⊗ β)(x⊗ y) = (−1)|b||x|α(x)β(y).

We will show that Θ is a chain map.

Lemma 7.2.1. Suppose we have chain complexes of R-modules C∗ and D∗. Then Θ :

Hom(C∗, R)⊗Hom(D∗, R)→ Hom(C∗⊗D∗, R) is a chain map, and it induces a well-defined

map H∗(Hom(C∗, R))⊗H∗(Hom(D∗, R))→ H∗(Hom(C∗ ⊗D∗, R)).
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Proof. We first check that Θ is a chain map. Suppose7 α ∈ Homi(C∗, R) = Hom(Ci, R) and

β ∈ Homj(D∗, R) = Hom(Dj, R). Then for any x⊗ y ∈ C∗ ⊗D∗, we have

Θ(d(α⊗ β))(x⊗ y) = Θ((dα)⊗ β + (−1)iα⊗ dβ)(x⊗ y)

= (−1)|x|j((dα)(x))β(y) + (−1)i+(j+1)|x|α(x)((dβ)(y)),

while

d(Θ(α⊗ β))(x⊗ y) = (−1)i+j+1Θ(α⊗ β)∂(x⊗ y)

= (−1)i+j+1Θ(α⊗ β)((∂x)⊗ y + (−1)|x|x⊗ ∂y)

= (−1)i+j+1+j(|x|−1)α(∂x)β(y) + (−1)i+j+1+|x|+j|x|α(x)β(∂y)

= (−1)i+1+j|x|α(∂x)β(y) + (−1)i+j+1+|x|+j|x|α(x)β(∂y)

= (−1)i+1+j|x|+i+1((dα)(x))β(y) + (−1)i+j+1+|x|+j|x|+j+1α(a)((dβ)(y))

= (−1)j|x|((dα)(x))β(y) + (−1)i+|x|+j|x|α(x)((dβ)(y)).

So Θ(d(α⊗β)) and d(Θ(α⊗β)) represent the same element of Hom(C∗⊗D∗, R). Therefore,

Θ is a chain map.

This is enough to show that Θ induces a cohomology map

H∗(Hom(C∗, R)⊗ Hom(D∗, R))→ H∗(Hom(C∗ ⊗D∗, R)).

It remains to show that we have a well-defined map

H∗(Hom(C∗, R))⊗H∗(Hom(D∗, R))→ H∗(Hom(C∗, R)⊗ Hom(D∗, R)).

But this follows just as for the definition of the homology cross product in Remark 5.2.6.

We will tend to abuse notation and also refer to the induced map H∗(Hom(C∗, R)) ⊗
H∗(Hom(D∗, R))→ H∗(Hom(C∗ ⊗D∗, R)) as Θ.

Remark 7.2.2. This is perhaps a good time to remind the reader that in contrast to the homo-

logical Künneth theorem, there are extra conditions required to have an algebraic Künneth

theorem in cohomology. In particular, the map H∗(Hom(C∗, R)) ⊗ H∗(Hom(D∗, R)) →
H∗(Hom(C∗⊗D∗, R)) is not necessarily an isomorphism even when R is a field nor part of a

Künneth short exact sequence when R is a Dedekind domain and C∗ and D∗ are complexes

of projective modules. In order to obtain Künneth-like results in this Hom setting one needs

additional assumptions, for example that Hi(C∗) (or, symmetrically, Hi(D∗)) is finitely gen-

erated in each dimension. See [181, Section 60] or [71, Proposition VI.12.16] for further

discussion and Section 7.3.8, below, for an intersection cohomology Künneth Theorem.

7See Section A.1.3 for a review of Hom complexes.
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Intersection Alexander-Whitney maps

The existence of intersection Alexander-Whitney maps is a consequence of the Künneth

Theorem (Theorem 6.4.7). In fact, we have already stated in Theorem 6.4.14 the conditions

for the cross product

ε : I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R)→ IQS∗(X × Y, (A× Y ) ∪ (X ×B);R)

to be a homotopy equivalence, in which case there exist homotopy inverses.

To review, if R is a Dedekind domain, X is a CS set with perversity p̄ and open subset

A, and Y is a CS set with perversity q̄ and open subset B, then the above cross product

ε induces a chain homotopy equivalence if Q is any (p̄, q̄)-compatible perversity on X × Y .

Recalling Definition 6.4.5, this means that Q satisfies the following conditions:

1. if S ⊂ X is a regular stratum and T ⊂ Y is any stratum, then Q(S × T ) = q̄(T ),

2. if S ⊂ X is any stratum and T ⊂ Y is a regular stratum, then Q(S × T ) = p̄(S),

3. if S ⊂ X and T ⊂ Y are both singular strata, then Q(S × T ) = p̄(S) + q̄(T ) or

Q(S × T ) = p̄(S) + q̄(T ) + 1,

4. if for each point x × y ∈ S × T there are a distinguished neighborhood of x in X of

the form Ra × cL1 and a distinguished neighborhood of y in Y of the form Rb × cL2

such that I p̄Hdim(L1)−p̄(S)−1(L1;R)∗I q̄Hdim(L2)−q̄(T )−1(L2;R) = 0, then condition (3) on

Q(S × T ) may also include the possibility Q(S × T ) = p̄(S) + q̄(T ) + 2. In particular,

this is the case if X is locally (p̄, R)-torsion free along the singular stratum S or Y is

locally (q̄, R)-torsion free along the singular stratum T . Recall that by Lemma 6.3.24

this condition really depends only on S and T and not on the choices of x, y, L1, or

L2.

Definition 7.2.3. If the perversity Q on X×Y is (p̄, q̄)-compatible then by Theorem 6.4.14

the map

ε : I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)→ IQS∗(X × Y, (A×X) ∪ (X ×B);R)

is a chain homotopy equivalence and so admits a chain homotopy inverse. We call such a

chain homotopy inverse an intersection Alexander-Whitney map and label such chain maps

by IAW. The map IAW is defined only up to chain homotopy, though we may fix a specific

such map to bear that label when desired.

As we see from the conditions for Q to be (p̄, q̄)-compatible there may be many (p̄, q̄)-

compatible perversities on X ×Y . As for any set of perversities, these are partially ordered,

and in fact there is a maximal element. It will be convenient in the arguments that follow

to utilize this maximal compatible perversity, so we now establish a notation for it:
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Definition 7.2.4. Let p̄ be a perversity on the CS set X, let q̄ a perversity on the CS set

Y , and let Q be the set of perversities on X × Y that are (p̄, q̄)-compatible. Let Qp̄,q̄ be the

perversity such that if S ⊂ X and T ⊂ Y are strata then

Qp̄,q̄(S × T ) = max
Q∈Q

Q(S × T ).

Explicitly, this means that Qp̄,q̄ takes the following values:

1. if S and T are regular strata, then Qp̄,q̄(S × T ) = p̄(S) = q̄(T ) = 0,

2. if S is a regular stratum, then Qp̄,q̄(S × T ) = q̄(T ),

3. if T is a regular stratum, then Qp̄,q̄(S × T ) = p̄(S),

4. if neither S nor T are regular, if L1 and L2 are respective links in X and Y of points

in S and T , and if

I p̄Hdim(L1)−p̄(S)−1(L1;R) ∗ I q̄Hdim(L2)−q̄(T )−1(L2;R) = 0,

then

Qp̄,q̄(S × T ) = p̄(S) + q̄(T ) + 2;

otherwise

Qp̄,q̄(S × T ) = p̄(S) + q̄(T ) + 1.

By Lemma 6.3.24, the determination in this last condition depends only on S and T and

not the choices of L1, L2.

Clearly Qp̄,q̄ ≥ Q if Q is any other (p̄, q̄)-compatible perversity on X × Y .

Remark 7.2.5. If either X is locally (p̄, R)-torsion free or Y is locally (q̄, R)-torsion free then

we have

Qp̄,q̄(S × T ) = p̄(S) + q̄(T ) + 2

whenever S and T are both singular strata.

The diagonal map

The topological diagonal map d : X → X × X is defined by d(x) = (x, x). We need to

consider the maps it induces of the form

d : I r̄S∗(X,A ∪B;R)→ IQS∗(X ×X, (A×X) ∪ (X ×B);R),

for which we need d to be (r̄, Q)-stratified. Notice that if a ∈ A then d(a) = (a, a) ∈ A×X,

and if b ∈ B then d(b) = (b, b) ∈ X × B. Also d takes the stratum S of X to the stratum

S × S of X ×X and thus, in particular, d(ΣX) ⊂ ΣX×X . So, by Definition 6.3.2, for d to

be (r̄, Q)-stratified we just need r̄(S) − codimX(S) ≤ Q(S × S) − codimX×X(S × S). As

codimX×X(S × S) = 2codimX(S), this becomes the requirement that

r̄(S) ≤ Q(S × S)− codimX(S). (7.7)
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We note that if p̄ and q̄ are two other perversities on X and if Q is (p̄, q̄)-compatible, then

the condition (7.7) also holds for Qp̄,q̄, as Qp̄,q̄ ≥ Q. Conversely, the larger Q(S × S) is the

larger r̄(S) may be so that d induces allowable maps for a broader range of perversities r̄.

Hence we will typically work with Qp̄,q̄ when possible in order to maximize the possibilities.

In fact, we will see that this is unavoidable in the most important cases, at least along the

strata of the form S × S.

Definition 7.2.6. Suppose that p̄, q̄, and r̄ are perversities on the CS set X. We will say

that (p̄, q̄; r̄) is an agreeable triple if

r̄(S) ≤ Qp̄,q̄(S × S)− codimX(S)

for each singular stratum S ⊂ X. More generally, if Q is any (p̄, q̄)-compatible perversity on

X ×X such that condition (7.7) holds then we will say that (p̄, q̄; r̄) is a Q-agreeable triple;

so an agreeable triple is just a Qp̄,q̄-agreeable triple. Note that if (p̄, q̄; r̄) is Q-agreeable for

any Q then it is an agreeable triple as Qp̄,q̄ is maximal among (p̄, q̄)-compatible perversities.

The definition is designed precisely to make the following statement hold:

Lemma 7.2.7. Suppose that (p̄, q̄; r̄) is a Q-agreeable triple of perversities on the CS set X

and that A,B ⊂ X are open subsets. Then the diagonal map

d : I r̄S∗(X,A ∪B;R)→ IQS∗(X ×X, (A×X) ∪ (X ×B);R)

is (r̄, Q)-stratified. In particular, if (p̄, q̄; r̄) is agreeable then

d : I r̄S∗(X,A ∪B;R)→ IQp̄,q̄S∗(X ×X, (A×X) ∪ (X ×B);R),

is (r̄, Qp̄,q̄)-stratified.

The following provides a useful alternative characterization of agreeable triples when X

is appropriately locally torsion free:

Lemma 7.2.8. Suppose that X is a CS set with perversities p̄, q̄, r̄ such that Qp̄,q̄(S × S) =

p̄(S) + q̄(S) + 2 for all singular strata S (for example if X is either locally (p̄, R)-torsion free

or locally (q̄, R)-torsion free for each S). Then (p̄, q̄; r̄) is an agreeable triple if and only if

Dr̄ ≥ Dp̄+Dq̄. (7.8)

Proof. Recall that the dual perversity Dp̄ of a perversity p̄ is defined so that Dp̄(S) =

codim(S)− 2− p̄(S) for S singular; see Definition 3.1.7.

By definition, the triple is agreeable if r̄(S) ≤ Qp̄,q̄(S × S) − codimX(S) for all singular

strata S ⊂ X. If Qp̄,q̄(S×S) = p̄(S)+ q̄(S)+2, this condition becomes r̄(S) ≤ p̄(S)+ q̄(S)+

2− codimX(S). We now observe:

r̄(S) ≤ p̄(S) + q̄(S) + 2− codimX(S)

⇐⇒ −r̄(S) ≥ −p̄(S)− q̄(S)− 2 + codimX(S)

⇐⇒ codimX(S)− 2− r̄(S) ≥ codimX(S)− 2− p̄(S) + codimX(S)− 2− q̄(S)

⇐⇒ Dr̄(S) ≥ Dp̄(S) +Dq̄(S).
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In the form (7.8), the condition to be agreeable has a nice symmetry with conditions of

the form p̄ + q̄ ≤ r̄ that arise when considering intersection pairings, which are dual to the

cup product pairing on pseudomanifolds; see [105] and Section 8.5, below. This is also the

form of the criterion used in [100] to define cup and cap products on locally torsion free

spaces.

Of course if Qp̄,q̄(S×S) is not p̄(S)+ q̄(S)+2 for S singular then we know that it must be

p̄(S) + q̄(S) + 1. So by computations completely analogous to those in the proof of Lemma

7.2.8 we have the following more general corollary.

Corollary 7.2.9. Suppose that X is a CS set with perversities p̄, q̄, r̄. Without any further

assumptions on X, the following statements hold:

1. If (p̄, q̄; r̄) is an agreeable triple, then Dr̄ ≥ Dp̄+Dq̄.

2. If Dr̄ > Dp̄+Dq̄ then (p̄, q̄; r̄) is an agreeable triple.

The most important triples of perversities have the form (p̄, Dp̄; 0̄) as these are the triples

that arise in the setting of the Poincaré Duality Theorem 8.2.4. Lemma 7.2.8 allows us to

identify them as agreeable under certain hypotheses:

Corollary 7.2.10. Suppose that X is CS set that is locally (p̄, R)-torsion free or locally

(Dp̄,R)-torsion free. Then (p̄, Dp̄; 0̄) is an agreeable triple. In particular, (t̄, 0̄; 0̄) and (0̄, t̄; 0̄)

are always agreeable.

Proof. The torsion free conditions guarantee that Qp̄,q̄(S × S) = p̄(S) + q̄(S) + 2 for all

singular strata S. So by Lemma 7.2.8, the following verification is sufficient:

D0̄ = t̄ = p̄+Dp̄ = D(Dp̄) +Dp̄ = Dp̄+D(Dp̄).

Here t̄ = p̄+Dp̄ by the definition of Dp̄; see Definition 3.1.7. The last claim follows because

all CS sets are locally (t̄, R)-torsion free by Example 6.3.22.

Remark 7.2.11. Of course the hypotheses of Corollary 7.2.10 can be generalized somewhat,

though we will see in Corollary 8.2.5 that if X is an R-orientable stratified pseudomanifold

then the conditions of being locally (p̄, R)-torsion free and locally (Dp̄,R)-torsion free are

equivalent.

Here are two other special cases that will be useful in Sections 7.3.5 and 9.2, respectively:

Corollary 7.2.12. Suppose that X is a CS set and R a Dedekind domain.

1. The triple (p̄, t̄; p̄) is agreeable for any perversity p̄.

2. If n̄ is the upper-middle perversity (Definition 3.1.10) and X is locally (n̄;R)-torsion

free, then (n̄, n̄; 0̄) is an agreeable triple.
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Proof. All CS sets are locally (t̄;R)-torsion free by Example 5.3.12, so by Lemma 7.2.8 we

need only observe for the first statement that

Dp̄ ≥ Dp̄+Dt̄ = Dp̄+ 0̄ = Dp̄.

For the second statement, Lemma 7.2.8 says that we need D0̄ ≥ Dn̄ + Dn̄, which is

equivalent to t̄ ≥ m̄ + m̄ = 2m̄, where m̄ is the lower-middle perversity (Definition 3.1.10).

By definition, we have m̄(S) =
⌊

codim(S)−2
2

⌋
, which we abbreviate to m̄(k) =

⌊
k−2

2

⌋
when

k is the codimension of S. If k is even, then
⌊
k−2

2

⌋
= k−2

2
, and so 2m̄(k) = k − 2 = t̄(k).

If k is odd, then
⌊
k−2

2

⌋
= k−3

2
, and so 2m̄(k) = k − 3 = t̄(k) − 1 < t̄(k). Thus (n̄, n̄; 0̄) is

agreeable.

The intersection cup, cap, and cross products

We can now put together our ingredients to construct intersection cohomology products.

Cross products. We being with the intersection cohomology cross product.

Definition 7.2.13. Let R be a Dedekind domain. Suppose that X is a CS set with perversity

p̄ and open subset A and that Y is a CS set with perversity q̄ and open subset B. Let Q be

a (p̄, q̄)-compatible perversity on X × Y . The intersection cohomology cross product

Ip̄H
i(X,A;R)⊗ Iq̄Hj(Y,B;R)

×−→ IQH
i+j(X × Y, (A× Y ) ∪ (X ×B);R)

is defined to be the composition

Ip̄H
i(X,A;R)⊗ Iq̄Hj(Y,B;R)

Θ−→ H i+j(Hom(I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R), R))

IAW∗−−−→ IQH
i+j(X × Y, (A× Y ) ∪ (X ×B);R),

where IAW∗ is the Hom(·, R) dual of the intersection Alexander-Whitney map of Definition

7.2.3. So if α ∈ Ip̄H i(X,A;R) and β ∈ Iq̄Hj(Y,B;R) then

α× β = IAW∗Θ(α⊗ β).

The intersection cohomology cross product is well defined by Lemma 7.2.1 and Definition

7.2.3.

Algebraic diagonals. Next we can define the intersection chain algebraic diagonal map,

which is used to define cup and cap products.

Definition 7.2.14. Let R be a Dedekind domain. Suppose that (p̄, q̄; r̄) is an agreeable

triple of perversities on a CS set X and that A,B ⊂ X are open subsets. Then the algebraic

diagonal d̄ is defined up to chain homotopy to be the composition

I r̄S∗(X,A∪B;R)
d−→ IQp̄,q̄S∗(X×X, (A×X)∪(X×B);R)

IAW−−→ I p̄S∗(X,A;R)⊗I q̄S∗(X,B;R).
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The algebraic diagonal is well defined up to chain homotopy thanks to Lemma 7.2.7 and

Definition 7.2.3.

Remark 7.2.15. While we define the algebraic diagonal using Qp̄,q̄, we would obtain an

equivalent map using any Q such that (p̄, q̄; r̄) is Q-agreeable. To see this, we note that we

have a commutative diagram

I r̄S∗(X,A ∪B;R)
d
- IQS∗(X ×X, (A×X) ∪ (X ×B);R) �

ε
I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

IQp̄,q̄S∗(X ×X, (A×X) ∪ (X ×B);R).
? �

εd

-

The maps in the lefthand triangle exist by our assumptions about the perversities, and

commutativity holds at the space level. The righthand triangle commutes by the naturality

of the cross product; see Proposition 5.2.17 and Theorem 6.3.19. It follows that we obtain

a homotopy commutative diagram replacing each ε arrow with an IAW arrow pointing the

opposite way.

Cup products. Given the algebraic diagonal of Definition 7.2.14, we can now define cup

and cap products completely analogously with the classical setting:

Definition 7.2.16. Let R be a Dedekind domain. Suppose that (p̄, q̄; r̄) is an agreeable triple

of perversities on a CS set X and that A,B ⊂ X are open subsets. Then the intersection

cohomology cup product

Ip̄H
i(X,A;R)⊗ Iq̄Hj(X,B;R)

^−→ Ir̄H
i+j(X,A ∪B;R)

is defined to be the composition

Ip̄H
i(X,A;R)⊗ Iq̄Hj(Y,B;R)

Θ−→ H i+j(Hom(I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R), R))

d̄∗−→ Ir̄H
i+j(X,A ∪B;R).

So if α ∈ Ip̄H i(X,A;R) and β ∈ Iq̄Hj(X,B;R) then

α ^ β = d̄∗Θ(α⊗ β) = d∗IAW∗Θ(α⊗ β).

Even though d̄ is defined as a chain map only up to chain homotopy, the cup product is

well defined on intersection cohomology by Lemma 7.2.1 and Definition 7.2.14.

The following observation is now immediate from the definitions:

Lemma 7.2.17. Let R be a Dedekind domain. Suppose that (p̄, q̄; r̄) is an agreeable triple of

perversities on a CS set X and that A,B ⊂ X are open subsets. If α ∈ Ip̄H i(X,A;R) and

β ∈ Iq̄Hj(X,B;R) then

α ^ β = d∗(α× β) ∈ Ir̄H i+j(X,A ∪B;R).
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Cap products. Now we define the cap product.

Definition 7.2.18. Let R be a Dedekind domain. Suppose that (p̄, q̄; r̄) is an agreeable

triple of perversities on a CS set X and that A,B ⊂ X are open subsets. The intersection

cohomology cap product

Iq̄H
j(X,B;R)⊗ I r̄Hi+j(X,A ∪B;R)

_−→ I p̄Hi(X,A;R)

is defined so that if β ∈ Iq̄Hj(X,B;R) and ξ ∈ I r̄Hi+j(X,A ∪B;R) then

β _ ξ = Φ((id⊗ β)d̄(ξ)), (7.9)

where Φ is the canonical isomorphism I p̄S∗(X,A;R)⊗R→ I p̄S∗(X,A;R).

In other words, if d(ξ) =
∑

k xk ⊗ yk ∈ I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R), then

β _ ξ =
∑
k

(−1)|β||xk|β(yk)xk =
∑
k

(−1)ijβ(yk)xk.

Even though we have seen that d and IAW induce well-defined maps on cohomology,

there is still a bit of work remaining to verify that the cap product is well defined, as it is

not induced simply by applying (co)homology operators to chain maps. This requires some

computations. We begin with a useful preliminary lemma.

Lemma 7.2.19. Given the assumptions of Definition 7.2.18, suppose β ∈ Iq̄S
j(X,B;R)

and ξ ∈ I r̄Si+j(X,A ∪ B;R). If we fix a specific choice of IAW map, then we can define

the cap product on the chain level via equation (7.9). In this case the following chain-level

formula holds:

∂(β _ ξ) = (dβ) _ ξ + (−1)|β|β _ ∂ξ. (7.10)

Proof. Suppose that with our given choice of IAW map we have d̄(ξ) =
∑

k yk ⊗ zk. Since

IAW and d are chain maps,

d̄(∂ξ) = ∂d̄(ξ) = ∂

(∑
k

yk ⊗ zk

)
=
∑
k

((∂yk)⊗ zk + (−1)|yk|yk ⊗ (∂zk)).
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Now, we compute using the definitions:

(dβ) _ ξ = Φ(id⊗ dβ)d̄(ξ)

= Φ(id⊗ dβ)
∑
k

yk ⊗ zk

=
∑
k

(−1)(|β|+1)|yk|((dβ)zk)yk

=
∑
k

(−1)(|β|+1)|yk|+|β|+1β(∂zk)yk

= Φ(id⊗ β)
∑
k

(−1)(|β|+1)|yk|+|β|+1+|β||yk|yk ⊗ ∂zk

= (−1)|β|+1Φ(id⊗ β)
∑
k

(−1)|yk|yk ⊗ ∂zk

= (−1)|β|+1Φ(id⊗ β)

(∑
k

∂(yk ⊗ zk)−
∑
k

(∂yk)⊗ zk

)

= (−1)|β|+1Φ(id⊗ β)∂d̄(ξ) + (−1)|β|Φ(id⊗ β)

(∑
k

(∂yk)⊗ zk

)
= (−1)|β|+1Φ(id⊗ β)d̄(∂ξ) + (−1)|β|

∑
k

(−1)|β||∂yk|β(zk)∂yk

= (−1)|β|+1β _ ∂ξ + (−1)|β|+|β|(|ξ|−|β|−1)
∑
k

β(zk)∂yk

= (−1)|β|+1β _ ∂ξ + (−1)|β||ξ|+|β|
∑
k

β(zk)∂yk.

In the second to last line, we have used that all terms of the second summand vanish unless

|zk| = |β|, in which case |∂yk|+ |zk| = |∂ξ| = |ξ| − 1 and so |∂yk| = |∂ξ| − |β| = |ξ| − 1− |β|.
By comparison, and using the same reasoning about degrees,

∂(β _ ξ) = ∂Φ(id⊗ β)d̄(ξ)

= ∂Φ(id⊗ β)
∑
k

yk ⊗ zk

= ∂
∑
k

(−1)|β|(|ξ|−|β|)β(zk)yk

=
∑
k

(−1)|β||ξ|+|β|β(zk)∂yk.

So, altogether, we see that

(dβ) _ ξ = (−1)|β|+1β _ ∂ξ + ∂(β _ ξ),
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or, equivalently,

∂(β _ ξ) = (dβ) _ ξ + (−1)|β|β _ ∂ξ.

Now we can show that the cap product induces a well-defined map on (co)homology,

independent of choices.

Lemma 7.2.20. Given the assumptions of Definition 7.2.18, the cap product

Iq̄H
j(X,B;R)⊗ I r̄Hi+j(X,A ∪B;R)

_−→ I p̄Hi(X,A;R)

is well defined and independent of the choice of IAW map.

Proof. Suppose β ∈ Iq̄Sj(X,B;R) is a cocycle and ξ ∈ I r̄Si+j(X,A ∪ B;R) is a cycle. Let

us first verify that β _ ξ is a cycle for any choice of IAW. We have just seen in Lemma

7.2.19 that

∂(β _ ξ) = (dβ) _ ξ + (−1)|β|β _ ∂ξ,

so if dβ = 0 and ∂ξ = 0, we have ∂(β _ ξ) = 0.

Next, we must show that altering β and ξ within their (co)homology classes does not

alter β _ ξ. Equivalently, we must show that β _ ξ = 0 as an intersection homology class

if β is a coboundary or ξ is a boundary. We continue to assume a fixed IAW map.

First, suppose ξ = ∂ζ, continuing to assume β is a cocycle. Then, using equation (7.10),

we have

β _ ξ = β _ ∂ζ

= (−1)|β|∂(β _ ζ)− (−1)|β|(dβ) _ ζ

= (−1)|β|∂(β _ ζ).

So β _ ξ is a boundary.

Next, suppose β = dα and ∂ξ = 0. Then, again using equation (7.10), we have

β _ ξ = (dα) _ ξ

= ∂(α _ ξ)− (−1)|α|α _ ∂ξ

= ∂(α _ ξ).

So, again, β _ ξ is a boundary.

Summing up our computations thus far, we have seen that for a fixed choice of IAW the

cap product takes a cohomology class and a homology class to a homology class. Next, we

must show that altering IAW within its chain homotopy class does not affect the output.

To see this, we observe that if d̄ and d̄′ are two algebraic diagonals based on two different

choices of IAW then we have

d̄(ξ)− d̄′(ξ) = D∂ξ + ∂Dξ = ∂Dξ,

where D is the chain homotopy between d̄ and d̄′ induced by the chain homotopy between the

two choices of IAW. So, changing either IAW within its chain homotopy class results in alter-

ing the cycle d̄(ξ) by a boundary. Notice that a boundary in I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

has the form ∂ (
∑

` u` ⊗ v`) =
∑

`((∂u`)⊗ v` + (−1)|u`|u` ⊗ ∂(v`)).
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But then we compute

(Φ(id⊗ β))

(
∂
∑
`

u` ⊗ v`

)
= (Φ(id⊗ β))

(∑
`

((∂u`)⊗ v` + (−1)|u`|u` ⊗ ∂(v`))

)

= Φ

(∑
`

(−1)j(|u`|+1)(∂u`)⊗ β(v`) +
∑
`

(−1)|u`|+j|u`|u` ⊗ β(∂(v`))

)
=
∑
`

(−1)j(|u`|+1)β(v`)∂u` +
∑
`

(−1)|u`|+j|u`|β(∂(v`))u`

=
∑
`

(−1)j(|u`|+1)β(v`)∂u` +
∑
`

(−1)|u`|+j|u`|(−1)j+1((dβ)(v`))u`

= ∂

(∑
`

(−1)j(|u`|+1)β(v`)u`

)
,

using that β is a cocycle. This term is a boundary, so we see that altering d̄(ξ) by a

boundary alters β _ ξ = Φ(id ⊗ β)d̄(ξ) by a boundary, and therefore the homology class

remains unchanged.

Now that our cross, cup, and cap products are all defined, we turn to their properties in

the next section.

7.3 Properties of cup, cap, and cross products.

In this (lengthy) section, we develop the various properties of cup, cap, and cross products in

intersection homology and cohomology. Since we do not have a concrete Alexander-Whitney

map to work with, but only one defined up to chain homotopy as a chain homotopy inverse

of the intersection chain cross product, it is only at the level of homology and cohomology

(as opposed to that of chains and cochains) that these properties can be formulated in

a way that is independent of these choices. We will derive formulas reminiscent of the

familiar ones from ordinary homology and cohomology theory, but statements will require

some conditions and the proofs will require some care. The proofs of these properties in

the standard textbook treatments generally use either the front face/back face formulas,

which allow for very concrete computations at the chain level, or they rely on acyclic model

arguments, which are also not available to us as we do not necessarily have acyclic generators

of any of our chain complexes. What we rely on instead are the remarkable properties of

the Eilenberg-Zilber shuffle product to show that certain diagrams commute on the nose;

then we replace the Eilenberg-Zilber cross products with IAW maps going in the opposite

directions to obtain homotopy commutative diagrams. These then have to be deployed in

the right way in order to obtain the desired properties.

One nice feature of our program is that it demonstrates that acyclic models are unnec-

essary in the classical literature (which certainly must have been the original point of view

when these tools were being developed), though after reading through our contortions below,

the reader might well end up grateful for the acyclic model theorem. We also note that many
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texts tend not to provide all the arguments for the following properties in detail. There-

fore, we hope that we are providing a service for those who would like a complete modern

reference to the standard properties even for ordinary (co)homology, to which intersection

(co)homology reduces for trivial filtrations. One source that does provide a fairly thorough

treatment is Dold’s book [71] (though again relying on acyclic models to produce the ini-

tial homotopy commutative diagrams). We will not follow Dold precisely (though we do in

many places), but it is a good reference for those wishing to see the treatment for ordinary

(co)homology and a good place to find some additional properties that the reader might

wish to generalize to the intersection setting.

There is a further point the reader should keep in mind when considering some of the more

involved arguments below, especially the reader who will notice that the analogous arguments

for intersection (co)homology in [100] are much simpler. The point is that everything would

be much easier with coefficients in a field F . In that case, for any chain complex C∗ over

F , one has H∗(Hom(C∗, F )) ∼= Hom(H∗(C,F );F ). So, if one wants to check, for example,

that α ^ β = (−1)|α||β|β ^ α in cohomology on a space X, it is only necessary to evaluate

each expression in the claimed equality on cycles representing elements of H∗(X;F ). If the

resulting evaluations are equal for arbitrary such representatives, then the equality is verified.

Unfortunately, of course, in general H∗(Hom(C∗, R)) � Hom(H∗(C,R);R) when R is not

a field, and, in particular, one cannot distinguish cohomology classes only by evaluating

them on cycles — how they act on other chains is relevant. Thus, as already indicated,

our main strategy for proving cohomological identities will be to show that two expressions

are obtained by applying chain homotopic maps to a single cohomological expression. Since

chain homotopic maps induce the same map on cohomology, we obtain identities in the image

cohomology. Occasionally, in order for us to carry out this program, it will be necessary to

perform some hands-on computations via evaluation of cochains on chains. However, it is

important to note that such computations will be carried out at the level of cochains (not

cohomology) and the evaluations will be applied to chains, not just cycles. Of course, this is

an acceptable way to verify equalities at the cochain level.

Our pattern of attack for properties involving the cap product will tend to be a bit more

irregular. As cap products involve both homology and cohomology, functoriality will not

run in a single direction. Oddly enough, this will not cause a serious problem, and, in fact,

proving properties involving cap products will often be easier than proving the analogous

properties for cup products. In some sense, this is due to the fact that, in this setting, the

relevant data on the homological side really does come in the form of homology classes (i.e.

cycles) and not just arbitrary chains, as we will see.

As we proceed, we will group by topic, rather than by product type. For example, all

of the associativity properties are discussed in a single section, as opposed to, say, all of the

cup product properties being contained in a single section. As the properties of intersection

cup, cap, and cross products are spread out over so many pages of proofs, we have provided

a summary below in, Section 7.3.9.

We should also mention here Section 7.3.10. In most of the following sections, we will

develop the properties of the cup, cap, and cross products while assuming that our spaces

are CS sets. In Section 7.3.10, we will discuss how these results extend to ∂-stratified
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pseudomanifolds.

7.3.1 Naturality

The cup, cap, and cross products are all natural with respect to maps of spaces that satisfy

enough conditions for all the relevant terms to be well defined. As we noted in Remark

5.2.18 concerning the naturality of the homology cross product, it is possible for the maps

of spaces to be identity maps, in which case we obtain statements about naturality with

respect to change of perversity; this observation applies just as well in this section.

We begin again with another algebraic lemma concerning Θ:

Lemma 7.3.1. Let C∗, D∗, C
′
∗, D

′
∗ be complexes of R-modules, and let f : C∗ → C ′∗ and

g : D → D′∗ be degree 0 chain maps. Then the following diagram commutes:

Hom(C∗, R)⊗ Hom(D∗, R)
Θ
- Hom(C∗ ⊗D∗, R)

Hom(C ′∗, R)⊗ Hom(D′∗, R)

f ∗ ⊗ g∗
6

Θ
- Hom(C ′∗ ⊗D′∗, R).

(f ⊗ g)∗

6

Consequently, there is a cohomology commutative diagram

H∗(Hom(C∗, R))⊗H∗(Hom(D∗, R))
Θ
- H∗(Hom(C∗ ⊗D∗, R))

H∗(Hom(C ′∗, R))⊗H∗(Hom(D′∗, R))

f ∗ ⊗ g∗
6

Θ
- H∗(Hom(C ′∗ ⊗D′∗, R)).

(f ⊗ g)∗

6

Proof. Let α ∈ Hom(C ′∗, R), β ∈ Hom(D′∗, R). To show that the diagram commutes, it

suffices to apply both compositions to α ⊗ β and check how the images act on generators

x⊗ y ∈ C∗ ⊗D∗. We have

[(f ⊗ g)∗Θ(α⊗ β)](x⊗ y) = Θ(α⊗ β)(f ⊗ g)(x⊗ y)

= Θ(α⊗ β)(f(x)⊗ g(y))

= (−1)|β||x|α(f(x))β(g(y))

= (−1)|β||x|(f ∗(α))(x) · (g∗(β))(y)

= [Θ((f ∗α)⊗ (g∗β))](x⊗ y)

= [Θ(f ∗ ⊗ g∗)(α⊗ β)](x⊗ y).

Once again, the cohomology statement follows from the cochain level commutativity as in

Remark 5.2.6 by observing that if both inputs into Θ are cocycles and one is a coboundary

then the output will be a coboundary; hence altering α and β within their cohomology classes

does not alter the image in H∗(Hom(C∗ ⊗D∗, R)) by either route.
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Naturality of the cross product

We now discuss naturality of the cross product.

Proposition 7.3.2. Let R be a Dedekind domain, and let (X,A), (Y,B), (X ′, A′) and

(Y ′, B′) be pairs of CS sets and open subsets. Let f : X → X ′ and g : Y → Y ′ be maps

with f(A) ⊂ A′ and f(B) ⊂ B′. Suppose p̄, q̄, p̄′, q̄′, Q,Q′ are respective perversities on

X, Y,X ′, Y ′, X×Y , and X ′×Y ′ such that Q is (p̄, q̄)-compatible and Q′ is (p̄′, q̄′)-compatible.

Suppose that f is (p̄, p̄′)-stratified, that g is (q̄, q̄′)-stratified, and that f×g is (Q,Q′)-stratified.

Then if α ∈ Ip̄′H i(X ′, A′;R) and β ∈ Iq̄′Hj(Y ′, B′;R), we have

(f × g)∗(α× β) = (f ∗(α))× (g∗(β)) ∈ IQH i+j(X × Y, (A× Y ) ∪ (X ×B);R).

Proof. Our assumptions imply that f ∗, g∗, and (f × g)∗ are well-defined intersection coho-

mology maps by Proposition 7.1.7. Furthermore, by Proposition 5.2.17 and Theorem 6.3.19

the following diagram commutes, and its horizontal maps are chain homotopy equivalences

Definition 7.2.3 and Theorem 6.4.14:

IQS∗(X × Y, (A× Y ) ∪ (X ×B);R) �
ε

I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R)

IQ
′
S∗(X

′ × Y ′, (A′ × Y ′) ∪ (X ′ ×B′);R)

f × g
?

�
ε
I p̄
′
S∗(X

′, A′;R)⊗ I q̄′S∗(Y ′, B′;R).

f ⊗ g
?

So, reversing the horizontal arrows and replacing ε with IAW gives a homotopy commutative

diagram.

Computing with cohomology classes gives

(f × g)∗(α× β) = (f × g)∗IAW∗Θ(α⊗ β)

= IAW∗(f ⊗ g)∗Θ(α⊗ β) by Proposition 5.2.17 and Theorem 6.3.19

= IAW∗Θ(f ∗ ⊗ g∗)(α⊗ β) by Lemma 7.3.1

= IAW∗Θ((f ∗(α))⊗ (g∗(β)))

= (f ∗(α))× (g∗(β)).

In the hypotheses of the preceding result we made assumptions not just that the maps

f and g were stratified with respect to the perversities involved but also that f × g was

(Q,Q′)-stratified. In some situations the hypotheses on f and g are enough to tell us f × g
is automatically stratified, at least if we use our maximal product perversities of the form

Qp̄,q̄. Here is one such result:

Lemma 7.3.3. Suppose that f : X → X ′ and g : Y → Y ′ are maps of CS sets, that

p̄, q̄, p̄′, q̄′ are respective perversities on X, Y,X ′, Y ′, and that f is (p̄, p̄′)-allowable and g

is (q̄, q̄′)-allowable. Furthermore, suppose X ′ is locally (p̄′, R)-torsion free or Y ′ is locally

(q̄′, R)-torsion free. Then f × g is (Q,Qp̄′,q̄′)-allowable for any (p̄, q̄)-compatible perversity Q

on X × Y .
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Proof. As Q ≤ Qp̄,q̄ for any (p̄, q̄)-compatible perversity Q, it suffices to prove the lemma

with Q = Qp̄,q̄. Recall from Definition 6.3.2 that f and g must take singular strata to singular

strata, so (f×g)(ΣX×Y ) ⊂ ΣX′×Y ′ . Therefore, if S ′×T ′ is a regular stratum of X ′×Y ′, then

(f×g)−1(S ′×T ′) is also regular (if non-empty), so the condition to be (Qp̄,q̄, Qp̄′,q̄′)-stratified

is trivial for such strata.

Next, suppose S ′ is a regular stratum of X ′ and that T ′ is a singular stratum of Y ′.

Then f−1(S ′) is a union of regular strata of X. Suppose S × T is a stratum of X × Y in

(f × g)−1(S ′ × T ′), and so S is regular and T may be regular or singular. In this case, the

definition of (p̄, q̄)-compatible and (p̄′, q̄′)-compatible perversities reduces the (Qp̄,q̄, Qp̄′,q̄′)-

stratified condition on such strata to the (q̄, q̄′)-stratified condition for g. Similarly, if S ′

is singular, T ′ is regular, and S × T ⊂ (f × g)−1(S ′ × T ′) then the (Qp̄,q̄, Qp̄′,q̄′)-stratified

condition on such strata reduces to the (p̄, p̄′)-stratified condition for f .

Finally, suppose that S ′ ⊂ X ′ and T ′ ⊂ Y ′ are both singular and that S ⊂ X and

T ⊂ Y are strata with f(S × T ) ⊂ S ′ × T ′. The locally torsion free assumptions imply that

Qp̄′,q̄′(S
′ × T ′) = p̄′(S) + q̄′(T ) + 2. So we have

Qp̄′,q̄′(S
′ × T ′)− codimX′×Y ′(S

′ × T ′) = p̄′(S ′) + q̄′(T ′) + 2− codimX′(S
′)− codimY ′(T

′)

= p̄′(S ′)− codimX′(S
′) + q̄′(T )− codimY ′(T

′) + 2

≥ p(S)− codimX(S) + q̄(T )− codimY (T ) + 2

= p(S) + q̄(T ) + 2− codimX×Y (S × T )

≥ Qp̄,q̄(S × T )− codimX×Y (S × T ).

Here the first inequality comes from the definitions of (p̄, p̄′)-stratified and (q̄, q̄′)-stratified

and the second from the definition of Qp̄,q̄. Note that the last inequality works even if S

or T is a regular stratum. The resulting overall inequality is condition to be (Q,Qp̄′,q̄′)-

stratified.

Naturality of cup and cap products

Next we turn toward cup and cap products. The following lemma provides the basis for the

naturality of each of these by showing that algebraic diagonals behave naturally with respect

to maps f : X → Y . Notice that the lemma does not require any assumptions about the

perversities on the product spaces, but rather provides a needed perversity on X ×X under

the assumptions that we have agreeable triples and that f is appropriately stratified with

respect to the perversities in the triples.

Lemma 7.3.4. Let R be a Dedekind domain, and let X and Y be CS sets with open subsets

A,B ⊂ X and C,D ⊂ Y . Let f : X → Y be a map with f(A) ⊂ C and f(B) ⊂ D. Suppose

(p̄, q̄; r̄) is an agreeable triple of perversities on X and that (ū, v̄; s̄) is an agreeable triple

of perversities on Y . Suppose that f is (p̄, ū)-stratified, (q̄, v̄)-stratified, and (r̄, s̄)-stratified.

Then there is a (p̄, q̄)-compatible perversity Q on X × X such that the following diagram

commutes:
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I r̄S∗(X,A ∪B;R)
d
- IQS∗(X ×X, (A×X) ∪ (X ×B);R) �

ε
I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

I s̄S∗(Y,C ∪D;R)

f

? d
- IQū,v̄S∗(Y × Y, (C × Y ) ∪ (Y ×D);R)

f × f

?
�
ε
I ūS∗(Y,C;R)⊗ I v̄S∗(Y,D;R).

f ⊗ f

?

Consequently, d̄f is chain homotopic to (f⊗f)d̄ as maps I r̄S∗(X,A∪B;R)→ I ūS∗(Y,C;R)⊗
I v̄S∗(Y,D;R).

Proof. We first demonstrate the existence of a perversity Q on X ×X such that (p̄, q̄; r̄) is

Q-agreeable and f×f is (Q,Qū,v̄)-stratified. As in the proof of Lemma 7.3.3, it is automatic

that f×f takes singular strata to singular strata. We must define Q(S×T ) for each stratum

S × T ⊂ X ×X with S and T strata of X. Suppose that f takes S to the stratum S ′ of Y

and T to the stratum T ′ of Y .

First, suppose that S ′ is a regular stratum; this implies that S is also regular. In this case

we must haveQ(S×T ) = q̄(T ) andQū,v̄(S
′×T ′) = v̄(T ′). But recalling that p̄(S) = ū(S ′) = 0

for the regular strata, we can also write Q(S × T ) = p̄(S) + q̄(T ) and Qū,v̄(S
′ × T ′) =

ū(S ′) + v̄(T ′). So we have

Qū,v̄(S
′ × T ′)− codimY×Y (S ′ × T ′) = ū(S ′) + v̄(T ′)− codimY (S ′)− codimY (T ′)

= ū(S ′)− codimY (S ′) + v̄(T ′)− codimY (T ′)

≥ p̄(S)− codimX(S) + q̄(T )− codimX(T )

= Q(S × T )− codimX×X(S × T ).

We have used here for the inequality the definition of (p̄, ū)- and (q̄, v̄)-stratified maps, and

the resulting inequality shows that f × f is (Q,Qū,v̄)-stratified as far as these types of strata

are concerned. An equivalent argument holds when T and T ′ are regular or all strata are

regular.

This leaves the cases in which S ′ and T ′ are singular. First suppose that S 6= T , and let

Q(S×T ) = p̄(S)+q̄(T ); note that this is consistent with the possibility that S or T is regular.

We may have S ′ = T ′, but in any case we know that Qū,v̄(S
′×T ′) = ū(S ′)+ v̄(T ′)+C, where

C ∈ {1, 2}, depending on the local torsion behavior. In either case, the above computations

continue to hold but now with +C added to each of the expressions before the ≥.

Lastly, we must consider the case S = T , and in this case the perversity r̄ plays a role,

as we must have

r̄(S) + codimX(S) ≤ Q(S × S) (7.11)

in order for d to be (r̄, Q)-allowable; see Definition 7.2.6. As we know that (p̄, q̄; r̄) is

agreeable, we do know that there exists some (p̄, q̄)-compatible perversity P on X ×X with

r̄(S) + codimX(S) ≤ P (S × S) ≤ Qp̄,q̄(S × S).

In particular we must have

r̄(S) + codimX(S) ≤ Qp̄,q̄(S × S) = p̄(S) + q̄(S) +K
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for some K ∈ {0, 1, 2}. If r̄(S) + codimX(S) ≤ p̄(S) + q̄(S), we can take Q(S × S) =

p̄(S) + Q̄(S). Then (7.11) holds, and this is consistent with f × f being (Q,Qū,v̄)-stratified

again by the same computations as just above. On the other hand, if r̄(S) + codimX(S) �
p̄(S) + q̄(S), then we can take Q(S × S) = r̄(S) + codimX(S). Once again, we know that

r(S)+codimX(S) ≤ Qp̄,q̄(S×S), so that we will have p̄(S)+ q̄(S) ≤ Q(S×S) ≤ Qp̄,q̄(S×S),

which means that Q will remain (p̄, q̄)-compatible. But also because f is (r̄, s̄)-stratified and

d is (s̄, Q̄ū,v̄)-stratified, we have

Q(S × S)− codimX×X(S × S) = r̄(S) + codimX(S)− 2codimX(S)

= r̄(S)− codimX(S)

≤ s̄(S ′)− codimY (S ′)

≤ Qū,v̄(S
′ × S ′)− codimY×Y (S ′ × S ′).

So we see that, as regards these strata, f × f is (Q,Qū,v̄)-stratified, as desired.

Now that we have shown that we can find a Q that meets all requirements, we turn to

the commutativity.

The commutativity of the left square of the diagram holds at the level of spaces, as

(f × f)d(x) = (f, f)(x, x) = (f(x), f(x)) = df(x). The square on the right is a special

case of the diagram considered in Proposition 5.2.17 (and Theorem 6.3.19). Therefore,

the diagram commutes. As the diagram commutes, the version of the diagram with each

ε replaced by an IAW in the opposite direction homotopy commutes, and so d̄f is chain

homotopic to (f ⊗ f)d̄, using the fact from Remark 7.2.15 that d does not depend on the

choice of Q.

Since we will use analogous arguments often below, it is worth verifying this sort of claim

in detail at least once, which we do here. By Proposition 5.2.17 and Theorem 6.3.19, we know

that (f × f)ε = ε(f ⊗ f) exactly. By applying the appropriate IAW maps to each side, we

obtain that IAW(f ×f)εIAW = IAWε(f ⊗f)IAW. But now using that IAW and ε are chain

homotopy inverses, IAW(f × f)εIAW ∼ IAW(f × f) and IAWε(f ⊗ f)IAW ∼ (f ⊗ f)IAW.

Thus IAW(f × f) and (f ⊗ f)IAW are chain homotopic. Therefore,

d̄f = IAWdf

= IAW(f × f)d

∼ (f ⊗ f)IAWd

= (f ⊗ f)d̄.

With Lemma 7.3.4 in hand, we can now demonstrate the naturality of the cup and cap

products.

Proposition 7.3.5. Let R be a Dedekind domain, and let X and Y be CS sets with open

subsets A,B ⊂ X and C,D ⊂ Y . Let f : X → Y be a map with f(A) ⊂ C and f(B) ⊂ D.

Suppose (p̄, q̄; r̄) is an agreeable triple of perversities on X and that (ū, v̄; s̄) is an agreeable

triple of perversities on Y . Suppose that f is (p̄, ū)-stratified, (q̄, v̄)-stratified, and (r̄, s̄)-

stratified.
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Then if α ∈ IūH i(Y,C;R) and β ∈ Iv̄Hj(Y,D;R), we have

f ∗(α ^ β) = (f ∗(α)) ^ (f ∗(β)) ∈ Ir̄H i+j(X,A ∪B;R).

Proof. The conditions on f and the perversities ensure that all terms in the expression are

well-defined.

Now, we compute in cohomology using Lemmas 7.3.4 and 7.3.1:

(f ∗(α)) ^ (f ∗(β)) = d̄∗Θ((f ∗(α))⊗ (f ∗(β)))

= d̄∗Θ(f ∗ ⊗ f ∗)(α⊗ β)

= d̄∗(f ⊗ f)∗Θ(α⊗ β) by Lemma 7.3.1

= f ∗d̄∗Θ(α⊗ β) by Lemma 7.3.4

= f ∗(α ^ β).

Next we turn to naturality of the cap product, where the mixed functoriality makes the

statement of naturality a bit more complex.

Proposition 7.3.6. Let R be a Dedekind domain, and let X and Y be CS sets with open

subsets A,B ⊂ X and C,D ⊂ Y . Let f : X → Y be a map with f(A) ⊂ C and f(B) ⊂ D.

Suppose (p̄, q̄; r̄) is an agreeable triple of perversities on X and that (ū, v̄; s̄) is an agreeable

triple of perversities on Y . Suppose that f is (p̄, ū)-stratified, (q̄, v̄)-stratified, and (r̄, s̄)-

stratified.

Then if β ∈ Iv̄Hj(Y,D;R) and ξ ∈ I r̄Hi+j(X,A ∪B;R), we have

β _ f(ξ) = f(f ∗(β) _ ξ) ∈ I ūHi(Y,C;R).

Proof. Once again, the conditions on f and the perversities ensure that all terms in the

expression are well defined.

We compute

β _ f(ξ) = Φ(id⊗ β)d̄f(ξ)

= Φ(id⊗ β)(f ⊗ f)d̄(ξ) by Lemma 7.3.4

= Φ(f ⊗ βf)d̄(ξ)

= Φ(f ⊗ f ∗β)d̄(ξ)

= Φ(f ⊗ id)(id⊗ f ∗β)d̄(ξ)

= fΦ(id⊗ f ∗β)d̄(ξ) see below

= f(f ∗(β) _ ξ).

In the next to last equality, we have used that Φ(f ⊗ id) = fΦ. This is immediate in

generality, as if x⊗ 1 ∈ C∗ ⊗ R is a generator for some chain complex C∗ and f : C∗ → D∗
is some chain map, then

Φ(f ⊗ id)(x⊗ 1) = Φ(f(x)⊗ 1) = f(x) = f(Φ(x⊗ 1)).
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Remark 7.3.7. Recall from Examples 4.1.3 and 4.1.4 that inclusions of open subsets and

normally nonsingular inclusions are what we might call (p̄, p̄)-stratified maps, where the first

perversity is the restricted perversity on the subset. Therefore, the naturality statements

of this section apply to such inclusion maps. This is a nice fact that we will use below in

proving Poincaré duality for stratified pseudomanifolds.

Compatibility with classical products

As observed at the beginning of this section, it is possible for the maps of spaces to be

identity maps in which case the maps in our naturality lemmas are induced by the inclusions

of the form I p̄S∗(X,A;R) ↪→ I q̄S∗(X,A;R) for p̄ ≤ q̄. There is a further observation we

can make in this direction, which is that if p̄ ≤ t̄, then I p̄S∗(X,A;R) ∼= I p̄SGM∗ (X,A;R) by

Proposition 6.2.9, and so there is an inclusion I p̄S∗(X,A;R) ↪→ S∗(X,A;R). Of course all of

our constructions of products mirror the classical constructions for ordinary homology and

cohomology (e.g. [71, Chapter VII]), and in particular we know the Künneth theorem holds

for ordinary singular chains. So all of the arguments of this section go through replacing

the codomain homology groups (or domain cohomology groups) with ordinary homology (or

cohomology), so long as all perversities involved are ≤ t̄. For this we note that if p̄ and

q̄ are both ≤ t, then so is any (p̄, q̄)-compatible perversity on the product space; see the

computation in the proof below of Lemma 7.3.11.

For example, we have the following version of Proposition 7.3.6:

Proposition 7.3.8. Let R be a Dedekind domain, and let X be a CS set with open subsets

A,B ⊂ X. Suppose (p̄, q̄; r̄) is an agreeable triple of perversities on X with p̄, q̄, r̄ all ≤ t̄,

and let ωp̄ : I p̄S∗(X,A;R) ↪→ S∗(X,A;R), ωq̄ : I q̄S∗(X,B;R) ↪→ S∗(X,B;R), and ωr̄ :

I r̄S∗(X,A ∪B;R) ↪→ S∗(X,A ∪B;R).

Then if β ∈ Hj(X,B;R) and ξ ∈ I r̄Hi+j(X,A ∪B;R), we have

β _ ωr̄(ξ) = ωp̄(ω
∗
q̄ (β) _ ξ) ∈ Hi(X,A;R).

We will utilize this lemma in Section 8.1.6, below, to discuss Goresky and MacPherson’s

observation in [105, Section 1.4] that the ordinary cap product with the fundamental class

factors through the GM intersection homology groups. We will also use the following version

of Proposition 7.3.6 in Section 8.5.3 to discuss the relationship of the factoring maps with

cup and intersection products.

Proposition 7.3.9. Let R be a Dedekind domain, and let X be a CS set with open subsets

A,B ⊂ X. Suppose (p̄, q̄; r̄) is an agreeable triple of perversities on X with p̄, q̄, r̄ all ≤ t̄,

and let ωp̄ : I p̄S∗(X,A;R) ↪→ S∗(X,A;R), ωq̄ : I q̄S∗(X,B;R) ↪→ S∗(X,B;R), and ωr̄ :

I r̄S∗(X,A ∪B;R) ↪→ S∗(X,A ∪B;R).

Then if α ∈ Ip̄H i(X,A;R) and β ∈ Iq̄Hj(X,B;R), we have

ω∗r̄(α ^ β) = (ω∗p̄(α)) ^ (ω∗q̄ (β)) ∈ Ir̄H i+j(X,A ∪B;R).
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Topological invariance

In later sections, particularly in Chapter 9, we will want to know in certain settings that our

products and the invariants derived from them are topological invariants, i.e. independent

of the choice of stratification up to canonical isomorphisms. Recall that we have established

in Theorems 5.5.1 and 7.1.17 certain conditions under which the intersection homology and

cohomology groups have such invariance. We will not pursue here the most general questions

concerning when agreeability of a triple of perversities on a CS set X implies agreeability on

other stratifications of |X|, and thus we will not pursue topological invariance of products

in the greatest generality. Rather, we allow certain locally torsion free assumptions, which

greatly simplify the matter and are sufficient for our later purposes. We leave the more

general questions for another day and will work toward Theorem 7.3.10, stated below.

So, suppose that X and X ′ are two CS set stratifications of the same underlying space

|X|, neither of which possesses codimension one strata. Let X denote |X| with its intrinsic

filtration; see Section 2.10. Suppose that p̄, q̄, and r̄ are GM perversities such that Dr̄ ≥
Dp̄+Dq̄. As p̄, q̄, and r̄ are GM perversities, they depend only on the codimension of strata

and so are defined on X, X ′, and X. As every GM perversity is below the top perversity,

we have I p̄H∗(X;R) ∼= I p̄HGM
∗ (X;R) by Proposition 6.2.9, and similarly for intersection

cohomology and for the other perversities and spaces. We assume that X is locally (p̄, R)-

torsion free, though we could instead take X to be locally (q̄, R)-torsion free in the following

discussion. By Proposition 5.5.9, the CS set X is locally (p̄, R)-torsion free if and only if

X ′ is and if and only if X is. So X, X ′, and X are all locally (p̄, R)-torsion free, which by

Lemma 7.2.8 implies the triple (p̄, q̄; r̄) is agreeable on all of them. So, as promised, the

locally torsion free assumption on X gets us a lot of mileage by allowing us an algebraic

diagonal on all three spaces.

Next, we would like to apply the preceding lemmas of this section to establish naturality

of products with respect to maps of the form id : X → X (or id : X ′ → X, for which

the arguments are the same). The place where we need some extra care is in noticing

that these maps may take singular strata to regular strata and so they are not necessarily

(ū, ū)-stratified for any of the perversities ū we are considering, i.e. ū ∈ {p̄, q̄, r̄}. But we

have observed that as we are working with GM perversities we do have I ūS∗ = I ūSGM∗ by

Proposition 6.2.9, and so for id to induce intersection chain maps I ūS∗(X;R)→ I ūS∗(X;R)

it is sufficient for id to be (ū, ū)GM -stratified, which it is by Remark 5.5.11. However, this is

still not quite enough to extend Lemma 7.3.4, and hence the other naturality lemmas, as we

must also consider the map on products id× id : IQS∗(X ×X;R)→ IQp̄,q̄S∗(X× X;R). In

fact, we claim and will prove just below in Lemma 7.3.11 that id× id : IQp̄,q̄S∗(X×X;R)→
IQp̄,q̄S∗(X × X;R) is a well-defined map of GM -intersection chain complexes, which is also

sufficient for the associated map of relative chain complexes. As we assume Dr̄ ≥ Dp̄+Dq̄

and a local torsion free condition, the triple (p̄, q̄; r̄) is Qp̄,q̄-agreeable on X and X, and thus

we can utilize this id× id as the middle vertical map of the diagram of Lemma 7.3.4. From

there, the rest of the proof of that lemma will hold, as Proposition 5.2.17 provides naturality

of the cross product in the setting of GM -stratified maps.

So, continuing to assume that Lemma 7.3.11 holds and using the resulting modified ver-
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sion of Lemma 7.3.4, naturality of cup and cap products follows just as argued in Propositions

7.3.5 and 7.3.6. Consequently, we obtain a diagram of the form

Ip̄H
i(X,A;R)⊗ Iq̄Hj(X,B;R) -̂ Ir̄H

i+j(X,A ∪B;R)

Ip̄H
i(X,A;R)⊗ Iq̄Hj(X,B;R)

∼=
6

-̂ Ir̄H
i+j(X,A ∪B;R)

∼=
6

Ip̄H
i(X ′, A′;R)⊗ Iq̄Hj(X ′, B′;R)

∼=

?
-̂ Ir̄H

i+j(X ′, A′ ∪B′;R),

∼=

?

where |A| = |A| = |A′| and |B| = |B| = |B′|. This demonstrates the topological invariance

of the cup product.

Similarly, using the naturality of the cap product, we have a diagram8

Iq̄H
j(X,B;R)⊗ I r̄Hi+j(X,A ∪B;R)

_
- I p̄Hi(X,A;R)

Iq̄H
j(X,B;R)⊗ I r̄Hi+j(X,A ∪B;R)

∼= (id∗)−1 ⊗ id

? _
- I p̄Hi(X,A;R)

∼=

?

Iq̄H
j(X ′, B′;R)⊗ I r̄Hi+j(X

′, A′ ∪B′;R)

∼= (id∗)−1 ⊗ id

6

_
- I p̄Hi(X

′, A′;R).

∼=
6

So we have proven the following invariance theorem.

Theorem 7.3.10. Let R be a Dedekind domain and suppose that |X| is the underlying space

of a CS set X with open subsets A and B and with no codimension one strata. Suppose that

p̄, q̄, and r̄ are GM perversities such that Dr̄ ≥ Dp̄+Dq̄ and that X is locally (p̄, R)-torsion

free or locally (q̄, R)-torsion free in some (and hence by Proposition 5.5.9 in every) CS set

stratification with no codimension one strata. Then, up to canonical isomorphisms, the cup

8Note that, in general, if f : X → Y induces homology and cohomology isomorphisms then we can rewrite

the naturality of the cap product so that all of the functoriality is covariant using

f(α _ ξ) = f((f∗(f∗)−1(α)) _ ξ) = (f∗)−1(α) _ f(ξ).

378



and cap products

Ip̄H
i(X,A;R)⊗ Iq̄Hj(X,B;R)

^−→ Ir̄H
i+j(X,A ∪B;R)

and

Iq̄H
j(X,B;R)⊗ I r̄Hi+j(X,A ∪B;R)

_−→ I p̄Hi(X,A;R)

are independent of the choice of CS set stratification among such stratifications with no

codimension one strata.

We leave the reader to formulate and prove an analogous invariance statement concerning

cross products and turn instead to finishing up with the promised lemma:

Lemma 7.3.11. Suppose that X is a CS set and that X is |X| with its intrinsic filtration.

Let p̄ and q̄ be GM perversities, and suppose X and X are locally (p̄, R)-torsion free. Then

id× id : IQp̄,q̄S∗(X ×X;R)→ IQp̄,q̄S∗(X× X;R)

is a well-defined chain map.

Proof. For any strata S, T of X or X, we have

Qp̄,q̄(S × T ) ≤ p̄(S) + q̄(T ) + 2

≤ t̄(S) + t̄(T ) + 2

= codimX(S)− 2 + codimX(T )− 2 + 2

= codimX×X(S × T )− 2

= t̄(S × T ),

and so IQp̄,q̄S∗(X × X;R) ∼= IQp̄,q̄SGM∗ (X × X;R) and IQp̄,q̄S∗(X × X;R) ∼= IQp̄,q̄SGM∗ (X ×
X;R) by Theorem 6.3.19. Thus to have the desired map, we only need for id × id to be

(Qp̄,q̄, Qp̄,q̄)
GM -stratified.

As X is always a coarser stratification of X, the map id takes all strata to strata of smaller

codimension. In particular, it cannot take regular strata to singular strata. So, using the

notation f(S × T ) ⊂ S ′ × T ′ established above, there are only the following cases to check:

• regular× regular→ regular× regular:

Qp̄,q̄(S × T )− codimX×X(S × T ) = 0 = Qp̄,q̄(S
′ × T ′)− codimX×X(S ′ × T ′)

• singular× regular→ regular× regular

(or equivalently, regular× singular→ regular× regular):

Qp̄,q̄(S × T )− codimX×X(S × T ) = p̄(S)− codimX(S)

≤ t̄(S)− codim(S) = −2

≤ 0 = Qp̄,q̄(S
′ × T ′)− codimX×X(S ′ × T ′)
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• singular× regular→ singular× regular

(or equivalently, regular× singular→ regular× singular):

Qp̄,q̄(S × T )− codimX×X(S × T ) = p̄(S)− codimX(S)

≤ p̄(S)− codimX(S ′)

= Qp̄,q̄(S
′ × T ′)− codimX×X(S ′ × T ′)

• singular× singular→ regular× regular:

Qp̄,q̄(S × T )− codimX×X(S × T ) = p̄(S) + q̄(T ) + 2− codimX(S)− codimX(T )

≤ t̄(S) + t̄(T ) + 2− codimX(S)− codimX(T ) = −2

≤ 0 = Qp̄,q̄(S
′ × T ′)− codimX×X(S ′ × T ′)

• singular× singular→ singular× regular

(or equivalently, singular× singular→ regular× singular):

Qp̄,q̄(S × T )− codimX×X(S × T ) = p̄(S) + q̄(T ) + 2− codimX(S)− codimX(T )

≤ p̄(S) + t̄(T ) + 2− codimX(S)− codimX(T )

= p̄(S)− codimX(S)

≤ p̄(S ′)− codimX(S ′)

= Qp̄,q̄(S
′ × T ′)− codimX×X(S ′ × T ′)

• singular× singular→ singular× singular:

Qp̄,q̄(S × T )− codimX×X(S × T ) = p̄(S) + q̄(T ) + 2− codimX(S)− codimX(T )

≤ p̄(S ′) + q̄(T ′) + 2− codimX(S ′)− codimX(T ′)

= Qp̄,q̄(S
′ × T ′)− codimX×X(S ′ × T ′).

7.3.2 Commutativity

Next we turn to the (graded) commutativity of cup and cross products, starting with another

algebraic lemma:

Lemma 7.3.12. Suppose C∗, D∗ are chain complexes of R-modules. The following diagram

commutes:
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Hom(C∗, R)⊗ Hom(D∗, R)
Θ
- Hom(C∗ ⊗D∗, R)

Hom(D∗, R)⊗ Hom(C∗, R)

τ

? Θ
- Hom(D∗ ⊗ C∗, R).

τ ∗

?

Here both maps labeled τ are the maps that interchange factors, with appropriate signs.

Proof. The map τ on the left is a chain map by the proof of Proposition 5.2.20. The map

on the right is the Hom dual of the chain map τ : D∗ ⊗ C∗ → C∗ ⊗D∗.
We proceed by direct computation. If y ⊗ x is a generator of D∗ ⊗ C∗ and α, β are

respective generators of Hom(C∗, R) and Hom(D∗, R), then

(τ ∗Θ(α⊗ β))(y ⊗ x) = Θ(α⊗ β)τ(y ⊗ x)

= Θ(α⊗ β)(−1)|x||y|x⊗ y
= (−1)|x||y|+|β||x|α(x)β(y),

while

Θ(τ(α⊗ β))(y ⊗ x) = (−1)|α||β|Θ(β ⊗ α)(y ⊗ x)

= (−1)|α||β|+|α||y|α(x)β(y).

Now, both expressions will be 0 unless |y| = |β| and |x| = |α|, and so both expressions are

α(x)β(y).

This lemma is enough to provide commutativity of the cross product:

Proposition 7.3.13. Let R be a Dedekind domain. Suppose that X, Y are CS sets with

respective perversities p̄, q̄ and that Q is a (p̄, q̄)-compatible perversity on X × Y . Define the

perversity Qτ on Y ×X so that Qτ (T × S) = Q(S × T ) for strata S ⊂ X and T ⊂ Y . Let

A ⊂ X and B ⊂ Y be open subsets, and let α ∈ Ip̄H i(X,A;R) and β ∈ Iq̄Hj(Y,B;R). Then

t∗(α× β) = (−1)ijβ × α ∈ IQτH i+j(Y ×X, (B ×X) ∪ (Y × A);R).

Proof. Recall the topological map t(x, y) = (y, x); it is straightforward to verify that

t : IQS∗(X × Y ; (A× Y ) ∪ (X ×B), R)→ IQ
τ

S∗(Y ×X, (B ×X) ∪ (Y × A);R)

is (Q,Qτ )-stratified, and so the arguments of Proposition 5.2.20 and Theorem 6.3.19 apply.

We compute

t∗(α× β) = t∗IAW∗Θ(α⊗ β)

= IAW∗τ ∗Θ(α⊗ β) by Proposition 5.2.20 and Theorem 6.3.19

= IAW∗Θτ(α⊗ β) by Lemma 7.3.12

= (−1)ijIAW∗Θ(β ⊗ α)

= (−1)ijβ × α.
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In the second line, we have used that the strict commutativity of Proposition 5.2.20

becomes commutativity up to chain homotopy if we replace each map ε by a map IAW

going in the opposite direction, and this implies that

t∗IAW∗ = (IAWt)∗ = (τ IAW)∗ = IAW∗τ ∗

as a map on cohomology.

Now we turn toward the cup product, starting with the next lemma.

Lemma 7.3.14. Let R be a Dedekind domain. Suppose that (p̄, q̄; r̄) is an agreeable triple

of perversities on a CS set X. Let A,B ⊂ X be open subsets.

Then (q̄, p̄; r̄) is also an agreeable triple of perversities and the following diagram com-

mutes up to chain homotopy:

I r̄S∗(X,A ∪B;R)
d̄
- I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

I q̄S∗(X,B;R)⊗ I p̄S∗(X,A;R).

τ

?

d̄

-

Here τ is the standard (signed!) interchange map of tensor product factors and the two

algebraic diagonals are defined with respect to the appropriate ordering of perversities.

Proof. It is immediate that (q̄, p̄; r̄) is an agreeable triple if (p̄, q̄; r̄), as p̄ and q̄ play symmetric

roles in the definition of (p̄, q̄)-compatible perversities on X ×X.

We claim the following diagram is commutative:

I r̄S∗(X,A ∪B;R)
d
- IQp̄,q̄S∗(X ×X; (A×X) ∪ (X ×B), R) �

ε
I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

IQq̄,p̄S∗(X ×X, (B ×X) ∪ (X × A);R)

t

?
�
ε

d

-

I q̄S∗(X,B;R)⊗ I p̄S∗(X,A;R).

τ

?

Here the lefthand vertical arrow is induced by the topological map t(x, y) = (y, x), which

clearly satisfies td = d and takes Qp̄,q̄-allowable chains to Qq̄,p̄-allowable chains. The com-

mutativity of the square follows from Proposition 5.2.20 and Theorem 6.3.19.

It now follows that replacing the maps ε with the homotopy inverses IAW (going in the

opposite directions) will yield a diagram that is homotopy commutative. Commutativity of

the diagram in the statement of the lemma now follows from the definition d̄ = IAWd.

Now we can show commutativity of the cup product:

Proposition 7.3.15. Let R be a Dedekind domain. Suppose that (p̄, q̄; r̄) is an agree-

able triple of perversities on the CS set X. Let A,B ⊂ X be open subsets, and let α ∈
Ip̄H

i(X,A;R) and β ∈ Iq̄Hj(X,B;R). Then α ^ β = (−1)ijβ ^ α ∈ Ir̄H i+j(X,A ∪B;R).
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Proof. Once again, the assumptions imply that all expressions are well defined. We compute

β ^ α = d̄∗Θ(β ⊗ α)

= (τ d̄)∗Θ(β ⊗ α) by Lemma 7.3.14

= d̄∗τ ∗Θ(β ⊗ α)

= d̄∗Θτ(α⊗ β) by Lemma 7.3.12

= (−1)ijd̄∗Θ(β ⊗ α)

= (−1)ijβ ^ α.

7.3.3 Unitality and evaluation

The unital property of the standard cup product is the fact that 1 ^ α = α ^ 1 = α,

where α ∈ H∗(X;R) and 1 ∈ H0(X;R) is the element that evaluates each (positively-

oriented) singular 0-simplex to 1. Similarly, the unital property for cross products is that if

1 ∈ H0(pt, R), then α× 1 = 1× α = α in H∗(X;R).

To have a unit for the cup product in intersection cohomology, we first need to see when

it can be true that we have a cup product Ip̄H
∗(X;R)⊗ Iq̄H0(X;R)→ Ip̄H

∗(X;R). From

the definition, we will need for (p̄, q̄; p̄) to be an agreeable triple. Corollary 7.2.12 shows us

that (p̄, t̄; p̄) is always agreeable on a CS set, and we will see that this is essentially the only

choice. In particular, for (p̄, q̄; p̄) to be agreeable then for any singular stratum S ⊂ X we

must have

p̄(S)− codimX(S) ≤ Qp̄,q̄(S × S)− codimX×X(S × S) ≤ p̄(S) + q̄(S) + 2− 2codimX(S),

which implies that q̄(S) ≥ codim(S)−2 = t̄(S). So the condition q̄ ≥ t̄ is necessary in general

to have an algebraic diagonal of the form d̄ : I p̄H∗(X;R)→ H∗(I
p̄S∗(X;R)⊗ I q̄S∗(X;R)).

On the other hand, the proof of Lemma 7.3.20, below, which demonstrates that d̄ is

counital in the homotopy category (with appropriate conditions) and which leads to the

unital property of cup products, requires consideration of projection maps pi : X ×X → X

with p1(x, y) = x and p2(x, y) = y. For these spatial maps to induce maps on intersection

chain complexes of the form p1 : IQS∗(X×X;R)→ I p̄S∗(X;R) and p2 : IQS∗(X×X;R)→
I q̄S∗(X;R), where here Q is a (p̄, q̄)-compatible perversity on X ×X, we will see in Lemma

7.3.16 that in general we need to have q̄ ≤ t̄. Together with the last paragraph, this forces

the top perversity t̄ to play a privileged role in the unital property, and hence in intersection

cohomology theory.

Projection maps

In order to proceed to results about cohomology products, we first need to study the behavior

of intersection chains under projection maps.

Lemma 7.3.16. Let X, Y be CS sets with respective perversities p̄, q̄, and let Q be a (p̄, q̄)-

compatible perversity on X ×Y . The projection map p1 : X ×Y → X induces a well-defined

chain map p1 : IQS∗(X × Y ;R) → I p̄S∗(X;R) if q̄ ≤ t̄. Similarly, the projection map
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p2 : X × Y → Y induces a well-defined chain map p2 : IQS∗(X × Y ;R) → I q̄S∗(Y ;R) if

p̄ ≤ t̄. If these perversity requirements are not satisfied, then such chain maps do not exist

in general.

Proof. We will demonstrate the lemma for p1, the proof for p2 being equivalent.

First, let us see when p1 preserves allowability. By Definition 4.1.1, to show that p1

takes allowable simplices to allowable simplices, we only need to check that Q(S × T ) −
p̄(S) ≤ codimX×Y (S × T ) − codimX(S) for each singular stratum S of X and arbitrary

stratum T of Y . Notice that codimX×Y (S × T ) = codimX(S) + codimY (T ), so we need

Q(S × T ) − p̄(S) ≤ codimY (T ). If T is a regular stratum then Q(S × T ) = p̄(S) and the

inequality is satisfied. If T is singular and q̄ ≤ t̄ then

Q(S × T )− p̄(S) ≤ p̄(S) + q̄(T ) + 2− p̄(S)

= q̄(T ) + 2 ≤ t̄(T ) + 2 = codimY (T )− 2 + 2 = codimY (T ).

So, if q̄ ≤ t̄, then p1 takes allowable simplices to allowable simplices.

Now, as observed prior to Definition 6.3.2, preserving allowability is not in itself sufficient

to guarantee a chain map of non-GM intersection chains. If Y possesses a singular stratum

S and R is a regular stratum of X then p1 takes R× S to R, and so it is not the case that

p1(ΣX×Y ) ⊂ ΣX . Therefore, p1 is not (Q, p̄)-stratified, even when q̄ ≤ t̄. Nonetheless, it

turns out that p1 does induce a chain map with these assumptions, but we still need a bit

more work.

The critical observation is that if R is a regular stratum of X, then p−1
1 (R) consists of

strata of the form R × S, and, by the definition of Q, we have Q(R × S) = q̄(S). For an

i-simplex in X ×Y to be Q-allowable with respect to R×S, we must have that σ−1(R×S)

is contained in the i − codimX×Y (R× S) + Q(R× S) skeleton of ∆i. But codimX(R) = 0

and Q(R× S) = q̄(S), so if we assume that q̄ ≤ t̄ then we obtain

i− codimX×Y (R× S) +Q(R× S) = i− codimY (S) + q̄(S)

≤ i− codimY (S) + t̄(S)

= i− codimY (S) + codimY (S)− 2

= i− 2.

It follows that if ξ ∈ IQSi(X × Y ;R) then any simplex of ∂ξ that is contained completely

in ΣX×Y must in fact be contained in p−1
1 (ΣX), as the preceding argument shows that the

interior of an i − 1 face of an allowable simplex of ξ cannot intersect any singular stratum

of the form R× S. So if τ is such an i− 1 face that is contained in ΣX×Y , its interior must

be contained in p−1
1 (ΣX), but this is a closed set, so all of it must be contained in p−1

1 (ΣX).

So now for ξ ∈ IQSi(X × Y ;R) let ∂1ξ = ∂ξ − ∂̂ξ, where here we let ∂ denote the

boundary of ξ as a chain in S∗(X × Y ;R). Recall that ∂̂ξ consists, by definition, of the

simplices of ∂ξ (with their coefficients) that do not have image in ΣX×Y . Thus ∂1ξ comprises

those simplices of ∂ξ that are contained in ΣX×Y , and, by the preceding paragraph, such

simplices are actually contained in p−1
1 (ΣX). Since p1 induces a chain map on ordinary

chains, ∂p1(ξ) = p1(∂ξ) = p1(∂̂ξ) + p1(∂1ξ). As each simplex of ∂1ξ is contained in p−1
1 (ΣX),
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each simplex of p1(∂1ξ) is contained in ΣX . On the other hand, since no simplex of ∂̂ξ

is contained in ΣX×Y , it follows that no image of a simplex of p1(∂̂ξ) is contained in ΣX .

So, from the definition, we must have ∂̂p1(ξ) = p1(∂̂ξ), showing that p1 is a chain map

p1 : IQS∗(X × Y ;R)→ I p̄S∗(X;R) when q̄ ≤ t̄.

Lastly, suppose q̄ � t̄. Let S be a stratum of Y such that q̄(S) > codimY (S) − 2, and

let U be a regular stratum of Y with S in its closure. Let σ : ∆i → Y be a simplex with

the image of one i − 1 face in S and with the rest of ∆i mapping into U . Also, let x0 be a

point in a regular stratum R of X and let η : ∆i → X be the unique map with image x0.

Then the map ξ = (η, σ) : ∆i → X × Y with (η, σ)(z) = (η(z), σ(z)) is a singular simplex

with image in p−1
1 (R). Furthermore, ξ is an allowable simplex, as the only singular stratum

it intersects is R× S, which it intersects only in the image of the i− 1 skeleton of ∆i, and

i− codimX×Y (R× S) +Q(R× S) = i− codimY (S) + q̄(S) ≥ i− 1.

In fact, by an analogous computation for the boundary, ξ is allowable as a chain, and its

boundary as an intersection chain is the sum (with signs) of the faces of ξ not contained in

R×S. On the other hand, we have p1(ξ) = η, which is contained in R and so an intersection

chain, and ∂̂p1(ξ) = ∂p1(ξ) = ∂η. This does not agree with p1(∂̂ξ), and thus p1 is not a

chain map of intersection chain complexes in this example. This shows that the condition

that q̄ ≤ t̄ is necessary provided Y has any singular strata.

Corollary 7.3.17. Let X, Y be CS sets with respective perversities p̄, q̄ and respective sub-

spaces A,B. Let Q be a (p̄, q̄)-compatible perversity on X × Y . The map p1 induces a

well-defined chain map p1 : IQS∗(X × Y,A× Y ;R)→ I p̄S∗(X,A;R) if q̄ ≤ t̄. Similarly, the

map p2 induces a well-defined chain map p2 : IQS∗(X × Y,X × B;R) → I q̄S∗(Y,B;R) if

p̄ ≤ t̄. If the conditions on perversities are not satisfied, then such chain maps do not exist

in general.

Proof. An equivalent argument to that in the proof of Lemma 7.3.16 demonstrates that p1

induces a well-defined chain map IQS∗(A× Y ;R) → I p̄S∗(A;R). Therefore, p1 : IQS∗(X ×
Y ;R) → I p̄S∗(X;R) induces a well-defined map on the quotient complexes p1 : IQS∗(X ×
Y,A× Y ;R)→ I p̄S∗(X,A;R). The argument for p2 is identical.

The next lemma is similar in spirit to the last, though simpler. It will be used below in

the proof of Lemma 7.3.20.

Lemma 7.3.18. Let X be a filtered set with perversity q̄, and let p : X → pt be the map

from X to a point. Then p induces a well-defined chain map p : I q̄S∗(X;R) → S∗(pt;R) if

q̄ ≤ t̄. If q̄ � t̄, then this is not true in general.

Proof. If q̄ ≤ t̄, then I q̄S∗(X;R) = I q̄SGM∗ (X;R) by Proposition 6.2.9. All simplices are al-

lowable in S∗(pt;R), so p takes allowable chains to allowable chains, and since I q̄SGM∗ (X;R) ⊂
S∗(X;R), the desired p : I q̄S∗(X;R)→ S∗(pt;R) is simply the restriction of the chain map

p : S∗(X;R)→ S∗(pt;R). Therefore, p is a well-defined chain map when q̄ ≤ t̄.

If q̄ � t̄ and X has a singular stratum, then p will not necessarily be a chain map. In

particular, let σ be as in the example at the end of the proof of Lemma 7.3.16. Then again

∂̂p(σ) = ∂p(σ) = p(∂σ) 6= p(∂̂σ).
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Unital properties of products

Once again, we will need an algebraic lemma:

Lemma 7.3.19. Suppose C∗ and D∗ are chain complexes of R-modules. Let α ∈ Hom(C∗, R)

be a cochain and β ∈ Hom(D∗, R) a cocycle. Then

(id⊗ β)∗Φ∗(α) = Θ(α⊗ β) ∈ Hom(C∗ ⊗D∗, R),

where Φ : C∗ ⊗R→ C∗ is the standard isomorphism.9

Proof. It suffices to verify that both expressions in the claimed equality act identically on

elements of C∗ ⊗D∗. So let x⊗ y be a generator of C∗ ⊗D∗. Then

((id⊗ β)∗Φ∗(α))(x⊗ y) = α(Φ(id⊗ β)(x⊗ y))

= (−1)|β||x|α(Φ(x⊗ β(y)))

= (−1)|β||x|α(β(y)x)

= (−1)|β||x|β(y)α(x)

= Θ(α⊗ β)(x⊗ y).

Now, returning to the discussion at the beginning of this section, we have seen that in

order to have both an agreeable triple of the form (p̄, q̄; p̄) and projection-induced chain

maps p1 : IQS∗(X ×X;R)→ I p̄S∗(X;R) and p2 : IQS∗(X ×X;R)→ I q̄S∗(X;R) with Q a

(p̄, q̄)-compatible perversity on X ×X, we must take q̄ = t̄. This justifies the assumptions

that appear in the following lemma, which states that with certain choices of perversity the

algebraic diagonal is counital up to homotopy. Conveniently, the use of q̄ = t̄ also makes a

locally torsion free condition automatic, as every CS set is locally torsion free with respect

to t̄ by Example 5.3.12.

Lemma 7.3.20. Let R be a Dedekind domain. Suppose that p̄ is a perversity on a CS set

X and that A ⊂ X is an open subset. Then the compositions

I p̄S∗(X,A;R)
d̄−→ I t̄S∗(X;R)⊗ I p̄S∗(X,A;R)

a⊗id−−→ R⊗ I p̄S∗(X,A;R)
Φ−→∼= I p̄S∗(X,A;R)

and

I p̄S∗(X,A;R)
d̄−→ I p̄S∗(X,A;R)⊗ I t̄S∗(X;R)

id⊗a−−→ I p̄S∗(S,A;R)⊗R Φ−→∼= I p̄S∗(X,A;R),

in which a is the augmentation map10, are each homotopic to the identity map id : I p̄S∗(X,A;R)→
I p̄S∗(X,A;R).

9 Here the expression on the left makes sense because a degree i-cocycle can be interpreted as a degree

−i chain map D∗ → R, treating R as a chain complex with the module R in degree 0 and all other modules

trivial.
10See Remark 6.2.12. Here we think of a as a degree 0 chain map a : I t̄S∗(X;R)→ R, treating the R on

the right as the chain complex with the module R in degree 0 and the trivial module in all other degrees.
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Proof. We will demonstrate the claim regarding the first composition. The second argument

is equivalent.

Every CS set is locally (t̄, R)-torsion free by Example 5.3.12, and using that Dt̄ = 0̄ we

have Dp̄ ≥ Dt̄+Dp̄. So (p̄, t̄; p̄) is an agreeable triple by Lemma 7.2.8, and thus the algebraic

diagonal is defined.

Now, consider the diagram

IQp̄,t̄S∗(X ×X,A×X;R) �
ε
I p̄S∗(X,A;R)⊗ I t̄S∗(X;R)

I p̄S∗(X,A;R)

p1

?
�

ε
I p̄S∗(X,A;R)⊗ S∗(pt;R).

id⊗ p

?

(7.12)

The map p1 is here induced by the projection to the first factor X × X → X, which is

well defined by Corollary 7.3.17, and p is induced by the unique map X → pt and is well

defined by Lemma 7.3.18. The bottom cross product is that which occurs in the version of

the Künneth theorem for which one factor is a manifold. So each map of the diagram is

a chain map, and it suffices to establish commutativity in each degree. For fixed degrees,

each of the relevant chain modules is a submodule of either Sk(X;R) or Sk(X,A;R) for

some k, and the maps are induced, at the level of modules (i.e. ignoring boundary maps), by

the corresponding maps for the ordinary chain modules. Thus, to show that this diagram

commutes, it suffices to see that the diagrams

Si+j(X ×X,A×X;R) �
ε
Si(X,A;R)⊗ Sj(X;R)

Si+j(X,A;R) = Si+j(X × pt, A× pt;R)

p1

?
�
ε
Si(X,A;R)⊗ Sj(pt;R)

id⊗ p

?

commute.

If σ is an i-simplex representing an element of Si(X,A;R) and τ : ∆j → X is a j-simplex,

then ε(σ⊗τ) is defined by applying σ×τ to the singular triangulation of ∆i×∆j determined

by the Eilenberg-Zilber shuffle process. So, proceeding left then down, we obtain the chain

in Si+j(X,A;R) that comes from applying p1(σ × τ) to this singular triangulation. But if

(x, y) ∈ ∆i×∆j, we have p1(σ×τ)(x, y) = p1(σ(x), τ(y)) = σ(x). If we let π1 : ∆i×∆j → ∆i

be the projection to the first factor, we similarly have σπ1(x, y) = σ(x), so p1(σ× τ) = σπ1.

On the other hand, if π : ∆j → pt is the unique map to a point, ε(id⊗p)(σ⊗τ) = ε(σ⊗pτ) is

given by applying σ×p(τ) = σ×π to the Eilenberg-Zilber singular triangulation of ∆i×∆j.

But σπ1 and σ×π agree up to identifying X with X×pt, demonstrating the commutativity.

It follows that if we replace each ε in Diagram (7.12) by a homotopy inverse IAW, we

obtain a homotopy commutative diagram
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IQp̄,t̄S∗(X ×X,A×X;R)
IAW
- I p̄S∗(X,A;R)⊗ I t̄S∗(X;R)

I p̄S∗(X,A;R)

p1

? IAW
- I p̄S∗(X,A;R)⊗ S∗(pt;R).

id⊗ p

?

Next, in the special case we are considering here, it is possible to write down an explicit

map IAW : I p̄S∗(X,A;R)
IAW−−→ I p̄S∗(X,A;R) ⊗ S∗(pt;R) that is a chain homotopy inverse

to ε. In fact, we claim that the map ν : ξ → ξ⊗v0, where v0 is the unique singular 0 simplex

generating S0(pt;R), is such a homotopy inverse. For this, we note that it follows from the

definitions that εν = id as chain maps (again identifying X×pt with X). But this is enough

to imply that ν is a chain homotopy inverse to ε by the following argument: Let g be a chain

homotopy inverse to ε so that gε and εg are each homotopic to the appropriate identity;

such a g exists by Theorem 6.4.14 using that S∗(pt;R) = I q̄S∗(pt;R) for any q̄ and that Qp̄,q̄

agrees with p̄ on X × pt = X as pt has only a regular stratum. Then, as gε is homotopic to

the identity, gεν is homotopic to ν, but gεν = g. So ν is homotopic to g and so is a chain

homotopy inverse for ε.

Now consider the larger diagram

I p̄S∗(X,A;R)
d
- IQp̄,t̄S∗(X ×X,A×X;R)

IAW
- I p̄S∗(X,A;R)⊗ I t̄S∗(X;R)

I p̄S∗(X,A;R)

p1

? ν
-

=

-

I p̄S∗(X,A;R)⊗ S∗(pt;R)

id⊗ p

?

I p̄S∗(X,A;R)⊗R.

id⊗ a

?

�

Φ
∼=

We have already seen that the square commutes up to homotopy; here we are letting ν be

the map constructed in the preceding paragraph.

Commutativity of the upper left triangle is straightforward as p1d = idX . For the

commutativity of the bottom right triangle, we need only observe that Φ(id⊗a)ν(ξ) = Φ(id⊗
a)(ξ ⊗ v0) = Φ(ξ ⊗ 1) = ξ, as a has degree 0 and a(v0) = 1. Therefore, each component of

the diagram homotopy commutes, and the composition counterclockwise around the outside

of the diagram is homotopic to the identity. But, noting that the composition I t̄S∗(X;R)→
S∗(pt;R)

a−→ R factors the direct augmentation I t̄S∗(X;R)
a−→ R, the path around the outside

of the diagram is precisely Φ(id⊗ a)d̄.
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Proposition 7.3.21. Let R be a Dedekind domain. Suppose that p̄ is a perversity on a CS

set X and that A ⊂ X is an open subset. Let α ∈ Ip̄H i(X,A;R), and let 1 ∈ It̄H0(X;R)

be represented by the cocycle that evaluates to 1 on each 0-simplex of I t̄S0(X;R). Then

1 ^ α = α ^ 1 = α ∈ Ip̄H i(X,A;R).

Proof. We begin by observing that 1 really is a cocycle. For this, we need only show that if ξ

is a 1-chain in I t̄S1(X;R), then 1(∂ξ) = 0. By Proposition 6.2.9, I t̄S∗(X;R) = I t̄SGM∗ (X;R),

so ∂ξ is the usual boundary of ξ, treating ξ as an element of S1(X;R). Since 1 is a cocycle

in S0(X;R), it follows that 1(∂ξ) = 0. We also observe that if we treat the 0-cocycle

1 ∈ Hom(I t̄S0(X;R), R) as a degree 0 chain map I t̄S∗(X;R) → R, then it just the same

as the augmentation map a, utilized in the preceding lemma. So we will use the notation 1

when treating it as a cocycle and a when treating it as a chain map.

Now to verify the given property, we let id denote id : I p̄S∗(X,A;R) → I p̄S∗(X,A;R)

and observe that on cohomology we have

α = id∗α

= (Φ(id⊗ a)d̄)∗α by Lemma 7.3.20

= d̄∗(id⊗ a)∗Φ∗(α).

And by Lemma 7.3.19, together with the relation between the cocycle 1 and the chain map

a discussed above, (id⊗ a)∗Φ∗(α) = Θ(α⊗ 1). Therefore, α = d̄∗Θ(α⊗ 1) = α ^ 1.

Proposition 7.3.22. Let R be a Dedekind domain. Suppose that p̄ is a perversity on a CS

set X and that A ⊂ X is an open subset. Let ξ ∈ I p̄Hi(X,A;R), and let 1 ∈ It̄H0(X;R)

be represented by the cocycle that evaluates to 1 on each 0-simplex of I t̄S0(X;R). Then

1 _ ξ = ξ ∈ I p̄Hi(X,A;R).

Proof. We have just seen in the proof of Proposition 7.3.21 that 1 ∈ It̄S0(X;R) is a well-

defined cocycle given by the augmentation map a. Now we can compute as follows, again

using Lemma 7.3.20:

1 _ ξ = Φ((id⊗ 1)d̄(ξ))

= (Φ(id⊗ a)d̄)(ξ)

= id(ξ)

= ξ.

A unital property for cross products can be proven by reworking some of the pieces from

Lemma 7.3.20.

Proposition 7.3.23. Let R be a Dedekind domain. Suppose that p̄ is a perversity on a CS

set X and that A ⊂ X is an open subset. Let α ∈ Ip̄H i(X,A;R), and let 1 ∈ H0(pt;R) be

represented by the cocycle that evaluates to 1 on the singular 0 simplex of S0(pt;R). Then

1× α = α× 1 = α in Ip̄H
i(pt×X, pt× A;R) = Ip̄H

i(X × pt, A× pt;R) = Ip̄H
i(X,A;R).
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Proof. We will provide the argument for α× 1, the argument for 1× α being equivalent.

By definition, α× 1 = IAW∗Θ(α⊗ 1), and by Lemma 7.3.19, Θ(α⊗ 1) = (id⊗ a)∗Φ∗(α),

again using that the cocycle 1 corresponds to the chain map a. Thus, α × 1 = IAW∗(id ⊗
a)∗Φ∗(α). But, we saw in the proof of Lemma 7.3.20 that Φ(id⊗ a)IAW is the identity (up

to identifying X × pt with X) for a specific choice of IAW that we there labeled ν. Hence

IAW∗(id⊗ a)∗Φ∗(α) = α at the level of cohomology.

Proposition 7.3.24. Let R be a Dedekind domain. Suppose that p̄ is a perversity on a CS

set X and that A ⊂ X is an open subset. Let Y be a CS set with perversity q̄ ≤ t̄, and let Q

be a (p̄, q̄)-compatible perversity on X ×Y . Let α ∈ Ip̄H i(X,A;R), and let 1Y ∈ Iq̄H0(Y ;R)

be represented by the cocycle that evaluates to 1 on each 0-simplex of I q̄S0(Y ;R). Then

α× 1Y = p∗1(α) ∈ IQH∗(X × Y,A× Y ;R), where p1 : X × Y → X is the projection.

Proof. By Lemma 7.3.17, p∗1 is well-defined. Let p : Y → pt be the unique map, and observe

that by Lemma 7.3.18, p also induces a well-defined chain map p : I q̄S∗(X;R)→ S∗(pt;R).

We observe that if 1pt denotes the element of S0(pt;R) that takes the unique 0-simplex to

1, then p∗(1pt) = 1Y . Thus α × 1Y = α × (p∗(1pt)) = (id × p)∗(α × 1pt) by Proposition

7.3.2; technically, p and id× p = p1 are not stratified maps, but we know that they induces

maps on intersection chains by Lemmas 7.3.17 and 7.3.18 and, given this, the arguments of

Proposition 7.3.2 and Proposition 5.2.17 continue to apply. But α× 1pt = α by Proposition

7.3.23 and id× p = p1 as maps (identifying X × pt with X, as usual). Therefore, α× 1Y =

(id× p)∗(α× 1pt) = p∗1(α).

Products and evaluations

Lemma 7.3.20 can also be used to show that the cap product corresponds to evaluation

in the appropriate setting. Once again, we will need agreeable triples of the form (p̄, q̄; p̄),

forcing q̄ ≥ t̄ by our discussion at the beginning of this section. On the other hand, while we

will not be using projection maps here, the use of the augmentation map a will force us to

assume q̄ ≤ t̄; see Remark 6.2.12. So, once again, we must in fact use q̄ = t̄, and t̄ continues

to play a special role.

Proposition 7.3.25. Let R be a Dedekind domain, and suppose that p̄ is a perversity on a

CS set X and that A ⊂ X is an open subset. Let α ∈ Ip̄H i(X,A;R) and ξ ∈ I p̄Hi(X,A;R).

Then a(α _ ξ) = α(ξ) ∈ R, where a : I t̄H0(X;R)→ R is the augmentation map.

Proof. First, observe that we have a well-defined cap product Ip̄H
i(X,A;R)⊗I p̄Hi(X,A;R)→

I t̄H0(X;R) as every CS set is locally (t̄, R)-torsion free and Dp̄ ≥ Dp̄+Dt̄ = Dp̄+ 0̄ = Dp̄.

We next claim that if α ∈ Ip̄Si(X,A;R), a : I t̄S∗(X;R) → R is the augmentation map,

and Φ : R⊗ I t̄S∗(X;R)→ I t̄S∗(X;R) is the canonical isomorphism, then

aΦ(id⊗ α) = αΦ(a⊗ id) ∈ Hom(I t̄S∗(X;R)⊗ I p̄S∗(X,A;R), R).
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To check this, let x⊗ y ∈ I t̄S∗(X;R)⊗ I p̄S∗(X,A;R) be a generator. Then we have

(aΦ(id⊗ α))(x⊗ y) = (−1)i|x|aΦ(x⊗ α(y))

= (−1)i|x|a(α(y)x)

= (−1)i|x|α(y)a(x)

= α(y)a(x),

where the last equality comes from the observation that a(x) = 0 unless |x| = 0. Meanwhile,

(αΦ(a⊗ id))(x⊗ y) = (αΦ)(a(x)⊗ y)

= α(a(x)y)

= a(x)α(y).

So, indeed, aΦ(id⊗ α) = αΦ(a⊗ id).

Now, suppose α ∈ Ip̄H
i(X,A;R) and ξ ∈ I p̄Hi(X,A;R), and consider the evaluation

α(ξ). Since evaluation is well defined at the level of (co)homology, we know that the element

α(ξ) ∈ R is independent of the choice of intersection chain representing ξ. By Lemma 7.3.20,

we can therefore replace ξ in this computation with Φ(a⊗ id)d̄(ξ), where d̄ is defined with

respect to some specific choice of IAW. Therefore, α(ξ) = α(Φ(a ⊗ id)d̄(ξ)). But we have

just seen that αΦ(a ⊗ id) = aΦ(id ⊗ α), so α(ξ) becomes equal to (aΦ(id ⊗ α))(d̄ξ) =

a((Φ(id⊗ α))d̄(ξ)), which is precisely a(α _ ξ).

Remark 7.3.26. There is an observation to be made concerning the proof of Proposition 7.3.25

that will be useful later in Section 8.4.3, though its utility isn’t likely to be so apparent now.

Let us continue to assume that α ∈ Ip̄Si(X,A;R) and ξ ∈ I p̄Si(X,A;R) but that they are

not necessarily a cocycles and a cycle. We also continue to assume we have made a fixed

choice of IAW with which to define the cap product. As Lemma 7.3.20 is stated at the chain

level, it tells us that

ξ − Φ(a⊗ id)d̄(ξ) = D∂ξ + ∂Dξ, (7.13)

where D is a chain homotopy guaranteed by Lemma 7.3.20. The argument in the proof

continues to imply that α(Φ(a⊗ id)d̄(ξ)) = a(α _ ξ), so, applying α to the entire expression

(7.13) yields

α(ξ) = a(α _ ξ) + α(D∂ξ + ∂Dξ).

See the proof of Proposition 8.4.16 in Section 8.4.3 for our application of this formula.

Of course, there is also a nice formula for evaluation of the cohomology cross product on

the homology cross product:

Proposition 7.3.27. Let R be a Dedekind domain. Suppose that X, Y are CS sets with

respective perversities p̄, q̄ and that Q is a (p̄, q̄)-compatible perversity on X×Y . Let A ⊂ X

and B ⊂ Y be open subsets. Let α ∈ Ip̄Ha(X,A;R), β ∈ Iq̄Hb(Y,B;R), ξ ∈ I p̄Hi(X,A;R),

and η ∈ I q̄Hj(Y,B;R). Then with α × β ∈ IQH
a+b(X × Y, (A × Y ) ∪ (X × B);R) and

ξ×η ∈ IQHi+j(X×Y, (A×Y )∪ (X×B);R), we have (α×β)(ξ×η) = (−1)biα(ξ)β(η) ∈ R.
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Proof. Given the assumptions, α×β is well-defined in IQH
a+b(X×Y, (A×Y )∪ (X×B);R)

and ξ × η ∈ IQHi+j(X × Y, (A× Y ) ∪ (X ×B);R). Now we have

(α× β)(ξ × η) = [IAW∗Θ(α⊗ β)] ε(ξ ⊗ η)

= Θ(α⊗ β)IAWε(ξ ⊗ η)

= Θ(α⊗ β)(ξ ⊗ η)

= (−1)biα(ξ)β(η).

In the third line, we have used that IAW and ε are chain homotopy inverses, so that

IAWε(ξ ⊗ η) = ξ ⊗ η ∈ Hi+j(I
p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R)).

7.3.4 Associativity

We turn to the associativity of products. This is a nuisance. The problem is that we know

that certain relations need to hold among perversities p̄, q̄, and r̄ in order, for example, to

have a cup product

Ip̄H
i(X,A;R)⊗ Iq̄Hj(X,B;R)

^−→ Ir̄H
i+j(X,A ∪B;R).

But in an associativity statement of the form

(α ^ β) ^ γ = α ^ (β ^ γ)

there are already four cup products, all of which need to be defined, and that’s not even

considering yet whether there may need to be some extra hypotheses about the perversities

for the equality to hold.

To deal with the proliferation of necessary conditions, we will take a two-step process.

First, we will prove the standard associativity results under very broad hypotheses of the

form “Suppose all the needed intermediary and product perversities exist to make all the

maps in certain diagrams well defined and for the cross product maps to be chain homotopy

equivalences.” Then, in the second part of this section, we will show that such collections of

perversities do indeed exist under some more easily stated, though less general, hypotheses.

Associativity under broad assumptions

We can begin, as usual, with a purely algebraic lemma that does not involve any perversities:

Lemma 7.3.28. Let C∗, D∗, E∗ be chain complexes of R-modules. Then the following

diagram commutes:

Hom(C∗, R)⊗ Hom(D∗, R)⊗ Hom(E∗, R)
Θ⊗ id

- Hom(C∗ ⊗D∗, R)⊗ Hom(E∗, R)

Hom(C∗, R)⊗ Hom(D∗ ⊗ E∗, R)

id⊗Θ

? Θ
- Hom(C∗ ⊗D∗ ⊗ E∗, R).

Θ

?
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Proof. Let α ∈ Hom(C∗, R), β ∈ Hom(D∗, R), and γ ∈ Hom(E∗, R). To verify the commuta-

tivity, it suffices to check the evaluation of α⊗β⊗γ on a generator x⊗y⊗z of C∗⊗D∗⊗E∗.
We have:

Θ(Θ⊗ id)(α⊗ β ⊗ γ)(x⊗ y ⊗ z) = Θ(Θ(α⊗ β)⊗ γ)(x⊗ y ⊗ z)

= (−1)|γ|(|x|+|y|)[Θ(α⊗ β)(x⊗ y)]γ(z)

= (−1)|γ|(|x|+|y|)+|β||x|α(x)β(y)γ(z).

On the other hand,

Θ(id⊗Θ)(α⊗ β ⊗ γ)(x⊗ y ⊗ z) = Θ(α⊗Θ(β ⊗ γ))(x⊗ y ⊗ z)

= (−1)(|β|+|γ|)|x|α(x)Θ(β ⊗ γ)(y ⊗ z)

= (−1)(|β|+|γ|)|x|+|γ||y|α(x)β(y)γ(z).

The two expressions are equal, completing the proof.

Using the algebraic lemma, we have the following general associativity of the cross prod-

uct.

Proposition 7.3.29 (Associativity). Let R be a Dedekind domain. Suppose that p̄, q̄, r̄ are

perversities on CS sets X, Y , Z. Let A ⊂ X, B ⊂ Y , and C ⊂ Z be open subsets. Suppose

there are perversities Q1 on X × Y , Q2 on Y × Z, and Q3 on X × Y × Z such that

1. Q1 is (p̄, q̄)-compatible,

2. Q2 is (q̄, r̄)-compatible,

3. Q3 is both (p̄, Q2)-compatible and (Q1, q̄)-compatible11.

Let α ∈ Ip̄H
i(X,A;R), β ∈ Iq̄H

j(Y,B;R), and γ ∈ Ir̄H
k(Z,C;R). Then (α × β) × γ =

α× (β × γ) in

IQ3H
i+j+k(X × Y × Z, (A× Y × Z) ∪ (X ×B × Z) ∪ (X × Y × C);R).

Proof. From the conditions on the perversities, both iterated cross products are well defined

and live in

IQ3H
i+j+k(X × Y × Z, (A× Y × Z) ∪ (X ×B × Z) ∪ (X × Y × C);R).

Furthermore, leaving the R coefficients tacit, we have the following commutative diagram

by Proposition 5.2.19; not that our assumptions about Q1, Q2, and Q3 are sufficient to fulfill

the conditions there:

11 Such a collection Q1, Q2, Q3 certainly exists: if S ⊂ X, T ⊂ Y , and U ⊂ Z are strata (singular or

regular), we can take take Q1(S × T ) = p̄(S) + q̄(T ), Q2(T × U) = q̄(S) + r̄(T ), and Q3(S × T × U) =

p̄(S) + q̄(T ) + r̄(U).
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IQ3S∗(X × Y × Z, (A× Y × Z) ∪ (X ×B × Z) ∪ (X × Y × C)) �
ε

IQ1S∗(X × Y, (A× Y ) ∪ (X ×B))⊗ I r̄S∗(Z,C)

I p̄S∗(X,A)⊗ IQ2S∗(Y × Z, (B × Z) ∪ (Y × C))

ε

6

�
id⊗ ε

I p̄S∗(X,A)⊗ I q̄S∗(Y,B)⊗ I r̄S∗(Z,C).

ε⊗ id

6

Since each cross-product is a chain homotopy equivalence by Theorem 6.4.14, if we replace

each ε in the diagram with a choice of homotopy inverse IAW in the opposite direction we

obtain a homotopy commutative diagram. Dualizing and letting ∼ denote chain homotopy

we have

IAW∗(IAW⊗ id)∗ ∼ IAW∗(id⊗ IAW)∗, (7.14)

with ∼ becoming equality if we act on cohomology.

We can now compute at the level of cohomology

(α× β)× γ = IAW∗Θ((α× β)⊗ γ)

= IAW∗Θ(IAW∗Θ(α⊗ β)⊗ γ)

= IAW∗Θ(IAW∗Θ⊗ id)(α⊗ β ⊗ γ)

= IAW∗Θ(IAW∗ ⊗ id)(Θ⊗ id)(α⊗ β ⊗ γ)

= IAW∗(IAW⊗ id)∗Θ(Θ⊗ id)(α⊗ β ⊗ γ) by Lemma 7.3.1

= IAW∗(IAW⊗ id)∗Θ(id⊗Θ)(α⊗ β ⊗ γ) by Lemma 7.3.28

= IAW∗(id⊗ IAW)∗Θ(id⊗Θ)(α⊗ β ⊗ γ) by (7.14)

= IAW∗Θ(id⊗ IAW∗)(id⊗Θ)(α⊗ β ⊗ γ) by Lemma 7.3.1

= IAW∗Θ(id⊗ IAW∗Θ)(α⊗ β ⊗ γ)

= IAW∗Θ(α⊗ IAW∗Θ(β ⊗ γ))

= IAW∗Θ(α⊗ (β × γ))

= α× (β × γ).

We can now turn to the associativity properties of cup and cap products. Unfortunately,

as noted in the introduction to this section, this is a point at which we will be unreason-

ably general, at least to begin. To see why, consider the following diagram (R coefficients

implicit) whose commutativity will be required to obtain associativity identities of cup and

cap products of the form (α ^ β) ^ γ = α ^ (β ^ γ) and (α ^ β) _ ξ = α _ (β _ ξ):

I s̄S∗(X,A ∪B ∪ C)
d

- IQ4S∗(X ×X, ((A ∪B)×X) ∪ (X × C)) �
ε

I ūS∗(X,A ∪B)⊗ I r̄S∗(X,C)

IQ5S∗(X ×X, (A×X) ∪ (X × (B ∪ C)))

d

? id× d
- IQ3S∗(X ×X ×X, (A×X ×X) ∪ (X ×B ×X) ∪ (X ×X × C))

d× id

?
�
ε

IQ1S∗(X ×X, (A×X) ∪ (X ×B))⊗ I r̄S∗(X,C)

d⊗ id

?

I p̄S∗(X,A)⊗ I v̄S∗(X,B ∪ C)

ε

6

id⊗ d
- I p̄S∗(X,A)⊗ IQ2S∗(X ×X, (B ×X) ∪ (X × C))

ε

6

�
id⊗ ε

I p̄S∗(X,A)⊗ I q̄S∗(X,B)⊗ I r̄S∗(X,C).

ε⊗ id

6

(7.15)
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The commutativity itself is not particularly difficult. The problem is that even if we

start with, say, α ∈ Ip̄H∗(X;R), β ∈ Iq̄H∗(X;R), and γ ∈ Ir̄H∗(X;R) and want to consider

(α ^ β) ^ γ and α ^ (β ^ γ) in Is̄H
∗(X;R) then we will additionally need in intermediate

stages:

1. a triple (p̄, q̄; ū) that is Q1-agreeable for some (p̄, q̄)-compatible Q1, and

2. a triple (q̄, r̄; v̄) that is Q2-agreeable for some (q̄, r̄)-compatible Q2,

such that

3. the triple (ū, r̄; s̄) must be Q4-agreeable for some (ū, r̄)-compatible Q4, and

4. the triple (p̄, v̄; s̄) must be Q5-agreeable for some (p̄, v̄)-compatible Q5.

And that is just to have both iterated cup products defined. To actually relate the two

products requires a perversity Q3 that fits in the middle of the diagram such that

5. Q3 is (Q1, r̄)- and (p̄, Q2)-compatible, and

6. the maps d × id and id × d of the diagram are respectively (Q4, Q3)- and (Q5, Q3)-

stratified12.

That is a lot to ask!

At first glance, it does not appear to be so easy to give a simple set of criteria in terms of

p̄, q̄, r̄, and s̄ alone that will ensure that all these intermediaries exist and have the needed

properties. If the values of s̄, at least along the diagonal strata of the form S × S × S,

can be made relatively small, then it is not so difficult to find perversities that work in the

diagram. For example, we could choose the product perversities as in Footnote 11 on page

393 and take ū and v̄ sufficiently small for the diagonal maps involving them to be stratified,

at least so long as s̄ is small enough to allow it. But as s̄ gets larger the constraints on the

diagram begin to tighten, and one might want to use the larger possible values for the Qi.

But here things get tricky. For example, the possibilities for Q1 depend upon the intersection

homology torsion in certain degrees of the links of X with respect to the perversities p̄ and

q̄, but the possibilities for Q3 depend upon things like the intersection homology torsion in

certain degrees of the links of X ×X with respect to Q1. As we know, links in X ×X are

joins of links of X, and while we can actually compute their intersection homology in (at

least some of) the relevant degrees using (6.10), we quickly see that torsion information from

multiple degrees can start creeping in to our considerations, making general assertions quite

complicated. We do have Proposition 6.4.15, which says that if X is locally (p̄, R)-torsion

free and locally (q̄, R)-torsion free then X ×X will be locally (Q1, R)-torsion free. But even

12Note that indeed

(id× d)((A×X) ∪ (X × (B ∪ C))) ⊂ (A×X ×X) ∪ (X ×B ×X) ∪ (X ×X × C)

and analogously for d× id.
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if we have this, it seemingly provides no information about whether or not X is locally

(ū, R)-torsion free for any relevant ū.

Given these complications, it is remarkable that it is possible to make some organized

statements, as we will see below culminating in Propositions 7.3.34 and 7.3.35. These will

perhaps not be the most general statements, but they do provide readily verifiable criteria

on p̄, q̄, r̄, ū, v̄, s̄ that are sufficient to make the associativity work. Note that we will assume

ū and v̄ as given in those statements, but this is not so unreasonable as presumably we

either know or want to know something about where our intermediate cup and cap products

live, and even if we do not want to make such assumptions, these hypotheses can be easily

reinterpreted to read “if we have such ū, v̄.” Those results will also encompass a broader

set of possibilities if we are willing to assume locally torsion-free conditions. In fact, with

sufficient torsion free assumptions, our final results imply that there can be associativity so

long as the pleasing inequality Ds̄ ≥ Dp̄ + Dq̄ + Dr̄ holds. An application of Lemma 7.2.8

shows that this is the strongest statement we could hope for in terms of possibilities for s̄.

As promised, we begin quite generally with the following.

Lemma 7.3.30. Let R be a Dedekind domain. Suppose that p̄, q̄, r̄, s̄ are perversities on a CS

set X. Let A,B,C ⊂ X be open subsets. Suppose that perversities ū, v̄, Q1, Q2, Q3, Q4, Q5

exist so that conditions 1-6 above are satisfied.

Then the following diagram commutes up to chain homotopy:

I s̄S∗(X,A ∪B ∪ C;R)
d̄

- I ūS∗(X,A ∪B;R)⊗ I r̄S∗(X,C;R)

I p̄S∗(X,A;R)⊗ I v̄S∗(X,B ∪ C;R)

d̄

? id⊗ d̄
- I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)⊗ I r̄S∗(X,C;R).

d̄⊗ id

?

Proof. It will suffice to verify the commutativity of Diagram (7.15): The maps id × d and

d× id are defined on spaces by (id× d)(x, y) = (x, y, y) and (d× id)(x, y) = (x, x, y). The

assumptions of the lemma are that all the maps of Diagram (7.15) are well defined and

imply that all cross product maps ε are chain homotopy equivalences by Theorem 6.4.14.

We will show that the squares in the diagram commute. Since each cross-product is a chain

homotopy equivalence, this implies that if we replace each ε with a map IAW going in the

opposite direction, we obtain a diagram in which each square is homotopy commutative.

Notice that the top and left of the diagram become algebraic diagonals d̄, while the right

and bottom of the diagram take the form d̄ ⊗ id and id ⊗ d̄, assuming each symbol d̄ is

interpreted with respect to the appropriate R-modules.

Since we know that all maps in the diagram are well-defined chain maps, it suffices to

verify commutativity at the level of R-modules (as opposed to chain complexes). But we

know that each R-module here is a submodule of the analogous ordinary singular chain

R-modules, which are all free, generated by the singular simplices. So it suffices to verify

commutativity on singular simplices.
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The upper left square is induced by maps of spaces, and since (d× id)d(x) = (x, x, x) =

(id × d)d(x), this square commutes already at the space level. For the upper right square,

consider a generator σ⊗τ ∈ Si(X;R)⊗Sj(X;R). The map left then down yields the singular

chain corresponding to applying (d ⊗ id)(σ × τ) = (dσ) × τ to the singular triangulation

of ∆i × ∆j arising from the Eilenberg-Zilber shuffle procedure. On the other hand, the

righthand vertical map of the square takes σ⊗τ to (dσ)⊗τ , and then the bottom horizontal

map takes this to (dσ) × τ applied to the singular triangulation of ∆i × ∆j. So the two

ways around the square agree. The argument for the lower left square is equivalent. This

leaves the commutativity of the bottom right square, which is associativity of the chain cross

product; see Proposition 5.2.19 and Theorem 6.3.19.

We can now demonstrate the associativity of the cup and cap product under the assump-

tions that make Lemma 7.3.30 hold. Once again, we will state some nicer, but less general,

versions of these results below as Propositions 7.3.34 and 7.3.35.

Lemma 7.3.31 (Associativity). Let R be a Dedekind domain. Suppose that p̄, q̄, r̄, s̄ are

perversities on a CS set X. Let A,B,C ⊂ X be open subsets. Suppose that perver-

sities ū, v̄, Q1, Q2, Q3, Q4, Q5 exist so that Lemma 7.3.30 holds. Let α ∈ Ip̄H
i(X,A;R),

β ∈ Iq̄Hj(X,B;R), and γ ∈ Ir̄Hk(X,C;R). Then (α ^ β) ^ γ and α ^ (β ^ γ) are well

defined and equal elements of Is̄H
i+j+k(X,A ∪B ∪ C;R).

Proof. Representing α, β, and γ by cocycles and making specific choices of IAW maps, by

definition we have

(α ^ β) ^ γ = d̄∗Θ((α ^ β)⊗ γ)

= d̄∗Θ((d̄∗Θ(α⊗ β))⊗ γ)

= d̄∗Θ(d̄∗Θ⊗ id)(α⊗ β ⊗ γ).

Similarly,

α ^ (β ^ γ) = d̄∗Θ(α⊗ (β ^ γ))

= d̄∗Θ(α⊗ (d̄∗Θ(β ⊗ γ)))

= d̄∗Θ(id⊗ d̄∗Θ)(α⊗ β ⊗ γ).

Notice here that, at the cochain level, these expressions depend on the choices of IAW

maps but that they are well-defined expressions independent of these choices upon passing

to cohomology, as all IAW maps are well defined up to chain homotopy. Now we compute

at the level of cohomology:
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(α ^ β) ^ γ = (d̄∗Θ(d̄∗Θ⊗ id))(α⊗ β ⊗ γ)

= d̄∗Θ(d̄∗ ⊗ id)(Θ⊗ id)(α⊗ β ⊗ γ)

= d̄∗(d̄⊗ id)∗Θ(Θ⊗ id)(α⊗ β ⊗ γ) by Lemma 7.3.1

= d̄∗(id⊗ d̄)∗Θ(Θ⊗ id)(α⊗ β ⊗ γ) by Lemma 7.3.30

= d̄∗(id⊗ d̄)∗Θ(id⊗Θ)(α⊗ β ⊗ γ) by Lemma 7.3.28

= d̄∗Θ(id⊗ d̄∗)(id⊗Θ)(α⊗ β ⊗ γ) by Lemma 7.3.1

= d̄∗Θ(id⊗ d̄∗Θ)(α⊗ β ⊗ γ)

= α ^ (β ^ γ).

Lemma 7.3.32 (Associativity). Let R be a Dedekind domain. Suppose that p̄, q̄, r̄, s̄ are

perversities on a CS set X. Let A,B,C ⊂ X be open subsets. Suppose that perver-

sities ū, v̄, Q1, Q2, Q3, Q4, Q5 exist so that Lemma 7.3.30 holds. Let α ∈ Iq̄H
j(X,B;R),

β ∈ Ir̄Hk(X,C;R), and ξ ∈ I s̄Hi+j+k(X,A∪B∪C;R). Then (α ^ β) _ ξ and α _ (β _ ξ)

are well defined and equal elements of I p̄Hi(X,A;R).

Proof. To demonstrate the equality, let us again assume that we have chosen fixed chain maps

IAW and compute both expressions for given elements α ∈ Iq̄Sj(X,B;R), β ∈ Ir̄Sk(X,C;R),

and ξ ∈ I s̄Si+j+k(X,A ∪B ∪ C;R).

(α ^ β) _ ξ = Φ(id⊗ (α ^ β))d̄(ξ)

= Φ(id⊗ d̄∗Θ(α⊗ β))d̄(ξ)

= Φ(id⊗Θ(α⊗ β)d̄)d̄(ξ)

= Φ(id⊗Θ(α⊗ β))(id⊗ d̄)d̄(ξ).

The other computation is a bit more complicated. For it, we will want to assume we have

fixed IAW maps, that d̄(ξ) =
∑

` y` ⊗ z` ∈ I ūS∗(X,A ∪B;R)⊗ I r̄S∗(X,C;R), and that for
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each y` we have d̄(y`) =
∑

a u`a ⊗ v`a ∈ I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R).

α _ (β _ ξ) = Φ(id⊗ α)d̄(β _ ξ)

= Φ(id⊗ α)d̄(Φ(id⊗ β))d̄(ξ)

= Φ(id⊗ α)d̄(Φ(id⊗ β))

(∑
`

y` ⊗ z`

)
= (−1)k|y`|Φ(id⊗ α)d̄

∑
`

β(z`)y`

= (−1)k|y`|Φ(id⊗ α)
∑
`

β(z`)d̄(y`)

= (−1)k|y`|Φ(id⊗ α)
∑
`

β(z`)
∑
a

u`a ⊗ v`a

= (−1)k|y`|+j|u`a|
∑
`

∑
a

α(v`a)β(z`)u`a

= (−1)k|y`|+j|u`a|+k|v`a|Φ

(∑
`,a

u`a ⊗Θ(α⊗ β)(v`a ⊗ z`)

)
= (−1)k|y`|+j|u`a|+k|v`a|+(j+k)|u`a|Φ(id⊗Θ(α⊗ β))

∑
`,a

u`a ⊗ v`a ⊗ z`

= Φ(id⊗Θ(α⊗ β))(d̄⊗ id)d̄(ξ).

For the signs in the last line, we notice that these expressions vanish unless j = |α| = |v`a|
and k = |β| = |z`|, which leaves |u`a| = i in the nonvanishing terms. Therefore,

k|y`|+ j|u`a|+ k|v`a|+ (j + k)|u`a| = k(i+ j) + ij + jk + (j + k)i

= ik + jk + ij + jk + ij + ik,

which is even.

So, now suppose that ξ ∈ I s̄Hi+j+k(X,A ∪ B ∪ C;R). Since we know by Lemma 7.3.30

that (d̄⊗ id)d̄ and (id⊗ d̄)d̄ are chain homotopic chain maps, we know that

(d̄⊗ id)d̄(ξ) = (id⊗ d̄)d̄(ξ) ∈ Hi+j+k(I
p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)⊗ I r̄S∗(X,C;R)).

Similarly, we know that if α ∈ Iq̄Hj(X,B;R) and β ∈ Ir̄Hk(X,C;R), then Θ(α⊗β) is well-

defined in H∗(Hom(I p̄S∗(X,B;R)⊗ I q̄S∗(X,C;R), R)). From here, the verification that

Φ(id⊗Θ(α⊗ β))(d̄⊗ id)d̄(ξ) = Φ(id⊗Θ(α⊗ β))(id⊗ d̄)d̄(ξ)

in homology follows exactly as in the proof of Lemma 7.2.20, where we showed that the cap

product is independent of the choice of algebraic diagonal map up to chain homotopy.
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Associativity in some more specific settings

The following provides some reasonable conditions under which the hypotheses of Lemma

7.3.30 are fulfilled. As the careful reader will observe in the proof, there are various other

such statements that could be made using different torsion-free hypotheses, but we will be

content with this statement and its corollaries.

Lemma 7.3.33. Suppose that p̄, q̄, r̄, s̄ are perversities on a CS set X. Suppose there are

perversities ū and v̄ on X such that

1. Dū > Dp̄+Dq̄,

2. Dv̄ > Dq̄ +Dr̄,

3. Ds̄ > Dū+Dr̄, and

4. Ds̄ > Dp̄+Dv̄.

Then there exist perversities Q1, Q2, Q3, Q4, Q5 satisfying the requirements for Lemma 7.3.30.

If X is locally (p̄, R)-torsion free and locally (r̄, R)-torsion free, then the conditions can all

be replaced with non-strict inequalities, i.e. Dū ≥ Dp̄+Dq̄, etc.

Proof. By the computation in the proof of Lemma 7.2.8, the condition Dū ≥ Dp̄ + Dq̄ is

equivalent to ū(S) ≤ p̄(S)+ q̄(S)+2−codimX(S) for all singular strata S ⊂ X, and similarly

Dū > Dp̄+Dq̄ is equivalent to ū(S) ≤ p̄(S) + q̄(S) + 1− codimX(S) for all singular strata

S ⊂ X. So if S and T are both singular strata, we take Q1(S×T ) = p̄(S)+ q̄(T )+2 when we

assume that X is locally (p̄, R)-torsion free and Q1(S×T ) = p̄(S)+ q̄(T )+1 otherwise; then

Q1 will be (p̄, q̄)-compatible, and (p̄, q̄; ū) will be a Q1-agreeable triple by Definition 7.2.6.

Similarly, if we define Q2, Q4, Q5 analogously, we will have a Q2-agreeable triple (q̄, r̄; v̄), a

Q4-agreeable triple (ū, r̄; s̄), and a Q5-agreeable triple (p̄, v̄; s̄). So, assuming our hypotheses

and with these choices, all arrows around the outside of Diagram (7.15) exist and satisfy

the first four conditions following that diagram. Next we must define Q3 and show that it

satisfies the fifth and sixth conditions.

First, assume there are no torsion free conditions. Let Q3 be defined on strata S×T ×U
so that if S × T × U is not a regular stratum then

Q3(S × T × U) = p̄(S) + q̄(T ) + r̄(U) + k − 1,

where k is the number of singular strata among S, T, U . Recalling that all perversities are

assumed to evaluate to 0 on regular strata, it is then routine to verify that Q3 is both (Q1, r̄)-

and (p̄, Q2)-compatible. For example, if S and T are singular and U is regular then

Q3(S × T × U) = p̄(S) + q̄(T ) + 1 = Q1(S × T ) = p̄(S) +Q2(T × U) + 1

and if S, T , U are all singular then

Q3(S × T × U) = p̄(S) + q̄(T ) + r̄(U) + 2 = Q1(S × T ) + r̄(U) + 1 = p̄(S) +Q2(T × U) + 1.
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The other necessary verifications are similar. If we assume X to be locally (p̄, R)-torsion free

and locally (r̄, R)-torsion free, then we may take

Q3(S × T × U) = p̄(S) + q̄(T ) + r̄(U) + 2(k − 1),

and again similar verifications hold.

Lastly, we must show that d × id and id × d are respectively (Q4, Q3)- and (Q5, Q3)-

stratified. As the arguments are symmetric, we provide the first. It is evident that d × id

takes points in ΣX×X to points in ΣX×X×X ; in fact (d× id)(S×T ) ⊂ S×S×T . So we just

need to verify the perversity condition. The computation is trivial if S × T ⊂ X × X is a

regular stratum. So we check three cases:

• S regular, T singular

Q4(S × T )− codimX×X(S × T ) = r̄(T )− codimX(T )

= Q3(S × S × T )− codimX×X×X(S × S × T ).

• S singular, T regular

Q4(S × T )− codimX×X(S × T ) = ū(S)− codimX(S)

≤ p̄(S) + q̄(S) + Cū − codimX(S)− codimX(S)

= Q3(S × S × T )− codimX×X×X(S × S × T ),

where Cū = 2 if we assume that X is locally (p̄, R)-torsion free and Cū = 1 otherwise.

• S singular, T singular

Q4(S × T )− codimX×X(S × T ) = ū(S) + r̄(T ) + C4 − codimX×X(S × T )

≤ p̄(S) + q̄(S) + Cū − codimX(S) + C4 − codimX×X(S × T )

= Q3(S × S × T )− codimX×X×X(S × S × T ),

where Cū = C4 = 2 if we assume that X is locally (p̄, R)-torsion free and locally

(r̄, R)-torsion free and Cū = C4 = 1 without these assumptions.

This demonstrates that d× id is (Q4, Q3)-stratified, as claimed.

Using Lemmas 7.3.31, 7.3.32, and 7.3.33, and Corollary 7.2.9, we now have the following:

Proposition 7.3.34 (Associativity). Let R be a Dedekind domain. Suppose that p̄, q̄, r̄, s̄

are perversities on a CS set X with open subsets A,B,C. Suppose there are perversities ū

and v̄ on X such that
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1. Dū > Dp̄+Dq̄,

2. Dv̄ > Dq̄ +Dr̄,

3. Ds̄ > Dū+Dr̄, and

4. Ds̄ > Dp̄+Dv̄.

Let α ∈ Ip̄H
i(X,A;R), β ∈ Iq̄H

j(X,B;R), γ ∈ Ir̄H
k(X,C;R), α ^ β ∈ IūH

i+j(X,A ∪
B;R), and β ^ γ ∈ Iv̄H

j+k(X,B ∪ C;R). Then (α ^ β) ^ γ = α ^ (β ^ γ) ∈
Is̄H

i+j+k(X,A ∪B ∪ C;R).

If X is locally (p̄, R)-torsion free and locally (r̄, R)-torsion free, then the conditions can

all be replaced with non-strict inequalities, i.e. Dū ≥ Dp̄+Dq̄, etc.

Proposition 7.3.35 (Associativity). Let R be a Dedekind domain. Suppose that p̄, q̄, r̄, s̄

are perversities on a CS set X with open subsets A,B,C. Suppose there are perversities ū

and v̄ on X such that

1. Dū > Dp̄+Dq̄,

2. Dv̄ > Dq̄ +Dr̄,

3. Ds̄ > Dū+Dr̄, and

4. Ds̄ > Dp̄+Dv̄.

Let α ∈ Iq̄H
j(X,B;R), β ∈ Ir̄H

k(X,C;R), ξ ∈ I s̄Hi+j+k(X,A ∪ B ∪ C;R), α ^ β ∈
Iv̄H

j+k(X,B ∪ C;R), and β _ ξ ∈ I ūHi+j(X,A ∪ B;R). Then (α ^ β) _ ξ = α _ (β _

ξ) ∈ I p̄Hi(X,A;R).

If X is locally (p̄, R)-torsion free and locally (r̄, R)-torsion free, then the conditions can

all be replaced with non-strict inequalities, i.e. Dū ≥ Dp̄+Dq̄, etc.

Remark 7.3.36. As promised above, we see that if we assume the torsion free conditions in

Propositions 7.3.34 and 7.3.35 and if we are willing to allow ū and v̄ so that Dū = Dp̄+Dq̄

and Dv̄ = Dq̄ + Dr̄, then the required relation among p̄, q̄, r̄, and s̄ for associativity

relationships to hold becomes simply

Ds̄ ≥ Dp̄+Dq̄ +Dr̄.

More generally, without assuming the torsion free conditions, if we are willing to take ū and

v̄ so that Dū = Dp̄+Dq̄+ 1 and Dv̄ = Dq̄+Dr̄+ 1 (on singular strata), then we may have

associativity whenever

Ds̄ ≥ Dp̄+Dq̄ +Dr̄ + 2.
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7.3.5 Stability

We now turn to what Dold [71] refers to as “stability” properties of products. These are

the properties that involve the connecting morphisms ∂∗ and d∗ in the long exact homology

and cohomology sequences. Here we run into some additional difficulties because we do not

have the fact from ordinary homology, which Dold achieves via acyclic model arguments,

that the IAW maps are natural as chain maps with respect to maps of spaces; this naturality

property plays a subtle role in the arguments of [71]. We do have such a fact for the chain

cross product ε (see Proposition 5.2.17 and Theorem 6.3.19), but we cannot assume that this

naturality continues to hold when we replace each ε with a chain homotopy inverse IAW.

Therefore, our arguments will have to be more elaborate than those of Dold.

Stability of cap products

We begin with the stability of cap products, which requires some big diagrams but fewer

new techniques.

Proposition 7.3.37. Let R be a Dedekind domain. Suppose X is a CS set and that (p̄, q̄; r̄)

is an agreeable triple of perversities on X. Let A,B ⊂ X be open subsets with i : B ↪→ X

the inclusion map. Suppose α ∈ Iq̄Hj(B;R) and ξ ∈ I r̄Hi+j(X,A ∪B;R). Then

(d∗(α)) _ ξ = (−1)j+1i(α _ e−1∂∗(ξ)) ∈ I p̄Hi−1(X,A;R),

where we interpret ∂∗(ξ) as landing in I r̄Hi+j−1(A∪B,A;R) and e : I r̄Hi+j−1(B,A∩B;R)→
I r̄Hi+j−1(A ∪B,A;R) is the excision isomorphism.

In other words, the following diagram commutes13:

Iq̄H
j(B;R)⊗ I r̄Hi+j(X,A ∪B;R)

d∗ ⊗ id
- Iq̄H

j+1(X,B;R)⊗ I r̄Hi+j(X,A ∪B;R)
_
- I p̄Hi−1(X,A;R)

Iq̄H
j(B;R)⊗ I r̄Hi+j−1(A ∪B,A;R)

−(id⊗ ∂∗)

?
�
id⊗ e
∼=

Iq̄H
j(B;R)⊗ I r̄Hi+j−1(B,A ∩B)

_
- I p̄Hi−1(B,A ∩B;R).

i

6

13Recall that we treat ∂∗ as a degree −1 map for sign purposes.
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Proof. The proof will eventually utilize the following diagram, with R coefficients tacit:

Hi+j(I
p̄S∗(X,A)⊗ I q̄S∗(X,B))

ε
- IQp̄,q̄Hi+j(X ×X, (A×X) ∪ (X ×B)) �

d
I r̄Hi+j(X,A ∪B)

IQp̄,q̄Hi+j−1((A×X) ∪ (X ×B))

∂∗

?
�

d
I r̄Hi+j−1(A ∪B)

∂∗

?

IQp̄,q̄Hi+j−1((A×X) ∪ (X ×B), A×X)
?

�
d

I r̄Hi+j−1(A ∪B,A)
?

Hi+j−1(I p̄S∗(X,A)⊗ I q̄S∗(B))

∂∗

? ε
- IQp̄,q̄Hi−1+j(X ×B,A×B)

∼= e′

6

�
d

I r̄Hi+j−1(B,A ∩B)

∼= e

6

Hi+j−1(I p̄S∗(B,A ∩B)⊗ I q̄S∗(B))

i⊗ id

6

ε
- IQp̄,q̄Hi+j−1(B ×B, (A ∩B)×B).

i× id

6

�

d

(7.16)

Here, each of the diagonal maps is also composed with the evident inclusion. The maps

i, e, and e′ are induced by inclusion, and unlabeled maps are also induced by the evident

inclusions or projections to quotient complexes. The map labeled ∂∗ on the left is meant to

be the boundary map in the long exact sequence associated to the short exact sequence

0 - I p̄S∗(X,A;R)⊗ I q̄S∗(B;R) - I p̄S∗(X,A;R)⊗ I q̄S∗(X;R) - I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R) - 0.

(7.17)

This is obtained by tensoring the exact sequence of q̄ intersection chains of the pair (X,B)

with the complex I p̄S∗(X,A;R). The short exact sequence remains exact after tensoring as

I p̄S∗(X,A;R) is projective by Lemma 6.3.1 and so flat.

We verify the commutativity of the diagram, beginning with the upper left rectangle. Ev-

ery element of I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R) can be represented by a chain in I p̄S∗(X;R)⊗
I q̄S∗(X;R), and if x is such a chain that is a cycle in I p̄S∗(X,A;R) ⊗ I q̄S∗(X,B;R),

and so represents a homology class ξ, then by the standard zig-zag construction ∂∗ξ ∈
H∗(I

p̄S∗(X,A;R)⊗ I q̄S∗(B;R)) is represented by ∂x. Therefore, ε∂∗(ξ) ∈ IQp̄,q̄Hi−1+j(X ×
B,A × B;R) is represented by ε(∂x), which also represents the image of this class in

IQp̄,q̄Hi+j−1((A × X) ∪ (X × B), A × X;R). But since ε is a chain map, ε(∂x) = ∂ε(x),

which represents ∂∗ε(ξ) in IQp̄,q̄Hi+j−1((A × X) ∪ (X × B);R) and so also its image in

IQp̄,q̄Hi+j−1((A×X) ∪ (X ×B), A×X;R). So the upper left rectangle commutes.

The square on the bottom left commutes by the non-GM version of Proposition 5.2.17;

see also Theorem 6.3.19. The triangle and the two bottom squares on the right commute

at the space level because diagonal maps are natural, i.e. if f : Z → W is any map of

spaces and dZ and dW are the respective diagonal maps then dWf = (f × f)dZ . For

the upper square on the right, let x be a chain in I r̄Si+j(X;R) representing an element
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ξ ∈ I r̄Hi+j(X,A ∪ B;R) and recall that ∂∗ can be represented by taking the boundary of

x. So dA∪B∂∗(ξ) is represented by including dA∪B(∂x) into (A ×X) ∪ (X × B) ⊂ X ×X.

On the other hand, ∂∗d(ξ) is represented by ∂dX(x) = dX∂x, as d is a chain map. But

again using the naturality of d, these are the same chain. Therefore, both images of ξ are

represented by the same chain.

Let us also verify that the two maps labeled e and e′, which are meant to indicate excision,

really are isomorphisms. Since we have assumed A and B to be open subsets of X, the pair

{A,B} is an open cover of A ∪B. Consider now the maps that factor e:

I r̄S∗(B;R)

I r̄S∗(A ∩B;R)
→ I r̄S∗(A;R) + I r̄S∗(B;R)

I r̄S∗(A;R)
→ I r̄S∗(A ∪B;R)

I r̄S∗(A;R)
.

The first map is an isomorphism by the second isomorphism theorem, noting that I r̄S∗(A;R)∩
I r̄S∗(B;R) = I r̄S∗(A∩B;R), while the second map induces a homology isomorphism by the

non-GM version of the arguments in the proof of Theorem 4.4.23. The map e′ is similarly a

homology isomorphism by the same arguments, replacing A with A×X and B with X ×B.

Next we recall how d∗ works. Suppose that α represents an element of Iq̄H
j(B;R). Then

the zig-zag construction of d∗ shows that d∗α ∈ Iq̄Hj+1(X,B;R) is represented by dᾱ, where

ᾱ ∈ Iq̄Sj(X;R) restricts to α over B.

Now, suppose that ξ ∈ I r̄Hi+j(X,A ∪ B;R). Then d̄(ξ) is obtained by going left across

the top row of the diagram, using that ε is an isomorphism by the Künneth theorem.

Suppose we choose chain maps IAW and that d̄(ξ) is then represented by
∑

k yk ⊗ zk ∈
I p̄S∗(X;R) ⊗ I q̄S∗(X;R), noting that every element of I p̄S∗(X,A;R) ⊗ I q̄S∗(X,B;R) has

such representatives. By definition, we then have

(d∗α) _ ξ = Φ(id⊗ d∗α)(d̄ξ)

= Φ(id⊗ dᾱ)

(∑
k

yk ⊗ zk

)
=
∑
k

(−1)(j+1)|yk|ykdᾱ(zk)

=
∑
k

(−1)(j+1)|yk|+j+1ykᾱ(∂zk)

= Φ(id⊗ ᾱ)

(∑
k

(−1)(j+1)|yk|+j+1+j|yk|yk ⊗ ∂zk

)

= Φ(id⊗ ᾱ)

(∑
k

(−1)|yk|+j+1yk ⊗ ∂zk

)

= (−1)j+1Φ(id⊗ ᾱ)

(∑
k

(−1)|yk|yk ⊗ ∂zk

)
,

which we know must be a cycle in I p̄Si−1(X,A;R).
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Notice that the expression here∑
k

(−1)|yk|yk ⊗ ∂zk ∈ I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

is a piece of

∂(
∑
k

yk ⊗ zk) =
∑

((∂yk)⊗ zk + (−1)|yk|yk ⊗ ∂zk).

So

(d∗α) _ ξ = (−1)j+1Φ(id⊗ ᾱ)

(∑
k

(−1)|yk|yk ⊗ ∂zk

)

= (−1)j+1Φ(id⊗ ᾱ)

(
∂

(∑
k

yk ⊗ zk

)
−
∑

(∂yk)⊗ zk

)

= (−1)j+1Φ(id⊗ ᾱ)∂

(∑
k

yk ⊗ zk

)
−
∑
k

(−1)j+1+j|∂yk|ᾱ(zk)∂yk.

The terms of the second summand on the right are all boundaries in X, and so represent 0

in I p̄Hi−1(X,A;R). Therefore, the element (d∗α) _ ξ ∈ I p̄Hi−1(X,A;R) is also represented

by (−1)j+1Φ(id⊗ ᾱ)∂(
∑

k yk ⊗ zk).
Now, recall that

∑
k yk ⊗ zk ∈ I p̄S∗(X;R) ⊗ I q̄S∗(X;R) was chosen so that its image

under

I p̄S∗(X;R)⊗ I q̄S∗(X;R)→ I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

is a cycle representing d̄(ξ). Of course this map factors through I p̄S∗(X,A;R)⊗ I q̄S∗(X;R),

and so
∑

k yk⊗zk also represents a chain there. Furthermore, since the image in I p̄S∗(X,A;R)⊗
I q̄S∗(X,B;R) is a cycle, it follows from the zig-zag construction of the connecting morphism

∂∗ of the homology exact sequence associated to (7.17) that the image of
∑

k yk ⊗ zk under

the boundary map

∂ : (I p̄S∗(X,A;R)⊗ I q̄S∗(X;R))i+j → (I p̄S∗(X,A;R)⊗ I q̄S∗(X;R))i+j−1

must actually be contained in the submodule (I p̄S∗(X,A;R)⊗I q̄S∗(B;R))i+j−1. So ∂(
∑

k yk⊗
zk) represents the image of ξ after traveling all the way left and then down one step in diagram

(7.16). We also observe that ∂(
∑

k yk ⊗ zk) being contained in I p̄S∗(X,A;R) ⊗ I q̄S∗(B;R)

means that

Φ(id⊗ ᾱ)∂

(∑
k

yk ⊗ zk

)
= Φ(id⊗ α)∂

(∑
k

yk ⊗ zk

)
,

as ᾱ restricts to α for chains in B, by definition.

At this point, we can fully employ Diagram (7.16) by using the commutativity to observe

that ∂(
∑

k yk ⊗ zk) ∈ Hi+j−1(I p̄S∗(X,A;R) ⊗ I q̄S∗(B;R)) equals (i ⊗ id)d̄e−1∂∗(ξ). By the

argument in the proof of Lemma 7.2.20 showing that the cap product is well defined, we

thus have that
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Φ(id⊗ α)∂

(∑
k

yk ⊗ zk

)
= Φ(id⊗ α)(i⊗ id)d̄e−1∂∗(ξ).

So

(d∗α) _ ξ = (−1)j+1Φ(id⊗ α)(i⊗ id)d̄e−1∂∗(ξ)

= (−1)j+1Φ(i⊗ α)d̄e−1∂∗(ξ)

= (−1)j+1iΦ(id⊗ α)d̄e−1∂∗(ξ)

= (−1)j+1i(α _ e−1∂∗(ξ)),

which is what we needed to show.

For the third equality in the preceding sequence, we note that in general for any u⊗ v ∈
C∗ ⊗D∗, f : C∗ → C ′∗, and γ ∈ Hom(D∗, R) we have

Φ(f ⊗ γ)(u⊗ v) = (−1)|γ||u|Φ(f(u)⊗ γ(v))

= (−1)|γ||u|γ(v)f(u)

= f((−1)|γ||u|γ(v)u)

= f(Φ(id⊗ γ)(u⊗ v)).

Proposition 7.3.38. Let R be a Dedekind domain. Suppose X is a CS set and that (p̄, q̄; r̄)

is an agreeable triple of perversities on X. Let A,B ⊂ X be open subsets with i : A ↪→ X

the inclusion map. Suppose α ∈ Iq̄Hj(X,B;R) and ξ ∈ I r̄Hi+j(X,A ∪B;R). Then

∂∗(α _ ξ) = (−1)j(i∗(α)) _ (e−1∂∗(ξ)) ∈ I p̄Hi−1(A;R),

where we interpret ∂∗(ξ) as landing in I r̄Hi+j−1(A∪B,B;R) and e : I r̄Hi+j−1(A,A∩B;R)→
I r̄Hi+j−1(A ∪B,B;R) is the excision isomorphism.

In other words, the following diagram commutes14:

Iq̄H
j(X,B;R)⊗ I r̄Hi+j(X,A ∪B;R)

_
- I p̄Hi(X,A;R)

Iq̄H
j(A,A ∩B;R)⊗ I r̄Hi+j−1(A ∪B,B;R)

i∗ ⊗ ∂∗
?

�
id⊗ e
∼=

Iq̄H
j(A,A ∩B;R)⊗ I r̄Hi+j−1(A,A ∩B)

_
- I p̄Hi−1(A;R).

∂∗

?

14Recall that we treat ∂∗ as a degree −1 map for sign purposes.
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Proof. Consider the following diagram, with R coefficients tacit:

Hi+j(I
p̄S∗(X,A)⊗ I q̄S∗(X,B))

ε
- IQp̄,q̄Hi+j(X ×X, (A×X) ∪ (X ×B)) �

d
I r̄Hi+j(X,A ∪B)

IQp̄,q̄Hi+j−1((A×X) ∪ (X ×B))

∂∗

?
�

d
I r̄Hi+j−1(A ∪B)

∂∗

?

IQp̄,q̄Hi+j−1((A×X) ∪ (X ×B), X ×B)
?

�
d

I r̄Hi+j−1(A ∪B,B)
?

Hi+j−1(I p̄S∗(A)⊗ I q̄S∗(X,B))

∂∗

? ε
- IQp̄,q̄Hi−1+j(A×X,A×B)

∼= e′

6

�
d

I r̄Hi+j−1(A,A ∩B)

∼= e

6

Hi+j−1(I p̄S∗(A)⊗ I q̄S∗(A,A ∩B))

id⊗ i

6

ε
- IQp̄,q̄Hi+j−1(A× A,A× (A ∩B)).

id× i

6

�

d

This is the same as the diagram in Proposition 7.3.37 except that the roles of (X,A) and

(X,B) have been reversed. In particular, the ∂∗ on the left is now the boundary map in the

long exact sequence associated to the short exact sequence

0 - I p̄S∗(A;R)⊗ I q̄S∗(X,B;R) - I p̄S∗(X;R)⊗ I q̄S∗(X,B;R) - I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R) - 0.

The arguments for commutativity, however, remain the same.

Suppose that ξ ∈ I r̄Hi+j(X,A ∪ B;R) and that we have chosen fixed IAW maps.

Then d̄(ξ) is obtained by going left across the top row of the diagram, using that ε is

an isomorphism by the Künneth theorem. Suppose d̄(ξ) is represented by
∑

k yk ⊗ zk ∈
I p̄S∗(X;R)⊗ I q̄S∗(X;R). By definition, α _ ξ is represented by

α _ ξ = Φ(id⊗ α)d̄(ξ)

= Φ(id⊗ α)

(∑
k

yk ⊗ zk

)
=
∑
k

(−1)j|yk|α(zk)yk,

which is an element of I p̄Si(X;R) representing a cycle in I p̄Si(X,A;R). Therefore, by the

408



zig-zag construction, ∂∗(α _ ξ) is represented by

∂∗(α _ ξ) = ∂

(∑
k

(−1)j|yk|α(zk)yk

)
=
∑
k

(−1)j|yk|α(zk)∂yk

= Φ(id⊗ α)
∑

(−1)j|yk|+j(|yk|−1)(∂yk)⊗ zk

= (−1)jΦ(id⊗ α)
∑

(∂yk)⊗ zk,

which must be a cycle in I p̄Si−1(A;R) ⊂ I p̄Si−1(X;R).

As in the proof of Proposition 7.3.37, we recognize that
∑

(∂yk)⊗zk is a piece of ∂(
∑

k yk⊗
zk) =

∑
((∂yk)⊗ zk + (−1)|yk|yk ⊗ (∂zk)). But since α ∈ Iq̄Sj(X,B;R) is a cocycle, for any

term of the form yk ⊗ (∂zk) we have

Φ(id⊗ α)(yk ⊗ (∂zk)) = ±yk ⊗ (α(∂zk)) = ±yk ⊗ ((dα)(zk)) = 0.

Thus we have

∂∗(α _ ξ) = (−1)jΦ(id⊗ α)
∑

(∂yk)⊗ zk

= (−1)jΦ(id⊗ α)
(∑

((∂yk)⊗ zk + (−1)|yk|yk ⊗ (∂zk))
)

= (−1)jΦ(id⊗ α)∂

(∑
k

yk ⊗ zk

)
.

Analogously to the proof of Proposition 7.3.37, we can use the diagram to interpret

∂ (
∑

k yk ⊗ zk) as a cycle in I p̄S∗(A;R) ⊗ I q̄S∗(X,B;R) representing the homology class

(id⊗ i)d̄e−1∂∗(ξ). So then

∂∗(α _ ξ) = (−1)jΦ(id⊗ α)∂

(∑
k

yk ⊗ zk

)
= (−1)jΦ(id⊗ α)(id⊗ i)d̄e−1∂∗(ξ)

= (−1)jΦ(id⊗ αi)d̄e−1∂∗(ξ)

= (−1)jΦ(id⊗ i∗(α))d̄e−1∂∗(ξ)

= (−1)j(i∗(α)) _ (e−1∂∗(ξ)).

Algebra of shifts and mapping cones

The stability formulas for the cup and cross products are a little trickier. Part of the problem

is that the maps ∂∗ and d∗, in their usual constructions, aren’t described via chain maps,

which makes it difficult to apply our previous results as tools. To get around this difficulty, we

409



utilize the algebraic mapping cone construction, which lets us replace quotient complexes by

algebraic mapping cones (up to chain homotopy equivalence) and the connecting morphisms

in long exact homology sequences by morphisms induced by chain maps. Having done this,

we will be able to establish our desired stability formulas for cup and cross products, but

first we must review the necessary algebra.

A brief review of shifts and mapping cones is provided in Appendix A.3. We recall the

basic definitions here as well and develop a few more details.

Shifts. Recall Appendix A.3.1. If C∗ is a homologically indexed chain complex with

boundary map ∂C∗ , then the chain complex C[k]∗ is defined so that C[k]i = Ci−k and

∂C[k]∗ = (−1)k∂C∗ . In this section we only need to consider k = 1, and so we make that

specialization in the rest of this section, i.e. we consider only C[1]∗ with C[1]i = Ci−1 and

∂C[1]∗ = −∂C∗ . The shift map s : C[1]∗ → C∗ is defined to take C[1]i identically to the

corresponding module Ci−1. This is a (homological) degree −1 chain map. If x is an element

of Ci−1, we also write x̄ for s−1(x) and so s(x̄) = x.

The assignment C∗ → C[1]∗ is functorial: Suppose f : C∗ → D∗ is a degree 0 chain

map of chain complexes. Then we can define f [1] : C[1]∗ → D[1]∗ so that if x̄ ∈ C[1]∗ then

f [1](x̄) = f(x). Alternatively, f [1] is defined so that the following diagram commutes, which

can be done as s is an isomorphism:

C∗
f
- D∗

C[1]∗

s

6

f [1]
- D[1]∗.

s

6

It also follows that f [1] is a degree 0 chain map. It is then clear that (·)[1] is a functor.

We will also need later the observation that if C∗ and D∗ are two chain complexes then

there is a canonical (degree 0) isomorphism t : C[1]∗ ⊗D∗ ∼= (C∗ ⊗D∗)[1]∗. Indeed, we can

realize t as the composition

C[1]∗ ⊗D∗
s⊗id−−→ C∗ ⊗D∗

s−1

−−→ (C∗ ⊗D∗)[1]∗.

This takes a generator x̄⊗ y to x⊗ y.

Algebraic mapping cones. Recall Appendix A.3.2. Suppose f : C∗ → D∗ is a chain map

of chain complexes. We let Ef
∗ (or simply E∗ if there’s no ambiguity) denote the algebraic

mapping cone of f with Ei = Di ⊕ Ci−1 = Di ⊕ C[1]i and ∂(x, y) = (f(y) + ∂x,−∂y). As

verified in Appendix A.3.2, this is indeed a chain complex.

There is a short exact sequence of chain complexes

0 - D∗
e
- E∗

b
- C[1]∗ - 0 (7.18)
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with e(x) = (x, 0) and b(x, y) = ȳ, where ȳ uses our notation for shifted elements from just

above. The maps e and b are both degree 0 chain maps, recalling that the boundary map

for C[1]∗ is the negative of that for C∗. It is not true in general that E∗ = D∗ ⊕ C[1]∗ as

chain complexes, since the boundary map of E∗ is not a direct sum of the boundary maps

of the summands.

The mapping cone construction is also functorial in the following sense: Suppose we have

a commutative diagram of chain maps

C∗
f
- D∗

C ′∗

g

? f ′
- D′∗.

h

?

Then there is an induced map k : Ef
∗ → Ef ′

∗ with k(x, y) = (h(x), g(y)). We check that this

is a degree 0 chain map:

k∂(x, y) = k(f(y) + ∂x,−∂y)

= (hf(y) + h(∂x),−g(∂y)

= (f ′g(y) + ∂h(x),−∂g(y))

= ∂(h(x), g(y))

= ∂k(x, y).

We also obtain a commutative diagram

0 - D∗
e
- E∗

b
- C[1]∗ - 0

0 - D′∗

h

? e
- E ′∗

k

? b
- C ′[1]∗

g[1]

?
- 0.

We leave the easy verification of commutativity to the reader.

Now, suppose that i : C∗ → D∗ is an inclusion and consider E i
∗. In this case, we will

simply write ∂(x, y) = (mfi(y) + ∂x,−∂y) = (y + ∂x,−∂y), as elements of C∗ can also be

considered elements of D∗. In this setting, there are useful interactions between the long

exact homology and cohomology sequences associated with (7.18) and the usual long exact

homology sequence of the pair (D∗, C∗).

Lemma 7.3.39. Suppose that i : C∗ → D∗ is an inclusion of chain complexes with algebraic

mapping cone E∗. There is a diagram of long exact homology sequences
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- Hi+1(C[1]∗)
∂∗- Hi(D∗)

e
- Hi(E∗)

b
- Hi(C[1]∗) -

1 1 −1

- Hi(C∗)

s

? i
- Hi(D∗)

=

? p
- Hi(D∗/C∗)

q

? ∂∗- Hi−1(C∗)

s

?
- ,

which commutes up to the signs indicated in each square. Here the top sequence is the long

exact sequence associated to the short exact sequence (7.18) and the bottom sequences is the

long exact sequence associated to the short exact sequence

0 - C∗
i
- D∗

p
- D∗/C∗ - 0. (7.19)

Consequently, q : H∗(E)→ H∗(D∗/C∗) is an isomorphism.

Proof. We first observe that, via s, the cycles of C[1]i are taken bijectively to the cycles

of Ci−1 and the boundaries of C[1]i are taken bijectively to the boundaries of Ci−1, so

Hi(C[1]∗) ∼= Hi−1(C∗). The vertical maps s in the diagram involving C∗ represent simply

this canonical isomorphisms.

Next, let us define q : E∗ → D∗/C∗. If (x, y) ∈ E∗, we let q(x, y) = x, where we let

x also represent the class of x in D∗/C∗. This is evidently a homomorphism, and we have

q(∂(x, y)) = q((y + ∂x,−∂y)) = y + ∂x, which represents the same class as ∂x in D∗/C∗.

So q is a chain map. We can also see immediately from the definitions that qe = p, so the

middle square in the diagram commutes.

Next, let us check that the other squares commute. Each of these includes one map that

is the boundary map of a long exact sequence. Let us first suppose that (x, y) represents a

cycle in Hi(E∗). Then q(x, y) is represented by x, and by the standard zig-zag definition of

the boundary map in a long exact homology sequence, ∂∗q(x, y) is represented by a cycle in

Ci−1 that maps to ∂x under the injection i. On the other hand b(x, y) = ȳ, so sb(x, y) = y.

But we have stipulated that (x, y) is a cycle so that (0, 0) = ∂(x, y) = (y + ∂x,−∂y), and it

follows that ∂x = −y. So the square commutes up to a sign of −1.

Now, suppose ȳ ∈ C[1]i+1 is a cycle representing a homology class. Again we use the

standard zig-zag construction to compute ∂∗(ȳ). We notice that (0, y) ∈ Ei+1 satisfies

b(0, y) = ȳ, and then consider ∂(0, y) = (y,−∂y) = (y, 0) = e(y). Therefore, y represents

∂∗(ȳ), and of course is(ȳ) = y, so this shows that the left square of the diagram commutes.

Finally, since the vertical maps of the diagram involving C∗ and D∗ are isomorphisms,

the map q must also induce a homology isomorphism by the Five Lemma. Technically, we

do not have a strictly commutative diagram, but if we choose a fixed degree i and change

the signs of the two vertical maps to the right of q : Hi(E∗) → Hi(D∗/C∗), then we obtain

a strictly commutative diagram in a large enough vicinity of this particular q to apply the

Five Lemma and conclude that this q is an isomorphism. But of course the same argument

works for any i.
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Lemma 7.3.40. Suppose i : C∗ → D∗ is a chain map of chain complexes of projective R-

modules such that each module of C∗/D∗ is also projective. Let E∗ be the algebraic mapping

cone of i. Then there is a diagram of long exact cohomology sequences

� H i+1(Hom(C[1]∗, R)) �
d∗

H i(Hom(D∗, R)) �
e∗

H i(Hom(E∗, R)) �
b∗

H i(Hom(C[1]∗, R)) �

−1 1 1

� H i(Hom(C∗, R))

s∗

6

�
i∗

H i(Hom(D∗, R))

=

6

�
p∗

H i(Hom(D∗/C∗, R))

q∗

6

�
d∗

H i−1(Hom(C∗, R))

s∗

6

� ,

which commutes up to the signs indicated in each square. Here the bottom sequence is the

long exact sequence associated to the short exact sequence

0 � Hom(C∗, R) �
i∗

Hom(D∗, R) � Hom(D∗/C∗, R) � 0

and the top sequence is the long exact sequence associated to the dual short exact sequence

to (7.18).

In particular, q∗ : H∗(Hom(D∗/C∗, R))→ H∗(Hom(E∗, R)) is an isomorphism.

Proof. First notice that the assumption that all modules be projective implies that the Hom

duals of the short exact sequences (7.18) and (7.19) remain exact and so generate long exact

cohomology sequences.

Next, recall that if α ∈ Hom(Ci, R) and x̄ ∈ C[1]i+1, we have s∗(α)(x̄) = (−1)iα(s(x̄)) =

(−1)iα(x); the sign is due to the Koszul convention15 as s is a degree −1 map and α is a

degree −i map. Since s is a (degree −1) chain map that is the identity on modules up to

indexing, the same is true of s∗ up to sign. In particular, s∗ takes cocycles in Hom(Ci, R) =

Homi(C∗, R) bijectively to cocycles of Homi+1(C[1]∗, R) and coboundaries in Hom(Ci, R) =

Homi(C∗, R) bijectively to coboundaries of Homi+1(C[1]∗, R), so H i+1(Hom(C[1]∗, R)) ∼=
H i(Hom(C∗, R)). The vertical maps s∗ in the diagram involving C∗ represent simply this

canonical isomorphism.

We saw in the proof of Lemma 7.3.39 that qe = p, so e∗q∗ = p∗, so the middle square in

the diagram commutes.

Next, let us check that the other squares commute. Each of these includes one map that

is the coboundary map of a long exact sequence.

First, suppose α ∈ Homi(D∗, R) is a cocycle representing an element of H i(Hom(D∗, R)).

By the zig-zag construction, d∗α ∈ H i+1(Hom(C[1]∗, R)) is represented by choosing a cochain

ᾱ ∈ Hom(Ei, R) that restricts to α onD∗, taking dᾱ, and then restricting dᾱ to Hom(C[1]i+1, R).

We are free to choose ᾱ to be ᾱ = (α, 0) ∈ Hom(Ei, R) = Hom(Di⊕Ci−1, R) = Hom(Di, R)⊕
Hom(Ci−1, R). So then d(ᾱ) acts on a chain (0, y) ∈ Ei+1 = Di+1 ⊕ Ci by

(dᾱ)(0, y) = (−1)i+1ᾱ∂(0, y)

= (−1)i+1(α, 0)(y,−∂y)

= (−1)i+1α(y).

15See Section A.1.
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On the other hand, we have

s∗i∗(α)(ȳ) = (−1)ii∗α(y)

= (−1)iα(i(y))

= (−1)iα(y).

So the left square commutes up to the sign −1.

Next, suppose α ∈ Homi−1(C∗, R) = Hom(Ci−1, R) represents an element ofH i−1(Hom(C∗, R)).

Then d∗α is represented by choosing a cochain ᾱ ∈ Hom(Di−1, R) that restricts to α on Ci−1

and then taking dᾱ and restricting it to act on D∗/C∗. If (x, y) ∈ Ei, we have

q∗dᾱ(x, y) = (dᾱ)q(x, y)

= (−1)iᾱ(∂q(x, y))

= (−1)iᾱ(∂x). (7.20)

On the other hand, noting that b is a degree 0 chain map,

b∗s∗α(x, y) = (s∗α)(b(x, y))

= (s∗α)(ȳ)

= (−1)i−1α(s(ȳ))

= (−1)i−1α(y). (7.21)

But now consider (ᾱ, 0) ∈ Hom(Di−1, R)⊕Hom(Ci−2, R) = Hom(Di−1⊕Ci−2, R) = Hom(Ei−1, R).

So we can compute

d(ᾱ, 0)(x, y) = (−1)i(ᾱ, 0)∂(x, y)

= (−1)i(ᾱ, 0)(y + ∂x,−∂y)

= (−1)i(ᾱ(y) + ᾱ(∂x))

= (−1)iᾱ(y) + (−1)iᾱ(∂x)

= (−1)iα(y) + q∗dᾱ(x, y) by (7.20)

= −b∗s∗α(x, y) + q∗dᾱ(x, y) by (7.21).

In the fifth line, we have also used that α(y) = ᾱ(y), as y ∈ C∗. So b∗s∗α and q∗dᾱ represent

the same cohomology class.

Finally, since the vertical maps of the diagram involving C∗ and D∗ are isomorphisms,

the map q∗ must also induce a cohomology isomorphism by the Five Lemma. Technically, we

do not have a strictly commutative diagram, but for any fixed i, we can change the signs of

nearby vertical maps to obtain a strictly commutative diagram in a large enough vicinity of

this particular q∗ to apply the Five Lemma and conclude that this q∗ is an isomorphism.
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Stability of cross products and cup products

Now we can return to establishing stability formulas for cup and cross products. Of course,

these come in pairs such as (d∗α)× β and α× (d∗β). We only prove one result for each such

pair, as the other can be obtained using the commutative properties.

Various excision isomorphisms come into play in stating and proving the stability formu-

las. We denote these generically with an e, specifying in more detail where relevant.

We begin with some needed lemmas.

Lemma 7.3.41. Suppose that p̄, q̄ are perversities on filtered sets X, Y and that Q is a (p̄, q̄)-

compatible perversity on X × Y . Let A ⊂ X and B ⊂ Y be open subsets. Let F∗ denote the

algebraic mapping cone of the inclusion i : I p̄S∗(A;R)→ I p̄S∗(X;R), let E∗ be the algebraic

mapping cone of the map i× id : IQS∗(A× Y,A×B;R)→ IQS∗(X × Y,X ×B;R), and let

G∗ be the algebraic mapping cone of the inclusion IQS∗((A × Y ) ∪ (X × B), X × B;R) →
IQS∗(X × Y,X ×B;R). The following diagram (with implicit R coefficients) commutes:

IQS∗(X × Y, (A× Y ) ∪ (X ×B)) �
=

IQS∗(X × Y, (A× Y ) ∪ (X ×B)) �
ε

I p̄S∗(X,A)⊗ I q̄S∗(Y,B)

IQS∗(X × Y,X ×B)/IQS∗((A× Y ) ∪ (X ×B), X ×B)

∼=

6

G∗

q

6

�
k

E∗

q′

6

�
(ε, ε)

F∗ ⊗ I q̄S∗(Y,B)

q⊗ id

6

IQS∗((A× Y ) ∪ (X ×B), X ×B)[1]

b

?
�

e[1]
IQS∗(A× Y,A×B)[1]

b

?
�

ε̄
I p̄S∗(A)[1]⊗ I q̄S∗(Y,B).

b⊗ id

?

Proof. Let us first verify that all the maps make sense. The unlabeled maps are induced by

the obvious inclusions and/or quotients. The upper left vertical map is an isomorphism by

the third isomorphism theorem. Unlike F∗ and G∗, the mapping cone E∗ is not based on an

inclusion of chain complexes. However, the map E∗ → G∗ makes sense by the functoriality

of the algebraic mapping cone construction, and we define the map labeled q′ to act on

(x, y) ∈ Ei = IQSi(X × Y,X ×B;R)⊕ IQSi−1(A× Y,A×B;R)

by taking (x, y) to the class of x in IQSi(X ×Y, (A×Y )∪ (X ×B);R). This is a chain map

because q′∂(x, y) = q′(y+∂x,−∂y) = y+∂x, but y here is represented by a chain supported

in A× Y , so y+ ∂x and ∂x represent the same element in IQS∗(X × Y, (A× Y )∪ (X ×B)).

It also follows readily from this definition that the upper left rectangle commutes.

For the map labeled ε̄, we let this be the composition of the canonical isomorphism t (see

page 410) and the shifted cross product ε[1].

Similarly, for the mapped labeled (ε, ε), recall that, as modules, we have

Ei = IQSi(X × Y,X ×B;R)⊕ IQSi−1(A× Y,A×B;R)
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and

Fj = I p̄Sj(X;R)⊕ I p̄Sj−1(A;R).

Thus (F∗ ⊗ I q̄S∗(Y,B;R))i is the direct sum over j + k = i of terms of the form

(I p̄Sj(X;R)⊕ I p̄Sj−1(A;R))⊗ I q̄Sk(Y,B;R)

= (I p̄Sj(X;R)⊗ I q̄Sk(Y,B;R))⊕ (I p̄S(A;R)j−1 ⊗ I q̄Sk(Y,B;R)).

Such modules are generated by elements of the form (x, a)⊗ y = (x⊗ y, a⊗ y), and we let

(ε, ε) act in the obvious way by (ε, ε)(x⊗ y, a⊗ y) = (ε(x⊗ y), ε(a⊗ y)). Let us check that

this gives us a chain map, keeping |x| = j and |y| = k, so that |a| = j − 1 and |(x, a)| = j:

(ε, ε)(∂((x, a)⊗ y)) = (ε, ε)(∂(x, a)⊗ y + (−1)j(x, a)⊗ ∂y)

= (ε, ε)((∂x+ i(a),−∂a)⊗ y + (−1)j(x, a)⊗ ∂y)

= (ε, ε)((∂x⊗ y + i(a)⊗ y,−(∂a)⊗ y) + (−1)j(x⊗ ∂y, a⊗ ∂y))

= (ε, ε)((∂x⊗ y + i(a)⊗ y + (−1)jx⊗ ∂y,−(∂a)⊗ y + (−1)ja⊗ ∂y))

= (ε, ε)(∂(x⊗ y) + i(a)⊗ y,−∂(a⊗ y))

= (ε(∂(x⊗ y) + i(a)⊗ y),−ε(∂(a⊗ y)))

= (∂ε(x⊗ y) + (i× id)ε(a⊗ y),−∂ε(a⊗ y))

= ∂(ε(x⊗ y), ε(a⊗ y)).

In the next to last line, we have used that ε is a chain map and that it is natural by

Proposition 5.2.17 and Theorem 6.3.19.

For commutativity of the top right square of the diagram, we compute using representa-

tives

q′(ε, ε)((x, a)⊗ y) = q′(ε, ε)(x⊗ y, a⊗ y)

= q′(ε(x⊗ y), ε(a⊗ y))

= ε(x⊗ y)

= ε(q(x, a)⊗ y)

= ε(q⊗ id)((x, a)⊗ y).

Similarly, for the bottom right square, we have

b(ε, ε)((x, a)⊗ y) = b(ε, ε)(x⊗ y, a⊗ y)

= b(ε(x⊗ y), ε(a⊗ y))

= ε(a⊗ y)

= ε[1]a⊗ y
= ε[1]t(ā⊗ y)

= ε̄(ā⊗ y)

= ε̄(b(x, a)⊗ y)

= ε̄(b⊗ id)((x, a)⊗ y).
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The commutativity of the bottom left square is a consequence of the naturality properties

of the mapping cone construction.

Corollary 7.3.42. Let R be a Dedekind domain. Suppose that p̄, q̄ are perversities on CS

sets X, Y and that Q is a (p̄, q̄)-compatible perversity on X × Y . Let A ⊂ X and B ⊂ Y be

open subsets.

The following diagram commutes up to homotopy:

IQS∗(X × Y, (A× Y ) ∪ (X ×B))
=
- IQS∗(X × Y, (A× Y ) ∪ (X ×B))

IAW
- I p̄S∗(X,A)⊗ I q̄S∗(Y,B)

IQS∗(X × Y,X ×B)/IQS∗((A× Y ) ∪ (X ×B), X ×B)

∼=

?

G∗

q−1

?
- F∗ ⊗ I q̄S∗(Y,B)

q−1 ⊗ id

?

IQS∗((A× Y ) ∪ (X ×B), X ×B)[1]

b

? (e[1])−1
- IQS∗(A× Y,A×B)[1]

IAW
- I p̄S∗(A)[1]⊗ I q̄S∗(Y,B)

b⊗ id

?

IQS∗((A× Y ) ∪ (X ×B), X ×B)

s

? (e)−1
- IQS∗(A× Y,A×B)

s

? IAW
- I p̄S∗(A)⊗ I q̄S∗(Y,B).

s⊗ id

?

Proof. Everything except the bottom row of this diagram is obtained from the diagram of

Lemma 7.3.41 by replacing some maps (or compositions of maps) with their chain homo-

topy inverses. In particular, by Lemma 7.3.39, the q maps are quasi-isomorphisms of chain

complexes of projective modules, so they are chain homotopy equivalences by Lemma A.4.3

(noting that it is sufficient in the argument for the complexes simply to both be bounded

below). We let q−1 denote the chain homotopy inverse. It follows that q ⊗ id is also a

homotopy equivalence. We know that ε is a chain homotopy inverse by Theorem 6.4.14, and

IAW is our label for its inverse. It follows that the composition in the middle horizontal

row of the diagram of Lemma 7.3.40 is also a homotopy equivalence. The map IAW is the

chain homotopy inverse for ε̄ = ε[1]t, which is a composition of an isomorphism and a shifted

homotopy equivalence.

The inclusion-induced map

IQS∗(A× Y,A×B)→ IQS∗((A× Y ) ∪ (X ×B), X ×B)

is also a quasi-isomorphism, and so a homotopy equivalence as all modules are projective.

We can see this noting that the map factors as

IQS∗(A× Y ;R)

IQS∗(A×B;R)
=

IQS∗(A× Y ;R)

IQS∗((A× Y ) ∩ (X ×B);R)

→ IQS∗(A× Y ;R) + IQS∗(X ×B;R)

IQS∗(X ×B;R)
→ IQS∗((A× Y ) ∪ (X ×B);R)

IQS∗(X ×B;R)
.
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The first map in the second line is an isomorphism by the second isomorphism theorem,

noting that IQS∗(A × Y ;R) ∩ IQS∗(X × B;R) = IQS∗(A × B;R), while the second map

induces a homology isomorphism by the non-GM version of the arguments in the proof of

Theorem 4.4.23.

Therefore, appropriately reversing the arrows in the diagram of Lemma 7.3.41 results in

a homotopy commutative diagram as labeled, except for the bottom row, which we have

added on. The bottom left square commutes by the functoriality of shifting. The bottom

right square is the following square with its horizontal maps inverted up to homotopy:

IQS∗(A× Y,A×B)[1] �̄
ε
I p̄S∗(A)[1]⊗ I q̄S∗(Y,B)

IQS∗(A× Y,A×B)

s

?
�
ε

I p̄S∗(A)⊗ I q̄S∗(Y,B).

s⊗ id

?

This commutes because

sε̄(x̄⊗ y) = sε[1]t(x̄⊗ y)

= sε[1]x⊗ y
= s(ε(x⊗ y))

= ε(x⊗ y)

= ε(s(x̄)⊗ y)

= ε(s⊗ id)(x̄⊗ y).

Proposition 7.3.43. Let R be a Dedekind domain. Suppose X and Y are CS sets with

respective perversities p̄ and q̄ and open subspaces A ⊂ X and B ⊂ Y . Let Q be a (p̄, q̄)-

compatible perversity on X × Y . Let α ∈ Ip̄H i(A;R) and β ∈ Iq̄Hj(Y,B;R). Then

(d∗(α))× β = d∗(e−1)∗(α× β) ∈ IQH i+j+1(X × Y, (A× Y ) ∪ (X ×B);R),

where

e : IQH∗(A× Y,A×B;R)→ IQH∗((A× Y ) ∪ (X ×B), X ×B;R)

is an excision isomorphism and where we interpret the right hand d∗ as a map

IQH
i+j((A× Y ) ∪ (X ×B), X ×B;R)→ IQH i+j+1(X × Y, (A× Y ) ∪ (X ×B);R).

Proof. By Lemma 7.3.40, we have d∗(α) = (q∗)−1b∗s∗α. As observed in Corollary 7.3.42,

since all of our modules are projectives, the quasi-isomorphism q (see Lemma 7.3.39) is in

fact a chain homotopy equivalence, so we can replace (q∗)−1 with (q−1)∗, which is well defined

up to chain homotopy. This lets us write d∗(α) = (q−1)∗b∗s∗α = (sbq−1)∗α. So, from the
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definition of the cross product, we have

(d∗α)× β = IAW∗Θ((d∗(α))⊗ β)

= IAW∗Θ(((sbq−1)∗(α))⊗ β)

= IAW∗Θ((sbq−1)∗ ⊗ id)(α⊗ β)

= IAW∗((sbq−1)⊗ id)∗Θ(α⊗ β) by Lemma 7.3.1

= (e−1sbq−1)∗IAW∗Θ(α⊗ β) by Corollary 7.3.42

= d∗(e−1)∗(α× β) by Lemma 7.3.40.

Proposition 7.3.44. Let R be a Dedekind domain. Suppose X is a CS set with open subsets

A and B, that i : A → X is the inclusion map, and that (p̄, q̄; r̄) is an agreeable triple of

perversities on X. Let α ∈ Ip̄H i(A;R) and β ∈ Iq̄Hj(X,B;R). Then

(d∗(α)) ^ β = d∗(e−1)∗(α ^ i∗(β)) ∈ Ir̄H i+j+1(X,A ∪B;R),

where e : I r̄H∗(A,A ∩ B;R) → I r̄H∗(A ∪ B,B;R) is induced by inclusion and where we

interpret the right hand d∗ as a map Ir̄H
i+j(A ∪B,B;R)→ Ir̄H

i+j+1(X,A ∪B;R).

Proof. Consider the following diagram with tacit coefficients. Here D∗ is the algebraic map-

ping cone of the inclusion I r̄S∗(A ∪B,B;R)→ I r̄S∗(X,B;R) and, as in Lemma 7.3.41 but

with X = Y , we let G∗ be the algebraic mapping cone of the inclusion

IQp̄,q̄S∗((A×X) ∪ (X ×B), X ×B;R)→ IQp̄,q̄S∗(X ×X,X ×B;R).

Then we have a diagram:
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I r̄S∗(X,A ∪B)
d

- IQp̄,q̄S∗(X ×X, (A×X) ∪ (X ×B))

I r̄S∗(X,B)/I r̄S∗(A ∪B,B)

∼=
6

d
- IQp̄,q̄S∗(X ×X,X ×B)/IQp̄,q̄S∗((A×X) ∪ (X ×B), X ×B)

∼=
6

D∗

q

6

(d,d)
- G∗

q

6

I r̄S∗(A ∪B,B)[1]

b

? d[1]
- IQp̄,q̄S∗((A×X) ∪ (X ×B), X ×B)[1]

b

?

I r̄S∗(A ∪B,B)

s

? d
- IQp̄,q̄S∗((A×X) ∪ (X ×B), X ×B)

s

?

I r̄S∗(A,A ∩B)

e

6

d
- IQp̄,q̄S∗(A×X,A×B)

e

6

I r̄S∗(A× A,A× (A ∩B))

d

?

id× i

-

I p̄S∗(A)⊗ I q̄S∗(A,A ∩B)

ε

6

id⊗ i
- I p̄S∗(A)⊗ I q̄S∗(X,B).

ε

6

The bottom quadrilateral commutes by the naturality of the chain cross product (Propo-

sition 5.2.17 and Theorem 6.3.19). The triangle and the square with the e maps commute at

the level of maps of pairs of spaces. The isomorphisms in the top square come from the third

isomorphism theorem, and this square also commutes by looking at representative elements.

The square involving s is the naturality of shifts. So let us consider the squares involving

the mapping cones. By the naturality properties of the mapping cone construction, the map
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labeled (d,d) is a chain map and the square involving the b maps commutes. Furthermore,

if (x, y) ∈ Di = I r̄Si(X,B;R)⊕ I r̄Si−1(A ∪B,B;R), we have

dq(x, y) = d(x) = q(d(x),d(y)) = q(d,d)(x, y),

so the second square from the top commutes.

Therefore, the full diagram commutes. Furthermore, q is again a quasi-isomorphism by

Lemma 7.3.39, and it is a homotopy equivalence since we work with all projective mod-

ules. Also, our new e on the left of the diagram is a quasi-isomorphism, and hence a chain

homotopy equivalence of complexes of projective modules, since we can factor it as

I r̄S∗(A;R)

I r̄S∗(A ∩B;R)
→ I r̄S∗(A;R) + I r̄S∗(B;R)

I r̄S∗(B;R)
→ I r̄S∗(A ∪B;R)

I r̄S∗(B;R)
.

The first map is an isomorphism by the second isomorphism theorem, noting that I r̄S∗(A)∩
I r̄S∗(B) = I r̄S∗(A ∩ B;R), while the second map induces a homology isomorphism by the

non-GM version of the arguments in the proof of Theorem 4.4.23. Therefore, we can invert

homotopy equivalences and adjoin this diagram to part of the diagram of Corollary 7.3.42

to get the following diagram that commutes up to homotopy:

I r̄S∗(X,A ∪B)
d

- IQp̄,q̄S∗(X ×X, (A×X) ∪ (X ×B))
=
- IQp̄,q̄S∗(X ×X, (A×X) ∪ (X ×B))

IAW
- I p̄S∗(X,A)⊗ I q̄S∗(XB)

I r̄S∗(X,B;R)/I r̄S∗(A ∪B,B)

∼=

? d
- IQp̄,q̄S∗(X ×X,X ×B)/IQp̄,q̄S∗((A×X) ∪ (X ×B), X ×B)

∼=
?

D∗

q−1

? (d,d)
- G∗

q−1

?
- F∗ ⊗ I q̄S∗(X,B)

q−1 ⊗ id

?

I r̄S∗(A ∪B,B)[1]

b

? d[1]
- IQp̄,q̄S∗((A×X) ∪ (X ×B), X ×B)[1]

b

? e−1[1]
- IQp̄,q̄S∗(A×X,A×B)[1]

IAW
- I p̄S∗(A)[1]⊗ I q̄S∗(X,B)

b⊗ id

?

I r̄S∗(A ∪B,B)

s

? d
- IQp̄,q̄S∗((A×X) ∪ (X ×B), X ×B)

s

? e−1
- IQp̄,q̄S∗(A×X,A×B)

s

? IAW
- I p̄S∗(A)⊗ I q̄S∗(X,B)

s⊗ id

?

I r̄S∗(A,A ∩B)
d

-

d

-

e−1

-

I r̄S∗(A× A,A× (A ∩B))

id× i

6

IAW
- I p̄S∗(A)⊗ I q̄S∗(A,A ∩B).

id⊗ i

6

Now we can compute. By Lemma 7.3.40, we have d∗(α) = (q∗)−1b∗s∗α ∈ Ip̄H i+1(X,A;R).

As observed in Corollary 7.3.42, since all of our modules are projectives, the quasi-isomorphisms

q (see Lemma 7.3.39) are in fact chain homotopy equivalences, so we can replace (q∗)−1 with

(q−1)∗, which is well defined up to homotopy. This lets us write d∗(α) = (q−1)∗b∗s∗(α) =
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(sbq−1)∗(α). So, from the definition of the cup product, we have

(d∗(α)) ^ β = d∗IAW∗Θ(d∗(α)⊗ β)

= d∗IAW∗Θ(((sbq−1)∗(α))⊗ β)

= d∗IAW∗Θ((sbq−1)∗ ⊗ id)(α⊗ β)

= d∗IAW∗((sbq−1)⊗ id)∗Θ(α⊗ β) by Lemma 7.3.1

= (e−1sbq−1)∗d∗IAW∗(id⊗ i)∗Θ(α⊗ β) by the diagram

= d∗(e−1)∗d∗IAW∗(id⊗ i)∗Θ(α⊗ β) by Lemma 7.3.40

= d∗(e−1)∗d∗IAW∗Θ(id⊗ i∗)(α⊗ β) by Lemma 7.3.1

= d∗(e−1)∗d∗IAW∗Θ(α⊗ i∗(β)) by Lemma 7.3.1

= d∗(e−1)∗(α ^ i∗(β)).

For the equality labeled “by the diagram,” the compositions (id ⊗ i)IAWde−1sbq−1 and

(sbq−1 ⊗ id)IAWd are obtained in the diagram by starting in the upper left and proceeding

each way around the outside to the term one above the bottom right corner.

7.3.6 Criss-crosses

There are a variety of relations involving combinations of the cup, cap, and cross products,

some of which we have already seen. We discuss the rest here.

The relation between cup and cross products

As in ordinary cohomology theory, the cup and cross products can each be defined in terms

of the other. In fact, we know directly from the definitions that the cup product is the

pullback of the cross product by the diagonal map:

Proposition 7.3.45. Let R be a Dedekind domain. Suppose that (p̄, q̄; r̄) is a Q-agreeable

triple of perversities on a CS set X. If α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(X,B;R), and α× β ∈
IQH

i+j(X × Y, (A× Y ) ∪ (X ×B);R), then

d∗(α× β) = α ^ β ∈ Ir̄H i+j(X,A ∪B;R).

The next lemma demonstrates that we can also recover the cross product in terms of a

cup product.

Proposition 7.3.46. Let R be a Dedekind domain. Suppose that X is a CS set with per-

versity p̄, Y is a CS set with perversity q̄, and A ⊂ X, B ⊂ Y are open sets. Let Q be a

(p̄, q̄)-compatible perversity on X ×Y . Let p1 : X ×Y → X and p2 : X ×Y → Y be the pro-

jection maps and p∗1 : Ip̄H
∗(X,A;R)→ IQp̄,t̄Y H

∗(X×Y,A×Y ;R) and p∗2 : Iq̄H
∗(Y,B;R)→

IQt̄X ,q̄H
∗(X×Y,X×B;R), where t̄X and t̄Y are the respective top perversities on X and Y .

Then if α ∈ Ip̄H i(X,A;R) and β ∈ Iq̄Hj(X,B;R), we have

α× β = (p∗1(α)) ^ (p∗2(β)) ∈ IQH i+j(X × Y, (A× Y ) ∪ (X ×B);R).
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Proof. The maps p∗1 and p∗2 are well-defined with respective images in IQp̄,t̄Y H
∗(X × Y,A×

Y ;R) and IQt̄X ,q̄H
∗(X × Y,X × B;R) by Corollary 7.3.17. For the cup product (p∗1(α)) ^

(p∗2(β)) to be well defined, we need for (Qp̄,t̄Y , Qt̄X ,q̄;Q) to be an agreeable triple on X × Y .

We will show this just below in Lemma 7.3.47. Therefore, the cup product of p∗1(α) and

p∗2(β) is well defined with image in IQH
i+j(X × Y, (A× Y ) ∪ (X ×B);R).

Now we compute

(p∗1(α)) ^ (p∗2(β)) = d̄∗Θ((p∗1(α))⊗ (p∗2(β)))

= d̄∗Θ(p∗1 ⊗ p∗2)(α⊗ β)

= d̄∗(p1 ⊗ p2)∗Θ(α⊗ β) by Lemma 7.3.1

= d∗IAW∗(p1 ⊗ p2)∗Θ(α⊗ β)

= d∗(p1 × p2)∗IAW∗Θ(α⊗ β) by Proposition 5.2.17

= IAW∗Θ(α⊗ β) see below

= α× β.

The next to last line uses the fact that, at the level of spaces, (p1 × p2)d : X × Y → X × Y
is the identity map. Indeed, (p1× p2)d(x, y) = (p1× p2)((x, y), (x, y)) = (p1(x, y), p2(x, y)) =

(x, y).

Lemma 7.3.47. Let X, Y be CS sets with respective perversities p̄, q̄. Let t̄X and t̄Y be the

top perversities on X and Y . Then (Qp̄,t̄Y , Qt̄X ,q̄;Q) is an agreeable triple for any (p̄, q̄)-

agreeable perversity Q.

Proof. As Q ≤ Qp̄,q̄, it suffices to prove the lemma just for Qp̄,q̄. This means we must show

that for any singular stratum S × T ⊂ X × Y we have

Qp̄,q̄(S × T ) ≤ QQp̄,t̄Y ,Qt̄X ,q̄
(S × T × S × T )− codimX×Y (S × T ).

The tricky part is dealing with the fact that we know the various Q perversities incorporate

summands of either +1 or +2 with the precise value depending on the torsion information

for the individual strata.

First, suppose S is singular and T is regular. Then Qp̄,q̄(S × T ) = p̄(S), while

QQp̄,t̄Y ,Qt̄X ,q̄
(S × T × S × T ) = Qp̄,t̄Y (S × T ) +Qt̄X ,q̄(S × T ) + C

= p̄(S) + t̄X(S) + C.

Here we know that C ∈ {1, 2}, depending on a local torsion computation that we now

perform. Let K be a link of S in X, and suppose dim(K) = m − 1; this is consistent with

our conventions in Section 6.4. As T is assumed to be a regular stratum, K is also the

link of S × T in X × Y . The relevant computation is then that of the torsion product of

IQp̄,t̄Y Hm−Qp̄,t̄Y (S×T )−2(K;R) with IQt̄X ,q̄Hm−Qt̄X ,q̄(S×T )−2(K;R). But

Qt̄X ,q̄(S × T ) = t̄X(S) = codimX(S)− 2 = m− 2,
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recalling that as K is a link of S we have dim(K)+dim(S)+1 = dim(X), and so codimX(S) =

dim(K) + 1 = m. Therefore

m−Qt̄X ,q̄(S × T )− 2 = 0.

But IQt̄X ,q̄H0(K;R) must be torsion free, and so the torsion product vanishes and we have

C = 2. Consequently,

Qp̄,q̄(S × T ) = p̄(S)

= p̄(S) + codimX(S)− 2 + 2− codimX(S)

= p̄(S) + t̄X(S) + 2− codimX(S)

= QQp̄,t̄Y ,Qt̄X ,q̄
(S × T × S × T )− codimX×Y (S × T ),

which suffices.

Clearly we have a similar argument if S is regular and T is singular.

So now suppose S and T are both singular with respective links K,L of respective

dimensions m− 1, n− 1. Then we have

Qp̄,q̄(S × T ) = p̄(S) + q̄(T ) + C1,

with C1 ∈ {1, 2}, the case C1 = 2 occurring if and only if

I p̄Hm−p̄(S)−2(K;R) ∗ I q̄Hn−q̄(T )−2(L;R) = 0.

Yet more complex, using that all spaces are locally torsion free with respect to t̄ by Example

5.3.12, we have

QQp̄,t̄Y ,Qt̄X ,q̄
(S × T × S × T ) = Qp̄,t̄Y (S × T ) +Qt̄X ,q̄(S × T ) + C2

= p̄(S) + t̄Y (T ) + 2 + t̄X(S) + q̄(T ) + 2 + C2

= p̄(S) + codimY (T )− 2 + 2 + codimX(S)− 2 + q̄(T ) + 2 + C2

= p̄(S) + q̄(T ) + codimX(S) + codimY (T ) + C2.

As S × T has link K ∗ L of dimension m + n − 1, here C2 depends on the torsion prod-

uct of IQp̄,t̄Y Hm+n−Qp̄,t̄Y (S×T )−2(K ∗ L;R) with IQt̄X ,q̄Hm+n−Qt̄X ,q̄(S×T )−2(K ∗ L;R). Amaz-

ingly, we can say something about these modules. We work with the first, as the sec-

ond is analogous. Using again that all CS sets are locally torsion free with respect to t̄,

we have Qp̄,t̄Y (S × T ) = p̄(S) + t̄Y (T ) + 2, and so IQp̄,t̄Y Hm+n−Qp̄,t̄Y (S×T )−2(K ∗ L;R) =

IQp̄,t̄Y Hm+n−p̄(S)−t̄Y (T )−4(K ∗ L;R). As in the proof of Proposition 6.4.15, we can apply

equation (6.10) and the computations below it on page 300 to compute

IQp̄,t̄Y Hm+n−Qp̄,t̄Y (S×T )−2(K ∗ L;R) = IQp̄,t̄Y Hm+n−p̄(S)−t̄Y (T )−4(K ∗ L;R)

∼=
(
I p̄Hm−p̄(S)−2(K;R)⊗R I t̄YHn−t̄Y (T )−2(L;R)

)
⊕
(
I p̄Hm−p̄(S)−3(K;R) ∗R I t̄YHn−t̄Y (T )−2(L;R)

)
⊕
(
I p̄Hm−p̄(S)−2(K;R) ∗R I t̄YHn−t̄Y (T )−3(L;R)

)
.
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But t̄Y (T ) = codimY (T ) − 2 = n − 2. So I t̄YHn−t̄Y (T )−3(L;R) = I q̄H−1(L;R) = 0 and

I t̄YHn−t̄Y (T )−2(L;R) = I t̄YH0(L;R) ∼= I t̄YHGM
0 (L;R), which is free. So the two torsion prod-

uct terms vanish, and the tensor product term is a direct sum of copies of I p̄Hm−p̄(S)−2(K;R).

In particular, IQp̄,t̄Y Hm+n−Qp̄,t̄Y (S×T )−2(K ∗L;R) has the same torsion as I p̄Hm−p̄(S)−2(K;R).

Analogously, IQt̄X ,q̄Hm+n−Qt̄X ,q̄(S×T )−2(K ∗ L;R) has the same torsion as I q̄Hn−q̄(T )−2(L;R).

But this means that C1 = C2.

So now we can compute

Qp̄,q̄(S × T ) = p̄(S) + q̄(T ) + C1

= p̄(S) + q̄(T ) + codimX(S) + codimY (T ) + C1 − codimX(S)− codimY (T )

= QQp̄,t̄Y ,Qt̄X ,q̄
(S × T × S × T )− codimX×Y (S × T ),

which suffices to complete the proof.

Interchange identities under broad assumptions

We would next like a statement of the form

(α× γ) ^ (β × δ) = (−1)|γ||β|(α ^ β)× (γ ^ δ).

For ordinary cohomology, the proof is very simple, utilizing the ordinary cohomology version

of Proposition 7.3.46. It runs like this:

(α× γ) ^ (β × δ) = (p∗1(α) ^ p∗2(γ)) ^ (p∗1(β) ^ p∗2(δ))

= (−1)|γ||β|p∗1(α) ^ p∗1(β) ^ p∗2(γ) ^ p∗2(δ)

= (−1)|γ||β|p∗1(α ^ β) ^ p∗2(γ ^ δ)

= (−1)|γ||β|(α ^ β)× (γ ^ δ).

However, in order to apply this argument here, of course we need to make a number of

assumptions; in particular, we need to make sure all the products in these formulas are

defined. Rather than look into the above approach directly, we instead develop some more

general technical lemmas that we will be able to apply both to the interchange of cup and

cross products and to the interchange of cap and cross products. Thus we take a slightly

different route than, e.g. Dold [71].

As we did for the associative identities in Section 7.3.4, we will begin with very general

assumptions about relationships among various perversities in order to have all products de-

fined, then later we will show some conditions in which the general assumptions are satisfied.

We start with yet another algebraic lemma:

Lemma 7.3.48. For chain complexes of R-modules C∗, D∗, E∗, F∗, the following diagram

commutes:

Hom(C∗, R)⊗ Hom(D∗, R)⊗ Hom(E∗, R)⊗ Hom(F∗, R)
Θ⊗Θ

- Hom(C∗ ⊗D∗, R)⊗ Hom(E∗ ⊗ F∗, R)
Θ
- Hom(C∗ ⊗D∗ ⊗ E∗ ⊗ F∗, R)

Hom(C∗, R)⊗ Hom(E∗, R)⊗ Hom(D∗, R)⊗ Hom(F∗, R)

id⊗ τ ⊗ id

? Θ⊗Θ
- Hom(C∗ ⊗ E∗, R)⊗ Hom(D∗ ⊗ F∗, R)

Θ
- Hom(C∗ ⊗ E∗ ⊗D∗ ⊗ F∗, R).

(id⊗ τ ⊗ id)∗

?
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Proof. Suppose α ∈ Hom(Ci, R), β ∈ Hom(Dj, R), γ ∈ Hom(Ek, R), δ ∈ Hom(F`, R),

x ∈ Ci, y ∈ Dj, z ∈ Ek, and w ∈ F`. Then

[(id⊗ τ ⊗ id)∗Θ(Θ⊗Θ)(α⊗ β ⊗ γ ⊗ δ)](x⊗ z ⊗ y ⊗ w)

= (−1)jk[Θ(Θ⊗Θ)(α⊗ β ⊗ γ ⊗ δ)](x⊗ y ⊗ z ⊗ w)

= (−1)jk[Θ(Θ(α⊗ β)⊗Θ(γ ⊗ δ))](x⊗ y ⊗ z ⊗ w)

= (−1)jk+(k+`)(i+j)(Θ(α⊗ β)(x⊗ y))(Θ(γ ⊗ δ)(z ⊗ w))

= (−1)jk+(k+`)(i+j)+ij+k`α(x)β(y)γ(z)δ(w)

= (−1)jk+ik+i`+jk+j`+ij+k`α(x)β(y)γ(z)δ(w)

= (−1)ik+i`+j`+ij+k`α(x)β(y)γ(z)δ(w).

On the other hand,

[Θ(Θ⊗Θ)(id⊗ τ ⊗ id)(α⊗ β ⊗ γ ⊗ δ)](x⊗ z ⊗ y ⊗ w)

= (−1)jk[Θ(Θ⊗Θ)(α⊗ γ ⊗ β ⊗ δ)](x⊗ z ⊗ y ⊗ w)

= (−1)jk[Θ(Θ(α⊗ γ)⊗Θ(β ⊗ δ))](x⊗ z ⊗ y ⊗ w)

= (−1)jk+(j+`)(i+k)(Θ(α⊗ γ)(x⊗ z))(Θ(β ⊗ δ)(y ⊗ w))

= (−1)jk+(j+`)(i+k)+ik+j`α(x)γ(z)β(y)δ(w)

= (−1)jk+ij+jk+i`+k`+ik+j`α(x)γ(z)β(y)δ(w)

= (−1)ij+i`+k`+ik+j`α(x)γ(z)β(y)δ(w).

These two expressions are equal. With any other combination of degrees (i.e. if α and x

do not have corresponding degrees), then each expression is 0.

Now we turn to diagrams of intersection chains, verifying the commutativity while putting

off for later the question of whether a sufficient collection of perversities can be found for

the maps of the diagram to all make sense.

Lemma 7.3.49. Let R be a Dedekind domain. Suppose that X and Y are CS sets with sub-

sets A,B ⊂ X and C,D ⊂ Y . Let (p̄, q̄; r̄) be a Q1-agreeable triple of perversities on X and

(ū, v̄; s̄) a Q2-agreeable triple of perversities on Y . Suppose perversities Q3, Q4, Q5, Q6, Q7

exist so that all the maps in the following diagrams are well defined. Then the diagrams

commute16 (R coefficients tacit).

IQ5S∗(X × Y ; ((A ∪B)× Y ) ∪ (X × (C ∪D)))
d
- IQ6S∗(X × Y ×X × Y ; (((A× Y ) ∪ (X × C))× (X × Y )) ∪ ((X × Y )× ((B × Y ) ∪ (X ×D))))

IQ7S∗(X ×X × Y × Y ; (((A×X) ∪ (X ×B))× (Y × Y )) ∪ ((X ×X)× ((C × Y ) ∪ (Y ×D))))

id× t× id

6

I r̄S∗(X,A ∪B)⊗ I s̄S∗(Y,C ∪D)

ε

6

d⊗ d
- IQ1S∗(X ×X, (A×X) ∪ (X ×B))⊗ IQ2S∗(Y × Y, (C × Y ) ∪ (Y ×D))

ε

6

16Notice that the diagrams fit together to make one large diagram, but it wouldn’t fit on the page!
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IQ6S∗(X × Y ×X × Y ; (((A× Y ) ∪ (X × C))× (X × Y )) ∪ ((X × Y )× ((B × Y ) ∪ (X ×D)))) �
ε

IQ3S∗(X × Y ; (A× Y ) ∪ (X × C))⊗ IQ4S∗(X × Y ; (B × Y ) ∪ (X ×D)))

IQ7S∗(X ×X × Y × Y ; (((A×X) ∪ (X ×B))× (Y × Y )) ∪ ((X ×X)× ((C × Y ) ∪ (Y ×D))))

id× t× id ∼=

6

I p̄S∗(X,A)⊗ I ūS∗(Y,C)⊗ I q̄S∗(X,B)⊗ I v̄S∗(Y,D)

ε⊗ ε

6

IQ1S∗(X ×X, (A×X) ∪ (X ×B))⊗ IQ2S∗(Y × Y, (C × Y ) ∪ (Y ×D))

ε

6

�
ε⊗ ε

I p̄S∗(X,A)⊗ I q̄S∗(X,B)⊗ I ūS∗(Y,C)⊗ I v̄S∗(Y,D)

id⊗ τ ⊗ id ∼=

6

Proof. Notice that

(A× Y ) ∪ (X × C) ∪ (B × Y ) ∪ (X ×D) = (A× Y ) ∪ (B × Y ) ∪ (X × C) ∪ (X ×D)

= ((A ∪B)× Y ) ∪ (X × (C ∪D))

so that the subspaces are correct for the top diagonal map.

We also need to show that the map labeled id× t× id makes sense. At the space level,

this map interchanges the second and third coordinates. We can rewrite

(((A×X) ∪ (X ×B))× (Y × Y )) ∪ ((X ×X)× ((C × Y ) ∪ (Y ×D)))

as

(A×X × Y × Y ) ∪ (X ×B × Y × Y ) ∪ (X ×X × C × Y ) ∪ (X ×X × Y ×D).

Applying id× t× id, which is a homeomorphism, we get the space

(A× Y ×X × Y ) ∪ (X × Y ×B × Y ) ∪ (X × C ×X × Y ) ∪ (X × Y ×X ×D),

and this is equal to

(((A× Y ) ∪ (X × C))× (X × Y )) ∪ ((X × Y )× ((B × Y ) ∪ (X ×D))).

So id× t× id is a homeomorphism of pairs of spaces, and we assume it is well defined as a

map of intersection chains.

We now turn to verifying the commutativity. It might be helpful to compare the following

argument with the proof of Proposition 5.2.20.

As in some of our previous arguments in this section (for example, in the proof of Lemma

7.3.20), it now suffices to verify commutativity of the analogous diagram of ordinary singular

chain complexes. So, suppose σ is a singular a-simplex of X and τ is a singular b-simplex

of Y . So σ ⊗ τ represents an element of Sa(X,A ∪ B;R)⊗ S∗(Y,C ∪D;R). Then ε(σ ⊗ τ)

is the singular chain obtained by applying the product map σ × τ : ∆a × ∆b → X × Y to

the Eilenberg-Zilber shuffle triangulation of ∆a ×∆b, and dε(σ ⊗ τ) applies (σ × τ, σ × τ)

to the Eilenberg-Zilber shuffle triangulation of ∆a × ∆b. Note that here we write σ × τ :

∆a ×∆b → X × Y and

(σ × τ, σ × τ) : ∆a ×∆b → (X × Y )× (X × Y ).
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In other words, each point (x, y) ∈ ∆a×∆b gets taken to (σ(x), τ(y), σ(x), τ(y)) ∈ X × Y ×
X × Y .

On the other hand,

(d⊗ d)(σ ⊗ τ) = d(σ)⊗ d(τ) = (σ, σ)⊗ (τ, τ).

Then ε(d⊗ d)(σ ⊗ τ) applies (σ, σ)× (τ, τ) to the Eilenberg-Zilber shuffle singular triangu-

lation of ∆a ×∆b, and so each point (x, y) ∈ ∆a ×∆b gets taken to

(σ(x), σ(x), τ(y), τ(y)) ∈ X × Y ×X × Y.

Including the map id× t× id therefore results in the top diagram commuting.

Next, suppose σ, τ, υ, ω are singular simplices such that σ ⊗ τ ⊗ υ ⊗ ω represents an

element of

Sa(X,A;R)⊗ Sb(X,B;R)⊗ Sc(Y,C;R)⊗ Sd(Y,D;R).

Then

(id⊗ τ ⊗ id)(σ ⊗ τ ⊗ υ ⊗ ω) = (−1)bcσ ⊗ υ ⊗ τ ⊗ ω.

So we see that, up to our sign (−1)bc, the chain

ε(ε⊗ ε)(id⊗ τ ⊗ id)(σ ⊗ τ ⊗ υ ⊗ ω)

is obtained by applying σ × υ × τ × ω to a singular triangulation of ∆a × ∆c × ∆b × ∆d

obtained by taking the Eilenberg-Zilber shuffle triangulations of ∆a × ∆c and ∆b × ∆d

and then the Eilenberg-Zilber shuffle triangulations of the product of simplicial complexes

(∆a ×∆c)× (∆b ×∆d).

On the other hand,

(id× t× id)ε(ε⊗ ε)

is similarly defined, up to sign, by applying (id×t×id)(σ×τ×υ×ω) to a singular triangulation

of ∆a×∆b×∆c×∆d obtained by taking the Eilenberg-Zilber shuffle triangulations of ∆a×∆b

and ∆c×∆d and then the Eilenberg-Zilber shuffle triangulation of the product of simplicial

complexes (∆a×∆b)× (∆c×∆d). But we have seen in the proofs of Proposition 7.3.29 and

Proposition 5.2.20 that, ignoring orientations, the Eilenberg-Zilber triangulation process is

strictly associative and commutative, implying that if we apply id×t×id to our triangulation

of ∆a ×∆b ×∆c ×∆d in this paragraph, we obtain our triangulation of ∆a ×∆c ×∆b ×∆d

from the preceding paragraph. However, since the orientation of the singular subdivision

chain depends on the orientation of the underlying space, the signs of the chains in the two

singular triangulations will differ by a factor of (−1)bc, accounting for the interchange of ∆b

with ∆c. Now since

(id× t× σ)(σ × τ × υ × ω) = (σ × υ × τ × ω)(id× t× σ),

where the t on the left is the one in the diagram and the one on the right acts on ∆b ×∆c,

we see that, also accounting for the sign (−1)bc that comes from τ , the rectangle on the right

side of the diagram commutes exactly.
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We can now state and prove our desired identities in general form:

Lemma 7.3.50. Let R be a Dedekind domain. Suppose that X and Y are CS sets with

open subsets A,B ⊂ X and C,D ⊂ Y . Let (p̄, q̄; r̄) be a Q1-agreeable triple of perver-

sities on X and (ū, v̄; s̄) a Q2-agreeable triple of perversities on Y . Suppose perversities

Q3, Q4, Q5, Q6, Q7 exist so that all the maps in the diagrams of Lemma 7.3.49 exist and so

that all of the ε maps (except perhaps the vertical one shared by both diagrams) are chain

homotopy equivalences.

Let α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(X,B;R), γ ∈ IūHk(Y,C;R), and δ ∈ Iv̄H`(Y,D;R).

Suppose α ^ β ∈ Ir̄H i+j(X,A∪B;R), γ ^ δ ∈ Is̄Hk+`(Y,C ∪D;R), α× γ ∈ IQ3H
i+k(X ×

Y, (A× Y ) ∪ (X × C);R), and β × δ ∈ IQ4H
j+`(X × Y, (B × Y ) ∪ (X ×D);R). Then

(α ^ β)×(γ ^ δ) = (−1)jk(α×γ) ^ (β×δ) ∈ IQ5H
i+j+k+`(X×Y, ((A∪B)×Y )∪(X×(C∪D));R).

Proof. By assumption, we can utilize the diagrams of Lemma 7.3.49 with all ε arrows (except

perhaps the vertical one shared by both diagrams) reversed and replaced with IAW maps to

obtain a diagram that is homotopy commutative (putting the two diagrams of the lemma

together).

Now, we compute17:

(α ^ β)× (γ ^ δ) = IAW∗Θ((α ^ β)⊗ (γ ^ δ))

= IAW∗Θ(d̄∗Θ(α⊗ β)⊗ d̄∗Θ(γ ⊗ δ))
= IAW∗Θ(d̄∗Θ⊗ d̄∗Θ)(α⊗ β ⊗ γ ⊗ δ)
= IAW∗Θ(d̄∗ ⊗ d̄∗)(Θ⊗Θ)(α⊗ β ⊗ γ ⊗ δ)
= IAW∗(d̄⊗ d̄)∗Θ(Θ⊗Θ)(α⊗ β ⊗ γ ⊗ δ) by Lemma 7.3.1

= IAW∗(IAWd⊗ IAWd)∗Θ(Θ⊗Θ)(α⊗ β ⊗ γ ⊗ δ)
= [(IAW⊗ IAW)(d⊗ d)IAW]∗Θ(Θ⊗Θ)(α⊗ β ⊗ γ ⊗ δ)
= [(id⊗ τ ⊗ id)(IAW⊗ IAW)IAWd]∗Θ(Θ⊗Θ)(α⊗ β ⊗ γ ⊗ δ) by Lemma 7.3.49

= d∗IAW∗(IAW⊗ IAW)∗(id⊗ τ ⊗ id)∗Θ(Θ⊗Θ)(α⊗ β ⊗ γ ⊗ δ)
= d∗IAW∗(IAW⊗ IAW)∗Θ(Θ⊗Θ)(id⊗ τ ⊗ id)(α⊗ β ⊗ γ ⊗ δ) by Lemma 7.3.48

= (−1)jkd̄∗(IAW⊗ IAW)∗Θ(Θ⊗Θ)(α⊗ γ ⊗ β ⊗ δ)
= (−1)jkd̄∗Θ(IAW∗ ⊗ IAW∗)(Θ⊗Θ)(α⊗ γ ⊗ β ⊗ δ) by Lemma 7.3.1

= (−1)jkd̄∗Θ(IAW∗Θ⊗ IAW∗Θ)(α⊗ γ ⊗ β ⊗ δ)
= (−1)jkd̄∗Θ(IAW∗Θ(α⊗ γ)⊗ IAW∗Θ(β ⊗ δ))
= (−1)jkd̄∗Θ((α× γ)⊗ (β × δ))
= (−1)jk(α× γ) ^ (β × δ).

Next we look at the interaction of the cap and cross products. Because we do not need

the Künneth Theorem to form the cross product of chains (as opposed to cochains), there

are fewer requirements needed on the ε maps.

17Notice that, abusing notation, id∗ = id, τ−1 = τ and τ∗ = τ . These expressions make perfect sense if

each symbol is interpreted with the correct domain and codomain.
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Lemma 7.3.51. Let R be a Dedekind domain. Suppose that X and Y are CS sets with

open subsets A,B ⊂ X and C,D ⊂ Y . Let (p̄, q̄; r̄) be a Q1-agreeable triple of perver-

sities on X and (ū, v̄; s̄) a Q2-agreeable triple of perversities on Y . Suppose perversities

Q3, Q4, Q5, Q6, Q7 exist so that all the maps in the diagrams of Lemma 7.3.49 exist and so

that all of the horizontal ε maps are chain homotopy equivalences.

Let α ∈ Iq̄Hj(X,B;R), x ∈ I r̄Hi+j(X,A∪B;R), β ∈ Iv̄H`(Y,D;R), and y ∈ I s̄Hk+`(Y,C∪
D;R). Suppose α× β ∈ IQ4H

j+`(X × Y, (B × Y ) ∪ (X ×D);R), x× y ∈ IQ5Hi+j+k+`(X ×
Y, ((A ∪B)× Y ) ∪ (X × (C ∪D));R), α _ x ∈ I p̄Hi(X,A;R) and β _ y ∈ I ūHk(Y,C;R).

Then

(α× β) _ (x× y) = (−1)`(i+j)(α _ x)× (β _ y) ∈ IQ3Hi+k(X × Y, (A× Y )∪ (X ×C);R).

Proof. The assumptions allows us to invoke the diagrams of Lemma 7.3.49, replacing the

horizontal ε maps with IAW maps in the opposite directions to obtain a diagram that is

homotopy commutative. Notice that IAW⊗ IAW is indeed a chain homotopy inverse of ε⊗ε
by Corollary A.2.6 and its proof.

Now we begin to compute using the definitions. Let us make specific choices of IAW

maps and suppose that d̄(x) =
∑

a ua⊗va ∈ I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R) and that d̄(y) =∑
bwb ⊗ zb ∈ I ūS∗(Y,C;R)⊗ I v̄S∗(Y,D;R).

Then we have

(α _ x)× (β _ y) = [Ψ(id⊗ α)d̄(x)]× [Ψ(id⊗ β)d̄(y)]

=

[
Ψ(id⊗ α)

(∑
a

ua ⊗ va

)]
×

[
Ψ(id⊗ β)

(∑
b

wb ⊗ zb

)]

=

[(∑
a

(−1)ijuaα(va)

)]
×

[(∑
b

(−1)k`wbβ(zb)

)]
=
∑
a,b

(−1)ij+k`α(va)β(zb)ua × wb

=
∑
a,b

(−1)ij+k`+j` [(α× β)(va × zb)]ua × wb see Proposition 7.3.27

=
∑
a,b

(−1)ij+k`+j`+(j+`)(i+k)Ψ(id⊗ (α× β))((ua × wb)⊗ (va × zb))

= (−1)j`+i`+jkΨ(id⊗ (α× β))
∑
a,b

((ua × wb)⊗ (va × zb))

= (−1)j`+i`+jkΨ(id⊗ (α× β))
∑
a,b

(ε(ua ⊗ wb)⊗ ε(va ⊗ zb))

= (−1)j`+i`+jkΨ(id⊗ (α× β))
∑
a,b

(ε⊗ ε)(ua ⊗ wb ⊗ va ⊗ zb)

= (−1)j`+i`+jk+jkΨ(id⊗ (α× β))
∑
a,b

(ε⊗ ε)(id⊗ τ ⊗ id)(ua ⊗ va ⊗ wb ⊗ zb)

= (−1)j`+i`Ψ(id⊗ (α× β))(ε⊗ ε)(id⊗ τ ⊗ id)(d̄(x)⊗ d̄(y)).
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Now, using the commutativity of the diagrams in Lemma 7.3.49 and the homotopy commu-

tativity that ensues if we replace the horizontal ε maps in those diagrams with IAW maps in

the opposite directions, we observe (starting from the bottom left corner of the diagram) that

(ε⊗ε)(id⊗ τ ⊗ id)(d̄(x)⊗ d̄(y)) represents the same homology class as d̄ε(x⊗y) = d̄(x×y).

So, using our argument from the proof of Lemma 7.2.20, where we showed that the cap

product is well-defined, we can replace (ε⊗ε)(id⊗ τ ⊗ id)(d̄(x)⊗ d̄(y)) with the homologous

d̄(x× y) without altering the homology class of the full expression. Therefore, we have

(α _ x)× (β _ y) = (−1)j`+i`Ψ(id⊗ (α× β))(ε⊗ ε)(id⊗ τ ⊗ id)(d̄(x)⊗ d̄(y))

= (−1)j`+i`Ψ(id⊗ (α× β))d̄(x× y)

= (−1)`(i+j)(α× β) _ (x× y).

Interchange identities in some more specific settings

Our goal now is to show that there exist reasonable (or at least somewhat reasonable) hy-

potheses that guarantee the existence of Qi perversities satisfying the hypotheses of Lemmas

7.3.49, 7.3.50, and 7.3.51. Once again, we will not pursue all possible scenarios but will limit

ourselves to some that are simple to state, especially those that arise if we make enough

locally torsion free assumptions. If nothing else, we are then assured to have some identities

when working with field coefficients or spaces that are nice enough. In fact, we will obtain

two sets of results. The first is in some sense a stronger pair of results, providing a final

product in a relatively large perversity. We will then need to scale that result back a bit to

lower perversities that arise in later applications.

To begin, it is simplest to work with product perversities for which we always know

whether we have a +1 or +2 summand. So let us define the following for use in this section:

Definition 7.3.52. If p̄, q̄ are perversities on spaces X and Y and a ∈ Z, let us define Q̂a
p̄,q̄

so that

1. if T ⊂ Y is regular, then Q̂a
p̄,q̄(S × T ) = p̄(S),

2. if S ⊂ X is regular, then Q̂a
p̄,q̄(S × T ) = q̄(T ),

3. if S ⊂ X and T ⊂ Y are both singular, then Q̂a
p̄,q̄(S × T ) = p̄(S) + q̄(T ) + a.

Principally we will be concerned with the cases a ∈ {1, 2} of the definition

Using these perversities, we have that the cross products of the form I p̄S∗(X,A;R) ⊗
I q̄S∗(Y,B;R)→ IQ̂

a
p̄,q̄S∗(X × Y ; (A× Y )∪ (X ×B);R) are always defined for a ≥ 0; see the

discussion preceding Theorem 6.3.19.

Lemma 7.3.53. If

• Dr̄ > Dp̄+Dq̄, Ds̄ > Dū+Dv̄, and a = 1, or if

• Dr̄ ≥ Dp̄+Dq̄, Ds̄ ≥ Dū+Dv̄, and a = 2,

then the hypotheses of Lemma 7.3.49 hold with
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1. Q1 = Q̂a
p̄,q̄

2. Q2 = Q̂a
ū,v̄

3. Q3 = Q̂a
p̄,ū

4. Q4 = Q̂a
q̄,v̄

5. Q5 = Q̂a
r̄,s̄

6. Q6 = Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

7. Q7 = Q̂a
Q̂ap̄,q̄ ,Q̂

a
ū,v̄

.

Proof. From our discussion preceding the statement of the lemma, these choices make all

the cross product maps in the diagrams of Lemma 7.3.49 well defined. So we only need to

consider the other maps.

The map id⊗ τ ⊗ id certainly makes sense, as do the maps

I r̄S∗(X,A ∪B)
d−→ IQ̂

a
p̄,q̄S∗(X ×X, (A×X) ∪ (X ×B))

I s̄S∗(Y,C ∪D)
d−→ IQ̂

a
ū,v̄S∗(Y × Y, (C × Y ) ∪ (Y ×D))

using the basic computations concerning agreeability. So we need to consider only the

diagonal map d in the top diagram of Lemma 7.3.49 and the map id× t× id.

We begin by considering the map d at the top of the first diagram of Lemma 7.3.49.

From our discussion of agreeable triples preceding Definition 7.2.6, we must show that

Q̂a
r̄,s̄(S × T ) ≤ Q̂a

Q̂ap̄,ū,Q̂
a
q̄,v̄

(S × T × S × T )− codimX×Y (S × T ). (7.22)

As seen in the proof of Lemma 7.2.8, the condition Dr̄ > Dp̄+Dq̄ is equivalent to

r̄(S) < p̄(S) + q̄(S) + 2− codimX(S)

for S ⊂ X a singular stratum, and we have the same equivalences replacing all strict in-

equalities with non-strict inequalities. We can express this by saying that

r̄(S) ≤ p̄(S) + q̄(S) + a− codimX(S),

where a ∈ {1, 2} is chosen consistently with the hypotheses of the lemma. Similarly we have

s̄(T ) ≤ ū(T ) + v̄(T ) + a− codimY (T ),

for T ⊂ Y singular.

The inequality (7.22) holds trivially if S and T are both regular strata. Suppose T is

regular and S is singular. Then, plugging in S × T we have Q̂a
r̄,s̄(S × T ) = r̄(S), while

Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

(S × T × S × T )− codimX×Y (S × T )

= Q̂a
p̄,ū(S × T ) + Q̂a

q̄,v̄(S × T ) + a− codimX×Y (S × T )

= p̄(S) + q̄(S) + a− codimX(S).
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So as we know r̄(S) ≤ p̄(S) + q̄(S) + a− codimX(S) with either hypothesis, we see that the

inequality (7.22) holds in this case. A similar computation verifies (7.22) if S is regular and

T is singular.

Now, suppose S and T are both singular. Then, Q̂a
r̄,s̄(S × T ) = r̄(S) + s̄(T ) + a, while

Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

(S × T × S × T )− codimX×Y (S × T )

= Q̂a
p̄,ū(S × T ) + Q̂a

q̄,v̄(S × T ) + a− codimX×Y (S × T )

= p̄(S) + ū(T ) + a+ q̄(S) + v̄(T ) + a+ a− codimX×Y (S × T )

= p̄(S) + ū(T ) + q̄(S) + v̄(T ) + 3a− codimX×Y (S × T ).

So putting these together with the consequences of the hypotheses we have

Q̂a
r̄,s̄(S × T ) = r̄(S) + s̄(T ) + a

≤ p̄(S) + q̄(S) + a− codimX(S) + ū(T ) + v̄(T ) + a− codimY (T ) + a

= p̄(S) + q̄(S) + ū(T ) + v̄(T ) + 3a− codimX×Y (S × T )

= Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

(S × T × S × T )− codimX×Y (S × T ).

So, again, the inequality (7.22) holds.

This completes our verification concerning the diagonal map at the top of the first diagram

of Lemma 7.3.49.

Next, we need to check that id × t × id is well defined as a map of intersection chains.

In particular, we check that perversities of corresponding strata agree, at which point it

becomes clear that allowable chains are taken to allowable chains. In other words, if S, T

are strata of X and U, V are strata of Y , we need to know that

Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

(S × U × T × V ) = Q̂a
Q̂ap̄,q̄ ,Q̂

a
ū,v̄

(S × T × U × V ).

Surprisingly enough, this is true! We compute the relevant values in the following table

depending on whether each of S, T, U, V is regular (denoted by an r) or singular (denoted

by an s). The last column shows the common value of the perversity evaluations. The other

two columns are meant to indicate the intermediate steps in each case, eliminating terms

that evaluate directly to 0.
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S T U V Q̂a
Q̂ap̄,q̄ ,Q̂

a
ū,v̄

(S × T × U × V ) Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

(S × U × T × V ) common value

r r r r 0 0 0

s r r r Q̂a
p̄,q̄(S × T ) Q̂a

p̄,q̄(S × U) p̄(S)

r s r r Q̂a
p̄,q̄(S × T ) Q̂a

q̄,v̄(T × V ) q̄(T )

r r s r Q̂a
ū,v̄(U × V ) Q̂a

p̄,ū(S × U) ū(U)

r r r s Q̂a
ū,v̄(U × V ) Q̂a

q̄,v̄(T × V ) v̄(V )

s s r r Q̂a
p̄,q̄(S × T ) Q̂a

p̄,ū(S × U) + Q̂a
q̄,v̄(T × V ) + a p̄(S) + q̄(T ) + a

s r s r Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
p̄,ū(S × U) p̄(S) + ū(U) + a

s r r s Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
p̄,ū(S × U) + Q̂a

q̄,v̄(T × V ) + a p̄(S) + v̄(V ) + a

r s s r Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
p̄,ū(S × U) + Q̂a

q̄,v̄(T × V ) + a q̄(T ) + ū(U) + a

r s r s Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
q̄,v̄(T × V ) q̄(T ) + v̄(V ) + a

r r s s Q̂a
ū,v̄(U × V ) Q̂a

p̄,ū(S × U) + Q̂a
q̄,v̄(T × V ) + a ū(U) + v̄(V ) + a

s s s r Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
p̄,ū(S × U) + Q̂a

q̄,v̄(T × V ) + a p̄(S) + q̄(T ) + ū(U) + 2a

s s r s Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
p̄,ū(S × U) + Q̂a

q̄,v̄(T × V ) + a p̄(S) + q̄(T ) + v̄(V ) + 2a

s r s s Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
p̄,ū(S × U) + Q̂a

q̄,v̄(T × V ) + a p̄(S) + ū(U) + v̄(V ) + 2a

r s s s Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
p̄,ū(S × U) + Q̂a

q̄,v̄(T × V ) + a q̄(T ) + ū(U) + v̄(V ) + 2a

s s s s Q̂a
p̄,q̄(S × T ) + Q̂a

ū,v̄(U × V ) + a Q̂a
p̄,ū(S × U) + Q̂a

q̄,v̄(T × V ) + a p̄(S) + q̄(T ) + ū(U) + v̄(V ) + 3a

The preceding lemma implies that Lemmas 7.3.50 and 7.3.51 hold if we can use the

appropriate Q̂ perversities in Lemma 7.3.49 and also have the ε maps required by Lemmas

7.3.50 and 7.3.51 be chain homotopy equivalences. This requires having Q̂a
p̄,q̄ be (p̄, q̄)-

compatible and similarly for the other cross products we wish to invert up to homotopy. We

know that such compatibility will hold in general if a = 1, which we can use if we assume

that Dr̄ > Dp̄+Dq̄ and Ds̄ > Dū+Dv̄. But if we only want to assume Dr̄ ≥ Dp̄+Dq̄ and

Ds̄ ≥ Dū+Dv̄, which are situations that will be important when we consider duality, then

we must use a = 2, which requires us to also make sure that enough local torsion conditions

are met. The following statements contain enough torsion conditions to ensure we have

all the needed compatibilities, at the expense of a lot of assumptions. The assumptions

are worse in the analogue of Lemma 7.3.50 as we require more of the ε maps to be chain

homotopy equivalences for that lemma.

Proposition 7.3.54. Let R be a Dedekind domain. Suppose that X is a CS set with per-

versities p̄, q̄, r̄ with Dr̄ > Dp̄ + Dq̄ and that Y is a CS set with perversities ū, v̄, s̄ with

Ds̄ > Dū+Dv̄. Let A,B ⊂ X be open subsets and C,D ⊂ Y be open subsets.

Let α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(X,B;R), γ ∈ IūHk(Y,C;R), and δ ∈ Iv̄H`(Y,D;R).

Suppose α ^ β ∈ Ir̄H i+j(X,A∪B;R), γ ^ δ ∈ Is̄Hk+`(Y,C∪D;R), α×γ ∈ IQ̂ap̄,ūH
i+k(X×

Y, (A× Y )∪ (X ×C);R), and β × δ ∈ IQ̂aq̄,v̄H
j+`(X × Y, (B× Y )∪ (X ×D);R), with a = 1.

Then

(α ^ β)×(γ ^ δ) = (−1)jk(α×γ) ^ (β×δ) ∈ IQ̂ar̄,s̄H
i+j+k+`(X×Y, ((A∪B)×Y )∪(X×(C∪D));R).

Under the assumption Dr̄ ≥ Dp̄+Dq̄ and Ds̄ ≥ Dū+Dv̄ then the above equalities hold

with a = 2 assuming the following conditions are satisfied18:

18These conditions are not all independent; see, in particular, Proposition 6.4.15.
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• X is locally (p̄, R)-torsion free or locally (q̄, R)-torsion free

• Y is locally (ū, R)-torsion free or locally (v̄, R)-torsion free

• X is locally (p̄, R)-torsion free or Y is locally (ū, R)-torsion free

• X is locally (q̄, R)-torsion free or Y is locally (v̄, R)-torsion free

• X × Y is locally (Q̂2
p̄,ū, R)-torsion free or locally (Q̂2

q̄,v̄, R)-torsion free

• X is locally (r̄, R)-torsion free or Y is locally (s̄, R)-torsion free.

Proposition 7.3.55. Let R be a Dedekind domain. Suppose that X is a CS set with per-

versities p̄, q̄, r̄ with Dr̄ > Dp̄ + Dq̄ and that Y is a CS set with perversities ū, v̄, s̄ with

Ds̄ > Dū+Dv̄. Let A,B ⊂ X and C,D ⊂ Y be open subsets.

Let α ∈ Iq̄Hj(X,B;R), x ∈ I r̄Hi+j(X,A∪B;R), β ∈ Iv̄H`(Y,D;R), and y ∈ I s̄Hk+`(Y,C∪
D;R). Suppose α×β ∈ IQ̂aq̄,v̄H

j+`(X×Y, (B×Y )∪ (X×D);R), x× y ∈ IQ̂ar̄,s̄Hi+j+k+`(X×
Y, ((A∪B)× Y )∪ (X × (C ∪D));R), α _ x ∈ I p̄Hi(X,A;R), and β _ y ∈ I ūHk(Y,C;R),

with a = 1. Then

(α×β) _ (x× y) = (−1)`(i+j)(α _ x)× (β _ y) ∈ IQ̂ap̄,ūHi+k(X×Y, (A×Y )∪ (X×C);R).

Under the assumption Dr̄ ≥ Dp̄+Dq̄ and Ds̄ ≥ Dū+Dv̄ then the above equalities hold

with a = 2 assuming the following conditions are satisfied19:

• X is locally (p̄, R)-torsion free or locally (q̄, R)-torsion free

• Y is locally (ū, R)-torsion free or locally (v̄, R)-torsion free

• X × Y is locally (Q̂2
p̄,ū, R)-torsion free or locally (Q̂2

q̄,v̄, R)-torsion free.

Unfortunately, we need one more iteration of this, as Propositions 7.3.54 and 7.3.55 are

actually a little “too strong.” For example, the end result of Proposition 7.3.54 ends up in

IQ̂ar̄,s̄H
i+j+k+`(X × Y, ((A ∪B)× Y ) ∪ (X × (C ∪D));R).

The perversity Q̂a
r̄,s̄ is designed to be on the larger end of (r̄, s̄)-compatible perversities, and

we might want our result to live in one of the smaller (r̄, s̄)-compatible perversities. Of

course we can pull back an intersection cohomology module to one with a smaller perversity,

but we might also want to weaken where we expect some of the intermediate products

to live. This could all be done by applying the appropriate naturality statements, but to

get desired versions of both Propositions 7.3.54 and 7.3.55, it is perhaps simplest now to

revisit the diagrams of Lemma 7.3.49. To simplify, we will use the perversities as stand-ins

for the modules, and we use the perversities of Lemma 7.3.53. We also make the necessary

assumption to invert the indicated ε maps to IAW maps, and the resulting diagram commutes

only up to homotopy.

19These conditions are not all independent; see, in particular, Proposition 6.4.15.

435



Q̂a
r̄,s̄

d
- Q̂a

Q̂ap̄,ū,Q̂
a
q̄,v̄

IAW
- Q̂a

p̄,ū ⊗ Q̂a
q̄,v̄

Q̂a
Q̂ap̄,q̄ ,Q̂

a
ū,v̄

id× t× id ∼=
6

p̄⊗ ū⊗ q̄ ⊗ v̄

IAW⊗ IAW

?

r̄ ⊗ s̄

IAW

? d⊗ d
- Q̂a

p̄,q̄ ⊗ Q̂a
ū,v̄

ε
6

IAW⊗ IAW
- p̄⊗ q̄ ⊗ ū⊗ v̄.

id⊗ τ ⊗ id ∼=

6

Now let us introduce the following additional perversities:

1. let Pr̄,s̄ be (r̄, s̄)-compatible on X × Y with Pr̄,s̄ ≤ Q̂a
r̄,s̄,

2. let Pp̄,ū be (p̄, ū)-compatible on X × Y with Pū,v̄ ≤ Q̂a
ū,v̄,

3. let Pq̄,v̄ be (q̄, v̄)-compatible on X × Y with Pv̄,v̄ ≤ Q̂a
v̄,v̄.

Furthermore, suppose that (Pp̄,ū, Pq̄,v̄;Pr̄,s̄) is P-agreeable with P ≤ Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

.

The we can augment the preceding diagram to

Pr̄,s̄
d

- P
IAW

- Pp̄,ū ⊗ Pq̄,v̄

Q̂a
r̄,s̄

d
-

-

Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

?
IAW

- Q̂a
p̄,ū ⊗ Q̂a

q̄,v̄

g

-

Q̂a
Q̂ap̄,q̄ ,Q̂

a
ū,v̄

id× t× id ∼=
6

p̄⊗ ū⊗ q̄ ⊗ v̄

IAW⊗ IAW

?�

IA
W
⊗

IA
W

r̄ ⊗ s̄

IAW

? d⊗ d
-

IA
W

-

Q̂a
p̄,q̄ ⊗ Q̂a

ū,v̄

ε
6

IAW⊗ IAW
- p̄⊗ q̄ ⊗ ū⊗ v̄.

id⊗ τ ⊗ id ∼=

6

The unlabeled maps are induced by the identity maps on spaces, and they are allowable as

we have defined our perversities so that the domain perversities are less than or equal to the

target perversities. The map labeled g is the homotopy inverse of such a map induced by an
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identity map; we are permitted to invert this identity map up to chain homotopy as the two

other maps in the top right triangle are chain homotopy equivalences. The top row is well

defined by our agreeable assumption, and all of our new polygons commute by naturality of

diagonal maps and cross products.

By chasing the diagram, one can now check that the two paths around the outside of the

diagram from the top left to the bottom right commute up to homotopy. Thus the proof of

Lemma 7.3.50 goes through. Similarly, replacing the vertical and diagonal IAW maps with

their chain homotopy inverse ε maps, the two paths around the outside of the diagram from

the bottom left to the top right right commute up to homotopy. This is what is needed in

the proof of Lemma 7.3.51. This allows us to conclude with the following versions of the

interchange properties:

Proposition 7.3.56. Let R be a Dedekind domain. Suppose that X is a CS set with per-

versities p̄, q̄, r̄ with Dr̄ > Dp̄ + Dq̄ and that Y is a CS set with perversities ū, v̄, s̄ with

Ds̄ > Dū + Dv̄. Let A,B ⊂ X be open subsets and C,D ⊂ Y be open subsets. Suppose

on X × Y with a = 1 that Pr̄,s̄ ≤ Q̂a
r̄,s̄ is (r̄, s̄)-compatible, Pp̄,ū ≤ Q̂a

p̄,ū is (p̄, ū)-compatible,

Pq̄,v̄ ≤ Q̂a
q̄,v̄ is (q̄, v̄)-compatible, and (Pp̄,ū, Pq̄,v̄;Pr̄,s̄) is P-agreeable with P ≤ Q̂a

Q̂ap̄,ū,Q̂
a
q̄,v̄

.

Let α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(X,B;R), γ ∈ IūHk(Y,C;R), and δ ∈ Iv̄H`(Y,D;R).

Suppose α ^ β ∈ Ir̄H i+j(X,A∪B;R), γ ^ δ ∈ Is̄Hk+`(Y,C∪D;R), α×γ ∈ IPp̄,ūH i+k(X×
Y, (A× Y ) ∪ (X × C);R), and β × δ ∈ IPq̄,v̄Hj+`(X × Y, (B × Y ) ∪ (X ×D);R).

Then

(α ^ β)×(γ ^ δ) = (−1)jk(α×γ) ^ (β×δ) ∈ IPr̄,s̄H i+j+k+`(X×Y, ((A∪B)×Y )∪(X×(C∪D));R).

Under the assumption Dr̄ ≥ Dp̄+Dq̄ and Ds̄ ≥ Dū+Dv̄ then the above statement holds

with a = 2 assuming the following conditions are satisfied20:

• X is locally (p̄, R)-torsion free or locally (q̄, R)-torsion free

• Y is locally (ū, R)-torsion free or locally (v̄, R)-torsion free

• X is locally (p̄, R)-torsion free or Y is locally (ū, R)-torsion free

• X is locally (q̄, R)-torsion free or Y is locally (v̄, R)-torsion free

• X × Y is locally (Q̂2
p̄,ū, R)-torsion free or locally (Q̂2

q̄,v̄, R)-torsion free

• X is locally (r̄, R)-torsion free or Y is locally (s̄, R)-torsion free.

Proposition 7.3.57. Let R be a Dedekind domain. Suppose that X is a CS set with per-

versities p̄, q̄, r̄ with Dr̄ > Dp̄ + Dq̄ and that Y is a CS set with perversities ū, v̄, s̄ with

Ds̄ > Dū + Dv̄. Let A,B ⊂ X and C,D ⊂ Y be open subsets. Suppose on X × Y with

a = 1 that Pr̄,s̄ ≤ Q̂a
r̄,s̄ is (r̄, s̄)-compatible, Pp̄,ū ≤ Q̂a

p̄,ū is (p̄, ū)-compatible, Pq̄,v̄ ≤ Q̂a
q̄,v̄ is

(q̄, v̄)-compatible, and (Pp̄,ū, Pq̄,v̄;Pr̄,s̄) is P-agreeable with P ≤ Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

.

20These conditions are not all independent; see, in particular, Proposition 6.4.15.
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Let α ∈ Iq̄Hj(X,B;R), x ∈ I r̄Hi+j(X,A∪B;R), β ∈ Iv̄H`(Y,D;R), and y ∈ I s̄Hk+`(Y,C∪
D;R). Suppose α×β ∈ IPq̄,v̄Hj+`(X ×Y, (B×Y )∪ (X ×D);R), x× y ∈ IPr̄,s̄Hi+j+k+`(X ×
Y, ((A∪B)× Y )∪ (X × (C ∪D));R), α _ x ∈ I p̄Hi(X,A;R), and β _ y ∈ I ūHk(Y,C;R).

Then

(α×β) _ (x× y) = (−1)`(i+j)(α _ x)× (β _ y) ∈ IPp̄,ūHi+k(X×Y, (A×Y )∪ (X×C);R).

Under the assumption Dr̄ ≥ Dp̄+Dq̄ and Ds̄ ≥ Dū+Dv̄ then the above equalities hold

with a = 2 assuming the following conditions are satisfied21:

• X is locally (p̄, R)-torsion free or locally (q̄, R)-torsion free

• Y is locally (ū, R)-torsion free or locally (v̄, R)-torsion free

• X is locally (p̄, R)-torsion free or Y is locally (ū, R)-torsion free

• X is locally (q̄, R)-torsion free or Y is locally (v̄, R)-torsion free

• X × Y is locally (Q̂2
p̄,ū, R)-torsion free or locally (Q̂2

q̄,v̄, R)-torsion free.

Example 7.3.58. The following example will be utilized below in the proof of Theorem

9.3.17.3, which concerns the multiplicativity of Witt signatures. Suppose R is a field so

that all torsion free conditions hold automatically and we can use a = 2. We claim that

the two interchange propositions hold taking p̄ = q̄ = ū = v̄ = Pp̄,ū = Pq̄,v̄ = n̄ and

r̄ = s̄ = Pr̄,s̄ = 0̄. Here n̄ is the upper-middle Goresky-MacPherson perversity (Definition

3.1.10). As n̄ and 0̄ depend only on codimension, they are well defined on any space. We

need only check that the perversities satisfy the required conditions.

We have D0̄ ≥ Dn̄ + Dn̄ by the proof of Corollary 7.2.12, while n̄ is (n̄, n̄)-compatible

by Example 6.4.11. It is easy to see that 0̄ is (0̄, 0̄)-compatible right from the definition

(Definition 6.4.5). It is also clear from Definition 7.3.52 that 0̄ ≤ Q̂a
0̄,0̄.

To see that n̄ ≤ Q̂2
n̄,n̄, we note that we saw in the proof of Example 6.4.11 that on a

stratum of X × Y of the form S × T with codim(S) = k > 0 and codim(S) = ` > 0 then

n̄(S × T ) = n̄(k + `) ≤ n̄(k) + n̄(`) + 1 ≤ n̄(k) + n̄(`) + 2 = Q̂2
n̄,n̄(S × T ).

Similarly, if S is regular we have

n̄(S × T ) = n̄(`) = Q̂2
n̄,n̄(S × T ),

and analogously if T is regular.

Finally, we need a P such that (n̄, n̄; 0̄) is P-agreeable with P ≤ Q̂2
Q̂2
n̄,n̄,Q̂

2
n̄,n̄

. Continuing

to assume field coefficients, we know that Q̂2
n̄,n̄ is the maximal (n̄, n̄)-compatible perversity

and so the agreeability of (n̄, n̄; 0̄) means that it will be Q̂2
n̄,n̄-agreeable. Let us see that

21These conditions are not all independent; see, in particular, Proposition 6.4.15. Also note that we need

more torsion free conditions here than in Proposition 7.3.55 because our argument here requires us to be

able to obtain the map labeled g in Diagram (7.3.6) as a homotopy inverse.
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Q̂2
n̄,n̄ ≤ Q̂2

Q̂2
n̄,n̄,Q̂

2
n̄,n̄

. For this we can employ the following table applied to strata S× T ×U ×
V ⊂ X × Y ×X × Y , with r denoting a regular stratum and s denoting a singular stratum.

In principle there are 16 possibilities, but we omit those cases that are redundant due to the

evident symmetries.

S T U V Q̂2
n̄,n̄((S × T )× (U × V )) Q̂2

Q̂2
n̄,n̄,Q̂

2
n̄,n̄

(S × U × T × V )

r r r r 0 0

s r r r n̄(S) n̄(S)

s s r r n̄(S × T ) n̄(S) + n̄(T ) + 2

s r s r n̄(S) + n̄(U) + 2 n̄(S) + n̄(U) + 2

s s s r n̄(S × T ) + n̄(U) + 2 [n̄(S) + n̄(T ) + 2 + n̄(U)] + 2

s s s s n̄(S × T ) + n̄(U × V ) + 2 [n̄(S) + n̄(T ) + 2 + n̄(U) + n̄(V ) + 2] + 2

As we know that n̄(k + `) ≤ n̄(k) + n̄(`) + 1, where k, ` represent codimensions, we see

that indeed Q̂2
n̄,n̄ ≤ Q̂2

Q̂2
n̄,n̄,Q̂

2
n̄,n̄

7.3.7 Locality

There is another desirable property of the traditional cap product in ordinary homology that

we will need to approximate. If we form the singular chain cap product α _ ξ using the

front face/back face formula, then every simplex of α _ ξ will be a face of a simplex of ξ.

This shows at the level of chains that the support of α _ ξ will be a subset of the support

of ξ itself, which one can imagine is a useful property. For example, it is utilized in the

proof that Poincaré duality isomorphisms are compatible with Mayer-Vietoris sequences in

Hatcher [125, Lemma 3.36]. We will need a version of this fact for intersection homology

below in Lemma 7.4.8. However, there is no reason to suppose in the intersection world

that the support of α _ ξ will be contained in the support of ξ, and we will not be able to

recreate this property exactly. However, we can show that acting on an intersection chain

by a cap product “doesn’t move it too far” in a sense made precise in the following lemma.

The arguments in this section are based closely on those in [100, 99].

Proposition 7.3.59. Let R be a Dedekind domain. Suppose X is a CS set with an agreeable

triple of perversities (p̄, q̄; r̄). Let A,B be open subsets of X. Let U be an open covering of

X. Then the image of

d̄ : I r̄H∗(X,A ∪B;R)→ H∗(I
p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R))

is contained in the image of

κ : H∗

(∑
U∈U

I p̄S∗(U,U ∩ A;R)⊗ I q̄S∗(U,U ∩B;R)

)
→ H∗(I

p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)),

where κ is induced by inclusions.
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Notice that
∑

U∈U I
p̄S∗(U,U ∩A;R)⊗I q̄S∗(U,U ∩B;R) makes sense as each I p̄S∗(U,U ∩

A;R)⊗ I q̄S∗(U,U ∩ B;R) is a submodule of I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R), using that the

intersection chain modules are all projective by Lemma 6.3.1.

The point of the lemma is that if we apply ε to an element of
∑

U∈U I
p̄S∗(U ;R) ⊗

I q̄S∗(U ;R), then the image will live in ∪UU ×U , which, depending on U , can be considered

a small neighborhood of the diagonal d(X) ⊂ X ×X. This doesn’t really ensure that d̄(ξ)

consists of chains “near d(ξ),” but it does mean that d̄(ξ) is a sum of tensor products of

chains that are near each other, which will be sufficient for Lemma 7.4.8, below.

Proof. Consider the following diagram, in which the unlabeled map and the maps labeled λ

and κ are induced by inclusions and µ is induced by the chain cross product ε.

I r̄S∗(X,A ∪B;R)
d

- IQp̄,q̄S∗(X ×X, (A×X) ∪ (X ×B);R) �
ε

I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

IQp̄,q̄S∗

(⋃
U

U × U,
⋃
U

((A ∩ U)× U) ∪ (U × (B ∩ U));R

)
6d

-

∑
U

IQp̄,q̄S∗ (U × U, ((A ∩ U)× U) ∪ (U × (B ∩ U));R)

λ
6

�
µ ∑

U

I p̄S∗(U,A ∩ U ;R)⊗ I q̄S∗(U,B ∩ U ;R)

κ

6

The diagram commutes. In particular, the triangle commutes because the underlying map

of spaces commutes, while the rectangle commutes using Proposition 5.2.17 and Theorem

6.3.19.

We know that ε induces a homology isomorphism by the Künneth theorem (Theorem

6.4.7). We will show that λ and µ induce homology isomorphisms, as well. The lemma then

follows by applying H∗ to the diagram and reversing the arrows of the quasi-isomorphisms.

The map λ is an isomorphism on homology by Proposition 6.5.1. To see that this propo-

sition applies, we note that

(U × U) ∩ [(A×X) ∪ (X ×B)] = [(U × U) ∩ (A×X)] ∪ [(U × U) ∩ (X ×B)]

= [(U ∩ A)× (U ∩X)] ∪ [(U ∩X)× (U ∩B)]

= [(U ∩ A)× U ] ∪ [U × (U ∩B)],

and clearly this is contained in
⋃
U((A∩U)×U)∪ (U × (B∩U)). Therefore, the intersection

of U × U with
⋃
U((A ∩ U)× U) ∪ (U × (B ∩ U)) is [(U ∩ A)× U ] ∪ [U × (U ∩B)].

The proof that µ is a quasi-isomorphism is presented as Lemma 7.3.62, below.

We now work toward stating and proving Lemma 7.3.62 in order to finish the proof of

Proposition 7.3.59.
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Lemma 7.3.60. Let X be a filtered space, let B be an open subset, and let G be an abelian

group. Suppose {Uj}kj=1 is a finite collection of open subsets of X. Then

I p̄S∗(Uk, B ∩ Uk;G) ∩
k−1∑
j=1

I p̄S∗(Uj, B ∩ Uj;G) =
k−1∑
j=1

I p̄S∗(Uj ∩ Uk, B ∩ Uj ∩ Uk;G)

as subgroups of I p̄S∗(X,B;G).

Notice that the analogous lemma would be straightforward for ordinary singular chains,

using a basis represented by singular simplices. However, it is not completely obvious in the

intersection world where we do not have the complete freedom in how to break chains apart

into pieces. For example, it is certainly possible that there might be chains x1 ∈ I p̄S∗(U1;G)

and x2 ∈ I p̄S∗(U2;G) such that x1 + x2 is supported in U3 but such that x1 is not supported

in U1 ∩ U3. If x1 and x2 were ordinary chains, that would mean that they share some

simplices that cancel in x1 + x2, and we could throw away these simplices to be left with

y1, y2 such that y1 + y2 = x1 + x2 but with yj supported in Uj ∩ U3. As usual, we cannot

throw away simplices so cavalierly in the setting of intersection chains, so more argument

is needed. Luckily, the groundwork has already been lain. In fact, this lemma could be

proven as a nearly immediate application of Proposition 6.5.2. However, we will next need

a version of this lemma for tensor products, which will be Lemma 7.3.61, just below. To

work toward the proof of that lemma, we prove Lemma 7.3.60 instead by using Corollary

6.5.3, which we have seen is closely related to Proposition 6.5.2, both being consequences of

the techniques used to prove Proposition 6.5.1, which we have already used in the proof of

Proposition 7.3.59.

Proof of Lemma 7.3.60. First, observe that the expressions in the lemma make sense, as

inclusion induces injections I p̄S∗(Uj, B ∩ Uj;G) ↪→ I p̄S∗(X,B;G) for each j: for example,

the only chains in the kernel of I p̄S∗(Uj;G) → I p̄S∗(X,B;G) are those that are supported

in B and Uj, and those are 0 in I p̄S∗(Uj, B ∩ Uj;G). Therefore, we can identify the image

of I p̄S∗(Uj, B ∩ Uj;G) as a subgroup of I p̄S∗(X,B;G), and the sum on the left then makes

sense. The same argument holds for the terms involving further intersections.

Next, notice that the we only need to prove the lemma for groups, i.e. that

I p̄Si(Uk, B ∩ Uk;G) ∩
k−1∑
j=1

I p̄Si(Uj, B ∩ Uj;G) =
k−1∑
j=1

I p̄Si(Uj ∩ Uk;B ∩ Uj ∩ Uk;G)

for each i, as each side of the equality takes care of itself as a chain complex. It is also obvious

that I p̄Si(Uj ∩ Uk, B ∩ Uj ∩ Uk;G) injects into I p̄Si(Uk, B ∩ Uk;G) and I p̄Si(Uj, B ∩ Uj;G)

so that, altogether,

I p̄Si(Uk, B ∩ Uk;G) ∩
k−1∑
j=1

I p̄Si(Uj, B ∩ Uj;G) ⊃
k−1∑
j=1

I p̄Si(Uj ∩ Uk, B ∩ Uj ∩ Uk;G).

So suppose that x ∈ I p̄Si(Uk, B ∩ Uk;G) ∩
∑k−1

j=1 I
p̄Si(Uj, B ∩ Uj;G). In particular,

this means that there is an intersection chain ξ in I p̄Si(Uk;G) ⊂ I p̄Si(X;G) that rep-

resents x and intersection chains ξj ∈ I p̄Si(Uj;G) so that
∑

j ξj ∈
∑k−1

j=1 I
p̄Si(Uj;G) ⊂
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I p̄Si(X;G) represents x. In other words, the chains ξ and
∑

j ξj both represent x as el-

ements of I p̄Si(X,B;G). We want to show that x can also be represented by a chain

in
∑k−1

j=1 I
p̄Si(Uj ∩ Uk;G) ⊂ I p̄Si(X;G), which of course also represents an element of∑k−1

j=1 I
p̄Si(Uj ∩ Uk;B ∩ Uj ∩ Uk;G) ⊂ I p̄Si(X,B;G).

Consider now Corollary 6.5.3, which says that if A is an open subset of X then the map

i : I p̄Si(A;G) → I p̄Si(X;G) induced by space inclusion is a split inclusion. In our case, let

A = Uk and let P : I p̄Si(X;G)→ I p̄Si(Uk;G) be the splitting such that P i = id. Of course

all the (non-relative) groups we have been considering are subgroups of I p̄Si(X;G), so we can

restrict P to any of these subgroups. In the proof of Corollary 6.5.3, the map P is constructed

by taking subdivisions of chains and then throwing away some of the subdivision. As a result,

for any chain ζ, the support of P (ζ) is contained in the support of ζ. So P takes chains in

B to chains in B and is therefore also well defined P : I p̄Si(X,B;G)→ I p̄Si(Uk, B ∩Uk;G).

Now, since ξ and
∑

j ξj (now thought of as elements of I p̄Si(X;G)) represent the same

element in I p̄Si(X,B;G), so do iP (ξ) and iP
(∑

j ξj

)
=
∑

j iP (ξj). As |ξ| ⊂ Uk, we have,

in fact, iP (ξ) = ξ ∈ I p̄Si(X;G), so iP (ξ) and iP
(∑

j ξj

)
also represent x. Furthermore, by

the support properties of P , we have |iP (ξj)| ⊂ Uj for each j, as |ξj| ⊂ Uj. Therefore,

iP (ξj) ∈ I p̄Si(Uk;G) ∩ I p̄Si(Uj;G) = I p̄Si(Uk ∩ Uj;G) ⊂ I p̄Si(X;G),

and so

iP

(∑
j

ξj

)
=
∑
j

iP (ξj) ∈
k−1∑
j=1

I p̄Si(Uj ∩ Uk;G).

As we know that iP
(∑

j ξj

)
represents x as an element of I p̄Si(X,B;G), we therefore see

that the image iP
(∑

j ξj

)
in

k−1∑
j=1

I p̄Si(Uj ∩ Uk, B ∩ Uj ∩ Uk;G) ⊂ I p̄Si(X,B;G)

represents x. This completes the proof.

Lemma 7.3.61. Let X be a filtered space, let A and B be open subsets, and let R be a

Dedekind domain. Suppose {Uj}kj=1 is a finite collection of open subsets of X. Then

[I p̄S∗(Uk, A ∩ Uk;R)⊗ I q̄S∗(Uk, Uk ∩B;R)]∩
k−1∑
j=1

[I p̄S∗(Uj, A ∩ Uj;R)⊗ I q̄S∗(Uj, Uj ∩B;R)]

=
k−1∑
j=1

I p̄S∗(Uj ∩ Uk, A ∩ Uj ∩ Uk;R)⊗ I q̄S∗(Uj ∩ Uk, Uj ∩ Uk ∩B;R)

as submodules of I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R).
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Proof. The proof is essentially the same as that for Lemma 7.3.60. First, recall from that

proof that each I p̄S∗(Uj, A ∩ Uj;G) ↪→ I p̄S∗(X,A;G) is an injection and similarly for the

analogous terms. But we know that each of the individual groups involved in the expressions

is a projective R-module by Lemma 6.3.1, and so also each

I p̄S∗(Uj, A ∩ Uj;R)⊗ I q̄S∗(Uj, Uj ∩B;R)

injects into

I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R)

and so can be considered a submodule, and similarly for the

I p̄S∗(Uj ∩ Uk, A ∩ Uj ∩ Uk;R)⊗ I q̄S∗(Uj ∩ Uk, Uj ∩ Uk ∩B;R).

It also follows that the inclusion ⊃ holds for the expression in the statement of the lemma.

The elements of

I p̄S∗(Uk, A ∩ Uk;R)⊗ I q̄S∗(Uk, Uk ∩B;R)

can be represented by chains of the form
∑

` ξ` ⊗ ξ′`, where ξ` ∈ I p̄S∗(Uk;R) and ξ′` ∈
I q̄S∗(Uk;R). Similarly, elements of

I p̄S∗(Uj, A ∩ Uj;R)⊗ I q̄S∗(Uj, Uj ∩B;R)

for 1 ≤ j ≤ k − 1 can be represented by chains
∑

` ηj` ⊗ η′j` with ηj` ∈ I p̄S∗(Uj;R) and

η′j` ∈ I q̄S∗(Uj;R). Technically, the indexing sets for the ` should depend on j, but by

including some 0 terms, we can assume that the indexing sets for the ` are all the same. So,

suppose we have an element x from the lefthand side of the expression in the statement of the

lemma. Then there are choices of ξ`, ξ
′
`, ηj`, η

′
j` so that both

∑
` ξ`⊗ξ′` and

∑k−1
j=1

∑
` ηj`⊗η′j`

represent x in I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R).

Consider again the splitting map P : I p̄S∗(X;R) → I p̄S∗(Uk;R) of Lemma 7.3.60 that

exists due to Corollary 6.5.3. This is not necessarily a chain map, but that will not be

necessary. Similarly, we have a splitting map P ′ : I q̄S∗(X;R) → I q̄S∗(Uk;R), and we let

i : Uk → X be the inclusion. As P, P ′ preserve (or reduce) supports, we have

P : I p̄S∗(X,A;R)→ I p̄S∗(Uk, Uk ∩ A;R)

and

P ′ : I q̄S∗(X,B;R)→ I q̄S∗(Uk, Uk ∩B;R),

so we can apply iP ⊗ iP ′ to our chains
∑

` ξ`⊗ξ′` and
∑k−1

j

∑
` ηj`⊗η′j`, and their images will

represent the same element in I p̄S∗(X,A;R) ⊗ I q̄S∗(X,B;R). As each ξ` and ξ′` is already

supported in Uk, the chain

(iP ⊗ iP ′)

(∑
`

ξ` ⊗ ξ′`

)
=
∑
`

iP (ξ`)⊗ iP ′(ξ′`) =
∑
`

ξ` ⊗ ξ′`
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, so P ⊗ P ′ acts by the identity on these elements. On the other hand,

(iP ⊗ iP ′)

(
k−1∑
j

∑
`

ηj` ⊗ η′j`

)
=

k−1∑
j

∑
`

iP (ηj`)⊗ iP ′(η′j`).

By the properties of P and P ′, as we saw in Lemma 7.3.60, each P (ηj`) or P (η′j`) will be

contained in I p̄S∗(Uk ∩ Uj;R) or I q̄S∗(Uk ∩ Uj;R), so

k−1∑
j

∑
`

P (ηj`)⊗ P (η′j`) ∈
k−1∑
j=1

I p̄S∗(Uj ∩ Uk;R)⊗ I q̄S∗(Uj ∩ Uk;R).

Therefore, we have shown that every element of I p̄S∗(X,A;R)⊗ I q̄S∗(X,B;R) in

I p̄S∗(Uk, A ∩ Uk;R)⊗ I q̄S∗(Uk, Uk ∩B;R) ∩
k−1∑
j=1

[I p̄S∗(Uj, A ∩ Uj;R)⊗ I q̄S∗(Uj, Uj ∩B;R)]

can be represented by an element in

k−1∑
j=1

I p̄S∗(Uj ∩ Uk;R)⊗ I q̄S∗(Uj ∩ Uk;R)

and so also by an element of

k−1∑
j=1

I p̄S∗(Uj ∩ Uk, A ∩ Uj ∩ Uk;R)⊗ I q̄S∗(Uj ∩ Uk, Uj ∩ Uk ∩B;R).

This completes the proof.

We can now present Lemma 7.3.62, which will complete the proof of Proposition 7.3.59.

Lemma 7.3.62. Let R be a Dedekind domain. Suppose X is a CS set with an agreeable

triple of perversities (p̄, q̄; r̄). Let A,B be open subsets of X. Let V be a collection of open

subsets of X.

Then the map

µ : H∗

(∑
V

I p̄S∗(V,A ∩ V ;R)⊗ I q̄S∗(V,B ∩ V ;R)

)

→ H∗

(∑
V

IQp̄,q̄S∗ (V × V, ((A ∩ V )× V ) ∪ (V × (B ∩ V ));R)

)

induced by the chain cross product ε is an isomorphism.
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Proof. We will proceed by induction on the size of V . If |V| = 1, the result follows by the

Künneth Theorem (Theorem 6.4.7). So now suppose that |V| = k > 1, i.e. that V = {Vi}ki=1,

k > 1. Let V ′ = {Vi}k−1
i=1 , and let V ′′ = {Vi ∩ Vk}k−1

i=1 .

Now we consider the following diagram of short exact sequences with coefficients tacit.

Here we use the notation (Y, Z)× (C,D) to represent (Y × C, (Y ×D) ∪ (Z × C)).

0 0

k−1∑
i=1

I p̄S∗(Vi ∩ Vk, A ∩ Vi ∩ Vk)⊗ I q̄S∗(Vi ∩ Vk, B ∩ Vi ∩ Vk)

?

ε
-

k−1∑
i=1

IQp̄,q̄S∗ ((Vi ∩ Vk, A ∩ Vi ∩ Vk)× (Vi ∩ Vk, B ∩ Vi ∩ Vk))

?

[I p̄S∗(Vk, A ∩ Vk)⊗ I q̄S∗(Vk, B ∩ Vk)]⊕
k−1∑
i=1

[I p̄S∗(Vi, A ∩ Vi)⊗ I q̄S∗(Vi, B ∩ Vi)]

?

ε⊕ ε
- [IQp̄,q̄S∗ ((Vk, A ∩ Vk)× (Vk, B ∩ Vk))]⊕

k−1∑
i=1

IQp̄,q̄S∗ ((Vi, A ∩ Vi)× (Vi, B ∩ Vi))

?

k∑
i=1

I p̄S∗(Vi, A ∩ Vi)⊗ I q̄S∗(Vi, B ∩ Vi)

?

ε
-

k∑
i=1

IQp̄,q̄S∗ ((Vi, A ∩ Vi)× (Vi, B ∩ Vi))

?

0
?

0
?

Although this looks horrendous, we claim that each vertical sequence has the standard

Mayer-Vietoris form

0 - C∗ ∩D∗ - C∗ ⊕D∗ - C∗ +D∗ - 0

and so is exact. In fact, it is clear that the transitions from the middle terms to the bottom

terms have the form B∗ ⊕ C∗ → B∗ + C∗, and it follows from Lemmas 7.3.60 and 7.3.61,

together with some careful manipulation of set identities, that the top nontrivial term in

each column is the intersection of the two summands of the middle term, as desired. The

diagram also commutes thanks to the naturality of the cross product.

The map of short exact sequences now induces a map of long exact homology sequences.

By the induction hypothesis, and by the fact that the homology map induced on a direct

sum is a direct sum of homology maps, we have homology isomorphisms on every two out

of three terms, so the Five Lemma completes the proof for |V| = k.

By induction, the lemma is now proven for any finite collection V .

Suppose now that V is not necessarily finite, and suppose

ξ ∈ Hi

(∑
V

IQp̄,q̄S∗ (V × V, ((A ∩ V )× V ) ∪ (V × (B ∩ V ));R)

)
.

By definition, every such element can be represented as a finite sum ξ =
∑k

j=1 ξj, with

ξj ∈ IQp̄,q̄S∗ (Vj × Vj, ((A ∩ Vj)× Vj) ∪ (Vj × (B ∩ Vj));R)

for {Vj}kj=1 ⊂ V . Now consider the diagram
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Hi

(
k∑
j=1

I p̄S∗(Vj, A ∩ Vj;R)⊗ I q̄S∗(Vj, B ∩ Vj;R)

)
µ
- Hi

(
k∑
j=1

IQp̄,q̄S∗ (Vj × Vj, ((A ∩ Vj)× Vj) ∪ (Vj × (B ∩ Vj));R)

)

Hi

(∑
V

I p̄S∗(V,A ∩ V ;R)⊗ I q̄S∗(V,B ∩ V ;R)

)?

µ
- Hi

(∑
V

IQp̄,q̄S∗ (V × V, ((A ∩ V )× V ) ∪ (V × (B ∩ V ));R)

)
.

?

By assumption, ξ is in the image of the righthand vertical map, and the µ in the top line is

an isomorphism by the arguments above. Therefore, ξ is also in the image of the bottom µ,

and thus the bottom µ is surjective.

Next, assume that

ζ ∈ Hi

(∑
V

I p̄S∗(V,A ∩ V ;R)⊗ I q̄S∗(V,B ∩ V ;R)

)

with µ(ζ) = 0. Once again, by definition, we can represent ζ by a chain contained in a finite

sum of terms, say over the sets {Wj}k
′

j=` ⊂ V . As µ(ζ) = 0, this means that there must be

an element

Z ∈
∑
V

IQp̄,q̄S∗ (V × V, ((A ∩ V )× V ) ∪ (V × (B ∩ V ));R)

whose boundary is µ(ζ), and again there must be some {Um}k
′′
m=1 ⊂ V such that

η ∈
k′′∑
m=1

IQp̄,q̄S∗ (Um × Um, ((A ∩ Um)× Um) ∪ (Um × (B ∩ Um));R) .

The collection {Wj}k
′

j=` ∪ {Um}k
′′
m=1 ⊂ V is finite, so let us relabel this as {Vj}kj=1 and again

consider a diagram of the form just above but as a diagram of chain complexes, not homology.

We start with the class that represents ζ in the upper left corner. By our assumptions, the

composition down then right yields µ(ζ), which we know is trivial in homology and bounds a

chain Z in the image of the chain complex in the upper right. Therefore, as the vertical maps

of the diagram are injective at the chain level, the chain µ(ζ) must represent the 0 homology

class already in the upper right. But as the upper µ is an isomorphism on homology, ζ must

already represent the trivial homology class in the upper left, and therefore in the bottom

left. This shows that the bottom µ is injective in homology.

Altogether now, we have shown that the bottom µ is a homology isomorphism.

7.3.8 The cohomology Künneth theorem

As one final property of intersection (co)homology products, we can prove a cohomology

Künneth theorem.

Theorem 7.3.63. Let R be a Dedekind domain. Suppose that X is a CS set with perversity

p̄, that Y is a CS set with perversity q̄, and that Q is a (p̄, q̄)-compatible perversity on
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X × Y . Furthermore, suppose that either I p̄Hi(X,A;R) is finitely generated for each i or

I q̄Hj(Y,B;R) is finitely generated for each j. Then there is a natural exact sequence

0→
⊕
i+j=k

Ip̄H
i(X,A;R)⊗ Iq̄Hj(Y,B;R)

×−→ IQH
k(X × Y, (A× Y ) ∪ (X ×B);R)

→
⊕

i+j=k+1

Ip̄H
i(X,A;R) ∗ Iq̄Hj(Y,B;R)→ 0

that splits (non-naturally).

In particular, if X is a manifold X = M (trivially stratified) and the finite generation

hypotheses are satisfied then we have an exact sequence

0→
⊕
i+j=k

H i(M,A;R)⊗ Iq̄Hj(Y,B;R)
×−→ Iq̄H

k(M × Y, (A× Y ) ∪ (M ×B);R)

→
⊕

i+j=k+1

H i(M,A;R) ∗ Iq̄Hj(Y,B;R)→ 0,

where we use q̄ to denote both a perversity on Y and the corresponding perversity on M ×Y
whose value is q̄(T ) on any stratum R× T ⊂M × Y with R ⊂M and T ⊂ Y .

Before the proof, we provide a standard important example:

Example 7.3.64. By taking (X,A) = (Rk,Rk − {0}) and recalling Hk(Rk,Rk − {0};R) ∼= R

and H i(Rk,Rk − {0};R) = 0 for i 6= k, we see that the cohomology cross product produces

an isomorphism

Iq̄H
j(Y,B;R) ∼= R⊗ Iq̄Hj(Y,B;R)

∼= Hk(Rk,Rk − {0};R)⊗ Iq̄Hj(Y,B;R)
×−→ Iq̄H

j+k(Rk × Y, ((Rk − {0})× Y ) ∪ (Rk ×B);R).

Proof of Theorem 7.3.63. We first note that that the last statement, for which X = M is

a trivially-filtered manifold, follows from the more general statement of the theorem, using

that any perversity p̄ on M is trivial and gives Ip̄H
∗(M ;R) = H∗(M ;R). Furthermore, if

Q is (p̄, q̄)-compatible on M × Y , then for any stratum R × T of M × Y we must have

Q(R× T ) = q̄(T ).

For the main statement of the theorem we follow the standard procedure that can be

found, for example, in [181, Section 60] or [71, Proposition VI.12.16]. These sources, however,

only consider R a PID, so we will indicate the proof and the necessary generalizations over

a Dedekind domain. The basic ideas is to treat Ip̄S
i(X,A;R) and Iq̄S

j(Y,B;R) as if they

were homologically indexed and then we can apply the standard algebraic Künneth theorem

to obtain the short exact top row in a diagram of the form
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⊕
i+j=k

Ip̄H
i(X,A;R)⊗ Iq̄Hj(Y,B;R) ⊂ - Hk(Ip̄S

∗(X,A;R)⊗ Iq̄S∗(Y,B;R)) --
⊕

i+j=k+1

Ip̄H
i(X,A;R) ∗ Iq̄Hj(Y,B;R)

Hk(Hom(I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R), R))

∼=
?

IQH
k(X × Y, (A× Y ) ∪ (X ×B);R).

IAW∗ ∼=
?

(7.24)

The first horizontal map composed with the vertical maps is the intersection cohomology

cross product by definition, and replacing the middle term of the short exact sequence with

its claimed isomorphic image IQH
k(X × Y, (A× Y ) ∪ (X ×B);R) will provide the claimed

sequence of the theorem.

We already know that IAW is a chain homotopy equivalence by definition, and so IAW∗

is an isomorphism. What remains is to verify that Ip̄S
∗(X,A;R) and Iq̄S

∗(Y,B;R) satisfy

the necessary conditions for the algebraic Künneth theorem to hold and that the top vertical

map is an isomorphism.

Suppose we have chain homotopy equivalences f : C∗ → I p̄S∗(X,A;R) and g : D∗ →
I q̄S∗(Y,B;R) such that C∗ and D∗ are bounded below complexes of projectives and such that

each Ci is finitely generated if each I p̄Hi(X,A;R) is finitely generated and each Di is finitely

generated if each I q̄Hi(Y,B;R) is finitely generated. For simplicity, we will assume that it

is C∗ that satisfies the finiteness condition. Lemma A.4.4 in Appendix A shows that such

chain homotopy equivalences can be constructed because the intersection chain complexes

are complexes of projective modules. Then, we have a commutative diagram⊕
i+j=k

H i(Hom(C∗, R))⊗Hj(Hom(D∗, R)) ⊂ - Hk(Hom(C∗, R)⊗ Hom(D∗, R)) --
⊕

i+j=k+1

H i(Hom(C∗, R)) ∗Hj(Hom(D∗, R))

⊕
i+j=k

Ip̄H
i(X,A;R)⊗ Iq̄Hj(Y,B;R)

f ∗ ⊗ g∗ ∼=6

Hk(Ip̄S
∗(X,A;R)⊗ Iq̄S∗(Y,B;R);R)

f ∗ ⊗ g∗ ∼=
6

⊕
i+j=k+1

Ip̄H
i(X,A;R) ∗ Iq̄Hj(Y,B;R).

f ∗ ∗ g∗ ∼=6

(7.25)

As f and g are chain homotopy equivalences, the vertical maps here are all isomorphisms:

in the middle we are using that f ∗ ⊗ g∗ as a chain map is a chain homotopy equivalence

and so induces an isomorphism in (co)homology (see Section A.2); on the left, f ∗ and g∗ are

(co)homology maps that are isomorphisms and so their tensor product is an isomorphism by

the functoriality of ⊗, and similarly on the right by the functoriality of the torsion product.

The top line here is a split short exact by the standard algebraic Künneth theorem22 [237,

Theorem 3.6.3], up to the switch between homological and cohomological indexing. To

cite this theorem, we need to know that each Hom(Ci, R) and d(Hom(Ci, R)) is flat. We

will show that Hom(Ci, R) is projective, which will suffice as a submodule of a projective

22Curiously, in [237, Theorem 3.6.3], Weibel only discusses the (non-natural) splitting of the Künneth

exact sequence when the base ring is Z. Hilton and Stammbach [126, Theorem V.2.1] give a complete proof

of the algebraic Künneth theorem, including the splitting, when R is a PID. The proof given in [126] works

over a Dedekind domain replacing “free” with “projective” throughout the argument.
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module over a Dedekind domain is projective: As Ci is finitely generated, there is a finitely

generated free R-module Fi with Fi → Ci surjective and with kernel Ki ⊂ Fi. As Ci is

projective, Fi ∼= Ki ⊕ Ci by Lemma A.4.2, and as Fi is finitely generated free, Fi = Rmi

for some mi. So Hom(Fi, R) ∼= Hom(Rmi , R) ∼= (Hom(R,R))mi is free, and, furthermore,

Hom(Fi, R) ∼= Hom(Ki⊕Ci, R) ∼= Hom(Ki, R)⊕Hom(Ci, R). Hence Hom(Ci, R) is a direct

summand of a free module and is therefore projective.

So, we have now seen that the top row of Diagram (7.25) is short exact split by the

algebraic Künneth theorem, and, via the isomorphisms in the diagram we obtain a split

short exact sequence with the same modules as in the top row of Diagram (7.24).

Next, we want to show that we have a commutative diagram

⊕
i+j=k

H i(Hom(C∗, R))⊗Hj(Hom(D∗, R)) ⊂
θ
- Hk(Hom(C∗, R)⊗ Hom(D∗, R))

∼= - Hk(Hom(C∗ ⊗D∗, R))

⊕
i+j=k

Ip̄H
i(X,A;R)⊗ Iq̄Hj(Y,B;R)

f ∗ ⊗ g∗ ∼=6

θ
- Hk(Ip̄S

∗(X,A;R)⊗ Iq̄S∗(Y,B;R);R)

f ∗ ⊗ g∗ ∼=
6

∼=- Hk(Hom(I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R), R).

(f ⊗ g)∗ ∼=
6

(7.26)

Notice that the first part of this diagram is compatible with the first part of Diagram (7.25),

while the bottom line consists of the lefthand horizontal map and the first vertical map in

Diagram (7.24). So, if we show that this diagram commutes and that the maps labeled as

such are isomorphisms, it will follow that we have achieved a diagram of the form of (7.24),

in which we know that the row is exact, that the top vertical map is an isomorphism, and

that the composition right then one step down is Θ, so that the full map right then all the

way down is the cohomology cross product. This will prove the theorem.

The commutativity of the square on the right follows from Lemma 7.3.1. The com-

mutativity on the left is trivial as, following Remark 5.2.6, if α ∈ Ip̄S
i(X,A;R) and β ∈

Iq̄S
j(Y,B;R) are cocycles representing cohomology classes, the map labeled θ simply takes

α ⊗ β, as a tensor product of cohomology classes, to the cohomology class represented by

α ⊗ β. The commutativity then comes by seeing what happens to such cochain represen-

tatives. We have already observed that the two leftmost vertical maps are isomorphisms.

The rightmost vertical map is similarly an isomorphism as the tensor products and duals of

chain homotopy equivalences are chain homotopy equivalences; see Section A.2.

Lastly, we need to see that

Hk(Hom(C∗, R)⊗ Hom(D∗, R))→ Hk(Hom(C∗ ⊗D∗, R))

is an isomorphism, which will imply that the bottom right horizontal map of Diagram (7.26)

is also an isomorphism. In fact, Hom(C∗, R) ⊗ Hom(D∗, R) → Hom(C∗ ⊗ D∗, R) is an

isomorphism of chain complexes with the given hypotheses. This is shown just below as

Lemma 7.3.65.

Lemma 7.3.65. Let R be a Dedekind domain. Suppose C∗ and D∗ are bounded-below com-

plexes of projective R-modules and that one of C∗ or D∗ consists entirely of finitely-generated

modules. Then Θ : Hom(C∗, R)⊗ Hom(D∗, R)→ Hom(C∗ ⊗D∗, R) is an isomorphism.
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Proof. For any fixed total degree k, we have

Homk(C∗ ⊗D∗, R) = Hom(⊕i+j=kCi ⊗Dj, R) ∼= ⊕i+j=kHom(Ci ⊗Dj, R),

as there are a finite number of non-zero summands by the bounded-below conditions. For

any fixed i and j, if f ∈ Hom(Ci, R) and g ∈ Hom(Dj, R), then Θ(f ⊗ g) acts trivially on

elements of Ci′ ⊗ Dj′ unless i = i′ and j = j′. So Θ takes Hom(Ci, R) ⊗ Hom(Dj, R) →
Hom(Ci ⊗ Dj, R). In other words, it preserves the direct sum structure. So it suffices to

prove that if A and B are fixed projective R-modules one of which is finitely generated then

Θ : Hom(A,R)⊗ Hom(B,R)→ Hom(A⊗B,R) is an isomorphism.

The proof is standard when A is free and finitely generated (see, e.g. [219, Lemma

5.5.6]): In this case, A ∼= Rm for some m. Let {ai}mi=1 be a basis for Rm, let {a∗i }mi=1 be

the dual basis (i.e. a∗i (aj) = δi,j), and let 〈ai〉 be the summand of Rm generated by ai. If

β ∈ Hom(B,R), then we see that Θ(a∗i ⊗ β) acts trivially on the summands 〈aj〉 ⊗ B for

i 6= j. So Θ takes Hom(〈ai〉, R)⊗Hom(B,R) to Hom(〈ai〉⊗B,R), and again the map splits

into a direct sum of simpler maps. Restricting to each summand, it is easy to see that each

Θ : Hom(R,R) ⊗ Hom(B,R) → Hom(R ⊗ B,R) is an isomorphism taking id ⊗ β to β in

Hom(R⊗B,R) ∼= Hom(B,R). This completes the case for A free and finitely generated.

Suppose now A is finitely-generated projective and that A⊕A′ is a free module. We can

find such a finitely generated A′. To see this, we observe that as A is finitely generated there

is a finitely generated free R-module F with F → A surjective and with kernel A′ ⊂ F . As

Dedekind domains are Noetherian [30, Theorem VII.2.2.1], F and A′ are thus Noetherian

(see [147, Section X.1]), and so A′ is finitely generated. The above proof for free modules

says that Θ induces an isomorphism from

Hom(A⊕ A′, R)⊗ Hom(B,R) ∼= (Hom(A,R)⊗ Hom(B,R))⊕ (Hom(A′, R)⊗ Hom(B,R))

to

Hom((A⊕ A′)⊗B,R) ∼= Hom(A⊗B,R)⊕ Hom(A′ ⊗B,R).

But Θ also preserves these splittings, by an argument just as above, and it follows that this

larger Θ restricts to the desired isomorphism Θ : Hom(A,R)⊗Hom(B,R)→ Hom(A⊗B,R)

by the following argument. The injectivity for the free modules restricts to injectivity on each

summand. Furthermore, as we have surjectivity in the free case, any element of Hom(A ⊗
B,R) ⊂ Hom((A ⊕ A′) ⊗ B,R) is in the image of Hom(A ⊕ A′, R) ⊗ Hom(B,R). But the

summand Hom(A′, R)⊗ Hom(B,R) of Hom(A⊕ A′, R)⊗ Hom(B,R) maps trivially to the

summand Hom(A⊗B,R) of Hom(A⊗B,R)⊕Hom(A′⊗B,R) and so all of Hom(A⊗B,R)

must be in the image of Hom(A,R)⊗ Hom(B,R).

7.3.9 Summary of properties

Given the large number of properties of cup, cross, and cap products we have now seen

and given how spread out through the proofs the statements have been, we here present
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for the benefit of the reader a quick summary of these properties and the required condi-

tions necessary for the properties to hold. We include also the properties of the homology

cross product from Section 5.2.3, which hold for non-GM intersection homology by Theorem

6.3.19. Throughout this section, spaces labeled X, Y , etc. are CS sets (unless noted other-

wise), subspaces labeled A, B, etc. are open subspaces (unless noted otherwise), and R is a

Dedekind domain. The perversity t̄X is the top perversity on the space X.

1. Naturality

• Conditions: All spaces only filtered

Maps: f : (X,A) → (X ′, A′) is (p̄, p̄′)-stratified, g : (Y,B) → (Y ′, B′) is (q̄, q̄′)-

stratified, and f×g is (P,Q)-stratified; P (S×T ) ≥ p̄(S)+ q̄(T ), Q(S ′×T ′) ≥
p̄′(S ′) + q̄′(T ′)

Terms: ξ ∈ I p̄S∗(X,A;R), η ∈ I q̄S∗(Y,B;R), ξ × η ∈ IPH∗(X × Y, (A × Y ) ∪
(X ×B);R)

Property:

f(ξ)× g(η) = (f × g)(ξ × η) ∈ IQS∗(X ′ × Y ′, (A′ × Y ′) ∪ (X ′ ×B′);R)

Location: Proposition 5.2.17

• Conditions: Q on X×Y is (p̄, q̄)-compatible, Q′ on X ′×Y ′ is (p̄′, q̄′)-compatible

Maps: f : (X,A) → (X ′, A′) is (p̄, p̄′)-stratified, g : (Y,B) → (Y ′, B′) is (q̄, q̄′)-

stratified, f × g is (Q,Q′)-stratified

Terms: α ∈ Ip̄′H i(X ′, A′;R), β ∈ Iq̄′Hj(Y ′, B′;R), α×β ∈ IQ′H i+j(X ′×Y ′, (A′×
Y ′) ∪ (X ′ ×B′);R)

Property:

(f × g)∗(α× β) = (f ∗(α))× (g∗(β)) ∈ IQH i+j(X × Y, (A× Y )∪ (X ×B);R).

Location: Proposition 7.3.2

• Conditions: (p̄, q̄; r̄) agreeable on X, (ū, v̄; s̄) agreeable on Y

Maps: f : (X;A,B) → (Y ;C,D) is (p̄, ū)-stratified, (q̄, v̄)-stratified, and (r̄, s̄)-

stratified

Terms: α ∈ IūH i(Y,C;R), β ∈ Iv̄Hj(Y,D;R), α ^ β ∈ Is̄H i+j(Y,C ∪D;R)

Property:

f ∗(α ^ β) = (f ∗(α)) ^ (f ∗(β)) ∈ Ir̄H i+j(X,A ∪B;R)

Location: Proposition 7.3.5
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• Conditions: (p̄, q̄; r̄) agreeable on X, (ū, v̄; s̄) agreeable on Y

Maps: f : (X;A,B) → (Y ;C,D) is (p̄, ū)-stratified, (q̄, v̄)-stratified, and (r̄, s̄)-

stratified

Terms: β ∈ Iv̄Hj(Y,D;R), ξ ∈ I r̄Hi+j(X,A∪B;R), f ∗(β) _ ξ ∈ I p̄Hi(X,A;R)

Property:

β _ f(ξ) = f(f ∗(β) _ ξ) ∈ I ūHi(Y,C;R).

Location: Proposition 7.3.6

2. Associativity

• Conditions: All spaces only filtered; P (S×S ′) ≥ p̄(S)+ q̄(S ′) on X×Y , Q(S ′×
S ′′) ≥ q̄(S ′) + r̄(S ′′) on Y × Z, T (S × S ′ × S ′′) ≥ P (S × S ′) + r̄(S ′′) and

T (S × S ′ × S ′′) ≥ p̄(S) +Q(S ′ × S ′′) on X × Y × Z
Terms: x ∈ I p̄S∗(X,A;R), y ∈ I q̄S∗(Y,B;R), z ∈ I r̄S∗(Z,C;R)

Property:

(x×y)×z = x×(y×z) ∈ ITS∗(X×Y×Z, (A×Y×Z)∪(X×B×Z)∪(X×Y×C);R)

Location: Proposition 5.2.19

• Conditions: Q1 is (p̄, q̄)-compatible, Q2 is (q̄, r̄)-compatible, Q3 is both (p̄, Q2)-

compatible and (Q1, q̄)-compatible

Terms: α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(Y,B;R), γ ∈ Ir̄Hk(Z,C;R)

Property:

(α× β)× γ = α× (β × γ)

in IQ3H
i+j+k(X × Y × Z, (A× Y × Z) ∪ (X ×B × Z) ∪ (X × Y × C);R)

Location: Proposition 7.3.29

• Conditions: Dū > Dp̄+Dq̄, Dv̄ > Dq̄+Dr̄, Ds̄ > Dū+Dr̄, and Ds̄ > Dp̄+Dv̄,

conditions can be replaced with non-strict inequalities if X is locally (p̄, R)-

torsion free and locally (r̄, R)-torsion free23

Terms: α ∈ Ip̄H
i(X,A;R), β ∈ Iq̄H

j(X,B;R), γ ∈ Ir̄H
k(X,C;R), α ^ β ∈

IūH
i+j(X,A ∪B;R), β ^ γ ∈ Iv̄Hj+k(X,B ∪ C;R)

Property:

(α ^ β) ^ γ = α ^ (β ^ γ) ∈ Is̄H i+j+k(X,A ∪B ∪ C;R)

Location: Proposition 7.3.34

23See also Lemma 7.3.31 for a more general associativity property.
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3. Commutativity

• Conditions: All spaces only filtered; P (S×S ′) ≥ p̄(S)+ q̄(S ′) on X×Y , Q(S ′×
S) = P (S × S ′) on Y ×X

Maps: t : X × Y → Y ×X such that t(x, y) = (y, x)

Terms: x ∈ I p̄S∗(X,A;R), y ∈ I q̄S∗(Y,B;R)

Property:

t(x× y) = (−1)|x||y|y × x ∈ IQS∗(Y ×X, (B ×X) ∪ (Y × A);R)

Location: Proposition 5.2.20

• Conditions: Q is (p̄, q̄)-compatible on X×Y , Qτ (T×S) = Q(S×T ) for T×S ⊂
Y ×X

Maps: t : X × Y → Y ×X such that t(x, y) = (y, x)

Terms: α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(Y,B;R)

Property:

t∗(α× β) = (−1)ijβ × α ∈ IQτH i+j(Y ×X, (B ×X) ∪ (Y × A);R)

Location: Proposition 7.3.13

• Conditions: (p̄, q̄; r̄) agreeable

Terms: α ∈ Ip̄H i(X,A;R) β ∈ Iq̄Hj(X,B;R)

Property:

α ^ β = (−1)ijβ ^ α ∈ Ir̄H i+j(X,A ∪B;R)

Location: Proposition 7.3.15

4. Unital properties

• Conditions: X filtered

Terms: σ0 : ∆0 → pt the unique singular 0 simplex, ξ ∈ I p̄Si(X,A;R)

Property:

σ0×ξ = ξ×σ0 = ξ ∈ I p̄Si(pt×X, pt×A;R) = I p̄Si(X×pt, A×pt;R) = I p̄Si(X,A;R).

Location: Proposition 5.2.21

• Conditions: None

Terms: α ∈ Ip̄H i(X,A;R), 1 ∈ It̄H0(X;R)
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Property:

1 ^ α = α ^ 1 = α ∈ Ip̄H i(X,A;R)

Location: Proposition 7.3.21

• Conditions: None

Terms: ξ ∈ I p̄Hi(X,A;R), 1 ∈ It̄H0(X;R)

Property:

1 _ ξ = ξ ∈ I p̄Hi(X,A;R)

Location: Proposition 7.3.22

• Conditions: None

Terms: α ∈ Ip̄H i(X,A;R), 1 ∈ H0(pt;R)

Property:

1×α = α×1 = α ∈ Ip̄H i(pt×X, pt×A;R) = Ip̄H
i(X×pt, A×pt;R) = Ip̄H

i(X,A;R)

Location: Proposition 7.3.23

• Conditions: q̄ ≤ t̄Y , Q is (p̄, q̄)-compatible on X × Y .

Terms: α ∈ Ip̄H i(X,A;R), 1Y ∈ Iq̄H0(Y ;R), p1 : X × Y → X the projection

Property:

α× 1Y = p∗1(α) ∈ IQH∗(X × Y,A× Y ;R)

Location: Proposition 7.3.24

5. Evaluations

• Conditions: None

Maps: a : I t̄H0(X;R)→ R the augmentation map

Terms: α ∈ Ip̄H i(X,A;R), ξ ∈ I p̄Hi(X,A;R)

Property:

a(α _ ξ) = α(ξ) ∈ R

Location: Proposition 7.3.25

• Conditions: Q is (p̄, q̄)-compatible

Terms: α ∈ Ip̄Ha(X,A;R), β ∈ Iq̄Hb(Y,B;R), ξ ∈ I p̄Hi(X,A;R), η ∈ I q̄Hj(Y,B;R),

α× β ∈ IQHa+b(X × Y, (A× Y )∪ (X ×B);R), ξ × η ∈ IQHi+j(X × Y, (A×
Y ) ∪ (X ×B);R)
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Property:

(α× β)(ξ × η) = (−1)biα(ξ)β(η) ∈ R

Location: Proposition 7.3.27

6. Stability

• Conditions: All spaces filtered, Q(S × S ′) ≥ p̄(S) + q̄(S ′) on X × Y
Terms: ξ ∈ I p̄Hi(X,A;R), η ∈ I q̄Hj(Y,B;R)

Property:

(∂∗ξ)× η = ∂∗(ξ × η) ∈ IQHi+j−1((A× Y ) ∪ (X ×B), X ×B;R)

Location: Proposition 5.2.23

• Conditions: All spaces filtered, Q(S × S ′) ≥ p̄(S) + q̄(S ′) on X × Y
Terms: ξ ∈ I p̄Hi(X,A;R), η ∈ I q̄Hj(Y,B;R)

Property:

∂∗(ξ)×η+(−1)iξ×∂∗(η) = ∂∗(ξ×η) ∈ IQHi+j−1((A×Y )∪(X×B), A×B;R)

Location: Proposition 5.2.24

• Conditions: (p̄, q̄; r̄) agreeable

Maps: i : B ↪→ X the inclusion map, e : I r̄Hi+j−1(B,A∩B;R)→ I r̄Hi+j−1(A∪
B,A;R) the excision isomorphism

Terms: α ∈ Iq̄Hj(B;R), ξ ∈ I r̄Hi+j(X,A∪B;R), ∂∗(ξ) ∈ I r̄Hi+j−1(A∪B,A;R),

Property:

(d∗(α)) _ ξ = (−1)j+1i(α _ e−1∂∗(ξ)) ∈ I p̄Hi−1(X,A;R),

Location: Proposition 7.3.37

• Conditions: (p̄, q̄; r̄) agreeable

Maps: i : A ↪→ X the inclusion map, e : I r̄Hi+j−1(A,A ∩B;R)→ I r̄Hi+j−1(A ∪
B,B;R) the excision isomorphism

Terms: α ∈ Iq̄H
j(X,B;R), ξ ∈ I r̄Hi+j(X,A ∪ B;R), ∂∗(ξ) ∈ I r̄Hi+j−1(A ∪

B,B;R)

Property:

∂∗(α _ ξ) = (−1)j(i∗(α)) _ (e−1∂∗(ξ)) ∈ I p̄Hi−1(A;R)
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Location: Proposition 7.3.38

• Conditions: Q is (p̄, q̄)-compatible on X × Y
Maps: e : IQH∗(A × Y,A × B;R) → IQH∗((A × Y ) ∪ (X × B), X × B;R)

an excision isomorphism, d∗ : IQH
i+j((A × Y ) ∪ (X × B), X × B;R) →

IQH i+j+1(X × Y, (A× Y ) ∪ (X ×B);R)

Terms: α ∈ Ip̄H i(A;R), β ∈ Iq̄Hj(Y,B;R)

Property:

(d∗α)× β = d∗(e−1)∗(α× β) ∈ IQH i+j+1(X × Y, (A× Y ) ∪ (X ×B);R)

Location: Proposition 7.3.43

• Conditions: (p̄, q̄; r̄) agreeable

Maps: i : A→ X is the inclusion map, e : I r̄H∗(A,A∩B;R)→ I r̄H∗(A∪B,B;R)

an excision isomorphism, d∗ : Ir̄H
i+j(A ∪B,B;R)→ Ir̄H

i+j+1(X,A ∪B;R)

Terms: α ∈ Ip̄H i(A;R), β ∈ Iq̄Hj(X,B;R)

Property:

(d∗α) ^ β = d∗(e−1)∗(α ^ i∗(β)) ∈ Ir̄H i+j+1(X,A ∪B;R)

Location: Proposition 7.3.44

7. Combinations - properties that involve multiple types of products

• Conditions: Dū > Dp̄+Dq̄, Dv̄ > Dq̄+Dr̄, Ds̄ > Dū+Dr̄, and Ds̄ > Dp̄+Dv̄,

conditions can be replaced with non-strict inequalities if X is locally (p̄, R)-

torsion free and locally (r̄, R)-torsion free24

Terms: α ∈ Iq̄Hj(X,B;R), β ∈ Ir̄Hk(X,C;R), ξ ∈ I s̄Hi+j+k(X,A ∪ B ∪ C;R),

α ^ β ∈ Iv̄Hj+k(X,B ∪ C;R), β _ ξ ∈ I ūHi+j(X,A ∪B;R)

Property:

(α ^ β) _ ξ = α _ (β _ ξ) ∈ I p̄Hi(X,A;R)

Location: Proposition 7.3.35

• Conditions: (p̄, q̄; r̄) is a Q-agreeable

Maps: d : X → X ×X the diagonal map

Terms: α ∈ Ip̄H
i(X,A;R), β ∈ Iq̄H

j(X,B;R), α × β ∈ IQH
i+j(X × Y, (A ×

Y ) ∪ (X ×B);R)

24See also Lemma 7.3.32 for a more general associativity property.
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Property:

d∗(α× β) = α ^ β ∈ Ir̄H i+j(X,A ∪B;R)

Location: Proposition 7.3.45

• Conditions: Q is (p̄, q̄)-compatible on X × Y
Maps: p1 : X × Y → X and p2 : X × Y → Y the projection maps, p∗1 :

Ip̄H
∗(X,A;R) → IQp̄,t̄Y H

∗(X × Y,A × Y ;R) and p∗2 : Iq̄H
∗(Y,B;R) →

IQt̄X ,q̄H
∗(X × Y,X ×B;R)

Terms: α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(X,B;R)

Property:

α× β = (p∗1(α)) ^ (p∗2(β)) ∈ IQH i+j(X × Y, (A× Y ) ∪ (X ×B);R)

Location: Proposition 7.3.46

• Conditions: (a) Dr̄ > Dp̄+Dq̄ on X, Ds̄ > Dū+Dv̄ on Y , a = 1, OR

(b) Dr̄ ≥ Dp̄ + Dq̄ on X, Ds̄ ≥ Dū + Dv̄ on Y , a = 2, X is locally (p̄, R)-

torsion free or locally (q̄, R)-torsion free, Y is locally (ū, R)-torsion free or

locally (v̄, R)-torsion free, X is locally (p̄, R)-torsion free or Y is locally

(ū, R)-torsion free, X is locally (q̄, R)-torsion free or Y is locally (v̄, R)-

torsion free, X × Y is locally (Q̂2
p̄,ū, R)-torsion free25 or locally (Q̂2

q̄,v̄, R)-

torsion free, X is locally (r̄, R)-torsion free or Y is locally (s̄, R)-torsion

free

Terms: α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(X,B;R), γ ∈ IūHk(Y,C;R), δ ∈ Iv̄H`(Y,D;R),

α ^ β ∈ Ir̄H
i+j(X,A ∪ B;R), γ ^ δ ∈ Is̄H

k+`(Y,C ∪ D;R), α × γ ∈
IQ̂ap̄,ūH

i+k(X ×Y, (A×Y )∪ (X ×C);R), β× δ ∈ IQ̂aq̄,v̄H
j+`(X ×Y, (B×Y )∪

(X ×D);R)

Property:

(α ^ β)× (γ ^ δ) = (−1)jk(α× γ) ^ (β × δ)

in IQ̂ar̄,s̄H
i+j+k+`(X × Y, ((A ∪B)× Y ) ∪ (X × (C ∪D));R)

Location: Proposition 7.3.54; see also Lemma 7.3.50 for a more general version

of this property.

• Conditions: (a) i. Dr̄ > Dp̄+Dq̄ on X, Ds̄ > Dū+Dv̄ on Y , a = 1, OR

ii. Dr̄ ≥ Dp̄+Dq̄ on X, Ds̄ ≥ Dū+Dv̄ on Y , a = 2, X is locally (p̄, R)-

torsion free or locally (q̄, R)-torsion free, Y is locally (ū, R)-torsion free

or locally (v̄, R)-torsion free, X is locally (p̄, R)-torsion free or Y is

locally (ū, R)-torsion free, X is locally (q̄, R)-torsion free or Y is locally

(v̄, R)-torsion free, X × Y is locally (Q̂2
p̄,ū, R)-torsion free26 or locally

25See Definition 7.3.52 for the definition of Q̂ap̄,q̄.
26See Definition 7.3.52 for the definition of Q̂ap̄,q̄.
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(Q̂2
q̄,v̄, R)-torsion free, X is locally (r̄, R)-torsion free or Y is locally

(s̄, R)-torsion free

(b) OnX×Y : Pr̄,s̄ ≤ Q̂a
r̄,s̄ is (r̄, s̄)-compatible, Pp̄,ū ≤ Q̂a

p̄,ū is (p̄, ū)-compatible,

Pq̄,v̄ ≤ Q̂a
q̄,v̄ is (q̄, v̄)-compatible, (Pp̄,ū, Pq̄,v̄;Pr̄,s̄) is P-agreeable with P ≤

Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

Terms: α ∈ Ip̄H i(X,A;R), β ∈ Iq̄Hj(X,B;R), γ ∈ IūHk(Y,C;R), δ ∈ Iv̄H`(Y,D;R),

α ^ β ∈ Ir̄H
i+j(X,A ∪ B;R), γ ^ δ ∈ Is̄H

k+`(Y,C ∪ D;R), α × γ ∈
IPp̄,ūH

i+k(X × Y, (A× Y )∪ (X ×C);R), β × δ ∈ IPq̄,v̄Hj+`(X × Y, (B× Y )∪
(X ×D);R)

Property:

(α ^ β)× (γ ^ δ) = (−1)jk(α× γ) ^ (β × δ)

in IPr̄,s̄H
i+j+k+`(X × Y, ((A ∪B)× Y ) ∪ (X × (C ∪D));R)

Location: Proposition 7.3.56; see also Lemma 7.3.50.

• Conditions: (a) Dr̄ > Dp̄+Dq̄ on X, Ds̄ > Dū+Dv̄ on Y , a = 1, OR

(b) Dr̄ ≥ Dp̄ + Dq̄ on X, Ds̄ ≥ Dū + Dv̄ on Y , a = 2, X is locally (p̄, R)-

torsion free or locally (q̄, R)-torsion free, Y is locally (ū, R)-torsion free

or locally (v̄, R)-torsion free, X × Y is locally (Q̂2
p̄,ū, R)-torsion free27 or

locally (Q̂2
q̄,v̄, R)-torsion free.

Terms: α ∈ Iq̄Hj(X,B;R), x ∈ I r̄Hi+j(X,A ∪ B;R), β ∈ Iv̄H`(X,D;R), y ∈
I s̄Hk+`(X,C ∪ D;R), α × β ∈ IQ̂aq̄,v̄H

j+`(X × Y, (B × Y ) ∪ (X × D);R),

x × y ∈ IQ̂ar̄,s̄Hi+j+k+`(X × Y, ((A ∪ B) × Y ) ∪ (X × (C ∪D));R), α _ x ∈
I p̄Hi(X,A;R), and β _ y ∈ I ūHk(Y,C;R)

Property:

(α× β) _ (x× y) = (−1)`(i+j)(α _ x)× (β _ y)

in IQ̂
a
p̄,ūHi+k(X × Y, (A× Y ) ∪ (X × C);R)

Location: Proposition 7.3.55; see also Lemma 7.3.51 for a more general version

of this property.

• Conditions: (a) i. Dr̄ > Dp̄+Dq̄ on X, Ds̄ > Dū+Dv̄ on Y , a = 1, OR

ii. Dr̄ ≥ Dp̄+Dq̄ on X, Ds̄ ≥ Dū+Dv̄ on Y , a = 2, X is locally (p̄, R)-

torsion free or locally (q̄, R)-torsion free, Y is locally (ū, R)-torsion free

or locally (v̄, R)-torsion free, X is locally (p̄, R)-torsion free or Y is

locally (ū, R)-torsion free, X is locally (q̄, R)-torsion free or Y is locally

(v̄, R)-torsion free, X × Y is locally (Q̂2
p̄,ū, R)-torsion free28 or locally

(Q̂2
q̄,v̄, R)-torsion free, X is locally (r̄, R)-torsion free or Y is locally

(s̄, R)-torsion free

27See Definition 7.3.52 for the definition of Q̂ap̄,q̄.
28See Definition 7.3.52 for the definition of Q̂ap̄,q̄.
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(b) OnX×Y : Pr̄,s̄ ≤ Q̂a
r̄,s̄ is (r̄, s̄)-compatible, Pp̄,ū ≤ Q̂a

p̄,ū is (p̄, ū)-compatible,

Pq̄,v̄ ≤ Q̂a
q̄,v̄ is (q̄, v̄)-compatible, (Pp̄,ū, Pq̄,v̄;Pr̄,s̄) is P-agreeable with P ≤

Q̂a
Q̂ap̄,ū,Q̂

a
q̄,v̄

Terms: α ∈ Iq̄Hj(X,B;R), x ∈ I r̄Hi+j(X,A ∪ B;R), β ∈ Iv̄H`(X,D;R), y ∈
I s̄Hk+`(X,C ∪ D;R), α × β ∈ IPq̄,v̄H

j+`(X × Y, (B × Y ) ∪ (X × D);R),

x × y ∈ IPr̄,s̄Hi+j+k+`(X × Y, ((A ∪ B) × Y ) ∪ (X × (C ∪D));R), α _ x ∈
I p̄Hi(X,A;R), and β _ y ∈ I ūHk(Y,C;R)

Property:

(α× β) _ (x× y) = (−1)`(i+j)(α _ x)× (β _ y)

in IPp̄,ūHi+k(X × Y, (A× Y ) ∪ (X × C);R)

Location: Proposition 7.3.57; see also Lemma 7.3.51.

8. Locality

Conditions: (p̄, q̄; r̄) agreeable, U a covering of X

Maps: κ : H∗(
∑

U∈U I
p̄S∗(U,U ∩ A;R) ⊗ I p̄S∗(U,U ∩ B;R)) → H∗(I

p̄S∗(X,A;R) ⊗
I p̄S∗(X,B;R)) induced by inclusions

Property:

im(d̄ : I r̄H∗(X,A ∪B;R)→ H∗(I
p̄S∗(X,A;R)⊗ I p̄S∗(X,B;R))) ⊂ im(κ)

Location: Proposition 7.3.59

9. Cohomology Künneth theorem

Conditions: Q is (p̄, q̄)-compatible on X × Y , all I p̄Hi(X,A;R) finitely generated or

all I q̄Hj(Y,B;R) finitely generated

Property: There is a natural exact sequence

0→
⊕
i+j=k

Ip̄H
i(X,A;R)⊗Iq̄Hj(Y,B;R)

×−→ IQH
k(X×Y, (A×Y )∪ (X×B);R)

→
⊕

i+j=k+1

Ip̄H
i(X,A;R) ∗ Iq̄Hj(Y,B;R)→ 0

that splits (non-naturally)

Location: Theorem 7.3.63
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7.3.10 Products on ∂-pseudomanifolds

Throughout this chapter, we have developed the definitions and properties of cap, cup, and

cross products under the assumptions that all spaces are CS sets and that all subsets are

open subsets. This has largely been so that we can invoke the Künneth theorem, usually

the version stated in Theorem 6.4.14, which says that the chain cross product is a chain

homotopy equivalence. This is used, in turn, to provide our IAW maps, which allow us to

define the cup, cap, and cohomology cross products. In order to develop Lefschetz duality,

we will need to work with products on ∂-pseudomanifolds and their boundaries. However,

∂-stratified pseudomanifolds are not technically CS sets, as their strata may be ∂-manifolds,

not manifolds, and their boundaries are not open subsets. So our preceding results do not

directly apply. Nonetheless, we will show in this section that most of these preceding results

do apply by using that ∂-stratified pseudomanifold pairs (X, ∂X) are stratified deformation

retract pairs of CS sets with open subsets.

We can actually work a bit more generally than with pairs (X, ∂X), so we adopt the

following definition.

Definition 7.3.66. Suppose that X is a ∂-stratified pseudomanifold and that ∂X = A∪B
with A and B themselves ∂-stratified pseudomanifolds with A ∩ B = ∂A = ∂B. Let us call

A and B satisfying these properties partial boundaries.

If A is a partial boundary of X, we will call the pair (X,A) a partial boundary pair.

Example 7.3.67. If X is a ∂-stratified pseudomanifold, then both ∂X and ∅ are partial

boundaries. If (X,A) is a partial boundary pair, then so are (X, ∅), (A, ∅), and (A, ∂A).

Example 7.3.68. If X and Y are ∂-stratified pseudomanifolds, then (∂X)× Y and X × ∂Y
are partial boundaries of X × Y according to the proof of Lemma 2.11.7. Furthermore, we

have ((∂X)× Y ) ∪ (X × ∂Y ) = ∂(X × Y ), so (X × Y, ((∂X)× Y ) ∪ (X × ∂Y )) is a partial

boundary pair.

We can now show that products exist for partial boundary pairs. Note that the notions

of (p̄, q̄)-compatible product perversities and agreeable triples of perversities extend to this

context as ∂-stratified pseudomanifolds have links.

Proposition 7.3.69. Let R be a Dedekind domain. Suppose (X,A) and (Y,B) are partial

boundary pairs and that Q is a (p̄, q̄)-compatible perversity on X×Y . Then the cross product

I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R)
ε−→ IQS∗(X × Y, (A× Y ) ∪ (X ×B);R)

is a chain homotopy equivalence and so admits chain homotopy inverse IAW maps.

Proof. We begin by modeling our spaces as CS sets. Let N1 be a filtered open collar of

∂X in X, which is guaranteed to exist from the definition of a ∂-stratified pseudomanifold

(Definition 2.7.1). Let N2
∼= [0, 1)× ∂X be an external collar, which we can glue on to X to

form the stratified pseudomanifold X ′ = X ∪∂X N2. Then X ′ has a stratified deformation

retraction to X by retracting the collar N2. Let Ac be the complementary partial boundary

such that ∂X = A∪Ac with A∩Ac = ∂A = ∂Ac. Let A1 be the union of A with the filtered
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collar [0, 1)× ∂A in Ac; if A = ∂X, then A1 = A = ∂X. Then A1 is a CS set in ∂X that has

a stratified deformation retraction to A. Identifying N1∪N2 with (−1, 1)×∂X, we can form

the subspace A′ = (−1, 1)× A1. Then A′ has a stratified deformation retraction to A, first

by retracting A′ to A1 and then A1 to A. See Figure 7.1. We also define the pair (Y ′, B′)

analogously. The perversities p̄, q̄ extend in the obvious way to X ′ and Y ′, and Q extents to

a (p̄, q̄)-compatible perversity on X ′ × Y ′.

Figure 7.1: Schematics of: ∂-stratified pseudomanifold X with partial boundary A (left),

extension of A to A1 (middle), the CS pair (X ′, A′) obtained by adding collars (right)

Now let f : (X,A) ↪→ (X ′, A′) and g : (Y,B) ↪→ (Y ′, B′) be the inclusions and consider

the diagram

I p̄S∗(X,A;R)⊗ I q̄S∗(Y,B;R)
ε
- IQS∗(X × Y, (A× Y ) ∪ (X ×B);R)

I p̄S∗(X
′, A′;R)⊗ I q̄S∗(Y ′, B′;R)

f ⊗ g

? ε
- IQS∗(X

′ × Y ′, (A′ × Y ′) ∪ (X ′ ×B′);R).

f × g

?

(7.27)

The diagram commutes by Proposition 5.2.17 and Theorem 6.3.19. The induced maps f :

I p̄H∗(X,A;R)→ I p̄H∗(X
′, A′;R) and g : I q̄H∗(Y,B;R)→ I q̄H∗(Y

′, B′;R) are isomorphisms

by stratified homotopy invariance (applied to the inclusions X ↪→ X ′, Y ↪→ Y ′, A ↪→ A′,

and B ↪→ B′), the long exact sequences of the pairs, and the Five Lemma. Furthermore, the

map

I p̄S∗(X
′, A′;R)⊗ I q̄S∗(Y ′, B′;R)

ε−→ IQS∗(X
′ × Y ′, (A′ × Y ′) ∪ (X ′ ×B′);R)

induces a homology isomorphism by the Künneth Theorem (Theorem 6.4.13). So it will

suffice to show that

f × g : IQH∗(X × Y, (A× Y ) ∪ (X ×B);R)→ IQH∗(X
′ × Y ′, (A′ × Y ′) ∪ (X ′ ×B′);R)

is also an isomorphism. For if so then the bottom and sides of the diagram will all be chain

homotopy equivalences, as all the modules involved are projective; see the proof of Theorem

6.4.14. It will follow that the top map of the diagram is also a chain homotopy equivalence.
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To show that f × g induces the desired homology isomorphism, we note that the product

of the stratified deformation retractions gives a stratified deformation retraction of X ′ × Y ′
to X × Y and so f × g : IQH∗(X × Y ;R) → IQH∗(X

′ × Y ′;R) is an isomorphism. So,

again via the stratified homotopy invariance, the exact sequences of the pairs, and the Five

Lemma, it suffices to show that we have an isomorphism

IQH∗((A× Y ) ∪ (X ×B);R)→ IQH∗((A
′ × Y ′) ∪ (X ′ ×B′);R)

induced by f × g.

For this, we utilize the following diagram (coefficients tacit):

IQH∗(A×B) IQH∗(A× Y )⊕ IQH∗(X ×B) IQH∗((A× Y ) ∪ (X ×B))

- IQH∗((A×B′) ∪ (A′ ×B))

a

?
- IQH∗((A× Y ′) ∪ (A′ ×B))⊕ IQH∗((A×B′) ∪ (X ′ ×B))

b

?
- IQH∗((A× Y ′) ∪ (X ′ ×B))

e

?
-

- IQH∗(A
′ ×B′)

c

?
- IQH∗(A

′ × Y ′)⊕ IQH∗(X ′ ×B′)

d

?
- IQH∗((A

′ × Y ′) ∪ (X ′ ×B′))

h

?
-

The bottom row is the long exact Mayer-Vietoris sequence of the pair {A′ × Y ′, X ′ × B′},
each of which is an open subset of (A′ × Y ′) ∪ (X ′ × B′) = X ′ × Y ′. The middle row is the

Mayer-Vietoris sequence of the pair {(A×Y ′)∪ (A′×B), (A×B′)∪ (X ′×B)}. Each of these

sets is open in their union (A×Y ′)∪(X ′×B), so this is also a valid Mayer-Vietoris sequence.

The modules in the top row do not automatically fit into a Mayer-Vietoris sequence, as the

pair {A × Y,X × B} is not necessarily excisive (at least not evidently so). We will show

that the vertical arrows, each of which is induced by spatial inclusion, are all isomorphisms;

in particular, then, the composition map he is an isomorphism, which is what we need to

show.

First, as A′ stratified deformation retracts to A and B′ stratified deformation retracts to

B, the product A′×B′ has a stratified deformation retraction to A×B, so the composition ca

is an isomorphism. Similarly, starting with (A×B′)∪ (A′×B), we can first use the stratified

deformation retraction of A × B′ to A × B to perform a stratified deformation retraction

of (A × B′) ∪ (A′ × B) to A′ × B (holding A′ × B fixed), and then we perform a stratified

deformation retraction from A′×B to A×B. So a is an isomorphism, and it follows that c is

an isomorphism. In the middle column, we have product stratified deformation retractions

of A′ × Y ′ to A × Y and of X ′ × B′ to X × B, so db is an isomorphism. As B ⊂ Y , the

stratified deformation retraction of Y ′ to Y can be used to stratified deformation retract

(A × Y ′) ∪ (A′ × B) to (A × Y ) ∪ (A′ × B), which then stratified deformation retracts to

(A×Y )∪ (A×B) = A×Y . Analogously, (A×B′)∪ (X ′×B) stratified deformation retracts

to X ×B. So the middle vertical maps are isomorphisms.

It follows now from the Five Lemma that h is an isomorphism. Lastly, again using that

B ⊂ Y and A ⊂ X, we can hold X ′×B fixed and perform a stratified deformation retraction

of (A×Y ′)∪ (X ′×B) to (A×Y )∪ (X ′×B); then holding A×Y fixed, (A×Y )∪ (X ′×B)

stratified deformation retracts to (A × Y ) ∪ (X × B). So e is an isomorphism. At last we

conclude that he is an isomorphism, as claimed.
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Remark 7.3.70. The key requirement in the above argument is that (X ′, A′) be a CS set

X ′ with open subset A′ such that X ′ has a stratified deformation retraction to X and A′

has a stratified deformation retraction to A, and similarly for the pair (Y,B). Hence the

above argument, and those that follow, can be generalized to include other pairs with such

“CS models.” For example, we will need briefly below in the proof of Theorem 8.3.12 to

work with a pair of the form (X,A), where X is a ∂-stratified pseudomanifold and A is a

filtered open collar neighborhood of ∂X. In this case, we can form an appropriate (X ′, A′)

by attaching the same external collar to X and A.

The following corollary is now immediate from the preceding proposition and the defini-

tions of the cross, cup, and cap products:

Corollary 7.3.71. Let R be a Dedekind domain, and let X and Y be ∂-stratified pseudo-

manifolds with respective perversities p̄ and q̄ and partial boundaries A ⊂ ∂X and B ⊂ ∂Y .

If Q is a (p̄, q̄)-compatible perversity on X ×Y then there is a well-defined cohomology cross

product

Ip̄H
i(X,A;R)⊗ Iq̄Hj(Y,B;R)

×−→ IQH
i+j(X × Y, (A× Y ) ∪ (X ×B);R).

If X is a ∂-stratified pseudomanifold with an agreeable triple of perversities (p̄, q̄; r̄) and

partial boundaries A,B ⊂ ∂X, then there are a well-defined cup product

Ip̄H
i(X,A;R)⊗ Iq̄Hj(X,B;R)

^−→ Ir̄H
i+j(X,A ∪B;R)

and a well-defined cap product

Iq̄H
j(X,B;R)⊗ I r̄Hi+j(X,A ∪B;R)

_−→ I p̄Hi(X,A;R).

In particular, we have cup products of the form

Ip̄H
i(X;R)⊗ Iq̄Hj(X, ∂X;R)

^−→ Ir̄H
i+j(X, ∂X;R)

Ip̄H
i(X, ∂X;R)⊗ Iq̄Hj(X, ∂X;R)

^−→ Ir̄H
i+j(X, ∂X;R)

and cap products of the form

Iq̄H
j(X, ∂X;R)⊗ I r̄Hi+j(X, ∂X;R)

_−→ I p̄Hi(X;R)

Iq̄H
j(X;R)⊗ I r̄Hi+j(X, ∂X;R)

_−→ I p̄Hi(X, ∂X;R)

Iq̄H
j(X, ∂X;R)⊗ I r̄Hi+j(X, ∂X;R)

_−→ I p̄Hi(X, ∂X;R).

Beyond the existence of products for ∂-pseudomanifolds, we would like for our various

properties to hold. Those whose statements and proofs depend only on having IAW maps

of the form guaranteed by Proposition 7.3.69 will still hold, and this includes most of the

properties we’ve developed. However, there could be some additional difficulties with some

of the stability properties in Section 7.3.5 and locality properties in Section 7.3.7. The main

issue with Section 7.3.5 is that there are certain excision maps involved in the statements and

proofs of stability that do rely on our subsets being open subsets, or at least on having certain
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excisive couples. We will discuss some examples where this still holds in more detail below.

The results of Section 7.3.7 are more problematic as, for example, Lemma 7.3.62 involves not

just the global cross product but the cross products over small subsets. No doubt a version

of the results of this section could be recovered with enough careful hypotheses, but, as we

will not need such results below, we will not pursue this.

So, looking through the statements and proofs of the properties of cross, cup, and cap

products to see where IAW maps come in, we obtain the following:

Theorem 7.3.72. The following properties of cup, cap, and cohomology cross products on

spaces continue to hold if

• each space pair (X,A) or (Y,B) for cross products or

• each pair (X,A) or (X,B) for cup and cap products

consists of a ∂-stratified pseudomanifolds with a partial boundary subset (i.e. each is a partial

boundary pair):

1. all properties of homology cross products29,

2. existence of cohomology cross products, cup products, and cap products as defined in

Section 7.2.2,

3. naturality of cross, cup, and cap products (Propositions 7.3.2, 7.3.5, and 7.3.5), noting

that it is acceptable if some of the spaces are partial boundary pairs and some of the

pairs are CS sets with open subsets,

4. commutativity of cross and cup products (Propositions 7.3.13 and 7.3.15),

5. unital property of cross products and cup products (Propositions 7.3.24, 7.3.23, and

7.3.21),

6. the evaluation properties of cross and cap products (Propositions 7.3.27 and 7.3.25),

7. associativity of cross, cup, and cap products (Propositions7.3.29, 7.3.34, and 7.3.35

and Lemmas 7.3.31 and 7.3.32), assuming that (X,A), (Y,B), (Z,C), (X × Y, (A ×
Y ) ∪ (X × B)) and (Y × Z, (B × Z) ∪ (Y × C)) are all partial boundary pairs (with

X = Y = Z for the cup and cap products),

8. stability of cross products (Proposition 7.3.43), assuming e : IQH∗(A×Y,A×B;R)→
IQH∗((A× Y ) ∪ (X ×B), X ×B;R) is an isomorphism,

9. stability of cup products (Proposition 7.3.44), assuming (A,A∩B) is a partial boundary

pair and that

e : I r̄H∗(A,A ∩B;R)→ I r̄H∗(A ∪B,B;R)

29In fact, intersection homology cross products have already been presented for arbitrary filtered spaces

and none of them require IAW maps. So we mention this here only for completeness.
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and

e : IQp̄,q̄H∗(A×X,A×B;R)→ IQp̄,q̄H∗((A×X) ∪ (X ×B), X ×B)

are isomorphisms,

10. stability of cap products of Proposition 7.3.37 if (B,A ∩ B) is a partial boundary pair

and the maps

e : I r̄H∗(B,A ∩B;R)→ I r̄H∗(A ∪B,A;R)

and

e′ : IQp̄,q̄H∗(X ×B,A×B;R)→ IQp̄,q̄H∗((A×X) ∪ (X ×B), A×X;R)

are isomorphisms,

11. stability of cap products of Proposition 7.3.38, assuming (A,A∩B) is a partial boundary

pair and the maps

e : I r̄H∗(A,A ∩B;R)→ I r̄H∗(A ∪B,B;R)

and

e′ : IQp̄,q̄H∗(A×X,A×B;R)→ IQp̄,q̄H∗((A×X) ∪ (X ×B), X ×B;R)

are isomorphisms,

12. the relation between cross and cup products of Proposition 7.3.45,

13. the relation between cross and cup products of Proposition 7.3.46 if (X × Y,A × Y )

and (X × Y,X ×B) are partial boundary pairs,

14. the interchange properties (Lemmas 7.3.50 and 7.3.51 and Propositions 7.3.54 and

7.3.55), assuming that (X,A), (X,B), (Y,C), (Y,D), (X,A ∪ B), (Y,C ∪ D), (X ×
X, (A×X)∪ (X ×B)), (Y × Y, (C × Y )∪ (Y ×D)), (X × Y, (A× Y )∪ (X ×C)), and

(X × Y, (B × Y ) ∪ (X ×D)) are all partial boundary pairs.

To close this section, we demonstrate a useful condition for ensuring the existence of the

excision maps necessary for the stability conditions of Propositions 7.3.37 and 7.3.38. For

Proposition 7.3.37, these are the maps

e : I r̄H∗(B,A ∩B;R)→ I r̄H∗(A ∪B,A;R)

and

e′ : I r̄H∗(X ×B,A×B;R)→ I r̄H∗((A×X) ∪ (X ×B), A×X;R).

The maps for Proposition 7.3.38 are equivalent with the roles of A and B reversed. We will

apply this later in our proof of Corollary 8.3.10.
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Lemma 7.3.73. Suppose X is a filtered space with closed subspaces A,B ⊂ X. Let r̄ be any

perversity.

1. If A∩B has an open neighborhood U in A such that A∩B is a stratified deformation

retract of U and B is a stratified deformation retract of U ∪ B, then the map induced

by inclusion e : I r̄H∗(B,A ∩B;R)→ I r̄H∗(A ∪B,A;R) is an isomorphism.

2. If B has an open neighborhood N in X such that B is a stratified deformation retract

of N then the map induced by inclusion e′ : I r̄H∗(X×B,A×B;R)→ I r̄H∗((A×X)∪
(X ×B), A×X;R) is an isomorphism.

Proof. The proof of the first statement is by excision and stratified homotopy invariance:

Note that A− U is closed in A, which is closed in X, so A− U is closed in X and hence in

A∪B. Furthermore, A−U is contained in (A∪B)−B, which is a subset of A and open in

A∪B. So A−U is closed and contained in the interior of A in A∪B; thus excision applies

and we have an isomorphism I r̄H∗(U∪B,U ;R)→ I r̄H∗(A∪B,A;R) with excised set A−U .

Next, the inclusion I r̄H∗(B,A ∩ B;R) → I r̄H∗(U ∪ B,U ;R) is an isomorphism using the

Five Lemma and that the inclusions A ∩ B ↪→ U and B ↪→ U ∪ B are stratified homotopy

equivalences. As e is the composition of these inclusions, it induces an intersection homology

isomorphism.

The proof of the second statement is similar. In this case, we have an excision isomor-

phism

I r̄H∗((A×N) ∪ (X ×B), A×N ;R)→ I r̄H∗((A×X) ∪ (X ×B), A×X;R)

that excises A× (X −N), which is closed and contained in A× (X −B), an open subset of

A×X. Then the stratified deformation retraction of N to B induces stratified deformation

retractions from A×N to A×B and from (A×N)∪(X×B) to (A×B)∪(X×B) = X×B.

So, again employing the Five Lemma, we have an isomorphism

I r̄H∗(X ×B,A×B;R)→ I r̄H∗((A×N) ∪ (X ×B), A×N ;R).

Also once again, the map e′ is the composition of these inclusions, so it induces an intersection

homology isomorphism.

Example 7.3.74. Suppose that X is a ∂-stratified pseudomanifold and that A,B ⊂ X are

complementary partial boundaries, i.e. ∂X = A ∪ B and A ∩ B = ∂A = ∂B. Then this

collection of spaces satisfies the hypotheses of the lemma taking U to be a filtered collar of

∂A in A and N to be [0, 1) × (B ∪ U) within the a filtered collar [0, 1) × ∂X of ∂X. Also

in this case we have (A,A ∩ B) = (A, ∂A) and (B,A ∩ B) = (B, ∂B), so these are partial

boundary pairs. Thus Propositions 7.3.37 and 7.3.38 hold in this setting.

7.4 Intersection cohomology with compact supports

Cohomology with compact supports plays an important role in ordinary cohomology the-

ory, particularly in the statement and proof of the Poincaré duality theorem, and the same
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remains true for intersection cohomology. In this section we define intersection cohomology

with compact supports and also discuss how, with proper assumptions, we obtain a cap prod-

uct from compactly-supported intersection cohomology to intersection homology. Moreover,

we discuss compatibility of this cap product with Mayer-Vietoris sequences. We will assume

familiarity with the direct limit functor; see [181, Section 73] for a review.

Recall (e.g. from [125, Section 3.3]) that for a spaceX and coefficient groupG the ordinary

cohomology groups with compact supports H i
c(X;G) can be defined as direct limits over the

directed set of compact subsets of X. In fact, the compact subsets of X form a directed set

if we define the relation ≤ so that K ≤ L if and only if K ⊂ L. Then we can easily check

the properties required of a directed set (see, e.g. [181, Section 73]):

1. K ≤ K,

2. if K ≤ L and L ≤ J then K ≤ J , and

3. given compact K and L there is a compact J with K ≤ J and L ≤ J (just take

J = K ∪ L).

Now, if K ≤ L then X − L ⊂ X −K, so the restriction H i(X,X −K;G)→ H i(X,X −
L;G) is well defined for each such pair. So the H i(X,X − K;G) form a direct system of

groups, and we let

H i
c(X;G) = lim−→H i(X,X −K;G).

Roughly speaking, we can think of elements of the direct limit H i
c(X;G) as being represented

by cocycles that annihilate chains in X sufficiently “close to infinity.”

The idea for intersection cohomology is identical:

Definition 7.4.1. Let X be a filtered space with perversity p̄, and let R be a commutative

ring with unity. The intersection cohomology modules with compact supports, Ip̄H
i
c(X;R),

are defined to be lim−→ Ip̄H
i(X,X −K;R), where the limit is over all compact subsets of X.

Example 7.4.2. Let X be a compact filtered space. We claim30 Ip̄H
i
c(cX;R) = Ip̄H

i(cX, cX−
{v};R). Indeed, recall that we have cX = ([0, 1)×X)/ ∼, and, for 0 < r < 1, let c̄rX be the

subspace ([0, r]×X)/ ∼. Then the compact sets c̄rX are cofinal among the compact subsets

of cX. In this case, this means that every compact subset of cX is contained within one

of the c̄rX. Recall that for computing direct limits it is sufficient to restrict to any cofinal

directed subset [181, Lemma 73.1]. But then if r > s the restriction Ip̄H
i(cX, cX−c̄sX;R)→

Ip̄H
i(cX, cX − c̄rX;R) is an isomorphism via stratified homotopy equivalence. Therefore,

Ip̄H
i
c(cX;R) is isomorphic to any of these Ip̄H

i(cX, cX−c̄rX;R), and they are all isomorphic

to Ip̄H
i(cX, cX − {v};R), again using stratified homotopy equivalence.

The functoriality of cohomology with compact supports runs opposite to the standard

functoriality of cohomology and requires some additional assumptions. For example, sup-

pose U is an open subset of X. Then for each compact K ⊂ U excision guarantees that

30Unfortunately, we have two different “c”s here: the c for compact supports and the c for the cone

construction. However, context should make clear which is meant in each case.

467



restriction induces an isomorphism Ip̄H
∗(X,X−K;R)→ Ip̄H

∗(U,U −K;R). Consider now

the following diagram with K ⊂ L ⊂ U , the sets K and L compact:

Ip̄H
∗(U,U −K;R) - Ip̄H

∗(U,U − L;R)

lim−→
J⊂U

Ip̄H
∗(U,X − J ;R)

�-

lim−→
J⊂X

Ip̄H
∗(X,X − J ;R)
?

Ip̄H
∗(X,X −K;R)

∼=

6

-

-

Ip̄H
∗(X,X − L;R)

∼=

6

�

(7.28)

The outside rectangle commutes by naturality with respect to the inclusion maps. The

diagonal maps are all the canonical maps to the direct limits, letting lim−→J⊂U represent the

limit over compact subsets of U and lim−→J⊂X the limit over compact subsets of X, and so

the triangles commute. As this commutativity holds for all K ⊂ L ⊂ U we therefore have

compatible maps from the direct system of modules Ip̄H
∗(U,U−J ;R) (over compact J ⊂ U)

to lim−→J⊂X Ip̄H
∗(X,X − J ;R). Therefore, the dashed arrow exists by the universal property

of direct limits. We thus obtain a map

Ip̄H
∗
c (U ;R) = lim−→

K⊂U
Ip̄H

∗(U,U −K;R)→ lim−→
K⊂X

Ip̄H
∗(X,X −K;R) = Ip̄H

∗
c (X;R).

The following immediate consequence of this discussion is useful:

Lemma 7.4.3. Suppose U ⊂ X is an open subset and that L ⊂ U is compact. Then there

is a commutative diagram

Ip̄H
∗(U,U − L;R) �

∼=
Ip̄H

∗(X,X − L;R)

Ip̄H
∗
c (U ;R)
?

- Ip̄H
∗
c (X;R).
?

Here the horizontal maps are induced by inclusion of U into X, the bottom map being that

defined just above. The vertical maps are those taking an element of a direct system to its

image in the direct limit.

Our next lemma is a cohomology version of Lemma 6.3.16, concerning limits over increas-

ing collections open sets. Like that lemma, this one is useful in combination with Lemma

5.1.6 for verifying the limit condition in Mayer-Vietoris arguments.
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Lemma 7.4.4. Suppose R is any commutative ring with unity. If X is a filtered space with

perversity p̄ and {Uα} is an increasing collection of open subspaces of X then the canonical

map f : lim−→α
Ip̄H

∗
c (Uα;R)→ Ip̄H

∗
c (∪αUα;R) is an isomorphism.

Proof. First, recall that for any open U ⊂ V ⊂ X, we do have maps Ip̄H
∗
c (U ;R) →

Ip̄H
∗
c (V ;R). These are discussed in Section 7.4. Additionally, if U ⊂ W ⊂ V , then

Ip̄H
∗
c (U ;R) - Ip̄H

∗
c (W ;R)

Ip̄H
∗
c (V ;R)
?

-

commutes. Taking U and W from among the Uα and letting V = ∪Uα, it follows from the

universal property of limits that our map f is defined.

Now, suppose a ∈ Ip̄H∗c (∪αUα;R). For convenience, denote ∪αUα by U . By definition,

a is represented by an element aK ∈ Ip̄H∗(U ,U − K;R), for some compact K ⊂ U . In

fact, we can think of a as the image of aK under the canonical map

Ip̄H
∗(U ,U −K;R)→ lim−→

K⊂U
Ip̄H

∗(U ,U −K;R) = Ip̄H
∗
c (U ;R).

As K is compact and the collection {Uα} is increasing, there is some Uα, say U0, with

K ⊂ U0. By Lemma 7.4.3, we have a commutative diagram

Ip̄H
∗(U0, U0 −K;R) � Ip̄H

∗(U ,U −K;R)

Ip̄H
∗
c (U0;R)
?

- Ip̄H
∗
c (U ;R).
?

It follows that a ∈ Ip̄H∗c (U ;R) must be in the image of Ip̄H
∗
c (U0;R). Therefore, a is in the

image of lim−→α
Ip̄H

∗
c (Uα;R). So f is surjective.

For the proof of injectivity, it will be useful to refer to the following diagram whose terms

we define as they arise:

Ip̄H
∗
c (U0;R) � Ip̄H

∗(U0, U0 −K;R) �
∼=

Ip̄H
∗(U ,U −K;R)

Ip̄H
∗
c (U1;R)
?

� Ip̄H
∗(U1, U1 −K;R)

∼=
6

�
∼=

Ip̄H
∗(U ,U −K;R)

=

6

Ip̄H
∗
c (U1;R)

=

?
� Ip̄H

∗(U1, U1 −K ′;R)
?

�
∼=

Ip̄H
∗(U ,U −K ′;R)

?
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All the maps labeled as isomorphisms are excision maps.

Now suppose that a ∈ lim−→α
Ip̄H

∗
c (Uα;R) and f(a) = 0 ∈ Ip̄H

∗
c (U ;R). By definition,

a is represented by an element a0 ∈ Ip̄H
∗
c (U0;R) for some U0, and, furthermore, a0 must

be the image of some aK0 ∈ Ip̄H∗(U0, U0 − K;R) for some compact K ⊂ U0. The excision

isomorphism Ip̄H
∗(U0, U0−K;R) ∼= Ip̄H

∗(U ,U −K;R) then takes aK0 to an element aK,U0

that represents f(a). But if f(a) = 0, this implies that there is some compact K ′ with

K ⊂ K ′ such that aK,U0 maps to 0 in Ip̄H
∗(U ,U −K ′;R). As K ′ is compact, there must

be some U1 with K ⊂ K ′ ⊂ U1 and U0 ⊂ U1. We have now introduced all the spaces in the

diagram. The top left square commutes by Lemma 7.4.3; the remaining squares commute

more evidently. The diagram shows that the image of a0 is trivial in Ip̄H
∗
c (U1;R), as we have

seen that running clockwise around the outside of the diagram takes aK0 through the image

of aK,U0 in Ip̄H
∗(U ,U −K ′;R), which is 0. As a0 maps to 0 in Ip̄H

∗
c (U1;R), it follows that

it represents the trivial element of lim−→α
Ip̄H

∗
c (Uα;R). This implies that a = 0.

We also have the following Mayer-Vietoris sequence for cohomology with compact sup-

ports (compare [125, Lemma 3.36]):

Lemma 7.4.5. Let X be a CS set31 with perversity p̄, and let R be a commutative ring with

unity. Suppose X = U ∪ V for U, V open subsets. Then there is an exact Mayer-Vietoris

sequence

- Ip̄H
i
c(U ∩ V ;R) - Ip̄H

i
c(U ;R)⊕ Ip̄H i

c(V ;R) - Ip̄H
i
c(X;R) - .

Proof. Suppose K ⊂ U and L ⊂ V are compact sets; see Figure 7.2. Then, by Theorem

7.1.13, we have the exact Mayer-Vietoris sequence

→ Ip̄H
i(X,X − (K ∩ L);R)→ Ip̄H

i(X,X −K;R)⊕ Ip̄H i(X,X − L;R)

→ Ip̄H
i(X,X − (K ∪ L);R)→

note that (X − K) ∩ (X − L) = X − (K ∪ L) and (X − K) ∪ (X − L) = X − (K ∩ L).

This sequence is natural in K and L, so we can take the direct limits with respect to the

directed system γ of pairs (K,L) such that K is compact in U and L is compact in V , letting

(K,L) ≤ (K ′, L′) if K ⊂ K ′ and L ⊂ L′. Taking direct limits preserves exactness (see, e.g.

[38, Theorem D.4]), so we will show that the resulting direct limit modules are the desired

modules of the statement of the lemma.

We first consider the middle term of the exact sequence. By functoriality, direct limits

distribute over direct sums, so we can consider the summands separately. The first summand

is constant in L, so using that lim−→γ
∼= lim−→K

lim−→L
∼= lim−→L

lim−→K
(see [38, Theorem D5]) we

31The assumption that X is a CS set, not just an arbitrary filtered space, will be used here to cite Corollary

2.3.17 in the argument below. However, as we see from the proof of that corollary, it would be sufficient to

assume that X is a filtered space that is locally compact Hausdorff.
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Figure 7.2: Compact K ⊂ U and L ⊂ V

compute

lim−→
γ

Ip̄H
i(X,X −K;R) ∼= lim−→

γ

Ip̄H
i(U,U −K;R)

∼= lim−→
K⊂U

lim−→
L⊂V

Ip̄H
i(U,U −K;R)

∼= lim−→
K⊂U

Ip̄H
i(U,U −K;R)

∼= Ip̄H
i
c(U ;R).

The first isomorphism here comes from the naturality in this setting of excision isomorphisms

as in Diagram 7.28. The argument for the other summand is equivalent.

For lim−→γ
Ip̄H

i(X,X − (K ∩ L);R), this direct sequence is isomorphic to lim−→γ
Ip̄H

i(U ∩
V, U ∩V −(K∩L);R), again by excision. Then we have the canonical compatible maps from

each Ip̄H
i(U ∩V, U ∩V − (K ∩L);R) to Ip̄H

i
c(U ∩V ;R) = lim−→J⊂U Ip̄H

i(U ∩V, U ∩V −J ;R),

with J running over the compact subsets of U ∩ V , so there is a map

φ : lim−→
γ

Ip̄H
i(U ∩ V, U ∩ V − (K ∩ L);R)→ Ip̄H

i
c(U ∩ V ;R).

If an element of Ip̄H
i
c(U ∩ V ;R) is represented by α ∈ Ip̄H i(U ∩ V, U ∩ V − J ;R), then we

can let K = L = J and obtain a commutative diagram

Ip̄H
i(U ∩ V, U ∩ V − (J ∩ J);R) - lim−→

γ

Ip̄H
i(U ∩ V, U ∩ V − (K ∩ L);R)

Ip̄H
i(U ∩ V, U ∩ V − J ;R)

=

?
- Ip̄H

i
c(U ∩ V ;R),

φ

?
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so φ is surjective. Similarly, if we have an element [α] ∈ lim−→γ
Ip̄H

i(U ∩V, U ∩V − (K∩L);R)

represented by some particular α ∈ Ip̄H i(U∩V, U∩V −(K∩L);R) for some specific K,L and

if φ([α]) = 0, then the image of α in some Ip̄H
i(U ∩V, U ∩V −J ;R) with K∩L ⊂ J ⊂ U ∩V

must be 0. But then the image of α in Ip̄H
i(U ∩V, U ∩V − (J ∩J);R) must be 0, so [α] = 0.

The argument for lim−→γ
Ip̄H

i(X,X − (K ∪ L);R) is similar in spirit but requires some

minor additional work. Again we have an evident map φ : lim−→γ
Ip̄H

i(X,X − (K ∪ L);R)→
Ip̄H

i
c(X;R) = lim−→J

Ip̄H
i(X,X − J ;R), now with J running over the compact subsets of X.

Suppose [α] ∈ Ip̄H i
c(X;R) represented by α ∈ Ip̄H i(X,X − J ;R) for some specific J . By

arguments similar to those of the last paragraph, it suffices for surjectivity of φ to show

that we can write J as J = J1 ∪ J2 with J1 ⊂ U and J2 ⊂ V ; see Figure 7.3. For this, let

us consider the disjoint closed sets J − (J ∩ V ) and X − U . The subspace J − (J ∩ V ) is

compact, so we can find disjoint open sets W1,W2 with J − (J ∩ V ) ⊂ W1 and X −U ⊂ W2

by Corollary 2.3.17. Now, let J1 be the closure of J ∩ W1. As W1 and W2 are disjoint,

J1 ∩W2 = ∅, which implies that J1 ∩ (X − U) = ∅, so J1 ⊂ U . Also J1 is a closed subset of

J and so is compact. Let J2 = J − (J ∩W1) = J ∩ (X −W1), which is also compact as a

closed subset of J . Furthermore, J ∩W1 contains J − (J ∩ V ), i.e. all points of J outside of

V are contained in J ∩W1, so all the points left in J2 must be contained in V . Finally, every

point of J is in either J ∩W1, and so in J1, or in J − (J ∩W1), and so in J2. Therefore,

J = J1 ∪ J2 with J1 ⊂ U and J2 ⊂ V . This provides the surjectivity of φ.

Figure 7.3: Writing J as the union of compact sets in U and V in the proof of Lemma 7.4.5

Finally, we consider injectivity of the map φ of the preceding paragraph. Now we suppose
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we have [α] ∈ lim−→γ
Ip̄H

i(X,X−(K∪L);R) with φ([α]) = 0. Let α ∈ Ip̄H i(X,X−(K∪L);R)

for some specific K and L represent [α]. Because φ([α]) = 0, there is some compact J ⊂ X

with K ∪ L ⊂ J and the image of α in Ip̄H
i(X,X − J ;R) trivial. As in the preceding

paragraph, let us choose compact J1 and J2 such that J = J1 ∪ J2 and J1 ⊂ U , J2 ⊂ V .

We do not know that either K ⊂ J1 or L ⊂ J2. However, we do have K ∪ J1 ⊂ U and

L ∪ J2 ⊂ V , so we can consider the image of α in Ip̄H
i(X,X − ((K ∪ J1) ∪ (L ∪ J2));R).

We have K ∪ L ⊂ J ⊂ (K ∪ J1) ∪ (L ∪ J2), and so the map from Ip̄H
i(X,X − (K ∪ L);R)

to Ip̄H
i(X,X − ((K ∪ J1)∪ (L∪ J2));R) factors through Ip̄H

i(X,X − J ;R). Therefore, the

image of α must be trivial in lim−→γ
Ip̄H

i(X,X − (K ∪ L);R), and hence [α] = 0.

Let us turn to cap products. Here we will also utilize inverse limits; see [125, Section

3.F] or [196, Section 5.2].

Suppose X is a CS set with agreeable perversities (p̄, q̄; r̄) and that R is a Dedekind

domain so that we have a well-defined intersection (co)homology cap product. Suppose that

for every compact K ⊂ X we have a class ξK ∈ I r̄Hi+j(X,X −K;R) such that if K ⊂ L

and iK,L : (X,X−L) ↪→ (X,X−K) is the inclusion then iK,L(ξL) = ξK . In other words, the

collection {ξK} represents an element of the inverse limit lim←− I
r̄Hi+j(X,X − K;R). Once

again the relevant directed set is that of compact subsets of X, but now we have an inverse

system of modules and maps of the form I r̄Hi+j(X,X − L;R) → I r̄Hi+j(X,X −K;R) for

K ≤ L.

Let α ∈ Iq̄Hj
c (X;R). By the definition of the direct limit, the class α can be represented

by some αK ∈ Iq̄H
j(X,X − K;R), and we can consider the cap product αK _ ξK ∈

I p̄Hi(X,R). Suppose now K ⊂ L. Let αL = i∗K,LαK ∈ Iq̄H
j(X,X − L;R), so αL also

represents α in Iq̄H
j
c (X;R). Using the naturality property of the cap product (Proposition

7.3.6) in the second line below, we have the following computation:

αK _ ξK = αK _ iK,L(ξL)

= iK,L((i∗K,L(αK)) _ ξL)

= iK,L(αL _ ξL).

In this case we treat iK,L as a map of triples (X; ∅, X − L)→ (X; ∅, X −K) so that in the

last line iK,L is the identity map of I p̄Hi(X;R). So we have αK _ ξK = iK,L∗(αL _ ξL) =

αL _ ξL, which tells us that we obtain an element of I p̄Hi(X;R) depending only on α and

ξ, not K or L. Altogether then, we have demonstrated the following lemma:

Lemma 7.4.6. Suppose X is a CS set with an agreeable tripe of perversities (p̄, q̄; r̄) and

that R is a Dedekind domain. Then the cap product induces a well-defined map

Iq̄H
j
c (X;R)⊗ lim←− I

r̄Hi+j(X,X −K;R)
_−→ I p̄Hi(X;R).

In our treatment of Poincaré duality, below, the element of lim←− I
r̄Hi+j(X,X − K;R)

will correspond to the fundamental class of an R-oriented stratified pseudomanifold X, and

so, up to some sign issues we will discuss later, this will be the cap product that induces

Poincaré duality.
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Next, we consider the following more general property of inverse limits, though stated in

the context we will need below:

Lemma 7.4.7. Suppose X is a CS set and W ⊂ X is an open subset. Then there is a

canonical map lim←−K⊂X I
p̄Hi(X,X − K;R) → lim←−K⊂W I p̄Hi(W,W − K;R). We denote the

image of ξ ∈ lim←−K⊂X I
p̄Hi(X,X − K;R) by ξW . Furthermore, for any specific compact

L ⊂ W , let ξWL denote the canonical image of ξW in I p̄Hi(W,W − L;R).

Suppose W ⊂ W ′ ⊂ X are open subsets and L′ ⊂ L are compact subsets of W . Then

ξWL ∈ I p̄Hi(W,W − L;R) maps to ξW
′

L′ ∈ I p̄Hi(W
′,W ′ − L′;R) under the map induced by

inclusion.

Proof. First, we observe that the map ξ → ξW is well defined for any open W ⊂ X. Let

ξ ∈ lim←− I
p̄Hi(X,X −K;R). By definition ξ determines elements ξK ∈ I p̄Hi(X,X −K;R)

for every K ⊂ X with the property that if L ⊂ K then the image of ξK in I p̄Hi(X,X−L;R)

under inclusion is ξL; conversely, any such compatible collection of ξK determines ξ. Now,

suppose we restrict our attention to the compact K with K ⊂ W . By excision, I p̄Hi(X,X−
K;R) ∼= I p̄Hi(W,W −K;R), and for all L ⊂ K ⊂ W , we have commutative diagrams

I p̄Hi(X,X −K;R) - I p̄Hi(X,X − L;R)

I p̄Hi(W,W −K;R)

∼=
6

- I p̄Hi(W,W − L;R).

∼=
6

Thus ξ ∈ lim←− I
p̄Hi(X,X −K;R) determines compatible elements ξWK ∈ I p̄Hi(W,W −K;R)

for all compact K ⊂ W and so an element ξW ∈ lim←− I
p̄Hi(W,W −K;R). So we do have a

well-defined map lim←− I
p̄Hi(X,X −K;R)→ lim←− I

p̄Hi(W,W −K;R), and the image of ξW in

I p̄Hi(W,W −K;R) is ξWK by construction.

The last statement of the theorem now follows from the below commutative diagram for

W ⊂ W ′ and L′ ⊂ L ⊂ W :

I p̄Hi(X,X − L;R) �
∼=

I p̄Hi(W
′,W ′ − L;R) �

∼=
I p̄Hi(W,W − L;R)

lim←− I
p̄Hi(X,X −K;R)

-

-
I p̄Hi(X,X − L′;R)

?
�
∼=

I p̄Hi(W
′,W ′ − L′;R)
?

�
∼=

I p̄Hi(W,W − L′;R).
?

In the remainder of this section, we will prove the following lemma, which is critical to

the proof of Poincaré duality. We base our treatment on Proposition 6.7 and Lemma 6.8 of

[100], which itself is based on Hatcher [125, Lemma 3.36], though with some modification

necessitated by the lack of exact control on supports of intersection chains under cap products

(see Section 7.3.7). As observed in Hatcher, the proof is surprisingly non-trivial. We also

include some necessary details that were overlooked in [100] (and are also not treated in full

detail in the printed version of [125], though see the online errata).
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Lemma 7.4.8. Let X be a CS set with agreeable triple of perversities (p̄, q̄; r̄), let U, V ⊂ X be

two open subsets with U∪V = X, let R be a Dedekind domain, and let ξ ∈ lim←− I
r̄Hi+j(X,X−

K;R). If W ⊂ X is open, let ξW denote the image of ξ under the map lim←−K⊂X I
r̄Hi+j(X,X−

K;R) → lim←−K⊂W I r̄Hi+j(W,W −K;R). Let DW : Iq̄H
j
c (W ;R) → I p̄Hi(W ;R) be given by

DW (α) = α _ ξW . Then the following diagram of Mayer-Vietoris sequences commutes up

to signs:

- Iq̄H
j
c (U ∩ V ;R) - Iq̄H

j
c (U ;R)⊕ Iq̄Hj

c (V ;R) - Iq̄H
j
c (X;R) -

- I p̄Hi(U ∩ V ;R)

DU∩V

?
- I p̄Hi(U ;R)⊕ I p̄Hi(V ;R)

DU ⊕−DV

?
- I p̄Hi(X;R)

DX

?
- .

Proof. As in Lemma 7.4.7 we let ξWK denote the image of ξ in I p̄Hi(W,W −K;R), and we

let DW
K : Iq̄H

j(W,W −K;R)→ I p̄Hi(W ;R) be given by DW
K (α) = α _ ξWK .

To demonstrate the commutativity-up-to-sign of the diagram, we will demonstrate the

signed commutativity of the three subdiagrams corresponding to the three squares (up to

index shift) in the diagram of the lemma.

First square. Suppose K ⊂ U and L ⊂ V are compact. We first consider the diagram

Iq̄H
j(X,X −K ∩ L;R) - Iq̄H

j(X,X −K;R)⊕ Iq̄Hj(X,X − L;R)

Iq̄H
j(U ∩ V, U ∩ V −K ∩ L;R)

∼=

?

Iq̄H
j(U,U −K;R)⊕ Iq̄Hj(V, V − L;R)

∼=

?

I p̄Hi(U ∩ V ;R)

DU∩V
K∩L

?
- I p̄Hi(U ;R)⊕ I p̄Hi(V ;R).

DU
K ⊕−DV

L

?

The direct limit over the compact pairs (K,L) ⊂ (U, V ) of the top half of this diagram

determines the map Iq̄H
j
c (U ∩ V ;R) → Iq̄H

j
c (U ;R) ⊕ Iq̄H

j
c (V ;R) in the Mayer-Vietoris

sequence, as we saw in the proof of Lemma 7.4.5. Furthermore, the lower vertical maps are

precisely the cap products given by Lemma 7.4.6. So, once we show this diagram commutes,

taking the limit of such diagrams over pairs (K,L) will provide the commutativity of the

first square of Lemma 7.4.8.

For commutativity, we can work with the two summands on the right independently,
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with analogous arguments. So consider

Iq̄H
j(X,X −K ∩ L;R) - Iq̄H

j(X,X −K;R)

Iq̄H
j(U ∩ V, U ∩ V −K ∩ L;R)

∼=

?
� Iq̄H

j(U,U −K ∩ L;R) -

-

Iq̄H
j(U,U −K;R)

∼=

?

I p̄Hi(U ∩ V ;R)

DU∩V
K∩L

?
- I p̄Hi(U ;R).

DU
K

?

D U
K∩L -

The maps in the upper half of the diagram are all induced by inclusion and commute at the

space level. The map pointing to the left is an isomorphism by excision; the excised subspace

is the closed subset U −U ∩ V of U , which is contained in the open subset U −K ∩L of U .

The map DU∩V
K∩L on the left is the cap product with the image ξU∩VK∩L of ξ in I r̄Hi+j(U ∩V, U ∩

V −K ∩ L;R), while the DU
K∩L on the right is the cap product with the image ξUK∩L of ξ in

I r̄Hi+j(U,U−K∩L;R). If we let i : (U∩V ; ∅, U∩V −K∩L)→ (U ; ∅, U−K∩L) denote the

inclusion of the triple, then i(ξU∩VK∩L) = ξUK∩L by Lemma 7.4.7. So the bottom left quadrilateral

commutes by the naturality of the cap product given in Proposition 7.3.6 (compare the

argument for Lemma 7.4.6). Similarly, if we let j : (U ; ∅, U −K)→ (U ; ∅, U −K ∩L) denote

another inclusion and ξUK the image of ξ in I r̄Hi+j(U,U − K;R), then j(ξUK) = ξUK∩L by

Lemma 7.4.7, and the bottom right triangle also commutes by Proposition 7.3.6.

Finally, notice that the analogous square involving V acquires a sign in −DV
L to counter

the negative sign of the second Mayer-Vietoris inclusion I p̄Hi(U ∩ V ;R)→ I p̄Hi(V ;R); see

item (3g) of our Notations and Conventions.

This establishes the commutativity of the first square in the diagram of the lemma.

Second square. Next, we consider the diagram

Iq̄H
j(X,X −K;R)⊕ Iq̄Hj(X,X − L;R) - Iq̄H

j(X,X −K ∪ L;R)

Iq̄H
j(U,U −K;R)⊕ Iq̄Hj(V, V − L;R)

∼=

?

I p̄Hi(U ;R)⊕ I p̄Hi(V ;R)

DU
K ⊕−DV

L

?
- I p̄Hi(X;R).

DK∪L

?

Once again, in the limit, the top part of the diagram corresponds to the map of the Mayer-

Vietoris sequence of Lemma 7.4.5, this time as the inverse of the upper left vertical isomor-

476



phism composed with the upper horizontal map. Also once again, to show that this diagram

commutes, we can consider the summands separately. So consider

Iq̄H
j(X,X −K;R) - Iq̄H

j(X,X −K ∪ L;R)

Iq̄H
j(U,U −K;R)

∼=

?

I p̄Hi(U ;R)

DU
K

?
- I p̄Hi(X;R).

DK∪L

?

D
K

-

The lower left DU
K is the cap product with ξUK , the diagonal DK is the cap product with ξK ,

and if i : (U ; ∅, U −K)→ (X; ∅, X −K) is the inclusion, then i(ξUK) = ξK by Lemma 7.4.7.

So the left triangle commutes by naturality of the cap product (Proposition 7.3.6).

Similarly, if j : (X; ∅, X −K ∪ L) → (X; ∅, X −K) is the inclusion, then j(ξK∪L) = ξK
by Lemma 7.4.7, and the right triangle commutes by Proposition 7.3.6.

In the analogous version of the diagram for V , the sign on −DV
L counteracts the negative

sign from Iq̄H
j(X,X − L;R) → Iq̄H

j(X,X − K ∪ L;R) that the inclusion map acquires

in the definition of the Mayer-Vietoris cohomology sequence (dualized from the homology

sequence).

This demonstrates the commutativity of the second square.

Third square. This is the “hidden square” in the diagram that involves the boundary

maps of the Mayer-Vietoris sequence. Here it is revealed:

Iq̄H
j
c (X;R)

d∗
- Iq̄H

j+1
c (U ∩ V ;R)

I p̄Hi(X;R)

DX

? ∂∗- I p̄Hi−1(U ∩ V ;R).

DU∩V

?
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Commutativity of this diagram will follow from that of the diagram

Iq̄H
j(X,X −K ∪ L;R)

d∗
- Iq̄H

j+1(X,X −K ∩ L;R)

Iq̄H
j+1(U ∩ V, U ∩ V −K ∩ L;R)

∼=

?

I p̄Hi(X;R)

DK∪L

? ∂∗ - I p̄Hi−1(U ∩ V ;R).

DU∩V
K∩L

?

(7.29)

Once again, these maps become those of the preceding diagram under the direct limits, and

these are the maps in the Mayer-Vietoris diagram.

The proof utilizes a concrete realization of d̄(ξK∪L) ∈ Hi+j(I
p̄S∗(X;R) ⊗ I q̄S∗(X,X −

K ∪ L;R)). In fact, let’s take ξK∪L ∈ I r̄Hi+j(X,X −K ∪ L;R). By Proposition 7.3.59, the

image d̄(ξK∪L) can be realized as the image under inclusion of an element of

H∗

(∑
W∈W

I p̄S∗(W,W ∩ A;R)⊗ I q̄S∗(W,W ∩B;R)

)
,

where W is an open covering of X and A,B are open subsets of X, in this case with A = ∅
and B = X −K ∪L. We will use the following specific covering of X: Let W1 = U −U ∩L,

W2 = U ∩ V , and W3 = V − V ∩ K; see Figure 7.4. As L ⊂ V and K ⊂ U , the set W2

contains all the points of U that are removed to form W1 and all the points of V that are

removed to form W3, so W = {W1,W2,W3} is a covering of X. Then

W1 ∩B = (U − U ∩ L) ∩ (X −K ∪ L) = U − U ∩ (K ∪ L),

W2 ∩B = (U ∩ V ) ∩ (X −K ∪ L) = U ∩ V − (U ∩ V ) ∩ (K ∪ L),

and

W3 ∩B = (V − V ∩K) ∩ (X −K ∪ L) = V − V ∩ (K ∪ L).

To simplify notation, we will abbreviate U − U ∩ (K ∪ L) as U −K ∪ L, and similarly for

the others.

Thus, applying Proposition 7.3.59, the class d̄(ξK∪L) can be represented by a cycle in

(I p̄S∗(U − L;R)⊗ I q̄S∗(U − L,U −K ∪ L;R))

⊕ (I p̄S∗(U ∩ V ;R)⊗ I q̄S∗(U ∩ V, U ∩ V −K ∪ L;R))

⊕ (I p̄S∗(V −K;R)⊗ I q̄S∗(V −K,V −K ∪ L;R)).

Following [100], let us therefore represent d̄(ξK∪L) by a chain η = ηU−L+ηU∩V +ηV−K with32

ηU−L ∈ I p̄S∗(U − L;R) ⊗ I q̄S∗(U − L;R), ηU∩V ∈ I p̄S∗(U ∩ V ;R) ⊗ I q̄S∗(U ∩ V ;R), and

ηV−K ∈ I p̄S∗(V −K;R)⊗ I q̄S∗(V −K;R).

32The idea here is that, e.g. ηU−L ∈ I p̄S∗(U − L;R) ⊗ I q̄S∗(U − L;R) is a precise choice of element

representing an element of I p̄S∗(U − L;R)⊗ I q̄S∗(U − L,U −K ∪ L;R).
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Figure 7.4: A covering of X = U ∪ V

The argument of the proof of Proposition 7.3.59 is natural with respect to an inclusion

B → B′; we take B′ = X−K∩L. As ξK∩L is the image of ξK∪L under the inclusion (X; ∅, X−
K ∪ L) → (X; ∅, X − K ∩ L), we obtain that the image of d̄(ξK∩L) in Hi+j(I

p̄S∗(X;R) ⊗
I q̄S∗(X,X −K ∩ L;R)) is also represented by ηU−L + ηU∩V + ηV−K . However, observe that

(U − L) ∩ (X −K ∩ L) = U − L and (V −K) ∩ (X −K ∩ L) = V −K, so

(I p̄S∗(U − L;R)⊗ I q̄S∗(U − L,U −K ∩ L;R))

⊕ (I p̄S∗(U ∩ V ;R)⊗ I q̄S∗(U ∩ V, U ∩ V −K ∩ L;R))

⊕ (I p̄S∗(V −K;R)⊗ I q̄S∗(V −K,V −K ∩ L;R))

= I p̄S∗(U ∩ V ;R)⊗ I q̄S∗(U ∩ V, U ∩ V −K ∩ L;R),

and so d̄(ξK∩L) can be represented simply by ηU∩V .

Now, let

α ∈ Iq̄Hj(X,X −K ∪ L;R) = Iq̄H
j(X, (X −K) ∩ (X − L);R).

Let us find a cochain representing

d∗(α) ∈ Iq̄Hj+1(X,X −K ∩ L;R) = Iq̄H
j(X, (X −K) ∪ (X − L);R).

Treating α as a cochain, d∗(α) is determined by the output of a zig-zag chase in the Mayer-

Vietoris short exact sequence

0→ Iq̄S
∗(X, (X −K) + (X − L);R)

d−→ Iq̄S
∗(X,X −K;R)⊕ Iq̄S∗(X,X − L;R)

→ Iq̄S
∗(X, (X −K) ∩ (X − L);R)→ 0.
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Here

Iq̄S
∗(X, (X −K) + (X − L);R) = Hom

(
I q̄S∗(X;R)

I q̄S∗(X −K;R) + I q̄S∗(X − L;R)
, R

)
.

So these are intersection cochains that vanish on intersection chains in I q̄S∗(X −K;R) or

I q̄S∗(X −L;R). Of course, as usual for Mayer-Vietoris sequences, we already know that the

cohomology of this cochain complex is isomorphic to Iq̄H
∗(X, (X −K)∪ (X −L);R), which

is the identification we always tacitly use in Mayer-Vietoris cohomology sequences.

The zig-zag argument tells us that α ∈ Iq̄Sj(X, (X−K)∩ (X−L);R) must be the image

of some αK⊕αL ∈ Iq̄Sj(X,X−K;R)⊕Iq̄Sj(X,X−L;R); in fact, pulling back by the Mayer-

Vietoris inclusion map gives us α = αK − αL. Then we take d(αK ⊕ αL) = dαK ⊕ dαL, and,

α being a cocycle, dαK ⊕ dαL is in the image of the map labeled d. In fact, the map d is the

diagonal direct sum inclusion of the form d(a) = a⊕ a (up to restrictions), as we can verify

from d being the dual of the map that adds two chains (up to inclusions). Therefore, d∗(α) is

represented by dαK . Well, almost. Remember that dαK ∈ Iq̄Hj+1(X, (X−K)+(X−L);R),

while we want an element of Iq̄H
j+1(X, (X −K)∪ (X −L);R) = Iq̄H

j+1(X,X −K ∩L;R).

The isomorphism between these modules is induced by the dual of the inclusion

ψ : I q̄S∗(X, (X −K) + (X − L);R)→ I q̄S∗(X,X −K ∩ L;R).

So let β ∈ I q̄Sj+1(X,X −K ∩L;R) be a cochain such that ψ∗(β) = dαK in Iq̄H
j+1(X, (X −

K) + (X − L);R), say by ψ∗(β)− dαK = dθ. Then β represents d∗(α).

So the composition right then down in diagram (7.29) takes the class of α to the class of

β, then restricts it to act on chains in U ∩ V , and finally forms β _ ξU∩VK∩L . Note, here and

in what follows, for simplicity of notation we will leave certain inclusion- and restriction-

induced maps tacit; so, for example, the β in β _ ξU∩VK∩L is really the restriction of β to

U ∩ V . This is not unreasonable, as both β and its restriction act the same way on chains;

the context should be clear throughout, so this should not cause too much confusion.

Now, using our above observation that d̄(ξK∩L) can be represented by ηU∩V ∈ I p̄S∗(U ∩
V ;R) ⊗ I q̄S∗(U ∩ V ;R), we obtain that the image of the composition right then down in

diagram (7.29) is represented by Φ(id⊗ β)ηU∩V . In fact, recall ηU∩V represents a chain in

I p̄S∗(U ∩ V ;R)⊗ I q̄S∗(U ∩ V, U ∩ V −K ∪ L;R),

and so also chains in

I p̄S∗(U ∩ V ;R)⊗ I q̄S∗(U ∩ V, (U ∩ V −K) + (U ∩ V − L);R)

and

I p̄S∗(U ∩ V ;R)⊗ I q̄S∗(U ∩ V, U ∩ V −K ∩ L;R)

via inclusion. Therefore, invoking naturality, Φ(id⊗β)ηU∩V and Φ(id⊗ψ∗(β))ηU∩V represent

exactly the same element in I p̄Hi−1(U ∩V ;R), so we can just as well use Φ(id⊗ψ∗(β))ηU∩V
as our representative for the composition in the diagram.
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We next want to get back to an expression involving dαK , rather than β. For this, we

recall that η = ηU−L+ηU∩V +ηV−K represents a cycle in I p̄S∗(X;R)⊗I q̄S∗(X,X−K∪L;R).

Using that all our modules are projective,

I p̄S∗(X;R)⊗ I q̄S∗(X,X −K ∪ L;R) ∼=
I p̄S∗(X;R)⊗ I q̄S∗(X;R)

I p̄S∗(X;R)⊗ I q̄S∗(X −K ∪ L;R)
,

so η being a cycle implies that

∂η = ∂ηU−L + ∂ηU∩V + ∂ηV−K ∈ I p̄S∗(X;R)⊗ I q̄S∗(X −K ∪ L;R).

But we also have

ηU−L ∈ I p̄S∗(U − L;R)⊗ I q̄S∗(U − L;R) ⊂ I p̄S∗(X;R)⊗ I q̄S∗(X − L;R)

ηV−K ∈ I p̄S∗(V −K;R)⊗ I q̄S∗(V −K;R) ⊂ I p̄S∗(X;R)⊗ I q̄S∗(X −K;R).

Therefore, ∂ηU∩V = ∂η − ∂ηU−L − ∂ηV−K is a chain in I p̄S∗(X;R) ⊗ (I q̄S∗(X − K;R) +

I q̄S∗(X − L;R)). In fact, as all the tensor product terms of ∂ηU∩V are supported in U ∩ V ,

it is a chain, therefore, in

I p̄S∗(U ∩ V ;R)⊗ (I q̄S∗(U ∩ V −K;R) + I q̄S∗(U ∩ V − L;R)).

Now, recall that ψ∗(β)−dαK = dθ in Iq̄S
j+1(X, (X−K)+ (X−L);R), and this relation

remains under the restriction to Iq̄S
j+1(U ∩ V, (U ∩ V −K) + (U ∩ V − L);R). Suppose

ηU∩V =
∑

yk ⊗ zk ∈ I p̄S∗(U ∩ V ;R)⊗ I q̄S∗(U ∩ V ;R).
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Then we can compute

(id⊗ ψ∗(β))ηU∩V = (id⊗ (dαK + dθ))ηU∩V

= (id⊗ dαK)ηU∩V + (id⊗ (dθ))ηU∩V

= (id⊗ dαK)ηU∩V + (id⊗ (dθ))
∑
k

yk ⊗ zk

= (id⊗ dαK)ηU∩V + (−1)(j+1)(i−1)
∑
k

yk ⊗ (dθ)(zk)

= (id⊗ dαK)ηU∩V + (−1)(j+1)(i−1)
∑
k

yk ⊗ (−1)j+1θ(∂zk)

= (id⊗ dαK)ηU∩V + (−1)(j+1)(i−1)+j+1
∑
k

yk ⊗ θ(∂zk)

= (id⊗ dαK)ηU∩V + (−1)(j+1)(i−1)+j+1+j(i−1)(id⊗ θ)
∑
k

yk ⊗ ∂zk

= (id⊗ dαK)ηU∩V + (−1)i+j(id⊗ θ)
∑
k

yk ⊗ ∂zk

= (id⊗ dαK)ηU∩V + (−1)i+j+(i−1)(id⊗ θ)
∑
k

(−1)|yk|yk ⊗ ∂zk

= (id⊗ dαK)ηU∩V + (−1)j−1(id⊗ θ)
∑
k

(∂(yk ⊗ zk)− (∂yk)⊗ zk)

= (id⊗ dαK)ηU∩V + (−1)j−1(id⊗ θ)

(
∂ηU∩V −

∑
k

(∂yk)⊗ zk

)
= (id⊗ dαK)ηU∩V + (−1)j(id⊗ θ)

∑
k

(∂yk)⊗ zk.

Let us explain all this. In the fourth line, we have used that (dθ)(zk) = 0 unless |zk| =

|dθ| = j + 1, in which case the corresponding yk has |yk| = i− 1. The next few lines are just

computations and simplifications. In the fourth line from the bottom, we again use that all

the summands on the right are trivial unless |yk| = i − 1, and this allows us to include the

(−1)|yk| in all terms balanced off by (−1)i−1 outside the sum. In the last line, we have used

that θ kills elements of I q̄S∗(X −K;R) + I q̄S∗(X −L;R), and that we have seen that these

are all that occur in the second tensor factors of ∂ηU∩V .

Now, applying Φ to both sides of this computation, we get

Φ(id⊗ ψ∗(β))ηU∩V = Φ(id⊗ dαK)βU∩V + (−1)jΦ(id⊗ θ)
∑
k

(∂yk)⊗ zk

= Φ(id⊗ dαK)ηU∩V + (−1)j+(i−1)j
∑
k

θ(zk)∂yk.

Therefore, Φ(id⊗ ψ∗(β))ηU∩V and Φ(id⊗ dαK)ηU∩V are homologous in I p̄S∗(U ∩ V ;R).

So, the composition right then down in the diagram is represented by Φ(id⊗ dαK)ηU∩V .

Now that we’ve gotten dαK back in the picture, we need to massage this just a bit more

to fit with what we’ll get going around the diagram the other way. Continue to suppose
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ηU∩V =
∑
yk ⊗ zk. We notice that

Φ(id⊗ αK)∂ηU∩V = Φ(id⊗ αK)∂
∑

yk ⊗ zk (7.30)

= Φ(id⊗ αK)
∑

((∂yk)⊗ zk + (−1)|yk|yk ⊗ ∂zk)

=
∑

(−1)j|∂yk|αK(zk)∂yk +
∑

(−1)i−1+j(i−1)αK(∂zk)yk

= ∂
(∑

(−1)j(i−1)αK(zk)yk

)
+
∑

(−1)i−1+j(i−1)+j+1((dαK)(zk))yk.

=
∑

(−1)j(i−1)+ij∂Φ(id⊗ αK)(yk ⊗ zk)

+
∑

(−1)i+j(i−1)+j+(j+1)(i−1)Φ(id⊗ dαK)yk ⊗ zk.

= (−1)j∂Φ(id⊗ αK)ηU∩V + (−1)j+1Φ(id⊗ dαK)ηU∩V .

Here, we have again used that ηU∩V =
∑
yk⊗ zk is an i+ j chain, that α is a j-cochain, and

that the expressions above will vanish unless a cochain acts on a chain of the same degree.

So, we see that up to signs33that depend only on the fixed i and j, Φ(id ⊗ αK)∂ηU∩V and

Φ(id⊗dαK)ηU∩V together bound; therefore, Φ(id⊗αK)∂ηU∩V also represents the composition

right then down in diagram (7.29), up to sign. At last, this is the final form that we want

for this element.

Next, we consider the other way around the diagram (7.29). We first take the cap product

of α with ξK∪L, which is

α _ ξK∪L = Φ(id⊗ α)d̄(ξK∪L)

= Φ(id⊗ α)(ηU−L + ηU∩V + ηV−K)

= Φ(id⊗ α)ηU−L + Φ(id⊗ α)ηU∩V + Φ(id⊗ α)ηV−K .

The first of these chains is supported in U while the other two are supported in V . Therefore,

the zig-zag construction of the map ∂∗ in the homology Mayer-Vietoris sequence can proceed

by pulling our chain representative for α _ ξK∪L back to

Φ(id⊗ α)ηU−L ⊕ (Φ(id⊗ α)ηU∩V + Φ(id⊗ α)ηV−K) ∈ I p̄Si(U ;R)⊕ I p̄Si(V ;R),

then taking its boundary under ∂⊕∂, and then finally arrive at a preimage in I p̄Si(U ∩V ;R)

under the map (iU ,−iV ), with the i denoting the inclusion maps. In this case, the preimage

is represented by ∂(Φ(id ⊗ α)ηU−L). Now, using computations identical to those in (7.30),

but with α in place of αK and ηU−L in place of ηU∩V , we have that, up to signs,

∂(Φ(id⊗ α)ηU−L) = ±Φ(id⊗ α)∂ηU−L ± Φ(id⊗ dα)ηU−L.

But α is a cocycle, so this becomes ∂(Φ(id⊗α)ηU−L) = ±Φ(id⊗α)∂ηU−L. Now, recall that

ηU−L, and so also its boundary, is in I p̄S∗(U−L;R)⊗I q̄S∗(U−L;R), and that α = αK−αL,

33These signs disagree with Hatcher [125, Lemma 3.36] because Hatcher’s version of the cap product has

the chain on the left and the cochain on the right.
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as above. But αL kills chains outside of L, so (id⊗ α)∂ηU−L = (id⊗ αK)∂ηU−L. Next, once

again, as d̄(ξK∪L) is a cycle in I p̄S∗(X;R)⊗ I q̄S∗(X,X −K ∪L;R), we have that ∂η, which

represents ∂d̄(ξK∪L), is in I p̄S∗(X;R) ⊗ I q̄S∗(X − K ∪ L;R). Now, apply id ⊗ αK to the

expression ∂η = ∂ηU−L + ∂ηU∩V + ∂ηV−K and observe that id⊗αK must kill ∂ηV−K and ∂η,

which are made of chains supported outside of K in the second tensor factor. Therefore,

Φ(id⊗ αK)∂ηU−L = −Φ(id⊗ αK)∂ηU∩V .

So our representative for the image of α down then right in diagram (7.29) is, up to sign,

Φ(id⊗αK)∂ηU∩V . And, again up to sign, this is the same expression we obtained earlier for

running right then down in diagram (7.29).

This completes the third square and so the proof of Lemma 7.4.8. Whew!
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Chapter 8

Poincaré duality

In this chapter, we prove intersection homology Poincaré duality for pseudomanifolds. Our

approach follows the modern theory for manifolds in which the duality isomorphism is given

by the cap product with a fundamental class. Much of our particular exposition is modeled

on the treatment in Hatcher [125]. For intersection homology, this proof is quite different

from the original techniques of Goresky and MacPherson in [105] and [106]; the former

proceeds using piecewise linear intersection pairings and a filtration argument using “basic

sets,” while the latter utilizes the axiomatics of the derived category of sheaf complexes. We

will not provide the details of either of these original proofs here, although in Section 8.5 we

do provide an exposition of the PL intersection pairing.

We begin in Section 8.1 by discussion orientations and fundamental classes on pseudo-

manifolds. This is followed by our proof of Poincaré duality in Section 8.2 and Lefschetz

duality for ∂-pseudomanifolds in Section 8.3. In Section 8.4.1, we derive in detail how these

duality theorems yield nonsingular cup product and torsion pairings. In Subsection 8.4.5 we

also discuss what we call “image pairings;” these are the intersection homology generaliza-

tions of the duality pairings on the image groups im(H∗(M,∂M)→ H∗(M)) for a ∂-manifold

M . We conclude with our discussion of intersection pairings in Section 8.5.

8.1 Orientations and fundamental classes

In this section, we continue to head toward an intersection homology version of Poincaré

duality by constructing orientations and fundamental classes for stratified pseudomanifolds.

Notice that we are here restricting ourselves from the larger generality of CS sets down to

spaces with a bit more structure. Stratified pseudomanifolds are required to be recursive CS

sets, and the union of the regular strata must be dense. This latter condition is necessary to

have something that is dimensionally homogeneous, which we need in order for all points to

be able to carry anything like an orientation in the proper degree. Such a restriction is not

completely necessary for Poincaré duality as, by Proposition 6.3.47, non-GM intersection

homology does not detect strata outside the homogenization1 of a CS set. But this is also

1Recall Definition 6.3.44 in Section 6.3.2.
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an argument that we might as well restrict our attention to the homogeneous CS sets.

The idea for using recursive CS sets is that orientation properties are local and so we will

need to demonstrate the proper homological properties on distinguished neighborhoods, and

these properties are completely controlled by the links via stratified homotopy invariance

and the cone formula. One alternative would be to simply make the necessary homological

assumptions about the links, which could perhaps be done. However, a pleasant feature of

stratified pseudomanifolds is that their links are also stratified pseudomanifolds by Lemma

2.4.11, and so the local homological properties will exist inductively via the fundamental

class of the link.

The principal arguments in this section are based on those of [100, Section 5], which

are themselves based on the arguments for manifolds in Section 3.3 of Hatcher [125]. The

primary difference from [100] is that there we first developed the results for normal stratified

pseudomanifolds and then made additional arguments to obtain them for arbitrary pseudo-

manifolds using the properties of normalization maps. Here we take a more direct route,

treating arbitrary stratified pseudomanifolds throughout.

In Section 8.1.1 we review the some material about orientations and fundamental classes

for manifolds, then in Section 8.1.2 we discuss orientations of CS sets, including behavior

with respect to changing the filtration. Section 8.1.3 contains the main theorems about

fundamental classes for pseudomanifolds. In Section 8.1.4 we explain why fundamental

classes are only defined for perversities that don’t take negative values, and Section 8.1.5

considers the behavior of fundamental classes under changes of perversity or stratification.

In Section 8.1.6 we revisit an observation of Goresky and MacPherson from [105] by showing

that the cap product with the fundamental class in singular homology factors through the

intersection homology cap product. Finally, we consider orientations and fundamental classes

of product spaces in Section 8.1.7.

WARNING: In this section, we require some elementary sheaf theory at a variety of

points. While we attempt to provide an overview of the relevant notions where necessary,

the reader should be aware that not all of this section will be self-contained given our

development thusfar. Good references for most of what we need can be found in the first

few chapters of Swan [229] or Bredon [37], each of which develops sheaf theory considerably

more than we will need here.

8.1.1 Orientation and fundamental classes of manifolds

Let us first briefly review in this subsection the principal definitions and results concerning

orientation and fundamental classes for manifolds. One good reference, and the one we will

mostly follow in our treatment below for pseudomanifolds, can be found in [125, Section 3.3].

We also assume the reader is familiar with bundles of groups as in, e.g., [125, Section 3.H];

see also the discussion of orientations for manifolds in [125, Section 3.3]. We will mostly be

interested in bundles of R-modules, but the basic ideas are the same.

Recall that for an n-dimensional manifold M and for any coefficient ring R we have

an orientation bundle O with fiber (stalk) Ox = Hn(M,M − {x};R) ∼= R at x ∈ M . At

any moment, we will work with a fixed base ring, so we will omit it from the notation for
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the orientation bundle. The bundle structure is determined by noting that every point in

M has an open ball neighborhood B such that Hn(M,M − B;R) ∼= R and for any two

x, y ∈ B we have canonical isomorphisms induced by inclusion Hn(M,M − {x};R)
∼=←−

Hn(M,M − B;R)
∼=−→ Hn(M,M − {y};R). Hence every point of M has a neighborhood on

which we have canonical identification between fibers, and this determines the bundle O.

Definition 8.1.1. The manifold M is R-orientable if O has a global section o that restricts

to a generator of R over each point; this is equivalent to assuming that the bundle O is

trivial. In particular, every manifold is Z2-orientable. If M is R-orientable, an R-orientation

is a choice of such a global section o.

Of course there are homological results about manifolds that are closely intertwined with

their orientation properties. The following lemma, which is a restatement of [125, Lemma

3.27], lays the principal cornerstone:

Lemma 8.1.2. Let M be an n-dimensional manifold and K ⊂M a compact set. Then:

1. Hi(M,M −K;R) = 0 for i > n, and a class in Hn(M,M −K;R) is zero if and only

if its image in Hn(M,M − x;R) is zero for all x ∈ K.

2. Given a section s of O over M , there is a unique class γK ∈ Hn(M,M −K;R) whose

image in Hn(M,M −{x};R) is s(x) for any x ∈ K. In particular, if M is R-oriented

then there is a unique class ΓK ∈ Hn(M,M−K;R) whose image in Hn(M,M−{x};R)

is o(x) for any x ∈ K.

This lemma leads to the following theorem, which is two thirds of [125, Theorem 3.26]:

Theorem 8.1.3. Let M be a closed (compact with empty boundary) connected n-manifold.

Then:

1. If M is R-orientable, then Hn(M ;R) → Hn(M,M − {x};R) ∼= R is an isomorphism

for all x ∈M .

2. Hi(M ;R) = 0 for i > n.

The last statement of the theorem follows immediately from the first statement of the

lemma, taking K = M . The first statement of the theorem follows from the second statement

of the lemma as follows: As M is connected and R-oriented, the orientation bundle O is the

trivial bundle with fiber R, and its module of sections Γ(M,O) is therefore isomorphic to R

via the evaluation map that takes s ∈ Γ(M,O) to

s(x) ∈ Ox = Hn(M,M − {x};R) ∼= R

for any x ∈ M . In particular, o is a generator of Γ(M,O) ∼= R. Now, any element of

ξ ∈ Hn(M ;R) determines a global section sξ of O by letting sξ(x) be the image of ξ in

Hn(M,M − {x};R). The map Hn(M ;R) → Γ(M,O) so described is both surjective and

injective by the second statement of the lemma, taking K = M . Thus we have isomorphisms

Hn(M ;R)
∼=−→ Γ(M,O)

∼=−→ Hn(M,M − {x};R) ∼= R

for all x ∈M .
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Definition 8.1.4. We call the element of Hn(M ;R) corresponding to a given R-orientation

o of M the fundamental class ΓM ∈ Hn(M ;R).

The proof of Lemma 8.1.2 requires some work. We will not discuss this here, but rather

we refer again to [125, Section 3.3].

8.1.2 Orientation of CS sets

Now, we turn to pseudomanifolds. In fact, the basic definitions concerning orientation

are applicable more generally to CS sets; we will only need to restrict to pseudomanifolds

when considering homological results in the next subsection, so we will work in the greater

generality until then. We do assume in this section that our CS sets have regular strata.

Definition 8.1.5. Let X be an n-dimensional CS set with non-empty regular strata. We

say that X is R-orientable if the n-manifold X −Xn−1 = X − ΣX is R-orientable, and we

say X is R-oriented if a particular R-orientation for X −Xn−1 = X −ΣX has been chosen.

Before launching into the homological properties related to orientability in the next sub-

section, we will first discuss the relationship between orientations of different CS set filtra-

tions of a single space. We begin with a simple observation.

Lemma 8.1.6. Suppose X is an n-dimensional CS set with non-empty regular strata and

that X ′ is an n-dimensional CS set with the same underlying space |X| and with a finer

stratification, i.e. each stratum of X ′ is contained in a stratum of X. Then if X is R-

orientable so is X ′, and any R-orientation of X determines a unique R-orientation of X ′.

Proof. The assumption that the stratification of X ′ is finer than that of X implies imme-

diately that X ′ − ΣX′ ⊂ X − ΣX . So if the orientation bundle over X − ΣX is trivial, it

restricts to a trivial bundle over X ′ − ΣX′ , and any choice of global section of generators

similarly restricts.

The converse to Lemma 8.1.6 is not true in general, as the following examples demon-

strate.

Example 8.1.7. Let M be the unfiltered open Mobius band, and let M ′ be |M | filtered as

Σ ⊂ M , where Σ is an arc running widthwise across M . In other words, let M be formed

from [0, 1]× (0, 1) by identifying {0} × (0, 1) with {1} × (0, 1) by (0, t) ∼ (1, 1− t), and let

Σ be the image of {0, 1} × (0, 1). Of course M is not Z-orientable, but M ′ − ΣM ′ = M − Σ

is homeomorphic to the open disk, so it is Z-orientable.

Example 8.1.7 shows that it is possible to have one filtration of a CS set be R-orientable

while another is not. The next example shows that even if two filtrations yield R-orientable

CS sets, an R-orientation on a finer stratification does not necessarily determine an R-

orientation on a coarser stratification.

Example 8.1.8. Let R′ consist of the space R filtered by {0} ⊂ R. Then R′ has two regular

strata, corresponding to the positive and negative real numbers, and we can orient these

submanifolds, and hence R′, in a way that is not compatible with a single orientation on all

of the CS set R.
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The trouble in both of these examples is caused by the addition of a stratum of codi-

mension one. It turns out that Lemma 8.1.6 does have a converse if we forbid the addition

of “new” codimension one strata. The two following lemmas utilize some sheaf-theoretic

notions of dimension theory that go even a bit further beyond the elementary treatment of

sheaves that we will need more seriously below. The reader unacquainted with such notions

should still be able to follow the general idea of the proof, though the reader willing to

believe the result can safely skip the argument, which won’t be needed again later.

Lemma 8.1.9. Suppose X is an n-dimensional CS set with non-empty regular strata and

that X ′ is an n-dimensional CS set with the same underlying space |X| and with a finer

stratification, i.e. each stratum of X ′ is contained in a stratum of X. Suppose further that

any codimension one stratum of X ′ is contained in a codimension one stratum of X. Then if

X ′ is R-orientable so is X, and any R-orientation of X ′ determines a unique R-orientation

of X.

Proof. Let M = X − ΣX and M ′ = X ′ − ΣX′ . The spaces M and M ′ are n-dimensional

manifolds, and as X ′ is stratified more finely than X, we have M ′ ⊂ M . We claim that M ′

is an open dense subset of M such that M −M ′ has codimension at least 2, utilizing the

sheaf-theoretic dimZ as our notion of dimension (see Lemma 6.3.46, above, and [37, Section

II.16] for a full treatment). This will imply the lemma using a result about bundle theory

that we provide below.

It is clear that M ′ is open in M as M and M ′ are both open subsets of the underlying

space |X|. For the issue of codimension, as M is an n-manifold, dimZ(M) = n by [37,

Corollary II.16.28]. To see that the complement of M ′ in M has dimension ≤ n−2, suppose

x ∈ M − M ′. Then x must be contained in a singular stratum of X ′, and we claim it

is not a codimension one singular stratum because, by assumption, if x is contained in a

codimension one stratum of X ′ then it is contained in a codimension one stratum of X,

which would contradict x ∈ M . Therefore, M −M ′ is a subset of the n− 2 skeleton of X ′.

As M −M ′ is the intersection of M with ΣX′ by definition, it now follows that M −M ′

is the intersection of M with the n − 2 skeleton of X ′, which is thus an open subset of the

n− 2 skeleton of X ′. We showed above in the proof of Lemma 6.3.46 that the i-skeleton of

a CS set has Z-dimension ≤ i, and any open subset of such a skeleton also has Z-dimension

≤ i by [37, Theorem II.16.8] (this also uses that |X| is locally compact by Lemma 2.3.15).

Thus dimZ(M − M ′) ≤ n − 2. Similarly, M ′ is dense in M because if x ∈ M then any

neighborhood of x contains an open Euclidean neighborhood of dimension n, and such an

open neighborhood cannot be contained in the n − 1 skeleton of X ′ for dimension reasons,

again by [37, Theorem II.16.8]; so any neighborhood of x intersections M ′. So we have shown

that M ′ is an open dense subset of M such that M −M ′ has codimension ≥ 2.

The lemma now follows from a basic result about bundle theory, which we present as

Lemma 8.1.10, below. According to that result, if we have two bundles defined on a manifold

then any bundle isomorphism between them defined on an open dense subset of codimension

at least 2 has a unique extension to the entire manifold. So in our setting Lemma 8.1.10 says

that an isomorphism of bundles over M ′ must extend uniquely over all of M . In particular,

suppose OM is the R-orientation bundle over M and that RM is the trivial bundle over M
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with stalk R. If X ′ is R-orientable, there is an isomorphism RM |M ′ → OM |M ′ = OM ′ , and

an R-orientation corresponds to a specific choice of isomorphism (given a fixed identification

of RM with M × R, the R-orientation is the image section under the bundle isomorphism

of the section of RM |M ′ that takes each x ∈ M ′ to 1 ∈ R). Lemma 8.1.10 guarantees a

unique extension of this isomorphism to all of M , demonstrating that M is orientable and

extending uniquely the chosen R-orientation.

The following lemma is basic to bundle theory, though the techniques required for the

proof are a bit beyond the required background of most this book. We’ll provide some details

of the argument from [28, Lemma V.4.11.a], though, once again, the reader willing to believe

the result can safely skip the proof, which won’t be needed again later.

Lemma 8.1.10. Suppose M is an n-dimensional manifold and that U is a dense open subset

of M whose complement has codimension at least 2. Then if E and F are bundles of finitely

generated R-modules on M and φ : E|U → F|U is a bundle morphism, then there exists a

unique bundle morphism ψ : E → F that extends φ. Furthermore, if φ is an isomorphism

then so is ψ.

Proof. Without loss of generality, we can assume M is path connected; otherwise we can

argue on each path component separately. It follows that U must also be path connected.

The basic idea is that because M − U has codimension ≥ 2 any path can be altered by a

homotopy to avoid M − U . If we were working entirely with smooth objects, this would

follow from general position arguments, but as our objects are purely topological, this is not

completely straightforward. We will use the fact that if Y is a locally compact Hausdorff

space and W is an open subspace then there is a long exact sequence

- Hi
c(W ;Z2) - Hi

c(Y ;Z2) - Hi
c(Y −W ;Z2) - ,

where Hi denotes sheaf cohomology. The existence of such a long exact sequence is not so

evident using the singular cohomology definition of H i
c, but it follows for Hi

c from basic sheaf

cohomology theory2 [37, Section II.10.3]. Now, dimZ(M −U) ≤ n−2 by assumption, and as

M−U is locally compact, it is locally paracompact, so from [37, Proposition II.16.15] we also

have dimZ2(M − U) ≤ n− 2. By [37, Definition II.16.6], dimZ2(M − U) = dimc,Z2(M − U),

and so we have Hi
c(M − U ;Z2) = 0 for i = n− 1 and i = n by [37, Theorem II.16.4]. Thus,

from the exact sequence, Hn
c (U ;Z2) ∼= Hn

c (M ;Z2). Finally, by Poincaré duality [37, Example

IV.2.9], as U and M are n-manifolds and as the Z2-orientation sheaf of any space is constant,

we have Hn
c (U ;Z2) ∼= H0(U ;Z2) and Hn

c (M ;Z2) ∼= H0(M ;Z2). So, if M is path connected

we have H0(U ;Z2) ∼= H0(M ;Z2) ∼= Z2, and U is also path connected.

The same argument works locally to show that if B is an open ball neighborhood of a

point in M then U ∩ B is path connected and dense in B. This observation is enough to

2Note that the exact sequence in Bredon is stated for any paracompactifying family of supports Φ. In

our case Φ = c, the family of compact supports, and the restrictions Φ|W and Φ|Y −W are also c, as follows

directly from [37, Definition II.6.3]. In each case, c is paracompactifying by the observations of [37, page

22] as all of the spaces here are locally compact. Note that open and closed subspaces of locally compact

Hausdorff spaces are locally compact [180, Corollary 29.3].
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imply that, for any basepoint x0 ∈ U , the mapi∗ : π1(U, x0)→ π1(M,x0) is surjective, where

i is the inclusion U ↪→ M . Indeed, this is a basic exercise (that we leave for the reader) in

locally modifying paths by homotopies within small balls.

Now, as M is path connected, the category of bundles on M whose stalks are finitely

generated R-modules is equivalent to the category of finitely generated π1(M,x0)-modules

for any x0 ∈ M (see [125, Section 3H]), and similarly for U . Furthermore, restriction of a

bundle to U corresponds to the “change of scalars” induced by i∗ : π1(U, x0) → π1(M,x0).

This means that if E is a π1(M,x0)-module and z ∈ E, then we obtain a corresponding

module, say EU , with the same elements as E (though we will denote the version of z in EU
as zU) and with action of γ ∈ π1(U, x0) on EU given by γzU = (i∗(γ)z)U .

The hypothesis of the lemma is equivalent to assuming that we have two π1(M,x0)

modules, say E,F , and a π1(U, x0)-morphism φ : EU → FU , where EU and FU denote E and

F as modules after the restriction of scalars. We must show that there is a unique morphism

ψ : E → F that induces φ. But E = EU and F = FU as groups, so φ certainly provides a

function ψ determined by (ψ(z))U = φ(zU) for z ∈ E. We must show that ψ is a morphism

of π1(M,x0)-modules by showing that ψ(mz) = mψ(z) for any m ∈ π1(M,x0). As i∗ is

surjective we can choose m̄ ∈ π1(U, x0) such that i∗(m̄) = m. Then, using that φ is a map

of π1(U, x0)-modules, we have

(ψ(mz))U = φ((mz)U)

= φ((i∗(m̄)z)U)

= φ(m̄zU)

= m̄φ(zU)

= m̄(ψ(z))U

= (mψ(z))U .

As the assignment z → zU is bijective, we thus see that ψ is a π1(M,x0)-module mor-

phism, as desired. It is also clearly the unique such morphism compatible with φ, and it is

bijective if and only if φ is bijective. This completes the proof.

Corollary 8.1.11. Suppose X is a CS with non-empty regular strata set, all of whose codi-

mension one strata are contained in the codimension one strata of X, the intrinsic filtration

of X (recall Definition 2.10.6); in particular, this will be the case if X has no codimension

one strata. Then any R-orientation of X determines a unique R-orientation for any CS set

filtration X ′ of the underlying space |X|.

Proof. Recall that X is a coarsening of any CS set stratification of |X|; see Remark 2.10.7.

Therefore, by Lemma 8.1.9 and the assumptions, an R-orientation of X determines a unique

R-orientation of X, which determines a unique R-orientation on any other stratification X ′

of |X| by Lemma 8.1.6.

Remark 8.1.12. As just observed in the proof of Corollary 8.1.11, it follows from Lemma

8.1.6 that any R-orientation of X determines an R-orientation on any CS set filtration of

|X|. As the CS set filtration X is intrinsic to the underlying space, this provides a sense in
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which the notion of R-orientability is independent of choice of CS set filtration, assuming

that X is R-orientable. However, Example 8.1.7, just above, demonstrates that we might

still have R-orientability of X even when X is not R-orientable.

8.1.3 Homological properties of orientable pseudomanifolds

In this section, we look at intersection homology versions of Lemma 8.1.2 and Theorem 8.1.3;

in particular we construct intersection homology fundamental classes for oriented stratified

pseudomanifolds. An immediate question is what perversity we should use. This will turn

out to be immaterial so long as p̄ ≥ 0̄, i.e. if p̄(S) ≥ 0 for all singular strata S. In this

section we will proceed simultaneously with all such perversities, and in the next we will

show that, in fact, the top dimension intersection homology groups behave identically with

respect to any of these perversities, so there is no real distinction. In later sections, we

will work with 0̄, which is initial among all these perversities and so provides a canonical

fundamental class. It is the cap product with this 0̄-perversity fundamental class that takes

p̄-allowable intersection cochains to Dp̄-allowable intersection chains, demonstrating again

why the notion of dual perversities is so relevant. On the other hand, if p̄(S) < 0 for some

singular stratum S, then we will see below, as a consequence of Proposition 8.1.24, that it

is not possible for X to have a (global) fundamental class.

The orientation sheaf

We begin with the preliminary observation that if X is an n-dimensional CS set and p̄ is a

perversity satisfying p̄ ≥ 0̄ then the assignment x→ I p̄Hn(X,X − {x};R) will no longer be

locally constant; in fact, at singular points of X we do not necessarily have I p̄Hn(X,X −
{x};R) ∼= R. Therefore, we cannot talk about an orientation bundle over all of X, though

we do still have such a bundle over X − ΣX . The appropriate object on all of X is a sheaf.

Sheaves generalize bundles of coefficients by allowing the possibility of different modules over

different points. We will only need a bare minimum of material about sheaves, but since we

do not assume the reader is necessarily familiar with any sheaf theory, we provide the basic

idea. A readable elementary account from the following point of view can be found in the

early chapters of Swan [229]. Other good basic introductions are [232] and the early sections

of [37].

There are actually multiple equivalent definitions of sheaves, but for our purposes the

simplest is the following: like a bundle of coefficients, a sheaf S of R-modules over a space

Y is a space S together with a local homeomorphism π : S → Y , meaning that for each

z ∈ S the map π takes some open neighborhood V of z in S homeomorphically onto an open

neighborhood of π(z) in Y . Additionally, for each x ∈ Y , the preimage π−1(x), which is also

denoted Sx and called the stalk of the sheaf at x, must be an R-module with the discrete

topology. It is not required that the various Sx be isomorphic to each other. Finally, there

is also a requirement that algebraic operations should be continuous; in other words, the

map {(y, z) ∈ S × S | π(y) = π(z) ∈ V } → S given by (y, z) → y + z must be continuous,

and an analogous statement holds for scalar multiplication. A bundle of coefficients with
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fiber module F is simply a sheaf for which each point in Y has a neighborhood V on which

π−1(V ) ∼= V × F with π corresponding to the projection onto V . In general, however, while

each stalk of a sheaf S must inherit the discrete topology as a subspace of S, the overall

topology of S might be quite complicated and is very often non-Hausdorff.

In our particular case, the orientation sheaf Op̄ on X will have stalk Op̄x = I p̄Hn(X,X −
{x};R) over the point x ∈ X, and the topology on Op̄ is given so that if U ⊂ X is any open

subset of X and ξ ∈ I p̄Hn(X,X − Ū ;R) is any homology class, then the union of images of

ξ in I p̄Hn(X,X − {x};R) as x runs over all points of U is an open subset of Op̄. One can

then check that this collection of subsets of Op̄ generates a topology such that the projection

π : Op̄ → X is a local homeomorphism; see3 [37, Example I.1.11] and, more generally, [37,

Section I.1]. We call Op̄ the R-orientation sheaf on X with perversity p̄.

If π : S → Y is a sheaf over a space Y , then a section of Y over the subset V ⊂ Y is a map

s : V → Y such that πs(y) = y for all y ∈ V . The sections over V constitute an R-module

via the algebraic operations on the sheaf. If Op̄ is the orientation sheaf over the CS set X

and U ⊂ X is an open subset, then an element ξ ∈ I p̄Hn(X,X − Ū ;R) determines a section

sξ of Op̄ by the assignment that takes x ∈ U to the image of ξ in I p̄Hn(X,X − {x};R): It

is immediate that πsξ is the identity on U . Furthermore, by the construction discussed in

the preceding paragraph, the set of points sξ(U) is an open neighborhood of sξ(z) for any z

in U . Suppose we fix z ∈ U . As π is a local homeomorphism, it follows that π restricts to

a homeomorphism from some possibly smaller open neighborhood W ⊂ sξ(U) of sξ(z) onto

π(W ), which is an open neighborhood of z in U . One can check that the restriction of sξ to

π(W ) is the inverse homeomorphism to the restriction of π to W , and from this one deduces

that sξ is continuous on π(W ). But z was arbitrary, so sξ is continuous on U .

Remark 8.1.13. A useful consequence of the local homeomorphism property of the sheaf map

π : S → Y is that if s and t are any two sections of S defined on an open set U ⊂ Y and

if s(y) = t(y) for some y ∈ U , then {z ∈ U | s(z) = t(z)} is an open subset of U ; see [229,

Section II.2.1]. This takes a bit of getting used to for those of us who generally work with

3For the reader either familiar with some sheaf theory or who wants to compare our rough description

here with the details in [37], our sheaf Op̄ is really the sheafification of the presheaf4U → I p̄Hn(X,X −
Ū ;R). The stalk of this presheaf at x ∈ X is lim−→x∈U I

p̄Hn(X,X − Ū ;R), but this module is isomorphic

to I p̄Hn(X,X − {x};R). To see this, recall that we are free to replace this direct limit with one over a

cofinal system of distinguished neighborhoods of x. We can choose such a cofinal sequence of distinguished

neighborhoods, · · · ⊃ Ni ⊃ Ni+1 ⊃ · · · , so that the inclusion-induced maps

I p̄Hn(X,X − N̄i;R)→ I p̄Hn(X,X − N̄i+1;R)→ I p̄Hn(X,X − {x};R)

are all isomorphisms. In fact, if x has a distinguished neighborhood N ∼= Rk × cL then we can choose

a sequence of neighborhoods Ni of the form Bri × csiL with Bri a ball of radius i centered at 0 ∈ Rk
and csiL the subcone [0, si) × L/ ∼ of cL. Then N̄i = B̄ri × c̄siL, and we can choose the ri and si to

be decreasing sequences converging to 0. This gives a cofinal system of neighborhoods of x, identifying x

with (0, v), and, up to excision isomorphisms, each I p̄Hn(X,X − N̄i;R)→ I p̄Hn(X,X − N̄i+1;R) and each

I p̄Hn(X,X − N̄i;R) → I p̄Hn(X,X − {x};R) is an isomorphism by Lemma 6.4.17. So the direct system

I p̄Hn(X,X − N̄i;R) is isomorphic to the constant direct system with module I p̄Hn(X,X −{x};R) for each

index, and consequently the direct limit is isomorphic to I p̄Hn(X,X − {x};R).
4We use the closure Ū here because it will be useful in later arguments for X − Ū to be an open set, but

just to define Op̄ we could have used U → I p̄Hn(X,X − U ;R) instead.
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Hausdorff topologies!

In particular, for our sheaf Op̄ over a CS set X, this has the following consequence: Let

us fix x ∈ X, and suppose that t is a section of Op over some open set containing x. By

definition, t(x) is an element of I p̄Hn(X,X−{x};R). Let ξ ∈ I p̄Sn(X;R) be a chain so that

[ξ] = t(x) ∈ I p̄Hn(X,X−{x};R). Let Wx be a neighborhood of x and W∂ a neighborhood of

|∂ξ| with W1∩W∂ = ∅; such a Wx and W∂ exist by Corollary 2.3.17. Now ξ also represents a

class in I p̄Hn(X,X − W̄x;R) and so an image class in I p̄Hn(X,X −{z};R) for any z ∈ Wx.

By the discussion just above, the assignment z → [ξ] ∈ I p̄Hn(X,X − {z};R) determines a

continuous section sξ of Op̄ over the open set Wx. But by definition sξ(x) = t(x), and so,

by the observation of the preceding paragraph, t and sξ are equal on some neighborhood

of x. This argument shows that for any point x ∈ X and any section t of Op̄ defined in

a neighborhood of x there is a possibly smaller neighborhood Vx of x and a class [ξ] ∈
I p̄Hn(X,X− V̄x;R) such that for all z ∈ Vx the section value t(z) is equal to the image of [ξ]

in I p̄Hn(X,X − {z};R). This fact will be useful below, for example in the proof of Lemma

8.1.14.

Homological theorems

Now, we turn to a version of Lemma 8.1.2 in the stratified case, which will be Lemma

8.1.16, below. The proof of Lemma 8.1.16, which concerns global intersection homology

classes, in particular fundamental classes, will be somewhat intertwined with another lemma,

Lemma 8.1.14, which is concerned with properties of the orientation sheaf and so with local

intersection homology. We will perform an induction on depth that requires Lemma 8.1.16

at depth d−1 to prove Lemma 8.1.14 at depth d, which is needed for Lemma 8.1.16 at depth

d, and so on. Thus, we will state both results together, as well as the theorem to which

they lead, which will be our stratified version of Theorem 8.1.3; then we will move on to the

proofs, followed by some corollaries.

We remark that even though Lemma 8.1.2 has some parts that do not require orientability,

our main interest here is in orientable pseudomanifolds, and so we will make that assumption

throughout in order to avoid making our web of intertwined arguments any more complicated

than it already is. Such an assumption will also be useful in our induction steps. Additionally,

while our construction of fundamental classes will require perversities p̄ with p̄ ≥ 0, we will

also prove some results concerning intersection homology in degrees greater than dim(X)

for arbitrary perversities. Throughout the proofs in this section, we will use q̄ to denote an

arbitrary perversity and p̄ to denote a perversity with p̄ ≥ 0.

Here is our lemma concerning properties of the orientation sheaf Op̄:

Lemma 8.1.14. Let R be a Dedekind domain, and let X be an R-oriented n-dimensional

stratified pseudomanifold. Let p̄ be a perversity with p̄ ≥ 0̄. Then the following statements

hold:

1. For all x ∈ X and all i > n, I q̄Hi(X,X − {x};R) = 0 for any perversity q̄.
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2. Any section defined over X−ΣX of the sheaf Op̄ extends uniquely to a section of Op̄ on

all of X. In particular, there is a unique global section op̄ of the sheaf Op̄ that restricts

to the given R-orientation on X − ΣX , and if a section s of Op̄ is such that s(x) = 0

for all x ∈ X − ΣX , then s(x) = 0 for all x ∈ X.

Definition 8.1.15. We call the section op̄ of Op̄ the orientation section of X with respect

to the perversity p̄.

Now we have our lemma concerning fundamental classes:

Lemma 8.1.16. Let R be a Dedekind domain, and let X be an R-oriented n-dimensional

stratified pseudomanifold. Let p̄ be a perversity with p̄ ≥ 0̄. Let K ⊂ X be a compact subset.

Then:

1. I q̄Hi(X,X −K;R) = 0 for i > n and for any perversity q̄.

2. Given a section s of Op̄ over X, there is a unique class γ ∈ I p̄Hn(X,X −K;R) whose

image in I p̄Hn(X,X − {x};R) is s(x) for any x ∈ K. In particular:

(a) if op̄ is an R-orientation section for X then there is a unique class Γp̄K ∈ I p̄Hn(X,X−
K;R) whose image in I p̄Hn(X,X − {x};R) is op̄(x), for any x ∈ K, and

(b) if γ ∈ I p̄Hn(X,X − K;R) then γ restricts to 0 in I p̄Hn(X,X − {x};R) for all

x ∈ K if and only if γ = 0.

Definition 8.1.17. We call the class ΓK of Lemma 8.1.16 the fundamental class of X over

K with respect to the chosen R-orientation.

These results lead to the following important theorem:

Theorem 8.1.18. Let R be a Dedekind domain, and let X be a compact R-oriented n-

dimensional stratified pseudomanifold with perversity p̄ ≥ 0̄. Then:

1. I q̄Hi(X;R) = 0 for i > n and for any perversity q̄.

2. There is a unique class Γp̄X ∈ I p̄Hn(X;R) whose image in I p̄Hn(X,X − {x};R), for

any x ∈ X, corresponds to the image of the orientation section op̄(x).

3. If {xj}mj=1 is a collection of points of X, one in each regular stratum, then I p̄Hn(X;R) ∼=
⊕jI p̄Hn(X,X − {xj};R) ∼= Rm via the map that takes an element of I p̄Hn(X;R) to

the direct sum of its images in the I p̄Hn(X,X − {xj};R).

Definition 8.1.19. We call the class Γp̄X of Lemma 8.1.16 the fundamental class of X with

respect to the chosen R-orientation and perversity p̄. If p̄ = 0̄, we write simply ΓX and call

ΓX the fundamental class of X with respect to the chosen R-orientation.
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Proof of Theorem 8.1.18, assuming Lemmas 8.1.14 and 8.1.16. The first two statements fol-

low immediately from Lemma 8.1.16 by taking K = X and by using Lemma 8.1.14 to

guarantee the existence of the orientation section op̄.

For the last statement, we know by Proposition 6.3.47 that if {Rj} are the regular strata

of X then I p̄Hn(X;R) ∼= ⊕jI p̄Hn(R̄j;R). Let Γp̄X,j denote the image of Γp̄X in the summand

I p̄Hn(R̄j;R). As Γp̄X,j is supported in R̄j, and as the image of Γp̄X in I p̄Hn(X,X − {xj};R)

is the generator op̄(xj), it follows that the image of Γp̄X,j in I p̄Hn(X,X − {xj};R) is also

op̄(xj), while the image of Γp̄X,j in I p̄Hn(X,X − {xk};R) is 0 for k 6= j. Therefore, the map

I p̄Hn(X;R) → ⊕jI p̄Hn(X,X − {xj};R) that takes an element to the sum of its images in

the I p̄Hn(X,X −{xj};R) is surjective, with Γp̄X,j mapping onto the element of Rm that is a

generator in the jth slot and 0 in the other slots.

For injectivity we observe that, for any ξ ∈ I p̄Hn(X;R) there is a section sξ of Op̄ given

by letting sξ(x) be the image of ξ in I p̄Hn(X,X−{x};R). Suppose the image of some ξ is 0

in each I p̄Hn(X,X −{xj};R) so that sξ(xj) = 0 for each j. As Op̄ is the trivial bundle over

each regular stratum, due to X being R-oriented by assumption, we must have sξ(x) = 0

for all x ∈ X − ΣX . By item (2) of Lemma 8.1.14, the section sξ is thus the 0 section on

all of X. So, by item (2) of Lemma 8.1.16, the class ξ must be 0 in I p̄Hn(X;R). This

demonstrates that our map I p̄Hn(X;R) → ⊕jI p̄Hn(X,X − {xj};R) is injective and so an

isomorphism.

We now turn to proving the two lemmas, Lemma 8.1.14 and Lemma 8.1.16. As noted

above, the proofs are inductively intertwined. They also utilize that the lemmas, at depth

d, together prove Theorem 8.1.18 at depth d. To start the induction, we observe that both

lemmas and the theorem are true for stratified pseudomanifolds of depth 0, i.e. manifolds,

by [125, Theorem 3.26 and Lemma 3.27]. We now turn to showing that Lemma 8.1.14 holds

for an X of depth d > 0 under the assumption that Lemmas 8.1.14 and 8.1.16 and Theorem

8.1.18 hold on all stratified pseudomanifolds of depth < d.

Proof of Lemma 8.1.14, given the induction assumptions. We begin with the first statement

of the proposition, noting that it is immediate when x ∈ X − ΣX , as, in this case, x has a

Euclidean neighborhood. So, by excision, I q̄Hi(X,X − {x};R) ∼= I q̄Hi(Rn,Rn − {x};R) ∼=
Hi(Rn,Rn − {x};R); of course, this is isomorphic to R if i = n and 0 otherwise.

Next, suppose x has a distinguished neighborhood of the form Rk × cL with L 6= ∅ a

compact stratified pseudomanifold of dimension n−k−1. By excision, I q̄Hi(X,X−{x};R) ∼=
I q̄Hi(Rk × cL,Rk × cL− {x};R). But this pair is homeomorphic to the product of the two

pairs of spaces (Rk,Rk − {0}) and (cL, cL − {v}), using the convention (A,B) × (C,D) =

(A× C, (A×D) ∪ (B × C)). So, by the Künneth theorem with one term being a manifold

(Theorem 6.3.19), we have

I q̄Hi(Rk × cL,Rk × cL− {x};R) ∼= Hk(Rk,Rk − {0};R)⊗ I q̄Hi−k(cL, cL− {v};R)
∼= I q̄Hi−k(cL, cL− {v};R).

We now apply the cone formula (Corollary 6.2.15), by which I q̄Hi−k(cL, cL − {v};R) ∼=
I q̄Hi−k−1(L;R) if i− k > n− k − q̄({v})− 1, i.e. if i > n− q̄({v})− 1, and is 0 otherwise.

496



If L is R-oriented, or even R-orientable, I q̄Hj(L;R) = 0 for j > n−k−1 by the induction

assumption and Theorem 8.1.18. As i > n implies i− k − 1 > n− k − 1, this would imply

the first statement of the lemma, independent of which case of the cone formula applies for

our particular choice of j. To see that L must be R-orientable if X is, we note that any

orientation on X−ΣX restricts to an R-orientation on the union of regular strata of Rk×cL.

But, by the local structure for CS sets, this union of regular strata must be isomorphic to

Rk × (0, 1)× (L−ΣL). We now invoke the fact that a product manifold is orientable if and

only if all its manifold factors are5. So L − ΣL is R-orientable and thus L is R-orientable,

which is enough to draw the necessary conclusion from Theorem 8.1.18. This completes the

proof of the first statement of the lemma.

We turn to the second statement of the lemma. For this case, we care about i = n,

and we are now in the setting where we have assumed that p̄ ≥ 0. It is thus true that

n > n− p̄({v})− 1, and therefore, I p̄Hn(X,X − {x};R) ∼= I p̄Hn−k−1(L;R) in this case.

The second sentence of the second statement of the lemma follows directly from the first

sentence and from the fact that every sheaf has a zero section [37, page 4]. We must show

that any section s of Op̄ over X − ΣX extends uniquely to all of X. So, let s be such a

section, and let x ∈ ΣX . We must define s(x) for each such x and show that, overall, we

obtain a well-defined global section. We choose a distinguished neighborhood N of x, which

we identify with Rk× cL via a filtered homeomorphism. We can assume that x ∈ N has the

coordinates (0, v) ∈ Rk × cL.

We must assign to x an element of I p̄Hn(X,X − {x};R) ∼= I p̄Hn(Rk × cL,Rk × cL −
{(0, v)};R). Within N , we have a smaller compact neighborhood of x of the form B̄r × c̄s,
where B̄r is closed Euclidean ball of radius r in Rk and where c̄sL = [0, s] × L/ ∼, for

0 < s < 1, is a smaller closed cone on L within cL = [0, 1)×L/ ∼. Let B̄r × c̄sL be denoted

by N̄ ′. We can also letN ′ = Br×csL be the interior of N̄ ′. Suppose that {Lα} is the collection

of the regular strata of L, which is finite as L is compact, and that Rα = Rk × (0, 1) × Lα
are the corresponding regular strata of N . For each α, let xα be some point in Rα ∩ N̄ ′. We

claim that there are isomorphisms

I p̄Hn(X,X − {x};R)
∼=←− I p̄Hn(X,X − N̄ ′;R)

∼=−→ ⊕αI p̄Hn(X,X − {xα};R) ∼= Rm. (8.1)

5This is the first exercise in Section VI.7 of Bredon’s [38]. Here’s a sketch of the proof: Suppose Mm1
1 ×

Mm2
2 is a product of manifolds. Letting Bi be a local Euclidean ball in Mi, the local isomorphisms

Hm1(M1,M1 −B1;R)⊗Hm2(M2,M2 −B2;R)
×−→ Hm1+m2(M1 ×M2,M1 ×M2 −B1 ×B2;R)

induce an isomorphism of bundles (locally constant sheaves) O1⊗̂O2 → O×, where Oi is the orientation

bundle of Mi and O× is the orientation bundle of the product. The “total tensor product” O1⊗̂O2 has fiber

O1,x1 ⊗O2,x2 at (x1, x2) ∈M1 ×M2; it can be formally defined as the tensor product over M1 ×M2 of the

pullback bundles π∗1O1 ⊗ π∗2O2, where πi : M1 ×M2 → Mi is the projection. If M1 ×M2 is R-orientable,

O× is the constant bundle and has a global orientation section o×. Consider now the subspace {x1} ×M2

for some fixed x1 ∈M1. The restriction to this subspace of O1⊗̂O2 has the constant bundle with fiber R in

the first factor, and so the restriction is isomorphic to O2, living on a copy of M2. But, as O× was constant,

this restricted bundle is also constant, so O2 is constant. Therefore, M2 is R-orientable. The argument for

M1 is identical. Conversely, if oi is a global R-orientation section in Oi, then o1⊗̂o2, which takes values

o1(x1)⊗ o2(x2) at (x1, x2), is an R-orientation section over M1 ×M2.
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Here, the map to the left is induced by inclusion, and the map to the right is the direct sum

of maps induced by inclusions. The claim will be sufficiently useful later that we separate

it out as a lemma in its own right, Lemma 8.1.20, which we prove just below. For now, we

finish the proof of Lemma 8.1.14 assuming this claim.

By (8.1), there is a unique ξ ∈ I p̄Hn(X,X − N̄ ′;R) that restricts to the given s(xα)

in each I p̄Hn(X,X − {xα};R). In fact, as we vary through all z ∈ N ′, the image of ξ in

I p̄Hn(X,X −{z};R), z ∈ N ′, determines a section sξ of Op̄ over N ′. As Op̄ is constant over

the regular strata of X and as there is a representative xα in each regular stratum of N ′,

the section sξ must agree with s at all regular stratum points of N ′. Thus sξ extends s to a

section over (X − ΣX) ∪N ′. Let us show this is a unique extension. Suppose t is any other

section defined on a neighborhood of x that extends s over a neighborhood of x. By Remark

8.1.13, there must be some open neighborhood V of x and some ζ ∈ I p̄Hn(X,X− V̄ ;R) such

that, for each z ∈ V , the section value t(z) is the image of ζ in I p̄Hn(X,X − {z};R). But

now let N1 be an even smaller distinguished neighborhood of x inside V ∩ N ′ and with its

own smaller N̄ ′1. Then ξ and ζ both map to elements of I p̄Hn(X,X − N̄ ′1;R), and they each

have the same images in I p̄Hn(X,X−{z};R) for all z in regular strata of N ′1 by assumption.

Therefore, applying Lemma 8.1.20 (or, equivalently, equation (8.1)) again, this time utilizing

N1 and N ′1 as the neighborhoods in the lemma, we see that ξ and ζ must represent the same

element of I p̄Hn(X,X − {x};R). Therefore, sξ(x) = t(x). This shows that there is only one

possible value of Op̄x = I p̄Hn(X,X − {x};R) that extends s from the regular strata to some

neighborhood of x.

Finally, we must show that we obtain a global section that extends s to all of X. We

have seen that for every x ∈ X there is a section sx defined on a neighborhood Ux of x and

such that sx agrees with s at all points in regular strata of Ux. If Ux and Uy are two such

neighborhoods, then the uniqueness of the extensions, proven in the preceding paragraph,

implies that sx = sy on the overlap Ux ∩ Uy: for any point z ∈ Ux ∩ Uy, the sections sx and

sy are both defined in neighborhoods of z and, by assumption, extend s from the regular

strata to a neighborhood of z. So, by the result of the preceding paragraph, sx(z) = sy(z).

It is now another fundamental property of sheaf theory that, given such local sections that

agree on overlaps, they can be patched together to provide a global section; see [37, Section

I.1]. In fact, this property is sometimes used to define sheaves.

As we have seen, the following lemma was needed in the proof of Lemma 8.1.14, but we

will use it several more times in this section. For Lemma 8.1.20, we will use a slightly more

general N̄ ′, which will be needed below.

Lemma 8.1.20. Let R be a Dedekind domain, and let X be an R-oriented n-dimensional

stratified pseudomanifold. Suppose x ∈ ΣX has a distinguished neighborhood N ∼= Rk × cL.

Suppose x is contained in a compact subset of Rk× cL of the form N̄ ′ = C× c̄sL ⊂ Rk× cL,

where C is a compact convex subset of Rk and c̄sL = [0, s]×L/ ∼, for 0 < s < 1, is a smaller

closed cone on L within cL = [0, 1) × L/ ∼. Let {Rα}mα=1 denote the regular strata of N̄ ′,

which are bijective with the regular strata of L, and let {xα}mα=1 be any collection of points

with xα ∈ Rα. Then for any perversity p̄ with p̄ ≥ 0̄ the inclusion maps induce isomorphisms

I p̄Hn(X,X − {x};R)
∼=←− I p̄Hn(X,X − N̄ ′;R)

∼=−→ ⊕αI p̄Hn(X,X − {xα};R) ∼= Rm.
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Therefore, if ξ ∈ I p̄Hn(X,X − N̄ ′;R) and sξ is the section of Op̄ over N̄ ′ such that sξ(z)

is the image of ξ in I p̄Hn(X,X − {z};R) for any z ∈ N̄ ′, then the value sξ(x) is completely

determined by the collection of values {sξ(xα)}, and the value sξ(x) determines the values

{sξ(xα)} for any collection of xα satisfying the hypotheses.

Proof. For the proof, we continue to assume we are within the overall inductive scenario

of this section, so that Lemmas 8.1.14 and 8.1.16 and Theorem 8.1.18 are all available for

spaces of depth less than that of X, which we assume has depth d. We observe quickly that

the “therefore” statement of this lemma follows directly from the existence of the stated

isomorphisms of the lemma. Further, before getting into the details, we remind the reader

that when we speak of the regular strata of N̄ ′ we mean its intersections with the regular

strata of N . In this case, the regular strata of N̄ ′ have the form C × (0, s]× Lα, where the

Lα are the regular strata of L.

For the map to the left in the diagram, by excision it is isomorphic to the map

I p̄Hn(Rk × cL,Rk × cL− N̄ ;R)→ I p̄Hn(Rk × cL,Rk × cL− {x};R)

induced by inclusion. Without loss of generality, we can write x = (0, v), and so this

intersection homology map can be written in terms of the inclusion map from the product of

pairs6 (Rk,Rk −C)× (cL, cL− c̄sL) to the product of pairs (Rk,Rk −{0})× (cL, cL−{v}).
The intersection homology maps is thus an isomorphism by Lemma 6.4.17.

For the maps to the right in the claim of the lemma, which is the direct sum of the maps

induced by the inclusions, we consider the following diagram

I p̄Hn−k−1(L;R) � ∼=
⊕I p̄Hn−k−1(L̄α;R)

φ
∼=
- ⊕I p̄Hn(Rk × cL̄α,Rk × cL̄α − {xα};R)

I p̄Hn(N,N − N̄ ′;R)

∼=

?
- ⊕αI p̄Hn(N,N − {xα};R).

∼=

?

(8.2)

By excisions, the bottom map is isomorphic to the map

I p̄Hn(X,X − N̄ ′;R)
∼=−→ ⊕αI p̄Hn(X,X − {xα};R)

of the claim, so it suffices to show that this diagram commutes and that the other maps of

the diagram are all isomorphisms.

We let the lefthand vertical map be the composition of the inverse of the isomorphism

I p̄Hn−k(cL, cL−c̄sL;R)
∼=−→ I p̄Hn−k(cL, cL−{v};R)

∂∗−→ I p̄Hn−k−1(cL−{v};R) ∼= I p̄Hn−k−1(L;R),

which is an isomorphism from the relative cone formula (Corollary 6.2.15 and using that

p̄ ≥ 0) and stratified homotopy invariance, with the Künneth isomorphism

6Recall that (A,B)× (E,F ) means (A× E, (A× F ) ∪ (B × E)).
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I p̄Hn−k(cL, cL− c̄sL;R) ∼= R⊗ I p̄Hn−k(cL, cL− c̄sL;R)
∼= Hk(Rk,Rk − C;R)⊗ I p̄Hn−k(cL, cL− c̄sL;R)
∼=−→ I p̄Hn−k(Rk × cL;Rk × cL− N̄ ′;R).

Tracing through these isomorphisms, the lefthand vertical map thus takes an element ζ ∈
I p̄Hn−k(L;R) to an element of

I p̄Hn(N,N − N̄ ′;R) ∼= I p̄Hn(Rk × cL,Rk × cL− C × c̄sL;R)

that can be represented by the product chain η ×Z, where η is a generator of Hk(Rk,Rk −
C;R) ∼= R and where Z is some allowable chain in cL whose boundary is a copy of ζ that we

can suppose lives in a copy of L at the coordinates {0}×{s′}×L ⊂ Rk× cL with s < s′ < 1.

For convenience below, we will now construct an explicit Z as described in the preceding

paragraph. For this, let us write each xα as xα = (yα, tα, zα) with yα ∈ Rk, tα ∈ (0, 1), and

zα ∈ Lα. So this provides coordinates for xα in the distinguished neighborhood N ∼= Rk×cL.

Let s′ be chosen as above with s < s′ < 1, and let s′′ be such that 0 < s′′ < min{tα}. Then

for all α we have a 1-simplex generator of H1((0, 1), (0, 1) − {tα};R) given by the linear

homeomorphism e : [0, 1]→ [s′′, s′] ⊂ (0, 1) with e(0) = s′′ and e(1) = s′. For a chain ζ in L,

let ζt denote ζ thought of as living in a copy of L at cone coordinate t in cL. We propose to

take Z = c̄ζs′′+e×ζ, where c̄ζs′′ is the singular cone on ζs′′ (see the construction of Example

3.4.7) and where e × ζ is the cross product using that (0, 1) × L is filtered homeomorphic

to the subspace cL − {v} of cL. Then ∂(c̄ζs′′ + e × ζ) = ζs′′ + ζs′ − ζs′′ = ζs′ , as desired.

Admittedly, c̄ζs′′ + e × ζ is essentially the same chain as c̄ζs′ , but it will be useful in what

follows to have a part of this chain with a definitive product structure.

Returning now to Diagram (8.2), we let the righthand vertical map be a direct sum of

excision isomorphisms, excising Rk × (c(L− L̄α)−{v}), whose closure is in the complement

of {xα}. So this map is an isomorphism. The map to the left in the diagram, also induced

by inclusions, is an isomorphism by Proposition 6.3.47. For the map labeled φ, if ζα ∈
I p̄Hn−k−1(L̄α;R), and if we continue to think of L as embedded in N at the coordinates

{0} × {s′} × L ⊂ Rk × cL with s < s′ < 1, then we let this map take ζα to η × Zα ∈
I p̄Hn(Rk × cL̄α,Rk × cL̄α − {xα};R), where Zα is defined analogously to the earlier Z and

η is a generator of Hk(Rk,Rk − C;R), also as above. We observe that, for support reasons,

the chain η×Zα is automatically 0 in each I p̄Hn(Rk× cL̄β,Rk× cL̄β−{xβ};R) with β 6= α.

With this definition, the reader can check that it follows from our constructions that the

diagram commutes. What remains then is to show that φ is an isomorphism.

Consider next the diagram
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⊕I p̄Hn−k−1(L̄α;R)
φ

- ⊕I p̄Hn(Rk × cL̄α,Rk × cL̄α − {xα};R)

⊕I p̄Hn−k−1(L̄α, L̄α − {zα};R)

∼=

? ∼=- ⊕I p̄Hn(Rk × (0, 1)× L̄α,Rk × (0, 1)× L̄α − {xα};R)

∼=
6

The lefthand vertical map, induced by inclusions, is an isomorphism as each L̄α is a

stratified pseudomanifold (by Lemma 6.3.45) with only one regular stratum and of depth

< d, so Theorem 8.1.18 applies via our induction assumptions. The righthand vertical map

is a direct sum of excision isomorphisms, in each case excising Rk × {v}. The bottom map

comes from the Künneth theorem (Theorem 6.3.20); in particular, it is the direct sum of the

isomorphisms

I p̄Hn−k−1(L̄α, L̄α − {zα};R)
∼= R⊗ I p̄Hn−k−1(L̄α, L̄α − {zα};R)
∼= Hk(Rk,Rk − {yα};R)⊗H1((0, 1), (0, 1)− {tα};R)⊗ I p̄Hn−k−1(L̄α, L̄α − {zα};R)
∼= I p̄Hn(Rk × (0, 1)× L̄α,Rk × (0, 1)× L̄α − {xα};R)

defined so that if ζα ∈ I p̄Hn−k−1(L̄α, L̄α − {zα};R) then ζα goes to η × e× ζα, where η and

e are as above. It remains to see that this last diagram commutes, which will imply that

φ is an isomorphism. But, by our constructions, each φ(ζα) is represented by η × Zα =

η × (c̄ζαs′′ + e × ζα), which is equal to η × e × ζα in I p̄Hn(Rk × cL̄α,Rk × cL̄α − {xα};R),

as c̄ζαs′′ is supported in Rk × cL̄α − {xα}. This proves the commutativity and so finishes the

proof of the lemma.

Remark 8.1.21. The computations in the proof of Lemma 8.1.20 demonstrate one of the prob-

lems if we allow p̄(S) < 0 for some singular stratum S. In particular, if x ∈ S and S has di-

mension k, the computations in the proof shows that I p̄Hi(X,X−{x};R) ∼= I p̄Hi−k(cL, cL−
{v};R), which, by the cone formula (Corollary 6.2.15) is 0 if i− k ≤ n− k− p̄({v})− 1, i.e.

if i ≤ n− p̄({v})− 1. But if p̄({v}) < 0, this scenario will include i = n. This still results in

a unique extension of sections of Op̄ to S, as any section will be forced to be 0 at each point

on S. However, the isomorphism on the right in Lemma 8.1.20 will no longer hold, and this

would cause some of the arguments we will see in the proof of Lemma 8.1.16, below, to fall

apart.

Proof of Lemma 8.1.16, given the induction assumptions. We have already shown that Lemma

8.1.20 holds at depth d under the assumptions that Lemma 8.1.20, Lemma 8.1.16, and The-

orem 8.1.18 all hold at depth d− 1. So, we may use Lemma 8.1.20 at depth d and the other

two results at depth d− 1 in the following argument.

We also note that parts (2a) and (2b) of the lemma’s statement follow immediately from

the main assertion of part (2). For the rest of the proof, we will broadly follow the pattern

of the proof of [125, Lemma 3.27], which consists of a few separate steps.
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Mayer-Vietoris reduction step. As a first step, suppose K,L are compact subsets of X

such that the claims of Lemma 8.1.16 hold with respect to K, L, and K ∩ L. We will show

that they then hold for K∪L. Consider the following portion of the long exact Mayer-Vietoris

sequence

I q̄Hn+1(X,X − (K ∩ L);R)→ I q̄Hn(X,X − (K ∪ L);R)

Φ−→ I q̄Hn(X,X −K;R)⊕ I q̄Hn(X,X − L;R)
Ψ−→ I q̄Hn(X,X − (K ∩ L);R).

Given the assumptions on K, L, and K ∩ L, we have I q̄Hi(X,X − K;R) = I q̄Hi(X,X −
L;R) = I q̄Hi(X,X − (K ∩ L);R) = 0 for i > n. It thus follows from the portion of the

sequence further to the left that I q̄Hi(X,X − (K ∪ L);R) = 0 for i > n. We also have that

the map labeled Φ is injective.

Continuing to assume the lemma on K, L, and K ∩ L and now assuming p̄ ≥ 0 (and

replacing q̄ with p̄ in our Mayer-Vietoris sequence), suppose that ξ ∈ I p̄Hn(X,X−(K∪L);R)

maps to 0 in I p̄Hn(X,X − {x};R) for all x ∈ K ∪ L. Then the image of ξ under Φ in the

summand I p̄Hn(X,X −K;R) must map to 0 in each I p̄Hn(X,X − {x};R) for x ∈ K, and

analogously for the L summand. By the assumption, this implies that Φ(ξ) = 0, so ξ = 0.

This implies that any two elements ξ, ξ′ ∈ I p̄Hn(X,X − (K ∪ L);R) that map to the same

section of Op̄ over K ∪ L must be equal, as ξ − ξ′ = 0 by this argument. This provides the

uniqueness part of the second statement of the lemma for K ∪ L.

Finally, suppose we are given a section s of Op̄, and suppose γK ∈ I p̄Hn(X,X −K;R)

and γL ∈ I p̄Hn(X,X − L;R) restrict to this section at points of K or L, respectively. Then

Ψ(γK ,−γL), which is represented by γK − γL, restricts to 0 ∈ I p̄Hn(X,X −{x};R) for each

x ∈ K∩L. But, again assuming the lemma holds for K∩L, this means that Ψ(γK ,−γL) = 0,

and so from the exact sequence there exists a γK∪L ∈ I p̄Hn(X,X − (K ∪ L);R), with

Φ(γK∪L) = (γK ,−γL). As Φ(ξ) is represented by (ξ,−ξ) in general, we see that γK∪L must

restrict to the values s(x) at each I p̄Hn(X,X − {x};R) for x ∈ K ∪ L.

Distinguished neighborhood reduction step. Suppose K is any compact subset of X.

For each x ∈ X there is a distinguished neighborhood Nx of x filtered homeomorphic to

Rk × cL, with k and L depending on x. Within this neighborhood, x has smaller compact

neighborhoods, say of the form N̄ ′x
∼= B̄r × c̄sL, where B̄r is a closed ball in Rk and c̄sL is

the compact subcone of cL up to radius s; let N ′x
∼= Br × csL be the interior of N̄ ′x. As K

is compact, it can be covered by a finite number of the N ′x, and therefore K is the union

of a finite number of the compact spaces N̄ ′x ∩K, with each of these compact spaces being

contained in the corresponding distinguished neighborhood Nx.

Suppose we can prove the lemma for any such compact set that is contained in some

distinguished neighborhood. For the purposes of this step, let us call such compact sets dis-

tinguished compact sets. Then, we claim that the lemma will hold for any finite union of such

distinguished compact sets by induction and the Mayer-Vietoris discussion above, and hence

it will hold for K. To verify the claim, let {Jα} be any collection of distinguished compact

sets. We have assumed the lemma holds for each Jα. Suppose, as induction hypothesis, that

it holds for any union of ` − 1 such sets, and let {J1, . . . , J`} be a collection of ` such sets,

502



` > 1. Then J`∩ (∪`−1
i=1Ji) = ∪`−1

i=1(J`∩Ji). As each J`∩Ji is a distinguished compact set and

as ∪`−1
i=1(J`∩Ji) is a union of `−1 such sets, the lemma holds for J`∩ (∪`−1

i=1) by the induction

hypothesis. It also holds for J` and ∪`−1
i=1Ji by our assumptions, so it holds for ∪`i=1Ji by the

Mayer-Vietoris reduction step.

Therefore, as we have shown that K is the union of finitely may distinguished compact

sets, the lemma will hold for K, provided that we show that the lemma holds for any single

distinguished compact set.

Proof for PM-convex sets. We have shown that it now suffices to prove the lemma for

any distinguished compact set in X, where a distinguished compact set is a compact set

contained within a distinguished neighborhood of some point in x. If K is such a distin-

guished compact set in X contained in the distinguished neighborhood N , then we have

I p̄H∗(X,X − K;R) ∼= I p̄H∗(N,N − K;R), and both the orientation bundle Op̄ of X and

the hypothesized section s restrict to an orientation bundle and section over N . As the

requirements of the lemma for K only concern the values of s at points in K, it therefore

suffices to prove the lemma with N in place of X. In the remaining steps, we are therefore

free to assume that X = Rk × cL. We can also assume that L 6= ∅, otherwise we know the

claimed result holds from the manifold case [125].

Following [100], we next prove the lemma for the case where K is a PM-convex set in

X = Rk× cL. These are defined to be subsets K of Rk× cL of either of the following forms:

1. K = C× c̄sL, where C ⊂ Rk is a compact convex set and, as usual, c̄sL = [0, s]×L/ ∼
is a closed subcone of cL, or

2. K = C × [r, s]×D, where C ⊂ Rk is a compact convex set, [r, s] is an interval “along

the cone line” with 0 < r ≤ s < 1, and D ⊂ L is a compact subset.

As the set-theoretic intersection of products is the product of the intersections and as the

intersection of two compact convex subsets of Rk is a compact convex subset, we see that

the intersection of two PM-convex sets is also a PM-convex set. We also observe that every

point in X has a PM-convex neighborhood. In fact, by some basic point-set topology, given

any x ∈ U ⊂ X with U open, there is a PM convex neighborhood of x contained in U .

We now prove Lemma 8.1.16 in the case where K is a PM-convex set.

First, suppose that K is of the second type, K = C × [r, s] × D. Then K does not

intersect Rk × {v} ⊂ Rk × cL = X, so, by excision,

I q̄H∗(X,X −K;R) ∼= I q̄H∗(X − (Rk × {v}), X − (K ∪ (Rk × {v}));R).

As X − (Rk × {v}) must have depth < d, where d continues to denote the depth of X, the

lemma must hold on X − (Rk × {v}) by our induction assumptions. So, for i > n,

I q̄Hi(X,X −K;R) ∼= I q̄Hi(X − (Rk × {v}), X − (K ∪ (Rk × {v}));R) = 0.

Also, for p̄ ≥ 0, any section s of Op̄ over X restricts to a section over X − (Rk × {v}). By

induction, there is an element of I p̄Hn(X − (Rk × {v}), X − (K ∪ (Rk × {v}));R) that is
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compatible with this section over K, and the excision isomorphism therefore yields such an

element of I p̄Hn(X,X −K;R).

Next, suppose K is of the first type, K = C × c̄sL. Notice that this is precisely the form

of the sets N̄ ′ of Lemma 8.1.20. If y ∈ C, then I q̄Hi(X,X−K;R) ∼= I q̄Hi(X,X−{(y, v)};R)

by the proof that the leftward map in Lemma 8.1.20 is an isomorphism. But we already

know Lemma 8.1.14 and the induction assumptions that I q̄Hi(X,X − {(y, v)};R) = 0 for

i > n.

Now let s be a section of Op̄ on X. For i = n and p̄ ≥ 0̄, we know by Lemma 8.1.20 that

if we are given a collection of points {xα} consisting of one point in each regular stratum of

N̄ ′ then there is a unique element ξ ∈ I p̄Hn(X,X − N̄ ′;R) whose image at each xα is s(xα).

We must verify that the image of ξ in I p̄Hn(X,X − {z};R) is s(z) for all z ∈ N̄ ′; this will

provide the unique element of I p̄Hn(X,X − K;R) promised by the lemma. For this, it is

simpler to work with a slightly larger open set that contains N̄ ′. So let Br be an open ball

in Rk containing C, let s < s′′ < 1, let N ′′ = Br × cs′′L, and let N̄ ′′ = B̄r × c̄s′′L. Then

N̄ ′ ⊂ N ′′, and the inclusion I p̄Hn(X,X − N̄ ′′;R)→ I p̄Hn(X,X − N̄ ′;R) is an isomorphism

by two applications of the proof that the leftward map in Lemma 8.1.20 is an isomorphism.

Let ξ′′ ∈ I p̄Hn(X,X − N̄ ′′;R) be the unique element that maps to ξ ∈ I p̄Hn(X,X − N̄ ′;R).

Then ξ′′ determines a section sξ′′ over N ′′, and again sξ′′(xα) = s(xα); in fact, sξ′′(z) must

agree with the image of ξ in I p̄Hn(X,X − {z};R) for each z ∈ N̄ ′. As N ′′ is a stratified

pseudomanifold with orientation sheaf obtained by restricting Op̄ from X, the restriction of s

to N ′′ and the section sξ′′ must each be constant over each regular stratum of N ′′. Thus, the

two sections must agree at all points of regular strata of N ′′, as they agree over one point in

each regular stratum (each regular stratum Br×(0, s′′)×Lα of N ′′ contains a regular stratum

C × (0, s] × Lα of N̄ ′, the Lα being the regular strata of L, and so each regular stratum of

N ′′ contains one of the xα). But, again using that N ′′ is a stratified pseudomanifold with

orientation bundle restricted from that on X, Lemma 8.1.14 states that the restriction of s

over the regular strata extends uniquely to a section over all of N ′′. As sξ′′ and the restriction

of s to N ′′ are both defined on all of N ′′ and are equal on the regular strata, this uniqueness

means that s(z) = sξ′′(z) for all z ∈ N ′′. Thus, the image of ξ′′ in I p̄Hn(X,X − {z};R) is

s(z) for all z ∈ N ′′, and so the image of ξ must then be s(z) for each z ∈ N̄ ′, as desired.

Proof for arbitrary K ⊂ Rk × cL. Finally, suppose K ⊂ X = Rk × cL is an arbitrary

compact set. We will first verify the second statement of the lemma.

Let s be a section of Op̄ on X. Any compact K must be contained in some PM-convex

set, say Q. Let γQ ∈ I p̄Hn(X,X −Q;R) be the unique element guaranteed by the previous

step such that the image of γQ in I p̄Hn(X,X − {x};R) is s(x) for each x ∈ Q. Then the

image γK ∈ I p̄Hn(X,X−K;R) of γQ must have image s(x) ∈ I p̄Hn(X,X−{x};R) for each

x ∈ K. We must show that γK is the unique such element of I p̄Hn(X,X −K;R).

Suppose γ′K ∈ I p̄Hn(X,X − K;R) also has image s(x) ∈ I p̄Hn(X,X − {x};R) for

each x ∈ K. We will show that γK − γ′K = 0. Let ξ be a relative cycle representing

γK − γ′K ∈ I p̄Hn(X,X −K;R). Let |∂ξ| be the support of ∂ξ. Then |∂ξ| ∩K = ∅, and ξ

determines a section sξ of Op̄ over U = X−|∂ξ| that must be 0 at each x ∈ K. Now, choose

any x ∈ K. By Remark 8.1.13, as sξ(x) = 0, the section sξ must be identically 0 in an open
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neighborhood Vx of x, and we may suppose Vx ⊂ U . Let Āx be a PM-convex neighborhood

of x in Vx, and let Ax be the interior of Āx. As we let x run through all the elements of K,

the open subsets Ax cover K. Since K is compact, there is a finite subcollection {Axj}mj=1

that covers K, and the corresponding union P = ∪mj=1Āxj is a compact subset of U that

contains K. By construction, the image of ξ in I p̄Hn(X,X − {z};R) is 0 for each z ∈ P ; in

other words, the images of ξ agree with the zero section of Op̄ over P . But P is a finite union

of PM-convex sets, and we have proven the lemma for PM-convex sets. So, by the Mayer-

Vietoris step and the induction argument in the distinguished neighborhood reduction step,

the lemma holds for P . Therefore, 0 ∈ I p̄Hn(X,X−P ;R) is the unique element that agrees

with the zero section at each point of P , and so ξ = 0 ∈ I p̄Hn(X,X − P ;R). But then ξ

must also equal 0 under the inclusion-induced composition

I p̄Hn(X,X − U ;R)→ I p̄Hn(X,X − P ;R)→ I p̄Hn(X,X −K;R),

which is what we needed to show.

Lastly, we need to see that I q̄Hi(X,X − K;R) = 0 for i > n and any q̄. Suppose

ξ ∈ I q̄Hi(X,X−K;R) for i > n. Once again, let U = X−|∂ξ|, and, for each x ∈ K, let Āx be

a PM convex neighborhood of x in U , although this time we impose no additional conditions

on Āx. By the same argument as in the preceding paragraph, there is a union P of a finite

number of the Āx with K ⊂ P . But now, for each Āx we have I q̄Hi(X,X − Āx;R) = 0,

because we have already proven Lemma 8.1.16 for PM-convex sets. Also once again, the

Mayer-Vietoris reduction step, together with the induction argument in the distinguished

neighborhood reduction step, now shows that I q̄Hi(X,X−P ;R) = 0. So ξ must represent 0

in I q̄Hi(X,X −P ;R), and so also 0 under the inclusion-induced map I q̄Hn(X,X −P ;R)→
I q̄Hn(X,X −K;R). But ξ was an arbitrary element of I q̄Hi(X,X −K;R), so I q̄Hi(X,X −
K;R) = 0.

So, just to catch up, we have now seen that assuming Lemma 8.1.14, Lemma 8.1.16, and

Theorem 8.1.18 for depths < d implies both lemmas and the theorem for depth d. So, by

induction, our proof of these results is complete.

Useful corollaries

In the second statement of Lemma 8.1.16, the hypothesis calls for a section s of Op̄ defined on

all of X. However, now that we have proven the lemma we can provide a slight strengthening

that only requires s to be defined on a neighborhood of the compact set K. This observation

will be useful in the proof of Proposition 8.1.25, below.

Corollary 8.1.22. Let R be a Dedekind domain, and let X be an R-oriented n-dimensional

stratified pseudomanifold. Let p̄ be a perversity with p̄ ≥ 0̄. Let K ⊂ X be a compact

subset. Then given a section s of Op̄ defined over a neighborhood of K there is a unique

class γ ∈ I p̄Hn(X,X −K;R) whose image in I p̄Hn(X,X − {x};R) is s(x) for any x ∈ K.

Proof. Let U ⊂ X be an open subset containing K and on which s is defined. As an

open subset of an R-oriented stratified pseudomanifold, the space U is itself an R-oriented
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stratified pseudomanifold. We notice via the excision isomorphisms I p̄Hn(X,X −{x};R) ∼=
I p̄Hn(U,U − {x};R) for x ∈ U that the restriction Op̄|U of Op̄ to U is isomorphic7 to the

orientation sheaf for U . So s determines a global section of the orientation sheaf over U (which

we will also just call s) and thus by Lemma 8.1.16 a unique class γU ∈ I p̄Hn(U,U −K;R)

whose image in I p̄Hn(U,U −{x};R) is s(x) for any x ∈ K. But now we have a commutative

diagram of excisions

I p̄Hn(U,U −K;R)
∼=- I p̄Hn(X,X −K;R)

I p̄Hn(U,U − {x};R)
? ∼=- I p̄Hn(X,X − {x};R),

?

showing that the image of γU in I p̄Hn(X,X − {x};R) also maps to s(x) for each x ∈ K.

This image is the desired γ. Furthermore, the class γ is unique, as we see that if γ′ ∈
I p̄Hn(X,X −K;R) maps to s(x) for each x ∈ K then the image of γ′ in I p̄Hn(U,U −K;R)

has the same property. But by the uniqueness of Lemma 8.1.16, the only such class in

I p̄Hn(U,U −K;R) is γU .

Here is one more corollary, concerning the structure of fundamental classes at singular

points. It will be used in the proof of the Poincaré Duality Theorem (Theorem 8.2.4).

Corollary 8.1.23. Let R be a Dedekind domain, and let L be an n − k − 1 dimensional

compact R-oriented stratified pseudomanifold with fundamental class ΓL ∈ I 0̄Hn−k−1(L;R).

Giving Rk and (0, 1) their standard orientations, let Rk × cL be oriented by the product

orientation on Rk × cL − ΣRk×cL ∼= Rk × (0, 1) × (L − ΣL). Let η ∈ H0(Rk,Rk − {0};R)

be the generator consistent with the orientation of Rk. Let l : L ↪→ cL be the inclusion of L

at a fixed cone coordinate, and let c̄l(ΓL) be the singular cone8 on ΓL. Then η × c̄l(ΓL) ∈
7Technically, this is not enough to show that these orientation sheaves are isomorphic, but for any open

sets W ′ ⊂W ⊂ U we have a commutative diagram

I p̄Hn(U,U − W̄ ;R) - I p̄Hn(X,X − W̄ ;R)

I p̄Hn(U,U − W̄ ′;R)
?

- I p̄Hn(X,X − W̄ ′;R),
?

and the horizontal maps are excision isomorphisms whenever W̄ ⊂ U . This is sufficient by some elementary

sheaf theory. In particular, this says we have a map of presheaves over U that induces a map of sheaves

between the orientation sheaf over U and the restriction to U of the orientation sheaf over X; furthermore,

the sheaf map is an isomorphism, as every point x ∈ U has neighborhoods whose closures are contained in

U (using that X is locally compact by Lemma 2.3.15) and so the maps I p̄Hn(U,U − W̄ ;R)→ I p̄Hn(X,X −
W̄ ;R) are all isomorphisms for “sufficiently small” W containing x. See [37, Section I.2] for the relevant

sheaf theory background.
8Recall Example 3.4.7.
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I 0̄Hn(Rk × cL,Rk × cL − {(0, v)};R) represents the orientation class o((0, v)) of Rk × cL

over {(0, v)}.

Proof. Let B̄r be a closed ball of radius r centered at the origin in Rk and choose a chain

representative for η such that η is also a generator of Hk(Rk,Rk − B̄r;R). For some s,

0 < s < 1, let N̄ ′ = B̄r × c̄sL ⊂ Rk × cL, and let xα be a set of points, one in each regular

stratum of N̄ ′. As in the proof of Lemma 8.1.20, let xα have coordinates (yα, tα, zα), choose

s′, s′′ with s < s′ < 1 and 0 < s′′ < min{tα}, and let e : [0, 1] → [s′′, s′] be the linear

isomorphism with e(0) = s′′ and e(1) = s′. Now let ζ = ΓL, and also as in the proof of

Lemma 8.1.20 let Z be the chain c̄ζs′′+e×ζ, where ζs′′ is the image of ζ under the embedding

of L at the s′′ cone coordinate. We consider η × Z, which represents a homology class in

I 0̄Hn(Rk × cL,Rk × cL− N̄ ′;R).

By our choices of coordinates, for each xα the chains η × Z and η × e × ΓL represent

the same class in I 0̄Hn(Rk × cL,Rk × cL − {xα};R), which by excision is isomorphic to

I 0̄Hn(Rk × (0, 1) × L,Rk × (0, 1) × L − {(yα, tα, zα)};R). But from the assumptions, the

class η × e × ΓL is the product of local orientation classes at (yα, tα, zα) consistent with

the given orientation. So the image of η × Z represents the orientation class o(xα) in each

I 0̄Hn(Rk × cL,Rk × cL− {xα};R).

Now, by Lemma 8.1.16, there is a unique class ΓN̄ ′ ∈ I 0̄Hn(Rk × cL,Rk × cL − N̄ ′;R)

whose image in I 0̄Hn(Rk × cL,Rk × cL− {z};R) is o(z) for each z ∈ N̄ ′. So, in particular,

ΓN̄ ′ maps to o(xα) for each xα. But by Lemma 8.1.20, there is a unique class in I 0̄Hn(Rk ×
cL,Rk × cL− N̄ ′;R) with this last property, and we have already shown that η×Z has the

property. So we must have

ΓN̄ ′ = η ×Z ∈ I 0̄Hn(Rk × cL,Rk × cL− N̄ ′;R)

, and so η × Z must also represent o((0, v)) ∈ I 0̄Hn(Rk × cL,Rk × cL − {(0, v)};R). But

now if we consider the image of η ×Z in this last module, the piece η × e× ΓL is contained

in the complement of {(0, v)}, and so

η ×Z = η × c̄ζs′′ = η × c̄(ΓL)s′′ ∈ I 0̄Hn(Rk × cL,Rk × cL− {(0, v)};R).

Thus o((o, v)) is represented by η × c̄(ΓL)s′′ .

Lastly, we observe that the the class c̄(ΓL)s′′ in I 0̄Hn−k(cL, cL − {v};R) is independent

of the coordinate s′′ for 0 < s′′ < 1, and so we can replace (ΓL)s′′ with l(ΓL) for our original

choice of l in the statement of the lemma. This shows that o((0, v)) can be represented by

a chain of the claimed form.

8.1.4 Lack of global fundamental classes for subzero perversities

We are now in a position to investigate a bit further what happens if p̄ is a perversity on X

with p̄(S) < 0 for some singular stratum S. The following proposition shows that I p̄H∗(X−
S;R) → I p̄H∗(X;R) is an isomorphism, so putting negative perversities on some strata is

equivalent to leaving such strata out of the space altogether. Among other consequences,

this shows that Theorem 8.1.18 cannot possibly hold for X, as X−S will be non-compact (it
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also might not be a stratified pseudomanifold). In fact, given this isomorphism, any global

fundamental class Γp̄X ∈ I p̄Hn(X;R) can be represented by a chain in X −S, and this chain

must have compact support. The chain’s image in I p̄Hn(X,X − {x};R) has to be 0 for

any x outside this support. But, S must have a neighborhood that does not intersect the

support of the chain and, using that X −ΣX is dense, there are therefore points of X −ΣX

not contained in the support of the chain. This contradicts Γp̄X being a fundamental class.

Proposition 8.1.24. Let R be a Dedekind domain, and let X be a stratified pseudomanifold

with perversity p̄. Suppose S ⊂ X is a singular stratum with p̄(S) < 0. Then inclusion

induces an isomorphism I p̄H∗(X − S;R)→ I p̄H∗(X;R).

Proof. We will use a Mayer-Vietoris argument, and so we will invoke Theorem 5.1.4. In this

case, for any open U ⊂ X, let F∗(U) = I p̄H∗(U − (U ∩S);R) and G∗(U) = I p̄H∗(U ;R), and

let Φ : F∗ → G∗ be induced by inclusion. We must check the conditions of Theorem 5.1.4.

The functors F∗ and G∗ admit Mayer-Vietoris sequences by Theorem 6.3.12, and Φ

induces a map between them. The direct limit condition follows from Lemmas 5.1.6 and

6.3.16.

Skipping to the fourth condition, if U is empty or contained in a stratum other than

S, then U − (U ∩ S) = U , so Φ is the identity map for this U . If U ⊂ S is an open

subset homeomorphic to Euclidean space and if σ is an i-simplex in U , then σ takes all

of ∆i into S, and the p̄-allowability condition for σ becomes i ≤ i − codim(S) + p̄(S), i.e.

codim(S) ≤ p̄(S). But this is impossible if p̄(S) < 0, so no simplices are allowable and

I p̄H∗(U) = 0 = I p̄H∗(U − (U ∩ S)), as U − (U ∩ S) is the empty set.

For the remaining condition, we must show that if Φ : F∗(Rk × (cL− {v}))→ G∗(Rk ×
(cL−{v})) is an isomorphism, then so is Φ : F∗(Rk × cL)→ G∗(Rk × cL). Here, Rk × cL is

a distinguished neighborhood of a point x ∈ X. Let us make the inductive assumption that

we have verified the proposition already for stratified pseudomanifolds of depth less than

that of X. The proposition is trivial when the depth of X is 0, as in this case S must be

empty. Therefore, if we can verify the condition for our X under the inductive assumption,

the proposition will be proven on X by Theorem 5.1.4. As X was arbitrary of its depth, the

entire proposition will follow by induction.

So, consider now the diagram:

F∗(Rk × (cL− {v}))
Φ
- G∗(Rk × (cL− {v}))

F∗(Rk × cL)
?

Φ
- G∗(Rk × cL).

?

We are assuming the top horizontal map is an isomorphism. The vertical arrows are induced

by inclusion. There are two cases to consider, depending upon whether x ∈ S. First, suppose

x /∈ S. If x is not contained in the closure of S, then the distinguished neighborhood cannot

intersect S, so the bottom map in this diagram is trivially an isomorphism. Suppose x is

in the closure of S. This means that L has a stratum that is the intersection of L with
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S, thinking of some copy of L as being embedded in X by the distinguished neighborhood

homeomorphism. Therefore, L∩S is a union of strata of L, on each of which p̄ < 0, and the

top horizontal arrow is an isomorphism and stratified homotopy invariance and induction.

The vertical arrow on the right is basically (up to stratified homotopy equivalence) the

inclusion of a link into its cone, and so, by the cone formula (Theorem 6.2.13), the codomain

is 0 for ∗ ≥ dim(L) − p̄({v}) and the map is an isomorphism otherwise. The vertical map

on the left is similarly, up to stratified homotopy equivalence, the inclusion of L − (L ∩ S)

into c(L − (L ∩ S)). Our cone formula as stated in Theorem 6.2.13 doesn’t precisely apply

because L−(L∩S) is not compact. One of our main concerns with having compact links was

to avoid weird topologies on cones, which can happen in the quotient topology if the space

being coned is not compact. In this case, we can avoid this problem by letting c(L− (L∩S))

have the subspace topology from cL, and with this assumption the argument of Theorem

6.2.13 goes through without any trouble. So, for ∗ ≥ dim(L)− p̄({v}), both modules on the

bottom line of the diagram are trivially, and otherwise the top and sides of the diagram are

isomorphisms, implying that the bottom map is also.

Next, suppose x ∈ S. In this case, the diagram reduces to

I p̄H∗(Rk × (cL− {v});R)
Φ

=
- I p̄H∗(Rk × (cL− {v});R)

I p̄H∗(Rk × (cL− {v});R)

=

?
Φ

- I p̄H∗(Rk × cL;R),
?

so this case reduces to demonstrating that the inclusion-induced I p̄H∗(Rk×(cL−{v});R)→
I p̄H∗(Rk × cL;R) is an isomorphism in all dimensions. By the cone formula (and stratified

homotopy invariance), this is true for ∗ < dim(L) − p̄({v}), and I p̄H∗(Rk × cL;R) = 0 for

∗ ≥ dim(L)−p̄({v}), so we must show that I p̄H∗(Rk×(cL−{v});R) ∼= I p̄H∗(L;R) is also 0 in

this range. But, by assumption, p̄({v}) < 0, so the dimension range ∗ ≥ dim(L)−p̄({v}) only

includes dimensions that are greater than dim(L). But, as L is a stratified pseudomanifold,

I p̄H∗(L;R) = 0 for ∗ > dim(L) by Theorem 8.1.18.

8.1.5 Invariance of fundamental classes

In this section, we will show that the fundamental classes we constructed in the previous

section are invariants in two different sense. First, we will show that they are essentially

independent of the choice of perversity p̄ such that p̄ ≥ 0̄. The precise meaning of this claim

can be found in the statements of Proposition 8.1.25 and Corollary 8.1.26. Then we will go

on to see in what sense our fundamental classes are invariant of the choice of stratification.

Fundamental classes under change of perversity

We begin with change of perversity. Recall that if X is a filtered space with perversities p̄

and q̄ satisfying p̄ ≤ q̄ then the identity map X → X is (p̄, q̄)-stratified. We will denote the
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induced map by τp̄,q̄ : I p̄S∗(X;R)→ I q̄S∗(X;R). On stratified pseudomanifolds, such maps

then induce morphisms of orientation sheaves Op̄ → Oq̄.

Proposition 8.1.25. Let R be a Dedekind domain, and let X be an R-oriented n-dimensional

stratified pseudomanifold. Suppose p̄, q̄ are perversities on X with 0̄ ≤ p̄ ≤ q̄. Then:

1. The canonical morphism of sheaves Op̄ → Oq̄ is an isomorphism. In particular, every

Op̄ is isomorphic to O0̄, which we can simply denote O and call the R-orientation

sheaf over X. We will also generally identify all the Op̄ via these isomorphisms.

2. If K is a compact subset of X then the canonical map τp̄,q̄ : I p̄Hn(X,X − K;R) →
I q̄Hn(X,X − K;R) is an isomorphism. Furthermore, given a section s of O over

K, if γ p̄ ∈ I p̄Hn(X,X −K;R) and γ q̄ ∈ I q̄Hn(X,X −K;R) each restrict to s(x) in

I p̄Hn(X,X − {x};R) ∼= I q̄Hn(X,X − {x};R) for each x ∈ K, then τp̄,q̄(γ
p̄) = γ q̄. In

particular, if s = op̄ = oq̄, then τp̄,q̄(Γ
p̄
K) = Γq̄K.

We will prove the proposition just below. As a corollary, we have the following statement

about global fundamental classes on compact stratified pseudomanifolds. This corollary

demonstrates the sense in which fundamental classes do not depend on the choice of perver-

sity, provided we don’t allow perversities with negative values.

Corollary 8.1.26. Let R be a Dedekind domain, and let X be a compact R-oriented n-

dimensional stratified pseudomanifold. Then, for any p̄ and q̄ that are both ≥ 0̄, the diagram

I p̄Hn(X;R)
τ0̄,p̄←−− I 0̄Hn(X;R)

τ0̄,q̄−−→ I q̄Hn(X;R)

consists of isomorphisms, and the composition left to right takes Γp̄X to Γq̄X .

Proof of Corollary 8.1.26. The corollary follows directly from the second statement of the

proposition taking K = X and using 0̄ as an intermediary.

Definition 8.1.27. It follows from Proposition 8.1.25 that every Γp̄K , p̄ ≥ 0̄, is the image

of Γ0̄
K , which we will simply denote ΓK and call the fundamental class of X over K with

respect to the R-orientation. If X is compact, then we call ΓX the fundamental class of X

with respect to the R-orientation.

Proof of Proposition 8.1.25. We will induct on the depth d of X. If d = 0, then X is a

manifold and all intersection homology groups reduce to ordinary homology, making the

statements trivial. So, suppose now that we have proven the proposition up through depth

d− 1 and that X has depth d.

For the first statement, assume 0̄ ≤ p̄ ≤ q̄ so that we have maps τp̄,q̄ : I p̄H∗(X,A;R) →
I q̄H∗(X,A;R) for any subset A. In particular, if x ∈ X is any point and U is any neighbor-

hood of x, we have maps τp̄,q̄ : I p̄Hn(X,X− Ū ;R)→ I q̄Hn(X,X− Ū ;R). Such maps induce

a morphism of sheaves Op̄ → Oq̄; see9 [37, Section I.2]. To show that this morphism is an iso-

morphism, it suffices to demonstrate that the induced map of stalks I p̄Hn(X,X−{x};R)→
9We are using here that the collection of maps I p̄Hn(X,X − Ū ;R) → I q̄Hn(X,X − Ū ;R) constitute a

map of presheaves, which induces a map of sheaves.
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I q̄Hn(X,X − {x};R) is an isomorphism for all x. If x is contained in a regular stratum of

X, this map is isomorphic to the identity map Hn(Rn,Rn − {0};R)→ Hn(Rn,Rn − {0};R)

by excision. So suppose x has a distinguished neighborhood Rk× cL, L 6= ∅. Then, applying

excision, the naturality of the Künneth theorem (as used in the proof of Lemma 6.4.17),

the naturality of the boundary map of the long exact sequence of the pair, the isomorphism

of the cone formula Corollary 6.2.15, and stratified homotopy invariance, this map reduces

to the map I p̄Hn−k−1(L;R) → I q̄Hn−k−1(L;R). By the arguments of the proof of Lemma

8.1.14, the link L is orientable, so this map is an isomorphism by the induction assumption,

as L must have smaller depth than X.

For the second statement, we first make a preliminary observation: If ξ ∈ I p̄Sn(X;R) is

an n-chain in X, let U be the open set X − |∂ξ|; the set U is itself an R-oriented stratified

pseudomanifold. Then ξ determines a class in I p̄Hn(X, |∂ξp̄|;R) and the images of this class

in I p̄Hn(X,X − {x};R) as x varies over U gives a section s of the orientation sheaf Op̄ over

U . Furthermore, suppose K ⊂ U is a compact subset. Then for all x ∈ K the factorization

I p̄Hn(X, |∂ξp̄|;R)→ I p̄Hn(X,X −K;R)→ I p̄Hn(X,X − {x};R)

shows that the class represented by ξ in I p̄Hn(X,X − K;R) maps to the values of s(x) ∈
I p̄Hn(X,X − {x};R) for each x ∈ K.

Now suppose that we have a class [ξ q̄] ∈ I q̄Hn(X,X −K;R) represented by the chain ξ q̄,

and let U be the open set U = X − |∂ξ q̄|. Then, as just described, ξ q̄ determines a section

sq̄ over U , and so in particular over a neighborhood of K. If we let sp̄ be the image of the

section sq̄ under the isomorphism of orientation sheaves Op̄ ∼= Oq̄, then sp̄ is also defined over

a neighborhood of K. So by Corollary 8.1.22 there is a unique class [ξp̄] ∈ I p̄Hn(X,X−K;R)

whose image in I p̄Hn(X,X − {x};R) is sp̄(x) for all x ∈ K. For each such x ∈ K we have a

diagram

I p̄Hn(X,X −K;R) - I p̄Hn(X,X − {x};R)

I q̄Hn(X,X −K;R)

τp̄,q̄

?
- I q̄Hn(X,X − {x};R),

τp̄,q̄ ∼=

?

(8.3)

with the righthand vertical map an isomorphism by the first part of the proof of the propo-

sition. In fact, this isomorphism takes the stalks of Op̄ to the corresponding stalks of

Oq̄. So, by the commutativity of the diagram, the class τp̄,q̄([ξ
p̄]) also maps to sq̄(x) in

I q̄Hn(X,X − {x};R) for all x ∈ K, and thus by the uniqueness part of Corollary 8.1.22 we

must have τp̄,q̄([ξ
p̄]) = [ξ q̄]. So the lefthand vertical map of the diagram is surjective.

Similarly, suppose we start with a class [ξp̄] ∈ I p̄Hn(X,X−K;R) represented by a chain

ξp̄. Suppose that τp̄,q̄([ξ
p̄]) = 0 ∈ I q̄Hn(X,X −K;R). Now let U = X − |∂ξp̄|. For x ∈ U ,

we have seen that the images of ξp̄ in I p̄Hn(X,X−{x};R) give a section s of the orientation

sheaf Op̄ over U , which is a neighborhood of K. Now suppose x ∈ K. Then we have also
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seen that s(x) is the image of ξp̄ down the left side of the following commutative diagram

I p̄Hn(X, |∂ξp̄|;R)

I p̄Hn(X,X −K;R)
? τp̄,q̄- I q̄Hn(X,X −K;R)

I p̄Hn(X,X − {x};R)
? τp̄,q̄

∼=
- I q̄Hn(X,X − {x};R).

?

But [ξp̄] is the image of ξp̄ in I p̄Hn(X,X −K;R), and this maps to 0 in I q̄Hn(X,X −K;R)

by assumption. So it follows from the diagram, and in particular the isomorphism at the

bottom, that s must be 0 over K. So now by Corollary 8.1.22 again, there is a unique class

in I p̄Hn(X,X −K;R) whose image is s(x) = 0 in I p̄Hn(X,X −{x};R) for each x ∈ K, and

this must be the class 0. Thus [ξp̄] = 0. So we have shown that τp̄,q̄ : I p̄Hn(X,X −K;R)→
I q̄Hn(X,X −K;R) is injective, and therefore it is an isomorphism.

Finally, for the last claim of the proposition, suppose γ p̄ and γ q̄ are as given. Em-

ploying Diagram (8.3) once again, the hypotheses state that the classes τp̄,q̄(γ
p̄) and γ q̄ in

I q̄Hn(X,X −K;R) must each map to the same values in I q̄Hn(X,X −{x};R) for each x in

K, namely s(x). Furthermore, using images of a chain representative of γ q̄ as above, we see

that s can be extended to a section on a neighborhood of K. This allows us to use Corollary

8.1.22 again to conclude that there is a unique element of I q̄Hn(X,X −K;R) that maps to

s(x) for each x ∈ K. So we must have τp̄,q̄(γ
p̄) = γ q̄.

Fundamental classes under change of stratification

Next we consider how fundamental classes behave under change of stratification. We first

consider the simpler case of two stratifications that are related by coarsening/refinement

before generalizing to arbitrary stratifications. So suppose X and X ′ are stratified pseudo-

manifolds with |X| = |X ′| and with X ′ refining X. Of course, two different stratifications of

a single underlying space must each be equipped with its own perversity. In general, we could

consider perversities p̄ and p̄′ on X and X ′, respectively, such that the set-theoretic identity

map X ′ → X is (p̄′, p̄)-stratified. However, given the “independence of perversity” results

just above, it is simpler, and no loss of generality, to consider only the zero perversities,

which we can label as 0̄ on both X and X ′.

Next, we will need some further restrictions on X and X ′. The issue is that we want

the set-theoretic identity map id : X ′ → X to be (0̄, 0̄)-stratified; note that id : X → X ′

can never be stratified unless X = X ′ as each strata of the domain must map into just one

stratum of the codomain by Definition 6.3.2. On the other hand, the map id : X ′ → X

can only be stratified for non-GM perversities if ΣX′ ⊂ ΣX . We could proceed with such an
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assumption, but as we will also soon want to bring in the topological invariance properties

of intersection homology it makes sense instead to require that 0̄ ≤ t̄ on X and X ′ so

that I 0̄Hn(X;R) ∼= I 0̄HGM
n (X;R) and I 0̄Hn(X ′;R) ∼= I 0̄HGM

n (X ′;R) by Proposition 6.2.9.

This allows us us to invoke topological invariance (Theorem 5.5.1), using that 0̄ is a GM

perversity, but it also lets id : X ′ → X be (0̄, 0̄)GM -stratified as Definition 4.1.1 does not

require singular strata to map to singular strata. As t̄(S) = codim(S)− 2, the requirement

0̄ ≤ t̄ simply means that we forbid codimension one strata10.

Notationally, let |X| = |X ′| = |X| denote the common underlying topological space, while

X, as always, is the intrinsic CS set stratification. As for our other statements concerning

fundamental classes, there will be a compact subset, which we denote K ⊂ |X|. Of course,

K can inherit different filtrations depending on whether we think of it as contained in X, X ′,

or X, but for simplicity, and as our main interest will be in removing K to consider spaces

such as X − K or X ′ − K, we will abuse notation a bit and just use K, rather than |K|,
throughout. Also, although we will be in the setting where GM and non-GM intersection

homology agree, as discussed in the preceding paragraph, and so using that the id maps are

GM -stratified, we will nonetheless continue to use the non-GM notation throughout.

Proposition 8.1.28. Let R be a Dedekind domain, let X be an n-dimensional stratified

pseudomanifold, and let X ′ be an n-dimensional stratified pseudomanifold refining the strat-

ification of X. Suppose that X and X ′ have no codimension one strata and that X and

X ′ are compatibly R-oriented in the sense that the R-orientation on X induces that on X ′

as in Lemma 8.1.6. Let K be a compact subset of |X|, and let ΓK ∈ I 0̄Hn(X,X − K;R)

and Γ′K ∈ I 0̄Hn(X ′, X ′ −K;R) be the fundamental classes over K given the orientation, as

guaranteed by Lemma 8.1.16. Let φ : I 0̄Hn(X ′, X ′−K;R)→ I 0̄Hn(X,X−K;R) be induced

by the identity map id : X ′ → X. Then φ (Γ′K) = ΓK.

Proof. Let o and o′ be the global orientation sections on X and X ′, respectively, as de-

termined by the orientations (see Lemma 8.1.14). By the uniqueness clause of Lemma

8.1.16, it suffices to show that φ (Γ′K), which is still represented by the chain Γ′K , restricts

to o(x) ∈ I 0̄Hn(X,X − {x};R) for each x ∈ K.

So, suppose x ∈ K, and let U ′ be a distinguished neighborhood of x in X ′ with |U ′| ⊂
|X ′ − |∂Γ′K ||. As Γ′K has image o′(x) ∈ I 0̄Hn(X ′, X ′ − {x};R) by assumption, it follows

from Lemma 8.1.20 that there is a possibly smaller distinguished neighborhood11 V ′ of x

in U ′ such that at every z in the regular strata of V ′, the chain Γ′K represents o′(z) ∈
I 0̄Hn(X,X − {z};R). Now, let W be a distinguished neighborhood of x in X such that

|W | ⊂ |V ′|. As the regular strata of V ′ are dense in V ′, every regular stratum of W contains

a point that is also in a regular stratum of V ′. As |W | ⊂ |V ′|, at any such point y we

continue to have that Γ′K represents o′(y) ∈ I 0̄Hn(X ′, X ′ − {y};R) ∼= Hn(Rn,Rn − {0};R).

But, on the regular strata of X ′, which are subsets of the regular strata of X, the orientation

10In general, the modules I 0̄Hn(X;R) and I 0̄Hn(X ′;R) are not necessarily isomorphic if there are codi-

mension one strata. For example, let X = R be the unfiltered real line, and let X ′ be the finer filtration

given by {0, 1} ⊂ R. Then I 0̄H1(X;R) = 0 but I 0̄H1(X ′;R) ∼= R (exercise!).
11We avoid using the notation N̄ ′ from Lemma 8.1.20 to avoid a clash with the “prime” notation we are

using here.
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bundle of X ′−ΣX′ is the restriction of the orientation bundle over X−ΣX , so it follows that

φ (Γ′K) also represents o(y) ∈ I 0̄Hn(X,X−{y};R) ∼= Hn(Rn,Rn−{0};R) for any such y. In

other words, each regular stratum of W has a point y at which φ (Γ′K) represents o(y). But

the orientation bundle is constant on the regular strata, and so, in fact, φ (Γ′K) represents

o(y) at any point y in a regular stratum of W . It now follows again from Lemma 8.1.20 that

φ (Γ′K) must represent o(x) in I 0̄Hn(X,X − {x};R).

Unfortunately, we cannot quite next use Proposition 8.1.28 to parallel our treatment of

orientations in Corollary 8.1.11 by allowing us to compare fundamental classes for arbitrary

pseudomanifold stratifications X and X ′ of the underlying space |X| by comparing with

a fundamental class of X. The problem is that our previous work only guarantees that X

will be a CS set, even if X is itself a stratified pseudomanifold, and our preceding work on

fundamental classes requires a pseudomanifold stratification. Nonetheless, we will be able

to work around this difficulty using the isomorphisms

I 0̄Hn(X ′, X ′ −K;R)
∼=−→ I 0̄Hn(X,X−K;R)

∼=←− I 0̄Hn(X,X −K;R).

Proposition 8.1.29. Let R be a Dedekind domain, and let X and X ′ be any two n-

dimensional stratified pseudomanifolds with the same underlying space |X| and without codi-

mension one strata. Suppose X and X ′ are compatibly R-oriented in the sense of Corol-

lary 8.1.11. Let K be a compact subset of |X|, and let ΓK ∈ I 0̄Hn(X,X − K;R) and

Γ′K ∈ I 0̄Hn(X ′, X ′−K;R) be the fundamental classes over K given the R-orientation. Then

ΓK and Γ′K correspond under the canonical isomorphisms

I 0̄Hn(X ′, X ′ −K;R)
∼=−→ I 0̄Hn(X,X−K;R)

∼=←− I 0̄Hn(X,X −K;R).

In particular, if |X| is compact then the fundamental classes ΓX and ΓX′ correspond in this

manner.

Proof. The idea of the proof is essentially the same as that of Proposition 8.1.28, though we

must make some modifications. Here, we cannot use the uniqueness clause of Lemma 8.1.16

for X, but topological invariance provides a workaround. Let’s suppose we start with Γ′K .

We will show that the image of Γ′K under the isomorphisms is ΓK . For this, we can invoke

the uniqueness of Lemma 8.1.16 for X.

As topological invariance implies that

I 0̄Hn(X ′, A′;R) ∼= I 0̄Hn(X,A;R) ∼= I 0̄Hn(X,A;R)

for any open |A| ⊂ |X| with |A| = |A′| = |A|, we see that X, X ′, and X all share a com-

mon orientation sheaf (up to canonical isomorphisms) and so the compatible R-orientations

on these spaces come with a common orientation section o, which restricts to the given

compatible manifold orientations on the regular strata of each filtration.

Now, let’s take a chain representing Γ′K . As K is compact, we can find disjoint open sets

U ′ and U ′1 with |K| ⊂ |U ′| and |∂Γ′K | ⊂ |U ′| by Corollary 2.3.17. Then the chain Γ′K also

represents an element of I 0̄Hn(X,X − |Ū ′|;R) that maps onto Γ′K ∈ I 0̄Hn(X ′, X ′ −K;R).
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Arguing as in the proof of Proposition 8.1.28, Lemma 8.1.20 implies that for each x ∈ K there

is a neighborhood V ′ of x in X ′ with |V ′| ⊂ |U ′| on which Γ′K represents o(z) ∈ I 0̄Hn(X ′, X ′−
{z};R) for each z in each regular stratum of V ′. Letting W be a distinguished neighborhood

of x in X with |W̄ | ⊂ |V ′|, and letting y ∈ W be a point contained simultaneously in regular

strata of X and X ′ (and so also of X, as X coarsens both X and X ′), we have a diagram

I 0̄Hn(X ′, X ′ − |Ū ′|;R)
∼=- I 0̄Hn(X,X− |Ū ′|;R) �

∼=
I 0̄Hn(X,X − |Ū ′|;R)

I 0̄Hn(X ′, X ′ − |W̄ |;R)

? ∼=- I 0̄Hn(X,X− |W̄ |;R)

?
�
∼=

I 0̄Hn(X,X − |W̄ |;R)

?

I 0̄Hn(X ′, X ′ − {y};R)

? ∼=- I 0̄Hn(X,X− {y};R)

?
�
∼=

I 0̄Hn(X,X − {y};R).

?

The isomorphisms of the diagram come from Theorem 5.5.1. So, suppose we let γ denote

the image of the element of I 0̄Hn(X,X − |Ū ′|;R) represented by the chain Γ′K under the

maps across the top row, so γ ∈ I 0̄Hn(X ′, X ′ − |Ū |;R). By our choice of W , the chain

Γ′K represents o(y) ∈ I 0̄Hn(X ′, X ′ − {y};R), and so it follows from the diagram and the

compatibility of the orientation sections (especially at points of regular strata) that γ also

maps to o(y) ∈ I 0̄Hn(X,X − {y};R). But y was an arbitrary point in a regular stratum

of both X and X ′ in |W |. As the unions of regular strata in X and X ′ are dense in X

and X ′, respectively, every regular stratum of W contains a point y that is also in a regular

stratum of X. So every regular stratum of W ⊂ X ′ has a point at which γ represents o(y)

in I 0̄Hn(X,X − {y};R), and it follows from Lemmas 8.1.20 and 8.1.16 that γ must map

to o(x) in I 0̄Hn(X,X − {x};R). But x was arbitrary in K, so the class γ must map to

ΓK ∈ I 0̄Hn(X,X −K;R), again by Lemma 8.1.16.

Finally, we have a diagram

I 0̄Hn(X ′, X ′ − |Ū ′|;R)
∼=- I 0̄Hn(X,X− |Ū ′|;R) �

∼=
I 0̄Hn(X,X − |Ū ′|;R)

I 0̄Hn(X ′, X ′ −K;R)

? ∼=- I 0̄Hn(X,X−K;R)

?
�
∼=

I 0̄Hn(X,X −K;R),

?

and as the class of Γ′K in I 0̄Hn(X ′, X ′ − |Ū ′|;R) maps to the fundamental class Γ′K ∈
I 0̄Hn(X ′, X ′−K;R) and to γ ∈ I 0̄Hn(X,X−|Ū ′|;R), and as γ maps to ΓK ∈ I 0̄Hn(X,X−
K;R), it follows that the composition along the bottom of the diagram takes Γ′K to ΓK .
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Remark 8.1.30. It follows from Proposition 8.1.29 that if X is a compact n-dimensional

R-oriented stratified pseudomanifold without codimension one strata, then the fundamen-

tal class ΓX is a topological invariant in the following sense: Suppose that Y is another

compact R-oriented stratified pseudomanifold without codimension one strata and that

f : |X| → |Y | is a topological homeomorphism, i.e. that it is a homeomorphism of the un-

derlying spaces without regard to the filtrations. Then X induces an image pseudomanifold

stratification, say Y ′, on Y , and an image R-orientation on Y ′ via the pointwise isomorphisms

I 0̄Hn(X,X − {x};R) ∼= I 0̄Hn(Y ′, Y ′ − {f(x)};R) induced by the filtered homeomorphism

X → Y ′. Suppose that f is orientation preserving in the sense that this image R-orientation

is compatible with the given R-orientation on Y in the sense of Corollary 8.1.11. Then it

must also be the case, applying Proposition 8.1.29, that f(ΓX) ∈ I 0̄Hn(Y ′;R) corresponds

to ΓY under the canonical isomorphisms

I 0̄Hn(Y ′;R)
∼=−→ I 0̄Hn(Y;R)

∼=←− I 0̄Hn(Y ;R),

with Y being the intrinsic filtration of |Y |.
This is essentially the content of [100, Corollary 5.23], although there it is mistakenly

asserted that f(ΓX) ∈ I 0̄Hn(Y ;R).

8.1.6 Intersection homology factors the cap product

Our discussion of fundamental classes sets us up to make an interesting, and still some-

what mysterious, observation that goes back to the first paper on intersection homology

by Goresky and MacPherson [105, Section 1.4]. There, working with classical compact ori-

ented n-dimensional PL stratified pseudomanifolds and with GM perversities p̄, Goresky

and MacPherson noticed that for any such p̄ the cap product with the fundamental class in

ordinary (co)homology Hn−i(X)
_ΓX−−−→ Hi(X) factors as12

Hn−i(X)
αp̄−→ I p̄HGM

i (X)
ωp̄−→ Hi(X),

where ωp̄ is induced by the inclusion I p̄SGM∗ (X) ↪→ S∗(X) and the other pieces of this

composition will be described below.

The fundamental class is not constructed in detail in [105] but rather taken to be “the

unique class...[in] Hn(X) which restricts to the local orientation class in Hn(X,X − p) for

every ‘nonsingular point’ p ∈ X − Σ.” Such a fundamental class ΓX can be found by

fixing a triangulation and taking the sum over all n-simplices, compatibly oriented with the

orientation of X. This is evidently a cycle and satisfies the local condition on X −Xn−2. It

is also easy to check that this cycle is allowable with respect to any GM perversity s̄, and

then an argument using Theorem 8.1.18 shows that Γ is a fundamental class in I s̄Hn(X),

which is isomorphic to I s̄HGM
n (X) by Proposition 6.2.9. The image of Γ under ωs̄ in Hn(X)

then must satisfy the stated local homology property at all points of X − Σ.

12We should probably write the Goresky-MacPherson statement in terms of PL homology and cohomology,

but in a moment we will generalize to the singular chain setting.
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The construction of the map αp̄ in [105] is more complicated, and two descriptions are

provided there. The first is in terms of representations of cohomology classes by “mock

bundles,” a theory developed by Buoncristiano, Rourke, and Sanderson in [40] for describing

cohomology theories geometrically. The second is a more hands-on construction using the

cap product and the dual cells in a simplicial complex (for which a detailed exposition can be

found in [181, Section 64]). Rather than pursue these simplicial constructions, let us instead

utilize Proposition 7.3.8 to provide a version of the Goresky-MacPherson result for singular

intersection homology on topological pseudomanifolds.

For this, let X be a compact R-oriented n-dimensional topological stratified pseudoman-

ifold for R a Dedekind domain. Suppose further that p̄ is any perversity with 0̄ ≤ p̄ ≤ t̄

and such that X is locally (p̄;R)-torsion free. This implies that X must be a classical pseu-

domanifold (no strata of codimension one), and I p̄SGM∗ (X;R) ∼= I p̄S∗(X;R) by Proposition

6.2.9. If Γ ∈ I 0̄Hn(X;R) is the fundamental class on X guaranteed by Theorem 8.1.18 then

ω0̄(Γ) ∈ Hn(X;R) is also a cycle, and the image of ω0̄(Γ) in Hn(X−{x};R) is a compatibly-

oriented generator for each x ∈ X−Σ. So analogously to Definition 8.1.27, we can also abuse

notation and refer to ω0̄(Γ) ∈ Hn(X;R) as the fundamental class Γ in ordinary homology.

As we have assumed X to be locally (p̄;R)-torsion free, Corollary 7.2.10 gives us a cap

product ID̄̄pH
n−i(X;R)

_Γ−−→ I p̄Hi(X;R). By Proposition 7.3.8, we therefore have that the

following diagram always commutes:

Hn−i(X;R)
_ Γ

- Hi(X;R)

IDp̄H
n−i(X;R)

ω∗Dp̄

? _ Γ
- I p̄Hi(X;R),

ωp̄

6

(8.4)

where the bottom Γ technically lives in I 0̄Hn(X;R) and the top Γ lives in Hn(X;R). So

this demonstrates the following proposition:

Proposition 8.1.31. Let R be a Dedekind domain, let X be a compact oriented n-dimensional

topological stratified pseudomanifold, and let p̄ be any perversity with 0̄ ≤ p̄ ≤ t̄ such that

X is locally (p̄;R)-torsion free. Let Γ be a fundamental class for X. Then the cap product

Hn−i(X;R)
_Γ−−→ Hi(X;R) factors as

Hn−i(X;R)
ω∗Dp̄−−→ IDp̄H

n−i(X;R)
_Γ−−→ I p̄Hi(X;R)

ωp̄−→ Hi(X;R).

Definition 8.1.32. Motivated by Proposition 8.1.31 and continuing its hypotheses, we can

define a singular intersection homology analogue of the Goresky-MacPherson map αp̄ to be

the composition

Hn−∗(X;R)
ω∗Dp̄−−→ IDp̄H

n−∗(X;R)
D−→ I p̄H∗(X;R),

where D(β) = (−1)|β|nβ _ Γ.
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Remark 8.1.33. The map D, which at this point incorporates a somewhat unexpected sign

into the cap product with the fundamental class, will become our standard Poincaré duality

map below in Section 8.2. The reason for the sign is so that the duality map will be induced

by an appropriately graded degree n chain map at the chain level. We introduce this here to

make our map αp̄ also induced by a degree n chain map at the (co)chain level. See Remark

8.2.2 for more details.

Below in Section 8.5.3, we will see that αp̄ has some nice compatibility properties with

respect to cup, cap, and intersection products. These properties were first recognized in

[105].

More general factorizations

Definition 8.1.32 gives us a map αp̄ that factors the ordinary singular duality map (which

is not in general an isomorphism) through I p̄H∗(X;R) when X is locally (p̄;R)-torsion

free. But the Goresky-MacPherson map αp̄ is defined on compact oriented PL stratified

pseudomanifolds with Z coefficients for any GM perversity p̄. The torsion-free condition is

not required! How can this be achieved in singular intersection homology?

One attempt might be based on the following observations:

1. By Example 6.3.22, all CS sets are locally torsion free with respect to t̄, and so D :

It̄H
n−∗(X;R)→ I 0̄H∗(X;R) is always defined.

2. The map ω0̄ : I 0̄S∗(X;R) ↪→ S∗(X;R) factors through every perversity with 0̄ ≤ p̄ ≤ t̄

via the maps τ0̄,p̄ defined in Section 8.1.5, i.e. the composition

I 0̄S∗(X;R)
τ0̄,p̄
↪−−→ I p̄S∗(X;R)

ωp̄
↪−→ S∗(X;R)

is equal to ω0̄.

So, in fact, there is a commutative diagram

Hn−∗(X;R)
D

- H∗(X;R)

It̄H
n−∗(X;R)

ω∗t̄

? D
- I 0̄H∗(X;R)

τ0̄,p̄-

ω 0̄

-

I p̄H∗(X;R)

ωp̄

6

(8.5)

for any p̄ with 0̄ ≤ p̄ ≤ t̄. Here the commutativity of the lefthand quadrilateral is just a

special case of Proposition 8.1.31 by our first observation. So this construction demonstrates

that the singular cap product factors through all intersection homology groups with 0̄ ≤ p̄ ≤
t̄, and so it looks like a reasonable alternative definition for αp̄ in these more general cases

might be as the composition α′p̄ of the maps

Hn−∗(X;R)
ω∗
t̄−→ It̄H

n−∗(X;R)
D−→ I 0̄H∗(X;R)

τ0̄,p̄−−→ I p̄H∗(X;R).
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However, the reader will see that it is not clear that one can extend the identities of

Section 8.5.3 to α′p̄. Of course, even if such identities do not hold in general, one would

still like to know that αp̄ and α′p̄ at least agree when the former is defined. But even this is

problematic! In particular, to have αp̄ = α′p̄ when X is locally (p̄;R)-torsion free, we would

need to show that the following diagram commutes:

Hn−∗(X)

It̄H
n−∗(X;R)

ω∗t̄

? τ ∗Dp̄,t̄- IDp̄H
n−∗(X;R)

ω ∗
Dp̄

-

I 0̄H∗(X;R)

_ Γ

?
τ0̄,p̄- I p̄H∗(X;R).

_ Γ

?

(8.6)

The top triangle certainly commutes as the composite inclusion

IDp̄S∗(X;R)
τDp̄,t̄
↪−−→ I t̄S∗(X;R)

ωt̄
↪−→ S∗(X;R)

is equal to the inclusion ωDp̄. But looking at the square, the top arrow points the wrong

way for this to commute by naturality. And a “by-hands” attempt at a proof shows us the

conundrum. By definition, the left cap product is defined using the algebraic diagonal that

produces an element of I 0̄S∗(X;R)⊗ I t̄S∗(X;R), while the cap product on the right has its

algebraic diagonal in I p̄S∗(X;R)⊗ IDp̄S∗(X;R). As 0̄ ≤ p̄, but t̄ ≥ Dp̄, there is no evident

map to use to compare these two products. So it currently remains unclear how to define a

map αp̄ in singular intersection homology for arbitrary p̄ with 0̄ ≤ p̄ ≤ t̄ that is satisfactorily

compatible with the Goresky-MacPherson construction.

Remark 8.1.34. Symmetrically, we observe that for X a compact R-oriented stratified pseu-

domanifold the map Hn−∗(X;R)
_Γ−−→ H∗(X;R) also filters through all the intersection co-

homology groups with 0̄ ≤ p̄ ≤ t̄ by the diagram

Hn−∗(X;R)
D

- H∗(X;R)

Ip̄H
n−∗(X;R)

ω∗p̄

? τ ∗0̄,p̄- I 0̄H∗(X;R)
D
-

ω ∗
0̄

-

I t̄H∗(X;R).

ωt̄

6

Here we use that such spaces are all locally (0̄, R)-torsion free by Example 6.3.22 and Corol-

lary 8.2.5, below.
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Remark 8.1.35. Chataur, Saralegi-Aranguren, and Tanré in [54] have constructed a dia-

gram of the form of Diagram (8.4) for an arbitrary perversity p̄ by replacing IDp̄H
n−i(X;R)

with an alternative construction they call Thom-Whitney cohomology, denoted Hn−∗
TW,p̄(X;R).

They use this to construct alternative factorizations of the singular cap product through

I p̄H∗(X;R). They also demonstrate that the corresponding version of αp̄ satisfies a version

of property (8.24) of Proposition 8.5.13, below, relating it to cup products and intersection

products.

Remark 8.1.36. Another interesting observation of Chataur, Saralegi-Aranguren, and Tanré

in [54], which we here adapt to our own setting, is the following. Suppose again that R is a

Dedekind domain and that X is now a normal compact R-oriented n-dimensional stratified

pseudomanifold. Consider once again Diagram (8.5) but with p̄ = t̄ so that we have

Hn−∗(X;R)
D

- H∗(X;R)

It̄H
n−∗(X;R)

ω∗t̄

? D
- I 0̄H∗(X;R)

τ0̄,t̄-

ω 0̄

-

I t̄H∗(X;R).

ωt̄

6

As X is assumed to be normal, Corollary 5.1.9 (together with the details of its proof)

implies that ωt̄ is an isomorphism, and similarly, by Proposition 7.1.18, the map ω∗t̄ is an

isomorphism. We will see below in Theorem 8.2.4 that D : It̄H
n−∗(X;R) → I 0̄H∗(X;R) is

a Poincaré duality isomorphism. We thus obtain the following fact (cf. [54, Theorem B]):

Proposition 8.1.37. Let R be a Dedekind domain and suppose that X is a normal com-

pact R-oriented n-dimensional stratified pseudomanifold. Then the Poincaré duality map

in ordinary singular (co)homology (given by the signed cap product with the fundamental

class) is an isomorphism D : Hn−i(X;R)
D−→ Hi(X;R) if and only if the canonical map

τ0̄,t̄ : I 0̄Hi(X;R)→ I t̄Hi(X;R) is an isomorphism.

8.1.7 Product spaces

We include here some results on product orientations that we shall need below.

Lemma 8.1.38. Suppose X1 and X2 are stratified pseudomanifolds. Then X1 × X2 is R-

orientable if and only if X1 and X2 are R-orientable.

Proof. If Mi = Xi − ΣXi , then X1 × X2 − ΣX1×X2 = M1 × M2. For manifolds, we have

already recalled that a product of manifolds is orientable if and only if the factors are; see

Footnote 5 on page 497. But by Definition 8.1.5 a stratified pseudomanifold X is orientable

if and only if X − ΣX is orientable. The lemma follows.

Turning to specific orientations, if M1,M2 are R-oriented manifolds of dimensions n1, n2,

then M1 × M2 has a natural R-orientation. In fact, recalling again Footnote 5 on page
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497, suppose O1,O2 are the orientation bundles over M1,M2, respectively, and that O is

the orientation bundle for M1 ×M2. Let O1⊗̂O2 be the bundle over M1 ×M2 whose fiber

at (x1, x2) ∈ M1 ×M2 is Hn1(M1,M1 − {x1};R) ⊗Hn2(M2,M2 − {x2};R) ∼= Hn1+n2(M1 ×
M2,M1 × M2 − {(x1, x2)};R) ∼= R. Then O1⊗̂O2 is isomorphic13 to O. Furthermore, if

o1, o2 are the global orientation sections of the respective orientation bundles O1,O2, then

o1⊗̂o2 ∈ O1⊗̂O2 provides an orientation o ofO via the isomorphism withO1⊗̂O2, as the cross

product of generators of Hn1(M1,M1 − {x1};R) and Hn2(M2,M2 − {x2};R) is a generator

of Hn1+n2(M1 ×M2,M1 ×M2 − {(x1, x2)};R). Locally, if o1(x1) and o2(x2) are represented

by chains ξ1 ∈ Hn1(M1,M1 − {x1};R) and ξ2 ∈ Hn2(M2,M2 − {x2};R), then o((x1, x2)) is

represented by ξ1 × ξ2 ∈ Hn1+n2(M1 ×M2,M1 ×M2 − {(x1, x2)};R).

By the same reasoning, if X1 and X2 are R-oriented stratified pseudomanifolds, then

O1⊗̂O2 is isomorphic to O over the regular strata of X1 ×X2, and so by Lemma 8.1.14 the

image under the cross product of o1⊗̂o2 in o is an orientation section of X1 ×X2. We also

have an analogous statement to that for manifolds concerning chain representatives.

In the case of pseudomanifolds, we therefore have the following result:

Proposition 8.1.39. Let R be a Dedekind domain. Suppose X1 and X2 are R-oriented

stratified pseudomanifolds of respective dimensions n1 and n2. Let Ki ⊂ Xi be compact

subsets. Let ΓKi be chains representing the fundamental classes of Xi over Ki. Then ΓK1 ×
ΓK2 ∈ I 0̄Hn1+n2(X1 × X2, (X1 × X2) − (K1 ×K2);R) is the fundamental class of X1 × X2

over K1 ×K2 with respect to the product orientation on X1 ×X2.

Proof. The proof is similar in spirit to other proofs in the preceding sections, so we will be

a little sketchy in the details here.

Suppose (x1, x2) ∈ K1×K2. We must show that for any such (x1, x2) the chain ΓK1×ΓK2

represents

o((x1, x2)) ∈ I 0̄Hn1+n2(X1 ×X2, (X1 ×X2)− {(x1, x2)};R).

But suppose U1, U2 are distinguished neighborhoods of x1 and x2 in X1 and X2, respectively.

We can assume that U1 ⊂ X1 − |∂ΓK1| and U2 ⊂ X2 − |∂ΓK2 |. Then, we know by Lemma

8.1.20 that, assuming U1 and U2 are sufficiently small, the chain ΓK1 represents o1(z1) for

each z1 contained in a regular stratum of U1 and that ΓK2 represents o(z2) for each z2

contained in a regular stratum of U2. But, via the isomorphism between O and O1⊗̂O2 over

the regular strata that we discussed just above, this implies that ΓK1 × ΓK2 must represent

o((z1, z2)) ∈ I 0̄Hn1+n2(X1 ×X2, (X1 ×X2)− {(z1, z2)};R).

So, by applying Lemma 8.1.20 again to a small enough distinguished neighborhood of (x1, x2)

in X1 ×X2, the chain ΓK1 × ΓK2 must indeed represent o((x1, x2)).

13In slightly more detail, the cross product sets up a map of (partially-defined) presheaves such that if

U = U1 × U2 is a product open subset of M1 ×M2, then we have the cross product map

Hn1(M1,M1 − Ū1;R)⊗Hn2(M2,M2 − Ū2;R)
×−→ Hn1+n2

(M1 ×M2,M1 ×M2 − Ū1 × Ū2;R).

For each (x1, x2) ∈M1×M2 there is a cofinal system of such product neighborhoods with each Ui a Euclidean

ball, in which case the cross product is an isomorphism. Taking direct limits, this induces an isomorphism

of sheaves.
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8.2 Poincaré duality

At last, in this section, we come to the raison d’être for intersection homology: Poincaré

duality on stratified pseudomanifolds.

8.2.1 The duality map

By Theorem 8.1.18, we know that if R is a Dedekind domain and X is a compact R-

oriented stratified pseudomanifold of dimension n, then X admits a fundamental class ΓX ∈
I 0̄Hn(X;R) that is consistent with the R-orientation in the sense that, for any x ∈ X, the

image of ΓX in I p̄Hn(X,X − {x};R) takes the value of the orientation section o(x). By

Corollary 7.2.10, the cap product with this class,

_ ΓX : Ip̄H
i(X;R)→ IDp̄Hn−i(X;R),

is defined if X is locally (p̄;R)-torsion free14. The intersection (co)homology version of

Poincaré duality states that this map is an isomorphism. Of course, if X is an unfiltered

manifold, and hence automatically locally torsion free, this reduces to precisely the statement

of classical Poincaré duality.

More generally, if X is any R-oriented locally (p̄;R)-torsion free n-dimensional stratified

pseudomanifold, we have a Poincaré duality isomorphism D : Ip̄H
i
c(X;R)→ IDp̄Hn−i(X;R),

where X is no longer assumed to be compact. For this, recall that if X is an R-oriented

stratified pseudomanifold of dimension n (not necessarily compact) and if K ⊂ X is a

compact subset, we have shown in Lemma 8.1.16 that we have a fundamental class ΓK ∈
I 0̄Hn(X,X−K;R) that is consistent with the R-orientation in the sense that, for any x ∈ K,

the image of ΓK in I p̄Hn(X,X − {x};R) takes the value of the orientation section o(x).

Suppose now that K ′ ⊂ X is another compact subset with K ⊂ K ′. If ΓK′ ∈ I 0̄Hn(X,X −
K ′;R) is the corresponding fundamental class, then the image of Γ′ in I 0̄Hn(X,X −K;R)

must be ΓK : the map between homology groups is induced by inclusion so the image of ΓK′

and its image in I 0̄Hn(X,X−K;R) can be represented by the same chain. But, by definition,

this chain represents o(x) for each x ∈ K ′, and so, in particular, at each x ∈ K. It follows

that the chain therefore represents ΓK by the uniqueness of Lemma 8.1.16. This argument

shows that the collection {ΓK}, as K varies over the compact subsets of X, constitutes an

element of lim←− I
0̄Hn(X,X −K;R). By Lemma 7.4.6, the cap product induces a map

_: Ip̄H
i
c(X;R)⊗ lim←− I

0̄Hn(X,X −K;R)→ IDp̄Hn−i(X;R).

Definition 8.2.1. Let R be a Dedekind domain and X an R-oriented locally (p̄;R)-torsion

free n-dimensional stratified pseudomanifold. Let Γ ∈ lim←− I
0̄Hn(X,X−K;R) corresponding

14The requirement for the existence of this cap product is actually that X be either locally (p̄;R)-torsion

free or locally (Dp̄;R)-torsion free, but it will follow as a consequence of Poincaré duality that an R-oriented

stratified pseudomanifold is locally (p̄;R)-torsion free if and only if it is locally (Dp̄;R)-torsion free. See

Corollary 8.2.5
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to the collection of fundamental classes {ΓK} as above. We define the duality map D to be

the map

Ip̄H
i
c(X;R)→ IDp̄Hn−i(X;R)

α→ (−1)inα _ Γ.

In other words, if α ∈ Ip̄H i
c(X;R), then

D(ξ) = (−1)inα _ Γ.

When X is compact, the module I 0̄Hn(X;R) is initial among the I 0̄Hn(X,X − K;R), so

lim←− I
0̄Hn(X,X − K;R) ∼= I 0̄Hn(X;R), and, in this case, D reduces, up to sign, to the

standard cap product with Γ.

Remark 8.2.2. Wait a minute — where did that sign come from? Notice that we have defined

D(α) as (−1)|α|nα _ Γ and not simply as α _ Γ. This deserves some explanation. The

issue is that there are many circumstances in geometric topology where it is desirable to

think of the Poincaré duality map as a chain map from cochains to chains. Of course in our

treatment here, we have generally only pursued cap products as operators on homology and

cohomology elements, but, in classical algebraic topology, if ξ ∈ Sk(X) is a fixed chain and

we have chosen a fixed definition of the cap product15, then _ ξ induces a function of chain

complexes S∗(X)→ Sk−∗(X). In particular, if M is a compact manifold, then one would like

the Poincaré duality map determined by some sort of cap product with a fundamental class

to provide a map S∗(M) → Sk−∗(M) in the appropriate category of (co)chain complexes.

This is important, for example, in surgery theory.

The problem is that _ Γ is not a chain map because it does not obey the proper sign

conventions. To explain, first let us recall that if we have a map of (homologically indexed)

chain complexes f : C∗ → D∗ that raises degrees by k, i.e. f restricts to homomorphisms

fi : Ci → Di+k, then f is considered a chain map of degree k if ∂f = (−1)kf∂; see Ap-

pendix A.1.4 or [71, Section VI.10]. Most of the chain maps we have considers so far have

been degree 0 chain maps, and so the sign is invisible. Next, recall that we can consider

cohomologically indexed complexes to be equivalent to homologically indexed complexes via

the identification C∗ = C−∗. Unfortunately, this clashes with the standard topological use

whereby, say, S∗(X) and S∗(X) are not reindexings of the same complex, but rather dif-

ferent complexes; so, for clarity in the remainder of this remark, we replace S∗(X) with

Hom∗(S∗(X);R) = Hom−∗(S∗(X);R). This last identification allows us to treat cochain

complexes as homologically indexed.

Now, fixing an element ξ ∈ Sk(X), the function α → α _ ξ provides homomorphisms

Hom−∗(S∗(X);R) to Sk−∗(M), and so raises the (homological) degree by k. However, by

Lemma 7.2.19, fixing a particular cap product at the chain level yields

∂(α _ ξ) = (dα) _ ξ + (−1)|α|α _ ∂ξ.

15As we have discussed, there is some flexibility in the definition of the cap product at the chain level due

to the need to choose a specific Alexander-Whitney map, but the ambiguities can be removed by passing to

the appropriate homotopy category of (co)chain complexes.
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If ∂ξ = 0, we obtain ∂(α _ ξ) = (dα) _ ξ, so α→ α _ ξ is not signed as a chain map.

Continuing to assume ξ is a cycle, consider now the mapDξ such thatDξ(α) = (−1)|α||ξ|α _

ξ. Then we have

Dξ(dα) = (−1)(|α|+1)|ξ|(dα) _ ξ

= (−1)(|α|+1)|ξ|∂(α _ ξ)

= (−1)|ξ|∂((−1)|α||ξ|α _ ξ)

= (−1)|ξ|∂(Dξ(α)).

Therefore, Dξ is a chain map. So, in particular, if M is a compact oriented manifold and Γ

is the fundamental class, then D = DΓ is a chain map from cochains to chain, as desired.

Similarly, if X is a compact oriented stratified pseudomanifold, then D = DΓ is a chain map,

assuming we have fixed a particular choice16 of d̄ so that we can speak of the cap product

at the chain level.

Of course these signs are not critical for obtaining our Poincaré duality isomorphisms

in each fixed degree, but they allow us to stay consistent with the necessary properties of

Poincaré duality as a chain map in other sources. In particular, this is consistent with

[100, 99]. For more about this sign convention, see [89, Section 4.1].

Before proceeding on to the proof of Poincaré duality, we next present an example that

demonstrates the necessity of the torsion free condition if we hope to have a Poincaré duality.

Of course we don’t know how to define the cap product of the duality map if the locally

torsion free condition fails, but this example shows that we can’t necessarily have duality

isomorphisms by any means.

Example 8.2.3. Let X be the suspension of RP 3, i.e. X = S(RP 3) with the standard sus-

pension filtration as in Example 2.3.4, assuming RP 3 is filtered trivially. So X has two

singular points corresponding to the suspension points {n, s}. As RP 3 is Z-orientable, so is

X − ΣX
∼= (−1, 1) × RP 3. Let us choose a perversity p̄ on X so that p̄({n}) = p̄({s}) = 1.

As the codimension of the suspension points is 4, the value of Dp̄ on these points is then

Dp̄({n}) = t̄({n})− p̄({n}) = codim({n})− 2− p̄({n}) = 4− 2− 1 = 1,

and similarly for s, so Dp̄ = p̄ in this situation. We also have p̄ ≤ t̄, so we even have

I p̄H∗(X) ∼= I p̄HGM
∗ (X). Applying the suspension computation of Theorem 6.3.13, we have

I p̄Hi(X) ∼=


I p̄H̃i−1(RP 3), i > 2,

0, i = 2,

I p̄Hi(RP 3), i < 2.

So I p̄H4(X) ∼= I p̄H0(X) ∼= Z and I p̄H1(X) ∼= Z2, and the other groups are 0.

Similarly, as X is compact, we have

Ip̄H
i
c(X) = Ip̄H

i(X) ∼= Hom(I p̄Hi(X);Z)⊕ Ext(I p̄Hi−1(X);Z),

16In the manifold case, we can assume that we are using the traditional Alexander-Whitney diagonal.
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using Theorem 7.1.4. So, applying our above computation for I p̄H∗(X), we obtain the

following.

Ip̄H
4(X) ∼= Z I p̄H0(X) ∼= Z

Ip̄H
3(X) ∼= 0 I p̄H1(X) ∼= Z2

Ip̄H
2(X) ∼= Z2 I p̄H2(X) ∼= 0

Ip̄H
1(X) ∼= 0 I p̄H3(X) ∼= 0

Ip̄H
0(X) ∼= Z I p̄H4(X) ∼= Z.

Comparing across the rows, we see that Poincaré duality fails. This is a manifestation of our

observation in Remark 7.1.6 of the clash between the “cleanly truncated” cone formula in

intersection homology (Theorem 6.2.13), and the cone formula in intersection cohomology

(Proposition 7.1.5), which contains that extra torsion term. Here this contrast results in a

failure of Poincaré duality.

We do observe, however, that if we replaced our Z coefficients with, say, coefficients in

Q, then similar computations would result in identical answers except with Z terms replaced

with Q terms and Z2 terms replaced with 0. Then we have

Ip̄H
4(X;Q) ∼= Q I p̄H0(X;Q) ∼= Q

Ip̄H
3(X;Q) ∼= 0 I p̄H1(X;Q) ∼= 0

Ip̄H
2(X;Q) ∼= 0 I p̄H2(X;Q) ∼= 0

Ip̄H
1(X;Q) ∼= 0 I p̄H3(X;Q) ∼= 0

Ip̄H
0(X;Q) ∼= Q I p̄H4(X;Q) ∼= Q.

In this case, we see that the corresponding groups are isomorphic, although we have not yet

shown that this isomorphism is via the duality map.

8.2.2 The Poincaré Duality Theorem

We now turn to the official statement and proof of Poincaré duality.

Theorem 8.2.4 (Poincaré duality). Suppose R is a Dedekind domain, and let X be an

n-dimensional R-oriented locally (p̄;R)-torsion free17 stratified pseudomanifold. Then the

duality map

D : Ip̄H
i
c(X;R)→ IDp̄Hn−i(X;R)

is an isomorphism for all i. In particular, if X is compact, then the cap product

_ ΓX : Ip̄H
i(X;R)→ IDp̄Hn−i(X;R)

is an isomorphism.

17Or, equivalently, X can be locally (Dp̄;R)-torsion free; see Footnote 14 on page 522 and Corollary 8.2.5.
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Proof. Although we have been careful to define our duality map D to account for the signs

needed for D to be a chain map when thought of at the chain/cochain level, we can safely

ignore these signs and work with the cap product in fixed degrees for the purposes of proving

the theorem.

The proof will be by induction on depth. The base case is that for which X is an

unfiltered manifold, in which case this is classical Poincaré duality. The reader can find a

proof of manifold duality in, for example, [125, Theorem 3.35], though it will not be difficult

for us to prove this case along with the others. For the manifold base case, we will use the

Mayer-Vietoris argument Theorem 5.1.2, while the inductive step uses the Mayer-Vietoris

argument for CS sets (Theorem 5.1.4). We will check the conditions to apply these theorems

for the base and inductive steps in parallel. In the inductive case, we suppose X has depth

d ≥ 1 and that the theorem has been proven for stratified pseudomanifolds of depth < d. In

fact, as we go through the argument we will complete the proof of the base case before we

ever need to use the induction assumption.

To apply Theorems 5.1.2 and Theorem 5.1.4, we define our functors as follows. If U ⊂ X

is an open set, let F∗(U) = Ip̄H
∗
c (U ;R), let G∗(U) = IDp̄Hn−∗(U ;R), and let Φ = DU , where

DU is defined as in Lemma 7.4.8. Namely, if ΓU is the image of Γ under the canonical map

lim←−K⊂X I
0̄Hn(X,X−K;R)→ lim←−K⊂U I

0̄Hn(U,U−K;R) of Lemma 7.4.7, then the map DU

is the signed cap product, in the sense of Lemma 7.4.6, with ΓU . Furthermore, by the second

paragraph of Lemma 7.4.7, the image ΓUK of ΓU in I 0̄Hn(U,U −K;R) is also the image of

ΓXK = ΓK under the excision isomorphism I 0̄Hn(X,X−K;R)→ I 0̄Hn(U,U −K;R). So, by

the commutative diagram

I 0̄Hn(X,X −K;R) �
∼=

I 0̄Hn(U,U −K;R)

I 0̄Hn(X,X − {x};R)

?
�
∼=

I 0̄Hn(U,U − {x};R),

?

the image of ΓUK in I 0̄Hn(U,U − {x};R) is just the value of the orientation section on U

compatible by excision with the restriction of the orientation section over X. Therefore,

the map DU is really just the same as the duality map on U determined by restricting the

orientation from X.

We must verify that the conditions of Theorems 5.1.2 and 5.1.4 are satisfied.

Mayer-Vietoris step. The functors F∗ and G∗ admit Mayer-Vietoris sequences with Φ

inducing a map between them by Lemma 7.4.8. Actually, the diagram of Lemma 7.4.8 only

commutes up to signs, but this is sufficient for the arguments in Theorems 5.1.2 and 5.1.4,

as we can change some signs of maps to still invoke the Five Lemma where it is used in the

proofs of those theorems. Incidentally, the commutativity of the diagram of Lemma 7.4.8,

appropriately restricted to each summand in the middle term, demonstrates that Φ is indeed

a natural transformation (up to signs).
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Limit step. For the limit condition in Theorem 5.1.4, we aim to employ Lemma 5.1.6,

for which we need to verify that the maps lim−→α
F∗(Uα) → F∗(∪αUα) and lim−→α

G∗(Uα) →
G∗(∪αUα) are isomorphisms. For G∗, this is the content of Lemma 6.3.16; for F∗ this is

Lemma 7.4.4.

Euclidean neighborhood step. If U is empty, then Φ is trivially an isomorphism, and

if U is an open subset of X contained in a single stratum and homeomorphic to Euclidean

space, then U must be contained in a regular stratum, as X is a stratified pseudomanifold.

In this case, the map Φ is the Poincaré duality map for Euclidean space.

Let B̄r be the closed ball of radius r centered at the origin in Rn. Such balls are cofi-

nal among all compact subspaces of Rn, and so H∗c (Rn;R) ∼= lim−→H∗(Rn,Rn − B̄r;R) and

lim←−H∗(R
n,Rn − K;R) ∼= lim←−H∗(R

n,Rn − B̄r;R). But for r ≤ s the maps H∗(Rn,Rn −
B̄r;R) → H∗(Rn,Rn − B̄s;R) and H∗(Rn,Rn − B̄s;R) → H∗(Rn,Rn − B̄r;R) are all iso-

morphisms by the homotopy invariance of homology. So H∗c (Rn;R) ∼= H∗(Rn,Rn − B̄s;R)

and lim←−H∗(R
n,Rn − B̄r;R) ∼= H∗(Rn,Rn − B̄s;R) for any fixed s. It thus follows from the

discussion preceding Lemma 7.4.6 that the map H∗c (Rn;R)
_Γ−−→ Hn−∗(Rn;R) is isomorphic

to the map H∗(Rn,Rn − B̄s;R)
_ΓB̄s−−−→ Hn−∗(Rn;R) for any s. By elementary computa-

tions, the modules H∗(Rn,Rn − B̄s;R) and H∗(Rn,Rn − B̄s;R) are trivial unless ∗ = n,

in which case each is isomorphic to R. Furthermore, we know that ΓB̄s is a generator of

Hn(Rn,Rn − B̄s;R). By the Universal Coefficient Theorem, we can compute

Hn(Rn,Rn − B̄s;R) ∼= Hom(Hn(Rn,Rn − B̄s;R), R) ∼= Hom(R,R) ∼= R,

as Hn−1(Rn,Rn − B̄s;R) = 0. Let α ∈ Hn(Rn,Rn − B̄s;R) be the generator such that

α(ΓB̄s) = 1. Then by Proposition 7.3.25 we have

1 = α(ΓB̄s) = a(α _ ΓB̄s).

Consequently, we must have that α _ ΓB̄s represents a generator of H0(Rn) ∼= R. This

shows that H∗(Rn,Rn − B̄s;R)
_ΓB̄s−−−→ Hn−∗(Rn;R) is an isomorphism, and hence so is

H∗c (Rn;R)
_Γ−−→ Hn−∗(Rn;R).

Wrapping up the base case; on to induction. We have now demonstrated (or referred

out to Lemma 7.4.4) all the conditions needed to invoke Theorem 5.1.2 to demonstrate

Poincaré duality for unfiltered manifolds. This completes the base case. So for the remainder

of the argument we may assume the depth of X is d > 0 while, by induction hypothesis, the

theorem holds for depths less than d. So far we have not used the induction hypothesis, but

it will be needed for the next step.

Distinguished neighborhood step. Finally, for the last remaining condition of Theorem

5.1.4, we must show that if U ∼= Rk × cLn−k−1 is a distinguished neighborhood in X and

Φ : F∗(Rk×(cL−{v}))→ G∗(Rk×(cL−{v})) is an isomorphism, then so is Φ : F∗(Rk×cL)→
G∗(Rk × cL). As has often been the case in our Mayer-Vietoris arguments, we will show
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directly that Φ : F∗(Rk × cL) → G∗(Rk × cL) is always an isomorphism, relying on our

induction assumptions moreso than the supposition that Φ is an isomorphism F∗(Rk× (cL−
{v}))→ G∗(Rk × (cL− {v})).

There are essentially two cases to consider, the first being the range of indices in which

all the modules are 0: By stratified homotopy invariance and the cone formula (Theorem

6.2.13),

Gi(Rk × cL) = IDp̄Hn−i(Rk × cL;R) ∼= IDp̄Hn−i(cL;R) = 0

if n− i ≥ n− k −Dp̄(v)− 1, i.e. if i ≤ k +Dp̄({v}) + 1. But now

Dp̄({v}) = t̄({v})− p̄({v}) = codim({v})− 2− p̄({v}) = n− k − 2− p̄({v}).

So, altogether, Gi(Rk × cL) = 0 if i ≤ n− p̄({v})− 1.

Next, consider Fi(Rk × cL) = Ip̄H
i
c(Rk × cL;R). To compute the compactly supported

intersection cohomology, we can choose a cofinal collection of compact subsets of the form

Kr,s = B̄r × c̄sL, where B̄r is the closed ball of radius r in Rk and c̄sL is our closed subcone

out to s in the cone coordinate. By Lemma 6.4.17, the direct system Ip̄H
i(Rk×cL,Rk×cL−

Kr,s;R) is constant, with all terms being isomorphic to Ip̄H
i(Rk× cL,Rk× cL−{(0, v)};R).

Therefore, applying the Universal Coefficient Theorem (Theorem 7.1.4 ) and the Künneth

Theorem (Theorem 6.3.20) applied to

(Rk × cL,Rk × cL− {(0, v)}) ∼= (Rk,Rk − {0})× (cL, cL− {v}),

we have

Fi(Rk × cL) = Ip̄H
i
c(Rk × cL;R)

∼= Ip̄H
i(Rk × cL,Rk × cL− {(0, v)};R)

∼= Hom(I p̄Hi(Rk × cL,Rk × cL− {(0, v)};R), R)

⊕ Ext(I p̄Hi−1(Rk × cL,Rk × cL− {(0, v)};R), R)
∼= Hom(I p̄Hi−k(cL, cL− {v};R), R)⊕ Ext(I p̄Hi−k−1(cL, cL− {v};R), R).

By the relative cone formula (Corollary 6.2.15), I p̄Hj(cL, cL− {v};R) = 0 for j ≤ n− k −
p̄({v})−1. So, the first summand of Fi(Rk×cL) is 0 when i−k ≤ n−k−p̄({v})−1, i.e. when

i ≤ n−p̄({v})−1. Similarly, the second summand vanishes when i−k−1 ≤ n−k−p̄({v})−1

i.e. when i ≤ n − p̄({v}). Therefore, Fi(Rk × cL) = 0 for i ≤ n − p̄({v}) − 1, so that

Fi(Rk × cL) = 0 = Gi(Rk × cL) for i ≤ n − p̄({v}) − 1, and this must be induced by Φ as

there is a unique map between trivial modules.

Next, we must consider i ≥ n− p̄({v}). This will involved the following diagram, in which

η is the fundamental class of Hk(Rk,Rk − {0};R) consistent with the standard orientation:
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Ip̄H
i−k−1(L;R)

_ ΓL
∼=

- IDp̄Hn−i(L;R)

Ip̄H
i−k−1(cL− {v};R)

l∗ ∼=
6

_ l(ΓL)
- IDp̄Hn−i(cL− {v};R)

l ∼=
?

Ip̄H
i−k(cL, cL− {v};R)

d∗ ∼=
?

_ c̄l(ΓL)
- IDp̄Hn−i(cL;R)

∼=
?

Ip̄H
i(Rk × cL,Rk × cL− {(0, v)};R)

η∗× ∼=
?

_ (η × c̄l(ΓL))
- IDp̄Hn−i(Rk × cL;R).

∼=
?

If we can show that this diagram commutes up to sign and that all the maps so labeled are

isomorphisms if i ≥ n− p̄({v}) then it will follow that all of the maps are isomorphisms, and

so, in particular, the map at the bottom,

Ip̄H
k(Rk × cL− {(0, v)};R)

_(η×c̄l(ΓL))−−−−−−−→ IDp̄Hn−i(Rk × cL;R),

is an isomorphism. Furthermore, by Corollary 8.1.23 this bottom horizontal map is the cap

product with the fundamental class of Rk × cL over {(0, v)}, and we claim that this map

being an isomorphism suffices to prove that Φ is an isomorphism, completing the proof of

the theorem.

For this last claim, taking K = B̄r× c̄sL and K ′ = B̄r′ × c̄s′L with r < r′ and s < s′ < 1,

we have diagrams of the form

Ip̄H
i(Rk × cL,Rk × cL− {(0, v)};R)

∼=- Ip̄H
i(Rk × cL,Rk × cL−K;R)

∼=- Ip̄H
i(Rk × cL,Rk × cL−K ′;R)

IDp̄Hn−i(Rk × cL;R)

_ Γ{(0,v)}

?
�

=
IDp̄Hn−i(Rk × cL;R)

_ ΓK

?
�

=
IDp̄Hn−i(Rk × cL;R).

_ ΓK′

?

The horizontal maps are isomorphisms by Lemma 6.4.17, and we let Γ′K , ΓK , and Γ{(0,v)}
here denote the fundamental classes in Rk × cL. Then Γ{(0,v)} is the image of ΓK , which

is the image of ΓK′ , all under the relevant inclusion maps by the discussion establishing

the duality map in Section 8.2.1. Commutativity of the diagram is due to naturality of

the cap product (Proposition 7.3.6). Via the horizontal isomorphisms, taking the direct
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limit over all such K of the form B̄r × c̄sL shows that the map Ip̄H
i(Rk × cL,Rk × cL −

{(0, v)};R)
_Γ{(0,v)}−−−−−→ IDp̄Hn−i(Rk × cL;R) is isomorphic (up to sign) to the duality map

Φ : F∗(Rk × cL)→ G∗(Rk × cL).

So it remains to show that Diagram (8.2.2) commutes with all the vertical maps being

isomorphisms.

The top square. Turning to our claims about Diagram (8.2.2), the top horizontal map

Ip̄H
i−k−1(L;R)

_ΓL−−−→ IDp̄Hn−i(L;R) is an isomorphism by our induction assumption. For

this, we observe that L is a stratified pseudomanifold by Lemma 2.4.11, and it is R-orientable

as a link of the R-orientable X by the arguments in the proof of Lemma 8.1.14. Additionally,

L is locally (p̄;R)-torsion free because, by Remark 2.4.14, its links are all also links of X,

which is locally (p̄;R)-torsion free, and the locally torsion free vanishing condition can be

stated in terms of the dimensions of the links themselves, without reference to the ambient

space. Therefore, as L has lower depth than X, the induction hypothesis applies. We can

here choose a particular orientation of L such that if we give Rk and (0, 1) their standard

orientations then the product orientation on Rk× (0, 1)×L agrees with the given orientation

inherited from Rk × cL ⊂ X.

The map l is the inclusion l : L ↪→ cL − {v} of L into the cone at some fixed cone

coordinate, so the two top vertical maps of Diagram (8.2.2) are isomorphisms by stratified

homotopy invariance. Furthermore, l is a normally nonsingular inclusion, so the top square

commutes by Proposition 7.3.6 and Remark 7.3.7.

The center square. We first show that the vertical maps are isomorphisms. By the

cone formula, if i ≥ n− p̄({v}) then we are in the range where we have isomorphisms

IDp̄Hn−i(L;R)
∼=- IDp̄Hn−i(cL− {v};R)

IDp̄Hn−i(cL;R),

∼=
?

∼=
-

treating L as a subspace of cL at some fixed cone coordinate.

For cohomology, we consider again that by the Universal Coefficient Theorem Ip̄H
j(cL;R) ∼=

Hom(I p̄Hj(cL;R), R)⊕Ext(I p̄Hj−1(cL;R), R), while I p̄Ha(cL;R) = 0 for a ≥ n−k−p̄({v})−
1 by the cone formula. So Ip̄H

j(cL;R) = 0 for j > n−k−p̄({v})−1. If j = n−k−p̄({v})−1,

then Ip̄H
j(cL;R) ∼= Ext(I p̄Hn−k−p̄({v})−2(cL;R), R) ∼= Ext(I p̄Hn−k−p̄({v})−2(L;R), R), using

the cone formula. But we have assumed that X is locally (p̄;R)-torsion free, which means

by Definition 6.3.21 that I p̄Hn−k−p̄({v})−2(L;R) is flat. This module is also finitely gen-

erated by Corollary 6.3.40, as Dedekind domains are Noetherian [30, Theorem VII.2.2.1].

Furthermore, finitely-generated flat modules over Noetherian rings are projective [146, The-

orem 4.38], so Ext(I p̄Hn−k−p̄({v})−2(L;R), R) = 0. Therefore, we have Ip̄H
j(cL;R) = 0 for

j ≥ n−k− p̄({v})−1, and so, by the long exact sequence of the pair, Ip̄H
j(cL−{v};R)

d∗−→

530



Ip̄H
j+1(cL, cL−{v};R) is an isomorphism for j ≥ n−k−p̄({v})−1. Taking j = i−k−1, this

provides the isomorphisms Ip̄H
i−k−1(cL−{v};R)

d∗−→ Ip̄H
i−k(cL, cL−{v};R) for i−k−1 ≥

n− k− p̄({v})− 1, i.e. for i ≥ n− p̄({v}), as desired. Notice the role that the locally torsion

free condition plays in this argument!

For the commutativity of the center square of Diagram (8.2.2), we let c̄l(ΓL) be the class

of the singular cone on the chain l(ΓL) (see Example 3.4.7). In particular, this means that

c̄l(ΓL) maps to l(ΓL) under the isomorphism ∂∗ : I 0̄Hn−kI(cL, cL−{v};R)→ I 0̄Hn−k−1(cL−
{v};R); this is an isomorphism by the relative cone formula (Corollary 6.2.15). For the

commutativity of the this square, up to sign, we can apply Proposition 7.3.37. Comparing

that lemma to our setting, the X of the lemma is cL, the subspace B is cL − {v}, and

A = ∅. The chain ξ of the lemma is our c̄l(ΓL) ∈ I 0̄Hn−k(cL, cL − {v};R), and, as A = ∅,
the map e in the lemma is the identity map. With these identifications, the lemma applies

to demonstrate that this square commutes up to sign.

The bottom square. For commutativity of the bottom square of Diagram (8.2.2), we

will apply Proposition 7.3.55 so that if α ∈ Ip̄H i−k(cL, cL− {v};R) then

(η∗ × α) _ (η × c̄l(ΓL)) = ±(η∗ _ η)× (α _ c̄l(ΓL)). (8.8)

For the proposition to apply, we must check that the hypotheses are satisfied. As Rk is a

manifold, all possible torsion free conditions are satisfied. The space Rk × cL is an open set

of X, and so it is locally (p̄;R)-torsion free as this is a local condition. For cL, all links of cL

are links of X by Remark 2.4.14 and so cL is also locally (p̄;R)-torsion free; here we continue

our standard abuse of notation to let p̄ also denote the perversity on L or cL induced by

the perversity p̄ on X. With this abuse, and as Rk is trivially filtered, we can identify p̄

on Rk × cL with the product perversity Q̂2(0̄, p̄) in the statement of the Proposition 7.3.55,

letting 0̄ stand in for the unique perversity on Rk. This verifies all the requirements to apply

the proposition so that the equality (8.8) holds.

Now, as η∗ is dual to η, we have using Proposition 7.3.25 that η∗(η) = a(η∗ _ η) = 1,

and so η∗ _ η is a generator of H0(Rk;R). Thus η∗ _ η can be represented by a single

0-simplex, say σy, with image y ∈ Rk. So

(η∗ × α) _ (η × c̄l(ΓL)) = ±σy × (α _ c̄l(ΓL)).

But now if the vertical map on the right of the bottom square of the Diagram (8.2.2) is the

inclusion of cL as {y} × cL, then σy × (α _ c̄l(ΓL)) represents the image of α _ c̄l(ΓL) ∈
IDp̄Hn−i(cL;R) under this inclusion by Theorem 6.3.19 (compare Proposition 5.2.21). Thus

the bottom square commutes up to sign.

Conclusion. Now that we have shown commutativity of Diagram (8.2.2), implying that

Φ is an isomorphism over Rk × cL, we may invoke Theorem 5.1.4 to complete the induction

step, and thus the proof of the Poincaré Duality Theorem.
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8.2.3 Duality of torsion free conditions

As an immediate consequence of Poincaré duality, we prove the fact alluded to in Footnote

14 on page 522, that an oriented stratified pseudomanifold is locally (p̄;R)-torsion free if and

only if it is locally (Dp̄;R)-torsion free.

Corollary 8.2.5. Suppose R is a Dedekind domain and that X is an n-dimensional R-

oriented stratified pseudomanifold (or ∂-stratified pseudomanifold). Then X is locally (p̄;R)-

torsion free if and only if X is locally (Dp̄;R)-torsion free.

Proof. Let L be a link of a point x contained in the singular stratum S; suppose dim(L) = `.

Then L is a stratified pseudomanifold by Lemma 2.4.11, and it is R-orientable as a link of

the R-orientable X by the arguments in the proof of Lemma 8.1.14. By Remark 2.4.14,

the links of L are links of X, and the definition of locally torsion free (Definition 6.3.21)

shows that only dimensions (and not codimensions) are involved in the locally torsion free

condition. Therefore, if X is locally (q̄;R)-torsion free for some perversity q̄, then so is L.

Suppose now that X, and so L, is locally (p̄;R)-torsion free. So the Poincaré duality

theorem (Theorem 8.2.4) applies to L. Noting that L is compact by definition, recalling that

D(Dp̄) = p̄, and applying the Universal Coefficient Theorem (Theorem 7.1.4), we have

IDp̄H`−Dp̄(S)−1(L;R) ∼= ID(Dp̄)H
Dp̄(S)+1(L;R)

∼= Hom(I p̄HDp̄(S)+1(L;R), R)⊕ Ext(I p̄HDp̄(S)(L;R), R).

Next, using that dim(X) = `+ dim(S) + 1, so that codimX(S) = `+ 1, we compute

Dp̄(S) = t̄(S)− p̄(S)

= codimX(S)− 2− p̄(S)

= `+ 1− 2− p̄(S)

= `− p̄(S)− 1.

By assumption, I p̄H`−p̄(S)−1(L;R) is a flat R-module (see Definition 6.3.21); it is also finitely

generated by Corollary 6.3.40, using that Dedekind domains are Noetherian [30, Theorem

VII.2.2.1]. But finitely-generated flat modules over Noetherian rings are projective [146,

Theorem 4.38], so Ext(I p̄HDp̄(S)(L;R), R) = 0. Thus our formula for IDp̄H`−Dp̄(S)−1(L;R) re-

duces to IDp̄H`−Dp̄(S)−1(L;R) ∼= Hom(I p̄HDp̄(S)+1(L;R), R). Furthermore, for any R-module

A, the module Hom(A,R) is torsion free. This is an elementary fact: if f ∈ Hom(A,R) and

f 6= 0, then there is some x ∈ A such that f(x) 6= 0. But then if r ∈ R with r 6= 0, we

have (rf)(x) = r · f(x) 6= 0, as R is an integral domain. So f 6= 0 implies rf 6= 0. Thus

IDp̄H`−Dp̄(S)−1(L;R) is R-torsion free and so flat, as R is a Dedekind domain (see Section

A.4.2). This concludes the proof that locally (p̄;R)-torsion free implies locally (Dp̄;R)-

torsion free.

For the other direction, if X is locally (Dp̄;R)-torsion free, we can use Dp̄ in place of p̄

in the part of the corollary already proven to conclude that X is locally (D(Dp̄);R)-torsion

free. But D(Dp̄) = p̄, completing the proof.
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8.2.4 Topological invariance of Poincaré duality

We demonstrated in Proposition 8.1.29 that the orientation class of a stratified pseudoman-

ifold is invariant under appropriate changes of stratification. We also know that intersection

homology, in general, is invariant of the stratification of X as a CS set, assuming that X has

no codimension one strata and that p̄ is a GM perversity; this follows from Theorem 5.5.1

and Proposition 6.2.9, recalling that GM perversities p̄ are defined and satisfy 0̄ ≤ p̄ ≤ t̄ if

there are no codimension one strata. Similarly, with the same hypotheses, we have invariance

of intersection cohomology by Theorem 7.1.17 and of the cap product by Theorem 7.3.10.

Putting these results together, we see that the Poincaré duality isomorphism is independent

of the stratification in the following sense:

Theorem 8.2.6. Suppose R is a Dedekind domain and that p̄ is a GM perversity. Let

X and X ′ be two n-dimensional compatibly R-oriented compact stratified pseudomanifold

stratifications with no codimension one strata of the same underlying space |X|. Suppose

X is locally (p̄;R)-torsion free, which implies X ′ and X are locally (p̄;R)-torsion free by

Proposition 5.5.9. Then there are canonical isomorphisms

Ip̄H
i(X;R)

D
- IDp̄Hn−i(X;R)

Ip̄H
i(X;R)

∼=

6

D
- IDp̄Hn−i(X;R)

∼=

?

Ip̄H
i(X ′;R)

∼=

? D
- IDp̄Hn−i(X

′;R).

∼=

6

Technically, we haven’t defined the D in the middle row, as X is not guaranteed to be a

stratified pseudomanifold, only a CS set. However, as guaranteed by Proposition 8.1.29, we

can use the image of the fundamental class of X (or X ′) as a stand-in to define the duality

map in the middle row.

Remark 8.2.7. Analogously to what we saw in Remark 8.1.30 concerning fundamental classes,

it follows from such invariance results that Poincaré duality is topologically invariant in the

following broader sense: Suppose X and Y are compact n-dimensional R-oriented stratified

pseudomanifolds without codimension one strata, and suppose that f : |X| → |Y | is a

topological homeomorphism, i.e. that it is a homeomorphism of the underlying spaces without

regard to the stratifications. Then X induces an image stratification, say Y ′, on Y , and an

image R-orientation on Y ′. Suppose that f is orientation preserving in that the image R-

orientation is compatible with the given R-orientation on Y in the sense of Corollary 8.1.11.

Then employing Remark 8.1.30, Theorem 8.2.6, and naturality, we arrive at a canonical

diagram of isomorphisms of the following form:
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Ip̄H
i(X;R)

D
- IDp̄Hn−i(X;R)

Ip̄H
i(Y ′;R)

f ∗ ∼=
6

D
- IDp̄Hn−i(Y

′;R)

f ∼=
?

Ip̄H
i(Y ;R)

∼=

? D
- IDp̄Hn−i(Y ;R).

∼=
?

8.3 Lefschetz duality

In this section, we will extend our duality results to compact orientable ∂-stratified pseudo-

manifolds. The reader might want to look back at Section 2.7 for the definitions and details

concerning these spaces. There appear to be more general versions of manifold duality that

do not require compactness (for example, see [125, Section 3.3, Exercise 25]), but it does not

seem to be as straightforward, for example, to construct the relevant fundamental classes

without compactness. With X compact, and using that ∂X must have a stratified collar

in X by Definition 2.7.1, it is relatively straightforward to derive Lefschetz duality as a

consequence of Poincaré duality, and we will be content with this case.

8.3.1 Orientations and fundamental classes

We first consider orientations and fundamental classes for ∂-stratified pseudomanifolds..

Definition 8.3.1. Let X be an n-dimensional ∂-stratified pseudomanifold. We say that

X is R-orientable if and only if the stratified pseudomanifold X − ∂X is R-orientable.

Equivalently, by Definition 8.1.5, X is R-orientable if and only if the manifold (X − ΣX)−
∂(X − ΣX) is R-orientable. An R-orientation of X is an R-orientation of X − ∂X.

Lemma 8.3.2. If X is an R-orientable ∂-stratified pseudomanifold, then so is ∂X.

Proof. By definition, if X is an R-orientable ∂-stratified pseudomanifold then (X − ΣX) −
∂(X−ΣX) is R-orientable. But (X−ΣX) is a ∂-manifold. Therefore, its boundary ∂(X−ΣX)

is R-orientable by classical manifold theory; see, e.g. [71, Proposition VIII.2.19]. Lastly, we

observe that ∂(X − ΣX) = ∂X − Σ∂X , so ∂X is R-orientable.

It follows from Lemma 8.1.14 and the rest of Section 8.1.3 that if the ∂-stratified pseu-

domanifold X is R-oriented then there is an orientation sheaf Op̄ over X−∂X and a unique

global section op̄ determined by the orientation. We then have the following analogue of

Theorem 8.1.18.
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Theorem 8.3.3. Let R be a Dedekind domain, and let X be a compact R-oriented n-

dimensional ∂-stratified pseudomanifold with perversity p̄ ≥ 0̄. Then:

1. I q̄Hi(X;R) = I q̄Hi(X, ∂X;R) = 0 for i > n and for any perversity q̄.

2. There is a unique class Γp̄X ∈ I p̄Hn(X, ∂X;R) such that, for any x ∈ X−∂X, the image

of Γp̄X under the composition induced by inclusion and excision, I p̄Hn(X, ∂X;R) →
I p̄Hn(X,X − {x};R) ∼= I p̄Hn(X − ∂X, (X − ∂X)− {x};R), corresponds to the value

of the orientation section op̄(x).

3. If {xj}mj=1 is a collection of points of X − ∂X, one in each regular stratum, then

I p̄Hn(X, ∂X;R) ∼= ⊕jI p̄Hn(X,X − {xj};R) ∼= Rm via the map that takes an element

of I p̄Hn(X, ∂X;R) to the direct sum of its images in the I p̄Hn(X,X − {xj};R).

Proof. Recall that ∂X has a collar neighborhood N in X filtered homeomorphic to [0, 1)×∂X
by Definition 2.7.1. Then the inclusion ∂X ↪→ N is a stratified homotopy equivalence,

so it follows from the long exact sequences and the Five Lemma that I q̄H∗(X,N ;R) ∼=
I q̄H∗(X, ∂X;R).

By Lemma 8.3.2, we know ∂X is R-orientable, so I q̄Hi(N ;R) ∼= I q̄Hi(∂X;R) = 0 for

i > n−1 by Theorem 8.1.18. Furthermore, by excision, I q̄Hi(X,N ;R) ∼= I q̄Hi(X−∂X,N−
∂X;R). As X−∂X is an R-orientable stratified pseudomanifold and as X−N = (X−∂X)−
(N−∂X) is compact, I q̄Hi(X,N ;R) = 0 for i > n by Lemma 8.1.16. Thus I q̄Hi(X, ∂X;R) =

0 for i > n. Together with I q̄Hi(∂X;R) = 0 for i > n − 1, the long exact sequence of the

pair (X, ∂X) shows that I q̄Hi(X;R) = 0 for i > n.

Now, let p̄ ≥ 0, and let K = X − N , which is compact as X is compact. Note that

(X−∂X)−K = N −∂X. Let Γp̄K ∈ I p̄Hn(X−∂X,N −∂X;R) be the fundamental class of

X − ∂X over K, as guaranteed by Lemma 8.1.16. By excision and homotopy equivalence,

I p̄Hn(X − ∂X,N − ∂X;R) ∼= I p̄Hn(X,N ;R) ∼= I p̄Hn(X, ∂X;R).

We let Γp̄X be the image of Γp̄K under these isomorphisms. We will show that Γp̄X has the

desired properties and that it is independent of the choice of N .

First, suppose x ∈ K = X −N . We have a commutative diagram

I p̄Hn(X − ∂X,N − ∂X;R)
∼= - I p̄Hn(X,N ;R) �

∼=
I p̄Hn(X, ∂X;R)

I p̄Hn(X − ∂X,X − (∂X ∪ {x});R)
? ∼=- I p̄Hn(X,X − {x};R)

?
�
=

I p̄Hn(X,X − {x};R)
?

with the horizontal maps being isomorphisms by excisions and stratified homotopy invari-

ance. As Γp̄K maps to a generator of I p̄Hn(X−∂X,X− (∂X ∪{x});R), we see from the dia-

gram and the definition that Γp̄X maps to the corresponding generator of I p̄Hn(X,X−{x};R),

as desired.
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Now, suppose that N ′ is another collar neighborhood of ∂X within N , and let K ′ =

X −N ′. Then we have a commutative diagram

I p̄Hn(X − ∂X,N − ∂X;R)
∼=- I p̄Hn(X,N ;R) �

∼=
I p̄Hn(X, ∂X;R)

I p̄Hn(X − ∂X,N ′ − ∂X;R)

6

∼=- I p̄Hn(X,N ′;R)

6

�
∼=

I p̄Hn(X, ∂X;R).

=

6

By the uniqueness properties of Lemma 8.1.16, the fundamental class Γp̄K′ ∈ I p̄H(X −
∂X,N ′ − ∂X;R) must map to Γp̄K ∈ I p̄H(X − ∂X,N − ∂X;R). It therefore follows from

the diagram that N and N ′ both yield the same Γp̄X . If now N ′′ is any other collar of ∂X

(so not necessarily contained in N), then there is a collar N ′′′ of ∂X in N ∩ N ′′; as ∂X

is compact, this follows from the Tube Lemma [180, Theorem 26.8]. Using the preceding

argument twice, we see that the corresponding Γp̄K , Γp̄K′′ , and Γp̄K′′′ all map to the same Γp̄X .

So Γp̄X is independent of the choice of collar. As every x ∈ X − ∂X lies outside of some

collar of ∂X, it follows that Γp̄X restricts as desired for every x ∈ X − ∂X. Uniqueness of Γp̄

follows from the uniqueness of the Γp̄K .

For the last part of the theorem, we may suppose ∂X 6= ∅, or the result follows imme-

diately from Theorem 8.1.18. Let N be a collar of ∂X in the complement of ∪mj=1{xj}. Let

X+ = X ∪∂X c̄(∂X), and let N+ = N ∪∂X c̄(∂X). Notice that N+ ∼= c(∂X). We filter X+ so

that if v is the cone vertex of c(∂X), then X+ − {v} is filtered homeomorphic to X − ∂X,

and we let {v} be a 0-dimensional stratum. We also observe that the regular strata of X+

are the regular strata of X+−{v}, and so are bijectively paired with (in fact, homeomorphic

to) the regular strata of X − ∂X. In particular, the set {xj}mj=1 contains one point in each

regular stratum of X+.

Let p̄+ be a perversity on X+ that agrees with p̄ on X+−{v} and such that p̄+({v}) ≥ n.

Then I p̄
+
H∗(c(∂X);R) = 0 by the cone formula (Theorem 6.2.13). We have a commutative

diagram

I p̄Hn(X, ∂X;R)
∼= - I p̄Hn(X+ − {v}, N+ − {v};R)

∼= - I p̄Hn(X+, N+;R) �
∼=

I p̄Hn(X+;R)

⊕jI p̄Hn(X,X − {xj};R)
? ∼=- ⊕jI p̄Hn(X+ − {v}, X+ − ({xj} ∪ {v});R)

? ∼=- ⊕jI p̄
+

Hn(X+, X+ − {xj};R)

?

�
=
⊕jI p̄

+

Hn(X+, X+ − {xj};R).

?

The isomorphisms in the top row are due, respectively, to stratified homotopy equivalence,

excision, and the long exact sequence of the pair (using I p̄
+
H∗(c(∂X);R) = 0). The iso-

morphisms in the bottom row are by stratified homotopy equivalence and excision. The

commutativity comes from the commutativity of the space maps. The vertical map on the

far right is an isomorphism by Theorem 8.1.18, so the map on the left is also an isomorphism,

as desired.

Remark 8.3.4. If X has no codimension one strata and p̄ is a GM perversity, then by em-

ploying Lemma 5.5.6 and Corollary 5.5.7, we need not even assume in the proof of part (2)
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of Theorem 8.3.3 that our collars were formed in the stratification X. They might just as

well be collars from another stratification X ′, restratified to inherit the stratification from X.

This observation will be handy below in proving the topological invariance of fundamental

classes of ∂-stratified pseudomanifolds (Theorem 8.3.7).

By Lemma 8.3.2, if X is an R-orientable ∂-stratified pseudomanifold, then so is ∂X. We

will next show that, just like for manifolds, the boundaries of fundamental classes of compact

oriented ∂-stratified pseudomanifolds are fundamental classes on the boundaries.

Proposition 8.3.5. Suppose X is a compact R-oriented n-dimensional ∂-stratified pseudo-

manifold, and let ΓX be the fundamental class of X with respect to the given R-orientation.

Then ∂∗ : I 0̄Hn(X, ∂X;R)→ I 0̄Hn−1(∂X;R) takes ΓX to Γ∂X , a fundamental class of ∂X.

We define the orientation of ∂X consistent with the fundamental class Γ∂X to be the induced

R-orientation of ∂X determined by the given orientation of X.

The following lemma will be useful in then proving the proposition below. The unusual

choice of generator e for H1([0, 1], {0, 1};R) is to keep consistent with 0 being the collar

coordinate for boundaries, which is the notation we will use in the proof of the proposition.

Lemma 8.3.6. Let X be a CS set and R a Dedekind domain. Let e : [0, 1] → [0, 1] be the

1-simplex given by e(t) = 1− t so that e represents a generator of H1([0, 1], {0, 1};R). Then

the composition

I p̄Hi([0, 1]×X, {0, 1} ×X;R)
∂∗−→ I p̄Hi−1({0, 1} ×X, {1} ×X;R) ∼= I p̄Hi−1(X;R)

is an isomorphism with inverse given by

I p̄Hi−1(X;R)
e×−→ I p̄Hi([0, 1]×X, {0, 1} ×X;R).

Proof. We first demonstrate that our inverse map e× is an isomorphism. In fact, this is just

the composition

I p̄Hi−1(X;R) ∼= R⊗ I p̄Hi−1(X;R)

e⊗id−−→∼= H1([0, 1], {0, 1};R)⊗ I p̄Hi−1(X;R)

ε−→∼= I p̄Hi([0, 1]×X, {0, 1} ×X;R).

Here the first line takes ξ ∈ I p̄Hi−1(X;R) to 1⊗ ξ, and the second line takes 1⊗ ξ to e⊗ ξ.
The last map is the cross product, and so the full composition takes ξ to e× ξ. Even though

our unfiltered [0, 1] is not a CS set, this last map is an isomorphism by Proposition 7.3.69,

using the pair ((−ε, 1 + ε), (−ε, ε) ∪ (1− ε, 1 + ε)) as a CS model for ([0, 1], 0, 1). Of course

we also use that H∗([0, 1], {0, 1};R) is trivial except in degree 1, where it is isomorphic to R.

Now, suppose we start with an element of I p̄Hi−1(X;R) represented by the cycle ξ. Then

∂(e × ξ) = (∂e) × ξ = ξ0 − ξ1, where we let ξj represent the copy of ξ in {j} × X. As the

image of the connecting map ∂∗ can be determined by taking the boundaries of representing
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chains, we see that ∂∗(e× ξ) is represented by ξ0− ξ1 in I p̄Hi−1({0, 1}×X, {1}×X;R). The

image under the evident isomorphism

I p̄Hi−1({0, 1} ×X, {1} ×X;R) ∼= I p̄Hi−1({0} ×X;R) = I p̄Hi−1(X;R)

is then represented by ξ0, corresponding to our original ξ. So, omitting basic isomorphisms

from the notation, we see that the composition ∂∗ ◦ (e× ·) : I p̄Hi−1(X;R)→ I p̄Hi−1(X;R)

is the identity map. It follows that ∂∗ is also an isomorphism, the inverse to e×.

The proof of Proposition 8.3.5 is now based on that of [219, Corollary 6.3.10].

Proof of Proposition 8.3.5. Let N ′ ∼= [0, 2) × ∂X be a filtered collar neighborhood of ∂X.

Then let N be the image of [0, 1)×∂X, which will be a smaller filtered collar neighborhood.

We write N̄ ∼= [0, 1] × ∂X and N̊ ∼= (0, 1) × ∂X, and let N0 and N1 denote the images

of {0} × ∂X and {1} × ∂X, respectively, in X. Then we have the following commutative

diagram with R coefficients omitted.

I 0̄Hn(X, ∂X)
∂∗ - I 0̄Hn−1(∂X)

I 0̄Hn(X,X − N̊)

?
∂∗ - I 0̄Hn−1(X − N̊ ,X −N)

∼=
?

I 0̄Hn(N ′, N ′ − N̊)

∼=
6

∂∗ - I 0̄Hn−1(N ′ − N̊ ,N ′ −N)

∼=
6

I 0̄Hn(N̄ , N̄ − N̊)

∼=
6

∂∗ - I 0̄Hn−1(N̄ − N̊ ,N1)

∼=
6

I 0̄Hn([0, 1]× ∂X, {0, 1} × ∂X)

∼=
6

∂∗- I 0̄Hn−1({0, 1} × ∂X, {1} × ∂X).

∼=
6

All of the vertical maps are induced by spatial inclusions or filtered isomorphisms, and so

the diagram commutes by the naturality of the connecting morphisms ∂∗. The top right

vertical map is evidently an isomorphism as X − N̊ is the disjoint union of X −N and ∂X.

The other vertical maps along the right side are isomorphisms for analogous reasons. The

maps on the left marked as isomorphisms are isomorphisms by excision, stratified homotopy

equivalence, and filtered homeomorphism, respectively. The bottom horizontal map is an

isomorphism by Lemma 8.3.6.
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Now, let z be any point in a regular stratum of ∂X, let t ∈ (0, 1), and let x ∈ X be

the point of N ⊂ X corresponding to the coordinates (t, z). By definition, the image of ΓX
in I 0̄Hn(X,X − {x};R) ∼= R is a generator, and it follows that if we let γ ∈ I 0̄Hn([0, 1] ×
∂X, {0, 1} × ∂X;R) denote the image of ΓX under the lefthand maps of the diagram, then

γ further maps to a generator of I 0̄Hn([0, 1] × ∂X, [0, 1] × X − {(t, z)};R) thanks to the

diagram

I 0̄Hn(X, ∂X;R)

I 0̄Hn(X,X − N̊ ;R)

?
- I 0̄Hn(X,X − {x};R)

-

I 0̄Hn([0, 1]× ∂X, {0, 1} × ∂X;R)

∼=
6

- I 0̄Hn([0, 1]× ∂X, [0, 1]× ∂X − {(t, z)};R),

∼=
6

in which the lefthand maps are those of the preceding diagram and the righthand map is an

isomorphisms by excision, up to filtered homeomorphism.

By Lemma 8.3.6, the element γ ∈ I 0̄Hn([0, 1]× ∂X, {0, 1}× ∂X;R) is equal to e× ∂∗(γ),

with e a generator of H1([0, 1], {0, 1};R). But from our first diagram and the simple nature

of the maps on the right of that diagram, we see that

∂∗(γ) = ∂∗(ΓX) ∈ I 0̄Hn−1({0, 1} × ∂X, {1} × ∂X;R) ∼= I 0̄Hn−1(∂X;R).

So γ = e× ∂∗(ΓX).

Finally, we consider the diagram (coefficients tacit)

H1([0, 1], {0, 1})⊗ I 0̄Hn−1(∂X)
ε
∼=

- I 0̄Hn([0, 1]× ∂X, {0, 1} × ∂X))

H1([0, 1], [0, 1]− {t})⊗ I 0̄Hn−1(∂X, ∂X − {z})
?

ε
∼=
- I 0̄Hn([0, 1]× ∂X, [0, 1]× ∂X − {(t, z)}).

?

The horizontal maps are isomorphisms by the Künneth Theorem (Theorem 6.4.7 and Propo-

sition 7.3.69) and as H∗([0, 1], {0, 1};R) is trivial except in degree 1, where it is isomorphic to

R. Since e is a generator of H∗([0, 1], {0, 1};R), and so also of H∗([0, 1], [0, 1]− {t};R) ∼= R,

and since e× ∂∗(ΓX) maps to a generator of I 0̄Hn([0, 1]× ∂X, [0, 1]× ∂X −{(t, z)};R) ∼= R,

it follows that ∂∗(ΓX) must represent a generator of I 0̄Hn−1(∂X, ∂X − {z};R) ∼= R.

As z was an arbitrary regular point of ∂X, we see that the section s∂∗(ΓX) of the orientation

bundle of ∂X determined by ∂∗(ΓX) evaluates to a generator at each such regular point. Thus
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the restriction of s∂∗(ΓX) to ∂X−Σ∂X is an orientation section. By Lemma 8.1.14, the global

section s∂∗(ΓX) is the unique extension of this orientation section over ∂X − Σ∂X to all of

∂X, and, in particular, it is thus itself an orientation section of ∂X. As the image of ∂∗(ΓX)

in I 0̄Hn−1(∂X, ∂X − {y};R) for each y ∈ ∂X is s∂∗(ΓX)(y) by definition, ∂∗(ΓX) is therefore

the fundamental class determined by this orientation section, by Theorem 8.1.18.

Topological invariance

As we did in Section 8.1.5 for pseudomanifolds, we can also discuss the invariance of the

fundamental classes when working with pseudomanifolds with boundary. The treatment

over varying perversities is essentially equivalent to our work in Proposition 8.1.25 and

its corollary, so we will not run through all the details again. By contrast, invariance of

stratification is a bit trickier because, as noted in Remark 2.10.24, we do not have intrinsic

stratifications for pseudomanifolds with boundary. Thus we do not have an X to use as an

obvious intermediary as we did in Proposition 8.1.29. Hence, if we have two ∂-stratified

pseudomanifolds with the same underlying space pairs (|X1|, |∂X1|) = (|X2|, |∂X2|), we need

to begin by constructing an isomorphism I 0̄Hn(X1, ∂X1;R) ∼= I 0̄Hn(X2, ∂X2;R), ideally in

as canonical a way as possible. Then we need to show that this isomorphism takes the

fundamental class of X1 to that of X2, assuming compatible orientations. We will carry out

this program and then show that it produces a topological invariance of fundamental classes

in the vein of Remark 8.1.30.

We begin with our construction of the isomorphism, assuming that X1 and X2 are

compact n-dimensional ∂-stratified pseudomanifolds with the same underlying space pairs

(|X1|, |∂X1|) = (|X2|, |∂X2|) and without codimension one strata, compatibly R-oriented for

the Dedekind domain R in the sense of Corollary 8.1.11 (applied to |Xi|− |∂Xi|). We will in

fact construct the more general isomorphism φ : I p̄H∗(X1, ∂X1;R) → I p̄H∗(X2, ∂X2;R) for

any GM perversity p̄. We will make two choices, but then we will show that the isomorphism

does not depend on the choices and hence is canonical in this sense.

First, we letN2 be a filtered open collar neighborhood of ∂X2 inX2. Then letN2→1 denote

|N2| but now filtered by the filtration it inherits as a subspace of X1. As |N2| = |N2→1| is

an open set in |X2| = |X1|, the filtered space N2→1 is also a ∂-stratified pseudomanifold by

Lemma 2.7.8, using that |∂X1| = |∂X2| is compact, and we have ∂N2→1 = ∂X1. Therefore,

∂X1 has an open filtered collar neighborhood N1 in N2→1. Note that N1 is also a filtered

collar of ∂X1 in X1. Finally, let X be the intrinsic filtration of |X1 − ∂X1| = |X2 − ∂X2|,
and let N be the filtered subspace of X with underlying set |N2− ∂X2| = |N2→1− ∂X1|. By

Lemma 2.10.10, this subspace filtration of N is also its intrinsic filtration.

We now consider the following composition of isomorphism, coefficients omitted:

I p̄H∗(X1, ∂X1)
∼=−→ I p̄H∗(X1, N1)

∼=−→ I p̄H∗(X1, N2→1)
∼=←− I p̄H∗(X1 − ∂X1, N2→1 − ∂X1)

∼=−→ I p̄H∗(X,N)
∼=←− I p̄H∗(X2 − ∂X2, N2 − ∂X2)

∼=−→ I p̄H∗(X2, N2)
∼=←− I p̄H∗(X2, ∂X2).

The first and last maps are isomorphisms by stratified homotopy invariance as Ni has

a stratified deformation retraction to ∂Xi. The second map is an isomorphism by Lemma
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5.5.6 as p̄ is a GM perversity. The third and sixth arrows are isomorphisms by excision. The

fourth and fifth maps are isomorphisms by the topological invariance given by Theorem 5.5.1

(and Proposition 6.2.9, by which I p̄HGM
∗ (X;R) ∼= I p̄H∗(X;R), as we have no codimension

one strata and p̄ is a GM perversity).

Altogether, this composition gives an isomorphism φ : I p̄H∗(X1, ∂X1) ∼= I p̄H∗(X2, ∂X2)

that might seem to depend on our choices of N2 and N1. We next show that φ is actually

independent of these choices. Suppose we had chosen instead a filtered collar N ′2, constructed

N ′2→1 by filtering |N2| as a subspace of X1, and then chosen N ′1 with N ′1 ⊂ N ′2→1. Then we

can also find filtered collars N ′′i with N ′′i ⊂ Ni ∩ N ′i and with N ′′1 ⊂ N ′′2→1, letting N ′′2→1 be

|N ′′2 | with the filtration from X1.

Now we have a big commutative diagram (coefficients omitted)

I p̄H∗(X1, ∂X1)

I p̄H∗(X1, N1) �
�

∼=

I p̄H∗(X1, N
′′
1 )

∼=

?
- I p̄H∗(X1, N

′
1)

∼=

-

I p̄H∗(X1, N2→1)

∼=

?
� I p̄H∗(X1, N

′′
2→1)

∼=

?
- I p̄H∗(X1, N

′
2→1)

∼=

?

I p̄H∗(X1 − ∂X1, N2→1 − ∂X1)

∼=
6

� I p̄H∗(X1 − ∂X1, N
′′
2→1 − ∂X1)

∼=
6

- I p̄H∗(X1 − ∂X1, N
′
2→1 − ∂X1)

∼=
6

I p̄H∗(X,N)

∼=

?
� I p̄H∗(X,N

′′)

∼=

?
- I p̄H∗(X,N

′)

∼=

?

I p̄H∗(X2 − ∂X2, N2 − ∂X2)

∼=
6

� I p̄H∗(X2 − ∂X2, N
′′
2 − ∂X2)

∼=
6

- I p̄H∗(X2 − ∂X2, N
′
2 − ∂X2)

∼=
6

I p̄H∗(X2, N2)

∼=

?
� I p̄H∗(X2, N

′′
2 )

∼=

?
- I p̄H∗(X2, N

′
2)

∼=

?

I p̄H∗(X2, ∂X2).

∼=
6

∼=

-�

∼=

All the arrows so marked are isomorphisms by our previous discussion, and it follows that all

arrows are isomorphisms. This shows that our isomorphism φ is independent of our choices.
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It will be useful below in discussing Lefschetz duality to also formulate an isomorphism

for absolute intersection homology φ : I p̄H∗(X1;R)
∼=−→ I p̄H∗(X2;R). This can be obtained

from the relative isomorphism by simply leaving out the boundary and its neighborhoods.

We obtain

I p̄H∗(X1;R)
∼=←− I p̄H∗(X1−∂X1;R)

∼=−→ I p̄H∗(X;R)
∼=←− I p̄H∗(X2−∂X2;R)

∼=−→ I p̄H∗(X2;R).

In this case, the first and last isomorphisms are by stratified homotopy invariance.

Now that we have somewhat canonical isomorphisms φ, we can formulate a ∂-pseudomanifold

version of Proposition 8.1.29, which concerned invariance under restratification of fundamen-

tal classes for stratified pseudomanifolds without boundary:

Proposition 8.3.7. Let R be a Dedekind domain, and let X1 and X2 be compact n-dimensional

∂-stratified pseudomanifolds with the same underlying space pairs (|X1|, |∂X1|) = (|X2|, |∂X2|)
and without codimension one strata. Suppose X1 and X2 are compatibly R-oriented in

the sense of Corollary 8.1.11 (applied to |X| − |∂X|). Let Γ1 ∈ I 0̄Hn(X1, ∂X1;R) and

Γ2 ∈ I 0̄Hn(X2, ∂X2;R) be the fundamental classes with respect to these R-orientations.

Then the isomorphism φ : I 0̄Hn(X1, ∂X1;R)→ I 0̄Hn(X2, ∂X2;R) takes Γ1 to Γ2.

Remark 8.3.8. Analogously to Remark 8.1.30, it follows from Proposition 8.3.7 that if X is

a compact n-dimensional R-oriented ∂-stratified pseudomanifold without codimension one

strata, then the fundamental class ΓX is a topological invariant of the pair (|X|, |∂X|) in

the following sense: Suppose that Y is another compact R-oriented ∂-stratified pseudo-

manifold without codimension one strata and that f : (|X|, |∂X|) → (|Y |, |∂Y |) is a topo-

logical homeomorphism, i.e. that it is a homeomorphism of the underlying spaces without

regard to the stratifications. Then f induces an image stratification, say Y ′, on |Y |, and

an image R-orientation on Y ′ (via the pointwise isomorphisms f : I 0̄Hn(X,X − {x};R) →
I 0̄Hn(Y ′, Y ′ − {f(x)};R) for x ∈ |X| − |∂X|). Suppose that f is orientation preserving,

i.e. that the image R-orientation is compatible with the given R-orientation on Y in the

sense of Corollary 8.1.11 applied to |Y | − |∂Y |. Then it must also be the case, applying

Proposition 8.3.7, that f(ΓX) ∈ I 0̄Hn(Y ′, ∂Y ′;R) corresponds to ΓY under the isomorphism

φ : I 0̄Hn(Y ′, ∂Y ′;R)
∼=−→ I 0̄Hn(Y, ∂Y ;R).

Proof of Proposition 8.3.7. We must show that φ takes Γ1 to Γ2. As neither Xi has any

codimension one strata by assumption, each regular stratum of Xi − ∂Xi is contained as a

dense subset of one of the regular strata of the intrinsic filtration of |Xi − ∂Xi|, which we

continue to denote X as in the construction of φ. In fact, it follows from the argument in the

proof of Lemma 8.1.9 that each Xi − (ΣXi ∪ ∂Xi) is an open submanifold of X− ΣX that is

dense and such that the difference of these sets has codimension at least two. Furthermore,

by the argument provided in the proof of Lemma 8.1.10, the intersection of each regular

stratum of X − ΣX with each Xi − (ΣXi ∪ ∂Xi) is path connected. Therefore, we have a

bijection between the regular strata of X and the regular strata of Xi, with each regular

stratum of X−ΣX containing a unique regular stratum of each Xi− (ΣXi ∪ ∂Xi) as a dense,

path-connected open set.
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Thus, we can find a collection of points {xj}mj=1 such that

1. each xj is contained in regular strata of X1 − ∂X1 and X2 − ∂X2, and therefore also a

regular stratum of X,

2. each regular stratum of X1 − ∂X1 and X2 − ∂X2, and therefore each regular stratum

of X, contains exactly one xj, and

3. no xj is contained in N2, and hence also not in N1 or N.

Let M be the manifold (X1− (∂X1∪ΣX1))∩ (X2− (∂X2∪ΣX2)). As in our discussion in

Section 8.1.2, by the assumed compatibility of the orientations of X1 and X2 and the lack of

codimension one strata, the manifold M carries the orientation information for both Xi. In

other words, the R-orientation bundles of X1 and X2 both restrict to the same orientation

bundle over M (up to canonical isomorphisms induced locally by excision isomorphisms),

and, conversely, any orientation section on M extends uniquely to the compatible orientation

sections on X1−∂X1 and X2−∂X2 by Lemma 8.1.14. We then have a commutative diagram

(coefficients omitted):
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I 0̄Hn(X1, ∂X1) - ⊕jI 0̄Hn(X1, X1 − {xj})

I 0̄Hn(X1, N1)

∼=
?

- ⊕jI 0̄Hn(X1, X1 − {xj})

=

?

I 0̄Hn(X1, N2→1)

∼=
?

- ⊕jI 0̄Hn(X1, X1 − {xj})

=

?

I 0̄Hn(X1 − ∂X1, N2→1 − ∂X1)

∼=
6

- ⊕jI 0̄Hn(X1 − ∂X1, (X1 − ∂X1)− {xj})

∼=
6

⊕jHn(M,M − {xj})

�
�

�

�

I 0̄Hn(X,N)

∼=
?

- ⊕jI 0̄Hn(X,X− {xj})

∼=
? �

I 0̄Hn(X2 − ∂X2, N2 − ∂X2)

∼=
6

- ⊕jI 0̄Hn(X2 − ∂X2, (X2 − ∂X2)− {xj})

∼=
6

�

I 0̄Hn(X2, N2)

∼=
?

- ⊕jI 0̄Hn(X2, X2 − {xj})

∼=
?�

I 0̄Hn(X2, ∂X2)

∼=
6

- ⊕jI 0̄Hn(X2, X2 − {xj}).

6

=

�

The diagonal arrows are all excision isomorphisms, and the vertical arrows in the mid-

dle column are isomorphisms by excision and topological invariance. The top and bottom

horizontal arrows are isomorphism by Theorem 8.3.3, and so all the horizontal arrows are

isomorphisms. By Theorem 8.3.3, the Γi are the unique elements of the I 0̄Hn(Xi, ∂Xi : R)

whose images in the ⊕I 0̄Hn(Xi, Xi − {xj};R) are the direct sums of the local orientation

classes at the xj. The diagram thus demonstrates that φ, which is the composition along the

left side of the diagram, must take Γ1 to Γ2, as φ(Γ1) and Γ2 both restrict to the common
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local orientation classes of X1 and X2 in each I 0̄Hn(X2, X2 − {xj};R).

8.3.2 Lefschetz duality

Now we can prove Lefschetz duality theorems for compact ∂-stratified pseudomanifolds. We

will at first assume ∂X = AqB with each of A and B a union of components of ∂X, possibly

empty. In particular, this implies that A ∩ B = ∅. A more general theorem will follow as

Corollary 8.3.10.

If ΓX is the fundamental class determined by an orientation on the compact n-dimensional

∂-stratified pseudomanifold X, then we have a duality map

D : Ip̄H
i(X,B;R)→ IDp̄Hn−i(X,A;R)

given by

D(α) = (−1)|α|nα _ ΓX .

Even though X is not a CS set and A and B are not open subsets of X, this cap product

is well defined by Theorem 7.3.72. We show that with an appropriate locally torsion free

hypotheses this duality map is an isomorphism.

We remark that the freedom to work with singularities allows us to provide a somewhat

different proof from what is usually done for ∂-manifolds, e.g. [125, Theorem 3.43]; for a

proof of the following theorem more akin to the one in [125], see [100, Theorem 7.10].

Theorem 8.3.9 (Lefschetz duality). Suppose R is a Dedekind domain, and let X be a

compact n-dimensional R-oriented locally (p̄;R)-torsion free18 ∂-stratified pseudomanifold.

Let A and B be disjoint compact stratified pseudomanifolds with A ∪ B = ∂X, i.e. each of

A and B is a union of connected components of ∂X. Then the duality map

D : Ip̄H
i(X,B;R)→ IDp̄Hn−i(X,A;R)

induced by the cap product with the fundamental class ΓX is an isomorphism.

In particular, we have isomorphisms

D :Ip̄H
i(X;R)→ IDp̄Hn−i(X, ∂X;R)

D :Ip̄H
i(X, ∂X;R)→ IDp̄Hn−i(X;R).

Proof. Using Lemma 8.3.2, the spaces A and B are compact orientable stratified pseudo-

manifold. We can form a new stratified pseudomanifold19 X+ (without boundary) by coning

off A and B. Specifically, let X+ = c̄(A) ∪A X ∪B c̄(B). Let vA and vB denote the cone

vertices of the cones c̄A and c̄B, respectively, and let V = {vA, vB}. Using the existence of

a filtered collar of ∂X in X, it is easy to verify that X+ is a stratified pseudomanifold and

that X+ − V is filtered homeomorphic to X − ∂X. Therefore, there is a homeomorphism

18Or, equivalently, X can be locally (Dp̄;R)-torsion free; see Corollary 8.2.5.
19Compare Example 6.3.15, and note that we use the notation a bit differently here, although with

comparable computational results.
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between the manifolds X − (∂X ∪ ΣX) and X+ − ΣX+ , and since X is R-orientable so is

X+. As a choice of global orientation is determined by a choice of local orientation at one

point in each regular stratum (using that the orientability implies that the orientation sheaf

O is isomorphic to the constant bundle with fiber R over each regular stratum), we can thus

extend the given R-orientation of X to X+.

Let NA and NB be disjoint open filtered collars of A and B, respectively, in X, let

N+
A = NA ∪A c̄(A) ∼= c(A), let N+

B = NB ∪B c̄(B) ∼= c(B), and let N+ = N+
A q N+

B .

Let p̄+ be a perversity defined on X+ whose value on each stratum of X+ that is not in

V agrees with the value of p̄ on the corresponding stratum of X. Let p̄+({vA}) = −2

and p̄+({vB}) = n. Notice that the links of vA and vB in X+ are A and B, respectively,

and we have dim(A) − p̄+({vA}) − 1 = n and dim(B) − p̄+({vB}) − 1 = −2. Clearly

I p̄
+
H−2(B;R) = 0, while I p̄

+
Hn(A;R) = 0 by item (1) of Theorem 8.1.18. Therefore, X+ is

locally (p̄+;R)-torsion free at {vA} and {vB}. But p̄+ = p̄ for all other strata, and we have

assumed that X is locally (p̄;R)-torsion free. Thus X+ is locally (p̄+;R)-torsion free.

Consider now the following diagram:

Ip̄H
i(X,B;R) � Ip̄+H i(X+ − V,N+

B − {vB};R) � Ip̄+H i(X+, N+
B ;R) - Ip̄+H i(X+;R)

IDp̄Hn−i(X,A;R)

_ ΓX

?
- IDp̄

+

Hn−i(X
+ − V,N+

A − {vA};R)

_ ΓX+−V,N+−V

?

- IDp̄
+

Hn−i(X
+, N+

A ;R)

_ ΓX+,N+

?

� IDp̄
+

Hn−i(X
+;R).

_ ΓX+

?

We claim that, with appropriate definitions of the various Γs, this diagram commutes and

that all the horizontal arrows, which are all induced by inclusions, are isomorphisms. The

righthand vertical map is an isomorphism by Poincaré Duality (Theorem 8.2.4). It would

follow that all of the vertical maps are isomorphisms. The lefthand vertical map is, up to

sign, our Lefschetz duality map, so this would prove the theorem.

We will work right to left through the diagram. As Dp̄+({vA}) = n− 2− p̄+({vA}) = n,

we have IDp̄
+
H∗(N

+
A ;R) = 0 by the cone formula (Theorem 6.2.13). Similarly, p̄+({vB}) = n,

so Ip̄+H∗(N+
B ;R) = 0 by the cone formula and the Universal Coefficient Theorem (Theorem

7.1.4). Therefore, the horizontal maps in the righthand square are isomorphisms by the long

exact sequences of the pairs. We define ΓX+,N+ to be the image in I 0̄Hn(X+, N+;R) of

ΓX+ ∈ I 0̄Hn(X+;R). The righthand square then commutes by naturality of the cap product

(Proposition 7.3.6) with respect to the inclusion map (X+; ∅, ∅)→ (X+;N+
A , N

+
B ).

In the middle square, we consider the inclusions (X+ − V ;N+
A − {vA}, N

+
B − {vB}) →

(X+;N+
A , N

+
B ). By Proposition 8.1.24, having Dp̄+({vB}) = −2 < 0 implies that the

inclusion-induced map IDp̄
+
H∗(X

+ − {vB};R) → IDp̄
+
H∗(X

+;R) is an isomorphism, so

IDp̄
+
H∗(X

+ − {vB}, N+
A ;R) → IDp̄

+
H∗(X

+, N+
A ;R) is an isomorphism from the long exact

sequences and the Five Lemma. We also have that IDp̄
+
H∗(X

+ − V,N+
A − {vA};R) →

IDp̄
+
H∗(X

+−{vB}, N+
A ;R) is an isomorphism, by excision of {va}. Together, the composite

isomorphism

IDp̄
+

H∗(X
+ − V,N+

A − {vA};R)→ IDp̄
+

H∗(X
+ − {vB}, N+

A ;R)→ IDp̄
+

H∗(X
+, N+

A ;R)
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is the bottom map of the square. Using the Universal Coefficient Theorem and the Five

Lemma to dualize the isomorphisms to intersection cohomology, the argument that the top

map in the square is an isomorphism is essentially the same, interchanging A with B and

Dp̄+ with p̄+.

We also observe that (N+
A − {vA}) ∪ (N+

B − {vB}) = N+ − V ; then the inclusion map

I 0̄Hn(X+ − V,N+ − V ;R) → I 0̄Hn(X+, N+;R) is also an excision isomorphism, so we can

let ΓX+−V,N+−V ∈ I 0̄Hn(X+ − V,N+ − V ;R) be the image of ΓX+,N+ under the inverse

isomorphism. Once again the square commutes by naturality (Proposition 7.3.6).

For the leftmost square, we have the inclusion (X;A,B)→ (X+ − V ;N+
A − {vA}, N

+
B −

{vB}). Note that the perversity p̄+ on X+ restricts to the perversity p̄ on X. All three

inclusions are stratified homotopy equivalences (in fact, each image subset is a stratified

deformation retract of its codomain), so the horizontal maps are isomorphisms using strat-

ified homotopy invariance and the Five Lemma applied to the long exact sequence of the

pair. Theorem 7.3.72 provides the cap product with ΓX . We also claim that the image of

ΓX ∈ I 0̄Hn(X, ∂X;R) in I 0̄Hn(X+−V,N+−V ;R) is ΓX+−V,N+−V . Then we can once again

apply naturality (Proposition 7.3.6 and Theorem 7.3.72), which will complete the argument.

To verify the claim, let the set {x1, . . . , xm} ⊂ X+ −N+ consist of one point from each

regular stratum. Then this set also provides one point in each regular stratum of X. By

items (2) and (3) of Theorem 8.1.18, the class ΓX+ ∈ I p̄
+
Hn(X+;R) is the unique class

whose images in the I 0̄Hn(X+, X+−{xi};R) agree with the orientations at xi. As xi /∈ N+

for each i, the images of ΓX+,N+ also give the local orientations at the xi. But we have a

commutative diagram

I 0̄Hn(X, ∂X;R)
∼= - I 0̄Hn(X+ − V,N+ − V ;R)

∼= - I 0̄Hn(X+, N+;R)

⊕iI 0̄Hn(X,X − {xi};R)

∼=
? ∼=- ⊕iI 0̄Hn(X+ − V, (X+ − V )− {xi};R)

? ∼=- ⊕iI 0̄Hn(X+, X+ − {xi};R),

?

with the lefthand vertical isomorphism due to item (3) of Theorem 8.3.3 and the horizon-

tal maps isomorphism by stratified homotopy invariance and excision. It follows from the

diagram that ΓX must map across the composition in the top line to ΓX+,N+ , so the image

of ΓX in the middle term must be ΓX+−V,N+−V by the definition of ΓX+−V,N+−V . Thus ΓX
maps to ΓX+−V,N+−V as claimed.

This concludes the demonstration that D : Ip̄H
i(X,B;R) → IDp̄Hn−i(X,A;R) is an

isomorphism.

With Theorem 8.3.9 in hand, we can prove an even more general form of Lefschetz duality.

The following version of Poincaré duality, as well as the broad strokes of the following proof,

can be found for manifolds in [125, Theorem 3.43]. We include the extra details necessary

to verify commutativity of the main diagram of the proof for the cap product as we have

defined it here; this commutativity is more transparent in the manifold setting in [125] as

the front face/back face construction of cap products is available in that context.
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Corollary 8.3.10. Suppose R is a Dedekind domain, and let X be a compact n-dimensional

R-oriented locally (p̄;R)-torsion free20 ∂-stratified pseudomanifold. Let A and B be compact

∂-stratified pseudomanifolds with A∪B = ∂X and such that A∩B = ∂A = ∂B. Then there

is a duality isomorphism

D : Ip̄H
i(X,B;R)→ IDp̄Hn−i(X,A;R)

induced by the cap product with the fundamental class ΓX .

Proof. We will show that there is an up-to-sign commutative diagram

- Ip̄H
i(X, ∂X;R) - Ip̄H

i(X,A;R) - Ip̄H
i(∂X,A;R)

d∗
- Ip̄H

i+1(X, ∂X;R) -

Ip̄H
i(B, ∂B;R)

∼=

?

- IDp̄Hn−i(X;R)

_ ΓX

?
- IDp̄Hn−i(X,B;R)

_ ΓX

? ∂∗- IDp̄Hn−i−1(B;R)

_ ΓB

?
- IDp̄Hn−i−1(X;R)

_ ΓX

?
-

in which the rows are long exact. Then the corollary will follow from the Five Lemma, as

the leftmost displayed vertical map and the map _ ΓB are isomorphisms by Theorem 8.3.9

(using Lemma 8.3.2 to ensure that ∂X, and hence A and B, is R-orientable). The top row

here is the long exact sequence of the triple (X, ∂X,A), and the bottom row is the exact

sequence of the pair (X,B), so it suffices to check that the rectangles commute.

The square on the left can be viewed as the composite of two squares:

Ip̄H
i(X, ∂X;R) �

=
Ip̄H

i(X, ∂X;R) - Ip̄H
i(X,A;R)

IDp̄Hn−i(X;R)

_ ΓX

?
- IDp̄Hn−i(X,B;R)

_ ΓX

?
�
=

IDp̄Hn−i(X,B;R).

_ ΓX

?

These two squares each commute by the naturality of the cap product (Proposition 7.3.6

and Theorem 7.3.72) applied to the map (X; ∅, ∂X) → (X;B, ∂X) for the first square and

the map (X;B,A) → (X;B, ∂X) for the second square. We have already seen above how

to replace pairs of the form (X, ∂X) with open pairs that stratified deformation retract

to them by using collars. For the partial boundaries A and B, we can use the collars

of ∂A = ∂B in A and B to similarly create neighborhoods around A and B in ∂X that

stratified deformation retract to A and B, respectively. These neighborhoods can then be

extended to open subsets of ∂X in an extension of X to the union of X with an external

20Or, equivalently, X can be locally (Dp̄;R)-torsion free; see Corollary 8.2.5.
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collar on ∂X. Such neighborhoods can be used to ensure the existence of the necessary cap

products and the naturality.

The middle rectangles commutes up to sign by Proposition 7.3.38 via Theorem 7.3.72,

Lemma 7.3.73, and Example 7.3.74. Notice that we are notationally reversed from the

statement of Proposition 7.3.38, i.e. the A there corresponds to B here and vice versa. We

also note that the map i∗ of the proposition corresponds to the composition of the maps right

then down one arrow in our diagram here. We use that, up to signs, ΓB ∈ I 0̄Hn−1(B, ∂B;R)

maps to ∂∗(ΓX) ∈ I 0̄Hn−1(∂X,A;R) under the excision isomorphism guaranteed by the

first statement of Lemma 7.3.73; in fact, we know that ∂∗ΓX = Γ∂X and then the chains

representing ΓB and Γ∂X represent the same element of I 0̄Hn−1(∂X,A;R), as each of these

must restrict to the local orientation classes at points in B−∂B. Note also that by applying

the Universal Coefficient Theorem and the Five Lemma, the first statement of Lemma 7.3.73

also provides the isomorphism Ip̄H
i(∂X,A;R)

∼=−→ Ip̄H
i(B, ∂B;R).

For the commutativity up to sign of the final square, we expand it as

Ip̄H
i(∂X,A;R) - Ip̄H

i(∂X;R)
d∗
- Ip̄H

i+1(X, ∂X;R)

Ip̄H
i(B, ∂B;R)

∼=

?

IDp̄Hn−i−1(B;R)

_ ΓB

?
- IDp̄Hn−i−1(∂X;R)

_ Γ∂X

?
-

_
Γ
∂X

-

IDp̄Hn−i−1(X;R)

_ ΓX

?

The composition along the bottom is equivalent to the intersection homology map induced by

the inclusion B ↪→ X. The composition along the top is equal to the connecting map in the

long exact sequence of the triple; this can be seen by looking at the map of cohomology exact

sequences of triples induced by (X, ∂X, ∅) ↪→ (X, ∂X,A). Then the left triangle commutes

by naturality (Proposition 7.3.6) applied to the map of triples (B; ∅, ∂B)→ (∂X; ∅, A). This

uses again that chains representing ΓB in I 0̄Hn−1(B, ∂B;R) and Γ∂X in I 0̄Hn−1(∂X;R) both

represent the same element in I 0̄Hn−1(∂X,A;R) ∼= I 0̄Hn−1(B, ∂B;R) as they each represent

the local orientation class at each point of B − ∂B. Similarly, the triangle on the right

commutes by naturality (Proposition 7.3.6), applied to the map of triples (∂X; ∅, ∅) →
(∂X; ∅, A). Finally, the square on the right commutes up to sign by Proposition 7.3.37

via Theorem 7.3.72. Note that the triple (X;A,B) in the statement of Proposition 7.3.37

becomes here (X; ∅, ∂X), and so the necessary excision isomorphisms e and e′ both become

identity maps.

Example 8.3.11. Our definition of ∂-stratified pseudomanifolds includes the assumption that

the boundaries possess filtered collar neighborhoods. We have made regular use of this in our
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proofs, and in this example we show that the collar condition is also necessary, in general,

for our results.

Let X be the two-dimensional closed disk D2, and let z be a point in ∂X = ∂D1 =

S1. If we filter X as {z} ⊂ X, then X satisfies all the conditions to be a ∂-stratified

pseudomanifold except for the filtered collar condition. Let’s do some computations of

I 0̄H∗(X) and I 0̄H∗(X, ∂X). Letting z have its natural codimension of 2, we have 0̄({z}) =

0 = t̄({z}), and so by Proposition 6.2.9, we have I 0̄H∗(X) = I 0̄HGM
∗ (X) and I 0̄H2(X, ∂X) =

I 0̄HGM
2 (X, ∂X), which will simplify our computations.

First we observe that I 0̄HGM
2 (X) = 0: Suppose that ξ ∈ I 0̄SGM2 (X) is a cycle. Let c̄ξ

be the singular cone on ξ (see Example 3.4.7) with vertex at the center of the disk. If σ is

a simplex of c̄ξ, then σ has the form c̄τ for some simplex τ of ξ, and σ−1({z}) = τ−1({z}).
But since τ must be allowable and σ has higher degree, the simplex σ will also be allowable.

Thus c̄ξ will be allowable with ∂(c̄ξ) = ξ. Therefore, all cycles in I 0̄SGM2 (X) bound.

Next, let’s consider I 0̄HGM
1 (∂X). Recall from Section 4.3 that we let the filtration and

perversity on ∂X be inherited from X so that {z} continues to have codimension 2 as

a stratum of ∂X, which has formal dimension 2. If σ is a 1-simplex of ∂X, then for σ

to be 0̄-allowable, we must have σ−1({z}) contained in the skeleton of ∆1 of dimension

dim(σ)−codim({z})+0̄({z}) = 1−2+0 = −1. So no allowable simplex in ∂X can intersect

{z}, and it follows that I 0̄HGM
1 (∂X) = H1(∂X − {z}) = 0.

So, from the long exact sequence of the pair (X, ∂X), we must have I 0̄H2(X, ∂X) =

I 0̄HGM
2 (X, ∂X) = 0. This shows that X cannot have a fundamental class. Furthermore,

we must have I 0̄H0(X) = I 0̄HGM
0 (X) ∼= Z by Example 3.4.6, and so I0̄H

0(X) ∼= Z. As

D0̄ = t̄ = 0̄ for this example, we see that Lefschetz duality also fails.

So, this example shows that filtered collars are necessary, in general, to have fundamental

classes and Lefschetz duality for ∂-stratified pseudomanifolds as formulated here. However, a

modified version of Lefschetz duality, not via cap products but omitting the collar condition,

has been formulated in the PL setting by Valette [235].

Topological invariance

For Lefschetz duality, we have the following analogue of Theorem 8.2.6. The vertical iso-

morphisms labeled φ in the diagram are those constructed in the topological invariance

subsection of Section 8.3.1, while φ∗ is obtained by taking the cohomological duals of the

maps involved in the construction of φ. Applying the Universal Coefficient Theorem and the

Five Lemma, it follows from the maps being used to construct φ being isomorphisms that

their duals are also isomorphisms, and so φ∗ is an isomorphism.

Theorem 8.3.12. Suppose R is a Dedekind domain and p̄ is a GM perversity. Let X1 and X2

be two n-dimensional compact ∂-stratified pseudomanifolds with no codimension one strata

and with the same underlying space pairs (|X1|, |∂X1|) = (|X2|, |∂X2|). Suppose X1 and X2

are compatibly R-oriented in the sense of Corollary 8.1.11 (applied to |Xi| − |∂Xi|) and that

X1 and X2 are locally (p̄;R)-torsion free21. Then there are diagrams of isomorphisms

21By the argument of Proposition 5.5.9), both spaces are locally (p̄;R)-torsion free if either is.
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Ip̄H
i(X1, ∂X1;R)

D
- IDp̄Hn−i(X1;R)

Ip̄H
i(X2, ∂X2;R)

∼= φ∗

6

D
- IDp̄Hn−i(X2;R)

∼= φ

?

and

Ip̄H
i(X1;R)

D
- IDp̄Hn−i(X1, ∂X1;R)

Ip̄H
i(X2;R)

∼= φ∗

6

D
- IDp̄Hn−i(X2, ∂X2;R),

∼= φ

?

Remark 8.3.13. Analogously to Remark 8.2.7, it follows from such invariance results that

Lefschetz duality is a topological invariant in the following broader sense: Suppose X and

Y are compact n-dimensional R-oriented ∂-stratified pseudomanifolds without codimension

one strata, and suppose that f : (|X|, |∂X|) → (|Y |, |∂Y |) is a topological homeomorphism,

i.e. that it is a homeomorphism of the underlying spaces without regard to the stratifications.

Then X induces an image stratification, say Y ′, on Y , and an image R-orientation on Y ′.

Suppose that f is orientation preserving in the sense the image R-orientation is compatible

with the given R-orientation on Y in the sense of Corollary 8.1.11. Then employing Remark

8.3.8, Theorem 8.3.12, and naturality, we arrive at a diagram of isomorphisms of the following

form, and analogously for the other duality diagram of Theorem 8.3.12:

Ip̄H
i(X, ∂X;R)

D
- IDp̄Hn−i(X;R)

Ip̄H
i(Y ′, ∂Y ′;R)

∼= f ∗

6

D
- IDp̄Hn−i(Y

′;R)

∼= f

?

Ip̄H
i(Y, ∂Y ;R)

∼= φ∗

6

D
- IDp̄Hn−i(Y ;R).

∼= φ

?

Proof of Theorem 8.3.12. The proof runs through essentially the same sorts of isomorphisms

as the proof of Proposition 8.3.7. We continue with the notation established there in the

construction of the isomorphism φ and construct the following diagram (coefficients tacit).
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The composition up the left side is φ∗, while the composition down the right is φ. Recall

that we have shown that these composites are independent of the precise choices of N1 and

N2, and note that Dp̄ is a GM perversity as we have assumed that p̄ is.

Ip̄H
i(X1, ∂X1)

D
∼=

- IDp̄Hn−i(X1)

Ip̄H
i(X1, N1)

∼=
6

D
- IDp̄Hn−i(X1)

=

?

Ip̄H
i(X1, N2→1)

∼=
6

D
- IDp̄Hn−i(X1)

=

?

Ip̄H
i(X1 − ∂X1, N2→1 − ∂X1)

∼=

? D
- IDp̄Hn−i(X1 − ∂X1)

∼=
6

Ip̄H
i(X,N)

∼=
6

D
- IDp̄Hn−i(X)

∼=
?

Ip̄H
i(X2 − ∂X2, N2 − ∂X2)

∼=

? D
- IDp̄Hn−i(X2 − ∂X2)

∼=
6

Ip̄H
i(X2, N2)

∼=
6

D
- IDp̄Hn−i(X2)

∼=
?

Ip̄H
i(X2, ∂X2)

∼=

? D
∼=
- IDp̄Hn−i(X2).

=

6

(8.9)

The diagram commutes by the naturality of cap products (Proposition 7.3.6), which

holds in each case due to Theorem 7.3.72, using Remark 7.3.70 to generalize for the pairs

(X1, N1), (X1, N2→1), and (X2, N2). The vertical isomorphisms are those of φ and φ∗. All of

the horizontal arrows are signed cap products with the fundamental classes or their images
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under the maps in the construction of φ for perversity 0̄. Proposition 8.3.7 shows that the

image in I 0̄Hn(X2, ∂X2;R) of the fundamental class for X1 is the fundamental class of X2.

So the top and bottom horizontal maps are the Lefschetz duality isomorphisms (Theorem

8.3.9) induced by the compatible orientations. The compositions along the perimeter of the

diagram provide our first claimed diagram of isomorphisms.

The argument for the second claimed diagram is analogous.

Remark 8.3.14. We leave the reader to formulate and verify the analogous topological in-

variance property of Lefschetz duality of the form D : Ip̄H
i(X,B;R)→ IDp̄Hn−i(X,A;R).

8.4 The cup product and torsion pairings

In this section, we discuss the nonsingular pairings that arise as a consequences of Poincaré

and Lefschetz duality. The first, the cup product pairing on the torsion-free quotients of

the cohomology groups, is well known from manifold theory and is a standard topic in

introductory texts. The torsion product pairing is also classical for manifolds but is less

often treated in textbooks. We also discuss, in Section 8.4.5, the “image pairings” that can

be used to construct signatures on ∂-stratified pseudomanifolds.

As usual, throughout this section we continue to assume that our base ring R is a

Dedekind domain.

8.4.1 Some algebra

We begin by introducing some notation and recalling some algebraic background.

Pairings

First, let us recall what we mean by a nonsingular pairing, starting with the general definition

of a pairing.

Definition 8.4.1. Let A,B,C be R-modules. A homomorphism P : A ⊗ B → C is called

a pairing. If a ∈ A and b ∈ B. Then we typically write P (a ⊗ b) = P (a, b). Of course, not

every element of A⊗B has the form a⊗ b, but knowing all the P (a, b) (in fact, just knowing

P (a, b) as a and b run over sets of generators) is enough to determine P completely, as P is

a homomorphism and so behaves bilinearly with respect to its two inputs.

We say that two pairings P : A ⊗ B → C and Q : D ⊗ E → C are isomorphic if there

are isomorphisms f : A→ D and g : B → E such that the following diagram commutes:

A⊗B

C

P

-

D ⊗ E

f ⊗ g

?

Q -

.
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Recall that there is an adjunction isomorphism Λ : Hom(A⊗B,C)
∼=−→ Hom(A,Hom(B,C))

(see, e.g. [237, Proposition 2.6.3]): Given P ∈ Hom(A ⊗ B,C), then Λ(P ) is defined to

take a ∈ A to the homomorphism P (a, ·) ∈ Hom(B,C), which takes b ∈ B to P (a, b).

In other words, ((Λ(P ))(a))(b) = P (a, b). Conversely, if F ∈ Hom(A,Hom(B,C)), then

Λ−1(F ) ∈ Hom(A⊗ B,C) is the unique pairing that takes a⊗ b to (F (a))(b). Analogously,

there is an adjunction isomorphism Λ′ : Hom(A ⊗ B,C)
∼=−→ Hom(B,Hom(A,C)) such that

Λ′(P )(b) = P (·, b).

Definition 8.4.2. The pairing P : A ⊗ B → C is called nonsingular if the corresponding

adjoint maps Λ(P ) : A→ Hom(B,C) and Λ′(P ) : B → Hom(A,C) are both isomorphisms.

A slightly weaker notion that will concern us in Section 8.4.5 is that of a pairing being

nondegenerate, which means that Λ(P ) : A→ Hom(B,C) and Λ′(P ) : B → Hom(A,C) are

injective. This is equivalent to saying that P (a, b) = 0 for all b ∈ B if and only if a = 0

and that P (a, b) = 0 for all a ∈ A if and only if b = 0. One is frequently concerned with

pairings of finitely generated vector spaces with image in the ground field. In this case, a

pairing is nondegenerate if and only if it is nonsingular, so the two expressions tend to be

used interchangeably in that context.

Torsion submodules and torsion-free quotients

Next we need some notation and background results about torsion submodules and their

torsion-free quotients:

Definition 8.4.3. If A is an R-module, let T (A) denote the R-torsion submodule of A,

T (A) = {a ∈ A | ∃r ∈ R, r 6= 0, such that ra = 0}.

Let F (A) = A/T (A) be the torsion-free quotient of A.

The module F (A) is torsion free: if a ∈ A and ra ∈ T (A) for some r ∈ R, r 6= 0, then

there is some s ∈ R, s 6= 0, such that s(ra) = (sr)a = 0; as R is a domain, this means that

a ∈ T (A), so a represents 0 in F (A). Recall also that torsion-free modules over Dedekind

domains are flat; see Section A.4.2. Furthermore, if F (A) is finitely generated (in particular,

if A is finitely generated), then F (A) is projective using that R is a Dedekind domain

and hence Noetherian [30, Theorem VII.2.2.1] and that finitely-generated flat modules over

Noetherian rings are projective [146, Theorem 4.38].

Example 8.4.4. As observed in the proof of Corollary 8.2.5, the module Hom(A,R) is torsion

free for any R-module A, so T (Hom(A,R)) = 0 and F (Hom(A,R)) = Hom(A,R).

Recall next that the cohomological dimension of a Dedekind domain is ≤ 1 (see [196,

Proposition 8.1] and use that Dedekind domains are hereditary by definition [196, page

161]). In particular, this means that Extn(A,B) = 0 for n > 1 and for R-modules A,B.

This justifies our writing Ext(A,B) to mean Ext1(A,B) throughout the text. Therefore, the
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right derived homology exact sequence for the functor Hom(·, R) (see [196, Corollary 6.62])

applied to the short exact sequence

0→ T (A)→ A→ F (A)→ 0

yields the exact sequence

0→ Hom(F (A), R)→ Hom(A,R)→ Hom(T (A), R)

→ Ext(F (A), R)→ Ext(A,R)→ Ext(T (A), R)→ 0.

But Hom(T (A), R) must be 0 because if x ∈ T (A) with rx = 0, r 6= 0, then for any

f ∈ Hom(T (A), R) we have rf(x) = f(rx) = f(0) = 0; this implies f(x) = 0, as R is a

domain. Additionally, if F (A) is finitely generated (for example if A is finitely generated),

then F (A) is projective, so Ext(F (A), R) = 0. Thus we have the following lemma, which

also incorporates Example 8.4.4.

Lemma 8.4.5. If R is a Dedekind domain and A is an R-module, then

1. Hom(A,R) is torsion free,

2. the canonical map Hom(F (A), R)→ Hom(A,R) is an isomorphism,

3. if F (A) is finitely generated (in particular, if A is finitely generated), then the canonical

map Ext(A,R)→ Ext(T (A), R) is an isomorphism.

Next, let Q(R) denote the field of fractions of R (see [147, Section II.4]); an important

special case is R = Z with Q(Z) = Q. There is an exact sequence

0→ R→ Q(R)→ Q(R)/R→ 0

and, again using that R has cohomological dimension ≤ 1, the right derived homology exact

sequence of the functor Hom(A, ·) (see [196, Corollary 6.46] or [126, Section IV.8]) yields the

six-term exact sequence

0→ Hom(A,R)→ Hom(A,Q(R))→ Hom(A,Q(R)/R)

→ Ext(A,R)→ Ext(A,Q(R))→ Ext(A,Q(R)/R)→ 0. (8.10)

In this sequence, Ext(A,Q(R)) is trivial, as Q(R) is a field. Thus also Ext(A,Q(R)/R) = 0.

We will be particularly interested in the case where A is replaced with its torsion submodule

T (A). In this case, we have seen just above that Hom(T (A), R) = 0 and Hom(T (A), Q(R)) =

0 by the same argument, as Q(R) is also a domain. This yields the first part of the following

lemma.

Lemma 8.4.6. If R is a Dedekind domain and A is an R-module, then

1. the connecting map Hom(T (A), Q(R)/R)→ Ext(T (A), R) is an isomorphism, and
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2. if A is finitely generated, then Hom(T (A), Q(R)/R) ∼= Ext(T (A), R) ∼= Ext(A,R) is a

torsion module.

Proof. The first item has already been shown in the discussion just above. For the second,

we first observe that if A is finitely generated, then so is F (A), so the isomorphisms come

from Lemma 8.4.5 and the first part of this lemma. Additionally, T (A) will be finitely

generated, as R is Noetherian (see [30, Theorem VII.2.2.1] and [147, Section X.1]). So,

suppose f ∈ Hom(T (A), Q(R)/R), and let {xi} be a finite set of generators of T (A). For

each f(xi) ∈ Q(R)/R, there is some ri ∈ R, ri 6= 0, such that rif(xi) = 0; for example, we

can let ri be the denominator of any fraction in Q(R) representing f(xi). If we let r =
∏

i ri,

then rf takes all generators of T (A) to 0 and so rf = 0, r 6= 0.

8.4.2 The cup product pairing

We now turn to demonstrating that Poincaré and Lefschetz duality imply that the cup

product determines nonsingular pairings. For the sake of generality, we state the result for

a ∂-stratified pseudomanifold, but of course ∂X may be empty.

Theorem 8.4.7. Suppose R is a Dedekind domain, and let X be a compact n-dimensional

R-oriented locally (p̄;R)-torsion free ∂-stratified pseudomanifold. Then the composition22

F (Ip̄H
i(X;R))⊗ F (IDp̄H

n−i(X, ∂X;R))
^−→ F (I0̄H

n(X, ∂X;R))
D−→ F (I t̄H0(X;R))

a−→ R

(8.11)

is a nonsingular pairing.

Definition 8.4.8. We will refer to the pairing of (8.11) as the cup product pairing. Evidently,

there is a similar cup product pairing

F (Ip̄H
i(X, ∂X;R))⊗ F (IDp̄H

n−i(X;R))
^−→ F (I0̄H

n(X, ∂X;R))
D−→ F (I t̄H0(X;R))

a−→ R.

Proof of Theorem 8.4.7. First, we verify that the given composition makes sense.

As X is locally (p̄;R)-torsion free, the triples (p̄, Dp̄; 0̄) and (t̄, 0̄; 0̄) are both agreeable by

Corollary 7.2.10 and so the underlying cup and cap products are defined. In case ∂X 6= ∅,
these exists by Corollary 7.3.71.

If α ∈ Ip̄H i(X;R) and β ∈ IDp̄Hn−i(X, ∂X;R) and either α or β is a torsion element,

then α ^ β must be a torsion element as the cup product is bilinear. For example, if rα = 0

for r ∈ R, r 6= 0, then r(α ^ β) = (rα) ^ β = 0. Similarly, if γ ∈ I0̄H
n(X, ∂X;R)

is a torsion element then D(γ) is a torsion element, and if ξ ∈ I t̄H0(X;R) is a torsion

element then a(ξ) = 0. So each map ^, _, and a descends to a well-defined map of

torsion-free quotient modules as indicated, and, in particular, the cup product pairing de-

fined as the composition is well defined on F (Ip̄H
i(X;R)) ⊗ F (IDp̄H

n−i(X, ∂X;R)). It

22In fact, by an easy generalization of Example 3.4.6, the module I t̄H0(X;R) is free and so

F (I t̄H0(X;R)) = I t̄H0(X;R). Consequently, by Lefschetz duality (Theorem 8.3.9), we also have

F (I0̄H
n(X, ∂X;R)) = I0̄H

n(X, ∂X;R).
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remains to show that the adjoint maps F (Ip̄H
i(X;R)) → Hom(F (IDp̄H

n−i(X, ∂X;R)), R)

and F (IDp̄H
n−i(X, ∂X;R)) → Hom(F (Ip̄H

i(X;R)), R) determined by the pairing are iso-

morphisms.

Let us see how the adjoint to the pairing operates. Given α ∈ F (Ip̄H
i(X;R)), its

image in Hom(F (IDp̄H
n−i(X, ∂X;R)), R) takes β ∈ F (IDp̄H

n−i(X, ∂X;R)) to23 a(D(α ^

β)) = (−1)na((α ^ β) _ Γ). We want to rewrite this formula using associativity of

cup and cap products. Using our hypotheses, the torsion free properties of t̄ (Example

6.3.22), and Corollary 8.2.5, the space X is locally torsion free with respect to all perversities

involved, and so the associativity property of Proposition 7.3.35 holds by Remark 7.3.36 as

D0̄ = Dt̄ + Dp̄ + D(Dp̄). When ∂X 6= ∅, we further invoke item (7) of Theorem 7.3.72,

noting that our space pairs satisfy the necessary requirements by Example 7.3.68. So now

we have

a(D(α ^ β)) = (−1)na((α ^ β) _ Γ) = (−1)na(α _ (β _ Γ)).

By Proposition 7.3.25 and item (6) of Theorem 7.3.72, this is further equivalent to the

evaluation (−1)nα(β _ Γ). Once again, these formulas and identities descend in a well-

defined manner to the torsion-free quotient modules.

Let κ : Ip̄H
i(X;R)→ Hom(I p̄Hi(X;R), R) be the universal coefficient (Kronecker) eval-

uation map in the universal coefficient sequence of Theorem 7.1.4

0← Hom(I p̄Hi(X;R), R)
κ←− Ip̄H

i(X;R)← Ext(I p̄Hi−1(X;R), R)← 0.

Then (−1)nα(β _ Γ) can be written more pedantically as (−1)n(κ(α))(β _ Γ). Further-

more, as I p̄Hi(X;R) is finitely generated by Corollary 6.3.40, the Ext term is a torsion

module by Lemma 8.4.6, while Hom(I p̄Hi(X;R), R) is torsion free. It follows that κ induces

an isomorphism F (Ip̄H
i(X;R)) ∼= Hom(I p̄Hi(X;R), R) ∼= Hom(F (I p̄Hi(X;R)), R) and that

T (Ip̄H
i(X;R)) ∼= Ext(I p̄Hi−1(X;R), R).

Next, we compute that

(−1)nκ(α)(β _ Γ) = (−1)n+n(n−i)κ(α)(D(β))

= (−1)n+n(n−i)+in(D∗(κ(α)))(β)

= D∗(κ(α))(β),

where D∗ is the Hom(·, R) dual of D and we have used the Koszul convention for the

interchange of the degree n operator D with the degree i operator κ(α).

So, altogether, our adjoint map F (Ip̄H
i(X;R))→ Hom(F (IDp̄H

n−i(X, ∂X;R)), R) takes

α to D∗(κ(α)). But we have just observed that κ is an isomorphism F (Ip̄H
i(X;R)) →

Hom(F (I p̄Hi(X;R)), R), and it follows from Theorem 8.3.9 that D∗ is an isomorphism from

Hom(F (I p̄Hi(X;R)), R) to Hom(F (IDp̄H
n−i(X, ∂X;R)), R). Thus we have shown that the

desired map F (Ip̄H
i(X;R))→ Hom(F (IDp̄H

n−i(X, ∂X;R)), R) is an isomorphism.

23Our conventions for the Poincaré duality map are responsible for the sign (−1)n, which is probably not

commonly in use for the cup product pairing. However, the most important uses of the cup product pairing

in the literature are, no doubt, those involving the symmetric and anti-symmetric self-pairings on the middle

dimensional cohomology of even-dimensional manifolds, in which case the sign is 1.
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For the map F (IDp̄H
n−i(X, ∂X;R))→ Hom(F (Ip̄H

i(X;R)), R), we use that, by Propo-

sition 7.3.15 and item (4) of Theorem 7.3.72, we have a((α ^ β) _ Γ) = a((β ^ α) _ Γ),

up to sign. From here, we can utilize an equivalent argument to that above, interchanging

the roles of α and β and of (X, ∅) and (X, ∂X).

Example 8.4.9. Let X = S(RP 2) be the suspension of RP 2, stratified in the natural way with

just two singular points at the north and south poles. Let 0̄ and 1̄ be the perversities that

take values, respectively, 0 or 1 at both singular points. These are dual Goresky-MacPherson

perversities. Using Theorem 6.3.13, we compute

I 0̄H3(X;Z2) ∼= Z2 I 1̄H3(X;Z2) ∼= Z2

I 0̄H2(X;Z2) ∼= 0 I 1̄H2(X;Z2) ∼= Z2

I 0̄H1(X;Z2) ∼= Z2 I 1̄H1(X;Z2) ∼= 0

I 0̄H0(X;Z2) ∼= Z2 I 1̄H0(X;Z2) ∼= Z2.

Thus, taking Z2 as our ground field, the Universal Coefficient Theorem for cohomology

implies

I0̄H
3(X;Z2) ∼= Z2 I1̄H

3(X;Z2) ∼= Z2

I0̄H
2(X;Z2) ∼= 0 I1̄H

2(X;Z2) ∼= Z2

I0̄H
1(X;Z2) ∼= Z2 I1̄H

1(X;Z2) ∼= 0

I0̄H
0(X;Z2) ∼= Z2 I1̄H

0(X;Z2) ∼= Z2.

Theorem 8.4.7 now provides nontrivial nonsingular pairings

I0̄H
3(X;Z2)⊗ I1̄H

0(X;Z2)→ Z2

I0̄H
1(X;Z2)⊗ I1̄H

2(X;Z2)→ Z2

I0̄H
0(X;Z2)⊗ I1̄H

3(X;Z2)→ Z2.

In particular, if α ∈ I0̄H
1(X;Z2) and β ∈ I1̄H

2(X;Z2) are the non-zero elements, then

α ^ β 6= 0.

This is quite different from the situation for cup products in ordinary cohomology on

suspensions; in that setting, the cup product on reduced cohomology is always trivial (see,

e.g. [230, Corollary 13.66]).

8.4.3 The torsion pairing

We continue to assume that R is a Dedekind domain and X is a compact R-oriented ∂-

stratified pseudomanifold. The proof of Theorem 8.4.7, which establishes the nonsingularity

of the cup product pairing, shows that the adjoint of this pairing is the composition D∗κ,

where D∗ is the Hom(·, R) dual of the Poincaré/Lefschetz duality map D and κ is the Kro-

necker evaluation map κ : Ip̄H
i(X;R) → Hom(I p̄Hi(X;R), R). Relatedly, there is another
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pairing that can be obtained by a similar composition, this time using the torsion side of

the universal coefficient splitting

Ip̄H
i(X;R) ∼= Hom(I p̄Hi(X;R), R)⊕ Ext(I p̄Hi−1(X;R), R).

Applying the Universal Coefficient Theorem together with Lemmas 8.4.5 and 8.4.6, we

have a composite isomorphism

λ : T (Ip̄H
i(X;R)) ∼= Ext(I p̄Hi−1(X;R), R)

∼= Ext(T (I p̄Hi−1(X;R)), R) ∼= Hom(T (I p̄Hi−1(X;R)), Q(R)/R). (8.12)

We will study the precise maps in this composition more carefully in the coming pages,

but for now we note that if we compose λ with a different D∗, the Hom(·, Q(R)/R) dual

of D, restricted to be an isomorphism between torsion submodules, then we arrive at an

isomorphism D∗λ : T (Ip̄H
i(X;R))→ Hom(T (IDp̄H

n−i+1(X, ∂X;R)), Q(R)/R). The adjoint

is thus a pairing

L : T (Ip̄H
i(X;R))⊗ T (IDp̄H

n−i+1(X, ∂X;R))→ Q(R)/R.

It will take some work to unravel this pairing in terms of cup and cap products and to show

that the other adjoint T (IDp̄H
n−i+1(X, ∂X;R))→ Hom(T (Ip̄H

i(X;R)), Q(R)/R) is also an

isomorphism. However, we can state now the end result:

Theorem 8.4.10. Suppose R is a Dedekind domain and that X is a compact n-dimensional

R-oriented locally (p̄;R)-torsion free ∂-stratified pseudomanifold. Then the composition of

isomorphisms

T (Ip̄H
i(X;R))

λ−→ Hom(T (I p̄Hi−1(X;R)), Q(R)/R)

D∗−→ Hom(T (IDp̄H
n−i+1(X, ∂X;R)), Q(R)/R)

determines an adjoint nonsingular pairing

Lp̄,Dp̄ : T (Ip̄H
i(X;R))⊗ T (IDp̄H

n−i+1(X, ∂X;R))→ Q(R)/R.

Analogously, there is a nonsingular pairing

L′Dp̄,p̄ : T (IDp̄H
n−i+1(X, ∂X;R))⊗ T (Ip̄H

i(X;R))→ Q(R)/R.

If α, β are cochains representing elements in T (Ip̄H
i(X;R)) and T (IDp̄H

n−i+1(X, ∂X;R)),

respectively, and if tβ = db for b ∈ IDp̄S
n−i(X, ∂X;R), t ∈ R, t 6= 0, and rα = da for

a ∈ Ip̄Si−1(X;R), r ∈ R, r 6= 0, then

Lp̄,Dp̄(α⊗ β) = (−1)n
a((α ^ b) _ Γ)

t

L′Dp̄,p̄(β ⊗ α) = (−1)n
a((β ^ a) _ Γ)

r
.

Furthermore,

Lp̄,Dp̄(α⊗ β) = (−1)1+n+inL′Dp̄,p̄(β ⊗ α).
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The proof of the theorem will proceed over several steps. First we study the components

of the map λ in more detail in order ultimately to come up with an explicit expression for

λ(α)(β) when α ∈ T (Ip̄H
i(X;R)) and β ∈ T (I p̄Hi−1(X;R)). We use this expression to

write the torsion pairing explicitly in terms of cup and cap products. This then provides the

symmetry formula and allows us to show that the torsion pairing is nonsingular. All this

work will take us through most of the remainder of this section. After proving the theorem,

we briefly discuss another common approach to torsion pairings.

The components of λ

To begin, we need to understand the map λ in more detail, starting with specifying the

identification of the Ext summand of the Universal Coefficient Theorem as the torsion sub-

module of Ip̄H
i(X;R). For this, we bring back some of our convenient notation from Section

6.4.5 as well as adding some more: Let Ci = I p̄Si(X;R), let Zi = ker(∂ : I p̄Si(X;R) →
I p̄Si−1(X;R)), and let Bi = im(∂ : I p̄Si+1(X;R) → I p̄Si(X;R)). Further, let Wi ⊂ Ci be

the submodule of weak boundaries, i.e.

Wi = {w ∈ Ci | ∃rw 6= 0 ∈ R such that rww ∈ Bi}.

In other words, elements of Wi need not necessarily be boundaries, but they are the elements

of Ci that have non-zero scalar multiples that are boundaries. Note that, for a given w ∈ Wi,

there is not a unique associated rw, but for the purposes of our current discussion we can

assume that some particular rw has been fixed for each w. Observe that Bi ⊂ Wi ⊂ Zi, the

first inclusion by using rw = 1 and the second because if w ∈ Wi then 0 = ∂(rww) = rw(∂w),

so ∂w = 0 as Ci is projective and hence torsion free.

Now, by definition Ext(·, R) is the right derived functor of Hom(·, R), so using the pro-

jective resolution

0→ Bi−1
i−→ Zi−1 → Hi−1(C∗)→ 0

with i the inclusion, we can realize Ext(I p̄Hi−1(X;R), R) concretely as the cokernel of the

dual i∗ : Hom(Zi−1, R) → Hom(Bi−1, R). So the embedding map Ext(I p̄Hi−1(X;R), R) →
Ip̄H

i(X;R) can be written in terms of an appropriate map Hom(Bi−1, R) → Ip̄H
i(X;R),

and this is essentially what is done in proofs of the Universal Coefficient Theorem with

the map being essentially the adjoint of the boundary map ∂ : Ci → Bi−1. Indeed, if

f ∈ Hom(Bi−1, R), then ∂∗f acts on elements x ∈ Ci by f(∂x) (up to sign), and so d(∂∗f)

acts by f(∂∂x) = 0. Therefore, ∂∗f is a cocycle and represents a class in Ip̄H
i(X;R).

This is the basic idea of the following lemma, which indeed maps Ext(I p̄Hi−1(X;R), R)

isomorphically to a submodule of Ip̄H
i(X;R) via ∂∗.

Remark 8.4.11. As the boundary map ∂ lowers degrees by 1, the adjoint ∂∗ should technically

be treated as a map of cohomological degree 1. However, in this section we will not really be

concerned with chain maps so much as the torsion pairings in fixed degrees, and ultimately

what we really want is the torsion pairing in the form stated in Theorem 8.4.10 — the λ

maps we are developing are more of a means to an end. Hence, to simplify some of the

coming formulas, we will abuse the Koszul convention for the definition of ∂∗ used here and

let ∂∗f act on a chain x by (∂∗f)(x) = f(∂x).
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Lemma 8.4.12. The torsion submodule of Ip̄H
i(X;R) is the image of the map

∂∗ : Hom(Bi−1, R)→ H i(Hom(Ci, R)) = Ip̄H
i(X;R).

Furthermore, the kernel of ∂∗ is the image of i∗ : Hom(Zi−1, R) → Hom(Bi−1, R), the dual

of the inclusion i : Bi−1 ↪→ Zi−1. Therefore, the map ∂∗ induces an isomorphism ∂∗ :

Ext(I p̄Hi−1(X;R), R)
∼=−→ T (Ip̄H

i(X;R)).

Proof. We begin by recalling the proof of the Universal Coefficient Theorem (see [126], [237],

or [181]; the discussion is also similar to our look at the algebraic Künneth theorem in Section

6.4.5). Continuing the notation introduced just before the statement of the lemma, let Z∗
be the chain complex with modules Zi and all boundary maps 0, and let B′∗ be the chain

complex with modules B′i = Bi−1 and all boundary maps 0. Note that, as R is a Dedekind

domain, each Zi and B′i is projective, being submodules of the projective I p̄Si(X;R) and

I p̄Si−1(X;R), respectively.

We have a short exact sequence of chain complexes24

0→ Z∗
j−→ C∗

δ−→ B′∗ → 0,

where j is inclusion and δ is the boundary map in I p̄S∗(X;R), treated as a degree 0 chain

map. As each module is projective, this sequence dualizes to the short exact sequence of

cochain complexes and degree zero chain maps

0←− Hom(Z∗, R)
j∗←− Hom(C∗, R)

δ∗←− Hom(B′∗, R)←− 0.

Taking (co)homology, setting Hom(B′∗, R) = Hom(B∗−1, R), and recognizing δ∗ now as

∂∗ up to signs, the resulting long exact sequence includes sections of the form

←− Hom(Z∗, R)
j∗←− Ip̄H

i(X;R)
∂∗←− Hom(B∗−1, R)←− Hom(Z∗−1, R)←− .

The cohomology symbols H i do not need to appear in several terms because the differentials

of the complexes Hom(Z∗, R) and Hom(B′∗, R) are trivial. A diagram chase with the zig-zag

construction shows that the connecting morphisms are, up to sign, simply the restrictions of

Hom(Z∗, R) to Hom(B∗, R).

Next, we use that

0→ Bi−1
i−→ Zi−1 → Hi−1(C∗)→ 0 (8.13)

is a projective resolution of Hi−1(C∗), so the cokernel of i∗ : Hom(B∗−1, R)←− Hom(Z∗−1, R)

is precisely Ext(Hi−1(C∗), R) by definition. But from our long exact sequence, this cokernel

is isomorphic to the image of ∂∗. Furthermore, if each Hj(C∗) is finitely generated, as we are

assuming in the case at hand, then the discussion in the proof of Theorem 8.4.7 shows that

im(∂∗) ∼= Ext(I p̄Hi−1(X;R), R) is the torsion subgroup T (Ip̄H
i(X;R)). So we have shown

that

T (Ip̄H
i(X;R)) ∼= Ext(Hi−1(C∗), R) ∼= im(∂∗) ∼=

Hom(Bi−1, R)

im(Hom(Zi−1, R)→ Hom(Bi−1, R))
.

24We use δ here rather than the β of Section 6.4.5 to leave β free for cochains.
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The next lemma will be useful in constructing an explicit isomorphism Ext(I p̄Hi−1(X;R), R) ∼=
Hom(T (I p̄Hi−1(X;R)), Q(R)/R).

Lemma 8.4.13. Let Bi ⊂ Wi ⊂ Zi be as defined above. Then im(Hom(Zi, R)→ Hom(Bi, R)) =

im(Hom(Wi, R)→ Hom(Bi, R)), where both maps are the Hom(·, R) duals of the inclusions.

Proof. Since Wi consists precisely of those nonzero cycles whose scalar multiples are bound-

aries, Wi/Bi
∼= T (I p̄Hi(X;R)). Then

Zi/Wi
∼= (Zi/Bi)/(Wi/Bi) ∼= I p̄Hi(X;R)/T (I p̄Hi(X;R)) = F (I p̄Hi(X;R)).

So

0→ Wi → Zi → F (I p̄Hi(X;R))→ 0

is a projective resolution of F (I p̄Hi(X;R)), and

Hom(Wi, R)

im(Hom(Zi, R)→ Hom(Wi, R))
∼= Ext(F (I p̄Hi(X;R)), R).

But, as F (I p̄Hi(X;R)) is torsion free and finitely generated, it is projective, so

Ext(F (I p̄Hi(X;R)), R) = 0,

and it follows that Hom(Zi, R)→ Hom(Wi, R) is surjective. Therefore,

im(Hom(Zi, R)→ Hom(Bi, R)) = im(Hom(Wi, R)→ Hom(Bi, R)),

as desired.

Remark 8.4.14. The preceding lemma provides another, perhaps more direct, proof that

Ext(I p̄Hi(X;R), R) ∼= Ext(T (I p̄Hi(X;R)), R): We showed in the proof of the Lemma 8.4.12

that we have
Hom(Bi, R)

im(Hom(Zi, R)→ Hom(Bi, R))
∼= Ext(I p̄Hi(X;R), R),

using the definition of Ext and the projective resolution (8.13). Meanwhile,

0→ Bi → Wi → T (I p̄Hi(X;R))→ 0 (8.14)

is a projective resolution of T (I p̄Hi(X;R)). So, applying Hom(·, R), we see

Hom(Bi, R)

im(Hom(Wi, R)→ Hom(Bi, R))
∼= Ext(T (I p̄Hi(X;R)), R),

using the definition of Ext and the projective resolution (8.14). But Lemma 8.4.13 demon-

strates that these are the same module, identically.
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Next, we use Lemma 8.4.13 to look more closely at the isomorphism

Ext(T (I p̄Hi−1(X;R)), R) ∼= Hom(T (I p̄Hi−1(X;R)), Q(R)/R)

established in Lemma 8.4.6. From the exact sequence 0 → R → Q(R) → Q(R)/R → 0, we

can build a commutative diagram

0 - Hom(Wi−1, R) - Hom(Wi−1, Q(R)) - Hom(Wi−1, Q(R)/R) - 0

0 - Hom(Bi−1, R)
?

- Hom(Bi−1, Q(R))
?

- Hom(Bi−1, Q(R)/R)
?

- 0.

The rows are short exact, as Wi−1 and Bi−1 are projective. Thinking of the columns as

representing the only non-trivial modules in complexes, the resulting long exact homology

sequence (or, equivalently, the Snake Lemma) yields the six-term Hom-Ext sequence (8.10),

as, for each R-module M and using the projective resolution (8.14), we have

ker(Hom(Wi−1,M)→ Hom(Bi−1,M)) = Hom(T (I p̄Hi−1(X;R)),M)

and

cok(Hom(Wi−1,M)→ Hom(Bi−1,M)) = Ext(T (I p̄Hi−1(X;R)),M).

We are interested in the connecting map that takes Hom(T (I p̄Hi−1(X;R)), Q(R)/R) to

Ext(T (I p̄Hi−1(X;R)), R). We already know this map should be an isomorphism by Lemma

8.4.6 with our standing assumptions, and we would like to construct an explicit inverse.

Given f̄ ∈ Ext(T (I p̄Hi−1(X;R)), R), let f ∈ Hom(Bi−1, R) represent f̄ . As we al-

ready know that the six-term exact sequence degenerates to yield an isomorphism from

Ext(T (I p̄Hi−1(X;R)), R) to Hom(T (I p̄Hi−1(X;R)), Q(R)/R), there must be a unique g ∈
Hom(T (I p̄Hi−1(X;R)), Q(R)/R) ⊂ Hom(Wi−1, Q(R)/R) that maps to f̄ via the connecting

“zig-zag” map. Unwinding the zig-zag map, our g ∈ Hom(Wi−1, Q(R)/R) must be the im-

age of some h ∈ Hom(Wi−1, Q(R)), and h must restrict on Bi−1 to a representative of f̄ . In

particular, the restriction of h to an element of Hom(Bi−1, R) must agree with f up to an

element of Hom(Wi−1, R). So if we can find an h whose restriction agrees with f exactly,

then certainly its image g ∈ Hom(T (I p̄Hi−1(X;R)), Q(R)/R) must map to f̄ by the Zig-Zag

Lemma (see [181, Lemma 24.1]).

So let us deduce such an h from f . Suppose w ∈ Wi−1. Then for some rw ∈ R with rw 6= 0,

we have rww ∈ Bi−1, so f(rww) ∈ R ⊂ Q(R) is defined, and we want h(rww) = f(rww). But

h is a Q(R)-module homomorphism, so we must have h(rww) = rwh(w), which determines

h(w) = f(rww)/rw. Let us show that this yields a well-defined element of Hom(Wi−1, Q(R)),

in particular that it does not depend on our choice of rw. Suppose that r′w ∈ R with r′w 6= 0

and r′ww ∈ Bi−1. Then we want to know that f(rww)/rw = f(r′ww)/r′w ∈ Q(R). But this

is equivalent to asking that r′wf(rww) = rwf(r′ww) ∈ Q(R), which is certainly true as f is

an R-module homomorphism so both sides are equal to f(rwr
′
ww). This latter expression is
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well defined, as rwr
′
ww ∈ Bi−1. This also shows that h so defined is a homomorphism, as if

w, v ∈ Wi−1, then rv(rww), rw(rvv) ∈ Bi−1, so

h(w) + h(v) =
f(rww)

rw
+
f(rvv)

rv
=
rvf(rww) + rwf(rvv)

rvrw
=
f(rvrw(w + v))

rvrw
= h(w + v);

and of course for any r ∈ R we have rrww ∈ Bi−1, so

h(rw) =
f(rwrw)

rw
=
rf(rww)

rw
= rh(w).

Finally, if w ∈ Bi−1, then we can take rw = 1, and so h(w) = f(w), as desired.

So we conclude that if f̄ ∈ Ext(T (I p̄Hi−1(X;R)), R) is the image of f ∈ Hom(Bi−1, R)

then the image of f̄ in Hom(T (I p̄Hi−1(X;R)), Q(R)/R) under the connecting isomorphism

acts by taking the class of the chain w to f(rww)
rw
∈ Q(R)/R, where rw ∈ R is any non-zero

element such that rww is a boundary.

Assembling λ

We can now put our discussion thusfar together with Lemma 8.4.12 to find an explicit

description of λ : T (Ip̄H
i(X;R))

∼=−→ Hom(T (I p̄Hi−1(X;R)), Q(R)/R) as defined by the

composition (8.12). Suppose α ∈ T (Ip̄H
i(X;R)), and let w ∈ Ci−1 represent and element of

T (I p̄Hi−1(X;R)). We will write down an explicit formula for (λ(α))(w). By Lemma 8.4.12,

there is an f ∈ Hom(Bi−1, R) such that ∂∗(f) = α. Let z ∈ Ci be such that ∂z = rw for

some r 6= 0. By the preceding arguments, we must have25

(λ(α))(w) = f(rw)/r

= f(∂z)/r

= ((∂∗f)(z))/r

= α(z)/r.

So (λ(α))(w) = α(z)/r. While this formula should be well defined by our preceding dis-

cussion, it is reassuring to observe that this construction is independent of our choice of a

cochain representative for α, as, for any coboundary dγ we have

(dγ)(z)

r
=
±γ(∂z)

r
=
±γ(rw)

r
=
±rγ(w)

r
= ±γ(w) = 0 ∈ Q(R)/R.

Similarly, if w is a boundary, so that w = ∂z, then (λ(α))(w) = α(z) = 0 ∈ Q(R)/R. So

this provides a nice independent verification that our formula is indeed independent of our

choices of cochain and chain representatives of our cohomology and homology classes.

Putting together our discussion thus far, we have obtained the following lemma:

Lemma 8.4.15. Let R be a Dedekind domain and X a compact ∂-stratified pseudomani-

fold. Then the Universal Coefficient Theorem and the connecting isomorphism of the six term

25Recall Remark 8.4.11.
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Hom-Ext sequence result in an isomorphism λ : T (Ip̄H
i(X;R)) ∼= Hom(T (I p̄Hi−1(X;R)), Q(R)/R).

If α is a cochain representing an element of T (Ip̄H
i(X;R)) and w is a chain representing an

element of T (I p̄Hi−1(X;R)), we have (λ(α))(w) = α(z)/r, where z ∈ I p̄Si(X;R) is a chain

with ∂z = rw, r 6= 0.

The torsion pairing made explicit

The map λ was the first ingredient in our torsion pairing

L : T (Ip̄H
i(X;R))⊗ T (IDp̄H

n−i+1(X, ∂X;R))→ Q(R)/R.

The second ingredient is the Hom(·, Q(R)/R) dual of the Poincaré duality isomorphism. So,

altogether, our pairing is determined by the composition

T (Ip̄H
i(X;R))

λ−→ Hom(T (I p̄Hi−1(X;R)), Q(R)/R)

D∗−→ Hom(T (IDp̄H
n−i+1(X, ∂X;R)), Q(R)/R).

Now that we have studied λ in some detail, we are almost ready to write down a formula for

L(α, β).

Let us assume that we have chosen a fixed algebraic diagonal on X so that it makes sense

to discuss cup and cap products at the chain level. Ultimately, L(α, β) is independent of this

choice because it is defined at the level of cohomology; we’re using cup and cap products

simply to find chain level formulas for the torsion pairing.

Suppose α ∈ Ip̄Si(X;R) and β ∈ IDp̄Sn−i+1(X, ∂X;R) represent elements of T (Ip̄H
i(X;R))

and T (IDp̄H
n−i+1(X, ∂X;R)), respectively. Then there are r, t ∈ R, r, t 6= 0, and some

a ∈ Ip̄S
i−1(X;R) and b ∈ IDp̄S

n−i(X, ∂X;R) such that da = rα and db = tβ. Then

D(β) = (−1)(n−i+1)nβ _ Γ is a torsion element of IpHi−1(X;R). In fact, as tβ = 0 ∈
IDp̄H

n−i+1(X, ∂X;R), we must have tD(β) = 0 ∈ IpHi−1(X;R). So, the chain tD(β) is a

boundary. Let us see what it is the boundary of: By Lemma 7.2.19,

∂(γ _ ξ) = (dγ) _ ξ + (−1)|γ|γ _ ∂ξ, (8.15)

for a cochain γ and chain ξ (of appropriate perversities). In our setting, ξ will be Γ, which

is a cycle in I 0̄Sn(X, ∂X;R). So, we have

t(β _ Γ) = (tβ) _ Γ

= (db) _ Γ

= ∂(b_ Γ).
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Using this and Lemma 8.4.15, we now have26

(D∗λ(α))(β) = (−1)(|α|−1)nλ(α)(D(β))

= (−1)(|α|−1)n+|β|nλ(α)(β _ Γ)

= (−1)n(|α|+|β|−1)α(b_ Γ)

t

= (−1)n
2α(b_ Γ)

t

= (−1)n
α(b_ Γ)

t
.

So, the adjoint pairing to D∗λ is L : T (Ip̄H
i(X;R)) ⊗ T (IDp̄H

n−i+1(X, ∂X;R)) →
Q(R)/R, defined by

L(α, β) = (−1)n
α(b_ Γ)

t
when db = tβ, t 6= 0.

To study the other adjoint to this pairing, and so to verify that L is nonsingular, we

would like to move toward a more symmetric expression for L, which means rewriting our

formula for L in terms of the cup product. This is the purpose of our next proposition.

Proposition 8.4.16. Suppose R is a Dedekind domain and that X is a compact n-dimensional

R-oriented locally (p̄;R)-torsion free ∂-stratified pseudomanifold. Let α ∈ Ip̄S
i(X;R) and

β ∈ IDp̄Sn−i+1(X, ∂X;R) represent elements of T (Ip̄H
i(X;R)) and T (IDp̄H

n−i+1(X, ∂X;R)),

respectively, and suppose db = tβ for some b ∈ IDp̄Sn−i(X, ∂X;R) and t ∈ R, t 6= 0. Then

L(α, β) = (−1)n
α(b_ Γ)

t
= (−1)n

a((α ^ b) _ Γ)

t
.

Proof. We will employ now the somewhat mysterious formula from Remark 7.3.26, which

states that for α a cochain on X and ξ a chain on X, each with the same degree and

perversity, we have

α(ξ) = a(α _ ξ) + α(D∂ξ + ∂Dξ), (8.16)

where D is the chain homotopy given by Lemma 7.3.20, in this case from I p̄S∗(X;R) to

itself. The precise details of this chain homotopy will not be needed here, but see Remark

7.3.26 for more background if desired, noting that the discussion carries over to the context

of ∂-stratified pseudomanifolds by our work in Section 7.3.10.

Taking ξ = b_ Γ in (8.16), we have

α(b_ Γ) = a(α _ (b_ Γ)) + α(D∂(b_ Γ)) + α(∂D(b_ Γ)).

Now α(∂D(b _ Γ)) = 0 because our α is a cocycle. And by (8.15), using that Γ is a cycle

in I 0̄S∗(X, ∂X;R),

α(D∂(b_ Γ)) = α(D((db) _ Γ)) = α(D(tβ _ Γ)) = tα(D(β _ Γ)).

26Note that λ(α) is an object of degree |α| − 1, and we will employ the Koszul convention for our chain

map D.
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So

α(b_ Γ)

t
=

a(α _ (b_ Γ))

t
+
tα(D(β _ Γ))

t

=
a(α _ (b_ Γ))

t
+ α(D(β _ Γ))

=
a(α _ (b_ Γ))

t
∈ Q(R)/R.

The point at the end here is that although we have no idea what α(D(β _ Γ)) might be,

we do know it’s in R, so it’s 0 in Q(R)/R. Therefore,

L(α, β) = (−1)n
a(α _ (b_ Γ))

t
.

Finally, we would like to be able to write L(α, β) = (−1)n a((α^b)_Γ))
t

. For this last step,

we must have a closer look at the proof of associativity of the cap product in Lemma 7.3.32.

There, we saw at the chain level that (α ^ β) _ x = Φ(id⊗ Θ(α ⊗ β))(id⊗ d̄)d̄(x), while

α _ (β _ x) = Φ(id ⊗ Θ(α ⊗ β))(d̄ ⊗ id)d̄(x). The identification of these in homology

follows from (d̄⊗ id)d̄ and (id⊗ d̄)d̄ being chain homotopic, by Lemma 7.3.30. If D denotes

the chain homotopy, we therefore have

(α ^ β) _ Γ− α _ (β _ Γ) = Φ(id⊗Θ(α⊗ β))((D∂ + ∂D)Γ).

As Γ is a cycle in I 0̄S∗(X, ∂X;R), this difference reduces to Φ(id ⊗ Θ(α ⊗ β))(∂DΓ). But

∂DΓ is a cycle, while Θ(α ⊗ β) is a cocycle, as α and β are cocycles and Θ is a chain

map by Lemma 7.2.1. Following the computation of Lemma 7.2.20, where we show that

the cap product is well defined, Φ(id ⊗ Θ(α ⊗ β))(∂DΓ) must therefore be a boundary, so

a(Φ(id⊗Θ(α⊗ β))(∂DΓ)) = 0. Thus a((α ^ β) _ Γ) = a(α _ (β _ Γ)).

Symmetry and nonsingularity

Now that we have an expression for the pairing L in terms of the cup product, we can provide

a symmetry formula, which will also allow us to show that L is nonsingular. More specifically,

we have defined L = Lp̄,Dp̄ as the adjoint of D∗λ, which is thus Λ(L). As λ and D (and hence

D∗) are isomorphisms, the adjoint Λ(L) is thus an isomorphism directly. We need to show

that the other adjoint Λ′(L) : T (IDp̄H
n−i+1(X, ∂X;R))→ Hom(T (Ip̄H

i(X;R)), Q(R)/R) is

also an isomorphism. We know that (Λ′(L)(β))(α) = L(α, β) = (−1)n a((α^b)_Γ)
t

, and we

will show that
a((α ^ b) _ Γ)

t
= ±a((β ^ a) _ Γ)

r
, (8.17)

continuing to assume da = rα and db = tβ with r, t 6= 0 and with the sign depending only on

the degrees of α and β. Up to sign, the expression on the right has again the exact form we

have discovered for the pairing L(α, β) but with the roles of α and β reversed, and so also with

the roles of the pairs (X, ∅) and (X, ∂X) reversed. But each of our preceding computations

involving Ip̄H
∗(X;R) in our discussion of λ hold just as well applied to IDp̄H

∗(X, ∂X;R).
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Therefore, this expression has the form of the adjoint evaluation (Λ(L′Dp̄,p̄)(β))(α), where we

have defined L′ be to be the pairing that is adjoint to the composition of isomorphisms

T (IDp̄H
n−i+1(X, ∂X;R))

λ−→ Hom(T (IDp̄Hn−i(X, ∂X;R)), Q(R)/R)

D∗−→ Hom(T (Ip̄H
i(X;R)), Q(R)/R).

In other words, the equation (8.17) will show that Λ′(L) = ±Λ(L′), which is an isomorphism

by construction and hence establishes the nonsingularity of L.

Lemma 8.4.17. Suppose R is a Dedekind domain and that X is a compact n-dimensional

R-oriented locally (p̄;R)-torsion free ∂-stratified pseudomanifold. Let

Lp̄,Dp̄ : T (Ip̄H
i(X;R))⊗ T (IDp̄H

n−i+1(X, ∂X;R))→ Q(R)/R

and

L′Dp̄,p̄ : T (IDp̄H
n−i+1(X, ∂X;R))⊗ T (Ip̄H

i(X;R))→ Q(R)/R

be the torsion pairings defined above. If α ∈ T (Ip̄H
i(X;R)) and β ∈ T (IDp̄H

n−i+1(X, ∂X;R)),

then

Lp̄,Dp̄(α⊗ β) = (−1)1+n+inL′Dp̄,p̄(β ⊗ α) ∈ Q(R)/R.

Remark 8.4.18. The sign (−1)1+n+in in the lemma looks somewhat asymmetric, but re-

call that we have |α| + |β| = n + 1. A quick computation then shows that (−1)1+n+in =

(−1)1+(|α|+1)(|β+1), or, equivalently, (−1)1+n+in = (−1)1+|a||b|, if da = rα and db = tβ with

r, t 6= 0. A quick comparison with, for example, [67, Exercise 56], demonstrates that this

sign yields the correct symmetries for “middle dimensional” self pairings when X = M is a

manifold (without boundary) and n = 4m + 1 or 4m + 3. In particular, in this case we get

an anti-symmetric pairing on H2m+1(M ;R) when n = 4m + 1 and a symmetric pairing on

H2m+2(M ;R) when n = 4m+ 3.

Proof of Lemma 8.4.17. We continue to assume our earlier notation, in particular that da =

rα and db = tβ for some r, t ∈ R, r, t 6= 0, and that we have chosen a fixed algebraic diagonal

with which to define cup and cap products.

We begin by observing that

d(a^ b) = (da) ^ b + (−1)|a|a^ db = rα ^ b + (−1)|a|a^ tβ,

using that the cup product is defined via a composition of chain maps. So we have
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Lp̄,Dp̄(α⊗ β) = (−1)n
a((α ^ b) _ Γ)

t

= (−1)n
ra((α ^ b) _ Γ)

rt

= (−1)n
a((rα ^ b) _ Γ)

rt

= (−1)n
a((d(a^ b)− (−1)|a|a^ tβ) _ Γ)

rt

= (−1)n
a((d(a^ b)) _ Γ)

rt
− (−1)n+|a|a((a^ tβ) _ Γ)

rt

= −(−1)n+|a|a((a^ β) _ Γ)

r
.

In the last line, we have used that

d(a^ b) _ Γ = ±∂((a^ b) _ Γ),

by Lemma 7.2.19, as Γ is a cycle I 0̄S∗(X, ∂X;R), and the augmentation of a boundary is 0.

Next, a close look at the proof of Proposition 7.3.15 shows that at the chain level we have

a^ β − (−1)|β||a|β ^ a = (Dd+ dD)Θ(a⊗ β),

where D is the chain homotopy between d̄∗ and (τ d̄)∗ guaranteed by Lemma 7.3.14 and

using that the dual of a chain homotopy is a chain homotopy.

So

a((a^ β) _ Γ)

r
− (−1)|β||a|

a((β ^ a) _ Γ)

r
=

a(((Dd+ dD)Θ(a⊗ β)) _ Γ)

r

=
a((DdΘ(a⊗ β)) _ Γ)

r
+

a((dDΘ(a⊗ β)) _ Γ)

r
.

The second expression on the last line is 0, as (dDΘ(a⊗ β)) _ Γ = ±∂((DΘ(a⊗ β)) _ Γ),

using again Lemma 7.2.19, that Γ is a cycle, and that the augmentation of a cycle is 0. For

the first expression, we use again that Θ is a chain map by Lemma 7.2.1. So, as β is a

cocycle,

a((DdΘ(a⊗ β)) _ Γ)

r
=

a((DΘ((da)⊗ β)) _ Γ)

r

=
a((DΘ(rα⊗ β)) _ Γ)

r
= a((DΘ(α⊗ β)) _ Γ),

which must be in R. So this term also vanishes in Q(R)/R.
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Altogether, we have now shown that

Lp̄,Dp̄(α⊗ β) = (−1)n
a((α ^ b) _ Γ)

t

= −(−1)n+|a|a((a^ β) _ Γ)

r
.

= (−1)1+n+|a|+|β||a|a((β ^ a) _ Γ)

r
= (−1)1+|a|+|β||a|L′Dp̄,p̄(β, α).

To simplify the signs, let us recall that |α| = i and |β| = n− i+ 1, so |a| = i− 1. Thus,

mod 2, we have

1 + |a|+ |β||a| ≡ 1 + i− 1 + (n− i+ 1)(i− 1)

≡ 1 + i+ 1 + ni+ i+ i+ n+ i+ 1

≡ 1 + ni+ n.

This completes the lemma.

As noted just before the preceding lemma, the symmetry demonstrated by the lemma

implies the second condition of nonsingularity for the linking pairing Lp̄,Dp̄. The nonsingu-

larity of L′Dp̄,p̄ follows analogously. So, summarizing all the work in this section, we arrive

at the statement of Theorem 8.4.10, presented at the beginning of this section.

Another approach to the torsion pairing

As a note for the interested reader, let us mention an alternative definition of the torsion

pairing that is often employed for manifolds; see for example [67, Exercise 56]. For simplicity,

we will assume that M is a compact oriented manifold and take R = Z. The short exact

sequence

0→ Z→ Q→ Q/Z→ 0

yields a long exact sequence

- Hj(M ;Q) - Hj(M ;Q/Z)
δ
- Hj+1(M ;Z) - Hj+1(M ;Q) - .

As the image of T (Hj+1(M ;Z)) must vanish in Hj+1(M ;Q), the connecting morphism δ is

surjective onto T (Hj+1(M ;Z)). A pairing

T (H i(M ;Z))⊗ T (Hn−i+1(M ;Z))→ Q/Z

can then be defined by

α⊗ β → (α ^ δ−1(β))(Γ),

where δ−1(β) is any element of Hn−i(M ;Q/Z) in the preimage of β. More precisely, the cup

product being used here has the form

H i(M ;Z)⊗Hn−i(M ;Q/Z)→ Hn(M ;Q/Z),
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and the Universal Coefficient Theorem provides a map

Hn(M ;Q/Z)→ Hom(Hn(M ;Z),Q/Z),

accounting for the evaluation. Among its other features, our development of the torsion

pairing allowed us to avoid such cup products with varying coefficients. We will not attempt

to develop this approach to the torsion pairing in detail for intersection cohomology, but let

us at least demonstrate in the manifold case that the two definitions are compatible (up to

signs). Thus the torsion pairing we have developed for intersection cohomology restricts to

the perhaps more familiar definition for manifolds.

Once again we abuse notation and let β also denote a cocycle representing the cohomology

class β. As we assume this is a torsion class, we can find again b ∈ Sn−i(M ;Z) such that

db = tβ for some t ∈ Z, t 6= 0. Let us define f ∈ Hom(Sn−i(M),Q/Z) = Sn−i(M ;Q/Z) by

f(x) = b(x)
t
∈ Q/Z. Then for x ∈ Sn−i+1(M ;Z),

(df)(x) = (−1)n−i+1f(∂x)

= (−1)n−i+1b(∂x)

t

=
db(x)

t

=
tβ(x)

t
= β(x)

= 0 ∈ Q/Z.

So f is a cocycle in S∗(M ;Q/Z). Furthermore, by interpreting b(x)
t

in Q, we see that f is

really just the mod Z reduction of a function to Q, and so by the zig-zag construction, δ(f)

is represented by df , which we have just seen agrees with β as a cochain with values in Z.

In other words, the cohomology class of the cocycle f ∈ Sn−i(M ;Q/Z) is a preimage of β

under δ. So writing f = b
t
, the torsion pairing described above takes the form

α⊗ β → (α ^ δ−1(β))(Γ) =

(
α ^

b

t

)
(Γ).

Using the basic properties of ordinary homology/cohomology products [219, Section V.6],

this becomes

a

((
α ^

b

t

)
_ Γ

)
.

Applying the standard Alexander-Whitney formulation of the cup product in terms of front

and back faces, it is easy to compute that α ^ b
t

= α^b
t

, thinking of the left side as a cup

product of chains in S∗(M ;Z) and S∗(M ;Q/Z) and the right side as 1
t

times the image of a

cup product S∗(M ;Z)⊗ S∗(M ;Z)→ S∗(M ;Z). Similarly,

α ^ b

t
_ Γ =

1

t
(α ^ b) _ Γ.
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So, altogether,

(α ^ δ−1(β))(Γ) =
a((α ^ b) _ Γ)

t
,

which agrees up to signs with our computation of L(α, β) in Theorem 8.4.10, as claimed.

8.4.4 Topological invariance of pairings

Let us show that the cup and torsion product pairings are topological invariants for appro-

priate perversities. Ultimately, we will use this to show that the signature is a topological

invariant of Witt spaces in Theorem 9.3.16.

Theorem 8.4.19. Suppose R is a Dedekind domain and p̄ is a GM perversity. Let X1

and X2 be two n-dimensional compact ∂-stratified pseudomanifold stratifications with no

codimension one strata of the same underlying space pairs (|X1|, |∂X1|) = (|X2|, |∂X2|).

Suppose X1 and X2 are compatibly R-oriented in the sense of Corollary 8.1.11 (applied to

|Xi| − |∂Xi|) and that X1 and X2 are locally (p̄;R)-torsion free27. Then the cup product and

torsion pairings are independent of the stratification in the sense that there are canonical

commutative diagrams

F (Ip̄H
i(X1;R))⊗ F (IDp̄H

n−i(X1, ∂X1;R))

R

aD◦^
-

F (Ip̄H
i(X2;R))⊗ F (IDp̄H

n−i(X2, ∂X2;R))

∼=

?
aD◦^

-

and

T (Ip̄H
i(X1;R))⊗ T (IDp̄H

n−i+1(X1, ∂X1;R))

Q(R)/R

Lp̄,Dp̄
-

T (Ip̄H
i(X2;R))⊗ T (IDp̄H

n−i+1(X2, ∂X2;R))

∼=

?
Lp̄,Dp̄ -

(8.18)

and similarly for the other torsion pairing L′.

Remark 8.4.20. Yet again, as in Remarks 8.2.7 and 8.3.13, this statement can be extended

immediately to the observation that the pairings are topological invariants in the sense

that, if there is an orientation-preserving topological homeomorphism f : (|X|, |∂X|) →
(|Y |, |∂Y |) between the compact n-dimensional R-oriented ∂-stratified pseudomanifolds X

and Y without codimension one strata, then f , together with the isomorphisms of the

theorem, induce isomorphisms between the pairings for X and the pairings for Y .

27By the argument of Proposition 5.5.9), both spaces are locally (p̄;R)-torsion free if either is.
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Proof. For the cup product, we have already established the basic tools of the proof in

our prior proofs of the topological invariance of products (Theorem 7.3.10), fundamental

classes (Propositions 8.1.29 and 8.3.7), and duality (Theorems 8.2.6 and 8.3.12). We did not

establish invariance of products for ∂-pseudomanifolds, but as in the proofs of Proposition

8.3.7 and Theorem 8.3.12, we can apply the techniques of Section 7.3.10 to ensure that the

relevant products exist and satisfy the needed naturality properties; see Theorem 7.3.72.

Such arguments are sufficient to demonstrate invariance of the cup product pairing.

For the torsion pairing, the proof is a little trickier as our direct formula for computing the

pairing involves a cup product of cochains, not just cohomology classes. At the chain level,

maps such as Ip̄S
∗(X;R) → Ip̄S

∗(Xi;R) are not, in general, isomorphisms, so we cannot

invert them as we have when working at the cohomology level. Rather, let us revert to our

original definition of the torsion product by its adjoint. Then we can consider the diagram

T (Ip̄H
i(X1;R)) �

∼=
T (Ip̄H

i(X;R))
∼= - T (Ip̄H

i(X2;R))

Ext(I p̄Hi−1(X1;R), R)

∼=
6

� Ext(I p̄Hi−1(X;R), R)

∼=
6

- Ext(I p̄Hi−1(X2;R), R)

∼=
6

Ext(T (I p̄Hi−1(X1;R)), R)

∼=

?
� Ext(T (I p̄Hi−1(X;R)), R)

∼=

?
- Ext(T (I p̄Hi−1(X2;R)), R)

∼=

?

Hom(T (I p̄Hi−1(X1;R)), Q(R)/R)

∼=
6

� Hom(T (I p̄Hi−1(X;R)), Q(R)/R)

∼=
6

- Hom(T (I p̄Hi−1(X2;R)), Q(R)/R)

∼=
6

Hom(T (IDp̄H
n−i+1(X1, ∂X1;R)), Q(R)/R)

∼= D∗

?
- Hom(T (IDp̄H

n−i+1(X,N;R)), Q(R)/R)

∼= D∗

?
� Hom(T (IDp̄H

n−i+1(X2, ∂X2;R)), Q(R)/R).

∼= D∗

?

As in the proofs of Proposition 8.3.7 and Theorem 8.3.12, we here let X be the intrinsic

stratification of |X1− ∂X1| = |X2− ∂X2|. The top row here is then a compressed version of

the absolute cohomology analogue of the chain of cohomology isomorphisms along the left

side of diagram (8.9) in the proof of Theorem 8.3.12, restricted to the torsion submodules. In

other words, these are the maps that would appear on the left side of the analogous diagram

one would use for proving the commutativity of the second diagram in the statement of

Theorem 8.3.12, for which we did not provide explicit details. So, the composition left to

right across the top of our diagram here is just the restriction to torsion submodules of the

inverse of the isomorphism labeled φ∗ in the second diagram in the statement of Theorem

8.3.12. Let us call this left-to-right composition here ψp̄.

The top three pairs of squares commute by the naturality of the Universal Coefficient

Theorem, by functoriality of Hom and Ext, and by the naturality of the six-term exact

sequence [126, Section IV.8], applied to all the isomorphisms involved in the compositions in

the top row. The bottom two squares of the diagram can be obtained by taking diagram (8.9)

in the proof of Theorem 8.3.12, interchanging p̄ and Dp̄, restricting to torsion submodules,
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taking the Hom(·, Q(R)/R) dual, and then compressing the diagram. In particular, the

composition right to left along the bottom is the Hom(·, Q(R)/R) dual of the relative version

of our map ψ with perversity Dp̄, so let us call this composition ψ∗Dp̄. The composition of

all vertical maps on the left and right, except for the bottom map in each column, is the

composition of isomorphisms we called λ in Section 8.4.3. The vertical maps in the middle

are obtained in the same ways and are isomorphisms for the same reasons, noting that

Ip̄H
i(X;R) is finitely generated because it is isomorphic to Ip̄H

i(X1;R). The left and right

D∗ are isomorphisms by Lefschetz duality, while the middle D∗ is thus an isomorphism from

diagram (8.9) again. It follows that all the horizontal maps here are also isomorphisms.

Now, let Ljp̄,Dp̄ be the torsion pairing on Xj. Let λj and D∗j be the appropriate maps on

X1 and X2. Then, using the commutativity of the diagram and the definition of the Ljp̄,Dp̄,

we compute

L1
p̄,Dp̄(α⊗ β) = (D∗1λ1(α))(β)

= (ψ∗Dp̄D∗2λ2ψp̄(α))(β)

= (D∗2λ2ψp̄(α))(ψDp̄(β))

= L2
p̄,Dp̄((ψp̄(α))⊗ (ψDp̄(β))).

Therefore, letting the map on the left side of diagram (8.18) be ψp̄ ⊗ ψDp̄, the diagram

commutes as claimed. This choice is canonical as each of ψp̄ and ψDp̄ is derived from one of

the canonical maps involved in Theorem 8.3.12.

The argument for the L′ pairings is analogous.

8.4.5 Image pairings

When M2k is a compact R-oriented even-dimensional manifold, the cup product pairing of

Theorem 8.4.7 gives us a nonsingular pairing

F (Hk(M ;R))⊗ FHk((M ;R))→ R.

Notice that the two input modules to the pairing are identical. In this setting, it is possible

to tease out further invariants that have proven important in manifold theory. For example,

taking R = Q and k even, the symmetric pairing Hk(M ;Q)⊗Hk(M ;Q)→ Q yields the sig-

nature invariant by subtracting the number of negative eigenvalues of a matrix representing

the pairing from the number of positive eigenvalues of the matrix. Details of the signature

will be developed in Section 9.

When M is a compact R-oriented ∂-manifold with non-empty boundary, then the cup

product pairing only has the form

F (Hk(M ;R))⊗ F (Hk(M,∂M ;R))→ R.

Even though Poincaré duality can be used to show that FHk(M ;R) and FHk(M,∂M ;R)

will be abstractly isomorphic, they are not identical, and so we do not obtain the same sort

of self-pairing that occurs when ∂M = ∅. Nonetheless, there is a way to recover a self-pairing

574



in this setting that allows one to define a signature for ∂-manifolds of dimension 0 mod 4. It

turns out that the cup product pairing between FHk(M ;R) and FHk(M,∂M ;R) induces a

nondegenerate pairing on im(i∗ : FHk(M,∂M ;R)→ FHk(M ;R)). If α, β ∈ im(i∗) and ᾱ, β̄

are their preimages in FHk(M,∂M ;R), then our new pairing takes α⊗ β to

a(D(ᾱ ^ β̄)) ∈ R.

We will see below that this is well defined, though it’s worth noting now that thanks

to naturality with respect to the maps (M ; ∂M, ∅) → (M ; ∂M, ∂M) and (M ; ∅, ∂M) →
(M ; ∂M, ∂M), we have ᾱ ^ β̄ = ᾱ ^ β = α ^ β̄ ∈ Hn(M,∂M ;R). We will call this

pairing the image pairing.

In the world of intersection homology, there are two issues with construction a self-pairing

from the cup product pairing

F (Ip̄H
i(X;R))⊗ F (IDp̄H

n−i(X, ∂X;R))→ R.

We still have the possibility of nontrivial boundaries to contend with, but there is also a lack

of symmetry due to the difference between the two perversities. In Section 9, we will discuss

conditions that can be imposed on spaces to ensure that Ip̄H
∗(X;R) ∼= IDp̄H

∗(X;R). For

now, we will look at an intersection homology version of the image pairing that arises if we

make the assumption that p̄ ≤ Dp̄.

Nondegeneracy

Before moving on to intersection homology, we observe that the best we can hope for image

pairings is nondegeneracy, not, in general, nonsingularity.

First, recall from Section 8.4.1 that a pairing P : A⊗B → C is called nonsingular if the

adjoint homomorphisms A→ Hom(B,C) and B → Hom(A,C) are both isomorphisms, while

it is called nondegenerate if these homomorphisms are only assumed injective. Equivalently,

P is nondegenerate if and only if

1. P (a, b) = 0 for all b ∈ B if and only if a = 0, and

2. P (a, b) = 0 for all a ∈ A if and only if b = 0.

If A and B are finitely-generated vector spaces over a field F and if C = F , then non-

singularity and nondegeneracy are equivalent, as having injections A → Hom(B,F ) ∼= B

and B → Hom(A,F ) ∼= A implies that A and B must have the same dimension and the

injections must therefore be isomorphisms. However, when the ground ring is not a field,

nondegeneracy and nonsingularity are not equivalent, as the following example shows.

Example 8.4.21. Let P : Z ⊗ Z → Z be the pairing such that P (1, 1) = r with r 6= 0.

Then by the bilinearity of P , for any a, b ∈ Z we have P (a, b) = abP (1, 1) = rab. It is

easy to observe that this pairing is nondegenerate: clearly P (a, b) = 0 only if a or b is equal

to 0. In fact, we can compute that each of the two adjoint maps Z → Hom(Z,Z) takes

1 to φ1 ∈ Hom(Z,Z) with φ1(1) = r. Thus the adjoints are injective. However, the map

Z→ Hom(Z,Z) determined by 1→ φ1 will be an isomorphism only if r = ±1, as otherwise

φ1 is not a generator of Hom(Z,Z).

575



While we will show below that the image pairing is nondegenerate, the next example

shows that it need not be nonsingular, even when working with ∂-manifolds, which of course

constitute special cases of ∂-stratified pseudomanifolds.

Example 8.4.22. Let M be the disk bundle associated to the tangent bundle of the sphere S2.

Then ∂M is the sphere bundle associated to the tangent bundle of the sphere S2, and in fact

∂M ∼= RP 3. To see this, let x ∈ S2 and let v be a unit vector in TxS
2, the tangent space to

S2 at x, which we can think of as embedded in R3 in the standard way as the tangent plane to

the unit sphere. Then the triple (x, v, x× v) is an ordered, right-handed, orthonormal triple

of vectors in R3, which prescribes the rotation in SO(3) that takes the standard basis to the

triple. In fact, this assignment describes a homeomorphism from ∂M to SO(3) (exercise!),

which is well known to be homeomorphic to RP 3 (see, e.g. [125, Section 3.D]).

The space M itself is compact, 4-dimensional, and orientable, as M is homotopy equiv-

alent to S2 and so simply connected. Let us compute some cohomology groups:

• M is homotopy equivalent to S2, so H i(M) ∼= Z if i = 0, 2 and H i(M) = 0 otherwise.

• By Lefschetz duality, Hi(M,∂M) ∼= Z if i = 2, 4 and Hi(M,∂M) = 0 otherwise. So, by

the Universal Coefficient Theorem, the only nontrivial H i(M,∂M) are H2(M,∂M) ∼=
H4(M,∂M) ∼= Z.

• As ∂M ∼= RP 3, we have H0(∂M) ∼= H3(∂M) ∼= Z, H1(∂M) ∼= Z2, and Hi(∂M) = 0

otherwise, by standard computations (e.g. [125, Example 2.42]). By Poincaré duality,

we have H3(∂M) ∼= H0(∂M) ∼= Z, H2(∂M) ∼= Z2, and H i(∂M) = 0 otherwise.

The middle portion of the exact sequence of the pair thus looks like

H1(∂M) - H2(M,∂M)
i∗
- H2(M) - H2(∂M) - H3(M,∂M)

0

wwwwwwwwww
Z

wwwwwwwww
Z

wwwwwwwww
Z2

wwwwwwwww
0,

wwwwwwwwww
and it follows that i∗ must take a generator of H2(M,∂M) to twice a generator of H2(M). We

can assume we have chosen generators ᾱ ∈ H2(M,∂M) and γ ∈ H2(M) so that i∗(ᾱ) = 2γ,

which is a generator of im(i∗).

The nonsingular pairing H2(M,∂M) ⊗H2(M) → Z guarantees that if ᾱ is a generator

of H2(M,∂M) and γ is a generator of H2(M), then a((ᾱ ^ γ) _ Γ) = ±1 ∈ Z. So

then, by definition, the image pairing acting on the generators 2γ of im(i∗) takes 2γ ⊗ 2γ to

a((ᾱ ^ ᾱ) _ Γ). By naturality of the cup product with respect to the map (M ; ∂M, ∅) →
(M ; ∂M, ∂M), we have ᾱ ^ ᾱ = ᾱ ^ i∗(ᾱ) = ᾱ ^ 2γ ∈ H4(M,∂M), so a((ᾱ ^ ᾱ) _ Γ) =

±2. Thus the image pairing takes the tensor product of generators of im(i∗) to ±2 ∈ Z.

So by Example 8.4.21, the image pairing is nondegenerate, but it is not nonsingular.

This example also illustrates why the intersection cohomology pairing over Z need not be

nonsingular in general, as the ∂-manifold image pairing is a special case of the intersection

cohomology image pairing.
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The intersection cohomology image pairing

Suppose X is a ∂-stratified pseudomanifold with a perversity p̄ such that p̄ ≤ Dp̄, i.e.

p̄(S) ≤ Dp̄(S) for all strata S. This is certainly possible; for example if X is a classical

∂-stratified pseudomanifold then 0̄ ≤ D0̄ = t̄. We also have m̄ ≤ n̄, where m̄ and n̄ are the

lower- and upper-middle perversities of Definition 3.1.10. Given this assumption, the identity

map X → X is (p̄, Dp̄)-stratified. If we let i : (X, ∅) → (X, ∂X) be the identity/inclusion,

we can then consider

i∗ : F (IDp̄H
∗(X, ∂X;R))→ F (Ip̄H

∗(X;R)).

This is well defined, as i∗ takes torsion elements of IDp̄H
∗(X, ∂X;R) to torsion elements of

Ip̄H
∗(X;R).

In the following proposition, we use the notation i∗i to specify the map i∗ in degree i.

Proposition 8.4.23. Suppose R is a Dedekind domain, and let X be a compact n-dimensional

R-oriented locally (p̄;R)-torsion free ∂-stratified pseudomanifold. Suppose that p̄ ≤ Dp̄, and

let α ∈ im(i∗i : F (IDp̄H
i(X, ∂X;R))→ F (Ip̄H

i(X;R))) and β ∈ im(i∗n−i : F (IDp̄H
n−i(X, ∂X;R))→

F (Ip̄H
n−i(X;R))). Let ᾱ and β̄ be preimages of α and β in F (IDp̄H

∗(X, ∂X;R)). Then the

pairing im(i∗i )⊗ im(i∗n−i)→ R given by

α⊗ β → aD(α ^ β̄) = aD(ᾱ ^ β̄) = aD(ᾱ ^ β)

is well defined and nondegenerate.

Proof. Notice that α ∈ F (Ip̄H
i(X;R)) and β̄ ∈ F (IDp̄H

n−i(X, ∂X;R)), so aD(α ^ β̄) is the

well-defined image of the cup product pairing of Theorem 8.4.7. Similarly for aD(ᾱ ^ β).

So to show that our image pairing is well defined, we must demonstrate independence of the

choices of ᾱ and β̄ and show that the claimed equalities are valid.

Consider the following diagram:

F (IDp̄H
i(X, ∂X;R))⊗ F (IDp̄H

n−i(X, ∂X;R)) -̂ F (I0̄H
n(X, ∂X;R))

F (Ip̄H
i(X;R))⊗ F (IDp̄H

n−i(X, ∂X;R))

i∗ ⊗ id

?
-̂ F (I0̄H

n(X, ∂X;R)).

id

?

(8.19)

By Lemma 7.2.8, the triple of perversities (Dp̄,Dp̄; 0̄) is agreeable, as

D0̄ = t̄ = p̄+Dp̄ ≥ p̄+ p̄ = DDp̄+DDp̄.

Here, the inequality is via our assumption that p̄ ≤ Dp̄, and we use Corollary 8.2.5 to

know that X is locally (Dp̄;R)-torsion free. Thus the upper cup product is defined by
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Definition 7.2.16, and it restricts to a well-defined map on torsion-free quotients by the proof

of Theorem 8.4.7. The vertical maps of the diagram are induced by the inclusion/identity

maps (X; ∅, ∂X)→ (X; ∂X, ∂X). So the diagram commutes by naturality of the cup product

(Proposition 7.3.5 and Theorem 7.3.72), which induces commutativity on the torsion-free

quotients. But this says that ᾱ ^ β̄ = i∗(ᾱ) ^ β̄ = α ^ β̄. A similar diagram shows that

ᾱ ^ β = ᾱ ^ β̄. So

α ^ β̄ = ᾱ ^ β̄ = ᾱ ^ β,

showing that our pairing formulas are equal. Additionally, as the left side of the equation

does not depend on the choice of preimage of α and the right hand side does not depend on

the choice of the preimage of β, our pairing is independent of these choices.

Next, we must show that the image pairing is nondegenerate. For this, first suppose

that α ∈ im(i∗i ) ⊂ F (Ip̄H
i(X;R)) with α 6= 0. By the nonsingularity of the cup product

pairing demonstrated in Theorem 8.4.7, there exists some β̄ ∈ F (IDp̄H
n−i(X, ∂X;R)) such

that a(D(α ^ β̄)) 6= 0. But then if β = i∗(β̄), the image pairing is non-zero on α⊗ β. Thus

the image pairing takes α ⊗ β to 0 for all β only if α = 0. The equivalent argument holds

interchanging the roles of α and β, so we see that the image pairing is nondegenerate.

Similarly, we can consider the image torsion pairing:

Proposition 8.4.24. Suppose R is a Dedekind domain, and let X be a compact n-dimensional

R-oriented locally (p̄;R)-torsion free ∂-stratified pseudomanifold. Suppose that p̄ ≤ Dp̄, and

let α ∈ im(i∗i : T (IDp̄H
i(X, ∂X;R))→ T (Ip̄H

i(X;R))) and β ∈ im(i∗n−i+1 : T (IDp̄H
n−i+1(X, ∂X;R))→

T (Ip̄H
n−i+1(X;R))). Let ᾱ and β̄ be the preimages of α and β in T (IDp̄H

∗(X, ∂X;R)). Then

the pairing on the image modules given by

α⊗ β → Lp̄,Dp̄(α, β̄) = L′p̄,Dp̄(ᾱ, β)

is well defined and nondegenerate.

Proof. The proof is analogous to that of Proposition 8.4.23. In particular, assuming the

pairing is well defined, we obtain nondegeneracy as follows: Suppose that α ∈ im(i∗i :

T (IDp̄H
i(X, ∂X;R)) → T (Ip̄H

i(X;R))) with α 6= 0. By the nonsingularity of the torsion

pairing demonstrated in Theorem 8.4.10 there exists some β̄ ∈ T (IDp̄H
n−i+1(X, ∂X;R))

such that Lp̄,Dp̄(α, β̄) 6= 0. But then if β = i∗(β̄), the image pairing is non-zero on α⊗ β by

definition. Thus the image pairing takes α ⊗ β to 0 for all β only if α = 0. The equivalent

argument holds interchanging the roles of α and β, so we see that the image pairing is

nondegenerate.

To show that the pairing is well defined, we need to show that Lp̄,Dp̄(α, β̄) = L′p̄,Dp̄(ᾱ, β).

This will demonstrate the independence of the choices of ᾱ and β̄, as the left hand term does

not depend on the choice of ᾱ and the right hand side does not depend on the choice of β̄.

Abusing notation, let β̄ also denote a cochain representing β̄ as a cohomology class.

Suppose we let b̄ ∈ IDp̄Sn−i(X, ∂X;R) such that db̄ = tβ̄, t 6= 0. Then di∗(b̄) = i∗(db̄) =

i∗(tβ̄) = ti∗(β̄) = tβ. So if we set b = i∗(b̄), we have db = tβ. By Theorem 8.4.10, we

thus have Lp̄,Dp̄(α, β̄) = (−1)n a((α^b̄)_Γ)
t

and L′p̄,Dp̄(ᾱ, β) = (−1)n a((ᾱ^b)_Γ)
t

. So, it suffices
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to show that both these expressions are equal to (−1)n a((ᾱ^b̄)_Γ)
t

. We will provide the

argument for a((α^b̄)_Γ
t

= a((ᾱ^b̄)_Γ)
t

, the other argument being equivalent.

We begin by observing that the cup product in these formulas is the chain level cup

product, as b and b̄ are not cocycles; therefore the naturality argument of Diagram (8.19)

with respect to the map (X; ∅, ∂X)→ (X; ∂X, ∂X) used in the proof of Proposition 8.4.23

to show that ᾱ ^ β = ᾱ ^ β̄ does not quite apply. However, based on Lemma 7.3.4 and the

proof of Proposition 7.3.5, there is still a cochain level version of Diagram (8.19) (without

the F functor), but it only commutes up to chain homotopy. If we let D denote the chain

homotopy, we therefore have that

a((α ^ b̄) _ Γ)

t
− a((ᾱ ^ b̄) _ Γ)

t
=

a(((Dd+ dD)(ᾱ⊗ b̄)) _ Γ)

t
.

To evaluate the right hand side, we use that ᾱ is a cocycle, that db̄ = tβ̄, that the augmen-

tation of a boundary must be 0, and the formula ∂(γ _ ξ) = (dγ) _ ξ + (−1)|γ|γ _ ∂ξ

from Lemma 7.2.19, noting that Γ is a cycle in I 0̄Sn(X, ∂X;R):

a(((Dd+ dD)(ᾱ⊗ b̄)) _ Γ)

t
=

a((Dd(ᾱ⊗ b̄)) _ Γ)

t
+

a((d(D(ᾱ⊗ b̄))) _ Γ)

t

=
a((D((dᾱ)⊗ b̄± ᾱ⊗ db̄)) _ Γ)

t

+
a(∂(D(ᾱ⊗ b̄) _ Γ)± (D(ᾱ⊗ b̄)) _ ∂Γ)

t

= ±a((D(ᾱ⊗ tβ̄)) _ Γ)

t
= ±a((D(ᾱ⊗ β̄)) _ Γ).

This remaining expression is in R, and therefore a((α^b̄)_Γ)
t

= a((ᾱ^b̄)_Γ)
t

in Q(R)/R.

8.5 The Goresky-MacPherson intersection pairing

At this point in our development of the subject, we would be remiss not to discuss the

intersection pairing and the original Goresky-MacPherson approach to Poincaré duality for

pseudomanifolds in [105]. This is the other big “intersection” in “intersection homology,”

the first of course being the description of allowability in terms of how chains may intersect

strata. Unfortunately, the only route of which the author is aware for linking the intersection

pairing to the duality via cup and cap products that we have been discussing runs through

the derived category of sheaves [98] and so is beyond our current purview. Therefore, rather

than develop a thorough presentation of intersection products, we will instead treat this

section as a survey, referring to other sources for the details, particularly to [105] and [95],

though see also [168, 89].

We will begin by discussing the intersection pairing on manifolds, and then we will move

on to the pseudomanifold pairing.

579



8.5.1 The intersection pairing on manifolds

Assume M is a compact oriented n-dimensional manifold. Simplifying to this setting and to

integer coefficients, we showed in Section 8.4.2 that a consequence of Poincaré duality is the

nonsingular cup product pairing

F (H i(M))⊗ F (Hn−i(M))
^−→ F (Hn(M))→ Z,

where we recall that F (H∗(M)) is the quotient of H∗(M) by its torsion subgroup. In fact,

ignoring torsion, this pairing contains essentially the same information as Poincaré duality,

as the nonsingularity and the finite-generation due to compactness tell us that

F (H i(M)) ∼= Hom(F (Hn−i(M)),Z) ∼= F (Hn−i(M)),

the first isomorphism from the nonsingularity of the cup product pairing and the second

using the version of the Universal Coefficient Theorem that can be found, for example, as

[181, Theorem 56.1]. One could then work backward from the definitions and what we did in

Section 8.4.2 to relate this chain of isomorphisms to the cap product with the fundamental

class. In fact, to those of a more analytic bent, Poincaré duality is the nonsingular pairing

on de Rham cohomology H i
dR(M ;R) ⊗ Hn−i

dR (M ;R) → R given by the wedge product and

integration over M , and this is equivalent to the cup product pairing over R; see [29].

Anyway, once we know about the Poincaré duality isomorphism D and the cup product

pairing, we can observe that there is a homology pairing

F (Hn−i(M))⊗ F (Hi(M))
(D⊗D)−1

−−−−−→ F (H i(M))⊗ F (Hn−i(M))
^−→ F (Hn(M))→ Z (8.20)

given by inverting the duality isomorphisms and then applying the cup product pairing.

Now, recall that the cohomology cup product is induced by the cochain level cup product

S∗(M)⊗ S∗(M) → S∗(M), and the cup product on cochains is defined on any space. But,

as most algebraic topology textbooks will tell you (for example Section 61 of [181]), there

is no similar product on chains, in general, because the diagonal map d : X → X × X,

x→ (x, x), goes the wrong way to induce a product together with the chain cross product.

In other words, the cup product of cochains α and β is d∗(α× β), but if ξ and η are chains,

there is no way to apply the diagonal map to ξ× η to obtain a chain in X. Yet we have just

seen that there is a homology pairing on manifolds, which tells us that manifolds must be

special in some way28.

So what is the special property of manifolds that comes in here? At least in the smooth

and piecewise linear categories, it is general position29, which turns out to be strong enough

to induce an intersection pairing on homology, arising from a partially-defined pairing on

chains; partially defined because we need chains to be in general position in order to define

28There are are other spaces that are special in different ways. For example, if X is a topological group, or

even if it just has a suitably defined multiplication, a chain pairing can be defined using the multiplication

and this is called the Pontrjagin product; see [71, Section VII.3].
29There are also notions of general position for topological manifolds, but we will not discuss this here.
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their intersection product30. The intersection pairing is so named because the image of two

chains (in general position) under such a pairing is supported in their geometric intersection;

consequently, the intersection product is much more geometrically accessible than the cup

product, which is really pretty abstract. In fact, because it is more geometrically evident,

the intersection pairing predates the cup product31, whose arrival, in the words of McClure

[168], made the intersection product “temporarily obsolete.”

What should the intersection product be?

To get an idea of how the intersection pairing should work, let’s consider a simple example:

Figure 8.1: The torus with two intersecting chains

Let T be the torus with some orientation, and let x and y be the standard generators

of H1(T ). For example, we can take x to be a meridian and y a longitude. See Figure 8.1.

With the standard smooth embeddings, x and y intersect at a single point. We can assign

that intersection point a number by looking at the ordered basis of its tangent plane given by

the pair (tangent vector to x, tangent vector to y) and assign a 1 or −1 as this basis agrees

30There is a fascinating side plot here in that the fact that such an intersection pairing can only be partially

defined is related to the fact that when it is defined it is graded commutative. The commutative cochain

problem, which is more often formulated in cohomological language, says that it is not possible to construct

a graded-commutative differential graded algebra, functorial in the input space X, that is chain equivalent

to the usual algebra S∗(X) of singular cochains with cup product as algebra operation. Note that the cup

product is graded commutative as an operation on cohomology, but it does not commute at the cochain level.

The defect in commutativity is measured by something called cup-i products, which can be used to construct

the Steenrod square operations on Z2 cohomology. So the existence of non-trivial Steenrod squares shows

that we can’t have a graded-commutative cochain differential graded algebra. In the cochain world, what is

sacrificed is commutativity. In the dual chain world, the intersection pairing we will discuss is commutative,

but this comes at the expense of not being fully defined! Incidentally, the commutative cochain problem

does have a solution with Q coefficients, and this is (one of) the beginning(s) of rational homotopy theory;

for example, see [116, Chapter 10].
31According to Dieudonné [69, page 92], the cup product for simplicial complexes was introduced incor-

rectly by Alexander in 1935 [7], corrected by Alexander and Čech in 1936 [8, 50], and found independently

by Whitney in 1938 [243]. The singular cochain cup product is due to Eilenberg in 1944 [74]. By contrast,

intersection techniques seem to go back as far as Poincaré [189] and Lefschetz, with the intersection product

of chains being first formalized by Lefschetz in 1926-27 [148, 149].
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or disagrees with our orientation of the torus. For now, let’s assume agreement with the

orientations, and then we can write the intersection product32 x t y = 1. And if we reverse

the order, treating the tangent vector to y as coming first, the same argument says that

y t x = −1.

Now, an interesting thing happens if we start to manipulate x and y. Suppose we take

two smooth deformations of x and y such that all of the intersection points are transverse,

meaning that the tangent vectors to x and y at such points span the tangent plane to the

torus. If we assign the numbers ±1 at each intersection point as above, once again always

treating x first, and then add up all of these intersection numbers, we still get 1. In other

words, the intersection product does not depend on how we embed the curves realizing the

generators. See Figure 8.2.

Figure 8.2: The chain y has been deformed but the intersection number (counted with signs)

is unchanged.

Of course, this goes further. If we want to think about (2x) t y, we can either extend

our previous computation linearly and declare (2x) t y = 2(x t y) = 2, or we can represent

2x by, say, two parallel copies x′ and x′′ of the meridian. But these options are consistent,

as the latter case yields two separate intersection points each with intersection number one,

and adding up the intersection numbers gives us x′ t y + x′′ t y = 2. By now, the reader

might have guessed that this process of counting intersection numbers among transverse

curves, perhaps weighted with coefficients, depends only on the homology classes and not

the representatives. All in all, though we will not provide the detailed proofs, this procedure

amounts to an intersection pairing H1(T )⊗H1(T )→ Z.

Our discussion so far has hinged on the fact that two smooth curves in a surface gener-

ically intersect transversally at points (and in fact, if we start with two curves that do not

intersection transversally at points, we can smoothly deform them until they do, and the

intersection product does not depend on the choice of deformation). But this is a special

case of a more general phenomenon that is well known in the smooth category, which is

that if N1 and N2 are two smooth submanifolds of a smooth n-manifold M , then we can

deform N1 and N2 to be transverse, meaning that at each point p ∈ N1 ∩ N2, the tan-

gent spaces of N1 and N2 span the tangent space of M , i.e. Tp(N1) + Tp(N1) = Tp(M) [38,

32In other sources, the symbol t is often used just to denote transversality, and the intersection product

is denoted by something like •.
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Corollary II.15.4]. When this happens, the intersection is a submanifold of M of dimension

dim(N1) + dim(N2) − dim(M) [38, Theorem II.7.7]. As (triangulated) closed submanifolds

represent homology classes, we can therefore imagine a more general intersection product

Hi(M)⊗Hj(M)→ Hi+j−n(M), perhaps even induced by a chain map that looks something

like Si(M)⊗Sj(M)→ Si+j−n(M), though only partially defined when chains satisfy certain

transversality relations.

This last thought is the basic idea for the “chain-level” intersection pairing, though in

order to really make this work, we will abandon the smooth category and regroup in the

(larger) PL category. One reason is that it is a well-known result of Thom’s [234] that not

every homology class in a smooth manifold can be represented by a smooth submanifold33,

so we would like to work with a broader class of subspaces to represent our homology

classes. But working in the PL category has certain other benefits; for example, rather than

requiring the fairly strict condition of transversality, we will be able to use chains that are

only in general position:

Definition 8.5.1. Let K,L be two PL subsets of the n-dimensional PL manifold M . We

say that K and L are in general position if dim(K ∩ L) ≤ dim(K) + dim(L)− n.

Notice that the definition is satisfied if K∩L = ∅, which is one reason for not writing the

condition as an equality. Of course if dim(K) + dim(L) < n, then general position requires

that K ∩ L = ∅. So back in our torus example, any two PL curves that intersect only in a

finite union of points are in general position. In particular, two PL curves that intersect at

one point but that do not cross at that point are in general position but are not transverse.

Here is a useful theorem mirroring the transversality results for smooth manifolds. See

Hudson [130, Lemma IV.4.6] for a proof of a stronger version of this statement.

Theorem 8.5.2. If K,L are closed PL subsets of a PL manifold M , then there is a PL

ambient isotopy34 h : I ×M → M such that h(1, K) and L are in general position. Fur-

thermore, this isotopy can be made arbitrarily small in the sense that if ε : M → R is any

continuous positive function and d is a metric on M consistent with the topology, then h can

be found such that d(h(t, x), x) < ε(x) for all x.

The PL intersection pairing

Having now developed some intuition, how do we officially define the intersection pairing of

two PL chains in general position?

The first detailed work on intersection products was done by Lefschetz in [148, 149, 150].

Some historical discussion of Lefschetz’s work can be found in [69, Section II.4.D] and the

introduction to [168]. It seems to be agreed from a modern viewpoint that Lefschetz’s work

on intersection products was both complex and not completely satisfactory, explaining both

its temporary obsolescence when the cup product arrived and the fact that we won’t delve

33Relaxing the expectation to immersions doesn’t work either [115].
34This means that h̄ : I ×M → I ×M given by h̄(t, x) = (t, h(x, t)) is a PL homeomorphism and that

h(0, ·) is the identity. The restriction h(1, ·) : M →M is then also a PL homeomorphism.
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into details. Actually, the intersection product wasn’t abandoned completely, but it tended

either to rely on complicated processes such as replacing the chains with approximations

living in sufficiently fine dual cellular subdivisions of M (see, e.g. Seifert and Threlfall

[212, Chapter 10]) or it was defined only at the level of homology via Poincaré duality as in

Equation (8.20) (see Dold35 [71, Section VIII.13] or Bredon [38, Section VI.11]).

A modern revival of the intersection product, in particular as a product on any two PL

chains (not homology classes) in general position, began with Goresky and MacPherson’s

work on intersection homology [105]. Their fundamental insight was to reverse history and

use the cup product to define the intersection product. This technique identifies chains with

certain homology classes, dualizes the homology classes using Poincaré duality, takes the cup

product, and then dualizes back. This is reminiscent of Equation (8.20) but incorporates

a few subtleties that let the whole thing work as a chain pairing. In fact, Goresky and

MacPherson define their product in a PL stratified pseudomanifold, but for now we simplify

their setting to manifolds to start with a more straightforward version of the details.

First recall our Useful Lemma 3.3.10 from Section 3.3.2, which said that if X is a PL space

and B ⊂ A are closed PL subspaces of X such that dim(A) ≤ i and dim(B) ≤ i − 1, then

the group CA,Bi = {ξ ∈ Ci(X) | |ξ| ⊂ A, |∂ξ| ⊂ B} is isomorphic to Hi(A,B) ∼= Hi(A,B). In

other words, we can identify PL chains with certain homology classes.

Next, we need to reference some slightly more elaborate versions of Poincaré duality on

manifolds:

Theorem 8.5.3 (Poincaré duality). Let M be an oriented n-dimensional PL manifold, and

let L ⊂ K be a pair of compact PL subsets of M . Then there is a duality isomorphism

D : H i(K,L)→ Hn−i(M − L,M −K).

This theorem follows, for example, from the version of Poincaré duality in Dold [71,

Proposition VIII.7.2]. In fact, this can be strengthened to topological manifolds and ar-

bitrary compact subsets if we replace H i(K,L) with the Čech cohomology Ȟ i(K,L). The

isomorphism is given by a certain “cap product with the fundamental class” that is essen-

tially the usual cap product with the fundamental class, though accompanied by some well

chosen inclusion maps and excisions. We refer to Dold or [95] for the details. What we really

need is the following corollary:

Corollary 8.5.4 (Goresky-MacPherson duality). Let M be a compact oriented n-dimensional

PL manifold, and let L ⊂ K be a pair of compact PL subsets of M . Then there is a duality

isomorphism D : H i(M − L,M −K)→ Hn−i(K,L).

Notice that the difference between the theorem and corollary lies entirely in whether the

compact sets (respectively their open complements) appear in the cohomology groups or the

homology groups. The corollary follows from Dold’s duality theorem by some further homo-

topy equivalences and excisions. See [95] for a corrected version of the original construction

in [105, Appendix].

35Dold’s intersection product looks at first a bit different from our Equation (8.20), but it is noted that

they are the same (up to sign) in Exercise 4 of Bredon [38, Section VI.11].
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With these tools, the Goresky-MacPherson intersection product on M , simplified to live

on a PL manifold M and to the intersection of cycles, proceeds like this: Let ξ ∈ Ci(M)

and η ∈ Cj(M) be two PL cycles in general position, and let [ξ] ∈ Hi(|ξ|) and [η] ∈ Hi(|η|)
represent ξ and η under the isomorphisms of Lemma 3.3.10. Now apply to [ξ] ⊗ [η] the

composite map

Hi(|ξ|)⊗Hj([η])
(D⊗D)−1

−−−−−→ Hn−i(M,M − |ξ|)⊗Hn−j(M,M − |η|)
^−→ H2n−i−j(M − (|ξ| ∩ |η|))
D−→ Hi+j−n(|ξ| ∩ |η|). (8.21)

We can then again apply Lemma 3.3.10 to identify the resulting homology class with a cycle

ξ t η supported in |ξ| ∩ |η| using the general position assumption to assure dim(|ξ| ∩ |η|) ≤
i+ j−n; if dim(|ξ|∩ |η|) < i+ j−n then the result will be trivial. Notice that the procedure

is formally similar to that of Equation (8.20), but the inputs and outputs are now chains.

While we have focused on cycles to clarify the exposition, it is not too difficult to gener-

alize this construction to include chains with boundaries, provided we also assume that ∂ξ

and η are in general position and that ξ and ∂η are in general position. Then the intersection

ξ t η corresponds to an element of Hi+j−n(|ξ|∩ |η|, (|∂ξ|∩ |η|)∪ (|ξ|∩ |∂η|)); see [105, Section

2.1] or our construction below of the intersection pairing on pseudomanifolds, which we allow

to include boundaries.

One can also show that, defined this way, the intersection product has versions of the nice

properties one associates with the cup product, except that our insistence that everything be

done with chain maps does lead to some odd signs compared with other choice conventions36.

For example, one can check by hand using the definitions and the properties of the cup

product that (ξ t η) t ζ = (−1)n+n|ξ|ξ t (η t ζ). One way to avoid such signs is by using

shifts to redefine the intersection product as a degree 0 map; see [168, 169, 89, 98]. For more

about signs when pairings are transferred using maps of non-zero degree, see [98, Appendix

B].

Other properties of the intersection product include:

1. bilinearity

2. signed commutativity: ξ t η = (−1)n+|ξ||η|η t ξ

3. a boundary formula37: As t is induced by chain maps of total (homological) degree

36We feel this is an acceptable price to pay for consistency with the Koszul conventions in general; see

Section A.1. In particular, our conventions differ from both Goresky-MacPherson [105] and Dold [71, Section

VIII.13]. There is already some confusion about signs in Dold owing to the omission of some signs in the

definition of the umkehr map that would make it a chain map; see the comment on [71, page 314]. Dold also

does not use our sign convention for the duality map. Consequently, some formulas in Dold are much nicer

than those here, e.g. the associativity. But the Dold intersection product, as defined, does not act like a

chain map of degree n, as we can see from the boundary formula [71, Section VIII.13.11]. See [98, Appendix

B] for further discussion.
37Although not mentioned explicitly in [105], presumably one must also assume that ∂ξ and ∂η are in

general position so that the terms on the right are well defined.
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−n, we have ∂◦ t= (−1)n t ◦∂ so that the boundary formula becomes ∂(ξ t η) =

(−1)n(∂ξ) t η + (−1)n+|ξ|ξ t ∂η.

Using these properties, we see that if η is a cycle and ξ is a homology between two

cycles, say ∂ξ = ζ1 − ζ2, then ζ1 t η and ζ2 t η are homologous. Furthermore, by a slight

strengthening of Theorem 8.5.2 (see [105, Section 2.2]), the following facts hold:

1. Given any two cycles ξ and η there is an ambient isotopy taking ξ to ξ′ such that ξ′

and η are in general position.

2. Given a chain ξ and a cycle η such that ∂ξ and η are in general position, there is an

ambient isotopy taking ξ to ξ′ and fixing ∂ξ so that ∂ξ = ∂ξ′ and ξ and η are in general

position.

Together, these observations imply that there is a well-defined productHi(M)⊗Hj(M)→
Hi+j−n(M): By the first fact, if we are given any two cycles ξ and η, we can replace ξ by a

homologous cycle ξ′ such that ξ′ and η are in general position, and we can use the isotopy

to construct a homology by the usual prism argument, e.g. [125, proof of Theorem 2.10] or

our proof here of Proposition 4.1.10. The second fact says that if we construct two such

homologies from ξ to, say, ξ′ and ξ′′, each in general position with η, then we can put the

composite homology from ξ′ to ξ′′ into general position without moving ξ′ and ξ′′. The

boundary formula then tells us that ξ′ t η and ξ′′ t η are homologous. Of course the

same arguments can be made in the second coordinate, showing that the chain level pairing

induces a pairing Hi(M)⊗Hj(M)→ Hi+j−n(M) independent of the choices made in picking

representative cycles.

Furthermore, the intersection pairing conforms to our motivation:

Theorem 8.5.5. Let M be a compact oriented PL manifold of dimension n. The following

diagram commutes:

Hn−i(M)⊗Hn−j(M) -̂ H2n−i−j(M)

Hi(M)⊗Hj(M)

D ⊗D

? t
- Hi+j−n(M).

D

?

This theorem is not so hard to prove from the definitions using the preceding discussion

together with the properties of the cup and cap products. See [95] for details.

Remark 8.5.6. Following on our earlier observation about the trickiness of tracking signs in

intersection products, we should explicitly note the following formula: If α ∈ Hn−i(M),β ∈
Hn−j(M), D(α) = x, and D(β) = y, then the diagram says that

x t y = (−1)n(n−i)D(α ^ β).
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The sign comes from moving the D past α to apply the tensor product D ⊗ D to α ⊗ β.

While this sign seems counterintuitive, this definition is consistent with that of McClure in

[168, 169] (though without the chain complex shifts; see [95, Section 7] for details). As noted

above, this convention differs from those in Dold [71, Section VIII.13].

The careful reader will notice that we have only treated here the intersection of two

chains in suitable general position, though this is sufficient to arrive at our homology pairing

Hi(M) ⊗ Hj(M) → Hi+j−n(M). It is possible to generalize further so that this homology

map is induced by appropriate chain maps, though they cannot be maps C∗(M)⊗C∗(M)→
C∗(M), as an arbitrary element of C∗(M)⊗ C∗(M) does not satisfy enough general position

requirements. Rather, the correct approach is to use chain maps

C∗(M)⊗ C∗(M)←−↩ G∗
t−→ C∗(M),

where G∗ is a domain subcomplex of C∗(M) ⊗ C∗(M) meeting sufficient general position

requirements, the leftward inclusion map induces homology isomorphisms, and the map

to the right is an appropriate version of the intersection pairing. Such a scenario then

induces homology maps H∗(M) ⊗ H∗(M) → H∗(M) more broadly. This approach to PL

intersection pairings on manifolds is due to McClure [168]. While we will not discuss it here,

an intersection chain analogue of this approach to intersection products on pseudomanifolds

is developed in [89, 95].

8.5.2 The intersection pairing on PL pseudomanifolds

Now we come to the intersection pairing of intersection chains on pseudomanifolds and to

the original form of Poincaré duality on pseudomanifolds from [105], which says (from our

current point of view) that if X is a compact oriented PL stratified pseudomanifold without

codimension one strata and p̄ is a GM perversity then there is an intersection pairing

I p̄HGM
i (X)⊗HDp̄HGM

n−i (X)→ I t̄HGM
0 (X)

a−→ Z,

which becomes a nonsingular pairing upon tensoring with Q. This is the original version of

intersection homology duality due to Goresky and MacPherson in [105], with cup and cap

products and notions of being locally torsion free not being developed until later. So how

did Goresky and MacPherson construct this intersection product?

The process is basically the same as that we have considered for manifolds, though we’ll

need to generalize our notion of general position and our Poincaré duality result. We will

not need to change the third ingredient, representing chains by homology classes, because

an intersection chain ξ ∈ I p̄CGMi (X) is still a chain in Ci(X) and so can still be represented

by a class in the ordinary homology group Hi(|ξ|, |∂ξ|).
So first we need a new notion of general position because general position as we know it

will no longer hold in a pseudomanifold.

Example 8.5.7. For example, for any compact manifold M , consider the space X = S1×M
{1}×M ,

and for any two distinct points x, y ∈M , consider the images in X of S1×{x} and S1×{y}.
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These two curves are disjoint except where they intersect at the “pinch point” corresponding

to the image of {1} ×M , and it is evident that no deformations can separate the curves.

When n = dim(M) > 1, we have 1 + 1− (n+ 1) < 0, so the failure to separate the curves is

a violation of general position. See Figure 8.3.

Figure 8.3: Schematic of general position failure at a singularity. Note that general position

does not fail if we take the figure literally, as two 1-chains intersecting 0-dimensionally in a

2-dimensional pseudomanifold does not violate general position.

The appropriate generalization of general position is stratified general position.

Definition 8.5.8. Let K,L be two PL subsets of the n-dimensional PL stratified pseudo-

manifold X. We say that K and L are in stratified general position if for each stratum Z of

X we have

dim(K ∩ L ∩ Z) ≤ dim(K ∩ Z) + dim(L ∩ Z)− dim(Z).

In other words, K and L are in stratified general position if their intersections with each

stratum are in general position within that stratum.

McCrory [170] showed that there is a stratified version of Theorem 8.5.2 for pseudoman-

ifolds, i.e. that two PL subspaces can be put into stratified general position by an ambient

isotopy that preserves the filtration.

So now suppose that ξ ∈ I p̄CGMi (X) and η ∈ I q̄CGMj (X) are in stratified general position

in the n-dimensional stratified pseudomanifold X. Then the intersection of ξ and η in the

regular strata will have the expected dimension i+j−n. Let’s see what happens in a singular

stratum. Suppose Z is a singular stratum of dimension n− k, and so codimension k. From

the allowability conditions, dim(|ξ| ∩ Z) ≤ i − k + p̄(Z) and dim(|η| ∩ Z) ≤ j − k + q̄(Z).

So, by stratified general position, we must have

dim(|ξ| ∩ |η| ∩ Z) ≤ dim(|ξ| ∩ Z) + dim(|η| ∩ Z)− dim(Z)

≤ i− k + p̄(Z) + j − k + q̄(Z)− (n− k)

= i+ j − n− k + p̄(Z) + q̄(Z). (8.22)

But this is precisely the condition for an i+ j − n dimensional chain to be p̄+ q̄ allowable!

Thus, if we can define ξ t η as an i+ j − n chain supported in |ξ| ∩ |η|, it will furthermore

be p̄+ q̄ allowable.
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Remark 8.5.9. Technically, Goresky and MacPherson approach matters from the other direc-

tion by using this p̄+ q̄ allowability condition to define a notion of “dimensionally transverse

chains,” which is the hypothesis for their construction of the intersection pairing. McCrory’s

theorem is used in [105] to show that chains can be made dimensionally transverse.

Let us see when stratified general position of ξ and η implies that dim(|ξ| ∩ |η| ∩ Z) ≤
i + j − n for all Z and so consequently that dim(|ξ| ∩ |η|) ≤ i + j − n. We have already

observed that this must be the case on regular strata. If Z is a singular stratum, the above

computation shows that it will be guaranteed if p̄(Z) + q̄(Z) ≤ k. This is forced in [105] by

the assumption that p̄ + q̄ ≤ r̄, with r̄ being another GM perversity. By definition a GM

perversity satisfies the stronger condition r̄(Z) ≤ k − 2; we will use this extra strength in a

moment.

So, that takes care of general position, and, as noted, intersection chains can still be

represented by ordinary homology classes as in the manifold case. What about the other

ingredient, Poincaré duality? It turns out that Theorem 8.5.3 and Corollary 8.5.4 have a

generalization for pseudomanifolds. The upshot is the following theorem; we refer to [95] for

a corrected version of the original proof in [105]:

Theorem 8.5.10. Let (X,S) be a compact PL space pair such that X − S is an oriented

n-dimensional manifold, and let L ⊂ K ⊂ X be compact PL subspaces such that S ⊂ L.

Then there is an isomorphism D : H i(X − L,X −K)→ Hn−i(K,L) composed of excisions,

isomorphisms induced by inclusions, and the duality isomorphism of Theorem 8.5.3.

The basic idea of the proof is that since S is contained within L, we can thicken K and

L to open subsets by homotopy equivalences and then excise S, leaving a manifold as the

ambient space. Notice that the manifold M in Theorem 8.5.3 is not required to be compact.

We can now define the chain-level intersection pairing on a PL stratified pseudomanifold

X as follows. Since we will already need some extra steps to account for the singular set, it

no longer adds much more clutter to include chains with nontrivial boundaries. So assume

ξ ∈ I p̄CGMi (X) and η ∈ I q̄CGMj (X) are two chains in stratified general position and such

that the pairs (ξ, ∂η) and (∂ξ, η) are also in general position. Let [ξ] ∈ Hi(|ξ|, |∂ξ|) and

[η] ∈ Hi(|η|, |∂η|) represent ξ and η under the isomorphisms of Lemma 3.3.10. Let Σ be the

singular set of X, and let J = Σ ∪ |∂ξ| ∪ |∂η|.
Now we apply to [ξ]⊗ [η] the following generalization of the composite map (8.21):

Hi(|ξ|, |∂ξ|)⊗Hj(|η|, |∂η|)→ Hi(|ξ| ∪ J, J)⊗Hj(|η| ∪ J, J)

(D⊗D)−1

−−−−−→ Hn−i(X − J,X − (|ξ| ∪ J))⊗Hn−j(X − J,X − (|η| ∪ J))
^−→ H2n−i−j(X − J,X − ((|ξ| ∩ |η|) ∪ J))

D−→ Hi+j−n((|ξ| ∩ |η|) ∪ J, J)
∼=←− Hi+j−n(|ξ| ∩ |η|, (|ξ| ∩ |η|) ∩ J)
∼=←− Hi+j−n(|ξ| ∩ |η|, (|∂ξ| ∩ |η|) ∪ (|ξ| ∩ |∂η|)). (8.23)
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The first leftward arrow is an isomorphism by excision; we can use simplicial excision (see

[125, Corollary 2.24]) here as this is ordinary homology and we can find PL triangulations

with respect to which all our subspaces are simplicial. To see that the second leftward arrow

is an isomorphism, we consider the long exact sequence of the triple, the third term of which

is

H∗((|ξ| ∩ |η|) ∩ J, (|∂ξ| ∩ |η|) ∪ (|ξ| ∩ |∂η|)).

This, in turn, is isomorphic by excision to38

H∗((|ξ| ∩ |η|) ∩ Σ, ((|∂ξ| ∩ |η|) ∪ (|ξ| ∩ |∂η|)) ∩ Σ).

But we have seen in (8.22) and the discussion following that computation that if p̄ + q̄ ≤ r̄

for a GM perversity r̄ (so that r̄(k) ≤ k − 2) then the intersection of |ξ| ∩ |η| with Σ must

have dimension smaller than i+ j − n− 1. In particular, these last homology groups vanish

for ∗ ≥ i+ j − n− 1, providing the claimed isomorphism.

So we have dim(|ξ| ∩ |η|) ≤ i+ j − n, and a similar argument holds to show dim((|∂ξ| ∩
|η|)∪(|ξ|∩|∂η|)) ≤ i+j−n−1. Therefore, we can again apply Lemma 3.3.10 to identify the

image of the composition in Hi+j−n(|ξ|∩|η|, (|∂ξ|∩|η|)∪(|ξ|∩|∂η|)) with a chain supported in

|ξ|∩ |η| and with boundary in (|∂ξ|∩ |η|)∪ (|ξ|∩ |∂η|). This chain is our intersection product

ξ t η. Stratified general position arguments completely analogous to those discussed above

for manifolds then imply that we obtain a well-defined map

I p̄HGM
i (X)⊗ I q̄HGM

j (X)→ I r̄HGM
i+j−n(X),

where p̄, q̄, r̄ are GM perversities with p̄+ q̄ ≤ r̄.

So that is the original Goresky-MacPherson intersection pairing, and if i + j = n and

q̄ = Dp̄, we get a pairing

I p̄HGM
i (X)⊗ IDp̄HGM

n−i (X)→ I t̄HGM
0 (X)

a−→ Z.

It is interesting to note that the t̄ allowability conditions for a 0-cycle ensure that if ξ ∈
I p̄CGMi (X) and η ∈ IDp̄CGMn−i (X) are in stratified general position then |ξ| ∩ |η| lies in the

union of regular strata of X. So, near these points, the intersection number looks just like

what happens in a manifold.

The Poincaré duality theorem of Goresky and MacPherson [105, Theorem 3.3] says that

this last pairing is nondegenerate when tensored with Q. The proof of this in [105] is quite

different from the proof of duality we have presented in this book and even quite different

from the the sheaf theoretic proofs. There, starting with an arbitrary triangulation T of

X, the authors define a collection of “basic sets” · · · ⊂ Qp̄
i ⊂ Qp̄

i+1 ⊂ · · · that are certain

38Again we may use simplicial excision, noting that

[(|ξ| ∩ |η|) ∩ Σ] ∩ [(|∂ξ| ∩ |η|) ∪ (|ξ| ∩ |∂η|)] = (|ξ| ∩ |η|) ∩ [(|∂ξ| ∩ |η|) ∪ (|ξ| ∩ |∂η|)] ∩ Σ

= ([(|ξ| ∩ |η|) ∩ (|∂ξ| ∩ |η|)] ∪ [(|ξ| ∩ |η|) ∩ (|ξ| ∩ |∂η|)]) ∩ Σ

= [(|∂ξ| ∩ |η|) ∪ (|ξ| ∩ |∂η|)] ∩ Σ.
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simplicial subcomplexes of X that, roughly speaking, carry the intersection homology in-

formation. More precisely, they show that I p̄Hi(X) ∼= im(Hi(Q
p̄
i ) → Hi(Q

p̄
i+1)), but also

that IDp̄Hi(X) ∼= im(Hn−i(Qp̄
n−i+1) → Hn−i(Qp̄

n−i)). The proof that the rational intersec-

tion pairing is nonsingular then follows by observing that the Kronecker evaluation pairing

between im(Hi(Q
p̄
i ) → Hi(Q

p̄
i+1)) and im(Hn−i(Qp̄

n−i+1) → Hn−i(Qp̄
n−i)) is rationally non-

singular (this follows from some basic linear algebra) and corresponds to the intersection

pairing under the given isomorphisms. See [105] for details.

A non-GM intersection product. So far we have outlined the construction of the

Goresky-MacPherson intersection product of intersection chains from [105], which assumes

GM perversities and GM intersection chains. It is possible, however, to extend this con-

struction to non-GM intersection chains and arbitrary perversities satisfying p̄+ q̄ ≤ r̄. The

basic idea is as follows:

Assuming that ξ ∈ I p̄Ci(X) and η ∈ I q̄Cj(X) are in stratified general position then the

above definition of the intersection product39 (8.23) can be applied through to the point where

we obtain an element inHi+j−n((|ξ|∩|η|)∪J, J). By stratified general position, it remains true

that dim(|ξ|∩ |η|∩Z) ≤ i+j−n for all regular strata Z, i.e. dim ((|ξ| ∩ |η|)− Σ) ≤ i+j−n.

Then, rather than applying the isomorphisms of the previous discussion, there is instead a

generalization of Lemma 3.3.10 that holds in this context and lets us identify an element

of Hi+j−n((|ξ| ∩ |η|) ∪ J, J) with a degree i + j − n PL chain supported in the closure of

((|ξ|∩|η)∪J)−J and with its boundary in J ; see40 [95, Lemma 4.3]. The same computation

as above shows that stratified general position implies that this resulting chain ξ t η is

p̄ + q̄ allowable, and similar arguments show that the boundary is also allowable. Thus we

have ξ t η ∈ I p̄+q̄Ci+j−n(X), and once again this induces a pairing of intersection homology

groups.

For the more general development of intersection chain pairings based on chain maps

(as opposed to pairings only of two chains in stratified general position), see [89] for GM

perversities and GM intersection chains and [95] for the non-GM case.

Almost full circle

We close this section by observing that, in some sense, the theory has nearly come full

circle. Although duality for manifolds was originally conceived in terms of intersections,

the intersection product was supplanted historically by the cup product, to which it is

dual by Theorem 8.5.5. The cup product was then used by Goresky and MacPherson to

construct a better intersection product that could be used to produce nonsingular pairings

on pseudomanifolds. Now we have cup and cap products on pseudomanifolds, and in the

39Using the full boundaries for ξ and η in Hi(|ξ|, |∂ξ|) and Hj(|η|, |∂η|), not the boundaries ∂̂ used in the

definition of the non-GM intersection chain complex.
40In slightly more detail and specializing the situation of [95, Lemma 4.3] to the notation and details here,

this generalization of Lemma 3.3.10 says that if X is a PL space with C ⊂ B ⊂ A closed PL subspaces

such that dim(A − B) = p and dim(B − C) < p, then there is an isomorphism between Hp(A,B) and

{ξ ∈ Cp(X) | |ξ| ⊂ cl(A−B), |∂ξ| ⊂ B}. For our use here, we take (A,B,C) = ((|ξ| ∩ |η|) ∪ J, J,Σ).
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setting where we have Poincaré duality for intersection homology, i.e. when X satisfies the

appropriate torsion free conditions or when substituting in appropriate field coefficients, we

expect the intersection pairing

I p̄Hi(X)⊗ IDp̄Hn−i(X)
t−→ I t̄HGM

0 (X)
a−→ Z

to be Poincaré dual to the cup product pairing in the same manner that it is dual for

manifolds. In fact, we have the following theorem generalizing Theorem 8.5.5, at least for field

coefficients. Note that, due to the field coefficients, Lemma 7.2.8 shows that (Dp̄,Dq̄;Dr̄)

being agreeable is equivalent to the original Goresky-MacPherson condition p̄+ q̄ ≤ r̄.

Theorem 8.5.11. Let F be a field, and let X be a compact oriented n-dimensional PL

stratified pseudomanifold with (Dp̄,Dq̄;Dr̄) an agreeable triple of perversities. Then there is

a commutative diagram of nonsingular pairings and isomorphisms

IDp̄H
n−i(X;F )⊗ IDq̄Hn−j(X;F ) -̂ IDr̄H

2n−i−j(X;F )

I p̄Hi(X;F )⊗ I q̄Hj(X;F )

D ⊗D

? t
- I r̄Hi+j−n(X;F ).

D

?

The author had originally hoped to include in this space a proof of Theorem 8.5.11 for

Dedekind domain coefficients (with appropriate torsion free conditions), but a proof that

does not involve both sheaf theory and field coefficients remains elusive. This is somewhat

surprising in light of a non-sheaf proof of the version for manifolds (Theorem 8.5.5), for which

details are provided in [95], but the technical details do not quite go through for intersection

homology. See the end of [95] for a discussion of the difficulty. For a sheaf-theoretic proof

of Theorem 8.5.11, see [98].

Even assuming that the cup and intersection pairings are dual in full generality, we hope

that this time around the cup product does not render the Goresky-MacPherson intersection

product once again “obsolete” but rather that the intersection product has now proven its

value, playing a fundamental role in precipitating the entire subject of this book!

8.5.3 An intersection pairing on topological pseudomanifolds and

some relations of Goresky and MacPherson

In the preceding section we discussed the relationship between the intersection cohomology

cup product pairing and Goresky-MacPherson intersection pairing for PL pseudomanifolds.

Motivated by this relationship, we can define an intersection pairing for topological pseudo-

manifolds in terms of the cup product:

Definition 8.5.12. Suppose R is a Dedekind domain, and let X be a compact R-oriented n-

dimensional stratified pseudomanifold. Suppose that X is locally (p̄;R)-torsion free, locally
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(q̄;R)-torsion free, and locally (p̄ + q̄;R)-torsion free. Define the intersection product t:

I p̄Hi(X)⊗ I q̄Hj(X)→ I p̄+q̄Hi+j−n(X) so that the following diagram commutes:

IDp̄H
n−i(X;R)⊗ IDq̄Hn−j(X;R) -̂ ID(p̄+q̄)H

2n−i−j(X;R)

I p̄Hi(X;R)⊗ I q̄Hj(X;R)

D ⊗D

? t
- I p̄+q̄Hi+j−n(X;R).

D

?

Of course this definition is somewhat unnecessary, as we already have the cup product

and we are simply defining the intersection product in terms of it. However, we have seen

that the dual intersection pairing can sometimes be useful, especially if we have a nice

geometric interpretation of it to work with, such as when X is PL. Given the close relation

to the cup product, we won’t do much with the intersection product here except to point

out some nice relations with ordinary homology observed by Goresky and MacPherson in

[105, Section 2.4]. This continues our discussion from Section 8.1.6 of the factorization of

the ordinary cap product with the fundamental class through intersection homology.

Recall from that section the following definitions. We assume X to be a compact oriented

n-dimensional topological stratified pseudomanifold and p̄ a perversity such that 0̄ ≤ p̄ ≤ t̄

andX is locally (p̄;R)-torsion free for a Dedekind domain R. Then we define ωp̄ : I p̄H∗(X)→
H∗(X) to be the map induced by the inclusion I p̄SGM∗ (X) ↪→ S∗(X), and we let αp̄ be the

composition

Hn−∗(X;R)
ω∗Dp̄−−→ IDp̄H

n−∗(X;R)
D−→ I p̄H∗(X;R).

Proposition 8.1.31 says the ordinary cap product _ ΓX : Hn−∗(X;R) → H∗(X;R) factors

as

Hn−∗(X;R)
(−1)n(n−∗)αp̄−−−−−−−−→ I p̄H∗(X;R)

ωp̄−→ H∗(X;R).

The sign comes from using D rather than simply the cap product with Γ in the definition of

αp̄.

Let us demonstrate a topological version of the following Goresky-MacPherson relations,

observed for GM perversities, though for arbitrary PL pseudomanifolds, in [105]. Our signs

differ from those in [105] due to our alternative conventions, especially in the definition of

the duality map D; see the discussion on page 585 and in footnote 36 on that page.

Proposition 8.5.13. Suppose R is a Dedekind domain. Let X be a compact oriented n-

dimensional topological stratified pseudomanifold and p̄, q̄ perversities such that 0̄ ≤ p̄ ≤ t̄,

0̄ ≤ q̄ ≤ t̄, 0̄ ≤ p̄ + q̄ ≤ t̄, and such that X is (p̄;R)-torsion free, (q̄;R)-torsion free, and

(p̄+ q̄;R)-torsion free. If A ∈ H i(X;R), B ∈ Hj(X;R), and ξ ∈ I p̄Hk(X;R), then

αp̄+q̄(A ^ B) = (−1)niαp̄(A) t αq̄(B) (8.24)

A _ ωp̄(ξ) = ωp̄+q̄(αq̄(A) t ξ) (8.25)

A(ωp̄(ξ)) = aωp̄+q̄(αq̄(A) t ξ). (8.26)
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Proof. The verifications of these formulas utilize the basic properties of the cup and cap

products. As observed at the end of Section 7.3.1, e.g. in Proposition 7.3.8, the naturality

relations apply to the maps ω given our current assumptions. We will use these relations

mostly without further comment.

To verify the first formula, we compute

αp̄+q̄(A ^ B) = Dω∗D(p̄+q̄)(A ^ B)

= D(ω∗Dp̄(A) ^ ω∗Dq̄(B))

= D(D−1D(ω∗Dp̄(A)) ^ D−1D(ω∗Dq̄(B)))

= (−1)n(n−i)D◦^ ◦(D−1 ⊗D−1)(D(ω∗Dp̄(A))⊗D(ω∗Dq̄(B)))

= (−1)n(n−i)+nD◦^ ◦(D ⊗D)−1(αp̄(A)⊗ αq̄(B))

= (−1)niαp̄(A) t αq̄(B).

The sign n(n− i) comes from passing an operator of (cohomological) degree n, namely D−1,

across D(ω∗Dp̄(A)), which has (homological) degree n − i. The other signs come from the

Koszul convention41. The second equality uses Proposition 7.3.9, with (Dp̄,Dq̄;D(p̄ + q̄))

being an agreeable triple by Lemma 7.2.8 and Corollary 8.2.5.

For equation (8.25), let E ∈ IDp̄H
n−k(X) be a class such that D(E) = ξ; such an E

exists by Poincaré duality. We then have

ωp̄+q̄(αq̄(A) t ξ) = ωp̄+q̄(D(ω∗Dq̄(A)) t D(E))

= (−1)inωp̄+q̄◦ t ◦(D ⊗D)(ω∗Dq̄(A)⊗ E)

= (−1)inωp̄+q̄D(ω∗Dq̄(A) ^ E)

= (−1)in+n(i+n−k)ωp̄+q̄((ω
∗
Dq̄(A) ^ E) _ Γ)

= (−1)n(n−k)ωp̄+q̄(ω
∗
Dq̄(A) _ (E _ Γ))

= (−1)n(n−k)+n(n−k)ωp̄+q̄(ω
∗
Dq̄(A) _ D(E))

= ωp̄+q̄(ω
∗
Dq̄(A) _ ξ)

= A _ ωp̄(ξ).

Here we have used a variety of properties of cup and cap products from Section 7.3; we invite

the reader to check that the perversities work out so that those lemmas apply. We have also

used Proposition 7.3.8 for the last equation.

41In particular, note that

α⊗ β = (D−1D(α))⊗ (D−1D(β))

= (−1)n(|α|−n)(D−1 ⊗D−1)((Dα)⊗ (Dβ))

= (−1)n(|α|−n)+n|α|(D−1 ⊗D−1)(D ⊗D)(α⊗ β)

= (−1)n(D−1 ⊗D−1)(D ⊗D)(α⊗ β),

so (D ⊗D)−1 = (−1)n(D−1 ⊗D−1).
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Finally, we deduce equation (8.26). This follows from the preceding formula and the

standard fact that a(A _ x) = A(x). We’ve given a proof here in the intersection context

as Proposition 7.3.25.
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Chapter 9

Witt spaces and IP spaces

If M is a compact oriented 4k-dimensional manifold, then we have seen in Section 8.4.2 that

we have a nonsingular1 cup product pairing

H2k(M ;Q)⊗H2k(M ;Q)
^−→ H4k(M ;Q)

D−→ H0(M ;Q)
a−→ Q. (9.1)

By Proposition 7.3.15, this pairing is symmetric, i.e. α⊗ β and β ⊗ α have the same image

in Q. This algebraic situation yields an integer invariant, the signature of the pairing, which

turns out to be an important topological invariant of M . According to Gromov [118, Section

71
4
], the signature “is not just ‘an invariant’ but the invariant which can be matched in

beauty and power only by the Euler characteristic.”

In this chapter, we will explore when signatures, and related invariants, can be extended

to pseudomanifolds. It will turn out that some restrictions are needed on the space, but that

on such spaces we obtain invariants with very nice properties.

In Section 9.1.1, we introduce the Witt spaces of Siegel [217], which possess self-duality

analogous to (9.1) over fields, and the more restrictive IP spaces of Pardon [186], which

possess self-duality over Dedekind domains. We demonstrate the existence of these pairings

in Section 9.2. In Section 9.3, we discuss signatures of rational Witt spaces after providing

a review of the needed background from linear algebra. We also briefly discuss “perverse

signatures” arising from image pairings in Subsection 9.3.4.

As an application of the existence of the signature for rational Witt spaces, we follow

Goresky and MacPherson [105] by constructing characteristic homology L-classes for such

spaces in Section 9.4. If the space is a smooth manifold, these are the Poincaré duals

of the classical L-classes of the tangent bundle defined via the Pontrjagin classes. The

construction involves an excursion into cohomotopy theory and transverse inverse images in

the PL category. As a hint toward further applications of intersection homology theory, we

end the chapter by providing a survey of pseudomanifold bordism theories in Section 9.5.

1Recall Definition 8.4.2.
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9.1 Witt and IP spaces

In this first section of the chapter we introduce Witt spaces and IP spaces and then prove

some basic properties concerning products and stratification invariance.

9.1.1 Witt spaces

When we turn to expanding the signature invariant to stratified spaces, there is an immediate

problem: the signature of a closed oriented manifold M4k is defined using the nonsingular

symmetric cup product pairing H2k(M ;Q) ⊗ H2k(M ;Q) → H4k(M ;Q) → Q. But for

closed oriented pseudomanifolds, the Poincaré duality studied in Chapter 8 only provides

nonsingular pairings Ip̄H
2k(X;Q) ⊗ IDp̄H

2k(X;Q) → Q. There is no reasonable way to

interpret this as a symmetric pairing unless Ip̄H
2k(X;Q) and IDp̄H

2k(X;Q) are isomorphic2.

So at first glance, we want to find perversities p̄ such that p̄ = Dp̄. However, this would

require p̄(S) = Dp̄(S) = codim(S)− 2− p̄(S), or p̄(S) = codim(S)−2
2

, for all singular strata S.

Clearly this is not possible if X has strata of odd codimension.

In fact, an early solution to this problem [105, Section 5] was to work with spaces with

only even codimension singularities. For example, every complex algebraic variety can be

given such a stratification [109, Section I.1.7], so certainly this limitation was not completely

unreasonable. However, one can do better.

To start, let us consider perversities p̄ so that p̄(S) = codim(S)−2
2

when the codimension of

S is even. For such a p̄, we have p̄ = Dp̄ on spaces with only strata of even codimension. Now,

what should we do when the codimension of S is odd? To stay as close to self-dual as possible,

we should choose perversities that round codim(S)−2
2

up or down to the nearest integer. If we

round down, we obtain m̄, the lower-middle perversity, defined by m̄(S) =
⌊

codim(S)−2
2

⌋
. This

extends the Goresky-MacPherson lower middle perversity3

m̄ = [0, 0, 1, 1, 2, 2, 3, . . .].

When we round up, we get the dual perversity Dm̄ = n̄, the upper-middle perversity with

n̄(S) =
⌈

codim(S)−2
2

⌉
that extends the Goresky-MacPherson upper-middle perversity

n̄ = [0, 1, 1, 2, 2, 3, . . .].

These two perversities are as close to each other as it is possible for two dual perversities to

be, assuming we wish to make a consistent choice of which one is larger than the other on

2Actually, the image pairing studied in Section 8.4.5 does provide a self-pairing without further conditions,

but it’s properties are not as nice or as well understood as those for the Witt and IP spaces we introduce in

this section, so we’ll mostly stick with the historical development and discuss Witt spaces first. The image

pairing will return, however, as one of our ways to define Witt signatures for Witt spaces with boundary in

Section 9.3 and in our brief discussion of perverse signatures for general perversities in Section 9.3.4.
3Recall from Definition 3.1.4 that Goresky-MacPherson perversities are functions of codimension

{2, 3, . . .} → Z and so can be described by the sequence of values [p̄(2), p̄(3), . . .]. Our definition here

of m̄ and n̄ extend the Goresky-MacPherson definitions only in the sense that we include the possibility

codim(S) = 1.
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the odd codimension strata. This is a useful assumption because it allows us to construct a

“comparison map” via the inclusion Im̄S∗(X;G) → I n̄S∗(X;G) for any coefficient system;

in fact, if p̄, q̄ are any perversities with p̄(S) ≤ q̄(S) for all S, then I p̄S∗(X;G) ⊂ I q̄S∗(X;G).

One can then pose the natural question: for what spaces beyond those with only even

codimension strata does the inclusion Im̄S∗(X;G) ↪→ I n̄S∗(X;G) induce isomorphisms on

homology? For Q coefficients, such spaces are candidates to possess signatures, and for other

ring coefficients there are other invariants of self-duality that might be exploited.

Remark 9.1.1. Since the upper- and lower-middle perversities, and GM perversities in gen-

eral, depend only on the codimensions of strata, in what follows we often write, for example,

m̄(`) rather that m̄(S) when codim(S) = `.

A natural class of spaces for which the inclusion Im̄S∗(X;Q) → I n̄S∗(X;Q) induces an

isomorphism was discovered by Paul Siegel [217] in his thesis. He named these spaces “Witt

spaces” because he was able to prove that the 4n-dimensional (n > 0) oriented bordism

groups of PL Witt spaces are isomorphic to the Witt group4 W (Q) via the map that takes

the self-dual cup product pairing5 Im̄H
2k(X;Q) ⊗ Im̄H

2n(X;Q) → Q we shall construct

below to its class as an element of W (Q).

The defining condition for Witt spaces arises from the desire to have Im̄H∗(X;Q) ∼=
I n̄H∗(X;Q). As we have seen many times, intersection homology is in may ways controlled

by what happens on cones, and if L is an n− 1 dimensional link, then for n odd we have

Im̄Hi(cL;Q) ∼=

{
0, i ≥ n−

⌊
n−2

2

⌋
− 1,

Im̄Hi(L;Q), i < n−
⌊
n−2

2

⌋
− 1,

I n̄Hi(cL;Q) ∼=

{
0, i ≥ n−

⌈
n−2

2

⌉
− 1,

I n̄Hi(L;Q), i < n−
⌈
n−2

2

⌉
− 1.

Now, if we assume (by an induction on depth) that Im̄Hi(L;Q) ∼= I n̄Hi(L;Q), then the only

difference between these two formulas is in dimension

n−
⌈
n− 2

2

⌉
− 1 = n− n− 1

2
− 1

=
2n− (n− 1)− 2

2

=
n− 1

2
,

in which Im̄Hn−1
2

(cL;Q) ∼= Im̄Hn−1
2

(L;Q), but I n̄Hn−1
2

(cL;Q) = 0. So to ensure that

Im̄H∗(cL;Q) ∼= Im̄H∗(cL;Q), we also need to have Im̄Hn−1
2

(cL;Q) = 0. This requirement is

called the Witt condition for Q.

4By definition, for a field F , the Witt group W (F ) is the group generated by isomorphism classes of

symmetric pairings on vector spaces, with the group operation being direct sum and with additional relations

such that pairings with matrices of the form

(
0 I

I A

)
, with A arbitrary and I an identity matrix, are set to

0. See [175, Chapter I] for more details.
5Technically, Siegel worked with the dual intersection pairing on homology, which is equivalent by Theo-

rem 8.5.11.
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Definition 9.1.2. Let G be an abelian group. Then a ∂-stratified pseudomanifold X is a

G-Witt space if, for any point x ∈ X contained in a stratum of odd codimension, there is a

link L of x such that Im̄Hdim(L)
2

(L;G) = 0.

We provide some examples below after first making some remarks about the definition

and then proving that Witt spaces do have isomorphic m̄ and n̄ intersection homology.

Remark 9.1.3. Since the point x in the definition is assumed to be in a stratum of odd

codimension S, the link L must have even dimension because dim(X) = dim(L)+dim(S)+1

and odd codimension means precisely that dim(X) − dim(S) is odd. Also, notice that the

condition on links is really a condition on the strata by Corollary 6.3.24, which extends easily

to ∂-pseudomanifolds and which showed us that any two links of the same stratum have the

same intersection homology. In particular, if Im̄Hdim(L)
2

(L;G) = 0 for one link L of x, then

this property holds for any link of x.

Remark 9.1.4. Since the boundary of a ∂-stratified pseudomanifold is assumed to have a

collar that is filtered homeomorphic to [0, 1)×∂X, the stratified spaces X and X−∂X have

the same links. Therefore, X will be G-Witt if and only if X − ∂X is G-Witt. Furthermore,

if X is G-Witt then ∂X is G-Witt.

Remark 9.1.5. It is not uncommon for other underlying condition, such as orientability,

compactness, empty boundary, or being PL (as in [217]), to be assumed as part of the

definition for being G-Witt. We will not make such assumptions here in order to allow for

greater flexibility, but the reader should pay careful attention to such assumptions when

reading the literature. Furthermore, although we have formulated the definition of a G-Witt

space for ∂-pseudomanifolds, the definition clearly extends to CS sets. To avoid confusion,

we will refer to such spaces as CS G-Witt spaces when they arise.

Remark 9.1.6. As Im̄H0(L;G) = 0 is impossible for a link with dim(L) = 0, Witt spaces

cannot possess codimension one strata. Therefore, all Witt spaces are classical ∂-stratified

pseudomanifolds.

Remark 9.1.7. If R is a commutative ring, then the notion of a ∂-stratified pseudomanifold

X being R-Witt is the same whether we treat R as an abelian group or as the ground ring in

its own right because intersection homology computations do not depend on ring structures.

However, unless noted otherwise, when working with R-Witt spaces for a commutative ring

R, we will also assume that R is the ground ring for the purposes of any homological algebra

that may arise.

Proposition 9.1.8. If X is a G-Witt space, then the inclusion Im̄S∗(X;G)→ I n̄S∗(X;G)

induces a homology isomorphism Im̄H∗(X;G)→ I n̄H∗(X;G).

Proof. For a stratified pseudomanifold X, we can use a Mayer-Vietoris argument (Theorem

5.1.4) with F∗(U) = Im̄H∗(U ;G), G∗(U) = I n̄H∗(U ;G), and Φ induced by the inclusion of

chain groups. We know that we have Mayer-Vietoris sequences for intersection homology,

and, using stratified homotopy invariance, our above computation for cones on links (general-

ized to use G coefficients) provides the needed isomorphism on distinguished neighborhoods.
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Since X is a pseudomanifold, the only open subsets of strata homeomorphic to Euclidean

space are Euclidean subsets of the top stratum, on which both functors reduce to ordinary

homology. We can also apply Lemma 5.1.6 together with Lemma 6.3.16 for the ascending

chain condition. Thus Im̄H∗(X;G)→ I n̄H∗(X;G) by Theorem 5.1.4.

If X is a ∂-stratified pseudomanifold with non-empty boundary, then we can use that X

and X−∂X are stratified homotopy equivalent so that the inclusion map I p̄H∗(X−∂X;G)→
I p̄H∗(X;G) is an isomorphism. The proposition then follows from the empty-boundary case

via the commutative diagram

Im̄H∗(X − ∂X;G)
∼=- Im̄H∗(X;G)

I n̄H∗(X − ∂X;G)

∼=

? ∼=- I n̄H∗(X;G).
?

Remark 9.1.9. The proof of Proposition 9.1.8 given in Siegel is more elaborate, utilizing

spectral sequences (though, to be fair, it took us a certain amount of work with machinery to

set up Theorem 5.1.4). Siegel also notes that this proposition is proven via the sheaf-theoretic

formulation of intersection homology in [106]; that proof is also very straightforward, once

again using only the local cone computation together with the sheaf-theoretic machinery

developed in [106].

Corollary 9.1.10. If R is a Dedekind domain and X is an R-Witt space, then the inclusion

Im̄S∗(X;R)→ I n̄S∗(X;R) induces a cohomology isomorphism In̄H
∗(X;R)→ Im̄H

∗(X;R).

Proof. This follows from Proposition 9.1.8, the Universal Coefficient theorem (Theorem

7.1.4), and the Five Lemma.

Example 9.1.11. Suppose X is a stratified pseudomanifold whose non-empty strata all have

even codimension. Then X is automatically a G-Witt space for any G. Although this

example appears somewhat trivial, all irreducible complex algebraic varieties can be given

such stratifications! See [109, Section I.1.7].

Example 9.1.12. Let M be a (trivially stratified) compact ∂-manifold with ∂M = ∅, and let

M+ = M ∪∂M c̄(∂M) as in Example 6.3.15. Then the cone vertex v is the only singularity. If

dim(M) is even, then M+ is automatically a G-Witt space for any G. If dim(M) = 2k + 1,

then to determine whether or not M+ is G-Witt we must check the homology of the link

of v, which is ∂M . Since ∂M is a manifold, Im̄Hk(∂M ;G) ∼= Hk(∂M ;G), and so X is a

G-Witt space if and only if Hk(∂M ;G) = 0.

Example 9.1.13. As another easy example, let M be a compact 2k-dimensional manifold

with Hk(M) finite but non-zero. Then Hk(M ;Q) = 0, but for some prime p, we have

Hk(M ;Zp) 6= 0. Thus the suspension SM will be a Q-Witt space, but not a Zp-Witt space.
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Using the Universal Coefficient Theorem, SM will also be Zp′-Witt for any prime p′ that

does not divide the order of any element of Hk(M) or Hk−1(M).

On the other hand, if M is odd-dimensional, then the suspension points of SM have even

codimension and SM is a G-Witt space for any G.

Example 9.1.14. More generally, let X be a compact G-Witt space and consider the sus-

pensions SX. First suppose (t, x) ∈ (−1, 1) × X = SX − {n, s}, where n and s are the

suspension points. Then if x has a distinguished neighborhood in X of the form Rk × cL,

then (t, x) has a neighborhood in SX of the form (−1, 1)×Rk×cL ∼= Rk+1×cL. So L is also

a link of (t, x), and L must satisfy the G-Witt condition by assumption. So whether or not

SX is G-Witt depends entirely on the links of the suspension points, which are X itself. If

dim(X) is odd, then the suspension points have even codimensions and SX is automatically

G-Witt. If dim(X) = 2k is even, then SX is G-Witt if and only if Im̄Hk(X;G) = 0.

These examples demonstrate that the coefficient choice matters in Definition 9.1.2.

Dependence of Witt spaces on coefficient choices

In Example 9.1.13, we saw how to construct spaces that are Q-Witt but not Zp-Witt for

some p. Here we will briefly explore related issues concerning how the Witt property depends

on the coefficient choice. The reader eager to move on toward applications can safely skip

forward to the next section.

In the next example, we show that there are spaces that are Zp-Witt for some p > 1 but

not Q-Witt, though the construction is a bit more elaborate.

Example 9.1.15. To find spaces that are Zp-Witt but not Q-Witt, we need to take advantage

of the failure of the Universal Coefficient Theorem for intersection homology. It will suffice

for us to find a 2k-dimensional stratified pseudomanifold X with only point singularities such

that Im̄Hk(X;Zp) = 0 but Im̄Hk(X;Q) 6= 0. Then the suspension SX will be a Zp-Witt

space by Examples 9.1.11 and 9.1.14, but it will not be a Q-Witt space. To construct X,

let M be a compact connected oriented k-manifold, k > 0, equipped with a k-dimensional

vector bundle V with Euler number p. For example, since the Euler number of the tangent

bundle is the Euler characteristic [176, Corollary 11.12], we could use the complex projective

space CP p−1 with its tangent bundle. Let X be the Thom space of V , which is the one-point

compactification of the bundle. Then X is a stratified pseudomanifold with one singular

stratum corresponding to the point at infinity. In fact, X can be identified as the disk bundle

D(V ) of V with a cone adjoined on the boundary sphere bundle S(V ), so computations

analogous to those of Example 4.4.22 apply. As V is homotopy equivalent to M and as

Hi(D(V ), S(V )) ∼= Hi(D(V )/S(V )) ∼= Hi(X) for i > 0 by basic homology computations,

the results of Examples 4.4.22 and 6.3.15 and Proposition 6.2.9 give us

Im̄Hi(X;G) ∼= Im̄HGM
i (X;G) ∼=


Hi(X;G), i > k,

im(Hi(M ;G)→ Hi(X;G)), i = k,

Hi(M ;G), i < k,

using m̄(2k) = k − 1.
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So the key term is im(Hk(M ;G)→ Hk(X;G)). We claim that Hk(M ;G) ∼= Hk(X;G) ∼=
G and that the image im(Hk(M ;G) → Hk(X;G)) is isomorphic to pG. This claim is

proven in the Lemma 9.1.16, below. Assuming the lemma, we see that if G = Zp then

Im̄HGM
k (X;G) = 0, while if G = Q then Im̄HGM

k (X;G) ∼= Q. This is our desired result.

Lemma 9.1.16. If M is a compact connected oriented k-manifold, k > 0, and X is the

Thom space of a k-dimensional oriented vector bundle over M with Euler number χ, then

Hk(M ;G) ∼= Hk(X;G) ∼= G, and the inclusion map i : M ↪→ X induces a homology

homomorphism corresponding (up to sign) to multiplication by χ.

Proof. Since M is closed and oriented, Hk(M) ∼= Z and Hk−1(M) is torsion free: By Poincaré

duality and the Universal Coefficient Theorem Hk−1(M) ∼= H1(M) ∼= Hom(H1(M),Z) ⊕
Ext(H0(M),Z), but Ext(H0(M),Z) = 0 due to H0(M) being free while Hom(H1(M),Z) is

torsion free. So

Hk(M ;G) ∼= (Hk(M)⊗G)⊕ (Hk−1(M) ∗G) ∼= Hk(M)⊗G ∼= G,

by the homology Universal Coefficient Theorem.

Next, let ∞ be the point at infinity in the Thom space X, let V0 be the vector bundle V

with the zero section deleted, and let D(V ) and S(V ) be respectively the unit disk and unit

sphere bundles associated with V . Then

Hk(X;G) ∼= Hk(X,∞;G), by long exact sequence since k > 0
∼= Hk(X,X −M ;G), homotopy equivalence
∼= Hk(D(V ), D(V )−M ;G), excision
∼= Hk(D(V ), S(V );G), homotopy equivalence
∼= Hk(D(V );G), Poincaré-Lefschetz duality
∼= Hk(M ;G), homotopy equivalence
∼= Hom(Hk(M), G)⊕ Ext(Hk−1(M), G), Universal Coefficient Theorem
∼= Hom(Z, G) ∼= G,

where the last line follows from our preceding computations.

For the claim regarding the map, consider the map of universal coefficient sequences:

0 - Ext(Hk+1(M), G) - Hk(M ;G) - Hom(Hk(M);G) - 0

0 - Ext(Hk+1(X), G)
?

- Hk(X;G)
?

- Hom(Hk(X);G)
?

- 0;

see [181, Theorems 56.1 and 56.2] and note that all the homology groups of M are finitely

generated since M is a compact manifold, and all the homology groups of X are finitely

generated since H̃∗(X) ∼= H̃∗(D(V ), S(V )) and D(V ) and S(V ) are compact ∂-manifolds.
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The group Hk+1(M) vanishes, as M is k-dimensional, and by an argument similar to the

above computation,

Hk+1(X) ∼= Hk+1(D(V ), S(V )) ∼= Hk−1(D(V )) ∼= Hk−1(M),

which is torsion-free. So the two lefthand terms vanish, and we see that the map Hk(M ;G)→
Hk(X;G) is isomorphic to the dual of the restriction map i∗ : Hk(X)→ Hk(M).

By homotopy equivalence and the Thom isomorphism theorem (see [176, Theorem 9.1]),

there is an isomorphism

Z ∼= H0(M) ∼= H0(D(V ))
^u−−→ Hk(D(V ), S(V )) ∼= Hk(X),

where u ∈ Hk(D(V ), S(V )) is the Thom class of the bundle V . Since 1 ∈ H0(D(V )) is the

generator, the generator of Hk(D(V ), S(V )) is just the Thom class u. The restriction of the

Thom class to Hk(M) is precisely the Euler class e ∈ Hk(M) by the definition on page 98

of [176]. Since Hk(M) ∼= Hom(Hk(M),Z) ∼= Z, we can determine the class e by computing

e([M ]), where [M ] is the fundamental class of M . But e([M ]) is precisely the Euler number

χ by definition (if V is the tangent bundle of M , this is the Euler characteristic by [176,

Corollary 11.2]). So we conclude that the image of i∗ : Hk(X)→ Hk(M) is χZ. The lemma

now follows from the universal coefficient diagram.

To provide a flavor of more general possibilities, we quote the following theorem that is

proven in [88].

Theorem 9.1.17. Let F denote a field, and let Zp denote the field of p elements, p prime.

1. If F has characteristic p > 0, then X is F -Witt if and only if X is Zp-Witt; if F has

characteristic 0, then X is F -Witt if and only if X is Q-Witt.

2. If n > 4 and P is a finite set of primes, then there is a compact orientable n-

dimensional stratified pseudomanifold that is Zp-Witt for any p ∈ P but that is not

Q-Witt and not Zp-Witt for p /∈ P .

3. If n > 4 and P is a finite set of primes, then there are Q-Witt spaces that are not

Zp-Witt for any p ∈ P and are Zp-Witt for p /∈ P .

4. If X is a 3- or 4-dimensional Zp-Witt space, then X is a Q-Witt space.

5. If X is a 3- or 4-dimensional Q-Witt space, then X is a Zp-Witt space for any p 6= 2.

If X is also Q-orientable, then it is also a Z2-Witt space. However, there are non-

orientable 3- and 4-dimensional Q-Witt spaces that are not Z2-Witt spaces.

6. All 0-, 1-, and 2-dimensional pseudomanifolds are F -Witt for all F .

We refer the reader to [88] for the constructions of these examples, many of which are in

the same vein as the Thom space example above. We will, however, provide a proof of the

first fact of this theorem:
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Proposition 9.1.18. Let X be a ∂-stratified pseudomanifold and F a field of characteristic

p, possibly with p = 0. Then X is F -Witt if and only if X is Zp-Witt (taking Z0 = Q).

Proof. Let L be an even-dimensional link of X. As we work with field coefficients, every

space is locally torsion free, so we can apply Theorem 6.3.25 to compute that Im̄Hi(L;F ) ∼=
Hi(I

m̄S∗(L;Zp)⊗Zp F ). But now the algebraic Universal Coefficient Theorem [237, Theorem

3.6.1] shows that the latter is isomorphic to Im̄Hi(L;Zp)⊗Zp F . It follows immediately that

if Im̄Hdim(L)
2

(L;Zp) = 0, then Im̄Hdim(L)
2

(L;F ) = 0. But also if Im̄Hdim(L)
2

(L;Zp) is not 0, it

is a Zp-vector space of some dimension m > 0, and so Im̄Hdim(L)
2

(L;Zp)⊗Zp F is a F -vector

space of dimension m. Thus if Im̄Hdim(L)
2

(L;F ) vanishes, so does Im̄Hdim(L)
2

(L;Zp).

9.1.2 IP spaces

When Siegel first introduced Witt spaces in [217], he was interested exclusively in rational

coefficients. At the time, intersection homology Poincaré duality was only known for field

coefficients, and so it was natural to focus on this case. However, the work of Goresky

and Siegel in [111] made it apparent that duality could be extended to more general rings

(at least to the integers) by introducing local torsion free conditions. This led to Pardon’s

formulation in [186] of the definition for what he called IP spaces, short for intersection

homology Poincaré spaces. In our language, this definition amounts to the following:

Definition 9.1.19. Let R be a Dedekind domain. Then a ∂-stratified pseudomanifold X is

an IP space (with respect to R) if

1. X is R-Witt, and

2. X is locally (m̄, R)-torsion free6.

If we need to specify the ring, we will refer to an R-IP space. If we simply say IP space

with no ring specified by context, then we assume R = Z.

Remark 9.1.20. As mentioned for Witt spaces in Remark 9.1.5, we have tried to keep the

definition of IP spaces fairly general, though other authors often include other assumptions,

such as orientability, compactness, empty boundary, or being PL.

Remark 9.1.21. For X to be locally (m̄, R)-torsion free, we need each Im̄Hdim(L)−m̄(S)−1(L;R)

to be flat for each singular stratum S with link L. Let us compute these dimensions more

explicitly, recalling that m̄(S) =
⌊

codim(S)−2
2

⌋
for each singular stratum S. Using that

dim(L) + 1 = codim(S), when codim(S) = 2k we have

dim(L)−m̄(S)−1 = (2k−1)−
⌊

2k − 2

2

⌋
−1 = (2k−1)− (k−1)−1 = k−1 =

dim(L)− 1

2
.

6If X is R-oriented then by Corollary 8.2.5 we could equivalently require that X be locally (n̄, R)-torsion

free.
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When codim(S) = 2k + 1, we have

dim(L)− m̄(S)− 1 = 2k −
⌊

2k − 1

2

⌋
− 1 = 2k − (k − 1)− 1 = k =

dim(L)

2
.

In the latter case, we know that I p̄Hdim(L)
2

(L;R) in fact vanishes if X is R-Witt, so there

is some redundancy in Definition 9.1.19. Some authors therefore only state the torsion-free

condition for IP spaces in terms of the links of the even codimension strata. Our current

formulation does, however, have the advantage of clearly enunciating the two nice things that

the definition is doing: guaranteeing duality with the torsion-free condition and guaranteeing

Im̄H∗ = I n̄H∗ with the Witt condition.

Remark 9.1.22. By definition, every R-IP space is also R-Witt. Conversely, if F is a field,

then any F -Witt space is automatically an F -IP space, as all spaces are automatically locally

(p̄, F )-torsion free for all p̄. Thus the terms “Witt space” and “IP space” as defined here are

identical when working over field coefficients. Due to the historical development described

above, it remains common in the literature to utilize the expression “Witt space” when

working with field coefficients and to reserve the expression “IP spaces” for work over more

general rings.

As part of the definition, an R-IP space is also an R-Witt space. To finish this section,

we show that R-IP spaces are also Witt with respect to the fraction field of R, among other

fields, though the converse is not necessarily true.

Lemma 9.1.23. Let R be a Dedekind domain and K a field that is also a flat R-module.

Then if X is an R-IP space, it is also a K-Witt space. In particular, every R-IP space is

a Q(R)-Witt space, where Q(R) is the field of fractions of R, and so every Z-IP space is a

Q-Witt space.

Proof. By definition, if X is an R-IP space then X is R-Witt and locally (m̄, R)-torsion free.

Let L be an even-dimensional link of X. As every link of L is also a link of X by Remark

2.4.14, the link L is itself locally (m̄, R)-torsion free, and we can apply Theorem 6.3.25 to

compute that Im̄Hi(L;K) ∼= Hi(I
m̄S∗(L;R)⊗RK). But now the algebraic Universal Coeffi-

cient Theorem [237, Theorem 3.6.1] shows that the latter is isomorphic to Im̄Hi(X;R)⊗RK;

to verify the hypotheses, we use that each Im̄S∗(X;R) is projective over R and so each sub-

module of Im̄S∗(X;R) is projective over R, as R is Dedekind. We also use that the torsion

product Im̄Hi−1(X;R) ∗R K is 0 as we have assumed that K is flat over R. It follows

now that Im̄Hdim(L)
2

(L;K) = Im̄Hdim(L)
2

(L;R)⊗R K = 0, as Im̄Hdim(L)
2

(L;R) vanishes by the

assumption that X is R-Witt. This shows that X is K-Witt.

For the second statement of the theorem, we utilize that any localization of R is a flat

R-module [196, Theorem 4.80].

The following example provides a Q-Witt space that is not Z-IP.

Example 9.1.24. Let X = X4 be the suspension of RP 3 with the natural filtration as X0 ⊂
X4 with X0 equal to the set of suspension points. The only singular strata have even

codimension, so X is a Witt space for any coefficients. However, the links of the singular
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points, which are homeomorphic to RP 3, are 3-dimensional, and so, using Remark 9.1.21,

the groups we need to check for the torsion-free condition are Im̄H 3−1
2

(RP 3) ∼= H1(RP 3).

But this group is Z2, so X cannot be a Z-IP space.

9.1.3 Products and stratification independence

In this section we consider two basic properties of Witt and IP spaces: their behavior

under taking products and the preservation of these properties with respect to change of

stratification.

Products of Witt and IP spaces. One nice property of Witt spaces and IP spaces as

classes is that they are preserved under products:

Proposition 9.1.25. Let X,X ′ be R-Witt spaces for a Dedekind domain R. If X or X ′

is locally (m̄, R)-torsion free, then X × X ′ is an R-Witt space. In particular, if X,X ′ are

F -Witt spaces for a field F , then X ×X ′ is F -Witt.

Proof. The product X×X ′ is a ∂-stratified pseudomanifold by Lemma 2.11.7. For the Witt

condition, we need to examine the links of odd-codimension strata. Since the product of a

stratum of X of codimension k and a stratum of X ′ of codimension ` has codimension k+ `

in X ×X ′, in order for a stratum of X ×X ′ to have odd codimension, it must be a product

S × S ′ of strata of X and X ′ such that one of S, S ′ has odd codimension and the other has

even codimension.

We first assume S and S ′ are singular strata. Let L be the7 link of a point in S, and let

L′ be the link of a point of S ′. Then the corresponding link in the product will be the join

L ∗ L′; see Section 2.11.

We have computed some of the intersection homology of joins in our Künneth theorem

computation, which required using the Künneth theorem itself, inductively. Here we wish

to use m̄ for all perversities, so we need to check that this is consistent with the hypotheses

of the Künneth theorem. We compute in the following table, using codimensions k and `:

k ` m̄(k) m̄(`) m̄(k + `)

even even k
2
− 1 `

2
− 1 k+`

2
− 1

odd even k+1
2
− 2 `

2
− 1 k+`+1

2
− 2

even odd k
2
− 1 `+1

2
− 2 k+`+1

2
− 2

odd odd k+1
2
− 2 `+1

2
− 2 k+`

2
− 1

Thus m̄(k) + m̄(`) ≤ m̄(k+ `) ≤ m̄(k) + m̄(`) + 2 for all k, `, and since we are working with

Dedekind domain coefficients and a torsion free assumption, this demonstrates that m̄ is

(m̄, m̄)-compatible on X×X ′, which is sufficient for the Künneth Theorem (Theorem 6.4.7).

Now, supposing dim(L) = k − 1, dim(L′) = `− 1, and let us first suppose that k is odd

and ` is even. We need to compute Im̄H k+`−1
2

(L ∗ L′;F ). We wish to use formula (6.10)

7Recall again that links are not unique, but their intersection homology is by Corollary 6.3.24, so we may

blur this technical point with definite articles.
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on page 299, which, with the notation and assumptions of the current situation8, holds in

dimensions < k + `− m̄(k)− m̄(`)− 2. But we observe that

k + `− m̄(k)− m̄(`)− 3 = k + `−
(
k + 1

2
− 2

)
−
(
`

2
− 1

)
− 3

= k + `− k + `+ 1

2

=
2k + 2`

2
− k + `+ 1

2

=
k + `− 1

2
.

So, to compute Im̄H k+`−1
2

(L ∗ L′;F ), formula (6.10) applies to give us

Im̄H k+`−1
2

(L ∗ L′;F ) ∼=
⊕

i+j= k+`−1
2

i<k−m̄(k)−1
j<`−m̄(`)−1

Im̄Hi(L;R)⊗ Im̄Hj(L
′;R)

⊕
⊕

i+j= k+`−1
2
−1

i<k−m̄(k)−1
j<`−m̄(`)−1

Im̄Hi(L;R) ∗ Im̄Hj(L
′;R).

But k− m̄(k)− 1 = k−
(
k+1

2
− 2
)
− 1 = k−1

2
+ 1, and `− m̄(`)− 1 = `−

(
`
2
− 1
)
− 1 = `

2
.

If i < k − m̄(k)− 1 = k−1
2

+ 1 and j < `− m̄(`)− 1 = `
2
, then i ≤ k−1

2
and j ≤ `

2
− 1, so

i+ j ≤ k − 1

2
+
`

2
− 1 =

k + `− 1

2
− 1.

So the only possible non-vanishing summand of the above expression is

Im̄H k−1
2

(L;R) ∗ Im̄H `
2
−1(L′;R).

Since dim(L)−m̄(k)−1 = k−1−m̄(k)−1 = k−1
2

and dim(L′)−m̄(`)−1 = `−1−m̄(`)−1 =
`
2
− 1, we see that the torsion free assumption implies that this term vanishes as well.

Furthermore, this vanishing is (remarkably!) independent of which space is locally (m̄, R)-

torsion free, and so the same result holds if k is even and ` is odd.

If S ′ is a regular stratum and S has odd codimension k, then the link is L and we need

Im̄H k−1
2

(L;R) = 0, which follows from X being R-Witt. Similarly, if S is regular and S ′ has

odd-codimension `, then the link is L′ and Im̄H `−1
2

(L′;R) = 0 because X ′ is R-Witt.

Remark 9.1.26. It is interesting to see in the proof of the proposition that the portions of the

products over the regular strata are the only places where we need to utilize the assumption

that X and X ′ are R-Witt; we did not need that for the portion of the argument over the

products of singular strata.

8Recall also that cL× cL′ − {v × w} is stratified homotopy equivalent to L ∗ L′.
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Proposition 9.1.27. Let X,X ′ be R-IP spaces for a Dedekind domain R. Then X ×X ′ is

an R-IP space.

Proof. By Proposition 9.1.25, the product X×X ′ is an R-Witt space, so it suffices to consider

the locally torsion free condition. As in the proof of Proposition 9.1.25, suppose x ∈ X ×X ′
is contained in a product S × S ′ of singular strata with codim(S) = k and codim(S ′) = `

and that L is the link of S with dim(L) = k−1 and L′ is the link of S ′ with dim(L′) = `−1.

We need to consider

Im̄Hdim(L∗L′)−m̄(k+`)−1(L ∗ L′;R) = Im̄Hk+`−1−b k+`−2
2 c−1(L ∗ L′;R).

If k + ` is odd, then

k + `− 1−
⌊
k + `− 2

2

⌋
− 1 = k + `− 1− k + `− 3

2
− 1 =

k + `− 1

2
,

and we have already seen in the proof of Proposition 9.1.25 that this module must vanish as

X and X ′ are R-Witt.

So let k + ` be even. Then

k + `− 1−
⌊
k + `− 2

2

⌋
− 1 = k + `− 1− k + `− 2

2
− 1 =

k + `

2
− 1.

Furthermore, using our computations in the chart in the Proposition 9.1.25, we have m̄(k)+

m̄(`) = k+`
2
− C with C ∈ {2, 3}, the choice of C depending on whether k and ` are both

even or both odd. So

k + `

2
− 1 = k + `− k + `

2
− 1

= k + `− (m̄(k) + m̄(`) + C)− 1

= k + `− m̄(k)− m̄(`)− C − 1.

So whether C is equal to 2 or 3, this expression is < k + `− m̄(k)− m̄(`)− 2, which means

that again as in the proof of Proposition 9.1.25 we can use formula (6.10) on page 299 to get

Im̄H k+`
2
−1(L ∗ L′;F ) ∼=

⊕
i+j= k+`

2
−1

i<k−m̄(k)−1
j<`−m̄(`)−1

Im̄Hi(L;R)⊗ Im̄Hj(L
′;R) (9.2)

⊕
⊕

i+j= k+`
2
−2

i<k−m̄(k)−1
j<`−m̄(`)−1

Im̄Hi(L;R) ∗ Im̄Hj(L
′;R).

If k and ` are both even, then k− m̄(k)− 1 = k− (k
2
− 1)− 1 = k

2
and similarly for m̄(`),

and so if i < k− m̄(k)− 1 and j < `− m̄(`)− 1 then i+ j ≤ k+`
2
− 2, and the only nontrivial
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summand is Im̄H k
2
−1(L;R)∗Im̄H `

2
−1(L′;R). But k

2
−1 = k−1−(k−2

2
)−1 = dim(L)−m̄(k)−1,

so this summand is also zero as X is locally (m̄, R)-torsion free.

Next, suppose k and ` are both odd. Then k − m̄(k)− 1 = k − (k+1
2
− 2)− 1 = k+1

2
and

similarly for `. So if i < k−m̄(k)−1 and j < `−m̄(`)−1 then i+j ≤ k+1
2
−1+ `+1

2
−1 = k+`

2
−1.

So then for degree reasons the only terms in (9.2) that are possibly non-trivial are

Im̄H k−1
2

(L;R)⊗ Im̄H `−1
2

(L′;R)

⊕ Im̄H k−1
2
−1(L;R) ∗ Im̄H `−1

2
(L′;R)

⊕ Im̄H k−1
2

(L;R) ∗ Im̄H `−1
2
−1(L′;R).

But Im̄H k−1
2

(L;R) and Im̄H `−1
2

(L′;R) both vanish by theR-Witt condition because dim(L) =

k − 1 and dim(L′) = `− 1.

We have now seen that Im̄Hdim(L∗L′)−m̄(k+`)−1(L ∗ L′;R) always vanishes when L and L′

are links of singular strata S and S ′. If S ′ is a regular stratum, then the link of S × S ′ is

L, and if if S is regular, then the link of S × S ′ is L′; both of these links satisfy the torsion

free condition by assumption. So, altogether, X × X ′ is locally (m̄, R)-torsion free, and so

X ×X ′ is an R-IP space.

Independence of stratification of the Witt and IP conditions. To end this section,

we demonstrate that, suitably interpreted, the conditions of being G-Witt or R-IP are prop-

erties of a space and not of its stratification. First, notice that a space with codimension

one strata can never be G-Witt for any (non-trivial) G since the link L of a codimension

one stratum of a pseudomanifold is a disjoint union of points, trivially filtered and with

formal dimension 0, and so Im̄Hdim(L)/2(L;G) ∼= H0(L;G) 6= 0. On the other hand, the next

proposition says that if X is a ∂-stratified pseudomanifold without codimension one strata,

then the property of being G-Witt turns out to depend only on the underlying space and

not on the choice of stratification, assuming we rule out stratifications with codimension one

strata. The proof is quite analogous to that of Proposition 5.5.9:

Proposition 9.1.28. If X and X ′ represent two different ∂-pseudomanifold stratifications,

without codimension one strata, of the same underlying space, then X is a G-Witt space if

and only if X ′ is.

Proof. The property of being a G-Witt space is contingent only on the intersection homology

of the links of the strata. Since the links of points in the boundary of a ∂-pseudomanifold are

the same as the links of interior points, it suffices to prove the proposition for pseudomanifolds

without boundaries. In that setting, we will show that X is G-Witt if and only if X is a

CS G-Witt space (see Remark 9.1.5), where X is |X| with its intrinsic filtration (see Section

2.10). As X and X ′ have the same intrinsic filtration, the result will follow. Recall that as

m̄ is a GM perversity it depends only on the codimensions of strata, so if codim(S) = ` we

can write m̄(`) for m̄(S).

First, assume that X is G-Witt. Recall that every stratum S of X is a union of strata of

X of dimension ≤ dim(S) (see Section 2.10). So let S be a stratum of X of odd codimension,
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so that the dimension of its link is even, and let x be a point of X contained in a stratum

T of X with T ⊂ S and dim(S) = dim(T ); such a stratum T must exist because the

local distinguished neighborhood structure of a CS set implies that the union of strata of

X of dimension < dim(S) must also have dimension < dim(S). Let L be a link of x in

X and let L be a link of x in X. As dim(S) = dim(T ), we have dim(L) = dim(L ),

and, using the computation preceding Definition 9.1.2, Im̄Hdim(L)
2

(cL;G) ∼= Im̄Hdim(L)
2

(L;G)

and Im̄Hdim(L)
2

(cL ;G) ∼= Im̄Hdim(L )
2

(L ;G). It follows that if N and N∗ are distinguished

neighborhoods of x in X and X, respectively, we have

Im̄Hdim(L)
2

(L;G) ∼= Im̄Hdim(L)
2

(N ;G) ∼= Im̄Hdim(L)
2

(N∗;G) ∼= Im̄Hdim(L)
2

(L ;G),

using Corollary 5.5.4 for the middle isomorphism and stratified homotopy invariance for the

others. As we have assumed that X is G-Witt, the link L of x in X satisfies the G-Witt

condition Im̄Hdim(L)
2

(L;G) = 0, and so L also satisfies the G-Witt condition. Since the

G-Witt condition is satisfied for a link at one point in S, it is satisfied at all points in S by

Corollary 6.3.24.

Conversely, suppose X is CS G-Witt. Let x ∈ X be a point with distinguished neighbor-

hood N ∼= Rk × cL. Suppose dim(L) = ` is even. As observed in the preceding paragraph,

we have Im̄H`/2(L;G) ∼= Im̄H`/2(N ;G). Now, let N∗ be a distinguished neighborhood of x

in X. By Corollary 5.5.4, we have Im̄H`/2(N ;G) ∼= Im̄H`/2(N∗;G). But N∗ ∼= Rm × cL
for some link L and some Rm with m ≥ k, since the stratification of X is coarser than

that of X. If m = k, then dim(L ) = ` as well, and, by the same argument as above,

Im̄H`/2(N∗;G) ∼= Im̄H`/2(L ;G), which is 0 by the assumption that X is CS G-Witt. So

suppose m > k, which implies that d = dim(L ) < `. By stratified homotopy invariance,

Im̄H`/2(N∗;G) ∼= Im̄H`/2(cL ;G), which, by the cone formula, is 0 if `/2 ≥ d− m̄(d+ 1). To

see that this is indeed the case, we use that `
2

= ` − m̄(` + 1) − 1, which is easy to verify.

We need to show that `− m̄(`+ 1) ≥ d− m̄(d+ 1) + 1. Since d < `, let’s see what happens

to the quantity i− m̄(i+ 1) if we start with i = ` and step down from ` to d with step size

1. Obviously, the i summand will decrease by one with each step, while the term m̄(i + 1)

alternates between decreasing by one and not changing at all. So as we decrease from i to

i− 1, the expression i− m̄(i+ 1) either decreases by one or stays the same. Let’s see what

happens in the first step from ` to `− 1. Since we have assumed that ` is even,

m̄(`+ 1) =

⌊
(`+ 1)− 2

2

⌋
=

⌊
`− 1

2

⌋
=
`

2
− 1,

while

m̄((`− 1) + 1) = m̄(`) =

⌊
`− 2

2

⌋
=
`

2
− 1.

In order words, we have have m̄(`) = m̄(`+ 1), and so

`− m̄(`+ 1) > `− 1− m̄(`).

It thus follows that ` − m̄(` + 1) ≥ d − m̄(d + 1) + 1 for any d < `, as desired. Therefore,

0 = Im̄H`/2(N∗;G) ∼= Im̄H`/2(N ;G) ∼= Im̄H`/2(L;G). Altogether, we see that in all circum-

stances, the G-Witt condition is satisfied for all links of points in X, so X is G-Witt.
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Proposition 9.1.29. If X and X ′ represent two different ∂-pseudomanifold stratifications,

without codimension one strata, of the same underlying space, then X is an R-IP space if

and only if X ′ is.

Proof. Proposition 9.1.28 shows that X is R-Witt if and only if X ′ is, so it suffices to

consider the local torsion property. But X is locally (m̄, R)-torsion free if and only if X ′ is

by Proposition 5.5.9, using that we have no codimension one strata so that the hypotheses

apply to m̄.

Given the results of this section, we will sometimes say that X is a G-Witt space if it is a

G-Witt space with respect to some filtration. It then follows that it is a G-Witt space with

respect to any classical pseudomanifold stratification. IP spaces can be treated similarly.

9.2 Self pairings

The importance of Witt and IP spaces is that they possess self-pairings, meaning pairings of

the form P : A⊗A→ R. Unlike more general pairings, self-pairings allow for the possibility

of symmetries:

Definition 9.2.1. A pairing P : A⊗ A→ R of R-modules is (−1)`-symmetric if P (x, y) =

(−1)`P (y, x) for any x, y ∈ A. If ` is even, such pairings are also simply called symmetric;

if ` is odd, such such pairings are sometimes called skew symmetric or antisymmetric.

We first discuss the cup product self-pairing for F -Witt spaces with F being a field; this

constitutes the most important case and the one that provides signatures. We then state

the corresponding result for IP spaces.

The following is the fundamental theorem for Witt spaces over a field. In Section 9.3, we

use this theorem to obtain signatures on Q-Witt spaces.

Proposition 9.2.2. Suppose that the compact stratified pseudomanifold X is 2`-dimensional,

F -oriented, and F -Witt for some field F . Then the composition

In̄H
`(X;F )⊗ In̄H`(X;F )

^−→ I0̄H
2`(X;F )

D−→ I t̄H0(X;F )
a−→ F

is a nonsingular (−1)`-symmetric pairing.

Proof. We consider the diagram

In̄H
`(X;F )⊗ In̄H`(X;F )

id⊗ i∗
- In̄H

`(X;F )⊗ Im̄H`(X;F )

I0̄H
2`(X;F ),

^

?

^

-

(9.3)
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where i∗ : In̄H
∗(X;F ) → Im̄H

∗(X;F ) is induced by the inclusion i : Im̄S∗(X;R) →
I n̄S∗(X;R). The vertical cup product is well defined as m̄ = Dn̄, so (n̄, m̄; 0̄) is agree-

able by Corollary 7.2.10. Similarly, the triple (n̄, n̄; 0̄) is agreeable by Corollary 7.2.12. So

the cup products in the diagram are well defined.

The diagram commutes by naturality of the cup product (Proposition 7.3.5), as the

identity map X → X is (p̄, q̄)-stratified with respect to any pair of perversities with p̄ ≤ q̄.

So the pairing described in the proposition factors as

In̄H
`(X;F )⊗ In̄H`(X;F )

id⊗i∗−−−→ In̄H
`(X;F )⊗ Im̄H`(X;F )

^−→ I0̄H
2`(X;F )

D−→ I t̄H0(X;F )
a−→ F.

By Corollary 9.1.10, the first map is an isomorphism, and the composition of the remaining

maps is a nonsingular pairing by Theorem 8.4.7. Therefore, the full composition is also a

nonsingular pairing. The symmetry properties follow from the graded commutativity of the

cup product (Proposition 7.3.15).

The point of IP spaces is that, like F -Witt spaces for a field F , an IP space (over

R) satisfies both Poincaré duality and In̄H
∗(X;R) ∼= Im̄H

∗(X;R). Thus, one obtains for

compact R-orientable IP spaces without boundary both a cup product self-pairing (now over

R, which might provide more delicate information) and a torsion self-pairing. In particular,

we have the following version of Proposition 9.2.2.

Proposition 9.2.3. Suppose that R is a Dedekind domain and that the compact stratified

pseudomanifold X is 2`-dimensional, R-oriented, and an R-IP space. Then the composition

F (In̄H
`(X;R))⊗ F (In̄H

`(X;R))
^−→ I0̄H

2`(X;R)
D−→ I t̄H0(X;R)

a−→ R

is a nonsingular (−1)`-symmetric pairing.

Similarly, if dim(X) = 2`− 1, then we have a (−1)`-symmetric pairing

T (In̄H
`(X;R))⊗ T (In̄H

`(X;R))→ Q(R)/R

that takes α ⊗ β to Ln̄,m̄(α, i∗(β)), where i : X → X is the identity map, thought of as an

(m̄, n̄)-stratified map.

Proof. The proof for the cup product pairing is analogous to that for Proposition 9.2.2.

For the linking pairing, the composition

T (In̄H
`(X;R))⊗ T (In̄H

`(X;R))
id⊗i∗−−−→ T (In̄H

`(X;R))⊗ T (Im̄H
`(X;R))

Ln̄,m̄−−−→ Q(R)/R

is the composition of an isomorphism and a nonsingular pairing, so it is nonsingular. For

the symmetry, we need to show that Ln̄,m̄(α, i∗(β)) = (−1)`Ln̄,m̄(β, i∗(α)), but, by Theorem

8.4.10,

Ln̄,m̄(β, i∗(α)) = (−1)1+(2`−1)+`(2`−1)L′m̄,n̄(i∗(α), β) = (−1)`L′m̄,n̄(i∗(α), β).
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So it suffices to show Ln̄,m̄(α, i∗(β)) = L′m̄,n̄(i∗(α), β).

Suppose db = tβ ∈ In̄S`(X;R), t ∈ R, t 6= 0, with β representing a cocycle as well as

a cohomology class, as usual. Then di∗(b) = ti∗(β) ∈ Im̄S`(X;R), and, by Theorem 8.4.10,

we have

Ln̄,m̄(α, i∗(β)) = (−1)2`−1 a((α ^ i∗(b)) _ Γ)

t

and

L′m̄,n̄(i∗(α), β) = (−1)2`−1 a(i∗(α) ^ b) _ Γ)

t
.

From here, we can proceed as in the proof of Proposition 8.4.24 by showing that each of

these expressions is equal to a((α^b)_Γ)
t

in Q(R)/R. In fact, by the arguments of Proposition

9.2.2, this cup product α ^ b ∈ I0̄S
2`−1(X;R) based on the agreeable triple (n̄, n̄; 0̄) is

well defined, and Diagram (9.3) commutes up to homotopy at the (co)chain level by the

arguments of Lemma 7.3.4 and Proposition 7.3.5. But now the argument that our two

expressions both equal a((α^b)_Γ)
t

in Q(R)/R is completely analogous to the argument in

the last paragraph of the proof of Proposition 8.4.24.

9.3 Witt signatures

It is now possible to define signatures for compact oriented 4k-dimensional Q-Witt spaces,

which includes Z-IP spaces by Lemma 9.1.23, using the symmetric middle-dimensional

middle-perversity self-pairing (Proposition 9.2.2). We first provide the definitions and basic

properties before moving on to more sophisticated results.

9.3.1 Definitions and basic properties

In this section, we define Witt signatures, first for Q-Witt spaces without boundaries and

then for those that may possess boundaries, and then demonstrate that these are topological

invariants in an appropriate sense9. We begin with some algebraic definitions.

Signatures of matrices and pairings

More algebraic background regarding signature invariants can be found in the Appendix

A.5. Here we recall just the definitions needed to define the Witt signature, as well as some

properties, leaving the proofs for the appendix.

Definition 9.3.1. If M is a symmetric matrix of rational numbers, then the signature σ(M)

is defined to be

σ(M) = #{positive eigenvalues of M} −#{negative eigenvalues of M}.
9It is also not unusual to define signatures with R as the ground field, but by Theorem 9.1.17 a pseudo-

manifold is R-Witt if and only if it is Q-Witt. So working over R is equivalent to working over Q for the

purpose of defining signatures. See Section A.5 for more details.
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Note that the symmetry of the matrix M ensures that all eigenvalues will be real10.

Definition 9.3.2. Suppose that (V, (·, ·)) is a finite-dimensional rational vector space to-

gether with a symmetric bilinear pairing (·, ·) : V × V → Q. If {ei} is a chosen basis of V ,

then the pairing matrix of (·, ·) with respect to this basis is defined to be the matrix M with

entries Mij = (ei, ej).

If M is a pairing matrix for (V, (·, ·)), then we define the signature of the pairing σ(V, (·, ·))
to be σ(M).

It turns out that the signature of a pairing is independent of the choice of the pairing

matrix, as changing the basis will have the effect of changing the pairing matrix from M to

a congruent matrix QtMQ, with Q an invertible matrix. The signature is an invariant of

such congruence classes. A proof can be found as Lemma A.5.4 in the appendix.

Here are some further useful properties of pairings and signatures. Proofs can be found

in the appendix at the indicated locations.

Lemma 9.3.3 (see Lemma A.5.4). If f : V → W is an isomorphism of finite-dimensional

rational vector spaces that induces an isomorphism (in the sense of Definition 8.4.1) between

the pairings (·, ·)V on V and (·, ·)W on W (i.e. if f is an isometry), then σ(V, (·, ·)V ) =

σ(W, (·, ·)W ).

Lemma 9.3.4 (see Lemma A.5.13). If M has the block form
A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 . . . Am

 ,

then σ(M) =
∑m

i=1 σ(Ai). Consequently, if (V, (·, ·)V ) is a direct sum of orthogonal subspaces

Wi, then

σ(V, (·, ·)V ) =
∑
i

σ((Wi, (·, ·)Wi
)),

where (·, ·)Wi
is the restriction of (·, ·)V to Wi.

Lemma 9.3.5 (see Lemma A.5.8). Let (V, (·, ·)) be a symmetric pairing on the finite-

dimensional rational vector space V , and let M be the matrix of the pairing with respect

to some basis. Then the pairing is nonsingular11 if and only if det(M) 6= 0.

Lemma 9.3.6 (see Lemma A.5.11). Suppose (V, (·, ·)) is a rational vector space together with

a nonsingular symmetric bilinear pairing (·, ·) : V × V → Q. If there is a subspace A ⊂ V

of dimension dim(A) = 1
2

dim(V ) such that (x, y) = 0 for all x, y ∈ A, then σ(V, (·, ·)) = 0.

10Let 〈·, ·〉 denote the standard complex inner product on Cn, let M be a symmetric n × n matrix with

real entries so that the conjugate transpose M∗ is equal to M , and suppose Mv = λv for some unit vector

v. Then λ = λ〈v, v〉 = 〈v, λv〉 = 〈v,Mv〉 = 〈M∗v, v〉 = 〈Mv, v〉 = 〈λv, v〉 = λ̄〈v, v〉 = λ̄.
11See Definition 8.4.2.
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Lemma 9.3.7 (see Lemma A.5.5). Let (V, (·, ·)) be a finite-dimensional rational vector space

with symmetric bilinear pairing. Then there is a basis of V with respect to which the pairing

matrix is a diagonal matrix.

Lemma 9.3.8 (see Corollary A.5.15). If (V, (·, ·)) is a finite-dimensional vector space with

a nonsingular antisymmetric pairing, there is a vector space of half the dimension of V on

which the pairing is trivial.

Witt signatures

We first define the signatures of Q-Witt spaces without boundary.

Definition 9.3.9. Suppose X is a closed (compact without boundary) oriented Q-Witt

space of dimension 4k. Then the Witt signature σ(X) is defined to be the signature of the

symmetric cup product self-pairing

In̄H
2k(X;Q)⊗ In̄H2k(X;Q)

^−→ I0̄H
4k(X;Q)

D−→ I t̄H0(X;Q)
a−→ Q.

If X has dimension 6≡ 0 mod 4, we set σ(X) = 0.

Remark 9.3.10. If M is a manifold, then all intersection homology/cohomology groups in the

definition reduce to ordinary homology/cohomology, and we recover the classical manifold

signature. It is also standard in manifold theory to define the signature to be 0 when the

dimension is not a multiple of 4; this is primarily a convenience for formulas that involve

signatures of spaces of various dimensions, such as in Theorem 9.3.17, below.

Witt signatures of Witt spaces with boundaries. For Q-Witt spaces that may have

non-empty boundary, we need a different approach to Witt signatures as the cup product

pairs In̄H
i(X;Q) with In̄H

n−i(X, ∂X;Q), again breaking the symmetry. We will see two

approaches. First we define the Witt signature in terms of the image pairing of Proposition

8.4.23, but then we will prove that this signature can also be computed as the signature of

the Q-Witt space without boundary obtained by coning off the boundary of X.

Definition 9.3.11. Let X be a compact 4k-dimensional oriented Q-Witt space. Then the

Witt signature σ(X) is defined to be the signature of the image pairing on im(In̄H
2k(X, ∂X;Q)

i−→
Im̄H

2k(X;Q)) (Proposition 8.4.23).

Note that the image pairing already pairs im(In̄H
2k(X, ∂X;Q)

i−→ Im̄H
2k(X;Q)) with

itself without even needing to invoke the Witt property! And the pairing is symmetric using

the formula α⊗β → aD(ᾱ ^ β̄) of Proposition 8.4.23 together with the symmetry of the cup

product. So in fact this definition of a signature works for any ∂-stratified pseudomanifold

and any perversities with p̄ ≤ Dp̄. We take up this idea below in Section 9.3.4. For

now, however, our focus will remain on Witt and IP spaces, for which this signature has

a useful alternate formulation that we shall arrive at in Corollary 9.3.14. We also observe

that when X is Q-Witt then Definitions 9.3.9 and 9.3.11 are consistent when ∂X = ∅
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because in this case if X is Q-Witt then In̄H
2k(X, ∂X;Q) = In̄H

2k(X;Q) and the map

In̄H
2k(X;Q)

i−→ Im̄H
2k(X;Q) is an isomorphism. Furthermore, the image pairing is defined

by applying the cup product to elements in the preimage, in this case In̄H
2k(X;Q). So when

∂X = ∅, Definition 9.3.11 reduces to Definition 9.3.9.

It turns out that there is a useful alternate approach to Witt signatures for Q-Witt spaces

with non-empty boundary. To explain this, let X be a compact oriented 4k-dimensional Q-

Witt space with ∂X 6= ∅ (so k > 0), and let X+ = X ∪∂X c̄(∂X). Let v be the cone

vertex. As X+ − {v} ∼= X − ∂X, all of the links of X+ are links of X except for the

link of v. But v has even codimension, and so X+ is also a Q-Witt space. In particular,

Im̄H
i(X+;Q) ∼= In̄H

i(X+;Q), and we can compute these groups analogously to the compu-

tations in Examples 4.4.22 and 6.3.15, using the intersection cohomology cone computation

of Proposition 7.1.5. As

dim(X)− m̄({v})− 1 = 4k −
⌊

4k − 2

2

⌋
− 1 = 2k,

we obtain

Im̄H
i(X+;Q) ∼= In̄H

i(X+;Q) ∼=


In̄H

i(X, ∂X;Q), i > 2k,

im(In̄H
i(X, ∂X;Q)→ In̄H

i(X;Q)), i = 2k,

In̄H
i(X;Q), i < 2k.

So, in this case, the nonsingular cup pairing In̄H
2k(X+;Q) ⊗ In̄H

2k(X+;Q) → Q can be

thought of as a pairing on im(In̄H
k(X, ∂X;Q)→ In̄H

k(X;Q)). In fact, as we will now show,

this is precisely the image pairing, up to identifying In̄H
∗ with Im̄H

∗.

While we are interested primarily in Q-Witt spaces, we proceed more generally in order

to deduce a nice corollary about torsion in the boundary.

Proposition 9.3.12. Let R be a Dedekind domain, and let X be a compact 2k-dimensional

oriented R-IP space with ∂X 6= ∅ and In̄H
k(∂X;R) torsion free. Let X+ = X ∪∂X c̄(∂X).

Then the cup product pairing on X+ is isomorphic to the image pairing on im(F (In̄H
k(X, ∂X;R))

i−→
F (Im̄H

k(X;R))).

Proof. Let us first establish clearly the isomorphism between Im̄H
k(X+;R) and im(In̄H

k(X, ∂X;R)
i−→

Im̄H
k(X;R)). For simplicity, we write all our maps in the following argument without the

dual ∗ label, e.g. we write i rather than i∗.

The long exact sequences of the pairs give us the following cohomological analogue of the

second diagram in Example 4.4.22, coefficients tacit:

� In̄H
k(∂X) � In̄H

k(X) �
h

In̄H
k(X, ∂X) �

d∗
In̄H

k−1(∂X) �

� 0

6

� In̄H
k(X+)

j

6

�
g
In̄H

k(X+, c(∂X))

∼= f

6

�
d∗

In̄H
k−1(c(∂X))

∼=
6

� .
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We here use the open cone instead of the closed cone. To have ∂X ⊂ cX, we can let N

be a filtered collar neighborhood of ∂X in X; then as N ∪∂X c̄(∂X) ∼= c(∂X), we can just

relabel N ∪∂X c̄(∂X) as c(∂X). The 0 term in the bottom left is In̄H
k(c(∂X);R), which

is 0 by the cohomology cone formula (Proposition 7.1.5): As dim(∂X) = 2k − 1, we have

2k− n̄(2k)− 1 = 2k− (k− 1)− 1 = k, and the Ext vanishes by our torsion free assumption

on ∂X. So, from the exactness of the rows, we have

In̄H
k(X+;R) ∼= cok(In̄H

k−1(c(∂X);R)
d∗−→ In̄H

k(X+, c(∂X);R))

∼= cok(In̄H
k−1(∂X;R)

d∗−→ In̄H
k(X, ∂X;R))

∼= im(h).

Some diagram chasing shows that this isomorphism is induced by the restriction map j and

that im(j) = im(h). Furthermore, we can extend the central part of the diagram to

Im̄H
k(X)

In̄H
k(X)

∼= l

6

�
h

In̄H
k(X, ∂X)

�

i

In̄H
k(X+)

j

6

�
g
In̄H

k(X+, c(∂X)),

∼= f

6

(9.4)

showing that we have isomorphisms In̄H
k(X+;R)

j−→ im(h)
l−→ im(i).

To relate the image pairing on X to the cup product pairing on X+, we also need the

diagram

In̄H
k(X, ∂X)⊗ In̄Hk(X, ∂X)

^
- I0̄H

2k(X, ∂X)
D
- I t̄H0(X)

In̄H
k(X+, c(∂X))⊗ In̄Hk(X+, c(∂X))

∼= f⊗ f

6

-̂ I0̄H
2k(X+, c(∂X))

∼=
6

D
- I t̄H0(X+)

∼=
?

a
- R

a

-

In̄H
k(X+)⊗ In̄Hk(X+)

g⊗ g

?
^

- I0̄H
2k(X+)
? D

- I t̄H0(X+).

=

6

a

-

The left side of the diagram commutes by the naturality of the cup product (Proposition 7.3.5

and Theorem 7.3.72). The righthand squares commute by the naturality of the cap product

(Proposition 7.3.6 and Theorem 7.3.72), using that the fundamental classes of (X, ∂X) and
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X+ each map to the fundamental class of (X+, c(∂X)) (properly labeled ΓX+−c(∂X)), as

can be seen by applying Theorems 8.1.18 and 8.3.3. The left two upper vertical maps are

isomorphisms by excision and stratified homotopy invariance, while the upper vertical map

on the right is an isomorphism via Example 3.4.6. The commutativity of the triangles is

straightforward. Furthermore, this diagram induces the analogous diagram on torsion free

quotients as in the proof of Theorem 8.4.7.

Now, let P denote the image pairing on X. Recall from Proposition 8.4.23 that if

α, β ∈ im(F (In̄H
k(X, ∂X;R))→ F (Im̄H

k(X;R))), then the image pairing can be computed

as P (α, β) = aD(ᾱ ^ β̄), where ᾱ, β̄ ∈ In̄H
k(X, ∂X;R) are preimages of α and β. Our

diagram shows that this is equal to aD(gf−1(ᾱ) ^ gf−1(β̄)).

But now the Diagram (9.4) shows that our isomorphism lj : In̄H
k(X+;R)→ im(i) must

take gf−1(ᾱ) to α up to torsion elements. So the assignment α→ gf−1(ᾱ) is an inverse to lj

modulo torsion. Thus we obtain an isomorphism of pairings

im(i)⊗ im(i)

R,
-

F (In̄H
k(X+;R))⊗ F (In̄H

k(X+;R))

lj⊗ lj

6

-

now letting im(i) denote the image of the torsion free quotient mapping.

As the cup product pairing on IP spaces without boundary is nonsingular by Theo-

rem 8.4.7, Proposition 9.3.12 has the following interesting corollary, which is well known in

manifold theory by other means.

Corollary 9.3.13. Let R be a Dedekind domain, and let X be a compact 2k-dimensional

oriented R-IP space with ∂X 6= ∅. If In̄H
k(∂X;R) is torsion free, then the image pairing on

im(F (In̄H
k(X, ∂X;R))

i−→ F (Im̄H
k(X;R))) is nonsingular. Contrapositively, if the image

pairing on im(i) fails to be nonsingular, then In̄H
k(∂X;R) must have torsion.

Putting the proposition together with Lemma 9.3.3 leads to the following alternate char-

acterization of the Witt signature for Q-Witt spaces with boundary.

Corollary 9.3.14. Let X be a compact 4k-dimensional oriented Q-Witt space with ∂X 6= ∅,
and let X+ = X ∪∂X c̄(∂X). Then σ(X) = σ(X+).

Remark 9.3.15. An interesting feature of Witt signatures in the presence of boundaries

appears when we consider the case where M is an unfiltered ∂-manifold with ∂M 6= ∅.
Classically, the only way to define the signature of M within manifold theory was as the

signature of the image pairing becauseM+ is not generally a manifold. By contrast, Corollary

9.3.14 shows that in some sense the theory of Witt signatures for ∂-stratified pseudomanifolds

is contained entirely within the theory of Witt signatures for stratified pseudomanifolds

without boundaries.
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On the other hand, Corollary 9.3.13 shows that when working with more refined invariants

that can be defined using integer coefficients (such as the element of the Witt group W (Z)

represented by the cup product self-pairing of an IP space - see Section 9.5.2) then the

image pairing for non-empty boundaries may indeed access some invariants that cannot be

obtained from pseudomanifolds without boundary, as we have seen in Example 8.4.22 that

there are image pairings that fail to be nonsingular over Z.

Topological invariance of Witt signatures

As the signature of a Q-Witt space is defined in terms of the cup product pairing, which is a

topological invariant in the absence of codimension-one strata and when utilizing GM per-

versities (such as m̄ and n̄), it follows that the signature is an oriented topological invariant:

Theorem 9.3.16. If X and Y are two compatibly-oriented (in the sense of Corollary 8.1.11)

Q-Witt spaces with |X| = |Y |, then σ(X) = σ(Y ). So the Witt signature can be considered

an invariant of the underlying oriented pseudomanifold |X|.
More generally, if X and Y are oriented Q-Witt spaces and f : |X| → |Y | is an

orientation-preserving12 topological homeomorphism, then σ(X) = σ(Y ), i.e. the Witt sig-

nature is an “oriented topological invariant” of Q-Witt spaces.

Proof. Just as in Remarks 8.1.30, 8.2.7, and 8.3.13, it suffices to show that σ(X) = σ(Y )

when |X| = |Y |. So suppose |X| = |Y |.
As Q-Witt spaces cannot have codimension one strata, Proposition 2.7.4 implies that

also |∂X| = |∂Y |. Therefore if we form X+ and Y +, we’ll also have |X+| = |Y +|. By

Corollary 9.3.14, to show that σ(X) = σ(Y ), it thus suffices to show that σ(X+) = σ(Y +).

This now follows essentially from the topological invariance of the cup product pairing given

by Theorem 8.4.19. The pairings there are in terms of dual perversities, but we are free to

use the agreeable triple (n̄, n̄; 0̄) rather than the agreeable triple (n̄, m̄; 0̄) where that proof

invokes Theorem 7.3.10.

9.3.2 Properties of Witt signatures

The Witt signature possesses some fundamental properties that are well known from manifold

theory:

Theorem 9.3.17. If X,X ′ are closed oriented Q-Witt spaces and q denotes disjoint union,

then

1. if −X denotes X but with the opposite orientation, then σ(−X) = −σ(X),

2. σ(X qX ′) = σ(X) + σ(X ′),

3. σ(X ×X ′) = σ(X)σ(X ′),

12Meaning that the orientation on |Y | induced from that of X by f is compatible with the given orientation

of Y .
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4. if X is the boundary of a compact oriented Q-Witt space, then σ(X) = 0.

Before proving the theorem, we note the following important corollary:

Corollary 9.3.18. If X,X ′ are closed oriented Q-Witt spaces and W is a Q-Witt space with

∂W = X q−X ′, then σ(X) = σ(X ′). In other words, σ is a Q-Witt bordism invariant.

Proof. From the properties of Theorem 9.3.17, we have

0 = σ(∂W ) = σ(X q−X ′) = σ(X) + σ(−X ′) = σ(X)− σ(X ′).

The proof of Theorem 9.3.17 is essentially identical to that for manifolds, and in fact,

as manifolds are Q-Witt spaces, our proof will reduce to the classical one in this case. For

completeness, we provide all the details of this beautiful theorem.

Proof of Theorem 9.3.17.1. Let M be a matrix for the cup product pairing on X with respect

to some basis. We have Im̄H∗(X;Q) ∼= Im̄H∗(−X;Q), so choosing the same basis for −X,

the only difference in computing the pairing is reversing the sign of the fundamental class.

So the pairing matrix for −X is −M . The eigenvalues of −M are the negatives of the

eigenvalues of M , so σ(−M) = −σ(M), and the result follows.

Proof of Theorem 9.3.17.2. Since the cup product between an element of In̄H
∗(X;Q) and

an element of In̄H
∗(X ′;Q) must be trivial, the pairing matrix must have block form M =(

A 0

0 B

)
, and so σ(M) = σ(A) +σ(B), with A and B corresponding to the pairing matrices

on X and X ′ respectively; see Lemma 9.3.4.

Proof of Theorem 9.3.17.3. We first recall that the signature of a space that is not of di-

mension 4k is 0 by definition. So if dim(X ×X ′) is odd, then so must be the dimension of

one of X or X ′ and the statement is true trivially. If dim(X ×X ′) ≡ 2 mod 4, then it can’t

be that both dim(X) ≡ 0 mod 4 and dim(X ′) ≡ 0 mod 4, so again the statement holds

trivially. So the only nontrivial situation is when dim(X ×X ′) ≡ 0 mod 4. Here we must

look at the pairing.

By Example 6.4.11, the perversity n̄ is (n̄, n̄)-compatible on X×X ′. Therefore, as X and

X ′ are compact, we have an isomorphism In̄H
∗(X;Q)⊗Q In̄H∗(X ′;Q)

×−→ In̄H
∗(X ×X ′;Q)

by the intersection cohomology Künneth Theorem (Theorem 7.3.63), using Corollary 6.3.40

for the finite generation condition. Therefore, each group In̄H
i(X ×X ′;Q) is generated by

elements of the form α× β with α ∈ In̄Ha(X;Q) for some a and β ∈ In̄H i−a(X ′;Q).

Assume dim(X ×X ′) = 4K. Then we are interested in

In̄H
2K(X ×X ′;Q) ∼= ⊕i+j=2KIn̄H

i(X;Q)⊗Q In̄Hj(X ′;Q).

An important fact to observe is that many of the cup products of elements in In̄H
2K(X ×

X ′;Q) are automatically 0. In fact, suppose α1 × β1 and α2 × β2 are two elements of

In̄H
2K(X ×X ′;Q) corresponding to α1 ⊗ β1 ∈ In̄H i1(X;Q)⊗Q In̄Hj1(X ′;Q) and α2 ⊗ β2 ∈
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In̄H
i2(X;Q) ⊗Q In̄Hj2(X ′;Q). Then by the interchange rule for cross products and cup

products (which holds in this setting by Example 7.3.58),

(α1 × β1) ^ (α2 × β2) = (−1)j1i2(α1 ^ α2)× (β1 ^ β2).

By Theorem 8.1.18.1 and the Universal Coefficient Theorem, the intersection cohomology

of X is trivial above dimension n = dim(X) and the intersection cohomology of X ′ is

trivial above dimension n′ = dim(X ′). So this product will be 0 if either i1 + i2 > n or

j1 + j2 > n′. But since we must have i1 + j1 + i2 + j2 = 4K = n + n′, we see that we can

only have non-zero cup products if in fact i1 + i2 = n and j1 + j2 = n′. Thus each summand

Wi,j = In̄H
i(X;Q)⊗QIn̄Hj(X ′;Q) of In̄H

∗(X×X ′;Q) can have non-trivial cup products only

with the complementary summand Wn−i,n′−j = In̄H
n−i(X;Q)⊗QIn̄Hn′−j(X ′;Q). Therefore,

the pairing matrix on X ×X ′ has a block sum decomposition of the form
A 0 0 · · ·
0 B 0 · · ·
0 0 C · · ·
...

...
...

. . .

 ,

where each matrix on the diagonal is the restriction of the pairing to a subspace of the form

Wi,j ⊕Wn−i,n′−j, with the exception of restriction of the pairing to the subspace Wn/2,n′/2,

which pairs with itself if n and n′ are even so that it exists. As the determinant of this

matrix is equal to the product det(A) det(B) · · · , by Lemma 9.3.5, each of these restricted

pairings must be nonsingular in order for the full matrix to be nonsingular. By Lemma 9.3.4,

the signature of X ×X ′ will be the sum of the signatures of these diagonal blocks.

First, let’s consider the pairings on Wi,j ⊕Wn−i,n′−j, where it is not the case that both

i = n/2 and j = n′/2. By the separate dualities on the Q-Witt spaces X and X ′, we have

dim(In̄H
i(X;Q)) = dim(In̄H

n−i(X;Q)) and dim(In̄H
j(X ′;Q)) = dim(In̄H

n′−j(X ′;Q)). So

dim(Wi,j) = dim(Wn−i,n′−j). But since we are assuming that we do not have both i = n/2

and j = n′/2, one of the following must be true:

• i+ i > n,

• (n− i) + (n− i) > n,

• j + j > n′,

• (n′ − j) + (n′ − j) > n′.

Without loss of generality, let’s assume that it’s the first situation that holds. But then,

again by Theorem 8.1.18.1, the cup product In̄H
i(X;Q)⊗ In̄H i(X;Q)→ In̄H

2i(X;Q) must

be trivial, so the cup product on X ×X ′ restricted to Wi,j must be trivial. Since Wi,j and

Wn−i,n′−j have equal dimensions and the pairing is nonsingular, it follows from Lemma 9.3.6

that the signature of the pairing on Wi,j ⊕Wn−i,n′−j is 0.

So the only possibly non-zero signature in our block decomposition of the cup product

on In̄H
2K(X×X ′;Q) comes from the self pairing on Wn/2,n′/2. This summand can only exist
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if both n and n′ are even, so if one of n or n′ is odd, we must have σ(X ×X ′) = 0, which

then agrees with σ(X)σ(X ′). So now suppose that n, n′ are both even. Since n + n′ = 4K,

either n ≡ n′ ≡ 0 mod 4 or n ≡ n′ ≡ 2 mod 4. In the latter case, n/2 and n′/2 are both

odd. But that implies that the cup product pairing on In̄H
n/2(X;Q) is antisymmetric. So

by Lemma 9.3.8, there is a subspace of In̄H
n/2(X;Q) of half its dimension on which the cup

product pairing is trivial. Let {a1, . . . , am} be a basis for this subspace. But then if {cj}
is a basis for In̄H

n′/2(X ′;Q), the collection {ai ⊗ cj} is a basis for a subspace of half the

dimension of In̄H
n/2(X;Q) ⊗Q In̄Hn′/2(X ′;Q). For the corresponding ai × cj we then have

(ai×cj) ^ (ak×c`) = ±(ai ^ ak)× (cj ^ c`) = 0. So the pairing is trivial on this subspace,

and the signature of X ×X ′ is thus 0, which equals σ(X)σ(X ′), which is a product of 0s.

The last remaining case is that for which dim(X) ≡ dim(X ′) ≡ 0 mod 4, and the signa-

ture of X×X ′ reduces to that of the cup product pairing on In̄H
n/2(X;Q)⊗QIn̄Hn′/2(X ′;Q).

In this case, the separate pairings, say (·, ·)X and (·, ·)X′ on In̄H
n/2(X;Q) and In̄H

n′/2(X ′;Q)

are symmetric and nondegenerate, so by Lemma 9.3.7 we can find respective orthogonal bases

{a1, . . . , ar+s} and {b1, . . . , br′+s′} such that (ai, ai)X > 0 for i ≤ r, (bi, bi)X′ > 0 for i ≤ r′,

(ai, ai)X < 0 for i > r, and (bi, bi)X′ < 0 for i > r′. We then observe that the collection

{ai ⊗ bj} is a basis for In̄H
n/2(X;Q) ⊗Q In̄Hn′/2(X ′;Q) that is orthogonal with respect to

the pairing on this space. Hence the corresponding pairing matrix M is diagonal, and we

compute the signature by counting the positive and negative elements on the diagonal. If

we put the basis in the dictionary order, then we can decompose M into blocks correspond-

ing to the subspaces obtained by fixing an ai and considering the span of basis elements

{ai ⊗ b1, . . . , ai ⊗ br′+s′}. If (ai, ai)X = mi, then this matrix has the form miB, where B is

the pairing matrix for X ′ in the basis {bi}. So if mi > 0, the signature of this block is just

σ(X ′), and if mi < 0, the signature of the block is −σ(X ′). But then the signature of all of

M is
∑r+s

i=1 sgn(mi)σ(X ′) =
(∑r+s

i=1 sgn(mi)
)
σ(X ′) = σ(X)σ(X ′).

This completes the proof.

Proof of Theorem 9.3.17.4. We need to establish that if dim(X) = 4k and X = ∂W then

σ(X) = 0. As the cup product pairing is nonsingular by Theorem 8.4.7, we will employ

Lemma 9.3.6 by finding a self-annihilating subspace A of In̄H
2k(X;Q) of half the dimension.

In fact, we let A be the image of the restriction map j∗ : In̄H
2k(W ;Q)→ In̄H

2k(X;Q).

Let us first verify that A is self-annihilating. Let α, β ∈ In̄H2k(W ;Q). From the defini-

tions, we must compute

aX(((j∗α) ^ (j∗β)) _ Γ),

where Γ is the fundamental class of X and aX is the augmentation on X. Notice, that aX

factors as I t̄H0(X;Q)
j−→ I t̄H0(W ;Q)

aW−−→ Q with aW the augmentation on W . Via the

naturality properties of cup and cap products (Propositions 7.3.5 and 7.3.6 and Theorem

7.3.72), we compute

aX(((j∗α) ^ (j∗β)) _ Γ) = aW j(((j
∗α) ^ (j∗β)) _ Γ)

= aW j(j
∗(α ^ β) _ Γ)

= aW ((α ^ β) _ jΓ).
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But since X = ∂W , it follows from Proposition 8.3.5 that ΓX = ∂∗(ΓW ), and so jΓ = 0 by

the long exact sequence of the pair. Therefore, the above expression is 0.

Next we must show that dim(A) = 1
2

dim(In̄H
2k(X;Q)). For this, consider the long exact

sequence of the pair (W,X). Leaving coefficients tacit, this has the following form:

0 - In̄H
0(W,X) - In̄H

0(W ) - In̄H
0(X) - In̄H

1(W,X) - In̄H
1(W ) - · · ·

· · · - In̄H
4k(W ) - In̄H

4k(X) - In̄H
4k+1(W,X) - In̄H

4k+1(W ) - 0.

Now, by duality (Theorem 8.3.9), and since all spaces are Witt spaces, In̄H
0(W,X;Q) is

dual to In̄H
4k+1(W ;Q), In̄H

0(W ;Q) is dual to In̄H
4k+1(W,X;Q), In̄H

0(X;Q) is dual to

In̄H
4k(X;Q), and so on symmetrically inward until we arrive at In̄H

2k(X;Q), which is

dual to itself. Since each pair of dual spaces has the same dimension, we can complete the

argument using the following linear algebra lemma, taking C0 = In̄H
2k(X;Q).

Lemma 9.3.19. Let

· · ·
d2 - C1

d1 - C0

d0 - C−1

d−1 - · · ·

be an exact sequence of finite-dimensional vector spaces such that Ci = 0 for |i| > m

and dim(Ci) = dim(C−i) for all i. Then dim(im(di)) = dim(im(d−i+1)) for i > 0, and

dim(im(d1)) = 1
2

dim(C0).

Proof. This is clearly true for i > m. We will apply downward induction.

As the base case, since Cm
dm−→ Cm−1 is injective, dim(im(dm)) = dim(Cm). Similarly,

since C−m+1
d−m+1−−−−→ C−m is surjective, dim(im(d−m+1)) = dim(C−m). But dim(Cm) =

dim(C−m), so this case holds.

Now, assume that the claim has been verified for i > n > 0, and consider dn : Cn → Cn−1.

By elementary algebra, for any i we have dim(im(di)) = dim(coim(di)) = dim(cok(di+1)) =

dim(Ci)− dim(im(di+1)). So

dim(Ci) = dim(im(di)) + dim(im(di+1)).

As dim(Cn) = dim(C−n), we obtain

dim(im(dn)) + dim(im(dn+1)) = dim(im(d−n+1)) + dim(im(d−n)).

By induction hypothesis, dim(im(dn+1)) = dim(im(d−n)), so dim(im(dn)) = dim(im(d−n+1)).

This establishes the first claim of the lemma by induction.

For the last claim, we have dim(C0) = dim(im(d0)) + dim(im(d1)). But we have es-

tablished that dim(im(d1)) = dim(im(d0)), so the dimension of each of these is half the

dimension of C0.
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9.3.3 Novikov additivity

Another nice property of signatures is how they behave under gluing. In particular, let

M1,M2 be 4k-dimensional compact oriented ∂-manifolds with ∂M1 = −∂M2, where we recall

that −X denotes X but with its orientation reversed. Let us call the common boundary N ,

and let M = M1∪NM2. The union M is also a closed (compact without boundary) oriented

manifold with the orientation that restricts to the given orientations on M1 and M2. By

Definition 9.3.11, the ∂-manifolds M1 and M2 possess signatures σ(M1) and σ(M2) defined

in terms of the image pairing on im(H2k(M,∂M ;Q)→ H2k(M ;Q)) (see Proposition 8.4.23).

The following formula is called Novikov additivity:

σ(M) = σ(M1) + σ(M2).

The classical proof involves some homological algebra, Lefschetz duality, and algebraic prop-

erties of signatures; a readable account can be found in [10, pages 587-590]. Novikov ad-

ditivity generalizes to signatures of Witt spaces, where the proof becomes a very pleasant

consequence of a geometric argument and the basic properties of signatures that we have

already studied. This observation is due to Siegel [217, Proposition II.3.1].

To prove Novikov additivity for signatures of Q-Witt spaces, we begin with a minor

lemma and corollary that are sometimes useful in other contexts:

Lemma 9.3.20. Let Y be a 2k − 1 dimensional compact filtered space, and let SY be its

suspension. Then Im̄Hk(SY ;G) = 0 for any coefficient group G.

Proof. We can compute Im̄Hk(SY ;G) using the suspension formula of Theorem 6.3.13. By

that theorem, the intersection homology of a suspension is always trivial in degree 2k−p−1,

where p is the value of m̄ at either suspension point of SY . As the suspension points have

codimension 2k, we have

2k − p− 1 = 2k −
⌊

2k − 2

2

⌋
− 1 = k.

Corollary 9.3.21. Suppose X is a 4k − 1 dimensional stratified pseudomanifolds and that

SX is an orientable Q-Witt space. Then σ(SX) = 0.

Proof. By Poincaré Duality (Theorem 8.2.4), we have In̄H
2k(SX;Q) ∼= Im̄H2k(SX;Q),

which is 0 by the lemma.

Now here is Siegel’s argument for Novikov additivity of Q-Witt spaces:

Theorem 9.3.22 (Novikov additivity). Suppose X = X1 ∪ X2 is a compact oriented 4k-

dimensional Q-Witt space with X1, X2 ⊂ X compact oriented ∂-stratified pseudomanifolds

such that X1 ∩X2 = ∂X1 = −∂X2. Then σ(X) = σ(X1) + σ(X2).

Proof. As the links of X1 and X2 must also be links of X, the subspaces X1 and X2 are also

Q-Witt, and they inherit orientations from X. Let Y denote the common boundary of X1

and X2, ignoring orientation.
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Figure 9.1: A schematic construction of W0 with X1∪YX2 shown at the bottom and X+
1 qX+

2

at the top. Note that X1 and X2 are intended to be glued along their entire boundaries, not

just a piece of each boundary.
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By Proposition 9.3.12, the signatures σ(X1) and σ(X2) are equal to the Witt signatures

of X+
1 and X+

2 , respectively, where X+
i = Xi ∪∂Xi c̄(∂Xi). We will construct a Q-Witt space

W such that ∂W = X+
1 qX+

2 q−X. The theorem will then follow from Theorem 9.3.17.

As X1 and X2 are ∂-stratified pseudomanifolds, there are closed filtered collar neighbor-

hoods of their boundaries, say N1 and N2. Let N = N1 ∪Y N2. Then N ∼= [−1, 1] × Y ; let

N̊ = N − ∂N ∼= (−1, 1) × Y . Notice that X − N̊ can also be identified with a subset of

X+
1 qX+

2 . We construct a preliminary space W0 as follows (see Figure 9.1):

W0 = ([0, 1]×X) ∪{1}×(X−N̊)

(
[1, 2]× (X − N̊)

)
∪{2}×(X−N̊)

(
[2, 3]× (X+

1 qX+
2 )
)
.

Alternatively, we can imagine beginning with [0, 3]×(X−N̊), but then over [0, 1] we fill back

in the rest of [0, 1]×X and over [2, 3] we fill back in the rest of X+
1 qX+

2 . Our new space W0

is a ∂-stratified pseudomanifold with three boundary pieces: {0} × X, {3} ×
(
X+

1 qX+
2

)
,

and a third piece that has the form

({1} ×N) ∪{1}×∂N ([1, 2]× ∂N) ∪{2}×∂N ({2} × ((N1 ∪Y c̄(Y ))q (N2 ∪Y c̄(Y )))) .

Note that this last piece is homeomorphic to the suspension SY , and we will identify it with

SY notationally in what follows. The space W0 is also Q-Witt as all of the links in W0 are all

links of X, X+
1 , or X+

2 . To show that W0 is really a ∂-stratified pseudomanifold, we should

check that the boundary has a filtered collar. This is clear for the “top” and “bottom”

pieces that are filtered homeomorphic to X and X+
1 q X+

2 . It is not too hard to see that

SY also has a filtered collar, which can be obtained using the obvious collars on the pieces

and then appropriately bending. The basic idea is that the “corners” have neighborhoods

filtered homeomorphic to Y × ([(−1, 1)× (−1, 1)]− [(0, 1)× (0, 1)]) (with the second factor

unfiltered), which can be “unbent” to Y × (−1, 1)× (0, 1]; see Figure 9.2.

Figure 9.2: Schematic of unfolding at corners

Now define W = W0 ∪SY c̄(SY ); see Figure 9.3. Taking orientations into account, we

then have ∂W ∼= X+
1 qX+

2 q−X. Furthermore, W is Q-Witt: the only point of W that has

a link possibly different from the links in W0 is the new cone vertex, whose link is SY , but

Im̄H2k(SY ) = 0 by Lemma 9.3.20.
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Figure 9.3: Coning off c̄(SY ) to get the full cobordism W from X1 ∪Y X2 to X+
1 qX+

2
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Remark 9.3.23. In the statement of Novikov additivity, the boundary of M1 must be glued

completely to the boundary of M2. Novikov additivity does not remain true if one glues

boundaries only partially. In other words, suppose ∂M1 and ∂M2 are not necessarily equal

anymore but that ∂M1 and ∂M2 can be decomposed as ∂M1 = N0 ∪P N1 and ∂M2 =

N0 ∪P N2, where N0, N1, N2 are compact oriented 4k − 1 dimensional ∂-manifolds all with

common boundary P (up to matching the orientations); see Figure 9.4. One could then

form M = M1 ∪N0 M2, which is a ∂-manifold with boundary ∂M = N1 ∪P N2. In this

case, it is not true in general that σ(M) = σ(M1) + σ(M2). In fact, this is a good thing:

if Novikov additivity held in this more general way, then every triangulable manifold would

have signature 0: Every such manifold can be constructed by a sequence of such partial

gluings, in this case the gluings that attach the simplices together, but in dimensions > 0

the signature of a simplex is trivial!

Figure 9.4: Gluing M1 and M2 along the shared partial boundary N0

It turns out that there is a formula for the signature of M due to Wall [236], but it

involves a correction term

σ(M) = σ(M1) + σ(M2) + µ(M ;M1,M2).

This formula is sometimes called “Wall non-additivity.” Of course, there is always a cor-

rection formula; we could just define the correction term to be µ(M ;M1,M2) = σ(M) −
σ(M1)− σ(M2). The interesting thing is that this particular correction term is computable

as a Maslov index. The Maslov index is another linear algebra invariant a bit more complex

than the signature. It takes as input a vector space V with a nonsingular antisymmet-

ric pairing together with three Lagrangian subspaces — subspaces of half the dimension

of V on which the pairing vanishes identically. In this case, converting the homological

language that Wall uses to our cohomological language, we have V = H2k−1(P ;Q), the
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pairing on V is the cup product pairing, and the Lagrangian subspaces are the subspaces

im(H2k−1(Ni;Q) → H2k−1(P ;Q)), i = 0, 1, 2. We will not get into the details further here,

but rather recommend the very readable account in13 [236]. There is also an intersection

homology version of Wall non-additivity, at least for PL Witt spaces, which can be found in

[96], and which also provides a review of the needed Maslov index construction. A very nice

broader survey of Maslov indices and their applications can be found in [42].

9.3.4 Perverse signatures

We have seen that Q-Witt spaces carry signatures. What about more general spaces? In

[134], Hunsicker noticed that it is possible to define a signature on any 4k-dimensional

compact oriented ∂-stratified pseudomanifold given to any perversity p̄ such that p̄ ≤ Dp̄.

In the notation of [96], if we have perversities p̄, q̄ with p̄ ≤ q̄ and q̄ = Dp̄ then the perverse

signature is denoted σp̄→q̄(X). With our notation here, this would be denoted σp̄→Dp̄(X),

and so perhaps it makes sense to shorten the notation to just σp̄(X), as the second perversity

is determined by the first.

Remark 9.3.24. Such perversities with p̄ ≤ Dp̄ do exist. For example m̄ ≤ Dm̄ = n̄. We

also have 0̄ ≤ D0̄ = t̄, so long as we are on a space X with no codimension one strata.

For such perversities, we observe that since p̄ ≤ Dp̄ = t̄ − p̄, we have 2p̄ ≤ t̄ and hence

D(2p̄) ≥ Dt̄ = 0̄.

The perverse signature is defined to be the signature of the nonsingular symmetric image

pairing on im(i∗ : IDp̄H
2k(X, ∂X;Q) → Ip̄H

2k(X;Q)), where the map i∗ is induced by the

space pair inclusion (X, ∅) → (X, ∂X), which is also (p̄, Dp̄)-allowable using that p̄ ≤ Dp̄.

In the special case where X = M is an unfiltered manifold, this is just the classical image

pairing on im(i∗ : H2k(M,∂M ;Q) → H2k(M ;Q)); if X is a Q-Witt space, then σm̄(X) is

just the Witt signature defined in the preceding section.

So the perverse signatures is a legitimate generalization of the Witt signature. Unfor-

tunately, its properties and applications mostly remain mysterious. Some basic properties

are obvious. For example, by the arguments in the proof of Theorem 9.3.17, if −X is the

same pseudomanifold as X but with the opposite orientation then σp̄(−X) = −σp̄(X), and

also σp̄(X qX ′) = σp̄(X) + σp̄(X
′). However, we also saw in Corollary 9.3.18 that the Witt

signature is a bordism invariant. But while the perverse signatures are defined on all ori-

ented stratified pseudomanifolds, they cannot be bordism invariants in this larger class as

every compact orientable stratified pseudomanifold X of dimension > 0 is the boundary of

the compact oriented ∂-stratified pseudomanifold c̄(X). So if the perverse signatures were

bordism invariants, they would all have to be 0. But manifolds are (trivially stratified)

pseudomanifolds, and there are certainly manifolds with non-zero signatures. For example,

recalling that CPm is a real manifold of dimension 2m and that Hm(CPm) ∼= Z, the nonsin-

gularity of the cup product pairing implies that σ(CP 2n) = ±1 6= 0; in fact, one can show

that σ(CP 2n) = 1 with its standard orientation as a complex variety [176, page 225]. So if

the various σp̄ are to be interesting bordism invariants, then they must be bordism invariants

13Though be aware of some typos in [236] which are pointed out in [96].
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only on some restricted class of oriented pseudomanifolds, but just which class has not yet

been determined.

It is also not true, in general, that the perverse signatures satisfy Novikov additivity, but

they do have a Wall non-additivity formula, which can be found in [96].

9.4 L-classes

A remarkable fact about signatures, which are numerical invariants, is that they provide the

means to define homology invariants of spaces. To see why this should be so, let us perform

a thought experiment with the warning that the details will be largely incorrect but with

the enticement that they can be modified to obtain something useful:

Suppose X is a space, and let’s imagine that all its homology classes can be represented

by oriented manifolds. In other words, suppose that if ξ ∈ Hk(X) then there exists a closed

oriented k-dimensional manifold Mk and map f : Mk → X such that ξ is the image of the

fundamental class of M under f . Furthermore, let’s assume that all homologies in X can be

realized by manifold bordism. In other words, suppose that if f : M → X and f ′ : M ′ → X

represent the same homology class then there is an oriented ∂-manifold W k+1 and a map

W k+1 → X that restricts to f q f ′ on ∂W = M q−M ′. (For more about homology theories

that do behave this way, see Section 9.5, below.) Pretending that ordinary homology works

this way, we could assign to ξ, represented by f : M → X, the signature of M , and it

would follow from our assumptions that this assignment ξ → σ(M) is well-defined, since

if we represent ξ by f ′ : M ′ → X instead, then M and M ′ cobound some W and hence

have the same signature. It is not difficult to see that this would induce a homomorphism

Hk(X) → Z, since reversing orientation of a manifold changes the sign of its signature and

signature is additive over disjoint unions. Tensoring with Q makes this a homomorphism

Hk(X;Q) → Q, i.e. an element of Hom(Hk(X;Q),Q), which can then be identified as an

element of Hk(X;Q). So, starting with signatures of manifolds, we obtain an element of

Hk(X;Q).

One major problem with this argument is that our assumption that we can identify ho-

mology classes in terms of images of fundamental classes of manifolds is simply not true,

even when X is itself a manifold. This was historically an important question, which was

answered in the negative by Thom [234]. However, there turns out to be another interest-

ing way to find manifolds and bordisms within a closed (i.e. compact without boundary)

oriented PL manifold M , but in terms of rational cohomology rather than homology. The

idea, roughly, is that there turns out to be a correspondence between elements of Hm(M ;Q)

and homotopy classes of maps M → Sm in certain dimension ranges14. With certain fur-

ther conditions, the inverse images of generic points of such maps are embedded manifolds

in M ; replacing such maps with homotopic maps replaces the embedded manifolds with

bordant manifolds possessing the same signatures. So taking signatures of these embed-

ded manifolds determines an element of Hom(Hm(M ;Q);Q). Since M is compact, we have

14Technically the group of such homotopy classes of maps to Sm also needs to be tensored with Q; details

will be provided below.
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Hom(Hm(M ;Q);Q) ∼= Hm(M ;Q), and so we wind up with a class Lm(M) ∈ Hm(M ;Q).

If dim(M) = n, the embedded manifolds have dimension n − m, and so Lm(M) will be

nontrivial only when n−m is a multiple of 4.

If we make the stronger assumption that M is a smooth manifold, the classes Ln−4k(M) ∈
Hn−4k(M ;Q) turn out to be Poincaré dual to the classical Thom-Hirzebruch L-classes15

Lk(M) ∈ H4k(M ;Q). Recall that these classes arise as certain polynomials in the Pontrjagin

characteristic classes of the tangent bundle of M ; see [176, Chapter 19]. The cohomology L-

classes possess the property that they evaluate on the fundamental class ΓM to the signature

of M , i.e.

(L∗(M))(ΓM) = σ(M).

This is the Hirzebruch Signature Theorem, for which a proof can be found in16 [176, Chap-

ter 19]. The Signature Theorem motivates the construction of homology L-classes for PL

manifolds just described, which is due to Thom [233]; an exposition is contained in Chapter

20 of Milnor-Stasheff [176].

The construction of homology L-classes using signatures that we have just outlined can

further be extended to closed oriented PL Q-Witt spaces17. In this setting, it is still possible

to identify ordinary rational cohomology with maps to spheres (in fact, this part of the

argument works for any space of the homotopy type of a CW complex), but now the inverse

images of generic points will be PL Q-Witt spaces. As these have Witt signatures, and

since these signatures are invariants of Q-Witt bordism, we can enact our program with a

Witt space X to get elements of H∗(X;Q) that deserve to be called characteristic classes.

This basic idea was described already by Goresky and MacPherson in [105] for stratified PL

pseudomanifolds with only even codimension strata, before the discovery of Witt spaces in

[217]. Further generalizations to “twisted L-classes” and to more general spaces have been

carried out by Cappell-Shaneson [47], Banagl-Cappell-Shaneson [20], and Banagl [14].

In section 9.4.1, we will carefully formulate the details of the construction of L-classes for

PL Q-Witt spaces, which include PL manifolds, and in the following sections we will provide

the proofs. We will generally follow the exposition of [176, Chapter 20], though we adapt

several results as necessary for our needs and fill in some additional details.

9.4.1 Outline of the construction of L-classes (without proofs)

In this section, we describe in detail the construction of the L-classes Lm(X) ∈ Hm(X;Q)

for a closed oriented n-dimensional PL Q-Witt space X. These will be nontrivial only when

m has the form m = n − 4k for k ∈ Z. The construction relies on a variety of results that

will be stated here and then proven in subsequent sections.

15Take note of the standard labeling with the class denoted Lk living in H4k(M ;Q).
16See [128] for a very nice discussion by Hirzebruch of what lead him to conjecture and prove this theorem.
17Note: although we will be assuming PL spaces throughout this section, we will not need to utilize PL

intersection homology or cohomology. Rather, we are free to work with singular intersection (co)homology

and so to utilize our results about duality, signatures, etc.
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Maps to spheres and embedded subspaces

We begin with the following proposition, which implies that, in suitable situations, we can

assign Witt signature invariants to maps f : X → Sm.

Proposition 9.4.1. Let X be a closed oriented n-dimensional PL Q-Witt space. Suppose

that Sm, m > 0, has been given an orientation and that f : X → Sm is a PL map. Then

for almost all y ∈ Sm the inverse image f−1(y) can be filtered as a closed oriented n − m
dimensional PL Q-Witt space (possibly empty) embedded in X. Furthermore, for almost

all y, y′ ∈ Sm the Witt spaces f−1(y) and f−1(y′) have the same signature; this common

signature depends only on the PL homotopy class of f in [X,Sm]PL.

Here, [·, ·]PL denotes the set of PL homotopy classes of PL maps, and, as in [176], “almost

all y” means that the statement applies to all y in an open dense subset of Sm. In particular,

we will see that for a fixed f we can choose y to be any point not belonging to the simplicial

m− 1 skeleton of a triangulation of Sm with respect to which f : X → Sm is simplicial. We

also refer to these as “generic points of Sm.”

The basic idea of the proof of the second statement of the proposition is that changing

from y to y′ or from f to a homotopic map will result in PL Q-Witt space bordisms between

the point inverses. Since signature is independent of filtration and Q-Witt bordism class by

Theorem 9.3.16 and Corollary 9.3.18, almost all point inverses will have the same signature.

Let us briefly describe how the orientation of f−1(y) is chosen. We will see in Lemma

9.4.19 that for almost all y ∈ Sm there is a Euclidean neighborhood U of y and a homeomor-

phism h : U × f−1(y) → f−1(U) such that fh is equal to the projection to the first factor.

We will choose the orientation of f−1(y) so that h is orientation-preserving, giving U the

orientation it inherits from the chosen orientation on Sm.

We can extend Proposition 9.4.1 to m = 0 by letting S0 = {0, 1} and declaring y = 1 to

be the “generic point.” Every map f : X → S0 takes some connected components of f to

0 ∈ S0 and some to 1 ∈ S0. So then Z = f−1(y) is a union of connected components of X,

which of course is a closed oriented PL Q-Witt space with the orientation it inherits from

X, and we may consider its signature σ(Z).

Cohomotopy

If X is a Q-Witt space, Proposition 9.4.1 shows how to assign an integer σ(f) to each element

of [X,Sm]PL, the PL homotopy set of PL maps from X to Sm. If we have a map g : X → Sm

that is not necessarily PL, then by the PL Approximation Theorem g is homotopic (by a

small homotopy) to a PL map (see Theorem B.2.24). Furthermore, by the same theorem,

any continuous homotopy of PL maps is homotopic to a PL homotopy of the same PL

maps. Therefore, [X,Sm]PL ∼= [X,Sm], the full set of topological homotopy classes of maps

X → Sm. So we in fact obtain a well-defined function [X,Sm]→ Z.

For obvious reasons, [X,Sm] is also called the cohomotopy set πm(X). Since Sm is simply

connected for m > 1 and since S1 is an H-space, we have [X,Sm] ∼= [X,Sm]0, the basepoint

preserving homotopy set, by [125, Proposition 4A.2 and Example 4A.3]. So for m > 0 we

do not need to take care with basepoints when discussing πm(X).
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Putting together the discussion so far, we have functions

F : πm(X)→ Z,

for m > 0, such that [f ] ∈ πm(X) gets taken to the common value σ(f−1(y)) for the generic y

in Sm. In general we can only call this a function as πm(X) is not always a group. However,

it turns out that πm(X) is a group when m is sufficiently large compared to n = dim(X):

Lemma 9.4.2. If m > n+1
2

then F : πm(X)→ Z is a homomorphism of abelian groups.

So now we have constructed for any closed oriented PL Q-Witt space X and any m > n+1
2

a homomorphism F : πm(X) → Z, which, by tensoring with Q over Z, can be made into a

map F ⊗ idQ : πm(X) ⊗ Q → Q ⊗ Q ∼= Q. On the other hand, there is a homomorphism

c : πm(X) → Hm(X) that, in this degree range, becomes an isomorphism when tensored

with Q. This follows from deep work of Serre’s [213, Proposition 2’, page 289]:

Theorem 9.4.3 (Serre). Let Sm be oriented, and let u ∈ Hm(Sm) be the generator satisfying

u(ΓSm) = 1. Suppose Xn is a compact CW complex and m > n+1
2

. Define c : πm(X) →
Hm(X) by c([f ]) = f ∗(u) ∈ Hm(X). Then c ⊗ idQ : πm(X) ⊗ Q → Hm(X) ⊗ Q is an

isomorphism.

The L-classes

We can now define the L-classes for m > n+1
2

; the extension for all m will require a bit more

work below.

Let Xn be a closed oriented PL Q-Witt space, let m > n+1
2

, and consider the composite

homomorphism

Hm(X)⊗Q (c⊗idQ)−1

−−−−−→ πm(X)⊗Q F⊗idQ−−−−→ Q,

which is an element of HomQ(Hm(X) ⊗ Q,Q). A standard algebra identity says that

HomQ(Hm(X)⊗Z Q,Q) ∼= HomZ(Hm(X),Q) (see [181, Lemma 53.4]), and since X is com-

pact, and thus H∗(X) is finitely generated in each degree, the Universal Coefficient The-

orem [181, Theorem 56.1] says that the evaluation homomorphism gives an isomorphism

HomZ(Hm(X),Q) ∼= Hm(X;Q). So (F ⊗ idQ)(c ⊗ idQ)−1 corresponds to an element of

Hm(X;Q). This will be our L-class, up to a sign we introduce to better reconcile our sign

conventions with the classical results about L-classes. It is convenient to apply [181, Theorem

56.1] once again to observe Hm(X)⊗Q ∼= Hm(X;Q) so that we can think of the evaluation

map as running Hm(X;Q)→ HomQ(Hm(X;Q),Q) in the following official definition:

Definition 9.4.4. If Xn is a closed oriented PL Q-Witt space and m > n+1
2

, let Lm(X) ∈
Hm(X;Q) be (−1)m times the element corresponding to (F ⊗ idQ)(c ⊗ idQ)−1 under the

universal coefficient evaluation isomorphism ev : Hm(X;Q) → HomQ(Hm(X;Q),Q). In

other words,

Lm(X) = (−1)mev−1((F ⊗ idQ) ◦ (c⊗ idQ)−1) ∈ Hm(X;Q).

The class Lm(X) is called the mth homology L-class of X.
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Remark 9.4.5. If n − m is not a multiple of 4, then the signature of any point inverse of

any map X → Sm must be 0 by definition. In this case the L-class is trivial. Therefore the

L-classes are typically only defined in dimensions m = n− 4k, k ≥ 0.

Remark 9.4.6. Taking into account Koszul sign conventions, the evaluation isomorphism

ev : Hm(X;Q)→ Hom(Hm(X;Q),Q) of the Universal Coefficient Theorem takes an element

ξ ∈ Hm(X;Q) to a homomorphism that acts on the class of a cocycle α by

ev([ξ])[α] = (−1)mα(ξ);

see Section A.1.5. This sign, which often does not appear in the literature, is essentially

the reason for our extra sign in Definition 9.4.4. This sign yields a more familiar formula in

Proposition 9.4.8 below, which relates these homology L-classes with the Thom-Hirzebruch

L-classes in cohomology when X is a smooth manifold.

As our definition for Lm(X) looks pretty mysterious, let’s see what this all actually

means in terms of our constructions to this point. In particular, let’s compute β(Lm(X))

for an arbitrary β ∈ Hm(X;Q). By Serre’s theorem, we know that such a β is in the image

of c ⊗ idQ. If G is any abelian group, then by finding common denominators and pulling

numerators across the tensor product, any element of G⊗Q can be written in the form g⊗r
for some18 g ∈ G and r ∈ Q. If we abbreviate such an element as rg, then, abusing notation,

we can write β ∈ Hm(M ;Q) as β = (c ⊗ idQ)([f ] ⊗ r) = c([f ]) ⊗ r = rc([f ]) for some PL

f : M → Sm and r ∈ Q. With these assumptions, we can compute

β(Lm(X)) = (−1)mev(Lm)(β) see Remark 9.4.6

= (−1)m(−1)m(F ⊗ idQ)(c⊗ idQ)−1(β) by definition of Lm

= (F ⊗ idQ)(c⊗ idQ)−1(c([f ])⊗ r)
= (F ⊗ idQ)([f ]⊗ r)
= rF ([f ])

= rσ(f−1(y)) by definition of F .

Here, as usual, y is a suitable generic point of Sm.

We state this convenient and important formula as a proposition:

Proposition 9.4.7. Let Xn be a closed oriented PL Q-Witt space. Suppose that m > n+1
2

and that β ∈ Hm(X;Q) is the image of [f ] ⊗ r ∈ πm(X) ⊗ Q under the isomorphism of

Serre’s Theorem. Let f : X → Sm be a PL representative of [f ], and let y ∈ Sm be a generic

point. Then

β(Lm(X)) = rF ([f ]) = rσ(f−1(y)).

L-classes on smooth manifolds

Now let us state the promised relation to the cohomology L-classes on smooth manifolds,

which justifies calling the homology classes we have constructed L-classes:

18 For example, the expression g1 ⊗ 1
2 + g2 ⊗ 2

3 can be rewritten as g1 ⊗ 3
6 + g2 ⊗ 4

6 = (3g1 + 4g2)⊗ 1
6 .
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Proposition 9.4.8. If Mn is a closed oriented smooth n-manifold and m > n+1
2

, then for

m = n − 4k the class Lm(M) is the Poincaré dual of the rational Thom-Hirzebruch L-

class Lk(M) ∈ H4k(M ;Q). Here Lk(M) is the degree k term of the multiplicative sequence

associated to the power series of
√
t

tanh
√
t

and taking as its variables the Pontrjagin classes of

the tangent bundle of M (see [176, Chapter 19]).

L-classes for small degrees

It remains to define the L-classes when m ≤ n+1
2

. In this range, the cohomotopy sets [X,Sm]

are not groups, and an alternative procedure is necessary. When k + m > n+k+1
2

, then

Lk+m(Sk×X) can be defined, noting that if X is a Q-Witt space then so is Sk×X. For any

fixed m and n, this condition will hold for any k > n − 2m + 1. We can now use the class

Lk+m(Sk ×X) to define Lm(X) because it follows from the Künneth theorem that if k > n

then the cross product with ΓSk gives an isomorphism19 ΓSk×· : Hm(X;Q)→ Hm(Sk×X;Q).

Definition 9.4.9. If Xn is a closed oriented PL Q-Witt space and m ≤ n+1
2

, let Lm(X)

be the image of Lk+m(Sk × X) under the isomorphism (ΓSk × ·)−1 : Hk+m(Sk × X;Q) →
Hm(X;Q) for k > n+ 1.

To see that Lm(X) is well defined, we will show that this construction is independent of

k so long as k > n+ 1:

Proposition 9.4.10. Let Xn be a closed oriented PL Q-Witt space, and let k, k′ > n +

1. Consider for 0 ≤ m ≤ n the isomorphisms Hm(X;Q)
Γk×−−→ Hk+m(Sk × X;Q) and

Hm(X;Q)
Γk′×−−−→ Hk′+m(Sk

′×X;Q). If Lk+m(Sk×X) ∈ Hk+m(Sk×X;Q) and Lk′+m(Sk
′×

X) ∈ Hk′+m(Sk
′ ×X;Q) are the respective homology L-classes, then

(ΓSk×)−1Lk+m(Sk ×X) = (ΓSk′×)−1Lk′+m(Sk
′ ×X) ∈ Hm(X;Q).

As motivation for this definition, let us show that it is consistent with the behavior of

the L-classes on smooth manifolds. So let Mn be a smooth manifold, and let Li(M) ∈
H4i(M ;Q) be its ith cohomology L-class [176, Chapter 19]. As M is a smooth manifold,

these cohomology L-classes are define for all i as characteristic classes of the tangent bundle

TM of M . We already know that Ln−4i(M) is the Poincaré dual of Li(M) when n−4i > n+1
2

by Proposition 9.4.8. In this smooth setting we will show that the following statements are

equivalent for any n− 4i ≥ 0:

1. Ln−4i(M) = (ΓSk × ·)−1(Lk+n−4i(S
k ×M) for any k > n+ 1,

19If we want to think of ΓSk ∈ Hk(Sk;Z) as being the fundamental class with respect to the integers, then

we can interpret this product either in terms of the cross product H∗(S
k;Z)⊗H∗(X;Q)→ H∗(S

k ×X;Q)

or we can first map H∗(S
k;Z) to H∗(S

k;Q) and then employ the cross product H∗(S
k;Q) ⊗H∗(X;Q) →

H∗(S
k ×X;Q). These are equivalent thanks to the functoriality of the cross product; see for example [219,

Theorem 5.3.3 and Corollary 5.3.4], noting that Z ⊗Z Q ∼= Q ⊗Z Q ∼= Q. For this reason, we will treat ΓSk

either as an element of Hk(Sk;Z) or as also representing its image in Hk(Sk;Q), as convenient for a given

context and without further comment.
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2. Ln−4i(M) = D(Li(M)).

The cohomology L-classes are constructed from the Pontrjagin classes pi(TM) ∈ H4i(M ;Q)

by a universal formula, so we can begin by working with these instead. Let π1 : Sk×M → Sk

and π2 : Sk ×M → M be the projections. By the naturality of characteristic classes we

have π∗jp
i(TM) = pi(π∗jTM) for j ∈ {1, 2}. Meanwhile, T (Sk × M) ∼= π∗1TS

k ⊕ π∗2TM .

But the tangent bundle of a sphere is stably trivial, so it follows from the product formula

for Pontrjagin classes [176, Theorem 15.3] and the formula relating cup and cross products

(Proposition 7.3.46) that

pi(T (Sk ×M)) = pi(π∗1TS
k ⊕ π∗2TM)

= 1Sk×M ^ pi(π∗2TM)

= π∗1(1Sk) ^ π∗2(pi(TM))

= 1Sk × pi(TM),

where we have written 1Sk for the class 1 ∈ H0(Sk;Q). As the L-classes are polynomials in

the pi, this implies via the formulas relating cup and cross products (Proposition 7.3.54 or

[71, Section VII.8.16]) that Li(Sk ×M) = 1Sk × Li(M). Therefore, if the Ln−4i(M) satisfy

ΓSk ×Ln−4i(M) = Lk+n−4i(S
k ×M) for sufficiently large k, as proposed, then we have

ΓSk ×Ln−4i(M) = Lk+n−4i(S
k ×M)

= Li(Sk ×M) _ ΓSk×M

= (1Sk × Li(M)) _ (ΓSk × ΓM)

= (−1)4ik(1Sk _ ΓSk)× (Li(M) _ ΓM)

= ΓSk × (Li(M) _ ΓM).

The fourth equality uses the interchange property of cap and cross products (Proposition

7.3.55 or [71, Section VII.12.17]) while the fifth uses the unital property of cap products [71,

Section VII.12.9]. But now we have assumed Sk large enough that ΓSk× is an isomorphism,

and so

Ln−4i(M) = Li(M) _ ΓM = D(Li(M)),

using that Li(M) has even degree.

Conversely, if we instead begin with the requirement that Ln−4i(M) = Li(M) _ ΓM
then we can reorder the above computation to read

Lk+n−4i(S
k ×M) = Li(Sk ×M) _ ΓSk×M

= (1Sk × Li(M)) _ (ΓSk × ΓM)

= (−1)4ik(1Sk _ ΓSk)× (Li(M) _ ΓM)

= ΓSk × (Li(M) _ ΓM)

= ΓSk ×Ln−4i(M).

This argument demonstrates the following lemma:
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Lemma 9.4.11. Suppose M is a closed oriented smooth n-manifold and that k > n + 1.

Then Ln−4i(M) = Li(M) _ ΓM for all n − 4i ≥ 0 if and only if ΓSk × Ln−4i(M) =

Lk+n−4i(S
k ×M) for all n− 4i ≥ 0.

The lemma shows that in the smooth setting defining Lm(M) ∈ Hm(X;Q) for m =

n − 4i ≤ n+1
2

to be the image of Lk+m(Sk × M) under the isomorphism (ΓSk × ·)−1 :

Hk+m(Sk×M ;Q)→ Hm(M ;Q) for k > n+1 is consistent with having Lm(M) = Ln−4i(M)

be the Poincaré dual to the cohomology L-class Li(M) ∈ H4i(M ;Q). In fact, it is the

only possible consistent choice. This justifies the corresponding definition of Lm(X) as

(ΓSk × ·)−1(Lk+m(Sk ×X)) for m ≤ n+1
2

in the more general setting of PL Q-Witt spaces,

at least once we have shown in this setting that this formula is independent of the choice of

k > n+ 1.

Once we have shown that the L-classes for small m are well defined we will be able to

make some further statements that apply for all m, including results that we have so far

shown only for high or low degrees. In particular, we will be able to show the following:

Lemma 9.4.12. If Xn is a closed oriented PL Q-Witt space and m ≥ 0, then ΓSk×Lm(X) =

Lk+m(Sk ×X) for any k > n+ 1.

Proposition 9.4.13. Let X be a closed oriented PL Q-Witt space, and let f : X → Sm be a

PL map for m > 0. If y ∈ Sm is a generic point, r ∈ Q, and u ∈ Hm(Sm) is the cohomology

class such that u(ΓSm) = 1, then

(f ∗(u)⊗ r)(Lm(X)) = rσ(f−1(y)).

If m = 0, the formula will hold if we take y = 1 ∈ S0 = {0, 1} and let u = 11 ∈ H0(S0)

be the cocycle that restricts to the augmentation class in H0({1}) and to 0 in H0({0}).

As a corollary, we will see that L0 takes a particularly nice form:

Proposition 9.4.14. Let X be a closed oriented PL Q-Witt spaces, and let {Xj} be the

connected components of X. Then

L0(X) =
∑
j

σ(Xj)ξj ∈ H0(X;Q),

where ξj is any 0-simplex in Xj.

Characterizing the L-classes

So far, our construction of the classes Lm(X) has been fairly explicit in terms of invariants on

the space X itself. We will conclude by showing that there is an axiomatic characterization

of the L-classes across all closed oriented Q-Witt spaces simultaneously. There are two

axioms: One is essentially the content of Proposition 9.4.14, which serves as something of

a normalization condition by setting the L-class L0(X) to be the signature of X for each

connected X. The other axiom concerns the relation between the L-classes of X and the

L-classes of certain nice subspaces Z ⊂ X that are also closed orientable PL Q-Witt spaces.
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We will see that the L-classes of X determine those of Z via a sort of homology pullback

map. It turns out that these two properties are enough to completely determine the L-

classes across all closed oriented PL Q-Witt spaces. This will be the content of Theorem

9.4.18 below. First we have to set up some needed technical background.

PL trivial normally nonsingular subspaces. First we need to describe our “nice”

subspaces. For this, recall from Definition 2.9.8 that a subspace Z ⊂ X of a filtered space

is called a normally nonsingular subspace of codimension m if the inclusion iZ : Z ↪→ X

extends to a filtered homeomorphism from some Rm-vector bundle over Z (filtered by the

inverse images of the skeleta of Z) onto some neighborhood W of Z. We will need a version of

such subspaces here. On the one hand, we will only need to be concerned with the situation

in which the Rm-bundle is the trivial bundle, and we will want our homeomorphisms to be

PL. On the other hand, we will not need to be so concerned about filtrations. The reason

for this is that all of our L-class machinery has been built up from signatures of Witt spaces,

which we know are independent of the precise filtration, and the rest of our considerations

have been with respect to ordinary homology groups, which don’t care about filtrations.

Furthermore, suppose we have any PL homeomorphism from Rm × Z onto a subspace of

X; then by Lemma 2.10.17 this must be a filtered homeomorphism if Z and X are both

given their intrinsic filtrations20. We could just work with intrinsic filtrations throughout

this section, but instead it is simpler to adopt the following definition:

Definition 9.4.15. Suppose that X is a PL Witt space, that Z ⊂ X is a closed subspace,

and that the inclusion iZ : Z ↪→ X extends to a (not necessarily filtered) PL homeomorphism

iW from Rm × Z onto a neighborhood W of Z in X with iW |{0}×Z = iZ . In this case we will

say that Z is a PL trivial21 normally nonsingular subspace of X. To shorten this expression,

we may say that Z is a PL trivial nns.

We will show below in Corollary 9.4.28 that if Z is a PL trivial nns of X then Z is itself a

PL Q-Witt space with respect to its intrinsic filtration, and so with respect to any classical

pseudomanifold filtration by Proposition 9.1.28.

Our characterization of the L-classes involves certain “wrong-way” or umkehr 22 maps

determined by the inclusions iW . We next review such maps.

Umkehr maps. Umkehr maps are so named because they run against the usual direction

of functoriality. For example, given a map f : Z → X, we might have umkehr maps of

the form f ! : H∗(X) → H∗(Z) or f! : H∗(Z) → H∗(X), though such maps do not typically

preserve degree. For example, when Zn−m and Xn are closed oriented manifolds, we can

obtain such maps by employing duality as follows:

f ! = DZf ∗D−1
X : Hi(X)→ Hi−m(Z) f! = D−1

X fDZ : H i(Z)→ H i+m(X).

20As bundles are locally products, this same statement can be extended to any homeomorphism of an

Rm-bundle over Z into X.
21It would probably be more correct to say such subspaces are “trivially normally nonsingular,” but this

would be even more awkward to say than “trivial normally nonsingular.”
22The German word “Umkehr” can be translated as “reversal.”
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However, even when the spaces are not manifolds, there are still some settings in which

umkehr maps can be constructed, such as when Z is embedded as a closed subset in X and

possesses a neighborhood W that is homeomorphic to an oriented Rm vector bundle, m > 0,

with Z corresponding to the zero section. We will often find it useful to identify W itself

as a bundle via the given homeomorphism, and so we employ bundle language for W . By

the Thom Isomorphism Theorem [176, Theorem 10.4 and Corollary 10.7], there is a unique

Thom class µ ∈ Hm(W,W − Z) ∼= Hm((Rm,Rm − {0})× Z) such that

1. µ restricts on each fiber Hm(Rm,Rm − {0}) to a chosen generator consistent with the

orientation,

2. H i(W )
^µ−−→ H i+m(W,W − Z) is an isomorphism for all i, and

3. Hi(W,W − Z)
u_−−→ Hi−m(W ) is an isomorphism for all i.

Using this Thom class, we define the map i!W as follows:

Definition 9.4.16. Suppose Z ⊂ X is a closed subspace such that the embedding iZ : Z ↪→
X extends to an embedding iW of an Rm bundle over Z, m > 0, onto a neighborhood W

of X and such that iW restricts to iZ on the zero section of the bundle. Then we define

i!W : Hi(X)→ Hi−m(Z) as the composition

Hi(X)→ Hi(X,X − Z)
∼=←− Hi(W,W − Z)

µ_−−→ Hi−m(W )
∼=−→ Hi−m(Z).

Here the left-facing arrow is an excision isomorphism, µ is the Thom class of the bundle W ,

and the last arrow is induced by the projection W → Z, which is a homotopy equivalence23.

Of course we can also construct i!W with respect to other coefficient groups, in particular

Q; we can even continue to assume µ ∈ Hm(W,W − Z;Z) and employ the cap product

Hm(W,W − Z;Z)⊗Hi(W,W − Z;Q)→ Hi−m(W ;Q) (see [219, Section 5.6]).

We can further extend this construction to the case m = 0. In this case, the space Z

is a union of connected components of X. As homology is additive over disjoint unions, we

have Hi(X) ∼= ⊕jHi(Xj), where the Xj are the connected components of X. We then let i!

be simply the projection Hi(X) ∼= ⊕XjHi(Xj)→ ⊕Xj⊂ZHi(Xj) ∼= Hi(Z).

Remark 9.4.17. In the special case in which we can identify W with the trivial bundle

W ∼= Rm × Z, m > 0, by an orientation-preserving homeomorphism then we can take the

Thom class to be µ = a×1Z , where 1Z ∈ H0(Z) and a is the generator of Hm(Rm,Rm−{0})
that takes the fundamental class for the standard orientation to 1. Another sometimes useful

way to describe µ in this case is as follows: Identifying Rm with Sm−{z0} for some z0 ∈ Sm,

let f : X → Sm be the map that takes each (y, z) ∈ Rm × Z to y ∈ Rm ⊂ Sm and

takes X −W to z0; note that then f−1(0) = Z. Let u ∈ Hm(Sm) be the generator such that

u(ΓSm) = 1, let a be the image of u under the isomorphisms Hm(Sm) ∼= Hm(Sm, Sm−{0}) ∼=
Hm(Rm,Rm−{0}). Then as fW is simply the projection of W = Rm×Z onto Rm, we have

23This definition doesn’t quite utilize the full power of the Thom Isomorphism Theorem as we don’t use

that µ _ is an isomorphism. However, this will be the definition we need below.

639



µ = f |∗W (a) ∈ Hm(W,W − Z) by the singular homology version of Proposition 7.3.24 (see

[71, Section VII.7.10]).

This special case is the only one that will be of importance to us in what follows.

Axiomatic characterization. We can now state our characterizing result for the L-

classes:

Theorem 9.4.18. The L-classes L∗ defined on closed oriented PL Q-Witt spaces possess

the following properties:

1. a(L0(X)) = σ(X),

2. if Z is a PL trivial normally nonsingular subset of X and iW : Rm×Z
∼=−→ W ⊂ X is the

orientation-preserving PL homeomorphism of a trivial Rm bundle onto a neighborhood

W of Z in X then i!W (Lj+m(X)) = Lj(Z) for all j.

Furthermore, the collection of classes {L∗(X)} as X ranges over all closed oriented PL

Q-Witt spaces is the unique collection with these properties.

Some notation

The following notation will be used throughout the remainder of our discussion of L-classes:

• If Z is a union of connected components of a space X, we let 1Z ∈ H0(X) denote the

class that restricts to the augmentation class 1 ∈ H0(Z) and to 0 on the complement

of Z.

• For m > 0, we orient the sphere Sm consistently with viewing it as the one-point

compactification of Rm with the standard orientation. It follows that the standard

smash product identification Sp ∧ Sq = Sp×Sq
(Sp×pt)∪(pt×Sq)

∼= Sp+q (see [125, Chapter 0])

is orientation preserving, and so the quotient takes ΓSp × ΓSq ∈ Hp+q(S
p × Sq) to

ΓSp+q ∈ Hp+q(S
p+q).

• We let u ∈ Hm(Sm) denote the class such that24 u(ΓSm) = 1. If we wish to be

particularly clear about the degree m under consideration, we may write um instead

of u.

• When m = 0, we let Sm = {0, 1}, and we let u0 = u ∈ H0(S0) denote the class 11

that restricts to the augmentation class in H0({1}) and to 0 in H0({0}). If we take

the fundamental class ΓS0 to be the image of the standard generator of H1(D1, S0)

under ∂∗ : H1(D1, S0)→ H0(S0) then the property u(ΓS0) = 1 continues to hold when

m = 0. Whenever we speak of a generic point y ∈ Sm, if m = 0 we take y = 1.

24This convention is not necessarily consistent with all other sources.
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• We will also sometimes abuse notation and allow ΓSm and u to stand also for their im-

ages under the standard homomorphisms Hm(Sm)→ Hm(Sm)⊗Q ∼= Hm(Sm;Q) and

Hm(Sm)→ Hm(Sm)⊗Q ∼= Hm(Sm;Q) ∼= HomZ(Hm(Sm);Q) ∼= HomQ(Hm(Sm;Q),Q),

as context requires. In general, if G is an abelian group and V is a Q-vector space, then

we have Q-vector space isomorphisms A ⊗Z V ∼= (A ⊗Z Q) ⊗Q V and HomZ(A, V ) ∼=
HomQ(A ⊗Z Q, V ). So, as Lm(X) ∈ Hm(X;Q) we can use these identifications to

interpret expressions such as ΓSk ⊗Lm(X) as living over the ground rings Z or Q as

convenient (cf. Footnote 19 on page 635). In what follows, we will use this observation

without further comment.

The proofs

We now turn to proving the various claims of this section. This will occupy the next several

sections.

9.4.2 Maps to spheres and embedded subspaces

We first turn to proving Proposition 9.4.1. Recall that this proposition says that if X is a

closed oriented n-dimensional PL Q-Witt space and f : X → Sm is a PL map to an oriented

Sm then for almost all y ∈ Sm the inverse image f−1(y) is a Q-Witt space whose signature

is independent both of the choice of y (within an open dense set depending on f) and of the

PL homotopy class of f .

We will need the following lemma, which is Lemma 20.5 of [176]. We give a slightly more

detailed proof.

Lemma 9.4.19. If f : K → L is a simplicial map of simplicial complexes and if y is

contained in the interior U of an m-simplex of L, then there is a homeomorphism h :

U × f−1(y) → f−1(U) such that fh = π1, where π1 : U × f−1(y) → U is the projection.

Furthermore, the space f−1(y) is homeomorphic to f−1(y′) for any other y′ ∈ U .

Proof. The lemma is trivial when m = 0, so we can take m > 0.

Suppose that U is the interior of a simplex τ of L with τ = [w0, . . . , wm]. Let y =∑m
i=0 tiwi represent y in barycentric coordinates. Let σ = [v0, . . . , vN ] be a simplex of K.

If the mapping f is not surjective from σ onto τ , then f(σ) ∩ U = ∅ and the lemma holds

vacuously. So suppose instead that f maps σ onto τ .

Assuming f maps σ onto τ , then for each vertex wk of τ there is some vertex vi of σ

that maps to wk. Let us relabel the vertices of σ as {vij} so that f(vij) = wi for all i. Then

every element x ∈ σ can be written x =
∑m

i=0

∑k(i)
j=1 aijvij in barycentric coordinates, where

k(i) is the number of vertices of σ that map to wi. Then f(x) =
∑m

i=0

(∑k(i)
j=1 aij

)
wi. So

f−1(y) ∩ σ =
{
x ∈ σ |

∑k(i)
j=1 aij = ti for each i

}
. This is a system of m+ 1 linear equations

in N+1 ≥ m+1 unknowns. Because we know that the linear map f |σ is onto τ , the solution

set will be a linear subspace of σ of dimension N −m.

641



Next, suppose x ∈ f−1(U) ∩ σ and let us rewrite x =
∑m

i=0

∑k(i)
j=1 aijvij as

x =
m∑
i=0

 k(i)∑
`=1

ai`

 k(i)∑
j=1

aij∑k(i)
`=1 ai`

vij

 .

This is possible because if
∑k(i)

`=1 ai` = 0 for any i then the coefficient of wi in f(x) is 0, which

is impossible if f(x) ∈ U . The point of this rewrite is that

k(i)∑
j=1

aij∑k(i)
`=1 ai`

= 1,

so for each i, the expression

ui(x) =

k(i)∑
j=1

aij∑k(i)
`=1 ai`

vij

is a description in barycentric coordinates of a point on the face of σ spanned by {vij}k(i)
j=1,

i.e. the face f−1(wi). Note that ui(x) depends continuously on the barycentric coordinates

of x; see Figure 9.5.

Define g : f−1(U) ∩ σ → U × (f−1(y) ∩ σ) by

g(x) =

(
f(x),

m∑
i=0

tiui(x)

)
;

see Figure 9.5. This is well defined because f(x) ∈ U by assumption and f (
∑m

i=0 tiui(x)) =∑m
i=0 tiwi = y. We will show that g is a homeomorphism; it is clear that fg−1 = π1, the

projection to U .

First we show that the map g is surjective. Choose any x ∈ f−1(y) ∩ σ and a point

y′ =
∑m

i=0 siwi in U . Write x as x =
∑
aiui(x). Since f(x) =

∑
i aiwi = y, by assumption,

and since barycentric coordinates are unique, we must have ai = ti. Therefore we actually

have x =
∑
tiui(x). Now, let z =

∑
siui(x). Then f(z) =

∑
sif(ui(x)) =

∑
siwi = y′.

We claim that ui(z) = ui(x), in which case g(z) = (y′,
∑
tiui(z)) = (y′,

∑
tiui(x)) = (y′, x);

as the choices of x and y′ were arbitrary, surjectivity will follow. To prove the claim, by

definition we have ui(x) =
∑k(i)

j=1
aij∑k(i)
`=1 ai`

vij, where the aij are the coefficients of vij in the

barycentric coordinates for x. The corresponding coefficient of vij for z is si
aij∑k(i)
`=1 ai`

. But

then the coefficient for vij in ui(z) is

si
aij∑k(i)
`=1 ai`∑k(i)

r=1

(
si

air∑k(i)
`=1 ai`

) =
aij∑k(i)
r=1 air

.

So the coefficient of vij in ui(z) is identical to the corresponding coefficient in ui(x), which

proves the claim.
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Figure 9.5: On the left, an example of a surjective map f from the simplex σ = [v01, v11, v12]

onto the simplex τ = [w0, w1]. Within σ we show a point x ∈ f−1(y) and the corresponding

u0(x) and u1(x). The map g illustrates the homeomorphism from f−1(U) to U × f−1(y),

which for each x ∈ f−1(y) takes the open line segment from u0(x) to u1(x) to the line segment

U × {x}.

Now we show that g is injective. Suppose x, x′ ∈ f−1(U) ∩ σ with x =
∑
biui(x) and

x′ =
∑
b′iui(x

′) and that g(x) = g(x′). This implies that f(x) =
∑
biwi =

∑
b′iwi = f(x′),

so we must have bi = b′i for all i by uniqueness of barycentric coordinates. It also implies

that
∑m

i=0 tiui(x) =
∑m

i=0 tiui(x
′). Writing out ui and u′i, this becomes

m∑
i=0

ti

 k(i)∑
j=1

aij∑k(i)
`=1 ai`

vij

 =
m∑
i=0

ti

 k(i)∑
j=1

a′ij∑k(i)
`=1 a

′
i`

vij

 ,

where aij and a′ij are the barycentric coordinates of x and x′ with respect to the vij. By the

uniqueness of barycentric coordinates, we must have

tiaij∑k(i)
`=1 ai`

=
tia
′
ij∑k(i)

`=1 a
′
i`

for each i, j, so
aij∑k(i)
`=1 ai`

=
a′ij∑k(i)
`=1 a

′
i`

for each i, j. But now comparing the definitions of ui(x) and ui(x
′), we see that we must

actually have ui(x) = ui(x
′) for all i. So, altogether,

x =
∑

biui(x) =
∑

b′iui(x
′) = x′.

So, we have constructed homeomorphisms f−1(U) ∩ σ to U × (f−1(y) ∩ σ) for any σ in

K. Our above construction assumed that σ maps onto τ , but if σ does not map onto τ then
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both expressions are empty. Furthermore, if we rewrite the homeomorphism f−1(U) ∩ σ →
U × (f−1(y)∩σ) as gσ and if η is a face of σ that also maps onto τ , then it is not difficult to

verify that gη agrees with the restriction of gσ to η. In fact, if x ∈ η ⊂ σ then the definition

of ui(x) is the same whether we think of x as belonging to η or to σ: if we think in terms of

σ then the coefficients of the vertices of σ not belonging to η must vanish in the expression

for x and hence also in the expression for ui(x). It follows that we can piece the gσ together

over all the simplices of K that intersect f−1(y) in order to obtain a global homeomorphism

G : f−1(U) ∼= U × f−1(y). To complete the first statement of the lemma, we now take

h = G−1.

For the last statement of the proposition, that f−1(y) is homeomorphic to f−1(y′) for

any y, y′ ∈ U , let G : f−1(U) → U × f−1(y) be the homeomorphism constructed above.

Within each simplex σ of K, the map G restricts to the homeomorphism gσ : f−1(U)∩ σ →
U × (f−1(y) ∩ σ) defined by gσ(x) = (f(x),

∑m
i=0 tiui(x)), where y =

∑
tiwi. So we see that

f maps a point x ∈ f−1(U) ∩ σ to a point z ∈ U if and only if the first component of gσ(x)

is z. Since σ was chosen arbitrarily, we see that, more generally, f maps a point x ∈ f−1(U)

to a point z ∈ U if and only if the first component of G(x) ∈ U × f−1(y) is z. In particular

then, we have f−1(y′) = h({y′} × f−1(y)), which is a homeomorphic image of f−1(y).

Remark 9.4.20. Our proof of Lemma 9.4.19 only provides a topological homeomorphism

f−1(U) ∼= U × f−1(y), but it is possible to strengthen the argument to construct a home-

omorphism that is PL. We will only need this stronger result later in Section 9.4.6 for the

characterization theorem, but as the proof incorporates results that are far afield for us, we

refer the reader to [248, Theorem 1.3.1].

Remark 9.4.21. Continuing the notation of the proof, suppose x ∈ f−1(y) is contained in

the interior of the simplex σ of K. We have seen that any point in f−1(U) ∩ σ, and so in

particular in f−1(y) ∩ σ, can be written as x =
∑
siui(x) for some coefficients si. But we

also know that f(x) =
∑
sif(ui(x)) =

∑
siwi. If f(x) = y, then we must have si = ti,

so x =
∑
tiui(x). Therefore G(x) = (y, x) for x ∈ f−1(y). We can therefore think of our

homeomorphism f−1(U) → U × f−1(y) as being the identity on f−1(y) in this sense. We

will implicitly utilize this identification in what follows.

Now we can return to Proposition 9.4.1, which we restate here:

Proposition (Proposition 9.4.1). Let X be a closed oriented n-dimensional PL Q-Witt

space. Suppose that Sm, m > 0, has been given an orientation and that f : X → Sm

is a PL map. Then for almost all y ∈ Sm the inverse image f−1(y) can be filtered as

a closed oriented25 n − m dimensional PL Q-Witt space (possibly empty) embedded in X.

Furthermore, for almost all y, y′ ∈ Sm the Witt spaces f−1(y) and f−1(y′) have the same

signature; this common signature depends only on the PL homotopy class of f in [X,Sm]PL.

This result also holds for m = 0 allowing only y = y′ = 1 ∈ S0.

Proof. Once again the m = 0 case is trivial, so we assume m > 0.

25Recall from page 632 that we will orient f−1(y) so that the homeomorphism h : U × f−1(y)→ f−1(U)

of Lemma 9.4.19 is orientation-preserving.
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Since X is compact, the map f : X → Sm is proper. Therefore, by Theorem B.2.19,

there are triangulations K of X and L of Sm with respect to which f is simplicial. Let y

be a point in the interior of an m-simplex τ of L, and let U be the interior of τ . By the

preceding lemma, f−1(U) ∼= U × f−1(y).

f−1(y) is a PL Q-Witt space. First we show that f−1(y) is an n − m dimensional PL

Q-Witt space. As this is trivial if f−1(y) is empty, we will suppose f−1(y) 6= ∅. It is clearly

compact, being the inverse image of a closed point in a compact space X. Furthermore, the

space f−1(y) can be triangulated. In fact, we can subdivide L to a triangulation L′ so that

y is a vertex by Example B.4.3. Then by Theorem B.2.19 we can subdivide K to K ′ and L′

to L′′ so that f : K ′ → L′′ is simplicial. Then f−1(y) is a subcomplex of K ′.

Next, we will invoke Proposition 2.10.18 to show that the intrinsic filtration of f−1(y) has

the structure of a classical PL stratified pseudomanifold; we do not claim that the proposition

makes f−1(y) a stratified PL pseudomanifold with the filtration inherited from X (this won’t

be necessary). According to Proposition 2.10.18, it suffices to show that f−1(y) contains a

dense n−m dimensional PL manifoldM such that f−1(y)−M has dimension≤ n−m−2; then

f−1(y) will be a classical pseudomanifold with respect to its intrinsic filtration. For this, let

K and L continue to denote triangulations of X and Sm with respect to which f is simplicial,

and let Kn−2 be the n− 2 skeleton of K. Recall that by Corollary 2.5.21 the complex K is a

union of n-simplices and every n− 1 simplex is a face of exactly two n-simplices. Identifying

the spaces with their triangulations, we let M = (f |K−Kn−2)−1(y) = (K −Kn−2) ∩ f−1(y).

We saw in the proof of Lemma 9.4.19 that if a simplicial map takes a k-simplex σ onto an

m-simplex τ , then the inverse image of an interior point of τ will be a k −m dimensional

linear subspace of σ. So for any n-simplex σ of K, any point of f−1(y) in the interior of σ

is contained in the interior of an n−m dimensional linear subspace of σ; in particular such

points have neighborhoods PL homeomorphic to Rn−m. Any point of M not in the interior

of an n-simplex is in the interior of some n−1 simplex δ. Once again by the proof of Lemma

9.4.19, the intersection of δ with f−1(y) is an n−m−1 dimensional linear subspace of δ. If δ

is a face of the n-simplices σ1 and σ2, then this linear subspace in δ is the intersection of the

n−m dimensional f−1(y) ∩ σ1 and f−1(y) ∩ σ2. In particular, any point in the intersection

of f−1(y) with the interior of δ has a neighborhood in f−1(y) consisting of the union of two

n−m dimensional linear half-spaces along an n−m− 1 dimensional linear space. So such a

point has a neighborhood in f−1(y) PL homeomorphic to Rn−m. Thus every point of M has

a neighborhood PL homeomorphic to Rn−m, and M is an n−m dimensional PL manifold.

Now we must show that M is dense in f−1(y) and that f−1(y) − M has dimension

≤ n − m − 2. If x ∈ Kn−2, then x is contained in a simplex η of Kn−2. Let σ be an

n-simplex of K with η as a face. Such a simplex must exist by Corollary 2.5.21. In order

for f−1(y) ∩ σ to be non-empty, σ must map onto the m-simplex of Sm containing y, so the

intersection σ ∩ f−1(y) is an n−m plane through σ. This plane must intersect the interior

of σ because f is continuous and simplicial, so if the interior of σ does not have any points

that map to y, which lies in the interior of a face of L, then no point of σ can map to y,

a contradiction. Thus every point of σ in f−1(y) must be in the closure of a plane that

runs through the interior of σ, and every point in f−1(y) ∩ σ is therefore in the closure of

f−1(y) ∩ σ̊. This suffices to show that M is dense in f−1(y). To see that f−1(y) −M has
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dimension ≤ n−m− 2, we need only note that f−1(y)−M ⊂ Kn−2, and we know that the

intersection f−1(y) ∩ η for any η ∈ Kn−2 must have dimension ≤ n−m− 2 by the proof of

Lemma 9.4.19. This implies that dim((f |Kn−2)−1(y)) = dim(f−1(y)−M) ≤ n−m− 2.

So, we have now shown that f−1(y) is a classical pseudomanifold with respect to its

intrinsic filtration, and, momentarily ignoring filtrations, we know that f−1(y) has a neigh-

borhood W in X homeomorphic to U × f−1(y), where U is the interior of the m-simplex of

Sm containing y. Pick a classical pseudomanifold filtration of f−1(y), and let U × f−1(y)

have the product stratification. Let the homeomorphic W have the filtration inherited from

X. This W is a Q-Witt space, since the Q-Witt condition is local. Since the property of

being a Q-Witt space is independent of the filtration by Proposition 9.1.28, we see that

U × f−1(y) is also a Q-Witt space. But the links of f−1(y) are all also links of U × f−1(y),

so f−1(y) is a PL Q-Witt space.

Orientability. We have assumed that X is oriented, and as any filtration of a Witt space

must be as a classical pseudomanifold (Remark 9.1.6), we have by Corollary 8.1.11 that X

can be given compatible orientations for any such filtrations. So, continuing the notation

just above, these orientations on X induce an orientation on the neighborhood W of f−1(y),

which is homeomorphic to U × f−1(y), which is thus also orientable. By Lemma 8.1.38,

the product of stratified pseudomanifolds is orientable if and only if both factors are, so it

follows that f−1(y) is orientable. Letting h : U × f−1(y) → f−1(U) continue to denote the

homeomorphism such that π1h
−1 = f and h is the “identity” from (y, f−1(y)) to f−1(y),

we choose to orient f−1(y) so that h is orientation-preserving, letting U × f−1(y) have the

product orientation and using the orientation on U inherited from Sm.

Homotopies of f . Next, we investigate the effect on f−1(y) of changing f by a homotopy.

Suppose that f and g are PL homotopic PL maps X → Sm by a PL homotopy H : I×X →
Sm. By adding closed collars to I × X if necessary, we can assume that there is an ε > 0

such that H(t, x) = f(x) for t ∈ [0, ε] and H(t, x) = g(x) for t ∈ [1− ε, 1].

Since I × X is compact, we can find triangulations K̄ and L̄ of I × X and Sm with

respect to which H is simplicial, again using Theorem B.2.19; we may also take L̄ to be a

subdivision of L. Without loss of generality, we can assume that y ∈ Sm is contained in

the interior of an m-simplex of L̄ (if not, let y′ be a point from the interior of the simplex

of L containing y such that y′ is in the interior of an m-simplex of L̄; by Lemma 9.4.19

we have f−1(y) ∼= f−1(y′) so we can relabel y′ to y. Consider Y = (H|(0,1)×X)−1(y). The

above arguments demonstrate that the intrinsic filtration of Y gives it the structure of a

stratified pseudomanifold, and, in fact, a Q-Witt space. The spaces (H|(0,ε)×X)−1(y) and

(H|(1−ε,1)×X)−1(y) are respectively homeomorphic to (0, ε)× f−1(y) and (1− ε, 1)× g−1(y).

By Lemma 2.10.17, the intrinsic PL filtrations on these spaces (which are compatible by

restriction with the intrinsic PL filtration on Y as intrinsic filtrations are defined by local

properties) have the forms (0, ε)×f−1(y)∗ and (1−ε, 1)×g−1(y)∗, where f−1(y)∗ and g−1(y)∗

denote f−1(y) and g−1(y) with their intrinsic PL filtrations. This implies that if we filter

H−1(y) with the intrinsic PL filtration on Y together with the collars [0, 1) × f−1(y)∗ and

(1− ε, 1]× g−1(y)∗, then the filtrations will all be compatible so that H−1(y) can be filtered

as a PL ∂-stratified pseudomanifold with boundary g−1(y)∗ q−f−1(y)∗.

Furthermore, as we have already seen that Y , f−1(y)∗, and g−1(y)∗ are PL Q-Witt spaces,
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all of H−1(y) is a PL Q-Witt space providing a Q-Witt bordism between f−1(y)∗ and g−1(y)∗.

Thus f−1(y)∗ and g−1(y)∗ have the same Witt signature. By Theorem 9.3.16 these signatures

are also independent of the choices of filtration. So σ(f−1(y)) = σ(g−1(y)).

Independence of y. To finish the proof of Proposition 9.4.1, we now need only see what

happens if we change our choice of y ∈ Sm. Let y, y′ be two points of Sm that are each in the

interior of an m-simplex of the triangulation L (not necessarily the same simplex). We can

find a PL homeomorphism h that takes y′ to y and that is PL homotopic to the identity (this

follows from the material in [130, Chapter VI], for example the Isotopy Extension Theorem

[130, Theorem 6.12]). Therefore, f and hf are PL homotopic. Let H : I ×X → Sm be the

homotopy, and let L′ be a subdivision of L with respect to which H is simplicial. As y and

y′ may no longer be generic with respect to H, we work with nearby points. So choose a

point z′ ∈ Sm that satisfies the following conditions:

1. z′ and y′ are contained in the interior of the same m-simplex of L,

2. z′ is contained in the interior of an m-simplex of L′,

3. the image z = h(z′) is contained in the interior of the m-simplex of L that contains y

and in the interior of an m-simplex of L′.

Such choices are possible by the continuity of h and by the density in Sm of the complements

of the m− 1 skeleta of L and L′.

By our previous results, the space f−1(z) isQ-Witt bordant to (hf)−1(z) = f−1(h−1(z)) =

f−1(z′). But we also know from Lemma 9.4.19 that f−1(y) ∼= f−1(z) and f−1(z′) ∼= f−1(y′).

Therefore, we conclude that for almost all y′, the spaces f−1(y) and f−1(y′) are Q-Witt

bordant with respect to their intrinsic filtrations; thus all these spaces have the same signa-

ture.

So, we have now shown that if X is a closed oriented PL Q-Witt space then given any

PL map f : X → Sm there is an open dense set of points y ∈ Sm such that the signatures

σ(f−1(y)) are all well defined and identical. Furthermore, this common value does not change

if we alter f by a PL homotopy. So we have a well defined function [X,Sm]PL → Z.

9.4.3 Cohomotopy

We now turn to a brief discussion of the cohomotopy sets πm(X) = [X,Sm]. We could simply

cite the needed results, which are a bit of a departure from the topic of the text, but since

it is not too difficult to explain the basic ideas enough to at least sketch a proof of Lemma

9.4.2, we do so here. More thorough treatments of cohomotopy can be found in [218] and

[129, Chapter VII].

Let us first recall Lemma 9.4.2. By the PL Approximation Theorem (Theorem B.2.24),

we have [X,Sm]PL ∼= [X,Sm], where [X,Sm]PL denotes the set of PL homotopy classes of

PL maps X → Sm and [X,Sm] denotes the set of homotopy classes of topological maps

X → Sm. In the preceding section, we constructed a function [X,Sm]PL → Z. Composing

with the isomorphism [X,Sm]PL ∼= [X,Sm], we obtain a function F : πm(X) → Z, which
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takes the homotopy class [f ] to the signature of the inverse image of a generic point under

a PL map in the homotopy class of f . Lemma 9.4.2 states the following:

Lemma (Lemma 9.4.2). If m > n+1
2

then F : πm(X) → Z is a homomorphism of abelian

groups.

In particular, this lemma includes the statement that πm(X) can be given an abelian

group structure when m > n+1
2

, which we must explain. If f : X → Sm is a map, we let [f ]

denote the homotopy class of f . The notation f ∼ g will mean that f and g are homotopic.

The group operation. The basic idea for turning the set of homotopy classes πm(X) =

[X,Sm] into a group is the following: Let Sm have a basepoint s0, and suppose f, g : X → Sm

are two maps from an n-dimensional CW complex to Sm. We need to define a product

[f ] + [g]. For this we consider the map (f, g) : X → Sm × Sm defined by (f, g)(x) =

(f(x), g(x)). Using the structure of Sm as a CW complex with two cells, one in dimension

0 and one in dimension m, the product Sm × Sm can be written as a product CW complex

with four cells. If n < 2m, the Cellular Approximation Theorem [125, Section 4.1] allows

us to deform (f, g) to a map to the 2m − 1-skeleton of Sm × Sm, which in this case is just

(Sm × {s0}) ∪ ({s0} × Sm) = Sm ∨s0 Sm. Let us call the deformed map h : X → Sm ∨ Sm,

and let us denote by H : I×X → Sm×Sm the homotopy from (f, g) to h. Next, we employ

the fold map Ω : Sm ∨ Sm → Sm, which is the identity on each copy of Sm. Let f +h g

denote the composition X
h−→ Sm ∨ Sm Ω−→ Sm; then f +h g depends on h, but we’d like

to show that the homotopy class of f +h g does not so that we can then define the group

operation on πm(X) by [f ] + [g] = [f +h g]. For this we need to consider what happens

if we use an alternative homotopy to H, or, for that matter, alternative representatives of

the homotopy classes of f and g. For this, it is necessary to strengthen the assumption on

dimension to n+ 1 < 2m. But now suppose that f ∼ f ′, g ∼ g′, and that H ′ is a homotopy

from (f ′, g′) to h′ with the image of h′ in Sm ∨ Sm. Then h ∼ (f, g) ∼ (f ′, g′) ∼ h′ as maps

X → Sm × Sm, and so there is a homotopy K : I ×X → Sm × Sm from h to h′. But now

by another application of the Cellular Approximation Theorem, as n + 1 < 2m there is a

homotopy rel ({0} ×X)q ({1} ×X) from K to a map K ′ : I ×X → Sm ∨ Sm, which then

provides a homotopy Ω ◦K ′ from f +h g to f ′ +h′ g
′.

Commutativity of the operation. To see that our proposed group operation is com-

mutative, let T : Sm × Sm interchange coordinates; we also let T denote the restriction of

T to Sm ∨ Sm. Then, with the notation above, TH : I × X → Sm × Sm is a homotopy

from (g, f) to Th, the latter of which has image in Sm ∨ Sm. But evidently ΩT = Ω. So

f +h g = Ωh = ΩTh = g +Th f . So [f ] + [g] = [f +h g] = [g +Th f ] = [g] + [f ], using the

independence of the homotopy to Sm ∨ Sm just demonstrated.

Associativity of the operation. Associativity is technically more difficult, though

the concepts are not more complicated; one needs to use suitable maps to Sm × Sm × Sm.

We refer the reader to [218, Theorem 6.3] or [129, Theorem VII.5.2].
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The unit element. The identity of πm(X) is the homotopy class of the map e that

takes X to the point s0 ∈ Sm. Then (f, e) and (e, f) already map into Sm ∨ Sm and clearly

[f ] = [Ω(e, f)] = [e] + [f ].

Inverses. The inverse −[f ] is represented by the composition X
f−→ Sm

ρ−→ Sm, where ρ

is a map of degree −1. To see this, let us fix ρ more precisely as a reflection map across the

plane separating two hemispheres E1 and E2 of Sm. Let s0 ∈ E1∩E2. Let R : I×Sm → Sm

be a homotopy that retracts E1 into s0, and let r = R|{1}×Sm be the non-identity end of

the homotopy. Then rf ∼ f , and similarly rρf ∼ ρf . Notice that rf maps M1 = f−1(E1)

into s0, and rρf maps M2 = f−1(E2) into s0. Since every point of X is in either M1 or

M2 (possibly in their intersection), it follows that (rf, rρf) : X → Sm × Sm, which is

homotopic to (f, ρf), has image in Sm ∨ Sm. Then Ω(rf, rρf) is well-defined. Furthermore,

Ω(rf, rρf)|M1 = rρf |M1 ∼ ρf |M1 , and Ω(rf, rρf)|M2 = rf |M2 ∼ f |M2 . The two homotopies

of the last sentence agree on M1 ∩M2 since in both cases we can use the same homotopy R

and since points in M1 ∩M2 map under f to E1 ∩ E2, which is fixed by ρ. So Ω(rf, rρf),

which represents [rf ] + [rρf ] = [f ] + [ρf ], is homotopic to a map G that is f on M2 and ρf

on M1. But, by definition, f takes M2 into E2 and M1 into E1, and so ρf takes M1 into E2.

Together, then, G takes all of X to E2, which implies that G is homotopically trivial and

hence represents the identity.

Functoriality. We have now established that πm(X) is an abelian group whenever X is

a CW complex of dimension n < 2m−1. It is also worth observing that any map φ : X → Y

induces a function φ∗ : πm(Y )→ πm(X) by taking the homotopy class [g] ∈ πm(Y ) = [Y, Sm]

to [gφ] ∈ [X,Sm] = πm(X). If φ is a homotopy equivalence then φ∗ is a bijection. If dim(X)

and dim(Y ) are in the dimension ranges such that πm(X) and πm(Y ) are groups, then φ∗

is a homomorphism (see [129, Proposition VII.5.4]): If f, g : Y → Sm, let H denote the

homotopy from (f, g) to a map h : Y → Sm ∨ Sm. Then Ωh represents [f ] + [g], and

Ωhφ represents φ∗([f ] + [g]). On the other hand, fφ and gφ represent φ∗[f ] and φ∗[g], and

H◦(idI×φ) is a homotopy from (f, g)φ = (fφ, gφ) to hφ, so Ωhφ also represents φ∗[f ]+φ∗[g].

F is a homomorphism. To finish proving Lemma 9.4.2, we want to show that when X

is a closed oriented PL Q-Witt space and m > dim(X)+1
2

then the assignment F : πm(X)→ Z
that takes [f ] to the signature of f−1(y) for a PL f and generic y is a homomorphism. By

Proposition 9.4.1, we have already shown that F is well defined as a function on individual

elements of πm(X). Now suppose f, g : X → Sm are PL maps, and let H be a homotopy

from (f, g) : X → Sm×Sm to h : X → Sm∨Sm. By the PL Approximation Theorem, we can

assume that H and h are PL maps. Let π1, π2 : Sm×Sm → Sm be the two projections, which

are also PL maps. Then π1H and π2H are PL homotopies from f and g to respective maps

f̃ , g̃ : X → Sm. Notice that if we write Sm ∨ Sm as the union of Sm ∨ {s0} and {s0} ∨ Sm,

then we can write X = h−1(Sm ∨ Sm) as the union of h−1(Sm ∨ {s0}) and h−1({s0} ∨ Sm).

If we let i1, i2 : Sm → Sm ∨ Sm be the two inclusions, we observe that the restriction of h to

h−1(Sm ∨ {s0}) satisfies h|h−1(Sm∨{s0}) = i1π1h|h−1(Sm∨{s0}) = i1f̃ |h−1(Sm∨{s0}), and similarly
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on h−1({s0} ∨ Sm) we have h|h−1({s0}∨Sm) = i2g̃|h−1({s0}∨Sm).

Now, as [f ] + [g] is represented by Ωh : X → Sm and as Ω is also PL, the value of

F ([f ] + [g]) is by definition the signature of (Ωh)−1(y) for a generic y ∈ Sm. We may assume

that y 6= s0. We have (Ωh)−1(y) = h−1Ω−1(y), and Ω−1(y) ∈ Sm ∨ Sm consists of two copies

of y, say y1 = i1(y) and y2 = i2(y), one in each of the spheres of Sm ∨ Sm. And by the

computation at the end of the last paragraph, we have h−1(y1) = f̃−1i−1
1 (y1) = f̃−1(y) and

h−1(y2) = g̃−1i−1
2 (y1) = g̃−1(y). Therefore,

F ([f ] + [g]) = σ(f̃−1(y)q g̃−1(y)) = σ(f̃−1(y)) + σ(g̃−1(y)).

But f̃ and g̃ are PL homotopic to f and g, and so up to possibly rechoosing our generic y,

we have by Proposition 9.4.1 that

σ(f̃−1(y)) + σ(g̃−1(y)) = σ(f−1(y)) + σ(g−1(y)) = F ([f ]) + F ([g]).

This establishes that F is a homomorphism.

We have now proven Lemma 9.4.2.

To conclude this section, we provide the one further input we will need about cohomotopy

by stating once again Serre’s theorem relating cohomotopy and cohomology groups after

rationalizing [213, Proposition 2’, page 289], though we do not attempt to indicate the

proof26:

Theorem (Serre). Let Sm be oriented, and let u ∈ Hm(Sm) be the generator satisfying

u(ΓSm) = 1. Suppose Xn is a compact CW complex and m > n+1
2

. Define c : πm(X) →
Hm(X) by c([f ]) = f ∗(u) ∈ Hm(X). Then c ⊗ idQ : πm(X) ⊗ Q → Hm(X) ⊗ Q is an

isomorphism.

9.4.4 The L-classes

Now that we have developed the necessary pieces, let us recall our definition of the L-classes

Lm(X) ∈ Hm(X;Q) for Xn a closed oriented PL Q-Witt space with m > n+1
2

. We have

defined the homomorphism F : πm(X) → Z that assigns to a homotopy class [f ] ∈ πm(X)

with a PL representative f the signature σ(f−1(y)) for a generic point y ∈ Sm. We have

also defined c : πm(X) → Hm(X) so that c([f ]) = f ∗(u), where u ∈ Hm(Sm) is the class

such that u(ΓSm) = 1. By Serre’s Theorem, the map c ⊗ idQ : πm(X) ⊗ Q → Hm(X) ⊗
Q is an isomorphism. Finally, we have the evaluation isomorphism ev : Hm(X;Q) →
Hom(Hm(X;Q);Q) such that ev(ξ)(β) = (−1)mβ(ξ). We have defined Lm(X) in Definition

9.4.4 to be the class determined by the composition

Lm(X) = (−1)mev−1((F ⊗ idQ) ◦ (c⊗ idQ)−1),

which is 0 if n−m is not a multiple of 4. Note that we leave the isomorphism H∗(X)⊗Q ∼=
H∗(X;Q) unlabeled in the composition. More computationally, we have also seen that if

26In terms of spectra, this result appears in the form of the fact that the Q-localization of the sphere

spectrum is the rational Eilenberg-MacLane spectrum; see [198, Theorem II.7.1].
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β ∈ Hm(X;Q) is the image of [f ] ⊗ r ∈ πm(X) ⊗ Q under the isomorphism of Serre’s

Theorem, then β(Lm(X)) = rσ(f−1(y)) for a generic y; see Proposition 9.4.7.

To justify this definition, we will prove Proposition 9.4.8 in this section, which says that

if Mn is a closed oriented smooth n-manifold, then for each m = n− 4k, m > n+1
2

, the class

Lm(M) is the Poincaré dual of the rational Thom-Hirzebruch L-class Lk(X) ∈ H4k(X;Q)

[176, Chapter 19].

Both for proving Proposition 9.4.8 and for our characterization of L-classes in Theorem

9.4.18, the following lemma will be needed for the computations. We will state and prove a

more general version than we need in this section in order to have the more general result

for later. The statement involves the maps i!W of Definition 9.4.16; we refer the reader back

to Section 9.4.1 for the details of the definition.

Lemma 9.4.22. Let Z ⊂ X be space pairs such that Z has a neighborhood W that can be

identified with a trivial Rm bundle W = Rm × Z, m > 0. Let iW : Rm × Z = W ↪→ X be

the inclusion, and let iW |{0}×Z = iZ be the inclusion of Z. Identify Sm with the one point

compactification of Rm with its standard orientation, letting z0 denoting the point at infinity.

Let u ∈ Hm(Sm) be the generator such that u(ΓSm) = 1. Finally, let f : X → Sm be the

map that takes each fiber Rm of the normal bundle W identically to Rm = Sm − {z0} (i.e.

f(iW (v, x)) = v) and takes X −W to z0. Then for any homology class ξ ∈ Hi(X) we have

f ∗(u) _ ξ = iZ i
!
W (ξ).

This statement also holds when m = 0, letting Z be a union of connected components of X

and letting u = 11 as defined on page 640.

In particular, if X and Z are closed oriented classical pseudomanifolds and iW : Rm×Z =

W ↪→ X is orientation preserving (giving Rm the standard orientation), then f ∗(u) _ ΓX =

iZ(ΓZ).

This lemma also holds with Q coefficients.

Proof of Lemma 9.4.22. The proof is the same with Z or Q coefficients so we work over Z
for simplicity. We will use a nice diagram. For m > 0, let us write 0 ∈ Rm ⊂ Sm. Then

Z = f−1(0), and we have the diagram
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Hm(Rm,Rm − {0}) �
∼=

Hm(Sm, Sm − {0})
∼=- Hm(Sm)

Hm(X,X − Z)

f ∗

? j∗
- Hm(X)

f ∗

?

Hm(W,W − Z)

i∗W

?

f | ∗
W

-
Hi−m(X)

_ ξ

?

_
j(ξ)

-

Hi−m(W )

_ ξW,Z

?
�

∼=

-

Hi−m(Z).

iZ

6

We will first explain the notation and commutativity of the diagram. Then we will show

that the path counterclockwise around the outside of the diagram from the top right to

the bottom right takes u to i!W (ξ) ∈ Hi−m(Z). It will then from the commutativity of the

diagram that the image of i!W (ξ) in Hi−m(X) under iZ is equal to the composite f ∗(u) _ ξ,

which proves the first claim.

The left portion of the diagram commutes by naturality of cohomology withHm(Rm,Rm−
{0}) ∼= Hm(Sm, Sm − {0}) by excision.

The map j∗ is induced by the inclusion (X, ∅) ↪→ (X,X −Z). The top square commutes

by naturality of cohomology. The top right horizontal map is an isomorphism by the long

exact sequence of the pair.

For the uppermost triangle on the right, we have commutativity from the naturality of

the cap product (Proposition 7.3.6) with respect to (X; ∅, ∅)→ (X; ∅, X − Z).

Similarly, for the middle triangle on the right, we use the inclusion (W ; ∅,W − Z) →
(X; ∅, X−Z). This inclusion induces an isomorphism by excisionHi(W,W−Z)→ Hi(X,X−
Z). We let ξW,Z be the image of j(ξ) under the inverse isomorphism. Then we have commu-

tativity again by naturality of the cap product.

Finally, the bottom triangle is induced by a triangle of inclusions of spaces; the bottom

inclusion is a homotopy equivalence.

Next we show that the counterclockwise composition takes u to i!W (ξ). By Remark

9.4.17, we have that the Thom class µ is just µ = f |∗W (a) = a× 1Z ∈ Hm(W,W −Z), where

a ∈ Hm(Rm,Rm − {0}) is the image of u ∈ Hm(Sm) under the isomorphisms Hm(Sm) ∼=
Hm(Sm, Sm−{0}) ∼= Hm(Rm,Rm−{0}), the second isomorphism being an excision. So the

image of u in the bottom left of the diagram is µ _ ξW,Z . As the projection W = Rm×Z → Z
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induces the inverse isomorphism to the inclusion H∗(Z) → H∗(W ), it now follows from the

definitions of i!W and ξW,Z that the image in the bottom right is i!W (ξ) in Hi−m(Z).

When m = 0, we have f ∗(u) = 1Z , the class that is 1 on the connected components of

Z and 0 on the other components. Therefore, if we write the components of X as {Xj} and

ξ =
∑
ξj with ξj ∈ Hi(Xj), then f ∗(u) _ ξ = 1Z _ ξ =

∑
Xj⊂Z ξj. But this is precisely

iZ i
!(ξ) by Definition 9.4.16.

To complete the lemma, we need to show that when X and Z are closed oriented classical

pseudomanifolds and ξ = ΓX then i!W (ΓX) = ΓZ . This is clear when m = 0. For m > 0, let

ΓW,W−Z ∈ Hn(W,W−Z) denote the image of ΓX under the maps Hn(X)→ Hn(X,X−Z)
∼=←−

Hn(W,W − Z), and let ΓRm,Rm−{0} denote the fundamental class in Hm(Rm,Rm − {0})
consistent with the standard orientation. Since we have chosen orientations so that the

product orientation on Rm × Z is consistent with the orientation of X, we have ΓW,W−Z =

ΓRm,Rm−{0}×ΓZ in Hn(W,W −Z) = Hn((Rm,Rm−{0})×Z) by Proposition 8.1.39. Letting

ξ0 ∈ H0(Rm) denote the canonical generator represented by any 0-simplex, we compute

µ _ ΓW,W−Z = (a× 1Z) _
(
ΓRm,Rm−{0} × ΓZ

)
= (a _ ΓRm,Rm−{0})× (1Z _ ΓZ) by Proposition 7.3.55

= ξ0 × ΓZ .

The last equality employs Propositions 7.3.25 and 7.3.22. The latter tells us that a(a _

ΓRm,Rm−{0}) = a(ΓRm,Rm−{0}), but a(ΓRm,Rm−{0}) = u(ΓSm) = 1, and so a _ ΓRm,Rm−{0}
must be the generator of H0(Rm) that goes to 1 under the isomorphism a : H0(Rm) → Z.

Finally, the class ξ0×ΓZ lives in Hn−m(Rm×Z) ∼= Hn−m(Z), and it is the image of ΓZ under

the inclusion Z = pt × Z ↪→ Rm × Z; cf. Proposition 5.2.21. So the inverse isomorphism

Hn−m(Rm × Z) = Hn−m(W )→ Hn−m(Z) takes this class to ΓZ .

Now we prove Proposition 9.4.8, which we restate here:

Proposition (Proposition 9.4.8). If Mn is a closed oriented smooth n-manifold and m >
n+1

2
, then for m = n − 4k the class Lm(M) is the Poincaré dual of the rational Thom-

Hirzebruch L-class Lk(M) ∈ H4k(M ;Q). Here Lk(M) is the degree k term of the multi-

plicative sequence associated to the power series of
√
t

tanh
√
t

and taking as its variables the

Pontrjagin classes of the tangent bundle of M (see [176, Chapter 19]).

Proof. For simplicity, let use write Lk = Lk(M) and Lm = Lm(M). Under the assumption

that m > n+1
2

and n − m ≡ 0 mod 4, we must show that L
n−m

4 _ ΓM = Lm, where

M is a closed oriented smooth manifold, L
n−m

4 is the rational Thom-Hirzebruch L-class in

Hn−m(M ;Q) of the tangent bundle of M , and ΓM ∈ Hn(M ;Q) is the rational fundamental

class. Notice that since the degree of L
n−m

4 is even, the Poincaré duality map is simply the cap

product with the fundamental class, with no sign. To show that L
n−m

4 _ ΓM = Lm, we will

show that for any β ∈ Hm(M ;Q) ∼= Hom(Hm(M ;Q),Q) we have β(L
n−m

4 _ ΓM) = β(Lm).

By Serre’s Theorem, we know that any β ∈ Hm(M ;Q) can be written as β = c([f ])⊗r =

rc([f ]) for some f : M → Sm and r ∈ Q. Furthermore, recall that we have seen above in

Proposition 9.4.7 that in this case

β(Lm) = rF ([f ]) = rσ(f−1(y)),
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with y our generic point of Sm.

On the other hand, for f : M → Sm, recall that c([f ]) = f ∗(u) where u ∈ Hm(Sm)

satisfies u(ΓSm) = 1, and let a : H0(M ;Q)→ Q be the augmentation map. By a homotopy,

we may assume f to be smooth [38, Theorem II.11.8], and then, for possibly a different

generic y ∈ Sm, transversality theory says that the inverse image N = f−1(y) will be a

smooth submanifold with a trivial normal bundle in M (see [38, Section II.16, particularly

Theorem II.16.6]). Let i : N ↪→ M be the embedding. Then the restriction of the tangent

bundle of M to N will be isomorphic to the direct sum of the tangent bundle TN with

the trivial normal bundle of N in M . It follows from the basic properties of characteristic

classes27 that if L is the total L-class of M , then i∗L will be the total L-class of N . Thus

(i∗L)(ΓN) = σ(N) by the Hirzebruch Signature Theorem [176, Theorem 19.4]. Using these

observations and that L
n−m

4 has even degree, we compute

β(L
n−m

4 _ ΓM) = a(β _ (L
n−m

4 _ ΓM)) by Proposition 7.3.25

= a((β ^ L
n−m

4 ) _ ΓM) by Proposition 7.3.35

= a((L
n−m

4 ^ β) _ ΓM) by Proposition 7.3.15

= a((L
n−m

4 ^ rf ∗(u)) _ ΓM)

= ra(L
n−m

4 _ (f ∗(u) _ ΓM)) by Proposition 7.3.35

= rL
n−m

4 (f ∗(u) _ ΓM) by Proposition 7.3.25

= rL
n−m

4 (iΓN) by Lemma 9.4.22

= r(i∗L
n−m

4 )(ΓN)

= rσ(N) = rσ(f−1(y)) by the Hirzebruch Signature Theorem.

This completes the proof of Proposition 9.4.8.

9.4.5 L-classes in small degrees

We now return to the situation m ≤ n+1
2

, where n = dim(X). Recall that in Section 9.4.1 we

defined Lm(X) for m ≤ n+1
2

as the image of Lk+m(Sk ×X) under the inverse isomorphism

(ΓSk×)−1 : Hk+m(Sk×X;Q)→ Hm(X;Q) for k > n+1. This range of k both makes ΓSk×·
an isomorphism and ensures that Lk+m(Sk×X) is well defined by our first procedure. This

definition was further motivated by Lemma 9.4.11, which demonstrated that in the category

of smooth manifolds this is the only definition of Lm(X) for small m = n− 4i that remains

consistent with Lm(X) = Ln−4i(X) being Poincaré dual to the Thom-Hirzebruch L-class

Li(X) ∈ H4i(X;Q).

It remains to show that the construction does not depend on the precise choice of k,

which is the content of Proposition 9.4.10.

27Specifically, the L classes are polynomials in the Pontrjagin classes pj , so if we let ν denote the normal

bundle of N in M and TM and TN the respective tangent bundles, then i∗(pj(TM)) = pj(i∗(TM)) =

pj(ν ⊕ TN) = pj(TN), as ν is trivial; see [176, Lemma 15.2]. As the polynomial defining L-classes is

universal, we similarly have i∗L(TM) = L(TN).
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We first discuss an important tool in the proof of this proposition, namely a PL version

of the quotient map q : Sj × Sk → Sj ∧ Sk ∼= Sj+k. We will always assume that at least one

of j, k is > 0. Recall that the smash product Sj ∧Sk is defined to be the quotient of Sj ×Sk
by the subspace Sj ∨ Sk = (Sj × pt) ∪ (pt × Sk) and that the smash product of spheres is

again a sphere; see [125, pages 10 or 223]. We will describe a simplicial map, also denoted

q : Sj ×Sk → Sj+k, that then gives us a PL map that will be sufficient for our purposes. To

describe this map, consider any triangulation of Sj × Sk compatible with the product PL

structure; for example, given triangulations of Sj and Sk we can use the construction of a

product triangulation from Section B.6. Let s be any j+k simplex of this triangulation. We

can form the simplicial complex J = s ∪ c̄(∂s) by adjoining to s the cone on its boundary.

We label the new vertex v and observe that J is the boundary of a j + k + 1 simplex and

so J is a simplicial Sj+k. Identifying the triangulations with the underlying spaces, we now

define q : Sj × Sk → Sj+k to be the simplicial map that is the identity on s and that takes

all other vertices of Sj×Sk to v. In particular, this means that all simplices that are disjoint

from s map to v. As s is top dimensional, any simplex η 6= s of Sj × Sk that is not disjoint

from s must be spanned by some proper face τ of s together with some subset of vertices

not in s. The map q takes all vertices of η to vertices of c̄τ , and so q is well defined on η.

The map q takes the copy of s in Sj ×Sk identically to the corresponding copy of s in Sj+k;

we shall abuse notation below and refer to both of these simplices as s. Note that when

k = 0 the space Sj ×Sk is the disjoint union of Sj ×{0} and Sj ×{1}. In this case, we shall

assume that s is contained in Sj × {1}. So then q : Sj × Sk → Sj+k = Sj takes Sj × {1} to

Sj by a degree one map, while the restriction of q to Sj ×{0} take it to a point of Sj. If we

like, we can instead let q be the identity map Sj × {1} → Sj while still collapsing Sj × {0}
to a point.

The PL map q we have just constructed is a surjection Sj × Sk → Sj+k and a PL

homeomorphism from s onto its identical image in Sj+k. If we assume s to be oriented based

on an orientation of Sj × Sk then this carries over to determine an orientation of Sj+k, and

we assume such compatible orientations in what follows. For any x in the interior of s, the

map q induces an isomorphism q : Hj+k(S
j×Sk, Sj×Sk−{x})→ Hj+k(S

j+k, Sj+k−{q(x)}).
So by Theorem 8.1.18.3 we must then have q(ΓSj ×ΓSk) = q(ΓSj×Sk) = ΓSj+k ∈ Hj+k(S

j+k).

We can now prove Proposition 9.4.10, which we restate:

Proposition (Proposition 9.4.10). Let Xn be a closed oriented PL Q-Witt space, and let

k, k′ > n + 1. Consider for 0 ≤ m ≤ n the isomorphisms Hm(X;Q)
Γk×−−→ Hk+m(Sk ×

X;Q) and Hm(X;Q)
Γk′×−−−→ Hk′+m(Sk

′ ×X;Q). If Lk+m(Sk ×X) ∈ Hk+m(Sk ×X;Q) and

Lk′+m(Sk
′ ×X) ∈ Hk′+m(Sk

′ ×X;Q) are the respective homology L-classes, then

(ΓSk×)−1Lk+m(Sk ×X) = (ΓSk′×)−1Lk′+m(Sk
′ ×X) ∈ Hm(X;Q).

Proof. We first observe that because k, k′ > n + 1 the Künneth Theorem implies that the

maps ΓSk× and ΓSk′× are isomorphisms. Furthermore, since m ≥ 0 and k, k′ > n + 1 we

have 2m+2k > n+k+1, so m+k > n+k+1
2

and similarly for k′, meaning that Lk+m(Sk×X)

and Lk+m′(S
k′ ×X) are defined by Definition 9.4.4. Now consider the following diagram
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Hm(X;Q)
ΓSk×- Hk+m(Sk ×X;Q)

Hk′+m(Sk
′ ×X;Q)

ΓSk′×
?

- HK+m(SK ×X;Q).
?

Γ
SK×

-

We will show that for sufficiently large K we can define the maps on the right and bottom

of the diagram so that the diagram commutes and so that these maps take Lm+k(S
k ×X)

and Lm+k′(S
k′ × X) respectively to Lm+K(SK × X). Since the diagonal map will also be

an isomorphism for any K > n, it will follow that

(ΓSk×)−1Lk+m(Sk ×X) = (ΓSK×)−1LK+m(SK ×X) = (ΓSk′×)−1Lm+k′(S
k′ ×X).

The constructions of the two commuting triangles in the diagram are equivalent, so we

may focus on just the upper triangle, which will correspond to the following diagram:

Hm(X;Q)
ΓSk× - Hk+m(Sk ×X;Q)

HK+m(SK−k × Sk ×X;Q)

ΓSK−k×

?

HK+m(SK ×X;Q).

q × id

?

Γ
S K×

-

Here q is the PL quotient map q : SK−k × Sk → SK constructed above.

By the naturality of the Künneth Theorem, the composition down the right side of the

diagram takes a class of the form ΓSk × ξ to q(ΓSK−k × ΓSk)× ξ. By Proposition 8.1.39 we

have ΓSK−k × ΓSk = ΓSK−k×Sk , but we have also seen that q(ΓSK−k×Sk) = ΓSK . Thus the

composition right then down in the above diagram takes ξ to ΓSK × ξ, as desired. It remains

to show that each of the vertical maps takes L-classes to L-classes. This is the content of the

following two lemmas, which will complete the proof. In addition to having k, k′ > n + 1,

which implies m + k > n+k+1
2

as already observed, the degree condition of the first lemma

translates here to the assumption that K − k > k + n while the degree condition of the

second requires K − k ≥ max{1, n − m − k + 3}. Both of these can be assured for this

triangle and in the corresponding k′ triangle by taking K to be sufficiently large.

Lemma 9.4.23. If Xn is a closed oriented PL Q-Witt space and m > n+1
2

, then ΓSk ×
Lm(X) = Lk+m(Sk ×X) for any k > n+ 1.
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Proof. We first consider the following diagram. We will show the diagram commutes for any

k > 0 and m ≥ 0; we do not need this generality here but will use it below in the proof of

Proposition 9.4.13:

Hm(X) �
c

πm(X)

Z.

F
-

Hk+m(Sk ×X)

(−1)kmuk × ·

?
�
c
πk+m(Sk ×X)

q ◦ (idSk × ·)

?
F -

The diagonal maps are each the maps F that take a PL representative of a cohomotopy

set to the signature of the inverse image of a generic point. The right vertical map takes

[f ] ∈ πm(X) to the class of the composition of idSk × f : Sk × X → Sk × Sm with the

quotient map q : Sk × Sm → Sk+m defined above.

To see that the righthand triangle commutes, we may assume f : X → Sm is PL, and let

us choose (x, y) ∈ Sk×Sm so that (x, y) ⊂ s (recall the simplex s shared by Sk×Sm and Sk+m

in our definition of q above), y is generic with respect to f (when m = 0 we take y = 1 ∈ S0),

and z = q((x, y)) is generic with respect to q(idSk × f); this is possible using the density

of generic image points of PL maps. Then (q(idSk × f))−1(z) = (q(idSk × f))−1(q(x, y)) =

(idSk × f)−1(x, y) = {x} × f−1(y) ∼= f−1(y). As idSk preserves orientations, we see that the

orientations of f−1(y) are consistent in the two constructions so that the triangle commutes.

It follows that if y is any generic point of f and z is any generic point of q(idSk × f) then

σ(f−1(y)) = σ((q(idSk × f))−1(z)).

Turning to the square, let ui ∈ H i(Si) be the cohomology class such that ui(ΓSi) = 1;

we have arranged in our notation on page 640 that such a formula also holds when i = 0.

We know that q(ΓSk × ΓSm) = q(ΓSk×Sm) = ΓSk+m , so we have

(q∗(uk+m))(ΓSk×Sm) = uk+m(q(ΓSk×Sm)) = uk+m(ΓSk+m) = 1.

On the other hand,

(uk × um)(ΓSk×Sm) = (uk × um)(ΓSk × ΓSm) = (−1)kmuk(ΓSk)um(ΓSm) = (−1)km.

So, asHk+m(Sk×Sm) ∼= Z whenm > 0, we must have in this case uk×um = (−1)kmq∗(uk+m).

When m = 0, the formula holds directly as uk × um and q∗(uk+m) both correspond to the

cocycle that restricts to uk = uk × 1 on Sj × {1} and that is trivial on Sj × {0}.
Therefore, from the definitions, if [f ] ∈ πm(X), then going left then down in the diagram

gives us (−1)kmuk × f ∗(um). And going down then left gives us (q(idSk × f))∗(uk+m) =

(idSk × f)∗q∗(uk+m) = (−1)km(idSk × f)∗(uk × um) = (−1)kmuk × f ∗(um). So the diagram

commutes.

Furthermore, when m > n+1
2

, upon tensoring the diagram with Q the horizontal maps

become group isomorphisms by Serre’s Theorem, and the lefthand vertical map is an isomor-

phism already over Z by the Künneth Theorem as k > n+ 1. So the right side of the square

also becomes an isomorphism when tensored with Q, and this implies that every element of
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πk+m(Sk × X) ⊗ Q has the form [q(idSk × f)] ⊗ r for some r ∈ Q and f : X → Sm (see

Footnote 18 on page 634). As

c⊗ idQ : πk+m(Sk ×X)⊗Q→ Hk+m(Sk ×X)⊗Q ∼= Hk+m(Sk ×X;Q)

is an isomorphism, we conclude that every element of Hk+m(Sk ×X;Q) has the form

c([q(idSk × f)])⊗ r = rc([q(idSk × f)])

for some r ∈ Q and f : X → Sm.

Now, let β ∈ Hm(X;Q) ∼= Hm(X) ⊗ Q, and suppose β = c([f ]) ⊗ r = rc([f ]). From

Proposition 9.4.7 we know that β(Lm(X)) = rσ(f−1(y)) for a generic y ∈ Sm. Similarly, we

know by definition and the constructions above that if we let

β′ = c([q(idSk × f)])⊗ r = rc([q(idSk × f)]) ∈ Hk+m(Sk ×X;Q)

then β′(Lk+m(Sk×X)) = rσ((q(idSk×f))−1(z)) for a generic z ∈ Sk+m, and we have already

seen that this must equal rσ(f−1(y)).

On the other hand, using the commutativity of the above diagram, we compute

β′(ΓSk ×Lm(X)) = rc([q(idSk × f)])(ΓSk ×Lm(X))

= (−1)kmr(uk × c([f ]))(ΓSk ×Lm(X))

= (−1)km(−1)kmruk(ΓSk) · c([f ])(Lm(X))

= β(Lm(X))

= rσ(f−1(y)).

So for all β′ ∈ Hk+m(Sk × X;Q), we see that β′ evaluates identically on ΓSk ×Lm(X)

and Lk+m(Sk × X). As Hk+m(Sk × X;Q) ∼= Hom(Hk+m(Sk × X;Q),Q), this shows that

Lk+m(Sk ×X) = ΓSk ×Lm(X), as was to be shown.

Lemma 9.4.24. Suppose Xn is a closed oriented PL Q-Witt space, k > n + 1, and j ≥
max{1, n −m − k + 3}. Then q × id : Hj+k+m(Sj × Sk × X;Q) → Hj+k+m(Sj+k × X;Q)

takes Lj+k+m(Sj × Sk ×X) to Lj+k+m(Sj+k ×X).

Proof. This time we begin with the diagram

Hj+k+m(Sj+k ×X) �
c

πj+k+m(Sj+k ×X)

Z.

F

-

Hj+k+m(Sj × Sk ×X)

(q × id)∗

?
�
c
πj+k+m(Sj × Sk ×X)

(q × id)∗

?
F -

The square commutes because given f : Sj+k ×X → Sj+k+m and u ∈ Hj+k+m(Sj+k+m) our

usual generator, then

(q × id)∗c([f ]) = (q × id)∗f ∗(u)

= (f(q × id))∗(u)

= c([f(q × id)])

= c(q × id)∗([f ]).
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For the triangle, let f : Sj+k × X → Sj+k+m be a PL map representing an arbitrary

class in πj+k+m(Sj+k × X), and let y ∈ Sj+k+m be generic. By Proposition 9.4.1, the

inverse image f−1(y) is a PL subspace of dimension n − m. Consider the projection map

π : Sj+k ×X → Sj+k, which is PL and so can be made simplicial for some triangulations28.

The image of an n − m dimensional simplicial complex under a simplicial map must have

dimension ≤ n −m, and since n −m ≤ n < j + k there must be a point z ∈ Sj+k that is

disjoint from π(f−1(y)). Let g : Sj+k → Sj+k be a PL homeomorphism that is PL isotopic

to the identity and that shrinks29 π(f−1(y)) into the interior of the simplex s used in the

construction of q (though note that s is here being used as a subspace, not as a simplex in

any particular triangulation). Then f̃ = f(g−1 × id) is PL homotopic to f and

f̃−1(y) = (f(g−1 × id))−1(y) = (g−1 × id)−1(f−1(y)) = (g × id)(f−1(y))

is contained in s×X.

So now consider f̃(q× id) : Sj×Sk×X → Sj+k+m. We have just see that f̃−1(y) ⊂ s×X,

and as we think of q as restricting to the identity between our two copies of s, it follows that

(f̃(q × id))−1(y) ∼= f̃−1(y). But using again [f̃ ] = [f ] ∈ πj+k+m(Sj+k ×X), we thus have

F ([f ]) = σ(f̃−1(y)) = σ((f̃(q × id))−1(y)) = F ((q × id)∗[f ]),

and the triangle commutes. We have now shown that the whole diagram commutes.

Now, as H∗(S
j+k ×X;Q) = Hom(H∗(Sj+k ×X);Q), to show that

(q × id)(Lj+k+m(Sj × Sk ×X)) = Lj+k+m(Sj+k ×X)

it suffices to show that we have

α((q × id)(Lj+k+m(Sj × Sk ×X))) = α(Lj+k+m(Sj+k ×X))

for any α ∈ Hj+k+m(Sj+k ×X;Q). As k > n + 1 and j,m ≥ 0, by Serre’s Theorem we can

write α = c([f ])⊗ r = rc([f ]) for some PL map f : Sj+k×X → Sj+k+m, and by Proposition

9.4.7 we know that then α(Lj+k+m(Sj+k ×X)) = rF ([f ]).

For (q × id)(Lj+k+m(Sj × Sk ×X)), we have

α((q × id)(Lj+k+m(Sj × Sk ×X))) = ((q × id)∗α)(Lj+k+m(Sj × Sk ×X))

= ((q × id)∗(rc([f ])))(Lj+k+m(Sj × Sk ×X))

= r(c((q × id)∗([f ])))(Lj+k+m(Sj × Sk ×X))

= rF ((q × id)∗([f ]))

= rF ([f ]).

28In fact, using the construction of Section B.6 to triangulate a product X × Y of simplicial complexes, it

is not difficult to write down simplicial projection maps explicitly.
29To construct such a homeomorphism, using probably a much bigger hammer than necessary, we can

apply engulfing techniques, for example [65, Theorem 3.1.3]. In that theorem we take W = Sj+k, U the

interior of s, K = π(f−1(y)), L = ∅. Then certainly the pair (Sj+k, U) is n−m connected, as required, and

the only other condition is the requirement that n−m ≤ j+k−3, which is the reason for our assumption on

j. Then [65, Theorem 3.1.3] says that there is a PL ambient isotopy ht of Sj+k such that h0 is the identity

and h1(U) contains K. We can then let our g be h−1
1 .
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For the third and fifth equalities we have used the commutativity of the above diagram, while

for the fourth we use again Proposition 9.4.7 applied to the homology class Lj+k+m(Sj ×
Sk ×X) and the cohomology class represented by r[c((q× id)∗([f ]))] = c((q× id)∗([f ]))⊗ r.
As α ∈ Hj+k+m(Sj+k ×X;Q) was arbitrary, we see that (q × id)(Lj+k+m(Sj × Sk ×X)) =

Lj+k+m(Sj+k ×X).

Extending properties to small degrees

We have now shown that Lm(X) is well defined for all m. Let us extend some of the

properties we have already verified when m > n+1
2

to the other values of m.

First, putting the definition of Lm(X) for m ≤ n+1
2

together with Lemma 9.4.23 we

immediately have the following general statement for all m ≥ 0:

Lemma (Lemma 9.4.12). If Xn is a closed oriented PL Q-Witt space and m ≥ 0, then

ΓSk ×Lm(X) = Lk+m(Sk ×X) for any k > n+ 1.

Next we see that the L-classes for small m continue to satisfy what is essentially their

defining property as stated in Proposition 9.4.7. This was our computation showing that

when β ∈ Hm(X;Q) is the image of [f ]⊗ r ∈ πm(X)⊗Q under the isomorphism of Serre’s

Theorem, i.e. when β = f ∗(u)⊗r, then β(Lm(X)) = rF ([f ]) = rσ(f−1(y)). In small degrees

we don’t have Serre’s Theorem available (in fact, we don’t have cohomotopy groups), but

we can still evaluate Lm(X) with respect to those cohomology classes that happen to have

the form f ∗(u)⊗ r ∈ H∗(X)⊗Q ∼= H∗(X;Q), and in this case we maintain our formula.

Proposition (Proposition 9.4.13). Let X be a closed oriented PL Q-Witt space, and let

f : X → Sm be a PL map for m > 0. If y ∈ Sm is a generic point, r ∈ Q, and u ∈ Hm(Sm)

is the cohomology class such that u(ΓSm) = 1, then

(f ∗(u)⊗ r)(Lm(X)) = rσ(f−1(y)). (9.5)

If m = 0, the formula will hold if we take y = 1 ∈ S0 = {0, 1} and let u = 11 ∈ H0(S0)

be the cocycle that restricts to the augmentation class in H0({1}) and to 0 in H0({0}).

Proof. For m > n+1
2

, equation (9.5) is just the statement of Proposition 9.4.7, using that

c([f ])⊗ r = f ∗(u)⊗ r by definition.

For 0 ≤ m ≤ n+1
2

, we use the arguments from the proof of Lemma 9.4.23. From that

proof, we know that q(idSk × f) also has f−1(y) as a generic point inverse, and so for a large

enough k we have

((q(idSk × f))∗(uk+m)⊗ r)(Lk+m(Sk ×X)) = rσ(f−1(y))

by the preceding case, letting ui ∈ H i(Si) be our generating class in degree i (or 11 ∈ H0(S0)).

But by definition in this range we have Lk+m(Sk ×X) = ΓSk ×Lm(X), and also from the

proof of Lemma 9.4.23 we have

(q(idSk × f))∗(uk+m) = (−1)kmuk × f ∗(um)
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for any k > 0 and m ≥ 0. And so

rσ(f−1(y)) = ((q(idSk × f))∗(uk+m)⊗ r)(Lk+m(Sk ×X))

= (−1)km((uk × f ∗(um))⊗ r)(ΓSk ×Lm(X))

= uk(ΓSk) · (f ∗(um)⊗ r)(Lm(X))

= (f ∗(um)⊗ r)(Lm(X)).

We have now demonstrated the desired formula for all m.

As a consequence of this proposition, we can see that L0(X) takes a particularly pleasant

form. Suppose we let {Xj} be the connected components of X. Then because homology is

additive over disjoint unions we must have L0(X) =
∑

j cjξj ∈ H0(X;Q), where ξj is any

0-simplex in Xj. If Z is any connected component of X, then let fZ : X → S0 be the map

such that f(Z) = 1 ∈ S0 and f(X − Z) = 0 ∈ S0. From our definition of u0 ∈ H0(S0), we

have f ∗Z(u) = 1Z , the class represented by the cochain that evaluates to 1 on all 0-simplices

of Z and is trivial otherwise. Then

σ(Z) = σ
(
f−1
Z (1)

)
= (f ∗(u))(L0(X)) = 1Z

(∑
j

cjξj

)
= cj.

So we have proven the following:

Proposition (Proposition 9.4.14). Let X be a closed oriented PL Q-Witt space, and let

{Xj} be the connected components of X. Then

L0(X) =
∑
j

σ(Xj)ξj ∈ H0(X;Q),

where ξj is any 0-simplex in Xj.

9.4.6 Characterizing the L-classes

Recall that our last goal is to provide a single characterization of all our L-classes on closed

oriented PL Q-Witt spaces in terms of their behavior with respect to “wrong-way” maps in-

duced by PL trivial normally nonsingular inclusions together with a normalization condition

imposed on the classes L0. In particular, we now turn to proving Theorem 9.4.18, which we

restate here:

Theorem (Theorem 9.4.18). The L-classes L∗ defined on closed oriented PL Q-Witt spaces

possess the following properties:

1. a(L0(X)) = σ(X),

2. if Z is a PL trivial normally nonsingular subset of X and iW : Rm×Z
∼=−→ W ⊂ X is the

orientation-preserving PL homeomorphism of a trivial Rm bundle onto a neighborhood

W of Z in X then i!W (Lj+m(X)) = Lj(Z) for all j.
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Furthermore, the collection of classes {L∗(X)} as X ranges over all closed oriented PL

Q-Witt spaces is the unique collection with these properties.

Let us recall the definitions involved. As defined in Definition 9.4.15, the subspace Z ⊂ X

of the PL Q-Witt space X is a PL trivial normally nonsingular subspace (PL trivial nns for

short) if for some m the inclusion map iZ : Z ↪→ X extends to a PL homeomorphism

iW : Rm × Z → W ⊂ X onto a neighborhood W of Z in X. Via this homeomorphism we

will typically identify W with Rm × Z. When X and Z are oriented and m > 0, the map

i!W : Hi(X)→ Hi−m(Z) is then defined in Definition 9.4.16 as the composition

Hi(X)→ Hi(X,X − Z)
∼=←− Hi(W,W − Z)

µ_−−→ Hi−m(W )
∼=−→ Hi−m(Z),

where µ is the Thom class of the bundle. We will orient the bundle so that iW is orientation

preserving, giving Rm the standard orientation and Rm × Z the product orientation. This

can always be done by composing iW with a reflection of Rm if necessary. Identifying W

with Rm × Z, we can then take µ = a × 1Z , where 1Z ∈ H0(Z) and a is the generator of

Hm(Rm,Rm−{0}) that takes the fundamental class with respect to the standard orientation

to 1. When m = 0, then Z is a union of connected components of X = qXj, and we then

let i! be the projection Hi(X) ∼= ⊕XjHi(Xj)→ ⊕Xj⊂ZHi(Xj) ∼= Hi(Z).

The connection between L-classes and normally nonsingular subspaces is provided by the

following definition (see [248, Section 1.3]), lemma, and corollary:

Definition 9.4.25. Let f : X → Y be a PL map. Then y ∈ Y is called a regular point if

there is a PL neighborhood U of y in Y and a PL homeomorphism h : U ×f−1(y)→ f−1(U)

such that fh = π1, where π1 : U × f−1(y)→ U is the projection.

Remark 9.4.26. If h : U × f−1(y) → f−1(U) is any PL homeomorphism such that fh = π1

then h restricts to a PL homeomorphism h̃ from {y} × f−1(y) to f−1(y). By precomposing

h with id× h̃−1, we can always assume that h acts as an extension of the canonical inclusion

f−1(y) ↪→ f−1(U) ⊂ X. We will do so implicitly from here on.

Lemma 9.4.27. Let X be a closed oriented PL Q-Witt space. Then Z ⊂ X is a PL trivial

normally nonsingular subspace of codimension m, m > 0, if and only if there exists a PL

map f : X → Sm such that Z = f−1(y) for a regular point y ∈ Sm. This result extends to

m = 0 by taking y = 1 ∈ S0.

Proof. First suppose m = 0. If Z is any nns, then Z is a union of connected components of

X, so in this case we let f take Z to 1 ∈ S0 and its complement to 0 ∈ S0. Conversely, given

any f : X → S0, the space Z = f−1(1) is a union of connected components and so normally

nonsingular. For the rest of the proof we assume m > 0.

If y is a regular point of a PL map f : X → Sm, then f−1(y) is a PL trivial nns

directly from the definitions, as any neighborhood U of y contains a smaller neighborhood

PL homeomorphic to Rm and the restriction of a PL homeomorphism to an open subspace

continues to be a PL homeomorphism onto its image.

Conversely, suppose Z ⊂ X is a PL trivial nns, and let us identify a neighborhood W of Z

with Rm×Z, with Z being identified with the 0-section of the trivial bundle. Identifying Sm
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with the one point compactification of Rm with z0 denoting the point at infinity, we define

a map f̄ : X → Sm that takes each point (x, z) ∈ Rm × Z = W to x ∈ Rm = Sm − {z0}
and maps X −W to z0. It is not clear as defined that f̄ is a PL map on all of X, but it is

PL on W as a projection map. If we let U ⊂ V ⊂ Rm be neighborhoods of 0 with Ū ⊂ V

and V̄ compact in Rm, then by the PL Approximation Theorem (Theorem B.2.24) we can

find a PL map f : X → Sm that is homotopic to f̄ , that agrees with f̄ on V̄ × Z, and such

that no point of X − (V × Z) maps under f into U . It follows that f−1({0}) = Z with U

a neighborhood of 0 in Rm ⊂ Sm such that f−1(U) is PL homeomorphic to U × Z with f

acting as the projection onto U . So 0 is a regular point and Z = f−1(0).

Corollary 9.4.28. If Z is a PL trivial normally nonsingular subspace of a closed orientable

PL Q-Witt space X, then Z is also a closed orientable PL Q-Witt space (with respect to

some filtration). If Z is oriented so that the embedding iW : Rm × Z ↪→ X is orientation

preserving and f : X → Sm is a PL map such that Z = f−1(y) for a regular point y ∈ Sm,

then30 σ(Z) = F ([f ]).

Proof. Again, this is trivial if m = 0, i.e. if Z is a union of connected components of X. So

we assume m > 0.

Suppose Z is a PL trivial nns of X, and let f : X → Sm be a PL map such that

Z = f−1(0) with 0 ∈ Rm ⊂ Sm a regular point; we know such a map exists from the proof of

the lemma. In particular, this means that 0 has a neighborhood U in Sm such that f−1(U)

is PL homeomorphic to U × Z, with the homeomorphism compatible with the projection.

For any y ∈ U , we must have Z ∼= f−1(y). It is also clear that if we orient Z and f−1(y) so

that their product neighborhoods are compatibly oriented with X then the homeomorphism

Z ∼= f−1(y) also preserves orientation. By Theorem B.2.19, there are triangulations of X and

Sm with respect to which f is simplicial. As U is a neighborhood of 0, it contains some y in

the interior of an m-simplex of the triangulation of Sm, and f−1(y) is a closed PL Witt space

by Proposition 9.4.1. Therefore, Z is also a closed PL Witt space, and σ(Z) = σ(f−1(y)) by

the invariance of signatures under orientation preserving homeomorphisms (Theorem 9.3.16).

Now we just apply that σ(f−1(y)) = F ([f ]) by definition of the map F : πm(X)→ Z.

Now we turn to proving Theorem 9.4.18. The proof will rely on two lemmas that will

be proved below. For simplicity, we state and prove the lemmas with Z coefficients, but the

arguments work just as well over Q (or other rings):

Lemma 9.4.29. Let Z ⊂ X be a PL trivial normally nonsingular subspace with PL home-

omorphism iW : Rm × Z → W ⊂ X. Then Sk × Z is a PL trivial normally nonsingular

subspace of Sk ×X with neighborhood embedding iSk×W : Rm × Sk × Z
∼=−→ Sk ×W . Letting

ΓSk ∈ Hk(S
k) be the standard orientation class, k > 0, then for ξ ∈ H∗+m(X) we have

ΓSk × i!W (ξ) = i!Sk×W (ΓSk × ξ) ∈ H∗+k(Sk × Z).

30Recall the definition of F on page 633.
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Lemma 9.4.30. Let Z ⊂ X be a PL trivial normally nonsingular subspace with PL home-

omorphism iW : Rm × Z → W ⊂ X, and let A ⊂ Z be a PL trivial normally nonsingular

subspace with PL homeomorphism iV : Rj × A→ V ⊂ Z. Let iU be the composition

Rm+j × A = Rm × Rj × A id×iV−−−→ Rm × Z iW−→ X,

taking Rm+j × A to a neighborhood U of A in X. Then

i!U = i!V i
!
W : H∗+m+j(X)→ H∗(A).

We will prove the lemmas after using them to prove Theorem 9.4.18.

Proof of Theorem 9.4.18. We first show that the L-classes have the claimed properties. Let

X be a closed oriented PL Q-Witt space. The fact that a(L0(X)) = σ(X) follows immedi-

ately from Proposition 9.4.14, according to which L0(X) =
∑

j σ(Xj)ξj ∈ H0(X;Q) with ξj
being any 0-simplex in the connected component Xj, and the additivity of signatures over

disjoint union (Theorem 9.3.17.2).

Next suppose Z is a PL trivial nns in X = Xn and iW : Rm × Z
∼=−→ W ⊂ X is the PL

homeomorphism onto a neighborhood W of Z in X. We want to show that i!W (Lj+m(X)) =

Lj(Z) for any j ≥ 0, the case j < 0 being trivial. As ΓSk× is an isomorphism for large

enough k, it suffices to show that ΓSk × i!W (Lj+m(X)) = ΓSk ×Lj(Z) ∈ Hk+j(S
k×Z;Q) for

large k. By Lemma 9.4.12, we have ΓSk ×Lj(Z) = Lk+j(S
k × Z), while by that corollary

and Lemma 9.4.29 we have

ΓSk × i!W (Lj+m(X)) = i!Sk×W (ΓSk ×Lj+m(X)) = i!Sk×W (Lk+j+m(Sk ×X)),

so it suffices to show that Lk+j(S
k × Z) = i!

Sk×W (Lk+j+m(Sk × X)) for sufficiently large

k. This is just a special case of what we are trying to show in the first place(!), but now

with the benefit that by choosing k large we can assume that we are in the degree range

where we can apply Serre’s Theorem. So let us now reset the notation back to showing that

i!W (Lj+m(X)) = Lj(Z), but now with the added assumption that j > dim(Z)+1
2

. This also

implies that j +m > dim(Z)+m+1
2

= dim(X)+1
2

.

So consider again Z a PL trivial normally nonsingular subset of X, a PL homeomorphism

iW : Rm × Z
∼=−→ W ⊂ X, and the desired i!W (Lj+m(X)) = Lj(Z) ∈ Hj(Z;Q), but now with

the assurance that j > dim(Z)+1
2

. In this range, Serre’s Theorem applies so that c ⊗ idQ :

πj(Z)⊗Q→ Hj(Z;Q) is an isomorphism. As Hj(Z;Q) is dual to Hj(Z;Q), to test whether

i!W (Lj+m(X)) = Lj(Z) we need only check that α(i!W (Lj+m(X))) = α(Lj(Z)) for all α ∈
Hj(Z;Q). In fact, it suffices to demonstrate this equality for a basis of Hj(Z;Q) ∼= Hj(Z)⊗
Q, and we can choose this basis to be represented by elements of Hj(Z). In particular, we

can find a basis of Hj(Z;Q) consisting of elements of the form c([f ]) ⊗ 1, as every element

of Hj(Z)⊗Q has a rational multiple of this form. We know by Proposition 9.4.7 that if α

corresponds to c([f ]) ⊗ 1 under Serre’s isomorphism then α(Lj(Z)) = F ([f ]) = σ(f−1(y))

for a generic point y ∈ Sm and a PL representative f of [f ]. So we need to see that the same

is true of α(i!W (Lj+m(X))) for such an α.
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Continuing to assume that α = c([f ]) ⊗ 1, recall that c([f ]) = f ∗(uj) by definition for

uj ∈ Hj(Sj) with uj(ΓSj) = 1. We can also assume we have chosen a specific PL map f

representing [f ]. Abusing notation, we also let f ∗(uj) represent f ∗(uj)⊗ 1 ∈ Hj(Z)⊗Q ∼=
Hj(Z;Q). We need to compute f ∗(uj)(i

!
W (Lj+m(X))).

Let y be a generic point of Sj with respect to the map f : Z → Sj. By Remark

9.4.20, Lemma 9.4.19 can be strengthened to show that y is a regular point of f and so by

Lemma 9.4.27 the space A = f−1(y) is a PL trivial nns of Z with neighborhood embedding

iV : Rj × A
∼=−→ V ⊂ Z. By the composition

Rm+j × A = Rm × Rj × A id×iV−−−→ Rm × Z iW−→ X,

we see that A is a PL trivial nns of X, and we let U denote the image neighborhood of

A in X. Identifying U with Rm+j × A, let f : X → Sm+j be the map that projects U to

Rm+j ⊂ Sm+j and takes the complement of U to the point at infinity. As in the proof of

Lemma 9.4.27, we can alter f outside a small neighborhood of A to make it PL; we continue

to call the map f and note that we can then find a generic point y′ in Sj+m with f−1(y′) ∼= A.

Let iA,Z : A ↪→ Z and iA,X : A ↪→ X denote the inclusions. We compute:

f ∗(uj)(i
!
W (Lj+m(X))) = a(f ∗(uj) _ i!W (Lj+m(X)))

= a(iA,Z i
!
V (i!W (Lj+m(X)))) by Lemma 9.4.2231

= a(iA,Z i
!
U(Lj+m(X))) by Lemma 9.4.30

= a(iA,X i
!
U(Lj+m(X)))

= a(f∗(uj+m) _ Lj+m(X)) by Lemma 9.4.22

= f∗(uj+m)(Lj+m(X))

= σ(f−1(y′)) by Proposition 9.4.7

= σ(A) by Corollary 9.4.28.

The first and sixth equalities here are by the ordinary homology version of the evaluation

property, Proposition 7.3.25 (see [71, Section VII.12.8]), and the fourth equality is because

augmentation commutes with maps of spaces. We have also used that Lemmas 9.4.22 and

9.4.30 continue to hold with Q coefficients.

As we have already seen that α(Lj(Z)) = σ(f−1(y)) = σ(A) when α = f ∗(uj), we see

that α(Lj(Z)) and α(i!W (Lj+m(X))) do indeed agree. As we have chosen α arbitrarily within

a basis for Hj(Z;Q), we conclude that Lj(Z) = i!W (Lj+m(X)) as claimed.

This concludes the proof that the L-classes have the listed properties. Now we turn to

showing that these properties completely characterize the L∗.
Suppose there are two collections of classes L∗ and L ′

∗ that possess the stated properties,

and first consider Lm(X) and L ′
m(X) with m > dim(X)+1

2
. Once again, in this case we

31Since we modified the map f, it does not necessarily have precisely the form of the map in the hypotheses

of Lemma 9.4.22, but it is homotopic to such a map. As Lemma 9.4.22 is a statement about homology, it

therefore remains true up to altering maps by homotopies.
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know by Serre’s Theorem that Hm(X;Q) is generated by classes of the form f ∗(um), again

identifying f ∗(um) with f ∗(um) ⊗ 1 ∈ Hm(X;Q). If Z is a generic point inverse of f such

that W is a neighborhood of Z PL homeomorphic to Rm × Z that is compatible with the

projection, then by Lemma 9.4.22 we know that32

f ∗(um)(Lm(X)) = a(f ∗(u) _ Lm(X)) = a(iZ i
!
WLm(X)).

By hypothesis now i!WLm(X) = L0(Z) and a(iZ(L0(Z))) = a(L0(Z)) = σ(Z). By the

same computation, f ∗(um)(L ′
m(X)) = σ(Z). So, as we can vary f sufficiently that the

f ∗(um) generate Hm(X;Q), which is dual to Hm(X;Q), it follows that Lm(X) = L ′
m(X).

Ifm ≤ dim(X)+1
2

, then we can observe that the embedding that takesX to pt×X ⊂ Sk×X can

be extended to a PL homeomorphism from Rk×X to a neighborhood of pt×X in Sk×X, and

so pt×X is a PL trivial nns of Sk×X. By assumption, we have Lm(X) = i!W (Lm+k(S
k×X))

and L ′
m(X) = i!W (L ′

m+k(S
k×X)). But for sufficiently large k, we have m+ k > dim(X)+k+1

2
,

in which case we have just seen that L ′
m+k(S

k × X) = Lm+k(S
k × X). It follows that

Lm(X) = L ′
m(X) for all m. As X has been arbitrary in this argument, we have that

L∗ = L ′
∗ in all cases.

Proof of Lemma 9.4.29. The proof is straightforward when m = 0, so we assume m > 0.

We will have to be careful about some orientation issues. In particular, recall that our

definition for our i!W maps assumes that the homeomorphisms iW : Rm × Z → W ⊂ X

are chosen to be orientation preserving. So when identifying the neighborhood Sk ×W ∼=
Sk × Rm × Z ∼= Rm × Sk × Z of Sk × Z in Sk × X as a bundle, we need to utilize an

orientation-preserving homeomorphism Rm × Sk × Z → Sk ×W . As the transposition map

t : Rm×Sk×Z → Sk×Rm×Z defined by t(x, y, z) = (y, x, z) is only orientation preserving

up to the sign (−1)km, we must instead use a map we will label t̃ obtained by composing

t with a reflection of one of the Rm coordinates if km is odd. For the sake of clarity, we

include this homeomorphism explicitly in the following diagram:

32Once again, the map f does not necessarily have precisely the form of the map in the hypotheses of

Lemma 9.4.22, but this time it is homotopic to such a map by composing f with a homotopy equivalence

that retracts the complement of f(Rm × Z) ∼= Rm to the point at infinity of Sm.
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Hk(S
k)⊗Hi+m(X)

×
- Hk+i+m(Sk ×X)

Hk(S
k)⊗Hi+m(X,X − Z)

? ×
- Hk+i+m(Sk ×X,Sk × (X − Z))

?

Hk(S
k)⊗Hi+m(W,W − Z)

∼=
6

×
- Hk+i+m(Sk ×W,Sk × (W − Z))

∼=
6

�
t̃
∼=

Hk+i+m(Rm × Sk × Z, (Rm − {0})× Sk × Z)

Hk(S
k)⊗Hi(W )

(−1)kmid⊗ (µ _)

? ×
- Hk+i(S

k ×W )

(−1)km(1Sk × µ) _

?
�

t̃
∼=

Hk+i(Rm × Sk × Z)

(a× 1Sk × 1Z) _

?

Hk(S
k)⊗Hi(Z)

∼=
? ×

- Hk+i(S
k × Z).

∼=
? �

∼=

We next discuss the commutativity of the diagram. The top two and bottom squares

commute by the naturality of the cross product (Proposition 5.2.17 with all filtrations triv-

ial). The bottom right triangle commutes at the level of spaces with the downward maps

projecting out the Rm coordinate.

For the left square involving cap products, if γ⊗ ξ ∈ Hk(S
k)⊗Hi+m(W,W −Z), the two

ways around the square both yield (−1)km+kmγ×(µ _ ξ) = γ×(µ _ ξ), using the unfiltered

version of Propositions 7.3.55 and 7.3.22. So this square commutes. We have chosen the

signs here so that if γ = ΓSk then the sign vanishes and the counterclockwise composition

from the top left to the bottom right applied to ΓSk ⊗ η is precisely ΓSk × i!W (η).

The square on the right will commute by the naturality of cap products (Proposition

7.3.6) once we show that t̃∗((−1)km(1Sk × µ)) = a × 1Sk × 1Z . For this, recall that a

here stands for the class in Hm(Rm,Rm − {0}) that evaluates to 1 on the generator of

Hm(Rm,Rm − {0}) with the standard orientation and that we can write µ = a × 1Z under

the identification W = Rm × Z; see Remark 9.4.17. So if we write 1Sk × µ = 1Sk × a× 1Z ,

then t∗(1Sk × a× 1Z) = a× 1Sk × 1Z by the commutativity properties of the cross product

(Proposition 7.3.13). The difference between t and t̃ is that when km is odd t̃ also includes an

orientation-reversing reflection, say r, of Rm. Such a reflection takes a to r∗(a) = (−1)kma.

So in this case we have

t̃∗((−1)km(1Sk × µ)) = (r × idSk×Z)∗t∗((−1)km(1Sk × a× 1Z))

= (r × idSk×Z)∗((−1)km(a× 1Sk × 1Z))

= (−1)kmr∗(a)× 1Sk × 1Z

= a× 1Sk × 1Z .

Now, in our definition of the i!W maps, the use of the cup product µ _ has always involved

implicitly identifying W with a bundle via an orientation-preserving homeomorphism. The
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path around the right of the diagram simply makes this explicit in the current case. So

traveling from the top left around the diagram clockwise takes ΓSk ⊗ η ∈ Hk(S
k)⊗Hi+m(X)

to i!
Sk×W (ΓSk × η). This completes the proof.

Proof of Lemma 9.4.30. For ease of notation, we identify W with Rm × Z, V with Rj × A,

and U with Rm × Rj × A = Rm+j × A. We also write Rk0 for the pair (Rk,Rk − {0}). We

let ak ∈ Hk(Rk0) be the class that evaluates to 1 on the generator of Hk(Rk0) consistent with

the orientation. Then ak × a` = (−1)k`ak+`, as can be seen by evaluating on the orientation

class in Hk+`(Rk+`
0 ), which is the product of those in Hk(Rk0) and H`(R`0).

Consider the following diagram:

Hj+m+i(X) �
=

Hj+m+i(X)

Hj+m+i(X,X − A)
?

� Hj+m+i(X,X − Z)
?

Hj+m+i(Rm+j
0 × A)

∼=
6

∼=- Hj+m+i(Rm0 × R
j
0 × A)

∼= - Hj+m+i(Rm0 × (Z,Z − A)) �

�

Hj+m+i(Rm0 × Z)

∼=
6

Hj+i(Rm × Rj0 × A)

(am × 1× 1) _

? ∼= - Hj+i(Rm × (Z,Z − A))

(am × 1) _

?
� Hj+i(Rm × Z)

(am × 1) _

?

Hi(Rm+j × A)

(am+j × 1) _

? ∼= - Hi(Rm × Rj × A)

(1× aj × 1) _

?

Hj+i(Z)
?

Hi(A)
?
� Hi(Rj × A)

?
�

(aj × 1) _
Hi+j(Rj0 × A)

∼=-
-

Hj+i(Z,Z − A)
?

-

The boxes not involving cap products commute at the space level, and the marked iso-

morphisms are either excision isomorphisms or are induced by space homeomorphisms or

homotopy equivalences.

For the rightmost square involving cap products, we have am× 1 ∈ Hm(Rm0 ×Z), and so

the square commutes by naturality of the cap product with respect to the map

(Rm × Z; ∅, (Rm − {0})× Z)→ (Rm × Z;Rm × (Z − A), (Rm − {0})× Z).

Similarly, the middle square commutes by naturality of the map

(Rm×Rj×A;Rm×(Rj−{0})×A, (Rm−{0})×Rj×A)→ (Rm×Z;Rm×(Z−A), (Rm−{0})×Z).

Here we note that the restriction of am × 1 ∈ Hm(Rm0 × Z) to Hm(Rm0 × Rj × A) is indeed

am × 1× 1, as 1Z restricts to 1Rj×A, which is equal to 1Rj × 1A.
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For the quadrilateral in the shape of a triangle, the naturality is with respect to the

projection map

(Rm × Rj × A; ∅,Rm × (Rj − {0})× A)→ (Rj × A; ∅, (Rj − {0})× A).

For the rectangular pentagon on the left, the two horizontal arrows can be treated as

equalities, and then we have for any ξ ∈ Hj+m+i(Rm+j
0 × A) that

(1× aj × 1) _ ((am × 1× 1) _ ξ) = ((1× aj × 1) ^ (am × 1× 1)) _ ξ

= (−1)jm(am × aj × 1) _ ξ

= (am+j × 1) _ ξ,

using the associativity of cup and cap products (Proposition 7.3.35), the interchange property

of cup and cross products (Proposition 7.3.54), the identity properties of 1 (Proposition

7.3.21), and the fact that am × aj = (−1)jmam+j as observed at the start of the proof.

Thanks to the maps that are isomorphisms, commutativity of the interior polygons im-

plies commutativity around the outside of the diagram. Starting in the upper right, the path

down then left to Hi(A) is precisely the composition i!V i
!
W , while the path left then down is

i!U .

9.5 A survey of pseudomanifold bordism theories

We briefly survey some of the further outgrowths of the material presented in this chapter,

focusing particularly on bordism groups and the resulting generalized homology theories.

However, we make no attempt to be comprehensive or to provide all details. Rather, we

hope that we provide sufficient references for the interested reader to find the original sources

or more thorough expositions.

Unfortunately, an analogous survey of characteristic classes on stratified spaces is beyond

our scope. Many such generalizations of the classical characteristic classes now exist, some

utilizing intersection homology and related tools but many not. Let us just mention a few

expository sources and surveys the reader might consult: [33, 32, 35, 209, 9, 187, 207, 208,

228, 11, 164].

9.5.1 Bordism

We begin with a quick introduction to the idea of bordism groups33 and bordism homology

theories. A good first introduction can be found within the Milnor-Stasheff book on char-

33Particularly in the older literature, these are sometimes called cobordism groups. The original language

reflects the notion that two “cobordant” n-manifolds together bound some n + 1 manifold, i.e. they co-

bound. But, as we will describe momentarily, this leads naturally to generalized homology theories which,

if called cobordism homology theories, would lead to dual cohomology theories that would have to be called

co-cobordism. To avoid this awkwardness, the original theory came to be called “bordism” theory, leaving

“cobordism” free for the dual theory.
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acteristic classes [176]. An introduction to the approach to bordism using spectra occurs

within the text of Davis and Kirk [67]. For more thorough treatments, see [223, 198].

Bordism groups

To illustrate the basic idea, let’s begin by considering the class of smooth manifolds, not

necessarily oriented. We say that two closed smooth manifolds M1,M2 are bordant if there

is a compact smooth ∂-manifold W such that ∂W ∼= M1qM2. This is an equivalence relation:

Symmetry is clear. Reflexivity comes from considering [0, 1]×M . And for transitivity, if we

have W1,W2 with ∂W1
∼= M1 qM2 and ∂W2

∼= M2 qM3, we can form a W by gluing W1

and W2 along M2, and then ∂W ∼= M1 qM3. Denote the equivalence class of M by [M ].

It turns out with a little more work that the equivalence classes in each dimension n

constitute an abelian group ΩO
n ; the standard notation ΩO

n is due to On being the structure

group for the tangent bundles of closed smooth n-manifolds. More precisely, ΩO
n consists of

the bordism equivalence classes of n-dimensional closed manifolds, and the group operation

is disjoint union: [M1] + [M2] = [M1 qM2]. The identity for each n is the empty manifold,

which we consider a manifold of every dimension (or, perhaps more accurately, we can think

of having one empty manifold of each dimension): [M1] + [∅] = [M1q∅] = [M1]. Notice that

[M ] = [∅] for any closed M that is a boundary of a compact manifold. The inverse of [M ] is

[M ], as M qM ∼= ∂([0, 1]×M), so [M ] + [M ] = [M qM ] = [∅].
Bordism groups of closed oriented manifolds are defined analogously, though now with

M1 and M2 defined to be bordant if there is an oriented W with ∂W = M1 q −M2, where

−M2 is M2 with its orientation reversed. The resulting groups are denoted ΩSO
n , as now the

structure groups associated to the oriented tangent bundles are the SOn. In these bordism

groups, −[M ] = [−M ], as M q −M ∼= ∂([0, 1] ×M), so [M ] + [−M ] = [M q −M ] = [∅].
Further analogous groups ΩG

n can be defined by imposing additional structure hypotheses

on the involved manifolds and ∂-manifolds. Similarly, we could consider bordism in other

categories, such as bordisms of closed PL manifolds or closed oriented PL manifolds, ΩPL
∗ or

ΩSPL
∗ .

In fact, the groups ΩO
∗ and ΩSO

∗ can be given the structure of graded rings with the

product being [M1]× [M2] = [M1 ×M2]. A computation of ΩO
∗ can be pieced together from

[176, Section 4 and Exercises 4E and 16F] as an application of the study of Stiefel-Whitney

numbers, which come from evaluating products of the Stiefel-Whitney characteristic classes

on the Z2-fundamental classes of manifolds. A more thorough and quite readable treatment

of ΩSO
∗ ⊗ Q is given in [176, Section 17] via a similar study of Pontrjagin numbers, which

come from evaluating products of the Pontrjagin characteristic classes on the Z-fundamental

classes of oriented manifolds. Complete computations of these bordism rings and many

others can be found in [223].

Bordism homology theories

Beyond the bordism groups of manifolds, each type of bordism yields a generalized homology

theory. Recall [167] that these are functors that satisfy the Eilenberg-Steenrod axioms for

a homology theory except perhaps for the Dimension Axiom. For ordinary homology with
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coefficients, the Dimension Axiom says that for the one point space pt we have H0(pt;G) ∼= G

and Hi(pt;G) ∼= 0 for i 6= 0.

We illustrate the idea of the bordism homology groups using oriented bordism as our

example this time; the other bordism homology theories are defined similarly. Now instead

of defining a group or graded ring ΩSO
∗ , we need a functor ΩSO

∗ (·). On a space Z, the group

ΩSO
n (Z) is generated by continuous maps f : M → Z, where M is a closed oriented smooth

n-manifold. Two maps fi : Mi → Z, i = 1, 2, are equivalent if there are a compact oriented

smooth ∂-manifold W with ∂W ∼= M1 q −M2 and a map F : W → Z that restricts to f0

and f1 on ∂W . Notice that this definition is quite analogous to how singular homology is

defined except that rather than working with chains of singular simplices we work with entire

manifolds at once. Addition is by disjoint union, and again we get a group. If g : Z → Y

is a map, we have an induced homomorphism ΩSO
n (Z) → ΩSO

n (Y ) via composition; i.e. a

generator [M
f−→ Z] gets taken to the composition [M

f−→ Z
g−→ Y ]. Notice also that if

Z = pt, the space with one point, then the maps contain no information and we have

ΩSO
n (pt) = ΩSO

n . The functor ΩSO
∗ (·) does not satisfy the Dimension Axiom, as there exist

positive degrees in which ΩSO
n is nontrivial.

Of course a proper homology theory should really take pairs of spaces as inputs. In

this case, we generalize and let an element of ΩSO
n (Z,A) consist of a compact oriented n-

dimensional smooth ∂-manifold W together with a map f : M → Z such that f(∂M) ⊂ A.

In this case [M1
f1−→ Z] = [M2

f2−→ Z] if there is a compact oriented smooth n+ 1 ∂-manifold

V such that ∂V = M1 ∪∂M1 M0 ∪∂M2 −M2 and a map F : V → Z that restricts to fi on

Mi, i = 1, 2, and such that that the restriction to M0 is a bordism between ∂M1 and ∂M2

in A. One can also verify the other axioms of a generalized homology theory. We will not

go further into detail here except to suggest that it is a good exercise to think through why

such a bordism homology theory possesses the long exact sequence of the pair.

Bordism homology theories are quite interesting and have been put to various important

uses. For one well-known example, see [63].

9.5.2 Pseudomanifold bordism

Just as one can define bordism groups and bordism homology theories using classes of man-

ifolds, one can consider bordism groups ΩCn generated by closed pseudomanifolds in a par-

ticular class C with relations given by [X1] = [X2] if there is a compact W in the class with

∂W = X1 q X2, or ∂W = X1 q −X2 if our class allows for orientation information. For

example, if we let C be the class of PL oriented G-Witt spaces, then we obtain bordism

groups generated by the compact n-dimensional oriented PL G-Witt spaces without bound-

ary and with [X1] = [X2] if there is a compact n+ 1 dimensional oriented PL G-Witt space

W with ∂W ∼= X1 q −X2. Similarly, one can define pseudomanifold bordism homology

theories, at least when considering classes of PL pseudomanifolds, which allow one to verify

the Eilenberg-Steenrod axioms (minus the Dimension Axiom) without too much difficulty34;

34In general, the study of topological bordism theories is much more complicated than that for spaces with

more structure.
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see [3, Proposition 7] and [94, Section 6].

One issue that was often not treated clearly in the early literature is whether or not to

take the stratifications into account when defining bordism groups. For example, we saw

in Proposition 9.1.28 that the property of being a G-Witt space does not depend upon the

choice of (classical) stratification. So there are two possible definitions for the bordism groups

of G-Witt spaces. We can conceive of them as being generated by G-Witt spaces thought of

as stratified pseudomanifolds and with the bordism relation determined by ∂W = X1q−X2

assuming that X1, X2, and W are all compatibly stratified. Alternatively, we could define the

generators to be pseudomanifolds |X| that satisfy the G-Witt condition for some, and hence

any, (classical) stratification, and with the relation ∂W = X1 q −X2 as pseudomanifolds,

again ignoring the stratifications. Happily, as shown in [94], if one forbids codimension one

strata (which are automatically disallowed for Witt spaces) and makes a reasonable choice

of the class C, then we obtain the same bordism groups ΩCn and corresponding bordism

homology theories ΩC∗(·) whether stratifications are taken into account or not. A detailed

axiomatic study of permissible classes C and the construction of pseudomanifold bordism

groups and homology theories can be found in [94].

Let us consider some examples. In each case, we assume all spaces to be PL and without

codimension one strata.

All pseudomanifolds. A natural first example would be the class of all PL pseudomani-

folds or of all oriented PL pseudomanifolds. Here the bordism groups turn out to be mostly

trivial as every closed pseudomanifold X of dimension > 0 is the boundary of the closed

cone c̄X. The only nontrivial bordism group is in dimension 0, and it is an easy exercise to

check that the unoriented bordism group is Z2, while in the oriented case it is Z. It follows

from Eilenberg and Steenrod that the resulting homology theories are just H∗(·;Z2) and

H∗(·;Z); see [75, Chapter III] and [167, Chapters 13-15]. While we get nothing new, this

is still interesting: all homology classes in, say, H∗(Z;Z2) or H∗(Z;Z) can be represented

by maps from pseudomanifolds f : X → Z. An explicit map from the bordism theory to

ordinary homology is given by taking f to the image under f of the Z2- or Z-fundamental

class of X to Z by f .

Mod 2 Euler spaces. Before the advent of intersection homology, Akin [3], following work

of Sullivan [225], computed the bordism groups of what are essentially PL pseudomanifolds

whose polyhedral links have vanishing Euler characteristic mod 2. He showed that the

bordism groups35 Ωn are isomorphic to Z2 for all n ≥ 0, with [X1] = [X2] if and only if X1

and X2 have the same mod 2 Euler characteristic.

Q-Witt spaces. When Siegel introduced PL oriented Q-Witt spaces in [217], he was also

carrying out a program of Sullivan’s, this time to find a geometric model for ko-homology

35Rather than make up notation for every class we shall discuss, we’ll use simply Ω∗ to denote whichever

type of bordism is under discussion.
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theory at odd primes. KO homology is the generalized homology theory dual to real topo-

logical K-theory, which, roughly speaking, is based on groups of stable isomorphism classes

of real vector bundles over a space. The lower-case ko denotes the “connective” version of

the theory36. The phrase “at odd primes” means that we ignore all 2-primary torsion.

Recall that we showed above in Corollary 9.3.18 that the signature of an oriented Q-

Witt space is a bordism invariant, and this remains true by the same argument if we limit

ourselves to PL objects. But, in fact, something stronger holds, and the bordism classes

preserve more information from the cup product pairing than just the signature. To explain

the invariant, we need to introduce Witt groups in the next paragraph. See [175, Chapter I]

for full details; the reader might also find it useful to review our treatment of signatures of

symmetric pairings over Q-vector spaces in Appendix A.5.

Let R be a commutative ring. We will consider nonsingular symmetric bilinear pairings

on finitely generated projective R-modules. Such data is called a symmetric inner product

space, and the pairing is called an inner product. Two inner product spaces (V, (·, ·)V ) and

(W, (·, ·)W ) are isomorphic if there is an isomorphism of R-modules f : V → W such that

(v1, v2)V = (f(v1), f(v2))W for all v1, v2 ∈ V . There is an orthogonal sum operation on inner

product spaces so that if (V, (·, ·)V ) and (W, (·, ·)W ) are two inner product spaces over R, then

we can define their sum by defining an inner product on V ⊕W by (v1 +w1, v2 +w2)V⊕W =

(v1, v2)V + (w1, w2)W . If V and W are free modules and we represent their inner products

by matrices with respect to some basis, then the orthogonal sum operation corresponds to

taking a block sum of matrices. A symmetric inner product space (S, (·, ·)S) is called split if

there is a submodule N ⊂ S so that N = N⊥, i.e. if N = {s ∈ S | (s, n) = 0 for all n ∈ N}.
Finally, we define (V, (·, ·)V ) and (W, (·, ·)W ) to be in the same Witt class if there exist split

inner product spaces S and S ′ such that V ⊕S and W ⊕S ′, with their inner products coming

from the orthogonal sum, are isomorphic. Being in the same Witt class is an equivalence

relation, and it turns out that the collection of Witt classes form an abelian group W (R)

under orthogonal sum. The identity is represented by any split inner product space; the

additive inverse of (V, (·, ·)V ) is (V,−(·, ·)V ). In fact, W (R) can be given the structure of

a commutative ring with unity. The multiplication is given by taking tensor products; see

[175].

In the case R = Q, the split inner product spaces are those possessing a Lagrangian

subspace, i.e. a subspace of half the dimension of the vector space on which the pairing

is trivial; see Definition A.5.10. So the split inner product spaces all have signature equal

to 0. In fact, there is a homomorphism W (Q) → Z given by the signature [175, Lemma

III.2.6]. If we replace Q with R, the signature homomorphism in fact yields an isomorphism

W (R) → Z [175, Corollary III.2.7]. This is not the case for Q. The Witt group W (Q) is

fairly complicated; a computation of the group structure can be found in [175, Section IV.2].

36KOn(pt) is periodic and so, in particular, can have non-zero values for negative n. The connective

version is a modification, which can be done for any generalized homology theory that forces these “coefficient

groups” to be 0 for negative n. In the case of bordism theories, we clearly need such an assumption as there

are no spaces of negative dimension and so no nontrivial bordism groups in negative degrees. See [1, Section

III.6] or [198, Section II.4]
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What does this all have to do with bordism theory? In [217], Siegel computed the bordism

groups of oriented PL Q-Witt spaces by showing that

ΩQ−Witt
n

∼=


Z, n = 0,

W (Q), n = 4k, k > 0,

0, otherwise.

When k > 0, the isomorphism w : ΩQ−Witt
4k → W (Q) is given by taking a Witt space X to

the nonsingular cup product pairing on37 In̄H
2k(X;Q). The Witt signature σ(X) is then

the image of w(X) under the signature map W (Q)→ Z.

This bordism computation plugs straight into some work of Sullivan’s from [227]. It

turns out that any class of spaces that has a theory of signatures that behaves like the

Witt signatures38 allows one to define on each such space X a ko-fundamental class [X]ko ∈
ko∗(X)⊗Z[1/2]. Here Z[1/2] is the subring of Q consisting of fractions that can be written

only with powers of 2 in their denominators; tensoring by Z[1/2] kills all 2-primary torsion.

This ko-fundamental class is the ko∗ ⊗ Z[1/2] analogue of the more familiar fundamental

classes for manifolds in ordinary homology.

So now suppose we are given a bordism class in Ω∗(Z) represented by X
f−→ Z for some

closed oriented PL Q-Witt space X. As ko∗(·) ⊗ Z[1/2] is a homology theory, we have

an induced map f : ko∗(X) ⊗ Z[1/2] → ko∗(Z) ⊗ Z[1/2], and this takes [X]ko to a class

f([X]ko) ∈ ko∗(Z) ⊗ Z[1/2]. So, [X
f−→ Z] ∈ Ω∗(Z) determines f([X]ko) ∈ ko∗(Z) ⊗ Z[1/2],

and with a bit more work this construction yields a morphism of homology theories

µ : ΩQ−Witt
∗ (·)⊗ Z[1/2]→ ko∗(·)⊗ Z[1/2].

By Siegel’s computation, the map µ on the space pt looks like the following in degree n:

W (Q)⊗ Z[1/2]→ kon(pt)⊗ Z[1/2], n = 4k, k > 0,

Z⊗ Z[1/2] = Z[1/2]→ ko0(pt)⊗ Z[1/2], n = 0,

0→ kon(pt)⊗ Z[1/2], otherwise.

But these “coefficient maps” all turn out to be isomorphisms! And it follows that µ is an

isomorphism of homology theories; see, for example, [198, Proposition II.3.19]. Thus Witt

bordism turns out to provide a geometric description of the homology theory ko∗(·)⊗Z[1/2].

In fact, the group W (Q)⊗ Z[1/2] actually turns out to be Z[1/2] because W (Q) can be

shown to be the direct sum of Z with a 2-group, i.e. a group whose elements all have order

a power of 2. The signature map W (Q) → Z projects to the Z summand. Thus the same

Sullivan argument can be applied to any bordism theory with an appropriately behaved

signature that characterizes a Z-summand of Ω∗(pt) in dimensions 4k, k ≥ 0, and so that all

37Actually, Siegel worked with the dual intersection pairing on Im̄H2k(X;Q), though the result is the

same.
38See [217] for precise details.
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other bordism group summands are 2-groups. In particular, Ω∗(·)⊗Z[1/2] ∼= ko∗(·)⊗Z[1/2]

for any such bordism theory. We’ll see other examples that fit this framework below.

Another property of Q-Witt bordism is that there is a natural map of bordism theories

b : ΩSO
∗ (·) → ΩQ−Witt(·) because every smooth manifold is automatically a PL Witt space.

Banagl, Cappell, and Shaneson showed in [20, Proposition 2] that the isomorphism µ :

ΩQ−Witt(·) ⊗ Z[1/2] → ko∗(·) ⊗ Z[1/2] together with Sullivan’s work [227] implies that b ⊗
Z[1/2] gives a surjection

ΩSO
∗ (Z,A)⊗ Z[1/2]→ ΩQ−Witt(Z,A)⊗ Z[1/2]

for any compact PL pair (Z,A). Consequently, one can “pull back” bordism invariant

computations for Witt spaces to smooth manifolds, allowing one to invoke the myriad results

of smooth manifold theory. This idea is exploited in [20] to study twisted L-classes and

twisted signatures on Witt spaces.

Finally, let us mention another application of Q-Witt bordism due to Jon Woolf in

[249]. Woolf shows that if Z is a compact polyhedron and i > dim(Z) then ΩQ−Witt
i (Z) is

isomorphic to W c
i (Z), where W c

i (·) is another generalized homology theory defined in terms

certain Witt groups of constructible sheaf complexes on Z over the ground field Q. The

theory W c
∗ (·) is 4-periodic, meaning that W c

i (·) ∼= W c
i+4(·) for all i, and therefore W c

i (·) ∼=
lim−→k

ΩQ−Witt
i+4k (Z). This implies that every self-dual complex of Q-sheaves on Z arises, up to

Witt equivalence, as the pushforward of the intersection chain sheaf complex of some Q-Witt

space, i.e. that all such sheaf complexes are of “geometric origin;” see [249, Section 5.1] for

a precise statement. As an application, it is shown that the L-classes determine homology

operations L∗ : ΩQ−Witt
i (Z) → Hi(Z;Q) obtained by pushing forward to Z the L-classes of

the Q-Witt space X by the map f : X → Z representing an element of ΩQ−Witt
i (Z).

K-Witt spaces. The bordism groups and homology theories for oriented PL K-Witt

spaces for an arbitrary field K are computed in [110, 88]. In [88] it is shown that the

bordism groups depend only on the characteristic of the field, reducing the computations to

those for Q and the fields Zp. We have already seen the Q-Witt bordism groups as computed

by Siegel [217]. For a prime p, we denote the oriented Zp-Witt bordism groups by Ω
Zp−Witt
∗ .

It is shown in [88, Theorem 4.10] that for p 6= 2,

ΩZp−Witt
n

∼=


Z, n = 0,

W (Zp), n = 4k, k > 0,

0, otherwise.

Here W (Zp) is the Witt group of symmetric inner product spaces over Zp. With some further

work, it follows that as a bordism homology theory we have

ΩZp−Witt
n (Z) ∼=

⊕
r+s=n

Hr(Z; ΩZp−Witt
s ), (9.6)
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so for a CW complex Z we do not wind up with quite as interesting a homology theory in

this case. Incidentally, the same formula holds for Q-Witt spaces if we localize39 at 2:

ΩQ−Witt
n (Z)(2)

∼=
⊕
r+s=n

Hr(Z; (ΩQ−Witt
s )(2));

see [16, Section 3] for details.

As observed in [92, 93], the computations given in [88] for the case p = 2 contain an error.

However, it turns out that the Z-oriented bordism groups of Z2-Witt spaces were computed

already by Goresky and Pardon in [110, Section 10.5] to be

ΩZ2−Witt
n

∼=


Z, n = 0,

Z2, n = 4k, k > 0,

0, otherwise.

In dimensions 4k, k > 0, the invariant is the mod 2 Euler characteristic
∑

i dim(Im̄Hi(X;Z2))

mod 2. Note the similarity to Akin’s computation of the bordism groups of mod 2 Euler

spaces [3]. Equation (9.6) continues to hold with p = 2.

The bordism groups for not-necessarily-oriented Z2-Witt spaces were first computed by

Goresky in [114, Section 5.1] to be 0 in odd degrees and Z2 in non-negative even degrees. In

even degrees, the invariant is again the mod 2 Euler characteristic, and in [93] it is shown

that once again the analogue of equation (9.6) holds.

The bordism computations for Q- and Zp-Witt spaces, p 6= 2, all involve the nonsingular

cup or intersection pairing on the Witt space X with coefficients in the corresponding field

and so require the existence of a fundamental class over that field. As for manifolds, the

existence of a Q- or Zp-fundamental class, p 6= 2, is equivalent to the existence of a Z-

orientation. But, also as for manifolds, in the unoriented case we can only be sure to have

Z2-fundamental classes. But there is no reason to suspect that a non-Z-orientable Q- or Zp-
Witt space, p 6= 2, should possess a fundamental class or nonsingular cup product pairing

with coefficients in the corresponding field Q or Zp, nor should we expect such a space to

possess such pairings with Z2 coefficients. Therefore, it is not clear how to begin to study

bordism of unoriented K-Witt spaces when char(K) 6= 2.

IP bordism. Just as we have bordism of Witt spaces, one can define bordism of piecewise

linear IP spaces, and this was done for Z-IP spaces by Pardon in [186]. For the oriented

bordism groups we have

ΩZ−IP
n

∼=


Z, n = 4k, k ≥ 0

Z2, n = 4k + 1, k > 0,

0, otherwise.

39Recall that localization at 2 means taking the tensor product with Z(2), the subring of Q consisting

of fractions that can be written without powers of 2 in their denominators, i.e. Z(2) = Z
[

1
3 ,

1
5 , . . .

]
. So

localization at 2 is something of a complementary process to our above study of Q-Witt bordism away from

2, i.e. after tensoring with Z[1/2].
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In non-negative degrees, these groups correspond to the Mishchenko-Ranicki symmetric L-

groups Ln(Z) for n 6= 1; see [193]. The invariant in dimensions 0 mod 4 is again the signature,

but now in degrees 4k + 1, k > 0, we have a new invariant, the de Rham invariant. The de

Rham invariant is defined on a 4k + 1 dimensional PL oriented IP space by counting mod 2

the number of Z2 summands in the torsion subgroup of Im̄H2k(X).

In [186], Pardon uses these computations together with technology of Sullivan [226] and

Morgan (unpublished) to show that Ω̄∗IP (·)per, a periodic version of the reduced cohomology

theory dual to Z-IP bordism, coincides with the cohomology theory coming from the infinite

loop space G/TOP , which plays an important role in topological surgery theory. It follows

that for a CW complex Z, the group Ω̄0
IP (Z)per is isomorphic to the set of homotopy classes

[Z,G/TOP ]; Pardon calls this result the Characteristic Variety Theorem.

IP bordism yields another instance, as for Q-Witt spaces, where the Sullivan-Siegel ma-

chinery holds, and so, as a homology theory, ΩZ−IP
∗ (·) ⊗ Z[1/2] ∼= ko∗(·) ⊗ Z[1/2]. But in

this case it turns out that we can say more even without inverting 2. The fact that the

groups ΩZ−IP
n correspond to the symmetric L-groups Ln(Z) except when n = 1 suggests that

ΩZ−IP
∗ (·) should be close to the homology theory of the connective symmetric L-spectrum40

L•, which plays an important role in surgery theory and thus in the classification of man-

ifolds (see [194]). Analogously to the fundamental class [X]ko ∈ ko∗(X) ⊗ Z[1/2] that can

be defined for a Q-Witt space X, an IP space can be given a PL invariant fundamental

class [X]L ∈ L•∗(X). A program for developing such fundamental classes was presented by

Banagl41 in [16] based on work of Eppelmann [77], and a detailed proof of all the neces-

sary machinery has been more recently provided by Banagl, Laures, and McClure [23]. In

particular, [X]L is constructed as the image of [X
id−→ X] ∈ ΩIP

∗ (X) under a map of homol-

ogy theories ΩIP
∗ (·) → L•∗(·) induced by a map of spectra (in the derived category). The

class [X]L maps to the total L-class of X in L•n(X) ⊗ Q ∼= ⊕jHn−4j(X;Q). At the same

time, there is an assembly map L•n(X) → Ln(Z[π1(X)]) that takes [X]L to a stratified ho-

motopy invariant called the symmetric signature. The symmetric signature for Witt spaces

was constructed rationally in [99], integrally in [23]; it goes to the usual signature under the

map Ln(Z[π1(X)])→ Ln(Z) induced by the natural coefficient map Z[π1(X)]→ Z. This all

generalizes known results for manifolds. See [23] for details and [193] for further background.

Other “Witt-type” spaces. In a different direction, Goresky and Pardon [110] intro-

duced and studied the bordism groups of several other classes of spaces, most of which are

types of Witt spaces with additional conditions. Quickly summarizing, these are:

s̄-duality spaces. Translated into our language, these are essentially Z2-IP spaces, though

there is also an assumption of no singular strata of codimension ≤ 4. The oriented

bordism groups are the symmetric L groups Ln(Z(2)) [110, Theorem 16.5].

40The connective version of the symmetric L-spectrum is also sometimes written L•〈0〉 or L•〈0〉(Z) to

distinguish it from other variants. Here L• will always mean L•〈0〉(Z).
41The survey [16] is also an excellent expository source in general for the connections between pseudoman-

ifolds, signatures, and bordism theories.

677



Locally square free (LSF) spaces. These are Z2-Witt spaces for which Goresky’s Steen-

rod square operation42 Sq1 : Im̄Hk(L;Z2) → Im̄Hk−1(L;Z2) vanishes on links L of

dimension 2k − 1. The oriented bordism groups are

Ωn
∼=


Z, n = 0,

Z4, n = 4k, k ≥ 1,

Z2, n = 4k + 1, k > 0,

0, otherwise.

Z2-Witt spaces and locally orientable Z2-Witt spaces. We have already mentioned the

computation of oriented Z2-bordism in [110], but as an intermediate between oriented

and unoriented pseudomanifolds, one can also study locally orientable pseudomani-

folds, i.e. those whose links are orientable. The unoriented bordism groups of locally

orientable Z2-Witt spaces are all 2-torsion and can be found in [110, Section 10.5].

Goresky and Pardon also show that the bordism groups of arbitrary locally orientable

pseudomanifolds are Z2 in degrees 2k, k ≥ 0, and 0 otherwise.

The computations in [110] are all carried out using characteristic numbers arising from

intersection homology Wu classes, which are constructed using Goresky’s intersection ho-

mology Steenrod operations. The bordism homology groups are not considered in [110], but

the arguments of [88, Theorem 4.10 and Lemma 4.11] apply to each of these theories for

which the bordism groups are all 2-primary in positive degrees (i.e. all of the examples just

listed except the s̄-duality spaces43), resulting in versions of equation (9.6).

L-spaces. Given the importance we have just seen of signature and pairing information,

it is reasonable to ask what spaces more general than Witt spaces might possess self-dual

pairings and hence signatures. In his thesis, published as [12] and following on earlier work

of Cheeger and Morgan, Banagl showed that it is possible to define such invariants on a class

generalizing the R-Witt spaces. Recall from Proposition 9.1.17 that whether or not a space

is K-Witt relies only on the characteristic of K; so there is no difference between Q-Witt

and R-Witt spaces, but it is simpler for Banagl’s machinery to work over R. Banagl’s spaces

have been rechristened L-spaces (see [6]) due to their connection to L-classes and L•-theory.

The L-spaces are oriented stratified pseudomanifolds possessing sheaf complexes that

satisfy certain axioms, including self-duality under a sheaf-theoretic version of duality called

Verdier duality (see [28, Section V] or Section 10.1.1 for further references). So now the data

now is no longer purely topological. To discuss this sheaf theoretic machinery would take

us too far afield, but the basic idea is as follows. One would like to define a kind of coho-

mology group B∗(X;R) on a stratified pseudomanifold X that lives between the upper and

42The Steenrod operations on mod 2 intersection homology are defined using sheaves and so are beyond

the purview of this book. See [114].
43According to [110, Theorem 16.5], these bordism groups in dimensions 4k, k > 1, are isomorphic to

W
(
Z(2)

)
. By [175, Corollary IV.3.3] there is an exact sequence 0 → W

(
Z(2)

)
→ W (Q) → W (Z2). But

W (Q) contains an infinite cyclic subgroup by [175, Theorem IV.2.1] and W (Z2) ∼= Z2 by [175, Lemma

IV.1.5]. So the positive-degree bordism groups of s̄-duality spaces cannot all be 2-primary.
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lower middle-perversity intersection cohomology groups such that the map In̄H
∗(X;R) →

Im̄H
∗(X;R) factors through B∗(X;R). Furthermore, for a 2n-dimensional L-space, Bn(X;R)

should possess a nonsingular (−1)n-symmetric pairing. It turns out that in order to construct

such a thing it is not completely necessary that Im̄Hk(L;R) vanish for a link of dimension

2k, as is required for a Witt space, but only that the self-pairing on Bk(L;R) that has been

built up inductively on L have a Lagrangian subspace, i.e. a space of half the dimension on

which the pairing vanishes. In other words, Bk(L;R) must be a split inner product space!

Additionally, there is a monodromy condition that requires, roughly speaking, that we can

choose the self-annihilating subspaces consistently for different links as we move around a

stratum. For a given pseudomanifold X, it may or may not be possible to construct such

Lagrangian structures on X by an inductive process over depth: note that to have Bk(L;R)

defined on L, we must have B defined already on the links of L, meaning that we have

already found Lagrangian structures on the lower codimension strata. There is no obstruc-

tion to extending self-duality to even-codimension strata, including the regular strata, so

the inductive process does have a natural starting point. The oriented pseudomanifolds that

possess a compatible choice of Lagrangian structures over their odd-codimension strata are

the L-spaces.

Analogously to Witt spaces, L-spaces possess bordism invariant signatures, where now

the bordisms also must carry self-dual sheaves44. One can even construct L-classes by a

procedure analogous to that of Section 9.4. Banagl showed in [14] that these signatures and

L-classes are independent of the choices of Lagrangian structures involved.

The bordism groups of L-spaces were computed in [12] to be

Ωn
∼=

{
Z, n = 4k, k ≥ 0,

0, otherwise.

Again the invariant in dimension 4k is the signature, and now we see it has become the

only invariant! A version of this type of bordism as a homology theory, called signature

homology Sig∗(·), was introduced by Minatta [177] using Kreck’s stratifolds (see [144]) in

place of pseudomanifolds. Banagl showed in [13] that the homology theory can also be com-

puted using oriented PL pseudomanifolds equipped with triangulations and their simplicial

stratifications, i.e. using the filtration by simplicial skeleta omitting the codimension one

skeleton45.

Minatta showed that signature homology at 2, i.e. when we invert all the other primes,

is just

Sig∗(·)⊗ Z(2)
∼=
⊕
r+s=n

Hr(·; Ωs ⊗ Z(2)) ∼=
⊕
j

Hn−4j(·;Z(2)).

44Note that the result of [94] stating that we achieve identical bordism theories whether or not we pay

attention to stratification data does not consider bordisms involving sheaf complexes. In [12, 177, 13],

the definition of the self-dual sheaf complexes utilizes the stratification, so stratification information seems

unavoidable.
45The version of the theory in [13] uses a slightly more general type of self-dual sheaf complex that

generalizes intersection homology with local coefficient systems. Interestingly, this does not alter the bordism

computations.
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Similarly,

Sig∗(·)⊗Q ∼=
⊕
j

Hn−4j(·;Q).

But, once again, Sullivan’s work implies that when we invert just 2 in this sort of homology

theory the result is an isomorphism

Sig∗(·)⊗ Z[1/2] ∼= ko∗(·)⊗ Z[1/2].

Using this isomorphism, one can construct a Sullivan orientation [X]ko ∈ ko∗(X) ⊗ Z[1/2]

for an L-space X as the image of the signature fundamental class [X]Sig ∈ Sig∗(X). The

class [X]Sig is represented by (X,S)→ X, where S is a self-dual sheaf complex over X and

the map is the identity on X and discards the sheaf information. Furthermore, if MSIG

is the spectrum representing signature homology, there is a map of spectra MSIG → L•,
and this map homotopy splits, implying that signature homology is a direct summand of L•
homology. However, as shown by Banagl in [16], if M is a manifold (and so automatically

carries a self-dual sheaf), the image of [M ]Sig in L•∗(M) is not necessarily the L•∗ fundamental

class [M ]L. Thus, unlike the case of IP bordism where such a map ΩIP
∗ (·) → L•∗(·) can be

used to define an L-fundamental class on an IP space by a procedure that yields the “correct”

classical result when applied to manifolds, such a procedure does not extend in a manifold-

compatible way to L-spaces by way of signature homology.

Finally, we mention that the Banagl-Cappell-Shaneson argument [20], which we discussed

above for Q-Witt spaces, also generalizes to show there is a surjection ΩSO
∗ (·) ⊗ Z[1/2] →

Sig∗(·) ⊗ Z[1/2]. This is used in [13] to construct twisted L-classes and twisted signatures

on L-spaces.

Novikov conjectures. To conclude, we briefly discuss some relations between these circles

of ideas and the Novikov Conjecture, one of the most famous open problems in topology. The

story begins with the observation that the signature of a manifold is an oriented homotopy

invariant. In other words, if f : M1 → M2 is a homotopy equivalence of manifolds that is

compatible with the orientations in the sense that f takes ΓM1 to ΓM2 , then σ(M1) = σ(M2).

This follows directly from the homotopy invariance of cohomology theory and the naturality

of cup and cap products. We know that signatures are intimately related to L-classes, but

the L-classes are not homotopy invariant. In fact, the L-classes, and the closely related Pon-

trjagin classes, are often used as the tool to show two homotopy equivalent manifolds are not

equivalent in some stronger sense such as homeomorphism or diffeomorphism. For example,

Pontrjagin classes are used in Milnor’s proofs that there manifolds that are homeomorphic

but not diffeomorphic and that there are topological manifolds with no smooth structure

[174].

The Novikov Conjecture concerns the homotopy invariance of higher signatures. Given

a group G, let BG = K(G, 1) be its first Eilenberg-MacLane space (see [125, Section 1B]).

Given a connected space X, there is a bijection between maps π1(X) → G and basepoint-

preserving homotopy classes of map X → BG [125, Proposition 1B.9]. Each such map

r : X → BG determines a covering space of X by pulling back the universal cover of BG,
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so, for a manifold M , the data (M, r : M → Bπ1(M)) can be thought of as prescribing M

together with one of its coverings.

Now, for each x ∈ H∗(Bπ1(M);Q), define the higher signature sigx(M, r) to be the

number sigx(M) = a((L∗(M) ^ r∗(x)) _ ΓM) ∈ Q, where L∗(M) is the cohomological

L-class of M . If r is the trivial map and x = 1 ∈ H0(Bπ1(M);Q), we recover the usual

signature of M . Using basic properties of (co)homology and that the cohomology L-classes

are nontrivial only in dimensions a multiple of 4, we can also write

sigx(M) = a((L∗(M) ^ r∗(x)) _ ΓM)

= a((r∗(x) ^ L∗(M)) _ ΓM)

= a(r∗(x) _ (L∗(M) _ ΓM))

= a(r∗(x) _ L∗(M))

= a(x _ r(L∗(M))),

where L∗(M) are the homology L-classes (see Proposition 9.4.8).

The Novikov Conjecture is that the higher signatures are all oriented homotopy invari-

ants, i.e. that if f : M1 → M2 is an orientation-preserving homotopy equivalence and

r : M2 → Bπ1(M1) = Bπ1(M2), then sigx(M2, r) = sigx(M1, rf). The Novikov Conjec-

ture is related to several other important conjectures in manifold theory, including the Borel

conjecture, which states that a homotopy equivalence between closed aspherical manifolds,

i.e. those for which πi(M) = 0 for i > 1, must be homotopic to a homeomorphism. For more

about the Novikov Conjecture, the reader can consult any number of surveys, including

[145, 79, 194, 66, 195].

The oriented homotopy invariance of the higher signatures turns out to depend only on

properties of the group G = π1(M), and in fact, for a given such G, it holds if and only if

the assembly map L•∗(BG)→ L∗(Z[G]) is a split injection over Q. This is known to hold for

several classes of groups, for example free abelian groups, but the conjecture that it holds

for all discrete groups has not been proven.

Returning to pseudomanifolds, we know that Q-Witt spaces, and so IP -spaces, possess

homology L-classes, and so the higher signatures sigx(X) = a(x _ r(L∗(X))) are defined

and one can formulate the Stratified Novikov Conjecture - that these higher signatures are

oriented stratified homotopy type invariants. It is shown in [23] that the stratified Novikov

Conjecture holds for groups for which the Novikov Conjecture holds. An analytic version of

this result, using Dirac operators on the regular strata, had previously been proven in [6].

In fact, many of the topics of this section can be covered from an analytic viewpoint and

connect with more analytic formulations of the Novikov and related conjectures; see [5, 6].

Signature homology also allows for an “integral refinement” of the Novikov Conjecture:

Minatta shows in [177] that if we take the signature homology fundamental class [M ]Sig
of a closed oriented manifold M and tensor with Q, then the resulting class in Sig∗(M) ⊗
Q ∼= ⊕jHn−4j(M ;Q) is just the rational homology L-class. It follows that the Novikov

Conjecture for π1(M) is equivalent to the oriented homotopy invariance of the image of

[M ]Sig in Sig∗(Bπ1(M)) ⊗ Q induced by r : M → Bπ1(M). This leads to the following

question due to Matthias Kreck, which can be viewed as an integral refinement of the Novikov
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Conjecture: when is r([M ]Sig) ∈ Sig∗(Bπ1(M)) an oriented homotopy invariant? Unlike the

Novikov Conjecture, there are groups for which such homotopy invariance is known to fail,

but it remains to classify for precisely which groups invariance holds. The fact that we

have maps Sig∗(·)→ L•∗(·) allows us to compose with the assembly map to obtain signature

homology assembly maps Sig∗(BG) → L∗(Z[G]), which, as noted by Banagl [16], might

be useful in attacking such questions. Of course as signature homology and L•-homology

agree rationally, another integral refinement, due to Ranicki, is to ask when the L•-homology

fundamental class is a homotopy invariant. As previously noted, it is well known that the L-

classes are not generally homotopy invariants and so similarly the L•-homology fundamental

class is not generally a homotopy invariant. But as signature homology is a summand of

L•-homology, it is possible there may be groups for which signature homology fundamental

classes are homotopy invariants while L•-homology fundamental classes are not.
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Chapter 10

Suggestions for further reading

This chapter contains some suggestions for further reading, principally, though not exclu-

sively, other expository sources. As noted in the preface, there are by now hundreds, if not

thousands, of works that involve intersection homology and related topics in some way, and

so the discussion here will be limited to a small fraction of the possible routes the interested

reader might explore. The suggestions that are provided necessarily reflect the author’s own

limited knowledge and particular interests, with his apologies for all that has been omitted

due to ignorance or poor judgment. Of course many further references can be found in the

works cited below, especially [140].

10.1 Background, foundations, and next texts

This section refers mostly to preparatory texts, especially those that will get the reader up

to speed on the sheaf-theoretic version of intersection homology. This is the language in

which many papers using intersection homology are formulated1 and so is a prerequisite for

many (though not all) of the other sources considered.

The sheaf-theoretic approach to intersection homology involves not just sheaf theory

but also derived categories and Verdier duality. We provide below some suggestions for

deeper background immersion, but the the following textbook expositions are mostly self-

contained, including either overviews or more thorough treatments of all the material they

1We should provide here one important terminological warning. In sheaf theory, one typically works

with cohomologically-graded complexes and computes what is called “sheaf cohomology,” or, starting from

a complex of sheaves, “hypercohomology.” Thus sheaf-theoretic sources tend to speak of “intersection

cohomology,” which is typically isomorphic, at least on compact spaces, to our “intersection homology;”

on non-compact spaces, sheaf-theoretic intersection cohomology (with closed supports) would correspond to

intersection homology formed using locally-finite chains, i.e. chains that may be formal sums of an infinite

number of simplices (with coefficients) but such that every point in the space has a neighborhood intersecting

the supports of only a finite number of simplices. In the sheaf-theoretic world, the dual theory is then also

a version of (hyper)cohomology but applied to a sheaf complex obtained via the Verdier duality functor,

which is the appropriate generalization of our Hom duals. The sheaf-theoretic version of Poincaré duality

then says that the Verdier dual of the sheaf complex that computes perversity p̄ intersection homology is

the sheaf complex that computes the Dp̄ intersection homology. This is all explained in the cited references,

but the reader is cautioned to exercise care in properly interpreting the word “cohomology.”
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require beyond basic algebraic topology:

• Markus Banagl, Topological Invariants of Stratified Spaces [11]. This text contains all

the relevant background details on sheaf theory, derived categories, and Verdier du-

ality, a thorough treatment of sheaf-theoretic intersection homology, and applications

to characteristic classes, signatures, and their computations. The book also features

introductions to related topics, including t-structures, perverse sheaves, characteristic

classes on “non-Witt spaces,” and L2 cohomology.

• Frances Kirwan and Jonathan Woolf. An Introduction to Intersection Homology The-

ory, Second Edition [140]. The primary aim of this text is to provide an accessible

overview of some of the most important applications of intersection homology, espe-

cially to fields beyond topology. As such, it does provide the necessary background

material on sheaves and derived categories, but in a briefer treatment than is found in

[11]. The bulk of the content is then dedicated to very readable accounts concerning the

extension of the Kähler package to singular varieties, L2-cohomology, perverse sheaves,

intersection cohomology of fans and Stanley’s conjectures on the combinatorics of poly-

topes, the Weil conjectures for singular varieties, D-modules and the Riemann-Hilbert

correspondence, and the Kazhdan-Lusztig conjecture. This is a great starting point

for those interested in aspects of intersection homology in other areas than those con-

sidered below, and it contains many suggestions for further reading, some of which we

repeat here.

• Jean-Paul Brasselet. Introduction to Intersection Homology and Perverse Sheaves [34].

Billed in the introduction as an “exploratory travel,” this short book provides many

hands-on examples, as well as introductions to sheaf theory, perverse sheaves, and the

various approaches to intersection cohomology by differential forms.

• A. Borel et al., Intersection Cohomology [28]. This book is a collection of seminar

notes by various authors, including Goresky and MacPherson, and it is not quite as

self-contained as the others. The reader is assumed to already have some familiarity

with sheaf theory and derived functors. The derived category is introduced in Section

V.5 but some prior exposure wouldn’t hurt. However, the reader who has acquired

some of this background will find this to be both a readable exposition and an excellent

resource. No prior knowledge of intersection homology is required, and the basic defi-

nitions and sheaf-theoretic approach are built up through the first few chapters. Many

technical details concerning constructible sheaves that were not addressed directly in

the original sheaf development of intersection cohomology by Goresky-MacPherson

[106] can be found in Chapter V, in which Borel provides a thorough treatment of all

the underlying machinery.
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10.1.1 Deeper background

Sheaf theory

As we discussed briefly in Section 8.1.3, sheaves can be thought of as generalized bundles

of groups for which the group is allowed to vary from point to point on a space. Hence

sheaf theory, which has many uses throughout mathematics, is particularly well suited to

stratified phenomena, where the local structure of a space varies from stratum to stratum.

Sheaf cohomology then provides a way to patch these local structures together to yield global

invariants.

While most of the texts listed above provide overviews of the sheaf theory they need, the

interested reader might desire a more thorough background concerning both sheaves and the

related homological algebra. Here are some suggestions to take the novice to sheaf theory

up through sheaf cohomology:

• B.R. Tennison, Sheaf Theory [232]. This is an elementary introduction that introduces

all of the relevant homological algebra, including derived functors.

• Richard G. Swan, The Theory of Sheaves [229]. This is another nice introduction for

beginners, though some of the notation has become somewhat outdated (for example,

what are usually called “presheaves” are here called2 “stacks.”)

• Glen Bredon, Sheaf Theory, Second Edition [37]. This a very detailed account, perhaps

better suited as a reference than as a first introduction (we have utilized this text as

a reference at several points in the text). However, a good first course on sheaf theory

could be assembled from Chapter I, Sections 1-10 of Chapter II, Chapter III, and

Sections 1-8 of Chapter IV.

• Roger Godement, Topologie Algébrique et Théorie des Faisceaux [104]. This is the

classic introduction to sheaf theory, only available in the original French and in Russian.

Derived categories and Verdier duality

Sheaf cohomology is a derived functor, as are Ext and Tor: to compute any of these, one

replaces the initial object (a sheaf, a group, a module, . . . ) with an appropriate resolution

(by a complex of sheaves, groups, modules, . . . ), applies a functor to the resolution, and

then takes (co)homology groups. It turns out that there is value in working in a category

of complexes to begin with and in identifying objects (thought of as complexes that are

trivial except in a single degree) with their resolutions. This leads to the notion of derived

categories. Derived categories are constructed analogously to localizations in ring theory,

but, rather than formally inverting elements, one formally inverts the morphisms that induce

(co)homology isomorphisms, thus making all the resolutions of the same object isomorphic

in the derived category itself (before taking (co)homology). As an intermediate between the

2On page 25 of [229], Swan notes that “pre-sheaf” is the older term for “stacks,” so presumably “presheaf”

made a revival!

685



original category and the derived category, one also has the homotopy category in which

maps that are homotopic in an appropriate sense are identified (just as one can work in

the homotopy category of topological spaces by treating homotopic maps as equivalent).

Unfortunately, homotopy and derived categories are no long abelian categories, meaning

roughly that certain standard algebraic constructions such as forming kernels and cokernels

no longer apply. Rather, these are examples of triangulated categories, which do have other

useful formal properties. An important construction in the derived category of sheaves is

the Verdier dualizing functor, a generalization of Hom(·, R) that plays a critical role in

sheaf-theoretic proofs of intersection homology Poincaré duality.

Here are some sources for this material:

• S.I. Gelfand and Yu I. Manin, Methods of Homological Algebra, Second Edition [102].

While not primarily focused on sheaf theory, this text contains a good account of

derived and triangulated categories in Chapters III and IV. Section III.8 treats appli-

cations to sheaf theory, including Verdier duality (although it doesn’t use that name).

• Alexandru Dimca, Sheaves in Topology [70]. Dimca’s book is motivated by applications

of sheaf theory to topology and contains material on derived categories and Verdier

duality, as well as perverse sheaves and other topics related to intersection homology.

• Robin Hartshorne, Residues and Duality [124]. While these notes are ultimately con-

cerned with a more specialized topic in algebraic geometry, the first chapter provides

an introduction to triangulated categories and derived categories and functors.

• Masaki Kashiwara and Pierre Schapira, Sheaves on Manifolds [137]. This is a more

advanced book primarily concerned with “microlocal analysis.” However, it does in-

clude background on numerous topics including derived categories, sheaves, Verdier

duality, constructible sheaves, and perverse sheaves. It is probably better consulted as

a reference than as an introduction. We should also mention [138] by the same authors,

which treats categories and sheaves from a quite general abstract categorical point of

view.

• B. Iversen, Cohomology of Sheaves [135]. This is another more advanced text that

includes treatments of hypercohomology of sheaf complexes and Verdier duality on

locally compact spaces.

10.2 Bordism

Various flavors of pseudomanifold bordism and signatures, as well as stratified versions of the

Novikov conjecture, have already been discussed in Section 9.5. For the reader who wishes to

pursue these topics further, we collect again here the references already provided, referring

the reader back to that section for further discussion and context. With the exception of

[16], none of these papers are primarily intended as expositions.

• Ethan Akin, Stiefel-Whitney homology classes and bordism [3]

686



• Pierre Albin, Éric Leichtnam, Rafe Mazzeo, and Paolo Piazza, The Novikov conjecture

on Cheeger spaces [6]

• Pierre Albin, Éric Leichtnam, Rafe Mazzeo, and Paolo Piazza, The signature package

on Witt spaces [5]

• Markus Banagl, Computing twisted signatures and L-classes of non-Witt spaces [13]

• Markus Banagl, Extending Intersection Homology Type Invariants to Non-Witt Spaces

[12]

• Markus Banagl, The L-class of non-Witt spaces [14]

• Markus Banagl, The signature of singular spaces and its refinements to generalized

homology theories [16]

• Markus Banagl, Sylvain Cappell, and Julius Shaneson, Computing twisted signatures

and L-classes of stratified spaces [20]

• Markus Banagl, Gerd Laures, and James E. McClure, The L-homology fundamental

class for IP-spaces and the stratified Novikov conjecture [23]

• Greg Friedman, Intersection homology with field coefficients: K-Witt spaces and K-

Witt bordism [88] (see also [92, 93])

• Greg Friedman, Stratified and unstratified bordism of pseudomanifolds [94]

• R. Mark Goresky, Intersection homology operations [114]

• Mark Goresky and William Pardon, Wu numbers of singular spaces [110]

• Augusto Minatta, Signature homology [177]

• William L. Pardon, Intersection homology Poincaré spaces and the characteristic va-

riety theorem [186]

• P.H. Siegel, Witt spaces: a geometric cycle theory for KO-homology at odd primes

[217]

• Jon Woolf, Witt groups of sheaves on topological spaces [249]

10.3 Characteristic classes

As noted in the introduction to Section 9.5, their is an extensive theory of characteristic

classes on stratified spaces, encompassing many different constructions and viewpoints. We

provided there a sampling of expository references, which we list again here, excluding Ba-

nagl’s [11], already listed above.
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• Paolo Aluffi, Characteristic classes of singular varieties [9]

• Jean-Paul Brasselet, From Chern classes to Milnor classes—a history of characteristic

classes for singular varieties [33]

• Jean-Paul Brasselet, Characteristic classes and singular varieties [32]

• Jean-Paul Brasselet, José Seade, and Tatsuo Suwa, Vector Fields on Singular Varieties

[35]

• Laurent, iu Maxim and Jörg Schürmann, Characteristic classes of mixed Hodge modules

and applications [164]

• Adam Parusiński, Characteristic classes of singular varieties [187]

• Jörg Schürmann, Lectures on characteristic classes of constructible functions [207]

• Jörg Schürmann, Nearby cycles and characteristic classes of singular spaces [208]

• Jörg Schürmann and Shoji Yokura A survey of characteristic classes of singular spaces

[209]

• Tatsuo Suwa, Characteristic classes of singular varieties [228]

10.4 Intersection spaces

Intersection homology theory recovers duality on stratified spaces by altering the homology

theory depending on perversities. Banagl’s theory of intersection spaces instead modifies

the spaces in such a way that duality is recovered using ordinary homology. The resulting

intersection space homology is different from intersection homology, though closely related

to it, and so provides new invariants for stratified spaces.

• Markus Banagl, Intersection spaces, spatial homology truncation, and string theory

[15], introduces intersection spaces as well as developing the homotopy-theoretic un-

derpinnings of the spatial homology truncation used in their construction. Further work

on intersection spaces, including extending the construction to more stratified spaces,

developing connections to de Rham and L2 cohomologies, and studying applications

to algebraic varieties can be found in [25, 17, 24, 19, 18, 166, 21, 142, 143, 22].

10.5 Analytic approaches to intersection cohomology

For those of a more analytic bent, there are several ways to define versions of intersection

cohomology using differential forms. We provide some introductory references to each.
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10.5.1 L2 cohomology

Originally developed by Cheeger independently of intersection homology [58, 59, 60], the idea

of L2 cohomology on stratified spaces is to consider differential forms on the regular strata

that are square integrable (in an appropriate sense) with respect to an appropriately-chosen

metric that reflects the stratified structure of the full space. On Witt spaces, Cheeger’s

original metrics turn out to give middle perversity intersection homology. Here are some

further accounts:

• Jeff Cheeger, On the Hodge theory of Riemannian pseudomanifolds [59]. This is an

early expository account by Cheeger of his work on L2 cohomology and its relation to

intersection homology.

• Xianzhe Dai, An introduction to L2 cohomology [64]. This is a short introduction to

L2 cohomology and L2 signatures.

• Leslie Saper and Steven Zucker, An Introduction to L2-cohomology [202]. This is

another introductory survey that discusses both the connection to intersection coho-

mology and L2 Hodge decompositions for varieties endowed with Kähler metrics.

• Eugénie Hunsicker, Hodge and signature theorems for a family of manifolds with fibre

bundle boundary [134]. The previous items concern only L2 cohomology that cor-

responds to the middle perversity intersection homology groups. In this paper, the

author demonstrates metrics that yield intersection homology with other perversities.

• Pierre Albin, On the Hodge theory of stratified spaces [4]. This is a survey of recent

work on L2 Hodge theory, including a discussion of the Novikov conjecture for stratified

spaces.

10.5.2 Perverse forms

Another approach to a de Rham theory of intersection cohomology does not use metrics

to control differential forms defined on the top strata but rather places restrictions on the

vanishing behavior of the forms in certain directions as they approach the singularities. This

notion is very analogous to how the singular chain theory limits the intersection dimension

of chains with strata. Such differential forms are sometimes called perverse forms.

• Jean-Luc Brylinski, Equivariant intersection cohomology [39]. This is the first imple-

mentation of the perverse forms construction, following a suggestion of Goresky and

MacPherson.

• J.P. Brasselet, G. Hector, and M. Saralegi, Theéorème de deRham pour les variétés

stratifiées [31]. Using a slight modification of the definition of perverse forms in [39],

this paper provides a de Rham theorem relating cohomology of perverse forms to

intersection homology by integration. This work is generalized to a broader range of

perversities by Saralegi in [203, 204]; in particular [204] contains Saralegi’s construction

of non-GM intersection homology, which we discussed in Section 6.2.3.
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Chataur-Saralegi-Tanré theory

The previous approaches to intersection homology using differential forms all assume smooth

manifold regular strata on which differential forms satisfying various properties can be placed.

Recent exciting work by David Chataur, Martin Saralegi, and Daniel Tanré takes these ideas

a step further by constructing for any stratified space a complex of differential forms that

live, roughly speaking, on the appropriately-restricted singular simplices of the space. This

construction is thus inspired by Dennis Sullivan’s approach to rational homotopy theory.

• David Chataur, Martintxo Saralegi-Aranguren, and Daniel Tanré, Intersection Co-

homology, Simplicial Blow-up and Rational Homotopy [56]. The is the initial work

containing all the basic details. Follow-up works, which are interesting in their own

right and touch on many of the topics of this text, include [54, 53, 51, 52, 55, 57].

10.6 Stratified Morse Theory

Just as manifolds admit handle decompositions using Morse functions, sufficiently nice strati-

fied spaces admit stratified analogues whose behavior near singularities of the Morse function

is classified using intersection homology rather than ordinary homology. Stratified Morse

Theory is also deeply related to the theory of perverse sheaves3, which is considered in the

next section of references.

• Mark Goresky and Robert MacPherson, Morse theory and intersection homology theory

[107]. This is a survey paper by the inventors of stratified Morse theory.

• Mark Goresky and Robert MacPherson, Stratified Morse Theory [109]. This book

provides the full account of the authors’ stratified Morse theory.

• David B. Massey, Stratified Morse theory: past and present [159]. Another survey of

Stratified Morse Theory that includes several applications.

• Jörg Schürmann, Topology of singular spaces and constructible sheaves [206]. This book

contains several more advanced applications of the theory of constructible sheaves,

including a development of stratified Morse theory for constructible sheaves.

10.7 Perverse sheaves and the Decomposition Theo-

rem

Perverse sheaves constitute a certain category of sheaf complexes4 that generalize those

whose cohomology gives intersection homology. In fact the intersection sheaves are the

3On a complex analytic variety, the middle perversity perverse sheaves are exactly those whose normal

Morse data vanishes except in a single degree; see [206, Remark 6.04]. Thanks to Jon Woolf for pointing

this out to me.
4The famous quip, dating back to [26] itself, is that perverse sheaves are neither sheaves nor perverse;

they are sheaf complexes and they behave rather nicely.
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simple objects of this category. In the words of Kapranov and Schechtman, “The notion of

a perverse sheaf. . . has come to play a central role in algebraic geometry and representation

theory” [136]. As such, there are several good introductions, including [11, 140, 70], which

have already been mentioned. Many more introductory notes can be found by searching

online. We mention here only the following few examples:

• Alexander Bĕılinson, Joseph Bernstein, and Pierre Deligne, Faisceaux pervers [26].

This famous work, often known as “BBD,” introduced perverse sheaves and used them

to prove the equally famous Decomposition Theorem concerning the homological be-

havior of proper maps between algebraic varieties.

• Mark Andrea A. de Cataldo and Luca Migliorini, The decomposition theorem, per-

verse sheaves and the topology of algebraic maps [68]. This is an expository survey of

perverse sheaves and the Decomposition Theorem, including several approaches and

applications.

• Robert MacPherson, Intersection Homology and Perverse Sheaves [156]. These unpub-

lished5 colloquium notes provide an approach to perverse sheaves through stratified

Morse theory.

• Geordie Williamson, Algebraic representations and constructible sheaves [247]. This is

a recent set of lecture notes in which one can see applications of intersection homology,

perverse sheaves, and the Decomposition Theorem to the Kazhdan-Lusztig conjecture

of representation theory. See also [76].

• David B. Massey, Notes on perverse sheaves and vanishing cycles [158]. Some notes

on perverse sheaves with applications to the nearby and vanishing cycles associated to

the Milnor fiber of an analytic singularity.

10.8 Hodge theory

Hodge theory, in the form of Hodge decompositions, signature theorems, and further gen-

eralizations, extends to singular algebraic varieties using intersection homology. As such,

Hodge theory already appears and has an important role in some of the references we have

already cited, including [68, 76, 164, 202]. Here are some further references in this direc-

tion. Some additional background in algebraic geometry and Hodge theory would be useful,

though most of these sources provide at least some review and, of course, further references.

• Morihiko Saito, Introduction to mixed Hodge modules [200] and A young person’s guide

to mixed Hodge modules [201]. These expository works provide an introduction to

Saito’s [199], which first established intersection homology notions of Hodge theory.

5Once hard to find, copies have begun to appear on the internet and can now usually be found with a

bit of web searching.
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• Eduard Looijenga, Cohomology and intersection homology of algebraic varieties [154].

This is a general introduction to the algebraic topology of complex algebraic varieties,

including the extensions to singular varieties using intersection homology.

• Chris A.M. Peters and Joseph H.M. Steenbrink, Mixed Hodge structures [188]. This is

a full textbook account of mixed Hodge structures.

• Sylvain E. Cappell, Laurent, iu G. Maxim, and Julius L. Shaneson, Euler characteristics

of algebraic varieties [44] and Hodge genera of algebraic varieties. I [45]; Sylvain E.

Cappell, Anatoly Libgober, Laurent, iu G. Maxim, and Julius L. Shaneson, Hodge genera

of algebraic varieties. II [43]. These papers apply intersection homology Hodge theory

to obtain formulas for characteristic classes of singular varieties.

10.9 Miscellaneous

• Shmuel Weinberger, The Topological Classification of Stratified Spaces [238]. This

expanded version of seminar notes provides a blueprint for adapting surgery theory to

the classification of stratified spaces.

• Dirk Schütz, Intersection homology of linkage spaces [210] and Intersection homology

of linkage spaces in odd-dimensional Euclidean space [211]. These two recent papers

provide an application of PL intersection homology to the study of linkage spaces.

• Jonathan Woolf, The fundamental category of a stratified space [250] and Transversal

homotopy theory [251]; David A. Miller, Strongly stratified homotopy theory. These

papers explore various interesting aspects of the homotopy theory of stratified spaces.

• Richard P. Stanley, Recent developments in algebraic combinatorics [222]. This is

a survey treatment of Stanley’s work on the combinatorics of polytopes, including

applications of intersection homology to the proof of the g-theorem.

• Martintxo Saralegi-Aranguren and Robert Wolak, Poincaré duality of the basic inter-

section cohomology of a Killing foliation [205]. This is one of the most recent papers

concerning basic6 intersection cohomology of singular foliations. It contains several

references to previous work in this area.

• Sylvain E. Cappell and Julius L. Shaneson, Singular spaces, characteristic classes, and

intersection homology [46]; Laurent, iu Maxim, Intersection homology and Alexander

modules of hypersurface complements [165]; Greg Friedman, Intersection Alexander

polynomials [82]. These papers all explore applications of intersection homology to

embeddings such as knots and hypersurfaces.

6“Basic” is a technical term in foliation theory, essentially referring to objects whose information content

is transverse to the leaves of the foliation.
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• Greg Friedman, Eugénie Hunsicker, Anatoly Libgober, and Laurent, iu Maxim (editors),

Topology of Stratified Spaces [97]. These conference proceedings contain a variety of

survey articles, including [64, 16], already mentioned above.
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Appendix A

Algebra

We here compile some useful facts from homological algebra, though many other bits are

developed elsewhere in the main body of the text closer to where they are needed. This

section can be thought to comprise “background results,” including facts that are well known

but not always easy to pinpoint in the literature or facts that are easy to pinpoint with certain

restrictions, e.g. R being a PID, but for which we need slight generalizations, e.g. R being

a Dedekind domain. We also recall some standard definitions for the reader’s convenience.

Some of this material overlaps with material treated in more detail elsewhere in the text.

We always assume that our rings R are commutative with unity.

A.1 Koszul sign conventions

A.1.1 Why sign?

Signs are unavoidable in algebraic topology. As a first example, we know that to define the

boundary map in a simplicial chain complex we need to take alternating sums in formulas

that look something like ∂[0, . . . , n] =
∑n

i=1(−1)i[0, . . . , î, . . . , n]. The signs are necessary to

ensure that ∂ ◦ ∂ = 0. But even once we’ve moved on from concrete geometric constructions

to higher-level algebraic gizmos, there are still signs. For example, the reader likely knows

that if α, β ∈ H∗(X) are cohomology classes, then α ^ β = (−1)|α||β|β ^ α. Here we use

the notation | · | to take the degree of an element. So if α ∈ H i(X), then |α| = i.

Unfortunately, there are a variety of conventions for manipulating signs, and keeping all

the signs consistent is certainly a nuisance. So why do we need them? Let’s see that even

when we move beyond topological constructions to pure homological algebra, we still can’t

do without them. Here’s one example: Suppose C∗ and D∗ are chain complexes. We will

always mean chain complexes of R-modules though we often omit the R from the explicit

notation. Then one can form the tensor product chain complex C∗ ⊗ D∗. The module in

degree n is sensibly defined to be (C∗ ⊗D∗)n = ⊕i+j=nCi ⊗Dj. But how should we define

the boundary map? We can’t let1 ∂(c⊗ d) = (∂c)⊗ (∂d), because such a map would lower

1We will typically rely on context to make it clear which chain complexes our boundary maps are being

compute in, in which case we simply write ∂ for all the boundary maps in a formula. If necessary for clarity,
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degree by two. Another attempt, closer to the formula the reader might have seen, would be

∂(c⊗ d) = (∂c)⊗ d+ c⊗ ∂d. The problem then is that, after simplification and using that

∂ ◦ ∂ = 0 in C∗ and D∗, we would have ∂ ◦ ∂(c⊗ d) = 2(∂c)⊗ (∂d). But we need ∂ ◦ ∂ = 0

in C∗ ⊗D∗ as well. One solution: set

∂(c⊗ d) = (∂c)⊗ d+ (−1)|c|c⊗ ∂d. (A.1)

The reader can check that indeed ∂◦∂ = 0. So signs are unavoidable even in pure homological

algebra.

So, which signs? There are other options that would work to define the boundary map of

C∗⊗D∗ and get a chain complex. For example ∂(c⊗d) = (−1)d∂(c)⊗d+c⊗∂d. Ultimately,

it is a matter of definition. There are some requirements; e.g. we want to make C∗ ⊗ D∗
into a chain complex. But how precisely to do that is often a matter of aesthetics and good

compatibility with other sign conventions so that we wind up with “nice” formulas down the

road. It also requires some care for sign conventions to be consistent in the sense that, for

example, if some other construction is equivalent to forming a tensor product, then its sign

convention should be compatible with that on the tensor product. Otherwise, we have some

flexibility, and the Koszul convention that we will discuss has turned out to be favored in

homological algebra. So how does it work?

One nice feature of the formula ∂(c⊗ d) = (∂c)⊗ d+ (−1)|c|c⊗ ∂d is that the sign only

appears when the symbol ∂ jumps past the symbol c. If we assign ∂ the degree −1 (since

it lowers degrees by 1), then the sign (−1)|c| = (−1)|∂||c| is determined from the product of

the degrees of the symbols being interchanged. This is what we see also in the cup product.

This particular notion is called the Koszul sign convention. In this section, we review some

important occurrences of the Koszul sign conventions, as well as an important place where

we deviate from it in order for things to work out elsewhere2; some further reference and

details can be found in [71, Section VI.10] or [155, Section II.3].

A.1.2 Homological versus cohomological grading

Before going on, we should discuss the fact that there are two grading conventions in common

usage: homological, with degree index written as a subscript, and cohomological, with degree

index written as a superscript. For the purpose of formulas involving both types of objects,

it is often useful to employ the convention C∗ = C−∗. In other words, if C∗ is a chain complex

with homological indexing, then it can be made into a chain complex with cohomological

indexing by defining Ci = C−i and letting d : Ci → Ci+1 correspond to ∂ : C−i → C−i−1.

Of course this changes the degree of an element by a sign, but as we are typically most

interested only in the parity of a degree, this usually causes no trouble.

Warning: When employing this convention, we need to be careful not to confuse this

with the convention of letting S∗(X) denote the singular chain complex on X and S∗(X)

denote the singular cochain complex whose groups are Hom(S∗(X),Z).

we will write things like ∂C∗ for the boundary map in C∗.
2As mentioned, this is all a nuisance.
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Throughout the book, we use ∂ to denote the boundary map in a homologically graded

chain complex and d to denote the (co)boundary map in a cohomologically graded chain

complex.

A.1.3 The chain complex of maps of chain complexes

Many of our sign conventions involve not just elements with associated degrees but maps

with degrees. Let us recall how this works.

For working with homomorphisms of chain complexes of R-modules, say f : C∗ → D∗,

that might raise or lower the degree, it is useful to define the chain complex of R-modules

Hom∗(C∗, D∗). These R-modules are defined so that Homn(C∗, D∗) consists of homomor-

phisms that raise the degree by n. In other words, Homn(C∗, D∗) =
∏

i Hom(Ci, Di+n) so

that an element f ∈ Homn(C∗, D∗) consists of a collection of R-module homomorphisms

fi : Ci → Di+n for all i ∈ Z. For example, the boundary map of C∗ determines an element

∂C∗ ∈ Hom−1(C∗, C∗).

Let us observe that this definition is consistent with the indexing typically used in al-

gebraic topology to define the cochain complex Hom(S∗(X),Z). Here Z is treated as a

homologically-graded chain complex that is 0 except in degree 0, where it is Z. An element

f ∈ Homn(S∗(X),Z) corresponds to an element of
∏

i Hom(Si(X), (Z)i+n), and the compo-

nents are trivial unless i = −n. So Homn(S∗(X),Z) ∼= Hom(S−n(X),Z). In cohomological

indexing this translates to Homn(S∗(X),Z) = Hom−n(S∗(X),Z) ∼= Hom(S−n(X),Z). So

this is consistent with our notion of an n-cochain as something that acts on an n-chain.

So far we have defined the modules Homn(C∗, D∗). The boundary map of this complex

is defined so that if f ∈ Homn(C∗, D∗), meaning |f | = n, then3

∂Hom∗(C∗,D∗)f = ∂D∗f − (−1)|f |f∂C∗ . (A.2)

In other words, if c ∈ C∗ then

(∂Hom∗(C∗,D∗)f)(c) = ∂D∗(f(c))− (−1)|f |f(∂C∗c).

The reader can check that this makes Hom∗(C∗, D∗) into a chain complex because ∂ ◦∂ = 0.

WARNING: Here is the formula that violates the Koszul convention. We should expect

that the piece of the formula in which ∂ passes through f picks up a sign (−1)|f ||∂| =

(−1)|f |. But notice there is an extra minus sign in the formula coming from the subtraction.

Alternatively, we could write ∂Hom∗(C∗,D∗)f = ∂D∗f + (−1)|f |+1f∂C∗ . This extra minus sign is

not critical—replacing it with a plus would still give a chain complex. So we should justify,

as we will below, why this violation of the Koszul convention is useful.

3An unfortunate notational ambiguity is that ∂f could mean the boundary of f as an element of

Hom∗(C∗, D∗), or it could mean the composition of f with the boundary map of D∗. We can alleviate

this ambiguity by writing ∂Hom∗(C∗,D∗)f for the former and ∂D∗f for the latter, although these still look

similar enough that the reader should exercise some care. The symbol ∂D∗ ◦ f might be better for the latter,

but the notation is cluttered enough as it is, so we avoid this. Even worse, we do occasionally write just ∂f

to further alleviate notational clutter if we feel that context alone should suffice. Caveat lector.
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The above definition of ∂Hom∗(C∗,D∗)f has an important special case that also looks like it

violates the Koszul convention: we have seen that if C∗ = S∗(X), the singular chain complex

on X, and if D∗ = Z, the chain complex with just Z in degree 0, then Hom−n(S∗(X),Z) =

Homn(S∗(X),Z) is just the usual singular cochain complex. In this case, the boundary map

on D∗ is always 0, so the boundary formula becomes ∂Hom∗(S∗(X),Z)f = (−1)|f |+1f∂C∗ . If

we change Hom∗(S∗(X),Z) over to cohomological indexing, in which case we switch our ∂

symbol to d, we get for c ∈ C∗,

(df)(c) = (−1)|f |+1f(∂c).

This is the standard formula for a cochain in books that are oriented toward the slightly

fancier end of homological algebra. None of Munkres [181], Hatcher [125], or Spanier [219]

utilize this convention, defining instead (df)(c) = f(∂c), demonstrating that one can do a

lot without needing to impose a sign. By contrast, Dold first defines coboundaries without

the sign but then notes in [71, Section VI.10.28] that it is useful to sometimes include the

sign as it is “preferable from a systematic point of view.” Furthermore, MacLane introduces

the sign in [155, Section II.3] and provides some additional reasoning for it that we will see

below.

A.1.4 Chain maps and chain homotopies

An interesting thing happens if we consider the homology of the complex Hom∗(C∗, D∗). By

equation (A.2), an element f ∈ Hom∗(C∗, D∗) is a cycle if ∂D∗f − (−1)|f |f∂C∗ = 0, i.e. if

∂D∗f = (−1)|f |f∂C∗ . When |f | = 0, this equation takes the form ∂D∗f = f∂C∗ , which is

the familiar formula for a (degree zero) chain map of chain complexes. We hope the reader

has seen enough topology that we do not need to emphasize how important this concept is.

When |f | 6= 0, we define a degree |f | chain map to be one such that ∂D∗f = (−1)|f |f∂C∗ .

Notice that here the Koszul convention is in force as (−1)|f | = (−1)|f ||∂|. So the “extra” sign

in equation (A.2) is the price we pay for the cycles of Hom∗(C∗, D∗) to be chain maps by a

definition that does obey the Koszul rule. Analogously to degree zero chain maps, a chain

map f : C∗ → D∗ of degree i takes cycles to cycles and boundaries to boundaries and so

induces maps of homology groups f : Hj(C∗)→ Hj+i(D∗) for all j.

When is f ∈ Hom∗(C∗, D∗) a boundary? This will be when there is an F ∈ Hom∗(C∗, D∗)

such that ∂Hom∗(C∗,D∗)F = f , i.e. such that f = ∂D∗F − (−1)|f |+1F∂C∗ . When |f | = 0,

this becomes f = ∂D∗F + F∂C∗ , which the reader can recognize as the condition that

f be chain homotopic to the zero map by the chain homotopy F . In general, we say

that f, g ∈ Hom∗(C∗, D∗) are chain homotopic if there is an E ∈ Hom∗(C∗, D∗) such that

f − g = ∂Hom∗(C∗,D∗)E. Putting this together, we see that Hn(Hom∗(C∗, D∗)) is the mod-

ule of degree n chain maps C∗ → D∗ modulo chain homotopy, i.e. it is the module of

chain homotopy equivalence classes of chain maps from C∗ to D∗. As for degree zero chain

maps, chain homotopic chain maps of any degree determine the same map on homology,

and so each element of Hn(Hom∗(C∗, D∗)) determines maps Hj(C∗) → Hj+n(D∗). In fact,

we get a homomorphism Hn(Hom∗(C∗, D∗)) →
∏

j Hom(Hj(C∗), Hj+n(D∗)). In particular,
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H0(Hom∗(C∗, D∗)) is the module of degree zero chain maps up to chain homotopy equiva-

lence, and elements determine maps Hj(C∗)→ Hj(D∗).

Key point: Chain maps are important, and we want them to satisfy the Koszul rule with

respect to boundaries. One feature of this is that a composition of a degree m chain map

with a degree n chain map is a degree m+ n chain map, as is easy to verify, and so we will

know immediately the sign properties, with respect to interchange with boundaries, of any

map constructed by composing chain maps.

We make one final reassuring observation about this definition of the chain complex

Hom∗: As MacLane notes [155, Proposition II.3.1], if the ring R is thought of as a chain

complex with R in degree 0 and trivial in other degrees, then Hom∗(R,D∗) ∼= D∗ via the

map that takes f ∈ Hom∗(R,D∗) to f(1), as the reader can easily check.

A.1.5 Consequences

So far, we have essentially made two choices of sign convention: Equation (A.1) gives us a

formula for the boundary map in C∗⊗D∗ that makes it into a chain complex, and Equation

(A.2) gives us a formula for the boundary map in Hom∗(C∗, D∗) that makes it into a chain

complex. The first satisfies the Koszul rule; the second does not but it leads to a definition

of chain map that does, i.e. ∂D∗f = (−1)|f ||∂|f∂C∗ = (−1)|f |f∂C∗ .

Let us see what other nice formulas follow from these decisions. The following hopefully

justify our previous claims that we have made reasonable choices.

• The transposition map τ : C∗⊗D∗ → D∗⊗C∗ determined by τ(c⊗ d) = (−1)|c||d|d⊗ c
agrees with the Koszul convention and is a degree 0 chain map:

τ(∂(c⊗ d)) = τ((∂c)⊗ d+ (−1)|c|c⊗ ∂d)

= (−1)(|c|−1)|d|d⊗ ∂c+ (−1)|c|+|c|(|d|−1)∂d⊗ c
= (−1)|c||d|

(
(−1)|d|d⊗ ∂c+ ∂d⊗ c

)
= (−1)|c||d|∂(d⊗ c)
= ∂τ(c⊗ d).

• If f : C∗ → E∗ and g : D∗ → F∗ are chain maps, then f ⊗ g : C∗ ⊗ D∗ → E∗ ⊗ F∗
defined by (f ⊗ g)(c⊗ d) = (−1)|c||g|f(c)⊗ g(d) agrees with the Koszul convention and

is a degree |f |+ |g| chain map:

∂(f ⊗ g)(c⊗ d) = ∂((−1)|c||g|f(c)⊗ g(d))

= (−1)|c||g|((∂f(c))⊗ g(d) + (−1)|c|+|f |f(c)⊗ ∂g(d))

= (−1)|c||g|
(
(−1)|f |f(∂c)⊗ g(d) + (−1)|c|+|f |+|g|f(c)⊗ g(∂d)

)
= (−1)|c||g|

(
(−1)|f |+|g|(|c|−1)(f ⊗ g)((∂c)⊗ d) + (−1)|c|+|f |+|g|+|g||c|(f ⊗ g)(c⊗ ∂d)

)
= (−1)|f |+|g|

(
(f ⊗ g)((∂c)⊗ d) + (−1)|c|(f ⊗ g)(c⊗ ∂d)

)
= (−1)|f |+|g|(f ⊗ g)∂(c⊗ d).
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• The evaluation map ev : Hom∗(C∗, D∗)⊗ C∗ → D∗ defined by ev(f ⊗ c) = f(c) agrees

with the Koszul convention and is a degree 0 chain map. Similarly, the evaluation map

ev : C∗ ⊗ Hom∗(C∗, D∗) → D∗ defined by ev(c ⊗ f) = (−1)|f ||c|f(c) agrees with the

Koszul convention and is a degree 0 chain map:

ev(∂(f ⊗ c)) = ev(∂Hom∗(C∗,D∗)f ⊗ c+ (−1)|f |f ⊗ ∂c)
= ev((∂D∗f − (−1)|f |f∂C∗)⊗ c+ (−1)|f |f ⊗ ∂c)
= ∂(f(c))− (−1)|f |f(∂c) + (−1)|f |f(∂c)

= ∂(f(c))

= ∂(ev(f ⊗ c)).

ev(∂(c⊗ f)) = ev((∂C∗c)⊗ f + (−1)|c|c⊗ ∂Hom∗(C∗,D∗)f)

= ev((∂C∗c)⊗ f + (−1)|c|c⊗ (∂D∗f − (−1)|f |f∂C∗))

= (−1)|f |(|c|−1)f(∂C∗c) + (−1)|c|+|c|(|f |−1)∂D∗f(c)− (−1)|c|+|f |+|c|(|f |−1)f∂C∗c

= (−1)|f ||c|−|f |f(∂C∗c) + (−1)|c||f |∂D∗f(c)− (−1)|f |+|c||f |f∂C∗c

= (−1)|c||f |∂D∗f(c)

= ∂D∗ev(c⊗ f).

• The composition map c : Hom∗(D∗, E∗) ⊗ Hom∗(C∗, D∗) → Hom∗(C∗, E∗) given by

c(g ⊗ f) = gf follows the Koszul convention and is a degree 0 chain map:

c∂(g ⊗ f) = c((∂Hom∗(D∗,E∗)g)⊗ f + (−1)|g|g ⊗ ∂Hom∗(C∗,D∗)f)

= c
((
∂E∗g − (−1)|g|g∂D∗

)
⊗ f + (−1)|g|g ⊗

(
∂D∗f − (−1)|f |f∂C∗

))
= ∂E∗gf − (−1)|g|g∂D∗f + (−1)|g|g∂D∗f − (−1)|g|+|f |gf∂C∗

= ∂E∗gf − (−1)|g|+|f |gf∂C∗

= ∂Hom∗(C∗,E∗)(gf)

= ∂c(g ⊗ f).

• If g : D∗ → E∗ is a chain map, then g∗ : Hom∗(C∗, D∗) → Hom∗(C∗, E∗) given by

g∗(f) = g ◦ f is a degree |g| chain map4:

4In this computation and the next we’ll use simply “∂” for the boundary maps in the Hom complexes

and specify the boundary maps in the complexes C∗, D∗, E∗.
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∂Hom∗(C∗,E∗)(g∗(f)) = ∂Hom∗(C∗,E∗)(gf)

= ∂E∗gf − (−1)|g|+|f |gf∂C∗

= (−1)|g|g∂D∗f − (−1)|g|+|f |gf∂C∗

= (−1)|g|(g∂D∗f − (−1)|f |gf∂C∗)

= (−1)|g|g∗(∂D∗f − (−1)|f |f∂C∗)

= (−1)|g|g∗(∂Hom∗(C∗,D∗)f).

• If g : B∗ → C∗ is a chain map, then g∗ : Hom∗(C∗, D∗) → Hom∗(B∗, D∗) given by

g∗(f) = (−1)|f ||g|f ◦g agrees with the Koszul convention and is a degree |g| chain map:

∂Hom∗(B∗,D∗)(g
∗(f)) = (−1)|f ||g|∂Hom∗(B∗,D∗)(fg)

= (−1)|f ||g|(∂D∗fg − (−1)|g|+|f |fg∂B∗)

= (−1)|f ||g|(∂D∗fg − (−1)|f |f∂C∗g)

= (−1)|g|((−1)|g|(|f |−1)∂D∗fg − (−1)|f |+|g|(|f |−1)f∂C∗g)

= (−1)|g|g∗(∂D∗f − (−1)|f |f∂C∗)

= (−1)|g|g∗(∂Hom∗(C∗,D∗)f).

• As an interesting endnote to this section given our starting point, notice that as ele-

ments of Hom−1(C∗ ⊗D∗, C∗ ⊗D∗) we have ∂C∗⊗D∗ = ∂C∗ ⊗ idD∗ + idC∗ ⊗ ∂D∗ , as the

Koszul convention gives us the following computation for x ∈ C∗ and y ∈ D∗:

(∂C∗ ⊗ idD∗ + idC∗ ⊗ ∂D∗)(x⊗ y) = (−1)|x||idD∗ |((∂C∗x)⊗ y) + (−1)|x||∂D∗ |x⊗ ∂D∗y
= (∂C∗x)⊗ y + (−1)|x|x⊗ ∂D∗y.

A.2 Some more facts about chain homotopies

It is useful to know that the chain homotopy relation is preserved under various operations.

We develop a few of these here.

Lemma A.2.1. Let f, g : C∗ → D∗ and h, k : D∗ → E∗ be pairs of chain homotopic chain

maps. Then hf is chain homotopic to kg.

Proof. Suppose |f | = |g| = i and |h| = |k| = j and that D1 ∈ Hom∗(C∗, D∗) and D2 ∈
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Hom∗(D∗, E∗) are such that ∂Hom∗(C∗,D∗)D1 = f − g and ∂Hom∗(D∗,E∗)D2 = h− k. Then

hf − kg = hf − hg + hg − kg
= h(f − g) + (h− k)g

= h(∂Hom∗(C∗,D∗)D1) + (∂Hom∗(D∗,E∗)D2)g

= h(∂D∗D1 − (−1)i+1D1∂C∗) + (∂E∗D2 − (−1)j+1D2∂D∗)g

= h∂D∗D1 − (−1)i+1hD1∂C∗ + ∂E∗D2g − (−1)j+1D2∂D∗g

= (−1)j∂E∗hD1 − (−1)i+1hD1∂C∗ + ∂E∗D2g − (−1)j+1+iD2g∂C∗

= ∂E∗D2g + (−1)j∂E∗hD1 − (−1)j+1+iD2g∂C∗ − (−1)i+1hD1∂C∗

= ∂E∗(D2g + (−1)jhD1)− (−1)i+j+1(D2g + (−1)jhD1)∂C∗

= ∂Hom∗(C∗,E∗)(D2g + (−1)jhD1).

Lemma A.2.2. Suppose C∗, D∗, E∗ are chain complexes and f, g : C∗ → D∗ are chain

homotopic chain maps. Then f ∗, g∗ : Hom∗(D∗, E∗)→ Hom∗(C∗, E∗) are chain homotopic.

Proof. Suppose |f | = |g| = i and that D : C∗ → D∗ is the chain homotopy so that

∂Hom∗(C∗,D∗)D = ∂D∗D−(−1)i+1D∂C∗ = f−g. We define D : Hom∗(D∗, E∗)→ Hom∗(C∗, E∗)

so that if h ∈ Hom∗(D∗, E∗) then D(h) = (−1)|h|(i+1)h ◦ D. Note |f ∗| = |g∗| = i and that

|D| = |D| = i+ 1.

Now, suppose h ∈ Hom(D∗, E∗). Then we compute

(∂Hom∗(C∗,E∗)D− (−1)i+1D∂Hom∗(D∗,E∗))(h)

= ∂Hom∗(C∗,E∗)D(h)− (−1)i+1D∂Hom∗(D∗,E∗)h

= (−1)|h|(i+1)∂Hom∗(C∗,E∗)(hD)− (−1)i+1D(∂E∗h− (−1)|h|h∂D∗)

= (−1)|h|(i+1)(∂E∗hD − (−1)|h|+i+1hD∂C∗)
− (−1)i+1((−1)(i+1)(|h|−1)∂E∗hD − (−1)|h|+(i+1)(|h|−1)h∂D∗D)

= (−1)|h|(i+1)∂E∗hD − (−1)|h|i+i+1hD∂C∗ − (−1)|h|i+|h|∂E∗hD + (−1)|h|ih∂D∗D
= −(−1)|h|i+i+1hD∂C∗ + (−1)|h|ih∂D∗D
= (−1)|h|ih(∂D∗D − (−1)i+1D∂C∗)
= (−1)|h|ih(f − g)

= (f − g)∗(h)

= (f ∗ − g∗)(h).

So D is a chain homotopy between f ∗ and g∗.

Corollary A.2.3. If the chain map f : C∗ → D∗ is a chain homotopy equivalence, then so

is f ∗ : Hom(D∗, E∗)→ Hom(C∗, E∗) for any chain complex E∗.

Proof. By definition, there is a g : D∗ → C∗ such that gf and fg are chain homotopic

to the respective identity maps idC and idD. But then, by the lemma, (gf)∗ = f ∗g∗ and

(fg)∗ = g∗f ∗ are chain homotopic to the respective maps id∗C and id∗D. The dual of an

identity map is an identity map. So f ∗ and g∗ are chain homotopy inverses.
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Lemma A.2.4. Suppose f, g : C∗ → D∗ are chain homotopic chain maps. Then f⊗id, g⊗id :

C∗ ⊗ E∗ → D∗ ⊗ E∗ are chain homotopic and id⊗ f, id⊗ g : E∗ ⊗ C∗ → E∗ ⊗D∗ are chain

homotopic for any E∗.

Proof. Suppose |f | = |g| = i and that ∂Hom∗(C∗,D∗)D = f−g. LetH∗ = Hom(C∗⊗E∗, D∗⊗E∗)
and H ′∗ = Hom(E∗ ⊗ C∗, E∗ ⊗D∗). Then

∂H∗(D ⊗ idE∗) = ∂D∗⊗E∗(D ⊗ idE∗)− (−1)i+1(D ⊗ idE∗)∂C∗⊗E∗

= (∂D∗D)⊗ idE∗ + (−1)i+1D ⊗ ∂E∗ − (−1)i+1(D ⊗ idE∗)(∂C∗ ⊗ idE∗ + idC∗ ⊗ ∂E∗)
= (∂D∗D)⊗ idE∗ + (−1)i+1D ⊗ ∂E∗ − (−1)i+1(D∂C∗ ⊗ idE∗ +D ⊗ ∂E∗)
= (∂D∗D)⊗ idE∗ − (−1)i+1D∂C∗ ⊗ idE∗

= (∂D∗D − (−1)i+1D∂C∗)⊗ idE∗

= (∂Hom∗(C∗,D∗)D)⊗ idE∗

= (f − g)⊗ idE∗

= f ⊗ idE∗ − g ⊗ idE∗ ,

and

∂H′∗(idE∗ ⊗D) = ∂E∗⊗D∗(idE∗ ⊗D)− (−1)i+1(idE∗ ⊗D)∂E∗⊗C∗

= ∂E∗ ⊗D + idE∗ ⊗ ∂D∗D − (−1)i+1(idE∗ ⊗D)(∂E∗ ⊗ idC∗ + idE∗ ⊗ ∂C∗)
= ∂E∗ ⊗D + idE∗ ⊗ ∂D∗D − (−1)i+1((−1)i+1∂E∗ ⊗D + idE∗ ⊗D∂C∗)
= idE∗ ⊗ ∂D∗D − (−1)i+1idE∗ ⊗D∂C∗
= idE∗ ⊗ (∂D∗D − (−1)i+1D∂C)

= idE∗ ⊗ (∂Hom∗(C∗,D∗)D)

= idE∗ ⊗ (f − g)

= idE∗ ⊗ f − idE∗ ⊗ g.

Corollary A.2.5. If f, g : C∗ → D∗ and h, k : E∗ → F∗ are chain homotopic chain maps,

then f ⊗ h, g ⊗ k : C∗ ⊗ E∗ → D∗ ⊗ F∗ are chain homotopic chain maps.

Proof. We can write f ⊗ h as the composition f ⊗ h = (f ⊗ id)(id⊗ h). Applying Lemmas

A.2.1 and A.2.4, we have that (f⊗id)(id⊗h) is chain homotopic to (g⊗id)(id⊗k) = g⊗k.

Corollary A.2.6. If f : C∗ → D∗ and h : E∗ → F∗ are chain homotopy equivalences, then

so is f ⊗ h : C∗ ⊗ E∗ → D∗ ⊗ F∗.

Proof. Let g : D∗ → C∗ and k : F∗ → E∗ be chain homotopy inverses to f and h. Then,

applying the preceding corollary, (−1)|g||h|(f ⊗ h)(g ⊗ k) = fg ⊗ hk is chain homotopic

to idD∗ ⊗ idF∗ = idD∗⊗F∗ and (−1)|f ||k|(g ⊗ k)(f ⊗ h) = gf ⊗ kh is chain homotopic to

idC∗ ⊗ idE∗ = idC∗⊗E∗ . As |f | = −|g| and |h| = −|k|, we see that (−1)|g||k|g ⊗ k is a chain

homotopy inverse to f ⊗ h.
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A.3 Shifts and mapping cones

Here, we briefly review some facts about shifting of complexes and algebraic mapping cones.

The shift notation is useful for describing the mapping cones, which are used below in the

proof of Lemma A.4.3 and for several proofs in Section 7.3.5. More about these objects is

contained in the text proper in that section.

A.3.1 Shifts

It is useful to be able to reindex chain complexes. Most often, one sees this done for coho-

mologically indexed complexes, in which case, if D∗ is such a chain complex (of R-modules)

with (co)boundary map dD∗ , the shifted complex D[k]∗ is defined such that D[k]i = Dk+i

and dD[k]∗ = (−1)kdD∗ ; see [102, Section III.3]. The boundary formula means that if

x ∈ D[k]i = Dk+i then dD[k]∗(x) = (−1)kdD∗(x) treated as an element of D[k]i+1. For

homological indexing, using the standard bijection between cohomologically indexed com-

plexes and homologically indexed complexes such that Ci = C−i, we see that if C∗ is a

homologically indexed complex, then we should have

C[k]i = C[k]−i = Ck−i = Ci−k.

In other words, given C∗, we should let C[k]∗ be the chain complex with C[k]i = Ci−k and

∂C[k]∗ = (−1)k∂C∗ .

Taking k = 1 and C∗ a chain complex, we obtain C[1]∗ with C[1]i = Ci−1 and ∂C[1]∗ =

−∂C∗ . Let us define s : C[1]∗ → C∗ so that it takes C[1]i identically to the corresponding

module Ci−1. Then from the definition of the boundary map on C[1]∗, we see that s∂C[1]∗ =

−∂C∗s, which is consistent with s being a (homological) degree −1 chain map. Unfortunately,

it is easy to get confused when attempting to consider Ci−1 and C[1]i as two separate entities,

especially when working with individual elements. Indeed, it is very tempting to write things

like s(x) = x, which is right and wrong; right because Ci−1 and C[1]i are identical modules,

but wrong because they live in different chain complexes. In an attempt to mitigate the

confusion, if x is an element of Ci−1, we will write x̄ for the corresponding element of C[1]i,

i.e. s(x̄) = x. Of course we could also write s−1(x) instead of x̄, but it is convenient to have

both notations available.

A.3.2 Algebraic mapping cones

Suppose f : C∗ → D∗ is a degree zero chain map of chain complexes. We let Ef
∗ (or simply

E∗ if there’s no ambiguity) denote the algebraic mapping cone of f : C∗ → D∗ [102, Section

III.3]. This means that Ei = Di ⊕ Ci−1 and ∂(x, y) = (f(y) + ∂D∗x,−∂C∗y). This is a chain

complex, as

∂(∂(x, y)) = ∂(f(y) + ∂x,−∂y) = (−f(∂y) + ∂f(y) + ∂(∂x), ∂(∂y)) = 0.

This construction mimics algebraically the chain complex one obtains from a topological

mapping cone; the shift can be thought of as being due to taking the cone on the domain
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space, and so increasing the dimension by one. Lemma 7.3.39, in Section 7.3.5, should

provide a more technically convincing version of this claim. We should also note that there

are alternative conventions for the algebraic mapping cone construction; see, for example,

[237, Section 1.5].

There is a short exact sequence of chain complexes

0 - D∗
e
- E∗

b
- C[1]∗ - 0 (A.3)

with e(x) = (x, 0) and b(x, y) = ȳ, where ȳ uses our notation for shifted elements from just

above. It is immediate to verify that e and b are both chain maps of degree zero. Notice,

however, that it is not true that E∗ = D∗ ⊕ C[1]∗ as chain complexes, since the boundary

map of E∗ is not a direct sum of the boundary maps of the summands.

The following lemma shows that the connecting morphism in the long exact homology

sequence associated to (A.3) is essentially just the map induced by f , up to shifts.

Lemma A.3.1. Suppose f : C∗ → D∗ is a degree zero chain map. Let ∂∗ be the connecting

morphism of the long exact homology sequence associated to the short exact sequence (A.3).

This map is the same as the map on homology induced by fs, where s : C[1]∗ → C∗ is the

shift chain map.

Proof. Let ȳ ∈ C[1]∗ be a cycle and note that (0, y) ∈ E∗ is a preimage of ȳ with respect to

b, i.e. b(0, y) = ȳ. So, as ∂(0, y) = (f(y), 0) in E∗, using that y is a cycle if ȳ is, the zig-zag

construction of ∂∗ (see [181, Section 24]) shows that ∂∗(ȳ) is represented by f(y) = fs(ȳ). So

∂∗ and fs both take the homology class in H∗(C[1]∗) represented by ȳ to the same homology

class in H∗(D∗).

A.4 Projective modules and Dedekind domains

The nice properties of projective modules in homological algebra are used regularly through-

out the text, especially for projective modules over Dedekind domains. We mostly cite

outside references, but we will need a few results for which such references were not easily

available in our standard sources. So we provide a short treatment here, beginning with

general properties of projectives.

A.4.1 Projective modules

Recall that an R-modules P is called projective if for every surjective map of R-modules

g : M → N and every map f : P → N there exists a lifting h : P →M so that gh = f .

P

M
g
--

�

h

N

f

?
- 0
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It is well known that being projective is equivalent to being a direct summand of a free

module. The argument is standard, but we cannot resist providing it:

Lemma A.4.1. The R-module P is projective if and only if P is a direct summand of a free

R-module.

Proof. First suppose P is projective. Let F be the free module on the elements of P . Then

there is a canonical surjection p : F → P . If id : P → P is the identity, the definition of

projective gives a lift s : P → F so that ps = id. So P is a direct summand of F .

Conversely, suppose P is a direct summand of a free module F . Then we can write

F = P ⊕ Q. Given a diagram as in the definition of projective, we can extend the map

f : P → N to a map f̄ : F → N by taking (x, y) ∈ P ⊕ Q = F to f̄(x, y) = f(x). Now let

{zi} be a basis for F , and for each zi, let h(zi) ∈M be an element such that gh(zi) = f̄(zi);

such an element exists by the surjectivity of g. As {zi} is a basis for F , this determines a

homomorphism h : F → M such that gh = f̄ : F → N . The restriction of h to P is the

desired lifting of f .

The following lemma is also standard.

Lemma A.4.2. Suppose 0→ A→ B → C → 0 is a short exact sequence of R-modules and

that C is projective. Then the sequence splits and, in particular, B ∼= A⊕ C.

Proof. We have a diagram

C

B --
�

s

C,

=

?

and, by the definition of projective, the map s exists, making the diagram commute. The

map s provides a splitting of the exact sequence by standard homological algebra. See, e.g.

[181, Theorem 23.1] or [125, Section 2.2].

The next lemma is a basic fact of algebraic topology, but it is a bit hard to pin down

a clean citation in our preferred sources. Munkres proves it in [181, Theorem 46.2] under

the additional assumption that C and D are chain complexes of free modules. Hilton and

Stammbach leave it as [126, Exercise IV.4.2]. The lemma also follows immediately from more

elaborate theorems, such as the fact that if a category A has enough projectives, then the

derived category of cochain complexesD−(A) is equivalent to the homotopy categoryK−(P),

whose objects are bounded above cochain complexes of projectives; see [237, Theorem 10.4.8]

and note that the bounded below condition of the lemma becomes a bounded above condition

when thinking of complexes as cochain complexes. This last argument is a somewhat big

hammer that is not really necessary for this lemma. Really, all of the major pieces of the

proof are provided between [181] and [126], but we will provide the details here for the

convenience of the reader, beginning by assuming [126, Theorem IV.4.1], which is proven in
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[126] detail. That theorem states that if A∗ is a complex of projectives5, B∗ is acyclic, and

Ai = Bi = 0 for i < 0, then for every homomorphism φ0 : H0(A∗) → H0(B∗), there is a

chain map φ : A∗ → B∗ inducing φ0 and, furthermore, any two such chain maps are chain

homotopic.

Lemma A.4.3. Let f : C∗ → D∗ be a chain map of complexes of projective R-modules such

that Ci = Di = 0 if i < 0. If f induces isomorphisms in homology of all dimensions, then f

is a chain homotopy equivalence.

Proof. Consider the algebraic mapping cone E∗ of f : C∗ → D∗ as defined in Section A.3.

As Ei = Di ⊕ Ci−1, each Ei is projective. The short exact sequence (A.3) generates a long

exact homology sequence, and by Lemma A.3.1, the connecting morphism ∂∗ is the same as

the map induced by the composition fs, where s : C[1]∗ → C∗ is the shift map. As s and

f both induce isomorphisms on homology, it follows that ∂∗ is an isomorphism, and, from

the long exact sequence, E∗ is acyclic. It therefore follows from [126, Theorem IV.4.1] that

the maps id : E∗ → E∗ and the zero map 0 : E∗ → E∗ are chain homotopic, as they both

induce the zero map H0(E) → H0(E). By definition, this means that there is a degree one

map D : E∗ → E∗ such that ∂D +D∂ = id.

From here, we follow the proof from Munkres [181, Theorem 46.2] and define θ, ψ, λ, µ

such that if x ∈ Di and y ∈ Ci−1, then

D(x, 0) = (θ(x), ψ(x)) ∈ Ei+1 = Di+1 ⊕ Ci
D(0, y) = (λ(y), µ(y)) ∈ Ei+1 = Di+1 ⊕ Ci.

Now, in the words of Munkres, “we compute like mad!”

D∂(x, 0) = D(∂x, 0) = (θ(∂x), ψ(∂x))

∂D(x, 0) = ∂(θ(x), ψ(x)) = (f(ψ(x)) + ∂θ(x),−∂(ψ(x)))

D∂(0, y) = D(0,−∂y) +D(f(y), 0) = (−λ(∂y),−µ(∂y)) + (θ(f(y)), ψ(f(y)))

∂D(0, y) = ∂(λ(y), µ(y)) = (f(µ(y)) + ∂(λ(y)),−∂µ(y)).

Since ∂D +D∂ = id, adding the first two equations implies that

(θ(∂x), ψ(∂x))+(f(ψ(x))+∂θ(x),−∂(ψ(x))) = (θ(∂x)+f(ψ(x))+∂θ(x), ψ(∂x)−∂(ψ(x))) = (x, 0).

Therefore, ψ(∂x) = ∂ψ(x), so ψ is a chain map, and θ(∂x) + f(ψ(x)) + ∂θ(x) = x, which

implies that θ is a chain homotopy between fψ and an identity. Adding the last two equations

gives

(−λ(∂y),−µ(∂y)) + (θ(f(y)), ψ(f(y))) + (f(µ(y)) + ∂(λ(y)),−∂µ(y)) =

(−λ(∂y) + θ(f(y)) + f(µ(y)) + ∂(λ(y)),−µ(∂y) + ψ(f(y))− ∂µ(y)) = (0, y).

5The terminology in [126] is actually “projective complex,” by which is meant that each Ci is projective;

see [126, page 126]. However, there is some danger of confusing “projective complex” with the requirement

that C∗ be projective as an object in the category of chain complexes, which is not the same thing. Thus

we use the more precise terminology.
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In the second coordinate, we obtain y = −µ(∂y) + ψ(f(y)) − ∂µ(y), which shows that µ

provides a chain homotopy between the identity and ψf . The first coordinate tells us that

−λ(∂y)+θ(f(y))+f(µ(y))+∂(λ(y)) = 0. I have no idea what this represents, but anyway, we

have seen that ψf and fψ are each homotopic to the identity, and so f is a chain homotopy

equivalence.

A.4.2 Dedekind domains

In several sections later in the book, it is necessary to work with Dedekind domains, a class of

rings that includes all principal ideal domains and fields. A Dedekind domain is an integral

domain with the property that every submodule of a projective R-module is projective.

This is essentially taken as the definition of a Dedekind domain in Cartan-Eilenberg [49,

Section VII.5 and Theorem I.5.4]. Exercise 20 to Section 4 of Chapter VII of Bourbaki’s

Commutative Algebra [30] shows that this property can be derived from other, alternative,

defining properties of Dedekind domains. A short literature search reveals that there are a

very large number of equivalent definitions for Dedekind domains!

Another useful property of Dedekind domains is that any torsion-free module over a

Dedekind domain is flat6. In fact, this is true more generally of Prüfer domains, which

satisfy the weaker property that that submodules of finitely-generated projective modules

are projective; a module over a Prüfer domain is torsion free if and only if it is flat [146,

Proposition 4.20].

Lemma A.4.4. Let R be a Dedekind domain. Suppose D∗ is a complex of R-modules with

Di = 0 for i < 0. Then there is a complex C∗ of projective R-modules and a chain map

f : C∗ → D∗ that induces isomorphisms Hi(C∗)→ Hi(D∗) for all i. Furthermore, if Hi(D∗)

is finitely generated for all i, then we can choose Ci finitely generated for all i, and if D∗ is

a complex of projectives then f is a chain homotopy equivalence.

Proof. The construction of the chain complex C∗ and a homotopy equivalence f : C∗ → D∗
that induces homology isomorphisms proceeds exactly as in the proof of [126, Proposition

V.2.4], replacing the free modules in that discussion with projective ones. As in [126], the

proof is the consequence of two slightly more general lemmas we will prove below:

Lemma A.4.5. Let R be a Dedekind domain. Suppose D∗ is a complex of R-modules.

Then there is a complex C∗ of projective R-modules such that Hi(C∗) ∼= Hi(D∗) for all i.

Furthermore, if Hi(D∗) is finitely generated for all i, then we can choose Ci finitely generated

for all i, and if Hi(D∗) = 0 for all i < 0, then we can choose Ci = 0 for all i < 0.

Lemma A.4.6. Let R be a Dedekind domain. Suppose D∗ is a complex of R-modules and

that C∗ is a complex of projective modules. Suppose gi : Hi(C∗) → Hi(D∗) is any collection

of homomorphisms. Then there is a chain map f : C∗ → D∗ that induces the gi.

It follows from the Lemma A.4.5 that, given D∗ as in the statement of Lemma A.4.4,

there is a chain complex C∗ with the desired characteristics (Ci projective, Ci = 0 for i < 0,

6Recall that a module A is flat if the functor A⊗− is an exact functor, i.e. it preserves exact sequences.
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Ci finitely generated if Hi(D∗) is, and Hi(C∗) ∼= Hi(D∗)), and it follows from Lemma A.4.6

that there is a chain map f : C∗ → D∗ inducing the isomorphisms Hi(C∗) → Hi(D∗). The

map f is then a chain homotopy equivalence if the Di are all projective by Lemma A.4.3.

Proof of Lemma A.4.5. Let Fp be a free R-module that surjects onto Hp(D∗) by qp : Fp →
Hp(D∗). Then, as R is Dedekind, Kp = ker(qp) is projective, so 0 → Kp → Fp → Hp(D∗)

is a projective resolution of Hp(D∗). If Hp(D∗) is finitely generated, we can choose Fp to be

finitely generated. It follows that Kp will also be finally generated. This uses that Dedekind

domains are Noetherian [30, Theorem VII.2.2.1], so submodules of finitely-generated modules

are finitely generated (see [147, Section X.1]).

Now, let Cp = Fp ⊕ Kp−1, with ∂(x, y) = (y, 0). If Hp(D) = 0 for p < 0, we can have

Fp = 0 for p < 0 and so Cp = 0 for p < 0. This provides the desired chain complex C∗ with

Hp(C∗) ∼= Hp(D∗), as the cycle modules of C∗ are the Fp ⊕ 0 ∼= Fp and the boundary map

corresponds to the natural embedding of Kp into Fp.

Proof of Lemma A.4.6. Let Zp, Bp be the cycle and boundary submodules of Cp, and let

Z̄p, B̄p be the corresponding submodules for D∗. As the Cp are projective and Bp, Zp ⊂ Cp,

the modules Bp and Zp are projective. So by Lemma A.4.2 the short exact sequences

0 - Zp - Cp
∂
- Bp−1

- 0

split, and we have Cp ∼= Zp ⊕ Yp, where Yp maps isomorphically onto Bp by ∂. In fact,

if (z, y) ∈ Zp ⊕ Yp is the general element, then ∂(z, y) = ∂y ∈ Bp−1 ⊂ Zp−1 ⊂ Cp−1,

corresponding to (∂y, 0) in the decomposition Zp−1 ⊕ Yp−1. Consider now the diagram

0 - Bp
- Zp - Hp(C∗) - 0

0 - B̄p

φ

?
- Z̄p

θ

?
- Hp(D∗)

gp

?
- 0.

(A.4)

As Zp is projective, the definition of projectivity yields the desired dashed map θ : Zp → Z̄p,

and this, in turn, induces the map of kernels φ : Bp → B̄p by restriction. We also have a

diagram

Yp
∂
∼=
- Bp−1

Dp

ψ

? ∂
-- B̄p−1,

φ

?

and, once again, projectivity of Yp ∼= Bp−1 yields the map ψ.
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We now define f : Cp ∼= Zp⊕ Yp → Dp by f(z, y) = θ(z) +ψ(y). To see that f is a chain

map, we check

f∂(z, y) = f(∂y, 0)

= θ(∂y) + ψ(0)

= θ(∂y)

= φ(∂y)

= ∂ψ(y)

= ∂θ(z) + ∂ψ(y)

= ∂(θ(z) + ψ(y))

= ∂f(z, y).

We have used here that θ(z) is a cycle in D∗. It follows from Diagram (A.4) that f induces

the desired isomorphism on homology.

A.5 Linear algebra of signatures

In this section, we collect some material from linear algebra regarding signatures of symmetric

bilinear pairings. We will work primarily with the rational numbers as our ground field, but

all results are equally valid for any ground field F with Q ⊂ F ⊂ R unless noted otherwise.

All vector spaces in this section are assumed to be finite dimensional.

Definition A.5.1. If M is a symmetric matrix of rational numbers, then the signature σ(M)

is defined to be

σ(M) = #{positive eigenvalues of M} −#{negative eigenvalues of M}.

Notice that this makes sense because all eigenvalues of a real symmetric matrix will be real7.

We will be interested in signatures that arise from symmetric bilinear pairings on vec-

tor spaces. So, let (V, (·, ·)) be a finite-dimensional rational vector space together with a

symmetric bilinear pairing (·, ·) : V × V → Q. In other words, for u, v, w ∈ V and c ∈ Q,

(u+ v, w) = (u,w) + (v, w)

(u, v + w) = (u, v) + (u,w)

(cu, v) = (u, cv) = c(u, v)

(u, v) = (v, u).

7Let 〈·, ·〉 denote the standard complex inner product on Cn, let M be a symmetric n × n matrix with

real entries so that the conjugate transpose M∗ is equal to M , and suppose Mv = λv for some unit vector

v. Then λ = λ〈v, v〉 = 〈v, λv〉 = 〈v,Mv〉 = 〈M∗v, v〉 = 〈Mv, v〉 = 〈λv, v〉 = λ̄〈v, v〉 = λ̄.
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If we choose a basis {ei} for V , then we obtain the pairing matrix M with Mi,j = (ei, ej).

If u, v ∈ V , then u =
∑

i aiei and v =
∑

i biei for some ai, bi ∈ Q, so using the bilinearity of

the pairing,

(u, v) =

(∑
i

aiei,
∑
j

bjej

)
=
∑
i,j

aibj(ei, ej)

=
∑
i,j

aiMi,jbj

= utMv,

where ut is the transpose of u and we identify u and v with their vectors of coordinates in

the given basis.

Definition A.5.2. If (V, (·, ·)) is a symmetric bilinear pairing on a finite-dimensional rational

vector space, we define the signature of the pairing σ(V, (·, ·)) to be the signature σ(M) of

the pairing matrix M with respect to any basis of V .

Of course, we need to know that this is independent of the choice of basis. Suppose {fi} is

another basis of V , that N is the pairing matrix with respect to this basis, i.e. Ni,j = (fi, fj),

and Q is the change-of-basis matrix such that fi =
∑

kQk,iek. Then

Ni,j = (fi, fj)

=

(∑
k

Qk,iek,
∑
`

Q`,je`

)
=
∑
k,`

Qk,iQ`,j(ek, e`)

=
∑
k,`

Qk,iQ`,jMk,`

=
∑
k,`

(Qt)i,kMk,`Q`,j,

where Qt is the transpose of Q. This computation shows that N = QtMQ. Thus a change of

basis changes the pairing matrix to a congruent matrix. Conversely, the same computation

shows that if Q is any nonsingular matrix and M represents a pairing on V with respect to

a basis {ei}, then QtMQ represents the same pairing with respect to the basis {fi} given by

fi =
∑

kQk,iek.

So to see that the signature depends only on the pairing, we need to see that the number of

eigenvalues of each sign of a symmetric matrix is independent of congruence by a nonsingular

matrix. This essentially follows from Sylvester’s Law of Inertia [231], which classifies pairings
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over the reals, though we’ll provide a proof of what we need here, relying only on the Spectral

Theorem for real symmetric matrices.

The invariance of the signature with respect to matrix congruence is related to a useful

alternative characterization of the signature in terms of positive definite and negative definite

subspaces.

Definition A.5.3. Given a symmetric bilinear pairing (V, (·, ·)), a subspace W ⊂ V is called

positive definite if for any w ∈ W , w 6= 0, we have (w,w) > 0. Similarly, a subspace W ⊂ V

is called negative definite if for any w ∈ W , w 6= 0, we have (w,w) < 0.

Even though we are primarily concerned with rational vector spaces, the proof we give

requires working at a certain point with real matrices, so there is no extra work in stating

our results for any subfield of R.

Lemma A.5.4. Let F be a field with Q ⊂ F ⊂ R, and let (V, (·, ·)) be a finite-dimensional

F -vector space with symmetric bilinear pairing. Let M be the pairing matrix with respect

to some basis. Then the maximal dimension for a positive definite subspace is equal to the

number of positive eigenvalues of M , and the maximal dimension for a negative definite

subspace is equal to the number of negative eigenvalues of M . It follows that

σ(M) = max
{W+⊂V positive definite}

dim(W+)− max
{W−⊂V negative definite}

dim(W−),

which does not depend on the choice of basis.

Furthermore, two pairings (V, (·, ·)) and (V ′, (·, ·)′) have the same signature if they are

isomorphic in the sense that there is an isomorphism φ : V → V ′ and a commutative diagram

of the form:

V ⊗ V

F

(·, ·)
-

V ′ ⊗ V ′

φ⊗ φ

?
(·, ·)
′
-

.

To prove this lemma, it helps to use another elementary lemma:

Lemma A.5.5. Let F be a field with Q ⊂ F ⊂ R, and let (V, (·, ·)) be a finite-dimensional

F -vector space with symmetric bilinear pairing. Then there is a basis of V with respect to

which the pairing matrix N is a diagonal matrix.

Proof. We will show that there is some basis {bi} of V that is orthogonal, in the sense that

(bi, bj) = 0 if i 6= j. Then the pairing matrix N with respect to this basis will be diagonal.

Let v ∈ V be such that (v, v) 6= 0; if there is no such v, it follows from the identity

(v + w, v + w) = (v, v) + 2(v, w) + (w,w) that (v, w) = 0 for all v, w ∈ V , and then any

pairing matrix is the 0 matrix, so we would be done. If we let 〈v〉 be the span of v, we will

show that

V = 〈v〉 ⊕ 〈v〉⊥,
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where for any subspace W ⊂ V , we let W⊥ = {u ∈ V | (u,w) = 0 for all w ∈ W}. For this,

let u ∈ V , and let u1 = (u,v)
(v,v)

v and u2 = u− (u,v)
(v,v)

v. Note that all numerical expressions remain

in the field F . In Euclidean space with the standard inner product, these would correspond

to the projections of u to 〈v〉 and to its perpendicular subspace. Clearly u = u1 + u2, and

(u2, v) =

(
u− (u, v)

(v, v)
v, v

)
= (u, v)− (u, v)

(v, v)
(v, v) = 0.

Thus any u is contained in 〈v〉+ 〈v〉⊥. Next, suppose w ∈ 〈v〉∩ 〈v〉⊥. Then w = λv for some

λ ∈ F . But then, since w ∈ 〈v〉⊥, we have 0 = (v, w) = (v, λv) = λ(v, v), which is impossible

unless λ = 0. Hence V = 〈v〉 ⊕ 〈v〉⊥.

Now we can complete the lemma using induction on dim(V ). If dim(V ) = 1, there is

nothing more to prove. So suppose we have proven the result whenever the dimension of the

vector space is < n, and let dim(V ) = n. Again, we will also be done trivially if there is no

v with (v, v) 6= 0. If there is a v ∈ V with (v, v) 6= 0, then we have seen that V = 〈v〉⊕ 〈v〉⊥.

By induction there will be an orthogonal basis {b1, . . . , bn−1} of 〈v〉⊥, and so {b1, . . . , bn−1, v}
is the desired orthogonal basis for V .

Proof of Lemma A.5.4. Throughout the proof we will adopt the following notation: If M is

a matrix, we let σ+(M) denote the number of positive eigenvalues of M and σ−(M) denote

the number of negative eigenvalues of M . If M is the matrix of a pairing with respect to some

basis, then we let d+(M) denote the maximal dimension among positive definite subspaces

of pairing, and we let d−(M) denote the maximal dimension among the negative definite

subspaces. We can write dF±(M) if we wish to emphasize the field F .

First we consider the case where we have a diagonal pairing matrix N for the pairing

with respect to some basis {bi}. We are free to reorder the basis so that (bi, bi) > 0 for

1 ≤ i ≤ r while (bi, bi) < 0 for r + 1 ≤ i ≤ r + s and (bi, bi) = 0 for r + s + 1 ≤ i ≤ n.

In particular, this means that N is a diagonal matrix with r positive entries and s negative

entries, and so r = σ+(N) and s = σ−(N).

It is then clear that {b1, . . . , br} span a positive definite subspace W+ of dimension r. On

the other hand {br+1, . . . , bn} span a subspace W≤0 such that no w ∈ W≤0 has the property

that (w,w) > 0. Since W≤0 has dimension n−r, every subspace of V of dimension r+1 must

intersect W≤0 in a subspace of dimension8 ≥ 1 and hence possesses a w with (w,w) ≤ 0.

So no positive definite subspace can have dimension > r. Thus r = d+(N), the maximal

dimension for a positive definite subspace. A similar argument shows that s = d−(N).

For our next step, it is convenient to work over R as our field. Suppose that M is

an n × n real symmetric matrix, which we can assume represents a pairing on Rn with

respect to the standard basis {ei}. Let W+ and W− be maximal positive and negative

8 This property is well known when F = R. Here’s a proof that it continues to hold for any field F ⊂ R:

Suppose V is an F -vector space of dimension n and let U,W be subspaces of respective dimensions k, ` with

k+ ` > n. Let {ei}ki=1 and {fj}`j=1 be bases of U and W . Together, the set of vectors {e1, . . . , ek, f1, . . . , f`}
must be linearly dependent as dim(V ) = n. This dependence can be written as

∑k
i=1 aiei =

∑`
j=1 bjfj for

some ai, bj ∈ F not all 0. As the {ei} and {fj} are bases, we can’t have both sides equal to 0, and so neither

side is 0 and there is a non-zero vector in U ∩W .
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definite subspaces with respect to this pairing. By the Spectral Theorem [224, Section 5.5],

there exists an invertible real matrix U with U t = U−1 such that U tMU = U−1MU is

diagonal. By elementary linear algebra, the matrix U−1MU has the same eigenvalues as

M , so σ±(M) = σ±(U tMU). But U tMU represents the same pairing on Rn as M but with

respect to the basis {Uei}, and so dR±(M) = dR±(U tMU). But U tMU is diagonal and so by

our preceding results dR±(U tMU) = σ±(U tMU). Thus, altogether, we have dR±(M) = σ±(M).

Now, let’s return to M being a symmetric matrix over F representing a pairing on the

F -vector space V . Once again using Lemma A.5.5, there is a basis {bi} for V with respect to

which the pairing is represented by a diagonal matrix of the form QtMQ for some invertible

F -matrix Q. As we can interpret all our F -matrices as real matrices representing real

pairings, the preceding argument shows that σ±(QtMQ) = σ±(M). Meanwhile, as QtMQ is

diagonal, the argument at the beginning of the proof shows σ±(QtMQ) = dF±(QtMQ). But

M and QtMQ represent the same F -vector space pairing (with respect to different bases),

and so dF±(QtMQ) = dF±(M). So σ±(M) = dF±(M).

The final statement of the lemma now follows from observing that φ must take positive-

definite subspaces to isomorphic positive-definite subspaces and negative-definite subspaces

to isomorphic negative-definite subspaces.

Signatures of nonsingular pairings. Now that we have established that signatures of

symmetric pairings are well defined, we turn to some important properties of nonsingular

pairings.

Definition A.5.6. A symmetric pairing (V, (·, ·)) on a rational vector space is called non-

singular or nondegenerate if (v, w) = 0 for all w ∈ V implies v = 0.

Remark A.5.7. More generally, nondegeneracy of a symmetric pairing means that the adjoint

homomorphism V → Hom(V,Q) described by v → (v, ·) is injective, while being nonsingular

means that it is an isomorphism. When V is finite dimensional, these conditions are equiv-

alent with field coefficients. However, it is possible to define symmetric bilinear pairings on

free modules over other rings, such as Z, in which case these become different conditions.

For example, the pairing Z⊗Z→ Z with pairing matrix M = (2) is a nondegenerate pairing,

but it is not nonsingular.

Note that the symmetry property we are assuming makes it unnecessary in this context

to consider two different adjoints as in Definition 8.4.2 in the main body of the text.

Here is a useful way to tell if a pairing is nonsingular:

Lemma A.5.8. Let (V, (·, ·)) be a symmetric pairing on the finite-dimensional rational vector

space V , and let M be the matrix of the pairing with respect to some basis. Then the pairing

is nonsingular if and only if det(M) 6= 0.

Proof. Let {bi} be the basis with respect to which M is defined, and define the dual basis

{b∗j} ⊂ Hom(V,Q) so that b∗j(bi) = 0 if i 6= j and b∗i (bi) = 1 for all i. Let Λ : V → Hom(V,Q)
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take v ∈ V to (v, ·). We compute the matrix of Λ with respect to the bases {bi} and {b∗j}:
By definition, we have Λ(bi) =

∑
j Λjib

∗
j , so we have

Mik = (bi, bk) = (Λ(bi))(bk) =
∑
j

Λjib
∗
j(bk) = Λki.

So Λ = M t. The map Λ is injective if and only if det(Λ) 6= 0 by elementary linear algebra,

and furthermore det(M t) = det(M), proving the lemma.

Remark A.5.9. By the same arguments, we see that for a symmetric pairing of a free module

over a commutative ring with unity we have that the pairing is nondegenerate if and only if

det(M) is non-zero for the pairing matrix M , while it is nonsingular if and only if det(M)

is a unit. Again, over a field these notions are equivalent.

Definition A.5.10. Given a nonsingular pairing (V, (·, ·)), a subspace A ⊂ V such that

dim(A) = 1
2

dim(V ) and (x, y) = 0 for all x, y ∈ A is called a Lagrangian subspace. Such

subspaces are not generally unique.

Lemma A.5.11. Suppose (V, (·, ·)) is a rational vector space together with a nonsingular

symmetric bilinear pairing (·, ·) : V × V → Q with a Lagrangian subspace A ⊂ V . Then

σ(V, (·, ·)) = 0.

Proof. Let V + and V − be respectively positive definite and negative definite subspaces of V

of maximal dimensions. Let dim(V +) = r, dim(V −) = s, and dim(V ) = n. By Lemma A.5.8,

if (V, (·, ·)) is nonsingular then no pairing matrix can have a 0 as an eigenvalue. Consequently,

using Lemma A.5.4 to equate the number of positive eigenvalues with r and the number of

negative eigenvalues with s, we must have r + s = n. Now, from the definitions, we must

have dim(A ∩ V +) = {0} and dim(A ∩ V −) = {0}. From the first equation, we must have

that dim(A) ≤ s, and from the second, we must have dim(A) ≤ r; see the argument in

Footnote 8 on page 712. But since we have also assumed dim(A) = n
2
, this forces

n = 2 dim(A) ≤ r + s = n.

So in fact all the inequalities of the discussion must be equalities, and dim(A) = r = s = n
2
.

Thus σ(V, (·, ·)) = r − s = 0.

Remark A.5.12. The converse of Lemma A.5.11 is true if we work with ground field R.

To see this, suppose we have used Lemma A.5.5 to find an orthogonal basis for (V, (·, ·)).
Let us order and name the basis so that {a1, · · · , ar} are the orthogonal basis vectors with

(ai, ai) > 0 and {b1, · · · , bs} are the orthogonal basis vectors with (bi, bi) < 0. We continue

to assume that the pairing is nonsingular so that the {ai} and {bi} together constitute a full

basis. We can now normalize the basis by setting ci = 1√
(ai,ai)

ai and di = 1√
|(bi,bi)|

bi. With

respect to this new basis consisting of the ci and di, we have (ci, ci) = 1, (di, di) = −1, and

all other pairings between basis elements yield 0.
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Now suppose the signature is 0, so that r = s = 1
2

dim(V ). Let fi = ci + di, 1 ≤ i ≤
1
2

dim(V ). Then

(fi, fj) = (ci + di, cj + dj)

= (ci, cj) + (ci, dj) + (di, cj) + (di, dj)

= δi,j + 0 + 0− δi,j
= 0.

It follows that the fi span a Lagrangian subspace of V .

The converse of Lemma A.5.11 is not true over Q. For example, consider the form with

pairing matrix

(
2 0

0 −1

)
with respect to some basis {a, b}. This pairing is nonsingular with

index 0. In order to have a Lagrangian subspace, there would have to be rational numbers

x, y, not both 0, such that (xa+ yb, xa+ yb) = 2x2− y2 = 0. But since 2 is not the square of

any rational number, this is impossible. This fact forms part of a rich theory of nonsingular

symmetric forms over Q, as can be found, for example, in [175], particular in Section IV.2.

Signatures of orthogonal sums. Another useful situation that arises in practice is the

one for which a pairing matrix for (V, (·, ·)) has a block sum form, meaning that it has the

form

M =


A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 . . . Am

 .

Here the Ai are square matrices of any size with their diagonals lying along the diagonal

of M , and all other entries of M not in the Ai are zero. Such a form corresponds to a

decomposition of V as a direct sum of subspaces V = ⊕iWi such that the Wi are orthogonal

to each other, i.e. (wi, wj) = 0 if wk ∈ Wk and i 6= j. In this case, each Ai represents the

pairing restricted to Wi. Now, we can find an orthogonal basis spanning each Wi by Lemma

A.5.5. If we do this for all subspaces simultaneously, we can find an orthogonal basis for V .

In this new basis we having a pairing matrix

M ′ =


A′1 0 · · · 0

0 A′2 · · · 0
...

...
. . .

...

0 0 . . . A′m


in which all the A′i are diagonal matrices. It now follows easily that σ(M ′) =

∑
i σ(A′i). But

since these invariants are independent of basis, in fact σ(M) =
∑
σ(Ai). We have shown:

Lemma A.5.13. If M has the block form
A1 0 · · · 0

0 A2 · · · 0
...

...
. . .

...

0 0 . . . Am

 ,
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then σ(M) =
∑m

i=1 σ(Ai). Consequently, if (V, (·, ·)) is a direct sum of orthogonal subspaces

Wi, then σ(V, (·, ·)) =
∑

i σ((Wi, (·, ·))).

Antisymmetric pairings. While the results so far in this section have been about sym-

metric bilinear pairings, there is one result we will need about antisymmetric pairings. An

antisymmetric bilinear pairing over Q consists of a finite-dimensional rational vector space

V and a map

(·, ·) : V × V → Q

such that for u, v, w ∈ V and c ∈ Q,

(u+ v, w) = (u,w) + (v, w)

(u, v + w) = (u, v) + (u,w)

(cu, v) = (u, cv) = c(u, v)

−(u, v) = (v, u).

As in the symmetric case, a choice of basis determines a pairing matrix, though now it will

be antisymmetric, i.e. M t = −M .

In analogy with the symmetric case, an antisymmetric pairing is called nonsingular if the

assignment v → (v, ·) is an injection (and hence an isomorphism) V → Hom(V,Q). Again,

this corresponds to each pairing matrix having non-zero determinant by an easy modification

of Lemma A.5.8.

In this setting, we have the following analogue of Lemma A.5.5.

Lemma A.5.14. Given a nonsingular antisymmetric pairing (V, (·, ·)) on a finite-dimensional

rational vector space there is a basis of V with respect to which the pairing matrix is a block

sum of 2 × 2 matrices of the form

(
0 1

−1 0

)
. It follows as a consequence that V must be

even dimensional to have a nonsingular antisymmetric pairing.

Proof. We will construct a basis {a1, b1, a2, b2, . . . , an, bn} such that (ai, bi) = 1, (ai, bj) = 0

for i 6= j, and (ai, aj) = (bi, bj) = 0 for all i, j. Then the pairing matrix N with respect to

this basis will have the desired form.

Let b1 be an arbitrary vector in V . Since being nonsingular implies V ∼= Hom(V,Q),

there is another vector in V , which we will label a1, such that (a1, b1) = 1. The pairing

matrix restricted to the span of {a1, b1} is now

(
0 1

−1 0

)
, using {a1, b1} as a basis, noting

that antisymmetry says that (v, v) = −(v, v) and so (v, v) = 0 for any vector v ∈ V .

If V is 2-dimensional, we are done. Otherwise, choose f2 not in the span of {a1, b1}, and
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let b2 = f2 + (b1, f2)a1 − (a1, f2)b1. Then

(a1, b2) = (a1, f2 + (b1, f2)a1 − (a1, f2)b1)

= (a1, f2) + (b1, f2)(a1, a1)− (a1, f2)(a1, b1)

= (a1, f2) + 0− (a1, f2)

= 0.

Similarly

(b1, b2) = (b1, f2 + (b1, f2)a1 − (a1, f2)b1)

= (b1, f2) + (b1, f2)(b1, a1)− (a1, f2)(b1, b1)

= (b1, f2)− (b1, f2)− 0

= 0.

So b2 is orthogonal to span({a1, b1}), but there must be some e2 with (e2, b2) = 1 (note that

e1 is not in the span of {a1, b1, b2}). Let a2 = e2 + (b1, e2)a1 − (a1, e2)b1. Then by the same

calculations as for b2, we see that a2 is orthogonal to span({a1, b1}), while

(a2, b2) = (e2 + (b1, e2)a1 − (a1, e2)b1, b2)

= (e2, b2) + (b1, e2)(a1, b2)− (a1, e2)(b1, b2)

= 1 + 0 + 0

= 1.

We can continue in this manner: Once we have found {a1, b2, . . . , ak, bk}, if these do

not span V we can let fk+1 be any vector not in span({a1, b2, . . . , ak, bk}) and then let

bk+1 = fk+1 +
∑k

i=1(bi, fk+1)ai −
∑k

i=1(ai, fk+1)bi. By analogous computations to those

above, the vector bk+1 will be orthogonal to all the previous ai and bi. Then there must

be some ek+1 not in the span of the established ai and bi such that (ek+1, bk+1) = 1. Let

ak+1 = ek+1 +
∑k

i=1(bi, ek+1)ai−
∑k

i=1(ai, ek+1)bi. Again this vector will be orthogonal to all

ai and bi, 1 ≤ i ≤ k, but (ak+1, bk+1) = 1.

Eventually, the ai and bi span the space, and we are done.

Corollary A.5.15. If (V, (·, ·)) is any finite-dimensional rational vector space with a non-

singular antisymmetric pairing, there is a vector space of half the dimension of V on which

the pairing is trivial.

Proof. Continuing to use the notation of the proof of the preceding lemma, the subspace

spanned by {a1, . . . , an} is such a subspace.
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Appendix B

An introduction to simplicial and PL

topology

In this appendix, we provide a brief survey introduction to PL spaces. Probably the most

accessible introduction to PL spaces as subspaces of finite-dimensional Euclidean spaces is

the book by Rourke and Sanderson [197]. However, for our purposes we will want to consider

more general PL spaces, including those we wish to think about abstractly (not as concrete

subspaces of Euclidean spaces), and PL spaces that have been given infinite (though locally

finite) triangulations. To handle such generalities, we will refer primarily to Hudson [130].

Most of the following definitions and major results are taken from [130], though we add some

additional arguments to tie the material together for our use. We assume that the reader

is already familiar with simplicial complexes, e.g. from one of [181, 219, 125] (though they

each take a somewhat different approach), but we also provide a very brief review of the

main definitions.

In the abstract approach to PL spaces, one proceeds somewhat analogously to how one

forms a smooth manifold by thinking of it as a collection of charts that have been glued

together by appropriately smooth maps. Similarly, a PL space is defined by gluing together

Euclidean polyhedra. So let us start with Euclidean polyhedra and a review of simplicial

complexes.

B.1 Simplicial complexes and Euclidean polyhedra

This material is taken primarily from Chapters I and III of [130].

To begin, all of our constructions will at first live within some ambient Euclidean space

Rn. For infinite simplicial complexes, it is useful to allow n =∞. We always think of each Ri
as a subspace of Ri+1 via the map given by the standard inclusion of the first i coordinates

(x1, . . . , xi)→ (x1, . . . , xi, 0). Then we let R∞ be the union ∪∞i=1Ri in the weak topology. So

R∞ consists of sequences of real numbers (x1, x2, . . .) such that all but finitely many of the

xi are 0, and a subset of R∞ is open (respectively, closed) if and only if its intersection with

each Ri, i <∞, is open (respectively, closed).
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B.1.1 Simplicial complexes

Simplicial complexes are built up from simplices, which are a special case of the more general

notion of convex cells.

Definition B.1.1. A convex cell A in Rn, n <∞, is a non-empty, compact subset of Rn that

is the solution set to a finite number of linear equations {fi(x) = 0} and linear inequalities

{gi(x) ≥ 0}.

Example B.1.2. Any convex polygon in the plane (regarded as a two dimensional object

including its interior) is a convex cell.

Example B.1.3. The convex hull of a finite set of points in Rn is a convex cell; conversely,

every convex cell is the convex hull of a finite set of points (the vertices of the cell) [130,

page 2].

A simplex is a special kind of convex cell [130, Section 1.2]:

Definition B.1.4. The convex hull of m + 1 linearly independent points {vi}mi=0 is called

an m-simplex or m-dimensional simplex. Here linear independence means that the set of

vectors {vi − v0}mi=1 is linearly independent. The vi are called the vertices of the simplex.

The convex hull of any subset of the {vi} is itself a simplex, called a face of the original

simplex. If σ is a simplex and τ is a face of σ, we write τ < σ. A face of σ that is not equal

to σ is called a proper face.

Now that we have simplices, let us recall the definition of a simplicial complex; see

Sections I.2 and III.2 of [130]:

Definition B.1.5. A locally finite simplicial complex K in Rn, n ≤ ∞, is a set of simplices

in Rn such that

1. if σ, τ ∈ K and σ ∩ τ 6= ∅ then σ ∩ τ is a face of both σ and τ ,

2. if σ ∈ K and τ is a face of σ, then τ ∈ K,

3. (local finiteness) if x is contained in the union of the simplices of K, then x has a

neighborhood in Rn that intersects only finitely many simplices of K.

The union of the i-simplices of K is called the i-skeleton of K and denoted Ki.

If K is a locally finite simplicial complex, we let |K| denote the space consisting of the

union of the simplices of K.

We say that m is the dimension of K, dim(K) = m, if m is an integer such that every

simplex of K has dimension ≤ m and K has at least one simplex of dimension m.

Remark B.1.6. It is possible to define more general simplicial complexes that are not nec-

essarily locally finite. For example, see [181, Section 2]. We stick with the locally finite

case, as this condition will be enforced for all spaces we will consider. Consequently, we

will abbreviate “locally finite simplicial complex” to “simplicial complex” unless we want to

particularly emphasize this property.
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Example B.1.7. If σ is any simplex, then the set consisting of σ and all its faces is a simplicial

complex.

Remark B.1.8. If K contains only finitely many simplices, we call K a finite simplicial

complex. In this case, |K| must be a subset of some Rn, n < ∞. It is also possible to have

simplicial complexes with infinitely many simplices as a subspace of Rn for n < ∞. For

example, we can construct the simplicial complex K in R1 whose vertices are the integer

points and whose 1-simplices are the intervals [i, i+ 1] for each integer i. Then |K| = R1.

Definition B.1.9. Suppose K,L are simplicial complexes and that every simplex of L is also

a simplex of K. Then we say that L is a subcomplex of K. Equivalently, L is a subcomplex

of K if it is a subset of K that is also itself a simplicial complex.

Example B.1.10. Let K be a simplicial complex, and let {σα} be any subset of the simplices

of K. Let L consist of the simplices {σα} and all of their faces. Then L is a subcomplex.

As a special case, suppose τ is any simplex of K and let {σα} be the set of simplices that

have τ as a face. Then the union of the {σα} and all of their faces is called the closed star

of τ in K, denoted St(τ,K).

Remark B.1.11. It is easy to verify from the definitions that if J, L are both subcomplexes

of K, then J ∩ L is also a subcomplex of K.

It is also important to know about subdivisions of simplicial complexes:

Definition B.1.12. Let K be a simplicial complex. The simplicial complex K ′ is a subdi-

vision of K if |K ′| = |K| and every simplex of K ′ is contained in some simplex of K.

Example B.1.13. Perhaps the most important subdivisions of a simplicial complex are the

barycentric ones in which each simplex is replaced with its barycentric subdivision. These

barycentric subdivisions of simplices are so important that it is unlikely that the reader

familiar with algebraic topology has not seen them, utilized for example in a proof of the

excision property for singular homology. See [125, Section 2.1], [181, Section 15], [219,

Section 3.3], [71, Section III.6], or Hudson [130, Section I.2].

As a brief reminder, if {vi}mi=0 are the vertices of anm-simplex σ ⊂ Rn, then the barycenter

of σ is σ̂ = 1
m+1

∑m
i=0 vi. The barycentric subdivision, say K̂, of a simplicial complex K is

then defined inductively over the skeleta of K: Let K̂0 = K0. Now suppose that the skeleta

K̂i have been defined for 0 ≤ i ≤ n− 1 so that each simplex of K̂i is contained in a simplex

of K. Let σ be an n-simplex of K, and suppose that τ is a simplex of K̂n−1 contained in

an n− 1 dimensional face of σ. If {wj}n−1
j=0 are the vertices of τ , then there is an n-simplex

whose vertices are σ̂ and the wj. The union of such n-simplices (and their faces) over all

τ provides a subdivision of σ, and proceeding similarly for all n-simplices gives K̂n. The

simplicial complex K̂ is the union of all the K̂i.

Next we recall the definition of a simplicial map from [130, Section 1.4]

Definition B.1.14. A simplicial map f : K → L is a continuous function f : |K| → |L|
that takes vertices of K to vertices of L and restricts to a linear map on each simplex

of K, i.e. if the vertices v0, . . . , vn span a simplex of K and x =
∑n

i=0 tivi ∈ |K|, then

f(x) =
∑n

i=0 tif(vi).
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Figure B.1: Two subdivision of a 2-simplex. The subdivision on the left is barycentric, but

the subdivision on the right is not.

Example B.1.15. If σ is any simplex and τ is a face, the inclusion map τ ↪→ σ is simplicial,

thinking of σ and τ as simplicial complexes as in Example B.1.7.

Example B.1.16. If V = {v0, . . . , vm} are the vertices of a simplex σ and W = {w0, . . . , v`}
are the vertices of a simplex τ , then any set map V → W determines a unique simplicial

map of the simplicial complexes associated to σ and τ .

The appropriate notion of equivalence among simplicial complexes is that of simplicial

isomorphism; see [181, Lemma 2.8].

Definition B.1.17. A simplicial map f : K → L is a simplicial isomorphism if it induces a

bijection between the vertices of K and L and is such that the vertices v0, . . . , vn of K span

a simplex if and only if f(v0), . . . , f(vn) span a simplex of L. If f : K → L is a simplicial

isomorphism, then so is f−1 : L→ K.

B.1.2 Euclidean polyhedra

We can now define Euclidean polyhedra as in [130, Section I.1]. Essentially, these are the

underlying sets of finite simplicial complexes.

Definition B.1.18. A Euclidean polyhedron in Rn is any finite union of convex cells in Rn.

Remark B.1.19. As in Remark B.1.8, as a Euclidean polyhedron is a union of a finite number

of cells, each contained in a finite dimensional Euclidean space, every Euclidean polyhedron

lives in some Rn with n <∞.

Example B.1.20. There is no requirement in the definition concerning how the convex cells

intersect. So, for example, the union of any two triangles in the plane is a Euclidean

polyhedron.

Example B.1.21. Any polygon in the plane, not necessarily convex, is a Euclidean polyhedron.

Example B.1.22. If K is a finite simplicial complex, then |K| is the union of a finite number of

simplices, so it is a Euclidean polyhedron. The converse is also true, via the next proposition,

which is [130, Corollary 1.7].
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Proposition B.1.23. Every Euclidean polyhedron is the underlying space of a finite simpli-

cial complex.

To build PL spaces, we will also need to know about piecewise linear maps of polyhedra:

Definition B.1.24. If P ⊂ Rn and Q ⊂ Rm are Euclidean polyhedra, then f : P → Q is

piecewise linear if f is continuous and the graph

Γ = {(x, f(x)) | x ∈ P} ⊂ Rn × Rm

is a Euclidean polyhedron.

Remark B.1.25. This definition seems a bit off-putting, but it has a more intuitive interpreta-

tion once we utilize the observation from Proposition B.1.23 that every Euclidean polyhedron

is the underlying space of a simplicial complex. Suppose P = |K| and Q = |L| for some

simplicial complexes K and L. If f : |K| → |L| is piecewise linear, then by [130, Lemma 1.10]

there exist subdivisions K ′, L′ of K,L such that f : K ′ → L′ is simplicial. Conversely, every

simplicial map of finite simplicial complexes is piecewise linear as a map of the underlying

Euclidean polyhedra [130, Remark 2, page 15]. So a map f : |K| → |L| is piecewise linear if

and only if there are subdivisions K ′, L′ such that f : K ′ → L′ is simplicial.

Example B.1.26. The K is a finite simplicial complex and L is a subcomplex, then the

inclusion |L| ↪→ |K| is piecewise linear by Remark B.1.25.

Example B.1.27. The composition of piecewise linear maps of Euclidean polyhedra is piece-

wise linear. See [130, Lemma 1.1].

The following lemmas will be needed below to prove Proposition B.5.3, which says that

the product of PL spaces is a PL space.

Lemma B.1.28. The product of two Euclidean polyhedra is a Euclidean polyhedron.

Proof. This is a consequence of the product of two convex cells being a convex cell [130,

page 2].

Lemma B.1.29. The product of two piecewise linear maps of Euclidean polyhedra is a

piecewise linear map of Euclidean polyhedra.

Proof. Suppose that fi : Pi → Qi are piecewise linear maps of Euclidean polyhedra for

i = 1, 2. Suppressing the ambient Euclidean spaces, the graph of f1 × f2 is the Euclidean

subset

{((x1, x2) , (f1(x1), f2(x2))) | xi ∈ Pi} ∼= {((x1, f1(x)) , (x2, f2(x2))) | xi ∈ Pi},

which is the product of the graphs of f1 and f2. As the graphs of f1 and f2 are Euclidean

polyhedra by assumption, it follows from Lemma B.1.28 that the graph of the product is a

Euclidean polyhedron.
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B.2 PL spaces and PL maps

We now turn to PL spaces, following Hudson [130, Chapter III]. Hudson’s definition is not

the one we have given in the main text in Section 2.5, although we will show that the category

of spaces PL implicit in [130] (he does not use the language of categories and functors) is

equivalent to our category AT of Definition 2.5.11. As we primarily follow Hudson’s point

of view through most of this appendix, we will use “PL map” and “PL space” here primarily

in the sense of [130]; when we need to refer to the spaces of Section 2.5 in a way that

distinguishes them from Hudson’s PL spaces, we will simply call them “spaces with families

of admissible triangulations,” or “AT spaces” for short1.

So far, our Euclidean polyhedra have been compact and our simplicial complexes have

lived as subsets of Euclidean spaces in much the way that one might first be introduced

to smooth manifolds as submanifolds of Euclidean space. But just as one can abstract the

definition of smooth manifold to one involving coordinate charts that needs no reference to

an ambient space, so too can a PL space be defined as an abstract, not-necessarily-compact

generalization of a Euclidean polyhedron that does not require an ambient space. Also as for

manifolds, while this level of abstraction can be very powerful, it is in some sense not strictly

necessary for reasonable spaces: by the Whitney embedding theorem, any finite-dimensional

second countable smooth manifold can be embedded as a closed subset of Euclidean space

(see [38, Theorem II.10.8]), while Hudson shows that any PL space is homeomorphic to a

simplicial complex in R∞.

So let us proceed to the definitions, beginning with the structures that play the role of

coordinate charts [130, Section III.2]:

Definition B.2.1. Let X be a topological space. A coordinate map (f, P ) is a topological

embedding f : P → X, where P is a Euclidean polyhedron (and so compact). The coordinate

maps (f, P ) and (g,Q) are deemed compatible if f(P ) ∩ g(Q) = ∅ or if f(P ) ∩ g(Q) 6= ∅
and there is a coordinate map (h,R) such that h(R) = f(P ) ∩ g(Q) and f−1h and g−1h are

piecewise linear maps in the sense of Definition B.1.24. Equivalently, (f, P ) and (g,Q) are

compatible if f−1(g(Q)) is empty or if it is a subpolyhedron of P and g−1f : f−1(g(Q))→ Q

is a piecewise linear map.

Example B.2.2. Suppose that (f, P ) and (g,Q) are two compatible coordinate maps and that

P ′ is a subpolyhedron of P , i.e. a Euclidean polyhedron that is also a subset of P . Then

(f |P ′ , P ′) is also compatible with (g,Q). Indeed, in this case (f |P ′)−1(g(Q)) = P ′∩f−1(g(Q)),

which is the intersection of two Euclidean polyhedron and hence a Euclidean polyhedron [130,

page 2]. And g−1f |P ′ : P ′∩f−1(g(Q))→ Q is piecewise linear as the restriction of a piecewise

linear map of Euclidean polyhedra to a subpolyhedron [130, Lemma 1.1].

A compatible collection of coordinate maps yields a “PL structure” [130, Section III.2]:

1We do this with apologies, realizing it could cause some confusion, but since the spaces of the main body

of these text are PL spaces, for all intents and purposes, and as this is already a recognized kind of space,

we do not want to call them AT spaces throughout the book. But it would also be confusing to refer to the

spaces in Hudson by any other name.
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Definition B.2.3. A PL structure F on a topological space X is a family of coordinate

maps such that

1. any two coordinate maps of F are compatible in the sense of Definition B.2.1,

2. for each x ∈ X there is some coordinate map (f, P ) in F such that f(P ) is a topological

neighborhood of x in X,

3. F is maximal in the sense that if the coordinate map (f, P ) is compatible with every

coordinate map in F , then (f, P ) is in F .

Definition B.2.4. A PL space (X,F) is a second-countable Hausdorff space X with a PL

structure F . We often speak of the “PL space X” leaving F tacit.

A PL space (X,F) is called an m-dimensional PL manifold if for each x ∈ X there is

some coordinate map (h,∆m) in F such that ∆m is an m-simplex and x is contained in the

interior of the image h(∆m).

Remark B.2.5. Another similarity with smooth manifolds is that while one often includes

having a maximal atlas as part of the definition of a smooth manifold, having enough charts

to cover the manifold is really sufficient. Here, a collection of coordinate maps on X satisfying

just the first two conditions of the definition is called a base for a PL structure, and every

base can be completed to a unique PL structure [130, Lemma 3.1]. In particular, any

two coordinate maps that are compatible with every coordinate map in a given base are

compatible with each other.

Example B.2.6. If |K| is the underlying space of a locally finite simplicial complex, we claim

that |K| can be given the structure of a PL space. The most obvious thing to try would be to

take as coordinate maps the inclusions into |K| of its simplices. While any two such inclusions

are clearly compatible, this is not sufficient to give us a base because a point x ∈ |K| might

not lie in the topological interior of any simplex of K (where here “topological interior”

means the interior of the simplex as a topological subspace of |K|). For example, if K is

the simplicial complex of Remark B.1.8 with |K| = R, then no neighborhood of any integer

point in |K| = R is contained in any one simplex.

However, there is a simple solution to this problem: We let the coordinate maps for X

consist of every inclusion |L| ↪→ |K| where L is a finite subcomplex of K. These are compat-

ible using Remark B.1.11 and Example B.1.26. To see that they satisfy the second condition

to constitute a base, let x be point of K. By the local finiteness, x has a neighborhood in

R∞ that intersects only finitely many of the simplices of K. Let L be the union of these

simplices and their faces, which is also a finite subcomplex of K. We see that |L| must

contain a neighborhood of x in |K|, and so the condition is met.

We will call this the canonical PL structure on |K|. This is perhaps an abuse of notation

as the PL structure depends on K, not just |K|, so the “K” is critical to the meaning of the

symbol.

Example B.2.7. Let K be a simplicial complex and K ′ a subdivision of K. Let B be the

base for the canonical PL structure on |K| defined in the preceding example, and let B′ be
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the analogous base for |K ′|. We have that |K| = |K ′| and that B is a subset of B′ because

the underlying space of every subcomplex L of K is also the underlying space of L′, where

L′ is the subdivision of L induced by the subdivision K ′ of K. By Remark B.2.5, both B
and B′ are bases for the same PL structure on |K| = |K ′| and so they determine the same

PL space.

As a corollary, we note that if K and L are two simplicial complexes that have a common

subdivision, then they both determine the same PL space.

Example B.2.8. Building on Example B.2.6, let K be a simplicial complex and suppose there

is a homeomorphism h : |K| → X for some topological space X. We can take as a base for

a PL structure on X the collection (h, |L|) as L runs over all finite subcomplexes of K. The

verification that this is a base for a PL structure is essentially the same as the argument

of Example B.2.6. Theorem B.2.9 now says that every PL space can be constructed in this

manner; see [130, Section III.2].

Theorem B.2.9. Let (X,F) be a PL space. There exists a locally finite simplicial complex K

and a homeomorphism h : |K| → X such that the restrictions of h to the finite subcomplexes

of K are all coordinate maps of F .

Furthermore, if (X,F) is an m-dimensional PL manifold then every point of |K| lies in

the interior of the image of a piecewise linear map of polyhedra ∆m → |K|.

Definition B.2.10. If X is a topological space, K is a locally finite simplicial complex, and

h : |K| → X is a homeomorphism, we say that the pair T = (K,h) is a triangulation of X.

In the case where (X,F) is a PL space and the restrictions of h to the finite subcomplexes

of K are all coordinate maps of F , then we say that T is a PL triangulation of (X,F). It

is often common to abbreviate and speak of “a triangulation of X,” or “a triangulation of

X by K,” or “the triangulation h : |K| → X,” leaving the other elements of the definition

tacit unless explicit reference to them is required.

Example B.2.8 says that ifX is a topological space then any triangulation ofX determines

a PL structure F on X such that the triangulation is a PL triangulation of the PL space

(X,F).

Example B.2.11. Continuing Example B.2.6, we see that if K is a simplicial complex and if

|K| is given the canonical PL structure then the identity map |K| → |K| is a PL triangula-

tion.

Example B.2.12. More generally, suppose that h : |K| → X is a PL triangulation of (X,F)

and that K ′ is any subdivision of K. Then h : |K ′| → X is a PL triangulation. To verify

this, we need to know that the restriction of h to any finite subcomplex of K ′ is a coordinate

map in F . But every finite subcomplex L′ of K ′ is contained in a finite subcomplex L of K;

just let L be the union of all of the faces of all of the simplices of K that intersect simplices

of L′. By assumption, the restriction of h to |L| is a coordinate map, and so it is compatible

with every other coordinate map in F by the first part of Definition B.2.3. Example B.2.2

then tells us that the restriction of h to |L′| is also compatible with every coordinate map

in F , so by the third condition in Definition B.2.3, (h, |L′|) is a coordinate map in F . As L′

was an arbitrary subcomplex of K ′, the map h : |K ′| → X is a PL triangulation.
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A natural question to ask is when two triangulations of a space X determine the same

PL structure. Equivalently, if X is already a PL space, we can ask when a triangulation is

a PL triangulation. To discuss that question, we need PL maps [130, Section III.3]:

Definition B.2.13. Let (X,F) and (Y,G) be PL spaces. A topological2 map φ : X → Y is a

PL map if for each pair of coordinate maps (f, P ) ∈ F and (g,Q) ∈ G the set f−1(φ−1(g(Q)))

is empty or a subpolyhedron of P and, if the latter case, the map g−1φf : f−1(φ−1(g(Q)))→
Q is a piecewise linear map of Euclidean polyhedra.

Definition B.2.14. The PL spaces and maps form a category PL. We leave verification of

the category axioms as an exercise for the reader.

Following the definition of PL maps, Hudson goes on to give a second definition for PL

maps in the case that X = |K| and Y = |L| for simplicial complexes K and L:

Definition B.2.15. If K,L are locally finite simplicial complexes and φ : |K| → |L| is a

topological map, we say that φ is a PL map if it maps each finite subcomplex of K piecewise

linearly into some finite subcomplex of L.

Remark B.2.16. These two definitions of PL map are consistent: By [130, Remark, page 83],

if h : |K| → X and j : |L| → Y are PL triangulations of the PL spaces X and Y and the

diagram

X
φ

- Y

|K|

h

6

ψ
- |L|

j

6

commutes, then φ is a PL map in the sense of Definition B.2.13 if and only if ψ is a PL map

in the sense of Definition B.2.15.

Notice that if X = |K| and Y = |L|, i.e. if h and j are the identity maps so that X

and Y are the canonical PL structures on |K| and |L|, then this means that any PL map

|K| → |L| in the second sense is also a PL map in the first sense.

Example B.2.17. We saw in Remark B.1.25 that any simplicial map of finite simplicial com-

plexes is piecewise linear as a map of the underlying Euclidean polyhedra and so any sim-

plicial map of locally finite simplicial complexes is a PL map.

Example B.2.18. We saw in Theorem B.2.9 that if (X,F) is a PL space then there exists

a PL triangulation h : |K| → X such that the restrictions of h to the finite subcomplexes

of K are all coordinate maps of F . Let K denote |K| as a PL space with the canonical PL

2In fact, as noted in [130, Note 1, page 83], the continuity follows from the other conditions, so we need

not have mentioned it explicitly.
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structure coming from K, as in Example B.2.6. We claim that h : K → X is a PL map. By

Remark B.2.16, we may consider the diagram

K
h
- X

|K|

id

6

id
- |K|,

h

6

which clearly commutes. The map h : |K| = K → X is a PL triangulation by hypothesis,

and id : |K| → K is a PL triangulation by Example B.2.11. So by Remark B.2.16, the map

h : K → X is a PL map if and only if id : |K| → |K| is a piecewise linear map, which is

certainly true.

In fact, h : K → X is a PL homeomorphism, as the same argument with the horizontal

arrows reversed in the diagram shows that h−1 is also a PL map.

We observed in Remark B.1.25 that piecewise linear maps of (compact) Euclidean polyhe-

dra can be interpreted in simplicial terms: any piecewise linear map |K| → |L| of Euclidean

polyhedra is a simplicial map with respect to some subdivisions K ′ and L′ of K and L.

Analogously, for PL maps, we have the following theorem, Theorems 3.6.B and 3.6.C of

[130]:

Theorem B.2.19. If K and L are locally finite simplicial complexes and f : |K| → |L| is a

PL map then there is a subdivision K ′ of K such that f maps simplices of K ′ linearly into

simplices of L. Furthermore, if f is proper3 then there are subdivisions K ′ of K and L′ of L

such that the map f : K ′ → L′ is a simplicial map.

Remark B.2.20. The restriction to proper maps is necessary for the second conclusion of

the theorem. Here is one of the standard counterexamples without that assumption: Let K

be the simplicial complex with |K| = {x ∈ R | x ≥ 0} and with vertices at the integers.

Consider the map f : N→ R defined by f(2i) = 0 and f(2i+1) = 1
2i

. Mapping each interval

[j, j + 1] of K linearly to R based on where its endpoints are sent by f gives a piecewise

linear map f : |K| → |K|, but there are no locally finite subdivisions K ′1 and K ′2 of K such

that f : K ′1 → K ′2 is simplicial.

Example B.2.21. Suppose X is a PL space. By Theorem B.2.9 there exist PL triangulations

of X. Let h : |K| → X and j : |L| → X be two such triangulations. Then, by Remark

B.2.16, j−1h : |K| → |L| is a PL map, as the identity map X → X is certainly PL. As j−1h is

a homeomorphism, it is proper. Therefore, by Theorem B.2.19, there are subdivisions K ′ and

L′ such that j−1h : K ′ → L′ is simplicial, and hence a simplicial isomorphism. In particular,

if |K| = |L| and h and j are both identity maps, this says that there are subdivisions K ′

and L′ such that the identity map induces a simplicial isomorphism K ′ → L′. This implies

that K ′ = L′, i.e. K and L have a common subdivision.

3Recall that a map f : X → Y of topological spaces is called proper if for each compact set K ⊂ Y , the

set f−1(K) is a compact subspace of X.
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Here is a useful corollary to Theorem B.2.19:

Corollary B.2.22. Suppose K and L are finite simplicial complexes and that f : |K| → |L|
is a PL map that is also a bijection. Then f is a PL homeomorphism.

Proof. As K is finite, the space |K| is compact. By definition of PL maps, f is continuous,

and a continuous bijection of compact Hausdorff spaces is a topological homeomorphism

[181, Theorem 26.6]. Furthermore, as any map with compact domain is proper, by Theorem

B.2.19 there are subdivisions K ′ of K and L′ of L such that f : K ′ → L′ is simplicial. But

since f is a homeomorphism, this implies that it restricts to a linear homeomorphism from

each simplex of K ′ onto some simplex of L′. Thus f : K ′ → L′ is a simplicial isomorphism,

and hence so is f−1, implying that f−1 is also a PL bijection.

We can now answer our question concerning when two triangulations of a space X de-

termine the same PL structure:

Theorem B.2.23. Two triangulations (K,h) and (L, j) of the topological space X determine

the same PL structure if and only if there are subdivisions (K ′, h) and (L′, j) such that j−1h

is a simplicial isomorphism. Therefore, if (X,F) is a PL space, the triangulation (K,h) is a

PL triangulation if and only if for any PL triangulation (L, j) there are subdivisions (K ′, h)

and (L′, j) such that j−1h is a simplicial isomorphism.

Proof. First, suppose that (K,h) and (L, j) are both triangulations of X and that they

determine the same PL structure (X,F). Then they are both PL triangulations of (X,F),

and Example B.2.21 shows that there are subdivisions (K ′, h) and (L′, j) such that j−1h is

a simplicial isomorphism.

Conversely, suppose we have two triangulations (K,h) and (L, j) of the topological space

X and that there are are subdivisions (K ′, h) and (L′, j) such that j−1h is a simplicial

isomorphism. We know that (K,h) and (K ′, h) determine the same PL structure on X by

Example B.2.12, and similarly (L, j) and (L′, j) determine the same PL structure. So to

show that (K,h) and (L, j) determine the same PL structure, it suffices to show that (K ′, h)

and (L′, j) determine the same PL structure. Let BK and BL be the bases of PL structures

determined by the images of the finite subcomplexes of K ′ and L′ under h and j, respectively;

see Example B.2.8. Suppose (h, P ) ∈ BK and (j,Q) ∈ BL. Then h−1j(Q) is a subcomplex

of K ′, as h−1j is a simplicial isomorphism, and, in particular, its intersection with P is a

subcomplex of P . Furthermore, the restriction of j−1h to this subcomplex is simplicial and

hence piecewise linear by Remark B.1.25. Therefore, by Definition B.2.1, these coordinate

maps are compatible. As (h, P ) and (j,Q) were arbitrary elements of BK and BL, it follows

from Remark B.2.5 that BK and BL are bases for the same PL structure.

For the second part of the theorem, if (L, j) is a PL triangulation of (X,F), then the

base BL determines F by Definition B.2.10, and so (K,h) is a PL triangulation if and only if

it also determines F , which by the above argument is equivalent to (K,h) and (L, j) having

subdivisions that are simplicial isomorphisms via j−1h.

One further important notion for this section is that of PL approximation, which says that

arbitrary maps from PL spaces to PL manifolds can be approximated by nearby homotopic
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PL maps. Furthermore, if such a map is already PL on a closed subspace, then the homotopy

can be taken as fixed on the subspace. The following technical statement is rephrased from

Lemma 4.2 of [130]:

Theorem B.2.24 (PL Approximation Theorem). Let f : X → M be a continuous map

from the PL space X to the PL manifold M , and let Z ⊂ X be a closed PL subspace such

that f |Z : Z →M is a PL map. Let ε : X → R be a continuous positive function. Then given

a distance function d on X, there exists a PL map f ′ : X →M such that f ′ is homotopic to

f rel Z and d(f(x), f ′(x)) < ε(x) for all x ∈ X.

B.3 Comparing our two notions of PL spaces

In this section, we demonstrate that the category AT defined in Section 2.5 using admissible

families of triangulations of a space is equivalent to the category PL of PL spaces as defined

here in Definition B.2.14. As per our discussion at the beginning of Section B.2, in order to

be very clear at all times about which definition we are using, we will in this section refer

to the spaces defined in Section 2.5 as “AT spaces” and the maps as “AT maps,” the “AT”

referring to the families of admissible triangulations.

Let us briefly recall the definitions from Section 2.5, substituting in the “AT” language.

First recall our earlier definition of “triangulation,” noting that there is no conflict with

the definition here.

Definition B.3.1 (Definition 2.5.1). A triangulation T of a topological space X is a pair

T = (K,h), where K is a locally finite (possibly infinite) simplicial complex and h : |K| → X

is a homeomorphism. A subdivision of T = (K,h) is a pair T ′ = (K ′, h), where K ′ is a

subdivision of the simplicial complex K. If T = (K,h) and S = (L, j) are two triangulations

of X, we say that T and S have a common subdivision if there are respective subdivisions

T ′ = (K ′, h) and S ′ = (L′, j) of T and S such that j−1h is a simplicial isomorphism from K ′

to L′. Of course in this case h−1j is also a simplicial isomorphism.

Definition B.3.2 (Definition 2.5.2). An AT space is a second-countable Hausdorff space X

together with a family of triangulations T satisfying the following compatibility properties:

1. if T ∈ T and T ′ is any subdivision of T , then T ′ ∈ T ,

2. if T, S ∈ T , then T and S have a common subdivision.

If (X, T ) is an AT space, we call the triangulations in T triangulation!admissible.

Definition B.3.3 (Definition 2.5.4). If (X, T ) and (Y,S) are two AT spaces, an AT map

(X, T ) → (Y,S) is a (topological) map f : X → Y such that if given any admissible

triangulations (K,h) of X and (L, j) of Y there is a subdivision K ′ of K such that j−1fh

takes each simplex of K ′ linearly into a simplex of L.

Definition B.3.4 (Definition 2.5.11). The AT spaces and maps as we have defined them

here form a category AT .
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Now let us construct functors F : PL → AT and G : AT → PL, which we will then

show yield an equivalence of categories. We begin by defining F and G on objects.

Suppose (X,F) is a PL space. By Theorem B.2.9 and Definition B.2.10, there exists a

PL triangulation (K,h) of X consisting of a homeomorphism h : |K| → X such that the

restriction of h to the finite subcomplexes of K are all coordinate maps of F . Let T be the

collection of all such PL triangulations. We claim that T satisfies the conditions of Definition

B.3.2.

Lemma B.3.5. If (X,F) is a PL space and T is the collection of all PL triangulations (K,h)

of (X,F) then the elements of T are compatible with each other in the sense of Definition

B.3.2.

Proof. We saw in Example B.2.12 that if (K,h) is a PL triangulation then so is (K ′, h) for

any subdivision K ′ of K.

So now suppose that (K,h) and (L, j) are two PL triangulations of K. By Example

B.2.18, the maps h and j can be thought of as PL homeomorphisms h : K → X and

j : L → X, where K and L are |K| and |L| thought of as PL spaces with their canonical

PL structures. By Theorem B.2.19, as j−1h is proper, there are subdivisions K ′ and L′ of

K and L such that j−1h : K ′ → L′ is a simplicial map, in fact a simplicial isomorphism

as the map of underlying spaces is a homeomorphism. This provides the desired common

subdivision.

The lemma says that given any object (X,F) in PL we obtain an object in AT with the

same underlying space and with the admissible triangulations being all the PL triangulations

of (X,F) in the sense of Definition B.2.10. We define F : PL → AT to act on objects in

this way.

Conversely, suppose we have an AT space (X, T ). If we let (K,h) ∈ T be any triangula-

tion, then we can take as a base for a PL structure on X the collection {(h, |L|)} as L ranges

over all finite subcomplexes of K. This is a PL structure by Example B.2.8. We will call this

the PL structure determined by the triangulation, and we let G : AT → PL be given on

objects by this assignment. To show that this construction is well defined, we should check

that it is independent of our choice of (K,h) ∈ T .

Lemma B.3.6. Let (X, T ) be an AT space. If (K,h), (L, j) ∈ T and F ,F ′ are the respective

PL structures determined by these triangulations then F = F ′.

Proof. Let (K,h) and (L, j) be any two triangulations of X in T . By definition, there are

subdivisions K ′ and L′ such that j−1h : K ′ → L′ is a simplicial isomorphism. Theorem

B.2.23 then tells us that (K,h) and (L, j) determine the same PL structures on X.

So far we have seen that every AT space determines a PL space and vice versa. To elevate

these assignments to functors, we must also consider what happens on maps.

Let f : (X,F)→ (Y,G) be a PL map of PL spaces. We need to define F (f) : (X, T )→
(Y,S), where T and S are the families of all PL triangulations of (X,F), respectively (Y,G).

The map F (f) will be the same map as f as a topological map X → Y . We must show that
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f is also an AT map with respect to the given structures. For this, we let (K,h) and (L, j)

be any PL triangulations of X and Y . We must show that there is a subdivision K ′ of K

such that j−1fh takes each simplex of K ′ linearly into a simplex of L. As in the proof of

Lemma B.3.5, we note that Example B.2.18 shows us that the triangulations h : |K| → X

and j : |L| → Y are also PL maps, in fact PL homeomorphisms, using the canonical PL

structures on |K| and |L|. So the composition j−1fh is a PL map, and the existence of the

desired K ′ is now guaranteed by Theorem B.2.19.

Conversely, let g : (X, T ) → (Y,S) be an AT map of AT spaces. Once again, we have

the underlying map g : X → Y , and we want to see that it’s a PL map from G(X) = (X,F)

to G(Y ) = (Y,G), where F and G are the PL structures determined by the triangulations in

T and S. If (K,h) and (L, j) are such triangulations, we know from Remark B.2.16 that g

is PL if and only if j−1gh is PL, meaning by Definition B.2.15 that j−1gh maps each finite

subcomplex of K piecewise linearly into some finite subcomplex of L. We do know from the

hypotheses that there is a subdivision K ′ of K such that j−1gh takes each simplex of K ′

linearly into a simplex of L. The desired property that j−1gh takes any finite subcomplex of

K ′ piecewise linearly into a finite subcomplex of L follows. This can be seen directly from

Definition B.1.24: Let J be a finite subcomplex of K ⊂ Rk, and let J ′ be the subdivision of

J induced by the subdivision K ′ of K. As j−1gh takes each simplex of K ′ linearly into one

simplex of L, there is a finite subcomplex I of L such that f(|J |) ⊂ |I|. If |K| ⊂ Rk and

|L| ⊂ R` then the graph of f ||J | in Rk+` is the union of the simplices that are the graphs of

j−1gh restricted to the simplices of J ′. These graphs are simplices because the restriction

of j−1gh to each simplex of K ′ is linear by assumption. So the graph of f ||J | is a Euclidean

polyhedron by Definition B.1.18. Thus j−1gh satisfies Definition B.2.15 to be a PL map.

So, the upshot of the preceding two paragraphs is that if f is a PL map then we can

define F (f) to be simply the same f : X → Y but interpreted as an AT map, and similarly

if g is an AT map then we can define G(g) to be simply the same g : X → Y but interpreted

as a PL map. In particular, both functors F and G are identity functors at the level of

topological spaces and topological maps; the only things they change are the additional PL

or AT structures.

Theorem B.3.7. The functors F : PL → AT and G : AT → PL determine an equivalence

of categories.

Proof. We will show that there are natural isomorphisms of functors idAT → FG and

GF → idPL. The latter is the simpler: If (X,F) is an object in PL, then, from the

definitions, GF (X,F) is the topological space X with the PL structure induced by one of

its PL triangulations, say (K,h). By definition, this is the structure determined by taking

as a base the coordinate maps (h, |J |), where J runs over the finite subcomplexes of K. This

collection constitutes a base for a PL structure F ′ on X, but as (K,h) is a PL triangulation,

each of these coordinate maps is compatible with the coordinate maps of F by definition.

So as each base is compatible with a unique PL structure by [130, Lemma 3.1], we have

F = F ′. In other words, GF (X,F) = (X,F), so GF is the identity functor on spaces. We

have already observed that each of G and F is the identity on maps at the level of topological
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spaces and topological maps, but knowing the topological map is enough to determine the

PL or AT map. So GF is the identity functor.

By contrast, FG is not the identity functor. Rather, if (X, T ) is an AT space, FG(X, T ) =

(X, T̂ ), where T̂ is the family of all PL triangulations of (X,F), where F is the PL structure

determined by the triangulations in T (recall that each triangulation determines the same

PL structure by Lemma B.3.6). In general, we need not have T = T̂ . For example, if K

is a simplicial complex and K ′ is some subdivision with K 6= K ′, then we could let T be

the family of triangulations of |K| = |K ′| consisting of (K ′, id|K|) and its subdivisions. In

this case, (K, id|K|) /∈ T even though we know K and K ′ determine the same PL structure

on |K| by Example B.2.7. However, we will have T ⊂ T̂ , as the elements of T will be

some of the PL triangulations of (X,F), and it follows from Proposition 2.5.7 in the main

text that the identity map X → X induces an AT homeomorphism (X, T ) → (X, T̂ ). If

f : (X, T )→ (Y,S) is an AT map, the diagram

(X, T )
id
- (X, T̂ ) = FG(X, T )

(Y,S)

f

? id
- (Y, Ŝ) = FG(Y,S)

f

?

certainly commutes at the space level, but this is enough to say that it commutes as a

diagram of AT spaces because the horizontal maps are AT homeomorphisms. So we see that

we have a natural isomorphism idAT → FG, as desired.

B.4 PL subspaces

We will need just two facts about PL subspaces, contained in the following examples. See

[130, Section III.4] for these and further results.

Definition B.4.1. If (X,F) is a PL space and (X0,F0) is another PL space with X0 ⊂ X,

then (X0,F0) is a PL subspace of (X,F) if X0 has the subspace topology it inherits from X

and the inclusion X0 ↪→ X is a PL map.

In this case, F0 = {(f, P ) ∈ F | f(P ) ⊂ X0}.

Example B.4.2. If (X,F) is a PL space, any open subset X0 of X is a PL subspace with

F0 = {(f, P ) ∈ F | f(P ) ⊂ X0}. It follows from Theorem B.2.19 that if T = (K,h) is a

triangulation of X and X0 is an open subspace of X then there is a triangulation S = (L, j)

of X0 that “subdivides” T in the sense that h−1j takes every simplex of L linearly and

injectively into a simplex of K.

Example B.4.3. Let (X,F) be a PL space, and let T = (K,h) be a triangulation of X.

Suppose that L is a subcomplex of K. Then the restriction h||L| : |L| → X is PL by Remark

B.2.16 if |L| is given its canonical PL structure so that h||L| is a PL triangulation. So h(|L|),
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with its subspace topology and the PL structure it obtains from the triangulation (L, h||L|),
is a PL subspace of X.

Conversely, by [130, Lemma 3.7] and its proof (which proves something a bit stronger

than the statement of the lemma), if X is a PL space, X0 ⊂ X is a closed PL subspace,

and T = (K,h) is a triangulation of X, then there is a subdivision T ′ = (K ′, h) of T and a

subcomplex K ′0 of K0 with respect to which X0 = h(K ′0).

So closed PL subspaces of a PL space X correspond to those subsets of X that can be

triangulated as subcomplexes in PL triangulations of X.

B.5 Cones, joins, and products of PL spaces

In this section we demonstrate that basic operations with PL spaces yield new PL spaces.

Lemma B.5.1. Let X, Y be compact PL spaces. Then the join X ∗ Y is a PL space.

Proof. Let T1 = (K, k) and T2 = (L, `) be PL triangulations of X and Y respectively.

Then K and L are finite simplicial complexes, and the join K ∗ L is a simplicial complex

whose simplices are the joins of the simplices of K and L [181, Section 62]. The join map

k ∗ ` : K ∗L→ X ∗ Y is a triangulation of X ∗ Y , and this gives a PL structure on X ∗ Y by

Example B.2.6. To see that this structure does not depend on the choice of triangulation for

X or Y , first let T ′1 = (K ′, k) be a subdivision of T1. If the simplex τ of K ′ is contained in

the simplex σ of K and if η is any simplex of L, then τ ∗ η ⊂ σ ∗ η, so K ′ ∗L is a subdivision

of K ∗ L. Hence we obtain a subdivision (K ′ ∗ L, k ∗ `) of our first triangulation of X ∗ Y .

By Example B.2.7, both of these triangulations determine the same PL structure on X ∗ Y .

If (J, j) is another PL triangulation of X, then by Example B.2.21 there are subdivisions

(J ′, j) of (J, j) and (K ′, k) of (K, k) so that j−1k and k−1j are simplicial isomorphisms. It

follows that (j ∗ `)−1(k ∗ `) = (j−1 ∗ `−1)(k ∗ `) = j−1k ∗ id|L| is a simplicial isomorphism from

K ′ ∗ L to J ′ ∗ L. So by Theorem B.2.23, (K ∗ L, k ∗ `) and (J ∗ L, j ∗ `) determine the same

PL structure on X ∗ Y . Making a similar argument with Y , it follows that we obtain a PL

structure of X ∗ Y that does not depend on our choices of triangulations for X and Y .

Corollary B.5.2. Let X be a compact PL space. Then c̄X and cX are PL spaces.

Proof. The space c̄X is a special case of the preceding lemma with Y being a single point.

Then cX is an open subset of c̄X so we can invoke Example B.4.2.

We next prove that the product of PL spaces is a PL space. In the next section, we will

describe how to construct a specific triangulation of a product of simplicial complexes via

the Eilenberg-Zilber shuffle product, which is used in Section B.6 in the main body of the

text to construct the cross product of chains. The construction of the product triangulation

culminates in Theorem B.6.6. Unfortunately, however, the resulting product triangulation

does not behave well with respect to subdivisions; see Figure B.2, which will make more sense

after reading the next section or consulting Section B.6. Thus we cannot directly emulate our

proof of Lemma B.5.1 and must take a different tack, falling back to the abstract definition
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of PL spaces. However, once we have shown that the product of PL spaces is PL, Theorem

B.6.6 shows that the Eilenberg-Zilber shuffle product triangulation is consistent with the

product PL structure.

Figure B.2: Two different triangulations of ∆1 × ∆1. On the left we have the Eilenberg-

Zilber shuffle product triangulation of the product of two 1-simplices. On the right, the first

1-simplex has been subdivided into two 1-simplices. The triangulation on the right is not a

subdivision of the triangulation on the left.

Proposition B.5.3. Let X and Y be PL spaces. Then X × Y is a PL space.

Proof. Let FX and FY be the respective PL structures on X and Y , and let (fX , PX) ∈ FX
and (fY , PY ) ∈ FY . Then (fX × fY , PX × PY ) is a coordinate map to X × Y , using that

the product of Euclidean polyhedra is a Euclidean polyhedron by Lemma B.1.28. Suppose

(gX , QX) ∈ FX and (gY , QY ) ∈ FY are two other convex cells. We will check that (fX ×
fY , PX × PY ) is compatible with (gX × gY , QX ×QY ). It will then follow that the collection

of all such products of coordinate maps in X and Y constitutes a base for a PL structure

on X × Y ; it is clear that every point of X × Y must be in the interior of such a product

coordinate map. Suppose that the intersection of

(fX × fY )(PX × PY ) = fX(PX)× fY (PY )

with

(gX × gY )(QX ×QY ) = gX(QX)× gY (QY )

is non-empty. Then it is equal to

(fX(PX) ∩ gX(QX))× (fY (PY ) ∩ gY (QY )).

By assumption, there exists a coordinate map (hX , RX) in FX such that hX(RX) = fX(PX)∩
gX(QX) and f−1

X hX and g−1
x hX are both piecewise linear maps of Euclidean polyhedra, and

similarly for Y . So then

(hX × hY )(RX ×RY ) = hX(RX)× hY (RY ) = (fX(PX) ∩ gX(QX))× (fY (PY ) ∩ gY (QY )),

and it remains to observe that (fX×fY )−1(hX×hY ) = (f−1
X hX)×(f−1

Y hY ) is piecewise linear,

and similarly replacing f with g. But the product of piecewise linear maps of polyhedra is

piecewise linear by Lemma B.1.29.

We leave the fact that the product of PL manifolds is a PL manifold as an exercise for

the reader.
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B.6 The Eilenberg-Zilber shuffle triangulation of prod-

ucts

Our goal in this section is to construct an explicit standard triangulation of the product

|K| × |L|, where K and L are simplicial complexes. The construction assumes we have

chosen partial orderings on the vertices of K and L that restrict to total orderings on each

simplex, and the construction depends on this choice. These triangulations are critical in the

main body of the text in order to define cross products of singular and PL chains explicitly

in Section 5.2, based upon a simplicial cross product we define here in Section B.6.5.

B.6.1 The definition of the Eilenberg-Zilber triangulation

We begin by recalling the basics of shuffles presented in Section 5.2.

Definition B.6.1. Let p, q be non-negative integers. Then a (p, q)-shuffle is a partition of the

ordered set [1, 2, . . . , p+ q] into two disjoint ordered sets µ = [µ1, . . . , µp] and ν = [ν1, . . . , νq]

with µi < µi+1 for each i and similarly for the νj.

Such a partition (µ, ν) tells us how to shuffle together two ordered sets of respective

cardinalities p and q to form a new ordered set of cardinality p+ q: the elements of the first

set occupy the spots labeled by the µs and the elements of the second set are placed in the

spots corresponding to the νs. So, for example, if we have ordered sets [A,B,C] and [α, β],

and a (3, 2)-shuffle ([2, 3, 5], [1, 4]), then we can shuffle our sets by this prescription to get

the ordered set [α,A,B, β, C]. Note that the elements of the first set go in order into spots

2, 3, and 5.

Using these shuffles, we construct embeddings ∆p+q → ∆p × ∆q, where each ∆i is the

i-simplex with the fixed standard ordering on its vertices. To fix notation, we let ∆p =

[u0, . . . , up], ∆q = [v0, . . . , vq], and ∆p+q = [w0, . . . , wp+q]. Let ηµ : ∆p+q → ∆p take the

vertex wi ∈ ∆p+q to the vertex uj ∈ ∆p if µj ≤ i < µj+1 (letting µ0 = 0 and µp+1 = p+q+1).

Let ην : ∆p+q → ∆q be defined similarly. We obtain a map ηµν = (ηµ, ην) : ∆p+q → ∆p×∆q

by extending linearly from what this map must do to vertices, and it is a linear embedding.

We denote the image of ηµν by δµν . We will show below that the collection of δµν and their

faces gives a triangulation of ∆p × ∆q. We will then use this to construct triangulations

K ×L of products of simplicial complexes K and L and to define a simplicial cross product

chain map of the form C∗(K)⊗ C∗(L)→ C∗(K × L).

To better understand the local construction, let us see explicitly where the vertices {wi}
of ∆p+q get mapped by ηµν . Since ν0 = µ0 = 0 by definition, w0 gets mapped to (u0, v0).

Now, if 1 ∈ µ, then w1 gets mapped to (u1, v0), and if 1 ∈ ν, then w1 gets mapped to (u0, v1).

In general, if wi = wj+k goes to (uj, vk), then wi+1 will go to either (uj+1, vk) or (uj, vk+1)

depending respectively on whether i+ 1 is in µ or ν.

Another way to think of a (p, q)-shuffle is to imagine a walk on a p×q grid, where columns

are labeled left to right by {0, . . . , p} and the rows are labeled bottom to top by {0, . . . , q}.
Then there is a bijection between (p, q)-shuffles and walks along the grid from (0, 0) to (p, q)

in which each step must move one unit either up or to the right: on the ith step, if i ∈ µ we
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move to the right and if i ∈ ν we move up; conversely, given such a path, if we move right

on ith step then put i ∈ µ and if we move up on the ith step, put i ∈ ν. Then the sequence

of labels (j, k) of the points of the grid along our path is the sequence of vertices (uj, vk) of

δµν .

To show that the construction so described really does provide a triangulation of ∆p×∆q,

i.e. that ∆p×∆q is homeomorphic to a simplicial complex whose p+ q simplices correspond

bijectively to the δµν ranging over the index set of shuffles, we will utilize the techniques of

Ramras [192]. This involves a specific realization procedure for finite abstract simplicial sets,

particularly those associated to partially ordered sets. We review these in the next section.

B.6.2 Realization of partially ordered sets

We first recall the definition of abstract simplicial complex [181, Section 3]. Such an object

essentially contains all the combinatorial information of a simplicial complex without the

specific geometric content.

Definition B.6.2. A finite abstract simplicial complex Λ consists of a finite vertex set V (Λ)

together with a collection of subsets of V (Λ) such that 1) if v ∈ V (Λ) then {v} ∈ Λ, and 2)

if B ⊂ A with A ∈ Λ and B 6= ∅, then B ∈ Λ. The elements of Λ are called the simplices of

Λ.

As noted, an abstract simplicial complex contains the same combinatorial information as

a geometric simplicial complex. In fact, given a geometric simplicial complexK, it determines

an abstract simplicial complex whose vertex set is the set of vertices of K, denoted V (K),

and whose simplices are the subsets of V (K) spanned by simplices of K. Conversely, every

abstract simplicial complex Λ determines a geometric simplicial complex |Λ| obtained by

taking a copy of ∆i for each simplex of Λ containing i+ 1 vertices and gluing these together

along appropriate faces via the combinatorial data (i.e. if B ⊂ A, |B| = i, |A| = j, then we

glue the copy of ∆i corresponding to B to the appropriate face of the ∆j corresponding to

A). Here we will describe a specific concrete realization of such a Λ as a subset of Euclidean

space.

Let V be a set. We can let the elements vi ∈ V be generators of a real vector space

isomorphic to R|V |. We identify the vi with the standard unit basis vectors. Then we can

identify ∆|V |−1 with the subset of R|V | described asv ∈ R|V |
∣∣∣∣∣∣ v =

|V |∑
i=1

tivi with

|V |∑
i=1

ti = 1, ti ≥ 0

 .

This is just a description of the convex hull of the generators of R|V | in barycentric coordi-

nates; see [181, Section 1]. This is an alternative to the other standard embedding of ∆i in

Ri utilizing also the origin as a vertex; instead we use only the unit basis vectors as vertices.

Now, suppose Λ is any finite abstract simplicial complex with vertex set V . Then its

realization |Λ| can be realized as a subset of ∆|V |−1, as ∆|V |−1 contains faces corresponding
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to all possible subsets of V . In particular, if we define the support of v =

|V |∑
i=1

tivi ∈ ∆|V |−1

to be supp(v) = {vi | ti 6= 0}, then

|Λ| =

v ∈ R|V |
∣∣∣∣∣∣ v =

|V |∑
i=1

tivi with

|V |∑
i=1

ti = 1, ti ≥ 0, supp(v) ∈ Λ

 .

For example, the vectors in ∆|V |−1 with support {vi, vj}, i 6= j, are precisely those that lie

on the open interval between the basis vectors corresponding to vi and vj.

We will be particularly interested in abstract simplicial complexes coming from finite

partially ordered sets. If P is a finite partially ordered set, we let Λ(P ) be the abstract

simplicial complex whose vertex set is P and whose k-simplices are the subsets consisting of

totally ordered chains of the form x0 < x1 < · · · < xk with each xi ∈ P . As an example,

if our partially ordered set is N = {0, 1, · · · , n} with its standard order coming from the

integers, then every subset corresponds to a totally ordered chain. In this case, we write

Λ(N) = ∆n and call it the abstract n-simplex4. Observe that |∆n| = ∆n.

We will need one other geometric construction associated to a partially ordered set P :

Let

bP c =

{
z ∈ R|P |

∣∣∣∣∣ z =
n∑
i=1

λixi for some n and some x1 < · · · < xn ∈ P, λi > 0,
n∑
i=1

λi ≤ 1

}
.

Here the xi ∈ P are identified with standard basis vectors in R|P |, but we note that it

is not necessary for all elements of P to occur in each sum. To understand this set, let

bP cm denote the set of elements of bP c for which n = m. Then bP c1 is the union of the

|P | unit segments from the origin to the xi, omitting the origin; bP c2 is the union of the

2-simplices spanned by the origin and pairs of elements xi, xj ∈ P with xi < xj, minus

their intersections with the rays from the origin along the standard basis vectors (if xi, xj
are not comparable in the partial order, they don’t contribute to bP c2); and so on. The

bP cm are disjoint, so if z ∈ bP c, then z ∈ bP cm for some unique m that we denote ν(z).

Additionally, each bP cm is partitioned according to the choice of chain x1 < · · · < xm of

length m. So, since the elements of P represent linearly independent vectors in R|P |, each

z ∈ bP c determines uniquely a chain x1 < · · · < xν(z) and an ordered set of positive real

numbers [λ1(z), . . . , λν(z)(z)] so that z =
∑ν(z)

i=1 λi(z)xi. Let λ(z) =
∑ν(z)

i=1 λi(z). We observe

that

|Λ(P )| = {z ∈ bP c | λ(z) = 1} .
4It is probably more common to use ∆n for the abstract simplex and |∆n| for its realization, but since

we have been using each of these notations for various other purposes throughout the book, we’ll go with

∆n and ∆n in this section.
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B.6.3 Products of partially ordered sets and their product trian-

gulations

Now, suppose P,Q are two finite partially ordered sets. Let the product P × Q have the

partial ordering defined by (x, y) ≤ (u,w) if x ≤ u in P and y ≤ w in Q. We will show that

|Λ(P ×Q)| is PL homeomorphic to |Λ(P )|×|Λ(Q)|. Note that we know that |Λ(P )|×|Λ(Q)|
is a PL space by Proposition B.5.3.

In the case where P = {x0, . . . , xp} with xi < xj when i < j, so that Λ(P ) = ∆p, and

Q = {y0, . . . , yq} with yi < yj when i < j, so that Λ(Q) = ∆q, this homeomorphism therefore

provides a triangulation of ∆p × ∆q by the simplicial complex realization |Λ(P × Q)|. We

will show in Corollary B.6.4 that this triangulation is the same as the one described in the

preceding section using the Eilenberg-Zilber shuffles.

We prove the claimed homeomorphism following [192, Lemma 2.2.9]:

Lemma B.6.3. For finite partially ordered sets P and Q, there is a PL homeomorphism

|Λ(P ×Q)| ∼= |Λ(P )| × |Λ(Q)|.

Proof. The projections P ×Q→ P and P ×Q→ Q induce simplicial maps of the abstract

simplicial complexes, and hence piecewise linear maps of the geometric realizations |Λ(P ×
Q)| → |Λ(P )| and |Λ(P × Q)| → |Λ(Q)|. Together this gives a piecewise linear map f :

|Λ(P × Q)| → |Λ(P )| × |Λ(Q)|. In fact, if wi = (xi, yi) is a vertex of Λ(P × Q), then f

takes wi to the point of |Λ(P )| × |Λ(Q)| also represented by the pair (xi, yi), where now

each coordinate is a vertex of Λ(P ) or Λ(Q). So if (x1, y1) < · · · < (xk, yk) is a simplex

of |Λ(P × Q)|, then f just takes this simplex linearly into the product of the simplices of

|Λ(P )| and |Λ(Q)| spanned respectively by the sets of vertices {xi} and {yi}. Even more

specifically, if z ∈ |Λ(P ×Q)| has the form z =
∑n

i=1 λiwi ∈ R|P×Q|, then

f(z) =

(
n∑
i=1

λixi,
n∑
i=1

λiyi

)
∈ R|P | × R|Q|.

Note that we only have xi ≤ xj for i < j, not necessarily xi < xj, and similarly for the yi.

By Corollary B.2.22, to show that f is a PL homeomorphism, we need only show that f

is a bijection.

Proof that f is surjective. Suppose it is true that every (x, y) ∈ |Λ(P )| × |Λ(Q)| can be

written in the form

(x, y) =

(
n∑
i=1

λixi,
n∑
i=1

λiyi

)
,

for some n, some λi ∈ (0, 1] with
∑n

i=1 λi = 1, and some x1 ≤ · · · ≤ xn ∈ P , and y1 ≤
· · · ≤ yn ∈ Q, allowing that the xi and yi are not necessarily unique. Then we’ll have

(xi, yi) ≤ (xi+1, yi+1) for all 1 ≤ i < n, so that the collection {(xi, yi)} spans a simplex of

Λ(P ×Q), and hence
∑n

i=1 λi(xi, yi) ∈ |Λ(P ×Q)|. Furthermore, then f (
∑n

i=1 λi(xi, yi)) =

(
∑n

i=1 λixi,
∑n

i=1 λiyi) = (x, y). So this would imply that f is surjective. We will show that

any (x, y) ∈ |Λ(P )| × |Λ(Q)| can indeed be written in this form. Note that the catch is that

we need to have the same sequence of λis in each factor.
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In fact, we will show that if (x, y) ∈ bP c × bQc and λ(x) = λ(y), then there exists

an integer n, real numbers λ1, . . . , λn ∈ (0, 1], and elements x1 ≤ · · · ≤ xn ∈ P and

y1 ≤ · · · ≤ yn ∈ Q such that

(x, y) =

(
n∑
i=1

λixi,

n∑
i=1

λiyi

)

and such that
∑n

i=1 λi = λ(x) = λ(y). As |Λ(P )| = {x ∈ bP c | λ(x) = 1} and |Λ(Q)| = {y ∈
bQc | λ(y) = 1}, this will imply the desired fact for elements of |Λ(P )| × |Λ(Q)|.

Let ν(x, y) = ν(x) + ν(y), and let us induct on this number. The minimum value for

ν(x, y) is 2, when ν(x) = ν(y) = 1. In this case we simply have x ∈ bP c1 and y ∈ bP c1. So,

by definition, x = λ(x)x1 for some x1 ∈ P and y = λ(y)y1 for some y1 ∈ Q. But then we

just let n = 1 and λ1 = λ(x) = λ(y), and we have (x, y) = (λ1x1, λ1y1), so we are done with

the base case.

Now assume we have proven the claim for ν(x, y) ≤ r, and choose (x, y) with ν(x, y) =

r + 1 and λ(x) = λ(y). Since x ∈ bP c and y ∈ bQc, we may write x =
∑ν(x)

i=1 tixi for some

xi ∈ P with x1 ≤ · · · ≤ xν(x) and all ti > 0, and similarly y =
∑ν(y)

i=1 siyi with y1 ≤ · · · ≤ yν(y)

and all si > 0. By assumption, ν(x) + ν(y) = r + 1. Furthermore, as x is contained in the

subspace of R|P | spanned by x1, . . . , xν(x) in the usual linear algebra sense, we note that

this implies that no other element of P can appear non-trivially in a linear combination

representing x; similarly for y.

Now assume without loss of generality that t1 ≤ s1, and write

(x′, y′) = (x, y)− (t1x1, t1y1) =

ν(x)∑
i=2

tixi, (s1 − t1)y1 +

ν(y)∑
i=2

siyi

 .

We now have ν(x′, y′) ≤ r (it could be r− 1 if s1 = t1). Furthermore, λ(x′) =
∑ν(x)

i=2 ti =

λ(x)− t1, and λ(y′) = (s1 − t1) +
∑ν(y)

i=2 si = (
∑ν(y)

i=1 si)− t1 = λ(y)− t1 = λ(x)− t1. So by

induction hypothesis5, there is some integer n, real numbers λ1, . . . , λn ∈ (0, 1], x′1 ≤ · · · ≤
x′n ∈ P , and y′1 ≤ · · · ≤ y′n ∈ Q such that

(x′, y′) =

(
n∑
i=1

λix
′
i,

n∑
i=1

λiy
′
i

)
.

So now,

(x, y) = (t1x1 + x′, t1y1 + y′) =

(
t1x1 +

n∑
i=1

λix
′
i, t1y1 +

n∑
i=1

λiy
′
i

)
has the desired form, provided x1 ≤ x′1 and y1 ≤ y′1. But since the λi are all non-zero, each

x′i must be one of the {xi} (by the earlier observation that no element not in {xi} can appear

non-trivially in a linear combination representing x), so as x1 is the least of the {xi} in the

5In case the reader has been wondering, it is at this point that we use the possibility λ(z) < 1, which

justifies our having introduced the sets bP c.
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partial order, we also have x1 ≤ x′1, and similarly y1 ≤ y′1. Also, we see that the sum of the

coefficients on each side is again λ(x) = λ(y), as required.

Proof that f is injective. Let z, z′ ∈ |Λ(P × Q)| ⊂ bP × Qc. Then z =
∑ν(z)

i=1 λi(xi, yi)

and z′ =
∑ν(z′)

i=1 λ′i(x
′
i, y
′
i) for some unique choices λi, λ

′
i > 0,

∑
λi =

∑
λ′i = 1, (xi, yi) <

(xi+1, yi+1), and (x′i, y
′
i) < (x′i+1, y

′
i+1) for all relevant i; notice that we assume that vertices

are not repeated within each of these representations of z and z′. We will show that if

f(z) = f(z′), then z = z′.

If f(z) = f(z′), then
∑ν(z)

i=1 λixi =
∑ν(z′)

i=1 λ′ix
′
i and

∑ν(z)
i=1 λiyi =

∑ν(z′)
i=1 λ′iy

′
i. Since all the

λi, λ
′
i are > 0 and the elements of P and Q form respective bases of the Euclidean spaces

containing |Λ(P )| and |Λ(Q)|, it follows that we must have {x1, . . . , xν(z)} = {x′1, . . . , x′ν(z′)}
and {y1, . . . , yν(z)} = {y′1, . . . , y′ν(z′)} as sets. These lists might each contain repeated ele-

ments, but we must have x1 = x′1 and y1 = y′1 since these are each the smallest elements in

their respective sets under the order.

Our next goal is to begin to show that λi = λ′i for each i; we do not know yet that

the λi and λ′i have the same indexing sets, but this will follow from the argument. Since

(x1, y1) < (x2, y2), assume without loss of generality that x1 < x2 (otherwise y1 < y2 and

we reverse the roles of P and Q in the following argument). Since
∑ν(z)

i=1 λixi =
∑ν(z′)

i=1 λ′ix
′
i,

we must have that λ1 =
∑
{i|x′i=x1} λ

′
i ≥ λ′1. If x′1 6= x′2, then since x′1 ≤ x′2 ≤ · · · , we would

have only x′1 = x1, and so λ1 = λ′1. If x′1 = x′2, then y′1 < y′2, and by a symmetric argument

to the above, λ′1 =
∑
{i|yi=y′1}

λi ≥ λ1. But we already know λ1 ≥ λ′1, so λ1 = λ′1. This

argument also implies that while x1 = x′1, no xi or x′i with i > 1 is equal to this element

of P , and, symmetrically, while y1 = y′1, no yi or y′i with i > 1 is equal to this element of

Q. It now follows that x2 = x′2 are the smallest terms in {x2, . . . , xν(z)} and {x′2, . . . , x′ν(z′)}
and similarly for Q, and we can run the same argument inductively to eventually show that

ν(z) = ν(z′), that λi = λ′i for all i, and that xi = x′i and yi = y′i for all i. So z = z′, as

claimed.

Now we connect the preceding lemma to the Eilenberg-Zilber shuffle construction.

Corollary B.6.4. If ∆p and ∆q are simplices with ordered vertex sets, then the p+q simplices

δµν ⊂ ∆p × ∆q with vertices determined by the (p, q)-shuffles (µ, ν) are the p + q simplices

of a triangulation of ∆p ×∆q compatible with the product PL structure.

Proof. Let us take P = [x0, . . . , xp] with xi < xj when i < j and Q = [y0, . . . , yq] with

yi < yj when i < j. Then Λ(P ) = ∆p and Λ(Q) = ∆q. The homeomorphism of Lemma

B.6.3 therefore provides a triangulation of ∆p × ∆q by the simplicial complex realization

|Λ(P ×Q)|.
To see that this triangulation is the same as that given using the shuffles, we note by

definition that the p+q simplices of P ×Q correspond to chains of elements w0 < w1 < · · · <
wp+q ∈ P × Q. Each wi ∈ P × Q has the form wi = (xji , yki) for xji ∈ P and yki ∈ Q, and

to have wi < wi+1, we must have xji ≤ xji+1
and yki ≤ yki+1

, not both equalities. But there

are only p + 1 elements in P and q + 1 elements in Q, so the only way to obtain a chain of

length p+ q+ 1 with these properties is to have w0 = (x0, y0), wp+q = (xp, yq), and, for each

i, the vertex (xji+1
, yki+1

) is either (xji+1, yki) or (xji , yki+1). Considering our “walk in the
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plane” description of a shuffle, we see that we thus have a bijection between chains of length

p + q + 1 and (p, q)-shuffles! Furthermore, the homeomorphism of the lemma takes each wi
to the corresponding product vertex (xji , yki) ∈ ∆p ×∆q, and it takes the p + q simplex of

|Λ(P ×Q)| spanned by a p+ q+ 1 chain of vertices linearly into ∆p×∆q according to these

vertex maps. But the image of such an embedding is the corresponding δµν by definition.

So, the δµν are precisely the p+ q simplices of the triangulation described in the lemma.

So we can triangulate products of simplices. In fact, as every finite simplicial complex is

the realization of a finite partially ordered set, Lemma B.6.3 shows that every product of two

finite simplicial complexes can be triangulated, employing the shuffle construction for each

pair of simplices. However, as we are interested in possibly infinite simplicial complexes,

we will take a slightly different route in the next section toward triangulating products of

simplicial complexes by investigating the local situation a bit further and discussing how to

piece things together.

B.6.4 Triangulations of products of simplicial complexes and PL

spaces

We next notice the following easy corollary of Lemma B.6.3 and its proof.

Corollary B.6.5. If P and Q are finite partially ordered sets and A ⊂ P and B ⊂ Q are

subsets inheriting the partial ordering, then |Λ(A × B)| ⊂ |Λ(P × Q)| is a subcomplex, and

the triangulating homeomorphism |Λ(P×Q)| → |Λ(P )|×|Λ(Q)| restricts to the triangulating

homeomorphism |Λ(A×B)| → |Λ(A)| × |Λ(B)|.

Proof. By Lemma B.6.3, the subspace |Λ(A)| × |Λ(B)| is homeomorphic to the simplicial

complex |Λ(A × B)|. But, more than this, the construction of the proof demonstrates that

this homeomorphism is compatible with the larger one |Λ(P×Q)| ∼= |Λ(P )|×|Λ(Q)|: Clearly

points in |Λ(P×Q)| that involve only the vertices in A×B have their image in |Λ(A)|×|Λ(B)|
under the constructed homeomorphism |Λ(P × Q)| → |Λ(P )| × |Λ(Q)|, and the restriction

of the proof of Lemma B.6.3 shows that the induced map |Λ(A× B)| → |Λ(A)| × |Λ(B)| is

surjective.

Now suppose, in particular, that F is a face of ∆p and that G is a face of ∆q. Then F and

G correspond to respective subsets of the partially ordered sets {0, . . . , p} and {0, . . . , q}. Let

F × G be the abstract simplicial complex associated to the product of these corresponding

partially ordered subsets. Then F ×G is a subcomplex of ∆p×∆q and, by the corollary, the

PL homeomorphism |Λ(∆p ×∆q)| ∼= ∆p ×∆q restricts to provide a triangulation |F ×G| ∼=
|F | × |G| ⊂ ∆p ×∆q.

In particular, let F0, . . . , Fp be the p−1 dimensional faces of ∆p and G0, . . . , Gq the q−1

dimensional faces of ∆q. Then the restriction of f : |∆p ×∆q| ∼= ∆p ×∆q to each |Fi ×∆q|
and |∆p ×Gj| provides the triangulations of the |Fi| ×∆q and ∆p × |Gj|. Collectively these

give a triangulation of ((∂∆p)×∆q) ∪ (∆p × ∂∆q) ∼= ∂(∆p ×∆q).

Now suppose we have simplicial complexes K and L with prescribed vertex partial or-

derings that restrict to total orderings on each simplex. If K comprises the simplices σi and
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L comprises the simplices τj, then |K| × |L| is the union of all the products σi× τj. For any

fixed i, j, Corollary B.6.4 implies that we can use the Eilenberg-Zilber shuffle construction

to triangulate σi × τj. Suppose then that σ′i and τ ′j are two other simplices of K and L

respectively. Then

(σi × τj) ∩ (σ′i × τ ′j) = (σi ∩ σ′i)× (τj ∩ τ ′j).

But from the definition of a simplicial complex, σi ∩ σ′i and τj ∩ τ ′j are each themselves

simplices of K and L, say s and t respectively. From Corollary B.6.5, the set s × t is

triangulated as a subcomplex of both σi × τj and σ′i × τ ′j. Now here’s the key observation:

these two subcomplex triangulations agree. To see this, we note that the Eilenberg-Zilber

construction or, equivalently, the argument of Lemma B.6.3 only really depends on the

vertex orderings. Once we know which vertices in which order determine the simplices of the

product triangulation, we know everything. And the vertex order on s is the same whether

it is restricted from the vertex order of σi or the vertex order of σ′i, and similarly for t.

It follows that the local triangulations of the σi× τj are compatible at their intersections

and so piece together to form a global simplicial complex we denote K × L with underlying

space |K × L| = |K| × |L|. We claim that the PL structure on |K × L| coming from K × L
is the same as the product PL structure on |K|× |L| given by Proposition B.5.3. In fact, we

can state this more generally for arbitrary PL spaces as follows:

Theorem B.6.6. Let X and Y be PL spaces with respective PL triangulations (K,h) and

(L, j). Suppose we place orderings on the vertices of K and L (or partial orderings such

that the vertices of each simplex are totally ordered). Then there is a simplicial complex with

underlying space |K| × |L| and with simplicial complex structure given on each σ × τ , for

each σ ∈ K and τ ∈ L, by the Eilenberg-Zilber shuffle construction. If we call this simplicial

complex K × L, then (K × L, h × j) is a PL triangulation of X × Y with its product PL

structure. In particular, taking h and j to be identity maps, we see that the product simplicial

complex structure is compatible with the product PL structure on |K| × |L|.

Proof. The existence of the simplicial complex K × L has been argued just above. To

consider the PL structures, let BK be the base for X determined by restricting h to each of

the finite subcomplexes of K; see Example B.2.8. Define BL similarly for Y . By the proof of

Proposition B.5.3, if (f,M) ∈ BK and (g,N) ∈ BL, then (f × g,M ×N) is a coordinate map

for X × Y , and in fact the collection of all such product coordinate maps is a base for the

PL structure on X × Y . Call this base BK ×BL, and let BK×L denote the set of coordinate

maps obtained by restricting h× j to finite subcomplexes of K × L.

Each simplex of K × L must be contained in the product of a simplex of K and a simplex

of L, and, conversely, every product of simplices of K and L in |K|×|L| is a union of simplices

of K × L. So, in particular, for any M,N as above, M ×N is a union of simplices of K × L.

Thus the coordinate map (f × g,M ×N) ∈ BK × BL is also a coordinate map in BK×L. In

other words, BK × BL ⊂ BK×L. But these are each bases for a PL structure on X × Y , so

by Remark B.2.5 they determine the same PL structure. The theorem follows.
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B.6.5 The simplicial cross product

Now that we have carefully studied the geometry of product triangulations, we can shift

to algebraic topology and the cross product of simplicial chains. If K and L are simplicial

complexes with chosen vertex partial orderings that restrict to total orderings on each simplex

and if we again let K×L denote the simplicial complex given by the Eilenberg-Zilber shuffle

product triangulation of |K| × |L|, then we would like to have a chain map6

./: C∗(K)⊗ C∗(L)→ C∗(K × L).

A review of the oriented simplicial chain complexes C∗ can be found in Section 3.2.

To define ./, we will define σ ./ τ for σ a p-simplex of K and τ a q-simplex of L and

then extend bilinearly. We assume each simplex is given the orientation determined by

its vertex ordering in K or L. To define σ ./ τ , we again let δµν be the p + q simplex

corresponding to the (p, q)-shuffle (µ, ν) in the shuffle product triangulation of σ× τ , which,

abusing notation, we also think of as an oriented simplex in Cp+q(K×L) oriented by its vertex

ordering. Furthermore, let sgn(µ, ν) denote the sign of the permutation from [1, 2, . . . , p+ q]

to [µ1, µ2, . . . , µp, ν1, ν2, . . . , νq], i.e. 1 if the permutation is even and −1 if the permutation

is odd. We define the simplicial cross product to be

σ ./ τ =
∑

sgn(µ, ν)δµν ,

where the sum is over all (p, q)-shuffles (µ, ν).

Our goal in the rest of this section is to prove the following proposition.

Proposition B.6.7. The map ./: C∗(K)⊗ C∗(L)→ C∗(K × L) is a chain map.

Proof. As ./ is bilinear by definition, we only need to check the behavior with respect to

boundaries. Let σ = [x0, . . . , xp] be a simplex of K with vertices ordered as indicated, and

similarly let τ = [y0, . . . , yq] be a simplex of L. We also use σ and τ to stand for their

corresponding elements in Cp(K) and Cq(L). Throughout this proof, × will always denote

the product of spaces, given their Eilenberg-Zilber shuffle triangulation, and ./ will denote

the algebraic product.

We continue to write σ ./ τ =
∑

sgn(µ, ν)δµν . We must show that ∂(σ ./ τ) = (∂σ) ./

τ + (−1)pσ ./ (∂τ).

Each δµν corresponds to an embedding of a p + q simplex in σ × τ with vertices of the

form (xi, yj). When we look at a face F of δµν obtained by removing a vertex, there are two

possibilities:

1. There is some xi or yj that no longer appears in any vertex of F . Suppose for

specificity that it is xk. Then all vertices of F lie in the product Fk × τ , where

Fk = [x0, . . . , x̂k, . . . , xp] is the kth face of σ. Thus in the shuffle triangulation of σ× τ ,

we have F ⊂ Fk × τ ⊂ ∂(σ × τ), so F is a p+ q − 1 simplex lying on the boundary of

σ × τ .

6We use the symbol ./ here to avoid conflict with the many other related uses of × in close proximity

and because it looks somewhat like × while also being a picture of a simplicial complex!
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2. Each xi and yj appears in some vertex of F . Suppose (xk, yl) is the vertex of δµν that

is removed to create F . Note that this can’t be (x0, y0), since the next vertex must be

either (x0, y1) or (x1, y0), and so if we remove (x0, y0), then either x0 or y0 will not occur

in any vertex of F ; similarly, the removed vertex cannot be (xp, yq). So the removed

vertex (xk, yl) must have a predecessor and successor among the vertices of δµν . The

next vertex in δµν is either (xk+1, yl) or (xk, yl+1), and the preceding vertex is either

(xk−1, yl) or (xk, yl−1). But if the sequence is (xk−1, yl), (xk, yl), (xk+1, yl), then F could

not have xk in a vertex, and similarly there would be a contradiction if the sequence

were (xk, yl−1), (xk, yl), (xk, yl+1). So the only two possible subsequences in δµν are

(xk−1, yl), (xk, yl), (xk, yl+1) or (xk, yl−1), (xk, yl), (xk+1, yl). Suppose it is the former;

we could use equivalent arguments to those below if it is the latter. Replacing this

triple of vertices in δµν with (xk−1, yl), (xk−1, yl+1), (xk, yl+1) while leaving the other

vertices unchanged gives us another p + q simplex δµ′ν′ with the same sequence of

vertices except for the swap of (xk, yl) for (xk−1, yl+1). Thus δµν and δµ′ν′ share the

common face F obtained by removing the vertex (xk, yl) from δµν and (xk−1, yl+1) from

δµ′ν′ . Furthermore, (xk, yl) and (xk−1, yl+1) are the only possible vertices of σ× τ that

are greater than (xk−1, yl) and less than (xk, yl+1) in the partial order, and so these are

the only δs with F as a face.

Now let us compare sgn(µ, ν) with sgn(µ′, ν ′). To understand this, we continue to

suppose that δµν contains the vertex sequence (xk−1, yl), (xk, yl), (xk, yl+1); again, if it

contains (xk, yl−1), (xk, yl), (xk+1, yl), there is an analogous argument to the following.

Further, let us suppose that these correspond to the vertices wi−1, wi, and wi+1 of

δµν = [w0, . . . , wp+q]. As the x subscript increases going from wi−1 to wi and the y

subscript increases going from wi to wi+1, this means that i ∈ µ and i + 1 ∈ ν. On

the other hand, δµ′ν′ contains the sequence (xk−1, yl), (xk−1, yl+1), (xk, yl+1), and these

are the vertices w′i−1, w′i and w′i+1. As now the y subscript increases first, we have

i ∈ ν ′ and i + 1 ∈ µ′. So if we write out the two sequences (µ1, . . . , µp, ν1, . . . , νq) and

(µ′1, . . . , µ
′
p, ν
′
1, . . . , ν

′
q), with the µ, µ′, ν, and ν ′ elements in order, the only difference

between these two sequences is the interchange of i and i+1, with i moving from the µ

list to the ν ′ list and i+1 moving from the ν list to the µ′ list. And because i and i+1

are adjacent, they simply move to each other’s spots. Hence the sequences differ only

by a transposition and it follows that sgn(µ, ν) = −sgn(µ′, ν ′). We see also that if F
is the ith face of δµν it is also the ith face of δµ′ν′ , and so F occurs with the same sign

in ∂δµν and ∂δµ′ν′ and so opposite signs in ∂(sgn(µ, ν)δµν) and ∂(sgn(µ′, ν ′)δµ′ν′). So

altogether F appears with coefficient 0 in ∂(
∑

sgn(µ, ν)δµν). As mentioned already,

the argument when we have a sequence (xk, yl−1), (xk, yl), (xk+1, yl) in δµν is analogous.

So, our arguments so far show that ∂(σ ./ τ) is contained in ∂(σ × τ). Of course

(∂σ) ./ τ + (−1)pσ ./ (∂τ) is also supported in ∂(σ × τ), so now we must show that each

oriented p+ q − 1 simplex of ∂(σ × τ) arises with the same coefficient in each expression.

For this, we will employ the following observation: As ∂(σ ./ τ) is supported in ∂(σ× τ),

the chain σ ./ τ represents an element of Hp+q(σ×τ, ∂(σ×τ)). In fact, as each p+q simplex

δµν has coefficient ±1 in σ ./ τ , it must be a generator of this homology group and so a
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fundamental class for some orientation of σ × τ , which is topologically a p + q dimensional

ball7. Therefore, ∂(σ ./ τ) is a generator for the degree p + q − 1 homology of ∂(σ × τ),

which is topologically a p + q − 1 sphere; see Proposition 8.3.5. So each coefficient of a

simplex of ∂(σ ./ τ) is ±1, and the sign on any p+q−1 simplex of this cycle must determine

the signs of all the other simplices because they must all be consistent with some choice of

orientation. Similarly, for each ordered/oriented p − 1 simplex F of σ, the chain F ./ τ is

a fundamental class for F × τ with some orientation, and so the sign of one of its p+ q − 1

simplices determines the signs of all the others; analogously for each σ ./ G with G a q − 1

simplex of τ . So it will be sufficient to show that for each F , respectively G, there is one

p + q − 1 simplex of F × τ , respectively σ × G, on which the coefficient signs in ∂(σ ./ τ)

and (∂σ) ./ τ + (−1)pσ ./ (∂τ) agree.

First, let Fk be the kth face of σ, i.e. Fk = [x0, . . . , x̂k, . . . , xp]. Then Fk occurs with sign

(−1)k in ∂σ. Let Fk ./ τ =
∑

sgn(ξ, ζ)dξζ , where the (ξ, ζ) run over the (p−1, q)-shuffles and

the dξζ are the corresponding p+q−1 simplices of the shuffle product triangulation of Fk×τ .

Since we have seen that it will be sufficient to know the signs on one such p+ q− 1 simplex,

let’s use the trivial shuffle (ξ0, ζ0) with ξ0 = [1, . . . , p−1] and ζ0 = [p, . . . , p+q−1]. Then dξ0,ζ0
has vertices [(x0, y0), . . . , ̂(xk, y0), . . . , (xp, y0), (xp, y1), . . . , (xp, yq)]. We have sgn(ξ0, ζ0) = 1,

so altogether the p + q − 1 simplex dξ0ζ0 has sign (−1)k in (∂σ) ./ τ + (−1)pσ ./ (∂τ).

The computation for simplices in σ ./ Gl, where Gl = [y0, . . . , ŷl, . . . , yq], is similar, except

that there will be the additional sign (−1)p, and the simplices coming from the trivial

(p, q−1)-shuffle will have the form [(x0, y0), . . . , (xp, y0), (xp, y1), . . . , (̂xp, yl), . . . , (xp, yq)]. So

the overall sign of such a simplex in (∂σ) ./ τ + (−1)pσ ./ (∂τ) is (−1)p+l.

Now let’s turn to the corresponding terms in ∂(σ ./ τ) = ∂ (
∑

sgn(µ, ν)δµν). Let-

ting (µ0, ν0) be the trivial (p, q)-shuffle, the p + q − 1 simplex with the ordered vertex set

[(x0, y0), . . . , ̂(xk, y0), . . . , (xp, y0), (xp, y1), . . . , (xp, yq)] is the face of δµ0ν0 obtained by omit-

ting the kth vertex (keeping in mind that there is also a 0th vertex). The trivial shuffle

has sign 1, so the sign for this p + q − 1 simplex in ∂(σ ./ τ) is (−1)k. This corresponds

with the computation in the preceding paragraph. Similarly, the p + q − 1 simplex with

vertex set [(x0, y0), . . . , (xp, y0), (xp, y1), . . . , (̂xp, yl), . . . , (xp, yq)] is the face of δµ0ν0 obtained

by omitting the (p + l)th vertex (again accounting for a 0th vertex). Again, the trivial

shuffle only contributes the sign 1, and since this is the (p+ l)th face, the sign is (−1)p+l for

this summand in ∂(σ ./ τ). This also corresponds with the computation in the preceding

paragraph.

This completes the proof.

There is one more useful fact about ./ that we demonstrate here:

7As σ × τ is a topological p + q ball, we know Hp+q(σ × τ, ∂(σ × τ)) ∼= Z. To see that σ ./ τ is a

generator, we consider the associated singular chain determined by the vertex ordering; see Proposition

4.4.5. It suffices to show that this singular chain generates the singular homology group. We know by the

theory of fundamental classes as provided in Section 8.1 or [125, Section 3.3] that there is an isomorphism

Hp+q(σ × τ, ∂(σ × τ)) ∼= Hp+q(σ × τ, σ × τ − {z}) ∼= Z for any z in the interior of σ × τ . As the singular

chain corresponding to ±δµν generates Hp+q(σ × τ, σ × τ − {z}) for z in the interior of δµν , it follows that

the singular version of σ ./ τ must be a generator of Hp+q(σ × τ, ∂(σ × τ)).
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Proposition B.6.8. Suppose σ = [u0, . . . , up] is a p-simplex and that τ = [v0, . . . , vq] is a

q-simplex. We also let σ and τ denote the generators of Hp(σ, ∂σ) ∼= Z and Hq(τ, ∂τ) ∼= Z
oriented according to the given vertex orderings of σ and τ . Then σ ./ τ represents the

generator of Hp+q(σ × τ, ∂(σ × τ)) oriented according to the product orientation of σ × τ ,

i.e. σ ./ τ is the fundamental class of the space σ × τ consistent with the orientation.

Proof. That σ ./ τ =
∑

µν sgn(µ, ν)δµν is a generator of Hp+q(σ × τ, ∂(σ × τ)) is shown in

the proof of Proposition B.6.7. In particular, all the sgn(µ, ν)δijµν are oriented consistently,

either with the same orientation as the space σ × τ or its negative. Consider the trivial

shuffle (µ0, ν0) with µ0 = {1, . . . , p} and ν0 = {p + 1, . . . , p + q}. It has sign 1, and δµ0ν0

has vertices [(u0, v0), . . . , (up, v0), . . . , (up, vq)]. So it is oriented by the basis consisting of

the vectors from (u0, v0) to the (uc, v0) in order followed by the vectors from (u0, v0) to the

(up, vd) in order. This agrees with the product orientation of σ × τ , so we see that each

sgn(µ, ν)δµν is oriented in agreement with the product orientation.
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[5] Pierre Albin, Éric Leichtnam, Rafe Mazzeo, and Paolo Piazza, The signature package
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Matemáticas do IMPA. [IMPA Mathematical Publications], Instituto Nacional de
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cross product, xvi, 275–277, 356, 359

and evaluation, 391, 455

associativity, 204, 276, 452

cohomology, see cohomology cross prod-

uct

commutativity, 206, 276, 453

compatibility of simplicial and PL, 200–

202, 281

compatibility of simplicial and singu-

lar, 196, 203, 281

interchange with cap product, 430, 435,

437, 458, 459

intersection homology, 198, 202

naturality, 203, 276, 451

of intersection chains

is a chain homotopy equivalence, 310

PL, 201, 276

singular, 197, 275

of partial boundary pairs, 460

of singular chains, 193–199

PL, 199, 199–203

PL relative, 202, 276

relative, 198, 276

simplicial, 195, 743, 743–746

singular, 196

stability, 208, 209, 276, 455

unitality, 207, 276, 453

with coefficients, 217–219

CS model, 463

CS set, 28

local finiteness of stratification, 31

open subset is a CS set, 32

orientable, see orientation

recursive, 32

satisfies Frontier Condition, 30

topological properties, 33

cup product, 364

as pullback of the cross product, 364,

422, 457

associativity, 397, 400, 401, 452

commutativity, 382, 453

compatibility of ordinary and inter-

section cup products, 376

for ∂-pseudomanifolds, 463

properties, 464–465

front face/back face construction, 353,

355

interchange with cross product, 425,

429, 434, 437, 457, 458

naturality, 374, 451

ordinary cohomology, 354

philosophy, 352–357

stability, 419, 456

topological invariance, 378

unitality, 389, 454

cup product pairing, 6, 556, see also cup

product

dual to intersection pairing, 586, 592,
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image pairing, see image pairing

is nonsingular, 556

symmetry for IP spaces, 612

symmetry for Witt spaces, 611

topological invariance, 572
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de Cataldo, Mark Andrea, 691

de Rham invariant, 677

Dedekind domain, 211, 217, 707

torsion-free implies flat, 707

degree, xv

Deligne, Pierre, 10, 691

depth, 27

diagonal map (d), xiii, 353, 360

diagonal map, algebraic, see algebraic di-

agonal map

diffeomorphic implies PL homeomorphic,

184

Dimca, Alexandru, 686

dimension

formal, see formal dimension

simplicial, 719

dimension theory, 52, 284, 489

dimensional homogeneity, 282–289

see also homogenization

dimensionally homogeneous, 283

direct limit

commutativity of direct limits, 470

over increasing sequence of subsets,

188, 189

direct system of groups, 467

directed set, 467

disjoint union, xiii

distinguished neighborhood, 28

intersection homology invariance of,

220, 277

Dold, Albrecht, ii

Double Suspension Theorem, 30

dual perversity, see perversity, dual

duality, see Poincaré duality or Lefschetz

duality

duality map (D), xvi, 522, 522–525, 545

signs, 523

eigenvalues of symmetric real matrices are
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Eilenberg-Zilber map, see cross product

Eilenberg-Zilber product triangulation, 740–

742

Eilenberg-Zilber Theorem, 354

engulfing, 659

Eppelmann, Thorsten, 677

Euclidean polyhedron, see polyhedron

evaluation map, 699

face, see simplex, face

filtered collar, 50

intersection homology invariance of,

237

filtered homeomorphism, 28

filtered pair, 143

filtered space, xiii, 2, 20

manifold with submanifold, 21

PL, 41

filtration, xiii, 20

cone, see cone filtration

intrinsic, see intrinsic filtration

intrinsic PL, see intrinsic PL filtra-

tion

join, see join filtration

product, see product filtration

subspace, see subspace filtration

suspension, see suspension filtration

trivial, see trivial filtration

filtration-preserving, 28

Five Lemma, 247

flat module, 211, 217, 707

formal dimension, xiii, 17, 20

vs. geometric dimension, 21

forward tame, 57

Frontier Condition, 23, 25, 30

full subcomplex, 119

full triangulation, 119
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and change of perversity, 509–512

and change of stratification, 512–516

in L-homology, 677, 681

in ko-homology, 674, 677, 679

in a distinguished neighborhood, 498–

501, 506

in signature homology, 679, 681

local, 498

of ∂-pseudomanifold, 535

topological invariance, 540–545

of a boundary, 537

of a manifold, 488

of a product, 521

requirement that p̄ ≥ 0̄, 492, 494,

501, 507

topological invariance, 515

Gelfand, Sergei, 686

general position, 4, 101, 580, 583

failure for pseudomanifolds, 587

in PL manifolds, 583

stratified, see stratified general posi-

tion
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inverse image of, 632, 641

GM intersection homology, see intersec-
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GM perversity, see perversity, GM

GM stratified homotopy, see stratified ho-

motopy, GM
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Goresky, Mark, i, 210, 219, 292, 516, 579,

676, 677, 687, 690

Goresky-MacPherson duality, 584, 589

Goresky-MacPherson perversity, see per-
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Hirzebruch Signature Theorem, 631
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Hom∗ chain complex, 696–698

homeomorphism, filtered, see filtered home-

omorphism

homogenization, 283

of a product, 288

homology

simplicial, 89

singular, 125

with local coefficients, 290
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manifold homotopically stratified space

(MHSS), 57

homotopy link (holink), 57

Hudson, John, ii

Hughes, C. Bruce, 58

Hunsicker, Eugénie, 629, 689, 693

identity map (id), xviii

image pairing, 575, 574–579

is a cup product pairing, 616

is nondegenerate, 575, 577, 578

may not be nonsingular, 575, 576

nonsingularity and torsion, 618

inclusion map, xiii
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sity
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product space
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intersection Alexander-Whitney map (IAW),

356, 359, 363

for partial boundary pairs, 460
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see also intersection chain complex
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allowability by strata vs. skeleta, 102–

104

splitting, 326–341

intersection chain complex

augmented, 149

GM

PL, 118

simplicial, 90

singular, 126

GM and non-GM agree below t̄, 264

map to point, 385

non-GM, 258, 260, 262

all definitions agree, 260, 262

first alternate definition, 260

PL, 260, 262

second alternate definition, 262

simplicial, 258, 260, 262

singular, 258, 260, 262

PL

GM, 118

non-GM, 260, 262

PL chain modules are flat, 267

PL chain modules are not necessarily

free, 130

projection maps, 383, 385

relative, see relative intersection chain

complex

simplicial

GM, 90

non-GM, 258, 260, 262

singular

GM, 126

non-GM, 258, 260, 262

singular chain modules are projective,

267

singular chain modules over Z are free,

130

intersection cochain

see also intersection cochain complex

other meanings, 342

intersection cochain complex, 344

intersection cohomology, xvii, 344

cap product, see cap product

cone formula, 345

cross product, see cohomology cross

product

cup product, see cup product

excision, 347

is ordinary cohomology for normal pseu-

domanifold and top perversity, 351

Lefschetz duality, see Lefschetz dual-

ity

long exact sequence of a pair, 347

Mayer-Vietoris sequence, 348

PL

difficulties, 10, 343, 345, 347, 350

PL and singular are isomorphic over

a field, 350

Poincaré duality, see Poincaré duality

products on ∂-pseudomanifolds, 460–

466

relative Mayer-Vietoris sequence, 348

topological invariance, 350

vs sheaf cohomology, 342

with compact supports, 467

behavior under direct limits, 469

excision, 468

functoriality, 468

Mayer-Vietoris sequence, 470

of a cone, 467

intersection homology, xvii, 6

behavior under direct limits, 189, 274

behavior under normalization, 192, 274

cone formula, 138–142, 216

GM, 139

GM vs. non-GM, 255–256

non-GM, 265

relative, 152, 266

efficient perversities, see perversity, ef-

ficient

excision, 154, 171, 272

finite generation, 249, 248–252, 282

GM, xvii

PL, 118

simplicial, 90, 88–104

simplicial, behavior under subdivi-
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sion, 94–95

singular, 126

GM and non-GM agree below t̄, 254,

264

GM vs. non-GM, 11–12, 254–256

cone formula, 255–256

duality needs non-GM, 254–256

invariance for distinguished neighbor-

hoods, 220

invariance for filtered collars, 237

invariance for links, 220

inverse limit over compact subsets, 473,

474

is ordinary cohomology for normal pseu-

domanifold and zero perversity, 351

is ordinary homology for high perver-

sities, 190

is ordinary homology for normal pseu-

domanifold and top perversity, 189

Lefschetz duality, see Lefschetz dual-

ity

long exact sequence of a pair, 145,

266

map from ordinary cohomology to in-

tersection homology (αp̄), 516, 517,
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map to point, 385

Mayer-Vietoris sequence, 157, 175,

272

motivation, 101

non-GM, xvii, 258, 260, 262, 253–

267

and sheaf theory, 256

can’t be reduced, 265

first alternate definition, 260

is direct sum over regular strata,

283, 285

is not relative intersection homol-

ogy, 256

motivation, 253–256

PL, 260, 262

second alternate definition, 262

simplicial, 258, 260, 262

singular, 258, 260, 262

of X+, 178–180, 273

of a cone, see intersection homology,

cone formula

of a point, 126

of a suspension, 177, 176–178, 272

of cone on a manifold, 127

of link depends only on stratum, 222,

277

PL, 117–118

excision, 154, 153–158, 272

GM, 118

Mayer-Vietoris sequence, 157, 272

non-GM, 260, 262

PL and singular are isomorphic, 229,

231, 232, 280, 280

Poincaré duality, see Poincaré duality

projection maps, 383, 385

reduced, 149, 149–150

relative, see relative intersection ho-

mology

relative Mayer-Vietoris sequence, 180

simplicial

behavior under subdivision, 119, 279,

280

GM, 90

non-GM, 258, 260, 262

simplicial and singular are isomorphic,

233, 280

simplicial vs. PL, 119–124

singular, 124–130

excision, 171, 272

GM, 126

Mayer-Vietoris sequence, 175, 272

non-GM, 258, 260, 262

subdivision, 170–174

topological invariance, 236, 234–248

with coefficients, 214, 214–226

with local coefficients, 289–292

intersection number, 582

intersection pairing, 4, 5, 8, 9, 254, 255,

352, 579–595, see also intersec-

tion product
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on topological pseudomanifolds, 592

intersection Poincaré space, see IP space

intersection product, xvii, 6, 352, 584,

see also intersection pairing

boundary formula, 585

commutativity, 585

of intersection chains, 589–591

of non-GM intersection chains, 591
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of ∂-pseudomanifold, see natural fil-

tration
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of PL ∂-pseudomanifold, see natural
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product of cones, 293
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with coefficients, 218
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Kleiman, Steven, 10

Klimczak, Mathieu, 688

knot theory, 291

Koszul sign convention, xvii, 353, 694–

700

Kreck, Matthias, 679
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evaluation formula, 634, 660
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multiplication by spheres, 660

of smooth manifolds, 635, 653

outline of construction, 631–641

philosophy, 630–631

L-group, 677

L-groups, 677
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Poincaré duality, 525

for ordinary (co)homology when 0̄ and

t̄ intersection homology agree, 520

Lefschetz duality, see Lefschetz dual-

ity

necessity of torsion free condition, 524

signs, 523

topological invariance, 533
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of ∂-pseudomanifolds, 77

of intrinsic PL filtrations, 81
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singular locus (Σ), xiii, 2, 23

singular set, see singular locus

singular simplex, 125

singular strata, see strata, singular

singular subdivision, see subdivision, sin-

gular

singularity, 2, 18

skeleton, xiii, 20

simplicial, 21, 23, 719

space, filtered, see filtered space

Spanier, Edwin, ii

Spectral Theorem, 711
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Spice, Loren, ii

split inner product, see symmetric inner

product space, split

Stallings, John, 61

Stammbach, Urs, ii

standard mistake, 152, 326

Stanley, Richard, 692

Stasheff, James, 631

Steenbrink, Joseph, 692

Steenrod square, 581

strata, xiii, xiv, 2, 20

partial ordering of, 25

regular, xiv, 2, 23

filtered spaces without, 23, 26, 146

singular, xiii, 2, 23

stratification, see filtration

stratified general position, 588

stratified homeomorphism, 59

induces intersection cohomology iso-

morphism, 346

induces intersection homology isomor-

phism, 135, 270

vs. filtered homeomorphism, 59

stratified homotopy, 60

GM, 135

induces homotopic intersection chain

maps, 135, 270

induces homotopic intersection cochain

maps, 346

non-GM, 270

vs. stratum-preserving homotopy, 61

stratified homotopy equivalence, 60

induces intersection cohomology iso-

morphism, 347

induces intersection homology isomor-

phism, 138, 271

stratified map, 58, 133

functoriality, 134

GM, 133

induces intersection chain map, 134,

269, 270

induces intersection cochain map, 346

maps of relative intersection homol-

ogy, 148, 270

non-GM, 268

stratified pseudomanifold, 34, 36

∂-stratified pseudomanifold, 50

co(homology) products on, 460–466

necessity of boundary collars for du-

ality, 549

open subset is a ∂-stratified pseu-

domanifold, 53

vs. ∂-manifold, 51

classical, 34, 37

dependence on filtration, 35

links are stratified pseudomanifolds,

36

normal, 47, 190, 351

and ordinary Poincaré duality, 520

open subset is a stratified pseudoman-

ifold, 36

orientable, see orientation

PL, 42

classical, 42, 43

links are unique, 43

vs. manifold with boundary, 35

stratified space, 25

stratifold, 679

stratum-preserving, 57

subcomplex, see simplicial complex, sub-

complex

subdivision, 94–95, 153, 729

and intersection homology, 271

barycentric, 154, 227–229, 720

chain map, 106–107

directed sets of, 105

of intersection chains, 271–272

of simplicial complex, 720

of simplicial intersection chain, 117

singular, 158–170, 271

and intersection homology, 165, 169

of intersection chains, 164

of singular chain, 163

of singular simplex, 161

submanifold as a skeleton, 21

subspace filtration, 22
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inclusion map is stratified, 133, 144

subspace perversity, 143

suggestions for further reading, 683–693

Sullivan, Dennis, 672, 674, 677

support, iii, xvi, 89, 112–117

suspension, xiii, 26

filtration of, 22, 26, 29

intersection homology of, 97–101

Witt signature is 0, 624

Suwa, Tatsuo, 688

Swan, Richard, ii, 685

Sylvester’s Law of Inertia, 710

symmetric inner product space, 673

split, 673

symmetric signature, 677

Tanré, Daniel, ii, 520, 690

Taylor, Laurence, 58

Tennison, B.R., 685

Thom class, 662

Thom Isomorphism Theorem, 639

Thom, René, 55, 630

Thom-Mather space, 55

top perversity, see perversity, top

topological group, 580

torsion pairing, 559, 558–572

alternative definition, 570–572

image pairing, see image pairing

in terms of cap product, 566

in terms of cup product, 566

is nonsingular, 559, 568

symmetry, 559, 568, 612

topological invariance, 572

torsion submodule, 554

and Ext, 555

and Hom, 532, 554, 555

torsion-free quotient, 554

and Hom, 532, 554, 555

transposition, 206, 698

transversality, 4, 101, 582

triangulation, 38, 725, 729

admissible, 38, 723, 729

and PL structure, 728

compatible, 730

of a product, 740–742

PL, 725

subdivision, 38

trivial filtration, 26, 27

umkehr map, 639, 638–640, 661, 662

and products with spheres, 663

composition of, 663

unfiltered, 27

Universal Coefficient Theorem

intersection cohomology, 344

intersection homology, 223, 219–226,

277

upper middle perversity, see perversity,

upper middle

Useful Lemma, 112

Valette, Guillaume, 550

vertex, see simplex, vertex

weak boundary, 560

Weibel, Charles, ii

Weinberger, Shmuel, 58, 692

Well-Ordering Principle, 121, 123, 159

whew, 484

Whitney conditions, 54

Whitney stratified space, 53

Whitney umbrella, 54

Whitney, Hassler, 53

Williams, Bruce, 58

Williamson, Geordie, 691

Witt condition, 598

Witt group, 598, 673

W (Q), 673

Witt signature, 597, 615, 615–629

and orientation, 619

cobordism invariance, 620

Novikov additivity, 624

of a boundary is 0, 620

of a product, 619

of a suspension is 0, 624

of disjoint union, 619

of image pairing, 615
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of Witt space with boundary, 615–

619

alternate definition, 616–618

is a Witt signature without bound-

ary, 618

topological invariance, 619

Witt space, 599, 597–604

Im̄H∗(X) ∼= I n̄H∗(X), 599

and field characteristic, 603, 604

boundary is Witt, 599

can’t have codimension one strata, 599

dependence on coefficients, 600–604

examples, 600–601

is not necessarily an IP space, 605

product of Witt spaces is Witt, 606

stratification independence, 609

symmetry of cup product pairing, 611

Wolak, Robert, 692

Woolf, Jonathan, i, ii, 58, 675, 684, 687,

692

Yan, Min, 58

Yokura, Shoji, 688

0̄ perversity, see perversity, 0̄

Zorn’s Lemma, 185, 187

Zucker, Steven, 689
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Glossary of symbols

0̄ zero perversity, xvii, 86

1X augmentation cocycle that evaluates to 1 on each 0-simplex of X, writ-

ten 1 if X is clear, xvi

∂ boundary map of a chain complex, 89

∂̂ boundary map of the non-GM intersection chain complex I p̄S∗(X); used

only in Chapter 6, 258

∂∗ connecting morphism of homologically indexed long exact sequence, xv

∂X boundary of X, 50

A ∗B torsion product Tor1
R(A,B), xiv, 214

X ∗ Y join of X and Y , 73

[X, Y ] or [X, Y ]PL set of (PL) homotopy classes of (PL) maps X → Y , 632

≺ partial ordering for strata of a stratified space, 25

⊂ subobject, including the possibility of equality, xiv

× cross product or cohomology cross product, 196, 363

./ simplicial cross product, 195, 743

q disjoint union, xiii

^ cup product, xvi, 364

_ cap product, xvi, 365

t intersection product, xvii, 582

∧ smash product, 640

a augmentation map, xv

αp̄ map Hn−i(X)→ I p̄HGM
i (X), 516, 517

Ap̄Si(X) chain group generated by p̄-allowable i-chains in X, 260

AT category of PL spaces and maps defined in terms of admissible trian-

gulations (compare PL), 41, 729

b projection map E∗
b−→ C[1]∗ when E∗ is the algebraic mapping cone of

f : C∗ → D∗ , 410, 704

cX open cone on X, xiii, 22
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c̄X closed cone on X, xiii, 22

crX open cone on X of radius r, xiii, 22

c̄rX closed cone on X of radius r, xiii, 22

c̄σ singular cone on the singular simplex σ, 128

C∗(X) simplicial chain complex of X, xvi, 89

CT
∗ (X) simplicial chain complex of X with respect to the triangulation T , 105

C∗(X) PL chain complex of X, xvi, 107

CA,Bi PL i-chains with support in A and boundary in B, 112

C[k]∗ shifted chain complex with C[k]i = Ci−k, 410, 703

codimX(Z) codimension of Z in X, written codim(Z) if X is clear, xiii, 21

D Poincaré duality map given by signed cap product with a fundamental

class, xvi, 522, 545

d coboundary map of a cochain complex, xiv

d∗ connecting morphism of cohomologically indexed long exact sequence,

xv

d diagonal map, xiii

d̄ algebraic diagonal map, 355, 363

∆i standard geometric i-simplex, xv

∆̂i simplicial subdivision of ∆i, 158

∆i abstract i-simplex, 737

Dp̄ dual perversity of p̄, xvii, 87

e inclusion map D∗
e−→ E∗ when E∗ is the algebraic mapping cone of

f : C∗ → D∗ , 410, 704

Ef
∗ algebraic mapping cone of f : C∗ → D∗ , 410, 703

ε cross product map of chain complexes, xvi, 193, 196

ev evaluation map, 633, 699

Ext(A,B) Ext group Ext1
R(A,B), xiv

F (A) torsion-free quotient module of A, 554

f ! umkehr map f ! : H∗(Y ) → H∗(X) associated to an inclusion f : X ↪→
Y , 639

f [k] shift of a chain map f by k degrees, 410

G abelian group, xiv

G bundle of groups, 289

ΓK fundamental class over the compact subset K ⊂ X, agrees with ΓX
when K = X if X is compact 495

ΓX fundamental class of X, written Γ if X is clear, xvi, 488, 495

H∗(X) simplicial or singular homology of X, xvi, 89

H∗(X) PL homology of X, xvi, 109
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i often used to denote a topological or algebraic inclusion map, xiii

IAW intersection Alexander-Whitney map, 356, 359

I p̄C∗(X) simplicial non-GM intersection chain complex of X, xvii, 258

I p̄CGM
∗ (X) simplicial GM-intersection chain complex of X, xvii, 90

I p̄CGM,T
∗ (X) simplicial GM-intersection chain complex of X with respect to the tri-

angulation T , 117

I p̄C∗(X) PL non-GM intersection chain complex of X, xvii, 258

Ip̄C
∗(X) PL intersection cochain complex of X, 344

I p̄CV∗ (X,A) for an open cover V of X the complex
∑

V ∈V I
p̄C∗(V,A ∩ V ), 326

I p̄CGM∗ (X) PL GM-intersection chain complex of X, xvii, 118

id identity map, xviii

I p̄H∗(X) simplicial or singular non-GM intersection homology of X, xvii, 258

Ip̄H
∗(X) singular intersection cohomology of X, 344

Ip̄H
∗
c (X;R) intersection cohomology with compact support, 467

I p̄HGM
∗ (X) simplicial or singular GM-intersection homology of X, xvii, 90, 118,

126

I p̄H∗(X) PL non-GM intersection homology of X, xvii, 258

Ip̄H
∗(X) PL intersection cohomology of X, 344

I p̄HGM
∗ (X) PL GM-intersection homology of X, xvii

I p̄S∗(X) singular non-GM intersection chain complex of X, xvii, 258

Ip̄S
∗(X) singular intersection cochain complex of X, 344

I p̄S ′∗(X) first alternative definition of the singular non-GM intersection chain

complex of X, 260

I p̄S ′′∗ (X) second alternative definition of the singular non-GM intersection chain

complex of X, 262

I p̄SGM∗ (X) singular GM-intersection chain complex of X, xvii, 126

I p̄SGM∗ (X, Y ) relative complex I p̄SGM∗ (X)/I p̄Y SGM∗ (Y ), 142

I p̄SGM∗ (Y ⊂ X) relative complex I p̄SGM∗ (X) ∩ S∗(Y ) ⊂ S∗(X), 142

I p̄SV∗ (X,A) for an open cover V of X the complex
∑

V ∈V I
p̄S∗(V,A ∩ V ), 326

|K| underlying space of the simplicial complex K, 38, 719

(K,h) triangulation of a space X given by a homeomorphism h : |K| → X

from the simplicial complex K, 38

L link, xiv, 28

L• connective symmetric L-spectrum, 677

Lk(x) polyhedral link of the point x in a PL space, xiv

Lm(X) mth L-class of X, 633

Lp̄,Dp̄ and L′Dp̄,p̄ torsion pairings, 559

m̄ lower middle perversity, xvii, 87

µ Thom class of a bundle, 639
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n̄ upper middle perversity, xvii, 87

O orientation sheaf, 486

Op̄ perversity p̄ orientation sheaf, 493

o orientation section, 487

oi generator of Ci(∆
i) consistent with the given orientation, 162

ΩC∗ bordism groups in the category C, 670

ωp̄ inclusion map I p̄S∗(X)→ S∗(X), 376

p̄ an arbitrary perversity, xvii, 85

p̄Y subspace perversity on Y inherited from perversity p̄ on the space con-

taining Y , 143

Φ the canonical map of the form A⊗R→ A for a ring R and R-module

A, 357

PL category of PL spaces and maps defined in terms of coordinate maps

(compare AT ), 41, 726

q quasi-isomorphism H∗(E∗) → H∗(D∗/C∗) when E∗ is the algebraic

mapping cone of an inclusion C∗ ↪→ D∗, 412

Q typical notation for a perversity on a product space, especially a (p̄, q̄)-

compatible perversity, 302

Qp̄,q̄ maximal (p̄, q̄)-compatible perversity on a product space, 360

Q̂a
p̄,q̄ the (p̄, q̄)-compatible perversity assigned the value Q̂a

p̄,q̄(S×T ) = p̄(S)+

q̄(T ) + a when S, T are singular strata, 431

R commutative ring with unity, xiv

s chain complex degree 1 shift map C[1]∗ → C∗, 410, 703

SX (unreduced) suspension of X, xiii

S∗(X) singular chain complex of X, xvi, 125

S p̄i (X) chain group generated by p̄-allowable i-simplices of X not contained in

ΣX , 257

ΣX singular locus (or singular set) of X, written Σ if X is clear, xiii, 23

σ̂ singular subdivision of the singular simplex σ, 161

t̄ top perversity, xvii, 86

τ transposition (interchange) map, 206, 380, 698

τp̄,q̄ map I p̄S∗(X)→ I q̄S∗(X) when p̄ ≤ q̄, 509

T triangulation of a PL space, 38

T ′ subdivision of the triangulation T 38

T family of admissible triangulations of a PL space, 38

T (A) torsion submodule of A, 554
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Θ algebraic map of the form Hom(A,R)⊗Hom(B,R)→ Hom(A⊗B,R),

354, 357

[v0, . . . , vi] oriented simplex with vertices vj, 89

dxe round x up to the nearest integer, 87

bxc round x down to the nearest integer, 87

x̄ element of C[1]i corresponding to x ∈ Ci−1 under the inverse of the

shift map s, i.e. s(x̄) = x, 410, 703

X space X with its intrinsic filtration, xiv, 64, 67

|X| underlying topological space of X (typically used to neglect other struc-

tures such as filtrations), xiii

X̃ normalization of the pseudomanifold X, 49

X+ ∂-pseudomanifold X with its boundary coned off (i.e. X+ = X ∪∂X
c̄(∂X)), 178

X• homogenization of X, 282

X i i-skeleton of X, xiii, 20

Xi the space X i −X i−1, xiii, 21

(X, T ) a PL space and its family of admissible triangulations, 38

[ξ] equivalence class of ξ; the equivalence relation varies by context, xv

|ξ| degree of |ξ| or support of |ξ|, depending on context, xv, xvi, 89

ξ̂ singular subdivision of the singular chain ξ, 163

786


	Preface
	Notations and conventions
	Introduction
	What is intersection homology?
	Simplicial vs. PL vs. singular
	A note about sheaves and their scarcity here
	GM vs. non-GM intersection homology and an important note about notation
	Outline

	Stratified Spaces
	First examples of stratified spaces
	Filtered and stratified spaces
	Filtered spaces
	Stratified spaces
	Manifold stratified spaces

	Depth

	Locally conelike spaces and CS sets
	Pseudomanifolds
	PL spaces and PL pseudomanifolds
	PL spaces
	Piecewise linear and simplicial pseudomanifolds
	Classical simplicial pseudomanifolds


	Normal pseudomanifolds
	Pseudomanifolds with boundaries
	Other species of stratified spaces
	Whitney stratified spaces
	Thom-Mather spaces
	Homotopically stratified spaces

	Maps of stratified spaces
	Advanced topic: intrinsic filtrations
	Intrinsic PL filtrations
	Intrinsic filtrations of PL pseudomanifolds with boundary


	Advanced topic: products and joins
	Products of intrinsic filtrations


	Intersection homology
	Perversities
	GM perversities
	Dual perversities

	Simplicial intersection homology
	First examples
	Allowability with respect to regular strata
	Effects of subdivision
	Some more advanced examples

	Some remarks on the definition
	The motivation for the definition of intersection homology
	Strata vs. skeleta in the definition of intersection chains


	PL intersection homology
	PL homology
	PL chains and PL maps

	A useful alternative characterization of PL chains
	Adding chains
	Compatibility with PL maps
	Realization

	PL intersection homology
	The relation between simplicial and PL intersection homology

	Singular intersection homology

	Basic properties of singular and PL intersection homology
	Stratified maps, homotopies, and homotopy equivalences
	The cone formula
	Relative intersection homology
	Further commentary on subspace filtrations
	Stratified maps revisited
	Reduced intersection homology and the relative cone formula
	Reduced intersection homology
	The relative cone formula


	Mayer-Vietoris sequences and excision
	PL excision and Mayer-Vietoris
	Singular subdivision, excision, and Mayer-Vietoris
	Singular subdivision
	Excision
	Mayer-Vietoris
	Examples
	Relative Mayer-Vietoris sequences



	Mayer-Vietoris arguments and further properties of intersection homology
	Mayer-Vietoris arguments
	First applications: high perversities and normalization
	High perversities
	Normalization


	Cross products and the Künneth theorem with a manifold factor
	The singular chain cross product
	The PL cross product
	Properties of the cross product
	Künneth theorem when one factor is a manifold

	Intersection homology with coefficients and universal coefficient theorems
	Definitions of intersection homology with coefficients
	Comparing the options
	Basic properties of intersection homology with coefficients

	Universal coefficient theorems

	Equivalence of PL and singular intersection homology on PL CS sets
	Barycentric subdivisions and maps from PL chains to singular chains
	The isomorphism of PL and singular intersection homology

	Topological invariance
	What perversities work?
	The statement of the theorem and some corollaries
	Proof of topological invariance

	Finite generation

	Non-GM intersection homology
	Motivation for non-GM intersection homology
	Definitions of non-GM intersection homology
	First definition of IH
	Second definition of IH
	Third definition of IH
	Non-GM intersection homology below the top perversity
	A new cone formula
	Relative non-GM intersection homology and the relative cone formula

	Properties of IH(X;G)
	Basic properties
	Maps and homotopies
	Subdivision, excision, and Mayer-Vietoris
	Applications of Mayer-Vietoris arguments
	Cross products
	Coefficients
	Agreement of singular and PL intersection homology
	Finite generation

	Dimensional homogeneity
	Local coefficients

	A general Künneth theorem
	A key example: the product of cones
	The Künneth Theorem
	A relative Künneth theorem
	Applications of the Künneth Theorem
	Some technical stuff: the proof of Lemma 6.4.2
	Algebra of the algebraic Künneth theorem
	Splitting
	Intersection homology products with cones


	Advanced topic: chain splitting

	Intersection cohomology and products
	Intersection cohomology
	Cup, cap, and cross products
	Philosophy
	Intersection homology cup, cap, and cross products
	Hom of tensor products
	Intersection Alexander-Whitney maps
	The diagonal map
	The intersection cup, cap, and cross products


	Properties of cup, cap, and cross products. 
	Naturality
	Naturality of the cross product
	Naturality of cup and cap products
	Compatibility with classical products
	Topological invariance

	Commutativity
	Unitality and evaluation
	Projection maps
	Unital properties of products
	Products and evaluations

	Associativity
	Associativity under broad assumptions
	Associativity in some more specific settings

	Stability
	Stability of cap products
	Algebra of shifts and mapping cones 
	Stability of cross products and cup products 

	Criss-crosses
	The relation between cup and cross products
	Interchange identities under broad assumptions
	Interchange identities in some more specific settings

	Locality
	The cohomology Künneth theorem
	Summary of properties
	Products on boundary-pseudomanifolds

	Intersection cohomology with compact supports

	Poincaré duality
	Orientations and fundamental classes
	Orientation and fundamental classes of manifolds
	Orientation of CS sets 
	Homological properties of orientable pseudomanifolds
	The orientation sheaf
	Homological theorems
	Useful corollaries

	Lack of global fundamental classes for subzero perversities
	Invariance of fundamental classes
	Fundamental classes under change of perversity
	Fundamental classes under change of stratification

	Intersection homology factors the cap product
	More general factorizations

	Product spaces

	Poincaré duality
	The duality map
	The Poincaré Duality Theorem
	Duality of torsion free conditions
	Topological invariance of Poincaré duality

	Lefschetz duality
	Orientations and fundamental classes
	Topological invariance

	Lefschetz duality
	Topological invariance


	The cup product and torsion pairings
	Some algebra
	Pairings
	Torsion submodules and torsion-free quotients

	The cup product pairing
	The torsion pairing
	The components of lambda
	Assembling lambda
	The torsion pairing made explicit
	Symmetry and nonsingularity
	Another approach to the torsion pairing

	Topological invariance of pairings
	Image pairings
	Nondegeneracy
	The intersection cohomology image pairing


	The Goresky-MacPherson intersection pairing
	The intersection pairing on manifolds
	What should the intersection product be?
	The PL intersection pairing

	The intersection pairing on PL pseudomanifolds
	Almost full circle

	An intersection pairing on topological pseudomanifolds and some relations of Goresky and MacPherson


	Witt spaces and IP spaces
	Witt and IP spaces
	Witt spaces
	Dependence of Witt spaces on coefficient choices

	IP spaces
	Products and stratification independence

	Self pairings
	Witt signatures
	Definitions and basic properties
	Signatures of matrices and pairings
	Witt signatures
	Topological invariance of Witt signatures

	Properties of Witt signatures
	Novikov additivity
	Perverse signatures

	L-classes
	Outline of the construction of L-classes (without proofs)
	Maps to spheres and embedded subspaces
	Cohomotopy
	The L-classes
	L-classes on smooth manifolds
	L-classes for small degrees
	Characterizing the L-classes
	Some notation
	The proofs

	Maps to spheres and embedded subspaces
	Cohomotopy
	The L-classes
	L-classes in small degrees
	Extending properties to small degrees

	Characterizing the L-classes

	A survey of pseudomanifold bordism theories
	Bordism
	Bordism groups
	Bordism homology theories

	Pseudomanifold bordism


	Suggestions for further reading
	Background, foundations, and next texts
	Deeper background
	Sheaf theory
	Derived categories and Verdier duality


	Bordism
	Characteristic classes
	Intersection spaces
	Analytic approaches to intersection cohomology
	L2 cohomology
	Perverse forms
	Chataur-Saralegi-Tanré theory


	Stratified Morse Theory
	Perverse sheaves and the Decomposition Theorem
	Hodge theory
	Miscellaneous

	Algebra
	Koszul sign conventions
	Why sign?
	Homological versus cohomological grading
	The chain complex of maps of chain complexes
	Chain maps and chain homotopies
	Consequences

	Some more facts about chain homotopies
	Shifts and mapping cones
	Shifts
	Algebraic mapping cones

	Projective modules and Dedekind domains
	Projective modules
	Dedekind domains

	Linear algebra of signatures

	An introduction to simplicial and PL topology
	Simplicial complexes and Euclidean polyhedra
	Simplicial complexes
	Euclidean polyhedra

	PL spaces and PL maps
	Comparing our two notions of PL spaces
	PL subspaces
	Cones, joins, and products of PL spaces
	The Eilenberg-Zilber shuffle triangulation of products
	The definition of the Eilenberg-Zilber triangulation
	Realization of partially ordered sets
	Products of partially ordered sets and their product triangulations
	Triangulations of products of simplicial complexes and PL spaces
	The simplicial cross product


	Bibliography
	Index
	Glossary of symbols

