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Stable Actions on Real Trees

1. Introduction

Definition: 7™ is an R — tree if it is a countable union of finite metric trees.

General Question: What can be said about the structure of a group that acts by
isometries on a given R — tree provided the vertex and edge stabilizers are understood?

Fact: In the case that T is simplicial, then the group is obtained from the vertex
stabilizers by amalgamating and HNN-extending over the edge stabilizers.

Example 1: Theorem (Paulin): If T' is negatively curved and Out(T) (= Aut(")/Inner(T))
is infinite, then I' admits a non-trivial action on an R —tree with all edge stabilizers vir-
tually cyclic.

Example 2: If each of 4, B has an infinite cyclic subgroup of infinite index, then
Out(A *z B) is infinite.

Main Theorem (Bestvina-Feighn): Let G be a finitely presented group with a non-
trivial, minimal stable action on an R —tree 7. Then either G splits over an extension
E-by-cyclic for some edge stabilizer E, or else T' 1s a line.

Corollary: T' of Example 1 splits over a virtually cyclic group.
Rips developed the techniques necessary for the proof in:

Theorem (Rips): If a finitely presented group G acts freely on an R — tree, then G is
the free product of free abelian groups and surface groups.

These notes indicate a proof of Rips’ theorem.

Definition: An action of G on an R — tree T is stable if for any collection of edges
I; DI, O .. in T with ()I; = pt, then there is an integer IV so that Fiz(I;) = Fiz(Iiz1)
for all 7 > N. An action is non-trivial if no point is fixed by G. An action is minimal if no

proper subtree is G — invariant.
Example 3: Free actions are stable.

Example 4: A copy of Q cannot reside inside a negatively curved group. If G is
negatively curved and the edge stabilizers are virtually cyclic, then the action is stable.

II: Laminations on 2-complexes and Resolutions

Suppose G is a finitely presented group which acts freely on an R —tree T, IV is a finite
2-complex with 7 (K) = G, and I is the universal cover of K. Construct an equivariant
map T : I — T as follows. Choose an equivariant set D, countably dense in T, that
contains all vertices of T'. First, define = on the vertices of K equivariantly so w(v) € D.
Then, using a Cantor-type function, extend 7 to an edge e (with boundary v and w) so
that 7=2(d) = arc for all d € D ([ (v), 7(w)]. Here, [7(v), 7(w)] is the unique geodesic in
T joining 7(v) and m(w).
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Finally, extend 7 naturally to each 2-simplex as indicated in the following diagram:

e | CTW) (W)
Vv w /N 4%

N
.S ()

W z (w) f’ T(z>
W “( /\,v

Locally, the leaves of the lamination, £, are (Cantor set) x I (see previous diagram).
L inherits a transverse measure from K and is said to be a measured lamination. By
construction, K inherits £ from K.

The equivariant map 7 is called a resolution.

Key Fact: If the action is free, then
m(l) = m (K)=G

is trivial for all leaves [ € £ and also for any complimentary component. In particular, a
loop in the complement of £ represents a tr1v1al element of G.

Example 5: Geodesic lamination on a hyperbolic surface. Here 71 (Sur face) acts
freely on an R-tree.

Theorem (Morgan-Shalen) L can be represented as the union of finitely many clopen
sublaminations. Each sublamination consists of either a parallel family of leaves, a twisted
family of leaves, or a minimal piece (every leaf is dense).

The minimal case is the interesting case.

Deﬁmtlon A band B is a set of the form b x I where b is an arc of the real hne The
components b x 8[ are the bases of B.
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Definition: A band complez is formed as follows:

(1) Start with a measured grdph r

(2)  Attach bands (laminated) to T
along their bases in a measure
preserving fashion.

(3) Attach 1l-cells and 2-cells with
attaching regions disjoint from
lamination.

Clearly, K, defined as above, may be given the structure of a band complex such that
I is the disjoint union of its edges.

III. Moves

A band complex may be placed into a standard form via a machine consisting of two
processes, each of which consists of a finite sequences of certain legal moves. The resulting

complex has the same fundamental group as the original complex and its universal cover
still admits a resolution to the original R-tree. '

1. Split a band

| //ﬁ

Now add a 2-cell to
fill in the hole.



2. Slide a band

- 3. Collapse a band from a face free of other bands.

Free

Process I: There is an 2 € I'() £ that belongs only to one face. In this case collapse
from a maximal free arc.



Example 6: In the following graphic three bands (a-c) are attached to I' via vertical
projection. Collapse through a to obtain the next stage:

a - ! ——
I
I
b . , —
!
. : (
I ﬁ |
>
r S NA
|} Process I
a — -
b b, L b"
c
r ! t

Another free arc presents itself. In fact, for this example Process I would continue
forever. :

Process II: Each z € T'( £ is covered by at least two faces. Orient I' and order its
components. Among all bases containing the initial point, let ¢ be the longest one. Slide all
other bases containing the initial point along c. Then collapse from the free arc ¢ containing
the initial point. '

There are three cases:

Case 1: An attaching region slides onto its dual. Remove the band as it is a non-
contributor to 7.

. Case 2: Process II may be applied again and some point of I'("] £ belongs to 3 bases.

Case 3: Every point in I'(] £ belongs to exactly 2 bases. This is the surface group case.



Example 7: In this example there are two bands attached to I'. One base of band (a)
slides along band (b) to line up exactly with the other base of band (a).

a T

|} Process II

As a result, the sliding band, (a), becomes an annulus. The complex is simpler since
this annulus does not contribute to m1. Formal analysis requires a notion of complexity.

Complexity of a bandcomplex: A block is a component of the union of bases. Then
comp(block) = maz (0, (number of bases in the block)-2)
and

comp(band complex) = Z comp(block)

In example 6 observe that the complexity (= 4) does not change. However, in example
7, the complexity decreases (from 4 to 2) when the annulus is removed.

- Example 8: Again there are two bands attached to I. One base of band (a) again
slides along base (b) but not precisely onto the other base. However, the overlap between
the bases is large compared to the translation length. Here, Process II continues forever.
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The Machine:

Apply Processes I and II as follows: If a free arc is present, apply process I; if not, apply
Process II until complexity decreases or stabilizes (If complexity decreases, a free arc may
present itself). Analysis of complexity shows that three possibilities result:

Possibility 1 (thin case): Process I continues forever.

Possibility 2 (Surface case): Process II continues and every point is covered exactly
twice.

Possibility 3 (axial case): Process II continues forever and at least one point is covered
three or more times. ’

Surface case: G = H * F where H is the free product of surface groups and F is a
free group. (T'Jbands) is a surface with boundary which contains £ in its interior. Since
the boundary components are contained in the complement of £, they are trivial in the
complex. Thus, 7 (complex) is a surface group. There may also be arcs attached. Those
attached to the same component of the complement of £ do not contribute to m;; the
others give the free part of G. In this case, each leaf has the homotopy type of R with
circles of bounded size attached. :

Axial case: G = (Z@Z D --- @ Z) + F where F is a free group. Just check that when
a and b are paths in £, aba~'b"! is a loop which actually lives in the complement of £
and, thus, is trivial. In this case, the leaves contain arbitrarily large circles and, thus. are
intrinsically high dimensional.

Thin case: G is free. If two bands attach to I in exactly the same way and intersect no
other bands, consider them as a continuation. ’
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Definition: B;, B,,--- , B, forms a long band if B;, B;4, are as above for ; = 1, ,n—
1,B;(\Bj =0 for | — j| > 1, By |J B, contains the intersection with other bands of | ] B;,
and the sequence is maximal with respect to these properties.

During each application of Process I, treat a long band as a single band. The idea is to
adjust the band complex so that a band is free of attached two disks. Then cut the band
and apply induction to obtain that G is free.

Outline of steps:

1. There is an NV such that at each stage the band complex has less than or equal to N
long bands.

2. For all n there exists a leaf segment of length n that is eventually collapsed.
3. There exists a leaf [ that contains a ray every segment of which is eventually collapsed.

4. This leaf [ is a one-ended tree and every finite subtree is eventually collapsed.

C.ollapsecﬂ

5. This [ is dense; thus, all cell bases have diameters which_ go to zero and there are
more and more of them.

6. Thus, eventually a band is naked, ie, free of attaching regions.

7. Cut along the naked band and induct on the number of generators, ie, G = A+ B
where neither A4; is trivial.



[
|
|
|
{

-9-

PRESERVATION OF ABSOLUTE (NEIGHBORHOOD) RETRACTS
AND OF SOFT MaPs By COVARIANT TOPOLOGICAL FuNcTORS

Taras Banakh

We say that a covariant functor F: Jlein ——Jsn preserves
Cid embeddings provided for every embedding e:X ——Y with .
X.YeO8CE) the map FCed:FCXY — —FCY) is an embedding as well:
(iid) homotopies iff for every homotopy {Ht: X_"Y}tero,u’
where X,Ye08C 8D, the homotopy {FC Ht): FCX3 ——FC YD}t is

£10,1]
continuous as a map FCXOx[O,1]1 —FCYD,
We denote by Q=[-1,11 ® the Hilbert cube and by
1,CA =CCxCadd __ eR*| L _ |xCa> |*<a> the standard Hilbert space of
2 acA A A '
density A. .
By ACNDRCAD and ACNDECAHD we denote respectively the class of
absolute (neighborhood) retracts and the class of  absclute

(neighborhood) extensors for the class of metric sSpaces.

Theorebm 1. Let A be a cardinal and F: Heéin ——Jen. be a functor
that preserves embeddings and homotopies.

¢i> If F’ClZCA})eAECJMJ then FCXDeAECAHM for every absoclute
retract X with densCXD=A;

Ciid if FCUDeANEC M for every open set Uc12CA) then
FCXD€ANECAMD  for  every absclute neighborhood retract X with
densCXD <A,

Corellary 1. Let F: Metr —Tsn be a functor that preserves -
embeddings and homotopies.

Ci> If FCQ)GAEC.AD then FC(XD€AECHM for every separable
absoclute f(e”t,ract X; .

Ciid lf FCMDeANECAD for every separable Q-manifold M then
FCXDeANEC;#Dk 'for’ever-y Separable absclute neighborhood retract X.

Theré‘” is also a map version of the concept  of an
ACNDECAHD —space, namely, the concept of a (locallyd soft map. A map
p: X —Y of topological spaces is defined to be Clocally) =oft,

—

‘pr‘ovided for every metric space Z, iis closed subspace z_,ocZ and

maps f‘:Zo —X, g:Z2Z—>Y with pof=g[20 there exists an extension

f:U—>X of f, where U=Z CUDZO is an open set in 2 such that

pOfT=gIU.
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Let a functor F: Metr — T on preser ves embeddings. We say that
the functor F preserves prewmages iff for every map [:X —sY of
metric spaces and every AcY we have FCf)ﬂCFCAD)=FCfﬂCA)).

Thek following statements are map versicns of the above

resul ts:

Theorem 2. Let A be a2 cardinal and F: Metr —Ten be a functor
that preserves embeddi ngs, preimages and homotopies. ' Let
pr, 11 CADxl CAD-——al CAD be the natural projection onto the first
factor

Cid If;FCprf) is a soft map then the map FCfD is soft for
every soft map f: X —sY of metric Spaces with densCXd<A;

€ii> if FCpr1[U) is a locally  soft map for any open
UchCADxIZCAJ then the map FCf) is locally soft, provided f: ¥ ——Y

is a locally soft map of metric spaces with density <A.

Corollary 2. Let A be a cardinal and F: Metr —sFan, be 2
functor that preserves embeddings, preimages and homotoples Let
P,: QxQ ——>Q be the natural projection onto the first factor.

i3y If FCpf) is ; soft map then the map FCf) is soft for
every soft map f: X —sY of Separable metric spaces.

Ciid if FCp1,UD is a locally soft map for any open UcQxQ then
the map FC(Ff) is locally soft, provided f: X ——Y is a locally soft

map of separable metric sbaces.

Department of Mathematics, University of Alberta, Edmonton, Canada

6G 261

Current address: Department of Mathematics, L’viv University,

Universytetska 1, L’viv 290000, Ukraine.
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DETECTING HYPERHOPFIAN GROUPS

by
Robert J. Daverman

Definitions. A group G is hopfian if every epimorphism
¥:6 - ¢ is an isomorphism; dually, ¢ is cohopfian if every
injection &:G - G is an isomorphism. Expanding on this, we call
a finitely presented group G hyperhopfian if every homomorphism
¥:G - G with ¢(G) normal and G/¥(G) cyclic is an isomorphism.

Hyperhopficity is not an Abelian phenomenon, the property’

. isn't even held by groups which split off a cyclic direct factor.

Simple groups have it, as do the fundamental groups of all compact
surfaces with negative Euler characteristic (a class which includes
all finitely generated nonabelian free groups) . ' Also, hyperhopfian
groups are hopfian, by definition, but they are only partially
cohopflan. The key hyperhopfian feature is: if 4:G - I 1is an
injection having normal image with TI'/u(G) cyclic and if 6:T - &
is an epimorphism, then Ou:G = G 1is an automorphism.

Call a closed manifold N hopfian if it is orientable and
every degree one map N - N is a homotopy equivalence. Whether
m;(N) a hopfian group necessarily makes N a hopfian manifold is
part of a 51gn1f1cant old unsolved problem, due to Hopf and more
recently reexamined by Hausmann. Nevertheless, this terminology
aids in explaining the topologlcal interest in hyperhopfian groups.

Theorem. Every closed, hdpfian n-manifold N with hyper-
hopfian fundamental group is a codimension 2 fibrator (i.e., every
Closed map p:M - B from an orientable (n+2)-manifold M to a
metric space B such that each p'b is homeomorphic to N is an
approximate fibration). ‘
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Last year's Workshop included a discussion of the following:

Contrasting Theoren. Every closed, hopfian n-manifold N
with m,(N) hopfian and %(N) * 0 is a codimension 2 fibrator.

Below are listed some conditions implying a group is. hyper-.
hopfian. Proofs can be found in "Hyperhopfian groups and
approximate fibrations", to appear in Compositio Mathematica.

Theorem. A finite group I isomorphic to the fundamental
group of a closed 3-manifold is hyperhopflan if and only if T has
no cyclic direct factor.

Theorem. Suppose the group G has a presentation consisting
of s generators and t relations, s>t+1 . Then G is
hyperhopfian if and only if G is hopfian.

Corollary. Free groups on s>1 generators are hyperhopfian.

Corollary. Fundamental groups of closed surfaces S with
X(S)<0 are hyperhopfian.

Theorem. If G,,G, are nontrivial, finitely generated groups
such that Gy*G, is hopfian and G, * Z,, then G,*G, is
hyperhopfian.

Corollary. Suppose the hopfian group G 1is a nontrivial free
product where G &« Z,*Z, , and suppdse N> is a closed orientable
3-manifold with 7 (N) « G . Then N’ is a codimension 2
fibrator. ' ‘
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ON THE HYPERSPACE OF ALL ANR’S IN THE PLANE

T4DEUSZ DOBROWOLSKI, HELMA GLADDINES AND JAN VAN MILL

ABSTRACT. If X is a space then ANR(X) denotes the subspace of 2X consisting of all ANR’s.
We prove that ANR(R?) is an absorber in 2(~111 for the class, of spaces that can be written
as the difference of two absolute Fs5’s. As a consequence, ANR(R?) is homeomorphic to
B> x (Q* \ B*), where Q denotes the Hilbert cube and B its pseudo-boundary.

Preliminary version presented by T. Dobrowolski

1. INTRODUCTION

For a space X, let 2% and C(X) denote the hyperspace of all nonempty subcompacta
and nonempty subcontinua of X, respectively. It is known that, for a Peano continuum \ .

2% ~ @, where Q denotes the Hilbert cube [1.=1[-1,1], (see [5]). By ANR(X), ANR.( .\
and AR(X) we denote the subspaces of 2-¥ and C (X) consisting of all ANR’s, all connected
ANR’s and AR’s, respectively. It is natural to ask what is the topological structure of the
spaces ANR(X), ANR.(X) and AR(X). or more generally, of the pairs (2X, ANR(.\)).
(C(X),ANR.(X)) and (C(X),AR(X)). We will be concerned only with the first pair arl
treat the case of X = R2.

Let B denote the pseudo-boundary of Q. ie.,
B={z€Q:(JeN)(|zi|=1)}.

In [4], Cauty proved that the subspace {I € C(R?) : Iisanarc} is homeoniorphic
to B and in [7] Gladdines and van Mill proved that the subspaces {P € CiR" :
P is a Peano continuum}, n > 3, are also homeomorphic to B,

Our main result is that the space AN R(R?) is homeomorphic to

~

B =B~ «(Q>\ B>,

We use the theory of absorbing sets in the Hilbert cube and some ideas from [7]: sce alwo
[6]. In fact, we prove that ANR([—1, 1) is an absorber for the class of all spaces .\ tliar
can be written as A\ B, where 4 and B are absolute F,s’s. Our main result then follcaw-
easily.

- Typeset by A48 11\
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TADEUSZ DOBROWOLSKI. HELMA GLADDINES AND JAN VAN MILL

2. ABSORBING. SETS APPARATUS

All spaces under discussion are separable and metrizable. Any space that is homeomor-

phic to @ is called a Hilbert cube.
Let A be a closed subset of a space X. We say that A is a Z-set provided that every map

f:@ — X can be approximated arbitrarily closely by amap ¢:Q — X \ A. A countable
union of Z-sets is called a 0Z-set. A Z-embedding is an embedding the range of which

1s a Z-set.
Let M be a class of spaces that is topological and closed hereditary. A subset 4 C X

is called strongly M-universal in X if for every M ¢ M with M C Q, every embedding
f:Q — X that restricts to a Z-embedding on some compact subset A of @, can be
approximated arbitrarily closely by a Z-embedding ¢: Q — X such that g|K=Ff|K
. while moreover ¢g7[4A]\ K = M \ K. ' :
- Let X be a Hilbert cube. A subset A C X is called an M-absorber in X if:

(1) AeM;

(2) thereisa cZ-set S C X with A C S;

(3) A is strongly M-universal in X. v

We use the following version of the Uniqueness Theorem on absorbers proved in [6].

A. Let X be a Hilbert cube and let A and B be M-absorbers for X. Then there is a
homeomorphism h: X — X with h[A] = B. Moreover, h can be chosen arbitrarily close to

the identity.

" Absorbers for the class Fy of all o-compact spaces were first constructed by Anderson
and Bessaga and Pelczynski. A basic example of such an absorber in @ is B. For details.
see [1] and [9, Chapter 6]. The space B in Q™ is an absorber for the Borel class Fos.

This was shown in [2]; see also [6]. _ _
Let I' denote the class of all spaces X that are homeomorphic to A \ B, for certain

F,s-subsets A and B of Q. ‘
B. The set B = B*® x (@ \ B*) is a T-absorber in Q = Q* x Q.
Applying the Uniqueness Theorem on absorbers we get the folowing corollary.

C. Let X be a Hilbert cube and let A be an absorber in X for the class T'. Then there is
a homeomorphism of pairs '

(Q,B) ~ (X, A).

In particular, A is homeomorphic to B.

3. MAIN RESULT

First we will determine the Borel type of the space ANR(R?). The result that makes
this possible is the following characterization of plane ANR's due to Borsuk [3]: a compact
"subset X C R? is an ANR if and only if X is locally connected and R? \ X has Anitely
many components only. ' .
Let D and E denote [—2,2]? and (—2,2)2, respectively. Observe that 2% is an open
subspace of 2° and that 20\ 2F is a Z-set in 22,
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For each n € N, put : /

En={A € 2% E\ A has at most n components}.

In addition, let £ = (22| &,.
Lemma. & is a Gs,-subset of 2.
Here is our key result which allows us verify the strong I' universality.

Proposition 1. If A C Q is an F,s-subset then for every nonempty open rectangle R C E
there is an embedding f: Q — 28 C 2F such that
(1) Ifz € A then f(z) is an ANR.
2) =0\ 4
Let £ denote the subspace of 2% consisting of all nonempty locally connected subcom-
pacta of E. It is easy to see that £ is an F,s-subset of 2% ( [8]; see also [7]). By the above
cited result of Borsuk, ANR(E) = £NL; this implies that ANR(E) € T. We can do better.
Proposition 2. Let A C Q be in I'. Then there exists an embedding f:Q — 2% such
that f~'[ANR(E)] = A. '
‘Now, with the use of Proposition 2 we are able to repeat an argument of [7, Theorem 3.1]

to show the strong ['-universality of ANR(E) in 2P. The fact that ANR(E) is contained
in a ¢Z-set in 2P can be easily shown. Since ANR(E) €T, our main result follows.

Theorem. ANR(E) is a '-absorber in 22,
Corollary. ANR(R?) is homeomorphic to B.
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This is the summary of the talk I gave at the Topology
workshop at Colorado College in June, 1992.

Enhanced cohomology and obstruction theory
Marek A. Galecki

This talk was about my PhD thesis. I would like to thank my
advisor Professor L.S.Husch for his help, | o

Suppose (K,4) is a simplicial pair, fiA>Y - a map, and the
question is: can onme extend f to }:K-)Y? The classical
obstruction theory attempts to answer this inductively on ti:e
skeleta of K. An extension LK™y 4,y yields a class
["IEH™K.A;m_ (1)), which is 0 iff f"ll K@, extends to a
map fAK™U4sY, '

The next step entails looking at [c™*)] EH'"“(K,A;nn’l(Y)); the
trouble is that if this is not 0, we have to redo f and try for<
[c™*]=0 again.

In a simple case Y=S5"'! the above process can be restated
geometrically as follows. _ :

A5 extends to FUETUAS ' =bdD®,  Now extend 1
to g:K™UA-D" in general position with respect to the centre 0
of D". The preimage of 0 is then finite ‘and we can look at small
n-1-spheres around these points and see them mapped to D™\0~$*!
with degree +1. Adding those degrecs. for the points within an
n-simplex gives the value of ¢° oxi that simplex.  That [c“]=0

means we can homotope g" rel. K™?'UA to cancel the preimage

~ points.  H"(K,4) is now transIated geometrically in a way that

involves sets of isolated points in ~K[“]\K["_'“, each equipped
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with a number 1 or -1.  Coboundaries are _reflected as certain
operations on such sets of points; they show what can happen when
g" is homotoped rel. K™Hy4.

What we just described is primary obstruction at work;  for

reasons mentioned before secondary cohomology obstruction is not

well-defined. In order to capture the first 2 non-trivial
extension steps,  evem for S°! as the range, in a single
w_ell-defined obstruction, ‘we need a different set of functors,
called enhanced cohomology.

When we extend ! to g’”"":K{““]UA»D", we see a
1-dimensional preimage of 0. In each n+r-cell of K, r=0,1, it is
a PL proper r-submanifold. @~ We can then take a nice regular
neighborhood of the preimage in K™*" and its boundary is mapped
to 8! with degree (in a suitable sense) +1. The preimage
togefher with this map constitutes an “enhanced cochain”. Some of
these are called enhanced cocycles, and what can . happen to the
pfeimagc and the map du;'ing a -homotopy of g" is reflected in
enhanced coboundaries. Cochains can. be added in the set-theoretic
manner up to cohomology class; if the 2 terms we want to add
interse;:t, we first isotope them apart.

In general, for any n=4, and any finite regular CW-complex K,

we obtain an abelian group, EH"(K), called the n-th enhanced

cohomology group of K. These are contravariant functors (using
continuous maps between CW-complexes). In fact, if fxg, then
f¥=g*, so if K and L are homotopy equivalent, then EH*(K)=EH*(L).

We have an exact sequence
2

1 59" I F
H"(K,z)——H" (K.z,) —EH"(K) —H"(K)~0
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(thc role of qu | was suggested to me by J.Stasheff and
M.Bestvina). In partipular,
EH"(closed, 2-cohnected PL n-manifold, n25)=22,
so EH*#H* (any coefficients) for finite CW-complexes.
The enhanced cohomology groups can be computed by a finite
algorithm. |
They provide a  well-defined, necessary and  sufficient
obstruction to extend a map from a subpolyhedron A4 of K to
K™U4 to some n-2-connected spaces ’as the range. They provide
a well-defined, necessary and sufficient obsti'uction to embed an
n-dimensional polyhedron in R*™!, n>5 (and also R*, where our

obstruction reduces to the Shapiro-Wu obstruction).
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ON MULTIPLE HOMOGENEITY OF
PRODUCTS OF MENGER SPACES

DENNIS J. GARITY

Oregon State University

Section 1. Introduction and Background.

This paper is based on-a talk given at the Workshop in Geometric TOpology held at,
Colorado College in June 1992. The results outlined in Section Three will be submitted
for pﬁblication elsewhere.

We begin with definitions of the Menger Spaces. These spaces were originally defined
by Menger in 1932 [Mg]. An inductive definition is as follows. Let M? be [2n+1 — R2n+1
fnductively assume that M,’f is a union of (2n + 1)-dimensional cells with sides of length
(1/3)*. Subdivide each cell in M¥* into 32"+! smaller cells by subdividing each side in

thirds. Then M}*! is the union of all of these smaller cells that intersect the k-skeleton

. oo )
of M}. The space y, is then defined as (1 M. Figure 1 below shows the spaces M} and
o

1

M2,

-Figure 1. The Spaces M} and M?

Key words and phrases. Menger Space, Universal Curve, Homogeneity.

Typeset by A 4S-TEX
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The zero-dimensional Menger space, Ko, is the Cantor Set. The one-dimensional Menger
space, 4 is the universal curve characterized by R.D. Anderson in [Anl] and [An2]. In
1984, M. Bestvina characterized all the remaining Menger Spaces [Be]. We take this

characterization by Bestvina as our formal definition of the Menger Spaces.

Definition 1.1 [Be]. The Menger universal n-dimensional space U, is the unique space

satisfying the following conditions:

(1) pn is a compact n-dimensional metric space.

(2) ‘#n is locally (n — 1)-connected (LC™1).

(3) tn is (n — 1)-connected (C™1).

(4) pn satisfles the Disjoint n-cells Property (DD™P).

Definition 1.2. A space X is k-connected if every map of S¥ into X extends to a map
of B¥! into X. A space X is locally k-connected if for each point p € X and for each
neighborhood U of p, there exists a neighborhood V of p so that each map of S* into V
extends to a map of B¥*! into U. A space X satisfies the Dz.syoznt k-Cells Property if for
each € > 0 and for each pair of maps f; and f, from I* into X, there are maps ¢g; and ¢,

from I* into X with 91(IF) N go(I*) = 0 and d(gi, fi) < e.

These conditions in Definition 1.1 yield the result that Kn is a universal n—diménsional
separable metric space, i.e. u, is n-dimensional and contains a copy of every separable
metric n-dimensional space. The details are given in [Be]. We are interested in the
homogeneity properties of M’enger Spaces and of products of Menger Spaces. The relevant

definitions are provided next.

Definition 1.3. A space X is homogeneous if and only if for each pair of points p and
q in X, there is 2 homeomorphism A : X — X with the property that A(p) = q. A
space X is n-homogeneous if for each pair of n-point subsets of X, A and B, there is a
homeomorphism ~ : X — X with the property that A(A) = B. A space X is countable
dense homogeneous if and only if for each pair of countable dense subsets Aand B of X,

there is a homeomorphism 4 : X — X with the property that A(A4) =

It is well known that the Cantor set (io0), the Hilbert Cube, and all manifolds satisfy
these types of homogeneity. R. D. Anderson established that p1 also satisfies these types



-21-

of homogeneity [Anbl, An2]. M. Bestvina established the analogous results for the highér

dimensional Menger spaces.

Theorem 1.4 [Be, pg. 73]. Each Menger Space p1nr is k—homogeneous fér each k, and is

countable dense homogeneous.

. In 1980, K. Kuperberg, W. Kupérberg and W. R. R. Transue showed that u; x L1
was not 2-homogeneous [KKT]. (They also showed that p#1 x S' was not 2-homogeneous. )
Their results depended on certain one-dimensional facts that do not generalize to higher
dimensions. We outline the results in [KKT] is Section 2. In section 3, we sketch how re-
placing the one-dimensional arguments in [KKT] with higher dimensional Cech Homology
arguments allows us to generalize the results in [KKT]. In particular, we are able to show

that um X pn is not 2-homogeneous for all values of n and m where max{m,n} > 1.

Section 2. Non 2-homogeneity of u; X ;.

This section contains an outline of some of the results in [KKT].
Theorem 2.1 [KKT]. u; x ,ui is not 2-homogeneous.
This result depends on the following result of M. L. Curtis and M. K. Fort.

Lemma 2.2 [CK|. If X is a I-dimensional space and if f : S' — X is an inessential loop -

in X, then f is inessential in f(Sl)

This lemma becomes false 1f St is replaced by S? and oné—dimensional is replaced by
2-dimensional. For example, consider the CW pair (X, P?) where X is obtained from P2
by attaching a 2-cell via a map that takes S? to a generator of w1 (P?). Here P2 is real
projective 2-space. The natural quotient map from S? onto P? is essential in P2, but is '
inessential in X. |

This lemma is used to show the following result:

Lemma 2.3 [KKT]. IfX is a one-dimensional continuum and if f1 and f, are two essential

loops in X with disjoint images, then f1 and f; are not homotopic.

Sketch of Proof. o
Lemma 2.3 is established by assuming that f; and f; are homotopic and considering

the quotient space ¥ = X/ f,(S!). The space Y is one-dimensional. If the map po f; is
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inessential in Y, Lemma 2.2 implies that it is inessential in its image. This contradicts the

fact that f; is essential in X. v ' [ |

. The non 2-homogeneity of 1 X y; occurs as a result of the product structure of any

self homeomorphism p1 x y;. Specifically, the non 2-homogeneity follows from:

Theorem 2.4 [KKT]. If his any self homeomorphism of X = y; x u1 , then one of the
following holds:
(1) therev are homeomorphisms hy and hy of u; such that for every point z = (z1,z3)
of X, h(z) = (h1(21), ha(2)).
' (2) there are homeomorphisms h, and ha of 1 such that for every point z = (z1,22)

of X, h(z) = (hi(z2), ha(z1)).

To see how Theorem 2.1 follows from this, choose points z; = (a,b), z3 = (a,c), and
z3 = (d,e) in X, where a, b, ¢, d and e are distinct. Then the above theorem immediately
implies that there is no self homeomorphism h so that h({z1,22}) = {21, z3}.

For completeness, and to prepare for the outline in section 3, we provide a sketch of the

proof of Theorem 2.4 above.

Sketch of Proof of Theorem 2.4 .

Let h be any homedmorphism as in the statement of the theorem. We first show that
for any a € pn, h({{a} X pn}) is contained in either a horizontal or vertical slice of X. If .
not, thére are points (a,b) and (a,c) in X with A(a,b) = (a, ) and h(a,c) = (v, 6) where

a # v and B # 6. Use uniform continuity to choose an embedding e of $? into y; so that
prohoe;(SHNpioko e2(SY=0and proho e1(SHNpyoho e2(S*) = 0.

Here, e; is the map into X with first coordinate map e and second coordinate map the
~ constant map to {b}, e2 is the mép into X with first coordinate map e and second coordinate
map the constant map to {c}, p; is projection onto the first coordinate, and p'g‘is projection
onto the second coordinate.

Both e; and e; are essential, since e is. The maps e; and e, are homotopic since K1
is path connected. So hoe; and ho e, are horhotopic and essential. So at least one of
pyohoe; and P2 © hoe; must be essential. Assume P10 hoe; is essential. Then the maps

p1ohoe; and p; o hoey contradict Lemma 2.3 since they are homotopic.

=
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Thus, for any a € pn, A({{a} X pn}) is contained in either a horizontal or vertical slice
of X. Without loss of generality, assume h({{a} x un}) is contained in a vertical slice.
A similar argument then shows that for each p € pny A({tn x {p}}) is contained in a

horizontal slice. This completes the sketch of the proof. ]

Section 3. Non 2—horhogeneity of prn X pn.

To generalize the results in Section 2 2, the following Theorem 1s needed. The proof of

this Theorem can be found in [Ga).

Theorem 3.1. For each ln, the following results hold:

(1) Any embedding of S™ in u, is essential both with respect to homotopy and with .
respect to n- -thCech homology.

(9) If fi and f are any maps from S™ into u, that are essential with respect to n-
th Cech homoloay, and if fi and fo have disjoint images, then f; and f2 are not
- homotopic.

(3) For each € > 0 and for each point P E [in. there is an embedding f : S™ — p, with
image contained in the e neighborhood of p. |

(4) If f: S - Kn X lm, With m > n, is a map that is essential with respect to n-th
Cech homp]ogy, then pyo f is essential with respect to n-th Cech homology, where
Dy is projection onto the first coordinate. ‘

(B Ff: 8™ = pp X fim, withm > n. is a map that is essential with respect to m-th
Cech homology, then py o f is essential with respect to n-th Cech homology, where

D2 1s projection onto the second coordinate.

The main Theorem in [Ga] is the following. The exceptional case of o X o fails because

Mo is not path—connected.
Theorem 3.2. pm X pn for max{m,n} > 1 is not 2-homogeneous.

The case where m > n follows from Theorem 3.3 below just as Theorem 2.1 followed
from Theorem 2.4. The general case needs a separate analysis when n = m. The complete
details on the proof of the following theorem can be found in [Ga]. We sketch a partial

proof of this Theorem.
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Theorem 3.3. If h is any self homeomdrphism of X = pup X fin , where m > n, tﬁen
there are homeomorphisms h; and hy of u, and Km such that for every point z = (z1,z7)
of X, h(z) = (h1(z1), ha(z2)).

Sketch of Proof. Let h be any homeomorphism of X as in the statement of the Theorem,
and let {p} be any point of y,. Assume that there are points ¢ and 7 of u,, so that
h(p,q) = (o, B) and A(p,r) = (v, 6) where o # 5. Use uniform continuity to choose an

embedding e of S™ into 4, so that
prohoe(S)Npohoey(ST) = 0.

Here, e; is the map into X with first coordinate map e and second coordinate map the
constant map to {g}, e; is the map into X with first coordinate map e and second coordinate )
rhap the constant map to {r}, and p, is projection onto the frst coordinate.

Theorem 3.1 implies that e is ‘essential with respect to n-th C’e'ch homology, so both e,

and e; must also be essential with respect to n-th Cech homology. Also, since max{m, n}>

-1, The maps e; and e, are homotopic. Now consider the maps hoe; and hoe,. Both

are essential with respect to n-th Cech homology. It follows from Theorem 3.1 that both
pioho el‘ and p; o ko ey are essential with respect to n-th Cech homology. Since these

maps are homotopic, this contradicts condition 2 in Theorem 3.1. So h takes each vertical

-slice of X into a vertical slice.

A similar argument shows that A takes each horizontal slice into a horizontal slice. This

completes the sketch of the proof. v [ ]
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Complements of Globally 1-alg 2-spheres in 4-manifolds

Craig R. Guilbault

Let X" be an n-mahif‘pld and 4 ¢ X". A is globally 1-alg in X if for any
neighborhood U of 4 there is a neighborhood V- of A, V c U, so that ioops which
are null-homologous in V-4 are null-homotopic in U~-A. This condition has
proven to be valuable for studying complements of certain embeddings. For
example, if ket is an embedded k-sphere (or shape k-sphere) with k = n-3,
then S"-° ~ s™-s* iff 5* is globally I-alg (see [Du] and [Ve]). Analogous
results, but with knotting taken. into consideration, are known when k = n-2.

One example, due to Liem and Venema, is the f ollowing:

THEOREM ([L—Vll) Let =% ¢ 5'4_ be an embedded shape 2-sphere. Then S*-52 =
S"'—K2 for some locally flat 2-sphere Kz, or equivalently, 52 has a
neighborhood N = S’xD’ with N-£% = (s%S")x[0,1) iff 2% is globally I-alg in

s*,

In [L-Vzl the following question is raised: If 2 c x* is a globally

1-alg shape 2-sphere in a 4-manif old, does there exist a locally flat 2-sphere ,
K% ¢ x* with x*-5? ~ X4_-K2? Equivalently, .one may ask whether every ‘globally
I-alg shape 2-sphere =% in a 4-manifold X* has a neighborhood N homeomorphié
to a disk bundle D over S? with N-g° homeomorphic to D-Sz where Ss is the
O-section.of D. A weaker version simply asks whether the end of x*-5? must be
collarable. |

- If 22 c x* is a globally l-alg 2-sphere and x* is compact, it follows
from duality arguments that X4-Zz has a single end with (stable) cyclic
fundamental group. In case this group is infinite cyclic, Liem and Venema have
answered the above questions aff irmatively, hence, we are led to the finite

cyclic case. Moreover, [L-V2] shows that under these circumstances the end of
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- x*-5£? satisfies all hypotheses of Siebenmann’s (see [Si]) high dimensional

collaring thedrem. Remarkably, Kwasik and Schultz [K-S] have shown the
existence of. counterexamples to a 4-dimensional version of Siebenmann’s
theorem. Furthermore, many of their examples have ends with finite cyclic

fundamental group. Hence, we are led naturally to the following:

Question. Can any of the Kwasik-Schultz counterexamples to a 4-dimensional
version of Siebenmann’s collaring theorm be realized as a shape 2-sphere

complement in compact 4-manifold?

An affirmative answer to this question is provided by combining the f ollowing

result with those of [K-S]..

MAIN THEOREM. Let E be a connected 4-dimensional weak collar with "1( E)=1Z

Then there is a closed 4-manifold Y, a shape 2-sphere 22 cY, and a

neighborhood N of =% with N-Zz ~ E iff 8E is Z-homology equivalent to L(n,1).

odd.

A weak collar (see [F-Ql) is a manifold N with compact boundary and one

“end for which there is a proper map f: Nx[0,1) » N which is the identity on

Nx{0}. A 3-manifold is Z—honiology equivalent to L(n,1) provided it admits a
degree 1 map onto L(n,1) inducing Z-homology isomorphisms in all dimensions.
The significance of this condition is that these are precisely the 3-manifolds
which bound a 4-manifold homotopy equivalent to s? (see [Gull). Analysis of
the construction by Kwasik-Schultz shows that their examples contain weak
collars. Further analysis reveals that many have fundamental group Zn and
boundaries Z-homology equivalent to L(n,1).

A more complete discussion of this topic may be found in [Guzl.

n

"Moreover, we may specify Y to be SszZ when n is even and CPZ#( —CPZ) when n is
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A Chaotic Embedding of the Whitehead Continuum
Isa S. Jubran |

This article summarizes a talk given at the 1992 Summer Topology Workshop
held at Colorado College, June 11-13. This article gives an outline of my PhD
dissertation, proofs a.nd details will be submitted for publication elsewhere. I wish
to acknowldege the help of my major professors: Dennis Garity and Richard Schori.
I would also like to thank Professor Marcy Barge for his help.

1. Abstract

In this work we study the following problem: Which subsets 6f R® arise
as chaotic local attractors for special self homeomorphisms h of R®? R. F.
Williams(1967), M. Misiureuicz(1985), W. Szczechla(1989), and M. Barge & J.
Martin(1990) gave partial answers for this problem.

Barge and Martin showed that for any given continuous map f : I — I,
where I is a compact interval, there is an embedding of I.E_n(I ,f)in R? and a
homeomorphism A : R? — R? such that h(h'in(l f)) = lim(7, f), the restriction of
h to 1%1_n(I, f) is equal to f, and li‘_r_n(I, f) is a global attractor for h. Here lir_n([, )
is the inverse limit of the sequence with boxiding maps f and f is the induced
homeomorphism on the inverse limit. Hence f on 113_11([ , f) can be realized as the

restriction of a homeomorphism A of the plane to its attractor.

In this work we extend these results to certain other compact subsets X of R3.
We show that X can be realized as local attractors for certain self homeomorphisms
h of R? such that the restrictions of 4 to X are chaotic. These subsets X are cell-like
sets arising as nested intersections of tori in a certain way. A typical example of
these subsets is the Whitehead continuum, which is a non cellular embedding of the
Knaster continuum in R3®. Technical difficulties arose in recognizing the self linking
of certain subsets of R3. This necessitated our working with inverse lumts of pairs,

and ca.refully analyzing a sequence of near homeomorphisms.
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2. History of the Problem - Partial Answers

R.F. Williams [W] proved the following: Given a differentiable endomorphism
of a branched one-dimensional manifold K, the inverse limit lim(K, f) can be em-
bedded in S* and the shift map f extended to a diffeomorphism of §* possessing

lim(K, f) as an attractor.

M. Misiureuicz [M] proved the following: If 7 :'T — I is the tent map (z —
1 - |2z — 1), then:

A. For evérjf manifold M where dim(M) > 3, there exists a C® diffeomorphism
h: M — M such that A restricted to its attractor A is topologically conjugate
to 7 (which is chaotic). “

B. For every manifold M where dim(M ) = 2, there exists a homeomorphism
h: M — M such that h restricted to its attractor A is topologically cbnjugate

to 7.

The results A and B hold for all maps conjugate to 7, for example the

quadratic map z — 4z(1 — z).

W. Szczechla [Sz], in a paper entitled “Inverse Limits of Certain Maps as

Attractors in 2 Dimensions” extended Miziureuicz’s results. -

Barge and Martin [BM4] proved that if f: I — I'is a map of a closed interval.
Then lim(7, f) can be realized as a global attractor for a homeomorphism of R?.

In this work we extend some of the results of Barge and Martin to certain
other compact subsets X of R®. These subsets are cell-like sets arising as nested
intersections of tori in a certain way. A typical example of these subsets is the

Whitehead continuum.
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3. The Whitehead Continuum

I;et Tp be a solid torus in R®. Let T} be a solid torus in Int(T}) as shown
in Figure 1. Let T; be a solid torus embedded in Int(Ty) as T is embedded in
Int(Tp). Continue this constrﬁcti_on. This results in a sequence Ty, 71,75 ... of
solid tori in R? such that for all nonnegative integers n, T, C I nt(Tn). Assume
the tori To, T,,T;,... are constructed efficiently to force 1-dimensionality of their

intersection. For example, each 7} can be required to retract to its core curve under

a retraction r; with dz'am(r,-' 1(p)) < % for each p. Then W = nT, is called the
. i=0

Whitehead continuum.

Figure 1

4. Properties of the Whitehead Continuum

For completeness, we list some of the properties of the Whitehead continuum.

For more details, see [Da).

(i) The Whitehead continuum W is a noncellular subset of R3, this is proved in

Section 1.6 of the dissertation.

(ii) The contiﬁuum W is a cell-like subset of R®. This follows from the fact that
if U is a neighborhood of W then for some integer £ > 0, Ty C U. Hence
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W C Tty C T Cc U. Since Tk+1 contracts to a point in Tx, W contracts to
a point in U.

(iii) The continuum W is a UV continuum in R®. This follows from the fact
that W is cell-like and R® is an ANR (absolute neighborhood retract) [Da,
Prop.1, p.123].

(iv) The continuum W is cellular in R*. This follows from the fact that W is
UV* in R3 [Mc3]. |

5. Objectives and Tools

~ Fori=1,2and 3, let B; be a 3 — cell satisfying B; C Int(B;) and B, C
Int(B3). For ¢ = 1,2 and 3, let T; be a solid torus satisfying 77 C Int(T3) and
T3 C Int(T3). Choose T; and B; such that T C Int(B;) for i = 1,2, 3. A

Consider the solid torus 7} = S! x D, where D, is 5 2-cell. Throughout this
article, S! is taken to be the quotient space of [0,1] generated by identifying the
endpoints {0} and {1} Let G: By — B; be a hornéomorphism satisfying:

(1) The set G(Ty) is a solid torus contained in N(G(S"), L) c Iny(Ty).

(2) The tox;us G(Ty) is eIhbedded in T} just as Ty is émbedded in T in Figure 1.
(3) The set G(T3) C Int(Th).

(4) Glpy_p, =1id

We will refer to such a homeomorphism as a Whitehead map.

Our objective is to construct a near homeomorphism H : B3 — B, satisfying:

(1) There is a sequence of homeomorphisms Hy, : B3 — Bj converging uniformly

to H such that each Hy, is a Whitehead map.
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(2) There exists a homeomorphism F : lim(B;, H) — lim(Bjs, Hy;) such that
F(hm(Tl,H)) = lim(Tl,Ht..). '

(3) The restriction of H to S! is the the function 7 : S! — S! defined by

) 2z, f0<z< -21-;
7(z) =
' 1

which is chaotic.
(4) The inverse lim(T}, H) is a local attractor for H : im(Bs, H) — lim(Bs, H).

Note that (2) implies that lim(7T}, H ) is embedded in lim(Bj3, H) just as the
standard Whitehead continuum is embedded in B;. Note alse that (3) implies H

restricted to 1im(T}, H) is chaotic.

While [Br, Theorem 3], stated below, supplies us with a homeomorphism
F : im(B3,H) — lim(Bs, Hy,), it does not guarantee that F(im(Ty,H)) =
im(Ty, Hy,). This is rectified by proving a generalization of [Br, Theorem 3] for

inverse sequences of pairs.

[Br, Theorem 3]. Let X = ﬁg(X.-,f;) where the X; arecompact metric
spaces. For 2 < i, let G be a nonempty collection of maps from X; into X;_,.
Suppose that for each i > 2 and ¢ > 0 there ezisia a g € G; such that Hf, -
gll < e. Then there is a sequence (g;) where gi € G; and X, is homeomorphic to

im(X;,9:) = X2, .

The homeomorphism in [Br, Theorem 3] is defined in [Br, Theorem 1] and

[Br, Theorem 2]. For completeness we will state these theorems.

[Br, Theorem 1]. Let X% = lim(X;, fi) and X, = lim(Xj, g;) where the X;
are compact metric spaces. Suppose ||fit1 —gi+1]| < ai, i=1,2,..., where (ai)is a

Lebesgue sequence for (Xi,g:). Then the function Fy : XL - Xn defined by Fy =
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lim gnnmy is well-defined and continuous. Moreover the function F : XL — X4,
n—oo

defined by F(z) = (Fl(_a_:_),Fg(_a_:_),...) is well-defined, continuous, and onto.

[Br, Theorem 2]. Let X1 = lim(X;, fi) and X4, = lim(X;,gg) where the
Xi are compact metric spaces. Suppose || f; — g;|| < min [c,_l,kxénn L(c,_l,gk, 1)]
where (¢;) is a measure for (X;, fi). Then the map F : Xf — X¢, described in [Br,

Theorem 1] s a homeomorphism .

We now develop some notation. By the pair (X;,Y;) we mean a mietric space
X.', equipped with a metric d;, and a closed subset ¥; C X;. Byamap f; : (Xi,Y;) —
(Xi-1,Yi_1) we mean a map f; : Xi —» Xi_; satisfying f.(Y.) CYi_:.

Let ((X;,Y5), fi) denote the inverse sequence

(X,1) L (X,1) 2 (xm) &
Let (XL, YZ) denote the inverse limit of the sequence ((X;,Y;), f;). That is, let Xz
and Y{ be the inverse limits of the sequences (X, f;) and (Y3, f'h' ) respectlvely

By Lemma 1 and Lemma 2 of [Br], If the X; are compact metric spaces then
(Xi, i) has a Lebesgue sequence (a;) and a measure (c;). Definitions of these terms

can be found in [Br].

The following theorem is a generalization of [Br, Theorem 1] .

Theorem 1.  Let (XL,YS) = lim ((X,,Y.) f,) and (X%,Y3) =
hm ((X.,Y),g.) where the X; are compact metric spaces and for all 7, Y; is o
closed subset of X;. Suppose |fit1 — git1]| < ai, i = 1,2,3,...; where a; 1s
a Lebesgue sequence for (X;,g;). Then the function Fy : (XL,YL) - Xn de-
fined by Fn = nIergo gNnTn 18 well-defined and continuous. Moreover the function
CF (XL, YD) - (X4,Y4) defined by F(z) = = (Fi(z), F2(2),-..) is well-defined,
continuous, onto and F(YL) =Y. | '
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The following three theorems are generalizations of [Br, Theorem 2], [Br,
Theorem 3] and [Br, Theorem 1] respectively. The proofs are identical to those

found in [Br], hence they are omitted.

Theorem 2. Let (XL,vf) = lim (Xi,Y3), fi) and (X%,YS) =
liin ((X,-,Y,-),g,-) where the X; are compact metric spaces and for all i, Y; is a
closed subset of X;. Suppose || fi — gi|| < min [c"l;klé]:iglL(c‘_l’g"’i“l)] where (c;)
is @ measure for (X, f;). Then the map F : (XL,YS) — (X2,,Y2) described in

Theorem 6.1 is a homeomorphism satisfying F(YL) =Yg,

Theorem 3. Let (XL,YS) = lim ((Xi,Y:), f;) where the X; are compact met- .
ric spaces and for all i, Y; is a closed subset of X;. Fori > 2, let G; be a nonempty
collection of maps from (X;,Y;) into (X;_l,}’;_lj. Suppose that for each 1 > 2
and € > 0 there ezists a g € G; such that ||f; — g|| < €. Then there is a sequence
(g9i) where g; € G; and a hbmeomorphism F: (XL,YS) = (X8,Y4) satisfying
FY{)=v3.

Theorem 4. Let (X£,,Y{) = lim (X;,Y:), fi) where:

(1) For all ¢, there exists a homeomorphism A; : (X;,Y;) = (X,Y), where X is a
compact metric space and ¥ C X is closed such that hi(Y;) =Y, and

(2) For all 4, f; is a near homeomorphism.

Then there is a homeomorphism ¢ : (XZ,Y{) — (X,Y) such that ¢(¥/, C
Y. |

6. Construction and Conclusions

We now define three pseudo-isotopies P} P} and P} and an isotopy P? of B,

onto itself. The effects of these maps are represented graphically in Figure 2.
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« S(T1)  P{S(T))

1
Pi
—_—.*

G(st)

Ty

P3(Pi(G(Ty))) |
P}ep}

r——

P}+P{eP}+P} (Ty)
Ty

Figure 2

The map P} shrinks the solid torus G(T}) to G(S?) léaving G(S') fixed. The
map P{ “eliminates” the self-linking of G(S?).

The map P} shrinks the torus T} to its core S'. The map P? is defined
such that for 0 < r < 3, PP o P2o Pl o G(r) is in {2r} x D, and for 3 <r <1,
P} o P?oPloG(r)isin {2 - 2r} x D;.

Define H : B3 — B3 by H = Pf o P} o P? 0o Pl 0 G. The maps H, =
P{oP?oP}oPloG,for 0 <t<1 are required to satisfy:
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(1) The maps H; are homeomorphisms for 0 < ¢ < 1 and they converge uniformly

to H as t — 1. Hence H is a near homeomorphism.
(2) H(T;) =Ty.
(3) H!BS_In:(Taj = id.
(3) If z € S* then G(z x D;) C H™(x).

(4) For every point z € Int(T3) there exists an integer n > 0 such that H"™(z) €
St

Note that T; is a closed subset of B3, H(T}) C T} and H(T)) € T; for all
t € [0,1]. It follows from Theorem 3 that there is a sequence Hy,i=1,2,..,H; €
{Hy: t = 737, andn € {1,2,...}} and a homeomorphism F : liin ((Bs,T1),H) —
l%x_n ((Bs, Ty), H) such that ,F(liin(Tl,H)) = lEn(Tl, Hy,).

Let K = lim(Th,H) and W = lim(T\, Hy,). By Theorem 4, there is a home-
omorphism & : lim ((Bs, T1), H) — (B3, T1). Now, consider the following diagram:

y R S B G R W
1:’ ' J:Hcl chlez
T, <& H,(T\) < HH,(T,) < ... (HeHs, ... Hy(T)
, ' E ‘ ‘ i=1
This diagram defines a homeomorphism A : W — mHtletz...Ht,.(Tl).

=1

Hence W is a standard Whitehead continuum (one with self-linking). Since
F lim((Bg,Tl),H) — Lm ((Bs,Ti),Hy;) takes K = lim(Ti,H) onto W =
lim(Ty, Hy; ), K is embedded in Bs just as W is.

let h be the restriction of H to S' where S! is the core of 7}. Note that A

Jis just the tent map on S*. That is, considering S* as the quotient space of [o0,1]

resulting from identifying the end points {0} and {1} then

2z, f0<z<3;
A=) = | N
2-2z, f ;<< 1.
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Now, consider the following diagram:

lim(S',h) — Lm((Bs,Th),H) % B

|# |a e

Lm(S!, k) - lim ((Bs,T),H) -2 B,

Claim: K = lim(Ty,H) is a local attractor for & : lim ((Bs,Ty),H) —
lim (B3, T), H).

To prove the claim, first note that since H (T1) = 8%, it follows from the

following diagram that K = Hm(Tl,H) = lim(S?, 4).

n L n L n Ao K
st st A s A s my

Since H(S') = 5, then H(K) = K.

Let U = {(zl,.’l:g,...) € lim ((Bg,Tl),H) 1T € Int(Tz)} = 71'-1 (ITlt(Tg))
Clearly, U is open in lim ((Bs,Tl),H) and K CU. Now if z = (z1,22,...) € U,
then H"(z) = (H™(z1), H*(22),...) = K as n — co.

Since H(T3) = Ty, we have H(U) C 77'(T}) and hence A(U) C 7. (1))
= (T1) C 77 }(T3) = U. Therefore CI(H(U)) cU.
It follows that & : Um(S5', k) — (S, R) is chaotic. Hence K = ﬂ A™U) is a

: . n>0
local chaotic attarctor for A : lim ((Bs, Ty), H) = lim ((Bs, Ty), H)

Let A = ¥(K) = ﬂ\II"(@(U)). Since I;[,K is topologically conjugate to
n>0

 Ug(xy» then ®(K) is a local chaotic attractor for W.
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7. Generalizations

Recall that we are studying the following problem: Which subsets of R3 arise

as chaotic local attractors for self homeomorphisms of R3?

In the previous sections, we gavé an outline of how the Whitehead continuum
can be embedded in R? as a local chaotic attractor. In this section, we define two
infinite classes of continua, W = {W(n,m):n >1,m > 1} and K = {K,:n > 2}

to which the previous construction generalizes.

Each of these continua is defined as the intersection of a nested sequence of

solid tori. These continua have an important feature in common with the Whitehead

continuum, namely the self-linking.
- Defining w.

Let Ty be a solid torus in the interior of a 3-cell B;. For all integers n > 1,
m > 1,let Gnm : B3 — B3 be a homeomorphism such that T} = Gnm(To) C Int(Ty)
is a solid torus which wraps around T, n-times in clockwise direction, then it self-

links, and ﬁné.lly it wraps around T m-times in counterclockwise direction as shown

in Figure 3.

For all integers, n > 1 and m > 1, let W(n,m) = n G%..(Tv). The continua ,
. ' k>0
W(n,m) can be embedded in R? as local chaotic attractors.

Shown in Figure 3 are the first stages in the construction of

W(1,1),W(1,2),W(2,1), W(2,2), and W(3,3). The solid torus T} is not shown

in its entirty, only its core is shown.
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W(1,1) - W(1,2)

Figure 3

As we have seen earlier, after a few pseudo-isotopies (eliminating the self-
linking), the homeomorphism Gn.m is transformed into a near homeomorphism
H,m : B3 — Bj such that the restriction of Hum to S1, the core of Tp, is the

- map fum : S — 5T such that W(n,m) = Hm(SY, frm).
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f11 fi2 f21

fa22 fas

Figure 4

Shown in Figure 4 are the maps f11, fi2, f21, fa2, and f33. Here S? is viewed

as the quotient space of the interval [0, 1] resulting from identifying the end points
{0} and {1}.

For n > 1 and m'> 1, the map fam : Si——» S1 has the following property: If

-J € S' with nonempty interior, there exists an integer IV such that f¥ (J) = §!

for all integers ¥ > N. Hence by [CM, Theorem C] £k, is transitive for every
k> 0. Clearly, fum has periodic points, hence [Si, Theorem 7.1] implies that Fam

is chaotic.
Defining K.

For all integers n > 2, let Qn : Bi — B3 be a homeomorphism

such that T} = Qn(Ty) is embedded in Int(To) as shown in Figure 5.
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Shown in Figure 5 are the cores of Qi(To) for i = 2,3,...,7. The images of

Ty under @, for n > 7 are not shown, but can be drawn by noticing the pattern
developing in Q2(Tv), @3(To), . .., @7(To).

Let K, = ) Q%(To) for n > 2.
k>0

The continua K, can be embedded in R3 as chaotic local attractors.
Again, as we have shown earlier, after a few pseudo-isotopies (eliminating the

self-linking) the homeomorphism @, is transformed into a near homeomorphism |

H, : By — B3 such that the restriction of H, to S, the core of Ty, is the map
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hn:S! — S such that K, = lim(Sl, hn).

hs he ‘ : hs

Figure 6

Shown in Figure 6 are the maps h; fori =1,2,...,7. Recall that S! is viewed
as the quotient space of the interval [0, 1] resulting from identifying the end points
{0} and {1}. The maps h, : S* — S! are chaotic by [CM, Theorem C] and [Si,
Theorem 7.1]. |

The continua K, ~ lim(S?, k,) ~ im(I, h,,).

(W] that K, is.homeomorphic to K,, if and only if n and m have the same

prime factors.
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ANR QUOTIENTS OF MANIFOLDS WITH
NON-NEARLY 1-MOVABLE FIBERS

TERRY L. LAy

Idaho State University and
The Colorado College

A subset X of an ANR Y is nearly I-movable if for each open set U containing
X there is an open subset V of U containing X such that for any neighborhood
W of X and any map f : 9B? — V, f can be extended to a disk with holes
whose other boundary components are mapped into W. Let M™ be a manifold
and let f: M™ — Y be a map with Y an ANR. Let Ny denote the union of the
non-degenerate point inverses of f. If Y € Y is an isolated point of f (N¢), then it
follows that f=1(y) is nearly l1-movable. A question arises as to whether any non-
degenerate point inverses of f can fail to be nearly 1-movable. Whenever f(Ny) is
compact and 0-dimensional, each f~!(y) for y € f (Nf) can be defined by nearly
I-movable sets in the following sense:

Proposition A. [Daverman] If f : M™ — Y is a map from a manifold M to
an ANR Y such that f(Ny) is compact and 0-dimensional, then for each point
y € f(Nyf), f~Y(y) can be written as the intersection of a countable collection of
nearly I-movable subsets of M. If the map fis acyclic, then the sets defining f~1(y)
can be taken to be acyclic as well.

Proof. Y contains an arc o threaded through the compact, 0-dimensional set f(Ny).
If w is the quotient map from Y to the decomposition space Y/a obtained by
collapsing out « then = is acyclic, Y/« is an ANR, and the composition 7f is
acyclic when fis. f~1 (7= (n(a))) = f~(a) is nearly 1-movable. More generally,
if finitely many disjoint open arcs missing f(Ny) are removed from o the quotient
space of ¥ obtained by collapsing out the remaining subarcs of « is also an ANR
and if A is one of these subarcs, then f7Y(A) will be nearly 1-movable and acyclic
when f is. The sequence defining a particular fYy) fory € f(N £) can be obtained
in this way using the O-dimensionality of f (Ng).

The purpose of this talk is to describe a construction which demonstrates a
converse to the previous proposition. Specifically:

Proposition B. If X ¢ M™ is not nearly I-movable but can be written as the
countable intersection of acyclic, nearly 1-movable sets, then there is a compact, (-
dimensional, upper semi-continuous decomposition G of M™ x E* such that (M™ x
EY)/G is an ANR and each non-degenerate element of G fails to be nearly 1-
movable. ‘

Typeset by ApS-TEX
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Proof. Let Ag O A; D Ay O ... denote a sequence of nearly 1-movable, acyclic
sets in M™ and let X = NAy. First consider a simpler decomposition, Gy, whose
non-denegerate elements consist of the set X x {0} together with the sequence
{Ar x 1/2%k = 0,1,...}. We can show that the quotient space is LC! at the
image of X x {0} and this will be sufficient to establish that it is an ANR using
the facts that the quotient must be finite dimensional, the local relative homology
vanishes and a local version of the Hurewicz Theorem applies. G is a decomposition
producing an ANR quotient with a non-nearly 1-movable non-degenerate element.
The sequence {Ay x 1/2%} is used to “tame” the set X x {0}. v

We now describe how to augment this construction to produce a decomposition
G in which every non-degenerate element fails to be nearly 1-movable. We will then
outline a proof that the quotient space is an ANR.

Distinguish a point z € X and define the set

Hels, ) = (Ax x (1) U ({2} x [5.6) U (X  {2}).

The non-degenerate elements of the decomposition G will be of the form Hi(s,t)
for some choice of k, s and ¢ or of the form X x {r}, the latter sets arising as limits
of sequences of the former. ‘

The construction of G begins by including the sets Hi(3/2k+2,1/2%), for k =
0,1,... . Note that the sequence described converges (in the Hausdorff sense) to the
set X x {0} which must be included to assure upper semi-continuity. If we stopped
at this stage, we could show that the quotient is LC! at the image of X x {0} but
it would be bad at other points since each Hy(s,t) set is acyclic, but not nearly
1-movable. ' ’

For a given k, we include another sequence of sets converging to H(.,.) from
the right, using the gap in the E! factor between Hi(.,.) and Hi_(.,.) or a small
interval to the right of Hy(3/4, 1). To preserve upper semi-continuity, a sequence to
converge toward an Hy(.,.) set will begin with index & 4+ 1. For example, one such
sequence at the first iteration is {Hy(1/2 4 3/2%+3,1/2 4+ 1/2k+1) k= 2.3, .. }.
This process is iterated so that no non-degenerate element is isolated. A Cantor
set worth of limiting copies of X will need to be included in order to get upper
semi-continuity. Gaps can be left in the E! direction to force the non-degeneracy
set to be 0-dimensional and since all of the non-degenerate elements have large size,
the decomposition is closed (and compact).

Let m denote the quotient map from M™ x E! to ¥ = (M™ x EY)/G. We will
assume that m(N,) is 0 — LCC in Y. (Since codimension is not an issue we could
cross with another interval factor if necessary.) Let p € 7(Nx). We discuss the case
where p = 7(Hy(s,t)), for some triple (k,s,t); the case where 7~1(p) is a copy of
X is treated similarly. - :

Let U be a neighborhood of p. Determine a neighborhood P of A, and an interval
(a,b) contianing s so that P x [a, b] € #=1(U). Similarly, find a neighborhood Q of
X and an interval (c,d) containing ¢ with Q x [e,d] C #~1(U) and a neighborhood
[t of z with R x [a,d] C 77} (U). Set V = (P x [a,0]) U (R x [a,d]) U (Q x [c, d])
and let V' be a neighborhood of p in YV with #~1(V) c V. :

Let f: OB* — Y be a loop in V. Using the facts that m(Ny) is closed, 0-
diniensional and 0 — LCC in Y we can find an infinite l-complex ¥ in B?, having
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mesh tending to 0 near B2, and an extension of f to 8B* U T so that each
component of B2 — ¥ is either a subset of B2 or an open 2-cell in the interior of
B? whose boundary is mapped into a (small) subset of V — (N, ). If the necessary
size conditions are imposed, the extension of f to all of B? can be accomplished by
ektending carefully over each of these 2-cells. This allows us to reduce the problem
to a consideration of the case where the original loop f has image missing 7(N,).

Accordingly, let fy denote the lift of f to M™ x E'. From the construction,
we may assume that @ X (c,d) contains an element ¢ € G of the form Hi(a,p).
The group 7;(V) factors as (P) x m1(Q) so fo can be extended to a map f; of
a disk-with-holes H; C B? whose two additional boundary components, J; and
J2, are mapped by f; into P x {s} and Q x {a}, respectively. Using the nearly
l-movability of Ay we can assume that P was chosen so that a loop in P x {s} can
be extended to a map of a disk-with-holes with image in 7~1(U) and whose other
boundary components are mapped arbitrarily close to Ay x {s}. In a similar but
slightly more complicated way @ can have been chosen so that a loop in Q@ x {a}
can be extended to a map of a disk-with-holes with image in 7=!(U) and whose
other boundary components are mapped arbitrarily close to 4; x {a}. The desired
extension of f to B? is obtained using a sequence of maps {mf;}, where fj+1 extends
fj, f; is defined on a disk-with-holes H; in B? and the components of 9H; — HB?
are mapped close to either p or 7(H;(a, §)).

Remark. It is not known whether a non-nearly 1-movable set can have a defining
sequence such as is discussed here. One possibility for such a construction is tied
to deep set theoretic questions. See [F. Tinsley] in these proceedings.

TERRY L. LAY, DEPARTMENT OF MATHEMATICS, IDAHO STATE UNIVERSITY, POCATELLO, IDAHO
83209

- E-mail: layt@howland.isu.edu
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A TOPOLOGICAL ENTROPY 1NVARIANT FOR KNOTS IN S8

Daniel S. Silver

This paper summarizes a talk given by the author at the Ninth Annual Workshop in
Geometric Topology held at The Colorado College, June 11-13, 1992. An expanded version

will appear later.

1. Introduction. Let K be a knot in S%. The symbol X denotes the ezterior of K;
i.e., the closure of S* minus a tubular neighborhood of K. The boundary X will be
regarded as K x S'. We recall that the knot K is fibered if there exists a smooth fibration
¢ : X — S! extending the projection X — S!. If K is fibered, then X is diffeomorphic to
a mapping torus S x [0, 1]/{(z,0) ~ (f(z),1)}, where S is a minimal-genus Seifert surface
for K (called a fiber) and f : S — S is a diffeomorphism (called a monodromy). Well
known examples of fibered knots include the figure-eight knot and all torus knots. (See
[10] for further details.) ,

In [6] O. Kakimizu has shown that the exterior X of any knot K contains a
codimension-0 submanifold X, such that

(1) K x S C 8Xy;

(2) there exists a smooth fibration ¢ : Xo — S! extending the projection X — S';

(3) Xo is maximal and unique with respect to inclusion and isotopy;

(4) a fiber Sy can be found inside any minimal-genus Seifert surface for K.
. Following [6] we will call X, the mazimal fibered submanifold of K.

Examples. (See [6].) 1. Any knot K is fibered if and only if X; = X.
2. If X is not fibered and X is atoroidal, then X, = (collar of S) xS*. Whenever this

* conclusion holds, we will say that X is trivial.

If f:Sp — Sy is a monodromy of a maximal fibered submanifold for a knot X , then
the pair of conjugacy classes [f*!] in the mapping class group of Sy depends only on the
unoriented knot type of K (see [3, p. 34]). Consequently, any quantity that depends only
on [f*1] is a knot invariant defined for K.

2. Some dynamical invariants for knots. Assume that K has nontrivial maximal
fibered submanifold X, with monodromy f : S; — S,. The Nielsen-Thurston classification .
of hyperbolic surface automorphisms [12], [4] ensures that after an isotopy of f, there exists
a finite f-invariant collection C (possibly empty) of disjoint, essential, simple closed curves
that decompose S, into subsurfaces Ti,- -, Ty, and such that the following property holds:
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For each 2 = 1,---, N, let n; be the smallest nonnegative integer such that fM(Ty) =
Then each mapping g; = f™|r; is either pseudo-Anosov or periodic.

We will assume that C contains no proper subcollection with the property above.
_Consequently, Cis unique up to 1sotopy [1]. For each i = 1,---, N, let A; denote the n;-th
root of the stretching factor for g;, if the mapping is pseudo-Anosov; if g; is periodic, then
let \; =1.

Definition. (Compare with [9].) The spectrum of K, denoted by spec(K), is the set
{A1, -, AN}

Remarks. 1. Each ); arises as the rate at which the length of some simple closed geodes1c

curve in 5y grows under iteration of f (see [7, section V).

2. The set of A;’s associated to any hyperbolic surface automorphism was defined
by W. Thurston [13], while the germ of the concept can be found in the papers of R.F.
Williams [14], [15]. The invariant spec(K) is further motivated by an invariant for “braided
links” recently defined by J. Los [9].

Definition. The entropy of K, denoted by Yk, is the maximum of log Ay, -, log Ay.

Remarks. 1. By [4] vk is the infimum of the topological entropies of all homeomorphisms
isotopic to f. In fact, using the main result of [5] one can show that 'yK is realized as the
topological entropy of a monodromy for some smooth fibration of X 0-

2. The invariant yx was introduced and studied for fibered knots in [12].

Examples. 1. The spectrum of any torus knot is {1}. More generally, if K is any
knot obtained from the trivial knot by repeated cabling and connect-summing, then
spec(K) = {1,---,1}.
" 2. The spectrum of any hyperbolic fibered knot K is {A}, where A > 0is the stretching
factor of any pseudo-Anosov map isotopic to a monodromy of K.
3. In [9] J. Los has exhibited a pair of mutant fibered knots that have different
entropies. These knots have the same 2-variable Jones polynomial, Q-polynomial and

Gromov invariant by [8], [2], and [11].
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Strange Acyclic Maps of ANR’s
by F. C. Tinsley

Let f:M—N be an acyclic map of closed n-manifolds. Then f induces -
f=fxidMxR-N XRI, another acyclic map. Let X = ff—l(y) for some y € N. We say
X is nearly I-movable if for every neighborhood, U, of X, there is a neighborhood, ¥V, of
X, such that for every loop, s, in ¥, and neighborhood, W, of X, the loop s bounds a
singular disk with holes so that each other boundary component lies in W. In other

words, the loop, 5, can be ’moved’ arbitrarily close to X. The adjective, ’nearly’, refers

to the fact that the ’movement’ does not fix a basepoint. This property of 1-movability

is a property of X and not of a particular embedding. '

For any set A closed in N and any set B in M with f—l(d) C inf(B) denote by G(A4, B) the
decomposition of B into points and possible nondegenerate elements {f—l(y):y € Al We
denote the decomposition map by x:Br>B/G(A,B). Let Yo € N. We say f_l(yo) is nasty
in M if for ev‘ery,open neighborhood, U, of {—1(’0) in M, there is a compact,

O-dimensional set C in inf(f(U)) containing ¥p such that the decomposition space

U/G(C,V) is an ANR. Then the map f is nasty if each pointpreimage is nasty in M.
Finally, we say f has locally, normally, finitely generated m {Infg) if for every y¢ N

“and neighborhood U of y in N, there exist a neighborhood ¥ of 9 in N and a compact PL
1 -1

r-manifold L with £ (7) C infL) such that Nl [ker (e (?))#J,HI(L)J is finitely

geﬁerated as a normal subgroup of Irl(L). ' ‘

; -1
Since f is acyclic, ker [ (ﬂf 14 )J#) is perfect [referencel, and thus,
-1 : '
Ncl (ker ([ﬂf 14 )) #)’HI(L)) is also perfect. Currently, there are no known examples of

finitely presented groups with perfect, normal subgroups which are not finitely
‘generated as normal subgroups. So, the condition in the definition of Infg may be
superflous. However, this appears to be a very difficult question.

The following relates nastiness fo nearly 1-movability.
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Theorem Let M,N, and f be as above. If f (y) is nasty in M, then f (y) is the
nested intersection in M of nearly 1-movable acyclic compacta. If f (y) is the nested

intersection in M of nearly 1-movable acyclic compacta, then f (7,t) is nasty in M XR .
Proof: See Lay’s summary in these proceedings.

The following equivalence is our main result.

Main Theorem: Let M,N,f, and f be as above. Then f is nasty if and only if f is Infg

We would like to prove this theorem for f itself but currently the stable version is the

best we can do.

Proof of Theorem: Suppose each f (yo,t) is nasty in M XR Let

(yo,O) EUX(<,e)C N XR We exhibit ¥ and L for the definition of Infg. This
implication does not use stabilization so we prove it for M,N, and f. First, choose a
compact, connected manifold L C U with f (yo) C inflL). Identify an f-saturated open
set, W, with f (yo) C W C infL). By hypothesis there is a compact 0-dimensional set,
C, in f(W) with % € C and the decomposition space, W/ G(C,W), an ANR. Then

Z = L/G(C,L) is also an ANR. Let x:L—~L/G(C,L) be the decomposition map.

. . 4 ,
Since Z is locally contractible, cover o o f (C) in Z by a finite collection of mutually
disjoint open sets, E, so that each E; contracts in 0<(W) Cover C in N by a finite

collection of mutually disjoint open sets, B 7 s° that f (B ) C l(E.) each J, some i

Now, let ¥V = UBo

A straightforward geometric argument yields that N/ [ ((ﬂ!_l(l’)) ],n (L)} = ker(o:#).
Then it follows that since ¥ is an ANR of finite type, ker(ce ) must be the normal

closure in (L) of a finite set of elements and, thus, the condition of Infg holds.
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For the converse, suppose the condltlons of Infg hold for f:M XR N XR Let
Map({) & MXR x [0, l)U-N XR X {1} denote the mapping cylinder of f. Let s be a loop
representmg any non-trivial element of ker(f ). We may assume s is embedded in

M XR % {0}. Because of stablhzatlon, we may also assume s bounds an embedded disk, D,
in Map(f) with C-bpNN xR! x {1} 0-dimensional. Obtalmng this 0-dimensional

intersection is the only place where we need the extra R factor. We would like to
eliminate this dependency, but it it is closely related to a longstanding, difficult
question of Daverman about types of wildness.

The construction in the previous paragraph works ]ust as well if M and f are replaced

=1
by any saturated open subset, f (U), of M and fIf (U) respectively.

We apply this construction mductlvely to show that f is nasty. Let (,0’ e NX R
f (yo,t) c wPm c MxR:. To begin, choose U, with (yo,t) €U, P ¢ N xR!
©o=1

f (closiU )) C W. By hypothesis (yo,t) and U1 yield L and Vl satisfying of Infg.
 Apply the constructlon above to finitely many loops generating B

Ncl[ ([ﬂf 04 )J J’“l(l'l)] to obtain a compact O-dimensional set C,CV. Ad ¥ to C;

=51
if necessary. By construction, Nclker [[ﬁf 4 )) J (L x [0, I)UC ) £ 1. Now, suppose
U, b1’ Lk 1 vV k-1’ and C Ly have been constructed to satlsfy all these condmons Cover
C]'r , With a finite, cover, B, of open balls. Then find a finite refinement of B consisting

of a mutually disjoint collection of open sets {U k, (k)} with clos (U k,j) cv k-1 |

 and dia(U k,j) < ; Let U R - Uuk,f For all y € (:k_1 apply the condition of Infg to y and
€ . i . 4\

Uk,j()) where y Uk,j( ) We obtain Lk,}( ) and Vk,)( ) Let {de( pees J(, (H} be

a finite subcover of ck I By constructlon, this cover is a refinement of the U k

Apply the basic constructlon to a finite set of loops generating
Ncl[ [[ﬂf (V k. ].(,D) J#]’nl(ij?v))] to obtain a compact Oﬁmens?onal set

. C 4 e i
Ck’ ’(%)- 4 , -’(7v) Again,
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<1
Nel [ker( (flf (Vk, J’(?,,’)J#J’"l(l'k o, )x[o 1)Ucu )J

i v=_u(k) v=u(k) | =u(k)
Let C, = {Uﬂ k,;( ]JUC Uu=1 Vk,j(’v), and L = { ki )} - Let
o C- f’l U
k=1 k

By cohstruction, C is compact, O-dimensional, and, for all k,“Ck C C. We must show that
W/G(C,W) is an ANR. ' '

It is sufficient to show that W/ G(C W) is 1-LC at every point. This follows from the
- following two facts whose proofs we omit: :

Fact 1: Given any pemt »X and open neighborhood U of 5% in W/G(C, W), there is an
open set V with y¥ € ¥ C U such that any loop in f (V)X{O} C Map(f) bounds a disk in

(U) x[o,nUc x{1} C Map(h.

Fact 2: Given any loop, s, in W/ G(C,W) and any ¢ > 0, then s is € ~homotopic to a loop,
¥, in the complement of C. In particular, s lifts to W.
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Planes in 3-manifolds of Genus One at Infinity

BoBBY NEAL WINTERS

Pittsburg State University

In this paper, the symbol W will represent a noncompact 3-manifold
and P will represent a plane (i.e. a space homeomorphic to R?) that is
proper in W (i.e. PN K is compact for every compact A" C W),

If there is a compact Ap C W such that P is not properly homotopic
in Winto W — Kp, then P is said to be nontrivial in W. QOtherwise P
is sald to be trivial in . The following is taken from [ST].

LEMMA 1. If W is irreducible and P s trivial in W, then there is a
proper embedding f : R? x [0,oc) — W such that f(R*x0)=P.

Let ¢ > 0 be an integer. We say that I is of genus g at infinity if
(1) for every compact A C IV there is a compact 3-manifold Mg
such that ' C Mg — OMy and 9.1/ is connected and of genus

g »
(2) there is a compact K C IV such that there is no compact 3-

manifold M C W with connected boundary of genus ¢ with A C
M —0M.

LEMMA 2. If W is irreducible and of genus zero at infinity, then W is
homeomorphic to R3.

The following are from [HM] and [K], respectively.

THEOREM 3. If W is irreducible and of genus zero at infinity, then W
contains no nontrivial plane.

THEOREM 4. If W is contractible, irreducible, and of genus one at in-
finity, then W contains no nontrivial plane.

RHETORICAL QUESTION. What can we say about W if it is irreducible,
of genus one at infinity, and contains a nontrivial plane?

Suppose that N is a noncompact 3-manifold such that 9V has two
components each of which is a plane and tor every compact K C W
there is a closed 3-cell Cx C W such that Ck contains K and meets
each component of N in a single disk. Then we say that NV is a nearnode

with two faces. A more detailed treatment can be found in [W].
Suppose that A is a noncompact 3-manifold and that the manifold N

obtained from H by splitting along a proper plane @ is a nearnode with

Typeset by AMSTEX
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two faces. Then we say that H is a nearnode with one handle. Note that
m(H) = Z and H is irreducible in this case.
Let Q" and Q" be the components of dN. Let n: N — H be the

quotient map associated with the splitting of H along Q. Then n(ON) =

Q. Therefore @ is nonseparating, and so by Lemma 1 it follows that Q
is nontrivial in H. Let K C H be compact. Let A’ = n~1(R). It follows
that A is compact. Let C be a closed 3-cell in N such that C' meets
each component of N in a disk and such that K’ C C—-Fr(C). Itis not
difficult to argue that C' can be chosen so that Q' NC)CnQ"nC).
It follows that n(C') is a solid torus. Since A C 7(C) and since H is not
R?, it follows that H is of genus one at infinity.

The following is proven in detail in §5 of [W].

THEOREM 5. If P C W is nontrivial and that W is irreducible and of
genus one at infinity, then W split along P is a nearnode with two faces,
.. W Is a nearnode with one handle.

OUTLINE OF PROOF: Let N be W split along P and let n: N — IV’ be
the quotient map. Suppose that A’ C A" is compact and let A~ = n(K').

Let A" be a compact, connected subset of IV such that P is not ho-
motopic in W into W — K and such that A’ N P is connected. Note that
since P is not homotopic into W — A", then A is not contained inside a
ball in W.

Now choose a compact, connected 3-manifold M C 1 such that

(1) OM is a torus, ’

(2) KNCM—-090M, and

(3).4(0M N P) is minimal with respect to (1) and (2).

STEP 1. dM is incompressible in W — R,
ProoFr: Compressing dM would put A in a ball in .
STEP 2. No component of M N P is contractible in & M.

PROOF: It can be argued that if such a component existed, that a disk
D C P could be found such that DN A =0 and 9D = D N M. Step
1 yields a disk £ C OM with 0E = dD. The irreducibility of W — K
(check this) yields a 3-cell B C W — K bounded by £ U D. Modifying -
M by digging B out of M or adding B to M would reduce t(OM N P).

STEP 3. If J is a component of OM N P that bounds a disk E; C P.
then ANPCE; —.

PROOF: Step 1 and step 2 lead to a contradiction if it is assumed oth-

erwise.



STEP 4. M is a solid torus and each component of M NP is & meridian
of M.

PROOF: Step 3 implies that the components of M N P are concentric
about A'N P. The innermost disk compresses OM in W and is on the
same side of the resulting 2-sphere as infinity.

STEP 5. M N P is connected.

PRrooF: If OMNP is not connected, it follows by steps 3 and 4 that there
1s an annulus component A of PNel(W — M) such that each component
of 0.4 is a meridian of M. Let D and E be disjoint meridian disks of A7
whose boundaries are the components of JA. Note that AUDU E 1s a
2-sphere that must bound a 3-cell B C W. Note that BU M is a solid
torus. We now see that it is possible to reduce §(OM N P).

Now observe that (M) is a closed 3-cell that contains A’ and meets
each component of NV in a disk.
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Tychonoff's Theorem

David G. Wright
A simple proof of Tychonoff's Theorem is given. The proof is, in spirit, much like
Tychonoff's original proof which is also given.

Tychonoff's Theorem states that the arbitrary product of compact spaces is compact. There
are two standard proofs of this theorem found in topology books. One proof uses
Alexander's Lemma which states that a space is compact if every cover by a subbasis has a
finite subcollection that covers [1, p. 139], [2, p.4]. An alternative proof by Bourbaki [1,
p. 143], [3, pp. 232-3] uses a formulation of compactness in terms of closed sets instead
of open sets; i.¢., a space X is compact if and only if for every collection € of closed sets
in X satisfying the property that every finite subcollection has non empty intersection, then

(Q C is non empty. Of course, each of these proofs will show that the product of two
€

compact spaces is compact. However, in each case the proof is far more complicated than
any standard simple proof that the product of two compact spaces is compact . Indeed,
Munkres [3, p. 229] seems to think that the Tychonoff Theorem is a "deep" theorem with
no straightforward proof.

In this note we give two simple proofs that the product of two compact spaces is compact.
Each of these proofs generalizes easily to Tychonoff's Theorem using only the fact that any
set can be well-ordered. In the special case of the countably infinite product of compact
spaces, this is just ordinary mathematical induction.

The first proof is Tychonoff's original proof [4]. Tychonoff's proof uses a non-trivial
alternative formulation of compactness that seems almost forgotten among modern day
topologists [2, p. 4]. The second proof uses an obvious formulation of compactness that is
only slightly different from the usual covering definition. This proof is, in spirit, much like
Tychonoff's. A slight variation of the second proof has been known and used by
‘professors and students at the University of Wisconsin for many (over 30) years. But, to
my knowledge, it is almost unknown to others.

Definitions.

For completeness, we provide definitions of products and the product topology.

Let {Xq | o€ J } be a collection of sets. The product H X is defined to be the

ae J

collection of all fmictions 75U Xq such that f(a) € Xo. We often write f = (xg)geJ
ae] .

or simply (xo) where f(a) =x4.  For each o there is a projection function onto X, -
Py : H Xoa— X defined by Py(f) = f(ar). If each Xq is a topological space, then the
aeJ
product topology on H X is the smallest topology which makes the projection
aeJ v
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functions continuous. Let F be a finite subset of J and for each o € F, let Uy, be an open

subset of Xg. Sets of the form U = q Py 1(Ug) form a basis for the product topology.
e .

These basic open sets can also be written as U = H Uq where Ug is open in X and
aeJ

Ugq = X for all o except a in some finite set F. R. H. Bing called this topology the
"finite gate topology." He thought of the basis elements as having a finite collection of

gates. A point f of H Xq isin U if and only if f goes through the finitely many gates

' ac]J .
U a € F;i.e., f(a) € Uy for each o € F. For a basic open set U, we say that U has a
gate in X if Po(U) is a proper subset of X. A nice illustration of the product topology is

]__I R, where R is the set of real numbers and each Ry is a éopy of the real numbers;

ae R

i.e., all functions from the reals to the reals. A basic open set U is given by picking a
finite set of real numbers F and a finite number of open intervals Uj,ie F. A function f
from the reals to the reals is in U if f(i) € Uj foreachie F. The graph of f must pass

through the gates {i} X Uj.
Formulations of Compactness.

Definition. A topological space X is said to be compact if every open covering of X has a
finite subcollection that covers. The following are equivalent formulations of compactness:

A. A topological space X is compact if and only if for each collection of open sets with the

property that no finite subcollection covers, there is a point x € X so that x is not covered
by the collection of open sets. -

B. A topological space X is compact if and only if for each collection of closed subsets of
X with the finite intersection property (the intersection of finitely many elements of the set
is non empty) the intersection of all elements of the collection is non empty.

Definition. Let E be a subset of a topological space. We say that a limit point x of Eis a

- perfect limit point of E if for every neighborhood U of x, the cardinality of U N E is the

same as the cardinality of E.

C. A topological space X is compact if and only if each infinite subset E of X has a perfect
limit point.

The proofs of A and B are immediate. Alexander's Lemma uses A. The Bourbaki proof
uses B. Our simple proof uses A. Tychonoff used C, and this fact requires some
elementary cardinal arithmetic which probably explains why it is not well-known. We give
a proof here for completeness.

Proof of C. Suppose X is compact and E is an infinite set with no perfect limit point. For
each point x of X choose a neighborhood Uy so that the cardinality of Ux N E is less than
the cardinality of E. A finite subcollection Uy, U,;z, -+, Ux,, covers X. Then E is the
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finite union of Ux, N E. But the finite union of sets of cardinality less than E must also
have cardinality less than E, a contradiction.

Suppose every infinite set has a perfect limit point.” If X fails to be compact, there is an

infinite collection {Ugy | oe € J}, of open subsets of X which covers X and so that no finite
subcollection covers. We may also assume that the set J has the minimum cardinality with

this property. We further suppose that J is well ordered so that for each @, the cardinality
of {Be JIB <a} is less than the cardinality of J and Uga U{UgIB<a}. We define

set E = {xq | 0t € J} so that xo. € Ug\\UJ{UBI B < a}. The cardinality of E is the same
as the cardinality of J. If x is a point of X, then x lies in some Uy, but the cardinality of

Uq N E is less than the cardinality of E, contradlctmg the fact that cvery infinite set has a
perfect limit point.

Tychonoff's Proof.
Theorem. Let X and Y be compact spaces then X x Y is compact.

Proof . Let E be an infinite subset of X X Y. We first show that there is an a € X so that
for each neighborhood U of a, the cardinality of (U x Y) N E is the same as the cardinality
of E. If no such a exists, then for each x € X, there exists an open set Uy containing x so
that (Ux X Y) N E has cardinality less than E. By compactness a finite subcollection Uxys

'sz"" Us,» covers X. Hence, E=(X><Y)mE=((U,(1qu2 ---qu X Y)NE

= 'Ul 1 ((Ux xY)NE)). Thisisa contradiction since the infinite set E cannot be written
as the finite union of sets of cardinality less than E.

We now show that there is a b € Y so that for each basic open set of the form U x V
containing (a,b), (U X V) N E has the same cardinality as E. If no such b exists, then for
eachy € Y, there exists an open set Uy X Vy, containing (a,y) so that the cardinality of
(Uy X Vy) N E has cardinality less than E. By compactness a finite subcollection

Vyis Vyguoo-, Vy, covers Y.

n
SetU=(\_, Uy,. Then UxY)NE=(Ux (Vy,UVy,U--UVy))"E=
2 (W x vy nE) UL (Uy; x Vy) NE)). This is a contradiction since the

infinite set (U X Y) N E cannot be contained in the finite union of sets of cardinality less
than (U X Y) N E. We now see that 'thg point (a,b) is a perfect limit point of E, so X x Y is

. compact.
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Tychonoff's Theorem. Let {Xq ! a e J } be a collection of compact topological spaces.

Then the product H X is compact.
aes]

'Proof. We assume that J is well-ordered and that an infinite set E is given. Inductively

define ay € Xy so that if U is any basic open set containing [J{ag} X H Xq , then the
asy o>y

cardmahty of UNE is the same as the cardinality of E. Then the point (ag) is a perfect
limit point of E. Hence the product is compact.

The Simple Proof.
Theorem. Let X and Y be compact spaces then X X Y is compact.

Proof. Let G be a collection of open sets of X x Y so that no finite subcollection of G
covers. We first show that there is an a & X so that for each neighborhood U of a no finite
subcollection of G covers U x Y. If no such a exists, then for each x € X, there exists an
open set Uy containing x so that a finite subcollection of G covers Ux X Y. By
compactness a finite subcollection le, UXZ’ e, Ux ,covers X. Hence, X XY =

(le U sz - Ux IXY = U (Ux XY). Thisisa contradlctlon because X XY
cannot be written as the ﬁmte union of sets each of which can be covered by a finite
subcollection of G.

We now show that there is a b € Y so that for each basic open set of the form U x V

containing (a,b), no finite subcollection of G covers U x V. If no such b exists, then for
cachy € Y, there exists an open set Uy x Vy containing (a,y) so that Uy x Vy is covered
by a finite subcollection of G. By compactness a finite subcollection Vyir Vyg oo, Vy,

covers Y. SetU=("\" Uy,. Then UxY=Ux (Vy, U Vy, U+ U Vy,) =

Uizl(U X VYi) C \Ji__[_ll((in X VYi)' This is a contradiction because U X Y cannot be
contained in the finite union of sets each of which can be covered by a finite subcollection

of G. Thus the point (a,b) is not covered by any element of G, and we see that X X Y is
compact.

Tychonoff's Theorem. Let {Xy ! o€ J} be a collection of compact topological spaces.

Then the product H X is compact.
aeJ
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Proof. We assume that J is well-ordered and that a covering G is given so that no finite
subcollection of G covers. Inductively define ay€ Xy so that if U is any basic open set

containing IT{ag} x H X » then no finite subcollection of G covers U. Thus the
) oL Y o ' )

. . . >y .
point (ag) is not covered by any element of G. Hence the product is compact.
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Problem Session

1. (Bestvina) First, some background: Defn: A group, G, with finite ARG, =HKisa
Z-group if the universal cover, K, can be embedded in an ER, E,sothat E~ K is a Z-set

in E and for all compact C C K, the set of translates of C is a null sequence in E.
Ex. 1: G=2Z,K =5, K=(0,1), and E = [0,1]. |

Ex. 22 G=F, K = §'v S, K embedded in the plane E?, and E = closure(K, E?)
with £ — K a Cantor set. ' ‘

Ex. 3: G a negatively curved group (torsion free).

Ex. 4: CAT(O) groups.

he. -
Theorem (Ferry-Winberger): If f: M® —5 N (aspherical closed manifolds), n > 6,
and m (M) = m(N) is a Z-group, then f is homotopic to a homeomorphism.

Question: Is your favorite group a Z-group?

CE _ .
2. (Daverman) Suppose p : M® — X with D? ¢ X. For any € > 0 does there exist
an embedding A : D? — M3 so that p) is e-close to inclusion: D? — X?

3. (Daverman) Suppose £" is a homology n-sphere. Does there exist a compact
manifold N™*! such that

ONTt1
(1) ™ I ) — m (V™F1) s 101
: b incl )
(2 H.(N"TL7) =0

Is there a X% # S* for which the answer is yes? (Can get N* satisfying (1) and H, (N*) =
0) ‘ : ‘

4. (Davérman) Does there exist a closed manifold N™ such that if
p: M - Bfinite dim'l metric
is any closed map with p~'6 = N forallb € B (M any manifold), then p is an approximate

fibration?

5. (Daverman) Does there exist a finitely presented group which contains an infinite
descending chain of perfect, normal subgroups? ' '

6. (Garity) Which cell-like subsets of R® can be realized as attractors of homeomor-
phisms?

7. (Garity) Does there exist an X which is LC™ for all n but which is not 2-
homogeneous? ' :
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8. (Silver) Let A" be an n-knot embedding of S™ in S™*2. A Seifert manifold for I is
a compact, connected, orientable (n — 1)—manifold with ddy(V) = K. A Seifert manifold -
1s minimal if the induced homorphism 7 (int(V)) — m(S™H? — K) is injective. Does every
2-knot have a minimal Seifert manifold? Answer is no for n > 3 (Hillman).

9. (Guilbault) Does there exist an embedded 2-sphere ©2 € M* with a neighborhood
N such that N —X2 is a counterexample to a 4-eimensional version of Siebenmann’s thesis?

10. (Guilbault) There exist compact contractible n-manifolds C” (C™ # B™) which
contain a pair of disjoint spines. Do all of these manifolds have disjoint spines?

11. (Dobrowolski) Let L(R?) be the hyperspace consisting of locally connected con-
tinua in the space of all continua C(Rz). Form=1,2,..., let A, betheset ofall X € C(R?)
such that X can be covered by at most m subcontinua each with diameter less than or
equal one third the diameter of X. Can the identity on C(R?) be (uniformly) approximated

by maps ¢ : C(R%) — C(R?) \ An? 7
12. (Dobrowolski) Consider two groups G, and G, with

Bk e Plng e z}
2

k
kZ

61 = {
G {E.—Emnkel}
G, and G, are 1-dimensional and totally disconnected; G; and G, are not isomorphic.
Are G; and G homeomorphic?

13. (Wright) Let M be the countably infinite sum of a fixed Whitehead manifold.
Then M is the covering space of a non-compact 3-manifold. Can M be the covering space

of a compact 3-manifold?

14. (Cannon) Suppose a.closed 3-manifold admits a Riemannian metric with negarive
curvature. Does it admit a metric of constant negative curvature? Is m, residually finire?
Does it have any non-trivial finite sheeted covers? Do negatively curved groups have torsion

free subgroups of finite index?

Modification: Is this manifold homotopy equivalent to such a thing?

15. (Cannon) Thompson’s group is the group of PL homeomorphisms of [0. 1 fixing
0 and 1, having slopes powers of 2, and dyadic rational invariance as a set. This group ts
generated by two elements. Give a good algorithm for finding a word of minimal lengrliin
these generators. Is Thompson’s group amenable? '

16. (Banakh) Assume that a topological group G € AN E(Comp) can be represe:.rod
as a direct limit of finite-dimensional compacta. Is G an R®-manifold? (Here. R™ 1~ i

standard direct limit of R®, n =1,2,--- ).

17. (Banakh) For a compactum K consider the free topological linear space over
L(K). Explicitly, ssume that K is embedded in a linear topological space X as a lincarly o1,
dependent set. Then span(K) = |J;Z, Kn where K, = {2 \;z; : YNl Snoe, 2 L



We define L(K') to be the direct limit of the A,'s. Is for every compactum K the space
L(K') an absolute extensor for compacta?

18. (Banakh) Is every topological linear space an absolute extensor for compacta?

19. (Banakh) Let (X;,... X,) and (X],... X}, )be n-tuples (n < o0). Does (Xi, X)) =
(X{,X;) for 1 < 4,5 < n imply (Xl, . Xn) = (X1,...X])? (Here, = means ’homeomor-
phic to')

20. (Banakh) Let n > 1. Does there exist a continuous, extension operator, T :
C[0,1] =~ C[-1,1] such that T(f)[0,1] = f, f € C[0,1], and T(C"[0,1]) C ch[-1,1]?
Here, C"[a,b] C Cla, b] is the subspace of C|[a, b] consisting of all continuously differentiable
functions.

21. (Banakh) Let T : X +— Y be a linear continuous operator from a separable Banach
space X to a Banach space Y. Does T(X) belong to the Borelian class

M;,(Y)z{ACY A= ﬂ U Anm}

n=1m=]

where each Ap m is closed in Y7
22. (Banakh) Let p: X +— Y be a soft map of complete-metrizable spaces. Is the map
poprx : X X Iy — Y the trivial l;-bundle?

23. (Tinsley) Is there a compactum which is defined by nearly 1-movable acyclic
compacta but is not nearly 1-movable itself? Is there a compactum which is defined by
homology cells but is not nearly 1-movable itself?

24. (Tinsley) Can type 3 wildness arise via an acyclic extended mappmg cyhnder
construction?



