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Convergence Groups and
Seifert Fibered 3-manifolds

Andrew Casson* Douglas Jungreis
February 24, 1993

1 Introduction

In this paper, we sketch a proof of the following result often referred to as
the Seifert Fiber Space Conjecture.

Theorem 1.1 If M is a compact, orientable and irreducible 3-manifold, and
71(M) contains an infinite cyclic normal subgroup, then M is Seifert fibered.

David Gabai has given a different proof; however, both proofs make use
of the same reduction (due to Geoffrey Mess and Peter Scott) to a problem
~ about discrete convergence groups acting on the circle. Our proof also uses
the solution of the Seifert Fiber Space Conjecture for Haken manifolds, due
to Waldhausen and Gordon-Heil.

The notion of a discrete convergence group acting on the circle is due to
Gehring and Martin [GM]; here we give an equivalent definition due to Tukia
[T]- '

Let T denote the set of ordered triples (z,y, z) of distinct points ocurring
in positive order on S (with respect to a fixed orientation on S!). Ob-
serve that T' is homeomorphic to, S* x R% The group Homeo(S!) of all
orientation-preserving homeomorphisms of the circle acts naturally on T. A
subgroup I' C Homeoy(S?) is a discrete convergence group if the projection

*Supported in part by a grant from the National Science Foundation
'Supported by a National Science Foundation Fellowship
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T — T/T is a covering map. An equivalent condition is that the action of
on T be fixed-point free and properly discontinuous. Mess [M] and Scott [S]
showed that Theorem 1.1 follows from:

Theorem 1.2 IfT' C Homeo.(S!) is a discrete convergence group, then
T/T is Seifert fibered.

Tukia [T] proved Theorem 1.2 in the case that T/T is non-compact and
also in the case that I' contains no torsion element of order greater than 3.
We will therefore assume that M = T/T is compact, and that ' contains an
element of finite order m > 3.

The basic strategy is to construct a simple closed curve C ¢ M = T/T
such that 71 (M \ C) has an infinite cyclic normal subgroup. The complement
N of a product neighborhood of C in M has torus boundary (which is easily
seen to be incompressible), and it follows from the work of Waldhausen,
Gordon and Heil referred to above that N is Seifert fibered. This implies
easily that M is Seifert fibered. The key to the proof that 7r1(M \ C) has
an infinite cyclic normal subgroup is to show that C, the pre- image of C, is
a product link in the solid torus T'. This depends on a somewhat delicate
characterization of product links in S* x R% By a (pure) possibly-infinite
closed braid, we mean a disjoint, locally finite union L of circles in S? x R?
such that each component of L is the graph of a function from S to R2.

Theorem 1.3 Let L be a possibly-infinite closed braid in S* x R2. Suppose
that with respect to the projection = : S! x R?2 — S! x R, each pair of
components of L has ezactly tw crossings, both with positive sign. Then L is
is a product link in S x R2.

2 Constructing a Fiber

In this section we show how Theorem 1.2 follows from Theorem 1.3. By
Tukia’s result [T], it suffices to prove Theorem 1.2 under the assumption
that I' contains an element e of finite order m > 3. Some power of e has
rotation number 1/m, so we may choose e to be this element.

The following technical result contains all the information about conver-
gence groups that we shall need.



Lemma 2.1 Let T and e be as above, and suppose that for some f,g € T,
f = geg™' # e. Then e7'f has ezactly two fized points a and b, and the
points a, e(a), b, e(b) are distinct and positively ordered on S*.

Sketch of proof: Since e~!f is a non-identity element of I, it has no fixed
points in T', so it has at most 2 fixed points in S*.

Observe that a is a fixed point of e™! f if and only if e(a) = f(a). If e~1 f
has no fixed points on S, then for all z € S* the triple (z, e(z), f(z)) has the
same orientation, which may be assumed to be positive (by interchanging e
and f if necessary). By applying this inequality repeatedly, we see that e has
smaller rotation number than f = gfg~!, a contradiction.

A similar argument applies if the fixed points of e~ f are all contained
in a fundamental interval for the action of e on S'. The conclusion of the
lemma follows quickly.

~For every element f € I' that is conjugate to e, there is a well-defined
embeddmg Cy : ST — T given by Cf(a:) (z, f(z), f~Y(z)). Let C be the
image of C.(S) in M. Let :

C=J Coegi(SH CT
g€l
be the full pre-image of C in T. The set S of pairs of distinct points on
S' is homeomorphic to S* x R. Let 7 : T — S be the projection given by

(z,9,2) = (z,y).
The following two results are easy corollaries of Lemma 2.1

Corollary 2.2 C is a simple closed curve C in M = T/T.

Corollary 2.3 If f is conjugate to e isT, and f # e, then 7(C.(S")) inter-
sects w(Cy(S")) in ezactly two points, both positive crossings of C.(S') and
C¢(S*) with respect to the planar projection .

Proof of Theorem 1.2: Observe that (M \ C) contains (T \ ) as a
normal subgroup (with quotient group isomorphic to I'). Using Corollary 2.2,
ome sees that C is a possibly-infinite closed braid in S* x R2. By Theorem 1.3
and Corollary 2.3, m (T \ C) is the direct product of a free group of infinite



rank and an infinite cyclic group Z. In particular, Z is the center of 7,(T\ ),
and is therefore a normal subgroup of 7(M \ C).

Even though the action of ' on 5! is not given to be smooth, it is not
hard to show that C' has a product neighborhood in M. The complement
N of such a neighborhood is Haken, so by Waldhausen’s theorem [W] it is
Seifert fibered. Now M can be reconstructed as the union of M and a solid
torus, and the generic fiber is homotopically non-trivial in (M) (in fact it
generates the given infinite cyclic normal subgroup). It follows that M is
Seifert fibered.

3 Possibly-Infinite Closed Braids

Let L be a pure closed braid in S x R? such that, after projection by =, each
pair of components of L has exactly two crossings, both positive. First we
consider the case when L has only finitely many components; this will serve
as a model] for the general case.

Theorem 3.1 If L has only finitely many components, then it is a full twist;
in particular, it is homeomorphic to a product.

Choose coordinates (z,y, z) on S* x R? such that the projection

7: ST xR?5 ST xR

is given by (z,y,2) + (z,y). The terms “left” and “right” will refer to the
z-direction; terms like “up” and “above” will refer to the y-coordinate, while
terms such as “in front of” or “forward” will refer to the z-coordinate. (This
proof was developed on a vertical blackboard.)

Lemma 3.2 Suppose that some component S of L has a point V that is
above every other component. (See Figure 1.) Then, while fizing all other
- components of L, S can be isotoped so that its projection n(S) assumes any
desired position provided V stays fized, the z-coordinates of points in S stay
fized, and the y-coordinates of points in S are not increased.



Figure 1:

Proof: Cut S* x R? along the yz-plane through V. For each component
of L\ S, let the “left segment™ (respectively right segment) denote the part
of the component to the left (right) of any crossing with S. (See Figure 1.)
Note that left and right segments are precisely the parts of components that
are below S. No left segment can cross in front of a right segment, otherwise
(since each segment must cross S), the two segments would have to cross
at least three times. (See Figure 2.) Thus there is an isotopy I that pulls
forward all left segments and pushes backwards all right segments. After
applying I, S can be isotoped to the desired position (provided V stays
fixed). Transforming this isotopy by I-! yields an isotopy lowering S as
required and fixing L\ S. ' A

It should be noted that the property that each pair of components crosses
exactly twice is not necessarily preserved at all stages of the isotopy, even if
the final configuration has this property.

Proof of Theorem 3.1: Use Lemma 3.2 to isotop some component S of L
so that it winds around all of the other components (in the sense described
below; see Figure 3). The remaining components form a closed braid with
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Figure 2:

one fewer component; by induction they form a full twist. It follows that L
is a full twist.

Now let L be any possibly-infinite closed braid satisfying the hypotheses
of Theorem 1.3. Let K be a union of finitely many components of L. We will
say that another component S winds around K if S crosses in front of every
component of K exactly once, and then crosses behind every component of
K exactly once. (See Figure 3.) The closed arc of S between the first and last
crossing in front of K is called the descending arc of K, and the ascending
arc is defined similarly. Observe that if all components of L \ K wound
around K, then these components could simply be isotoped away from K,
leaving an isolated finite closed braid. The following lemma. follows from the
assumption of local finiteness.

Lemma 3.3 LetZ C Y be the union of finitely many components of a closed
braid L satisfying the hypotheses of Theorem 1.8. Then all but finitely many
components of L wind around K.

We will say a component S tangles K from above if some point of § is
above all components of K, but no point of S is below all components of K.

6
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Figure 3:

If the part of S that is above all components of K is a single interval, then
S neatly tangles K from above (See Figure 4.) We define the term tangling
from below similarly.

Lemma 3.4 Any finite union Ky of components of L is contained in a finite
union K of components of L such that every component of L\ K either winds
around K or neatly tangles K from above.

Sketch of proof: Let K; be the union of Ky and the finitely many com-
ponents of L that tangle K; from above. Let K, be the union of K; and the
- finitely many components of L that tangle K; from below. It is not hard to
verify that K, the union of K, and the finitely many components of L that
neither wind around nor tangle K3, has the required properties.

Let S be a component of L that neatly tangles & from above. let A be
the first crossing of S with K, let D be the last crossing of S with K then
the closed arc [A, D] will be called the tangled arc of S. The definitions of
ascending and descending arcs given above for winding components generalize
naturally to neatly tangling components as follows. Let B be the first point

7




Figure 4:

where S crosses a component of K for the second (and last) time, and let C be
the last point where S crosses a component of X for the first time. The half-
open arcs [A, B) and (C, D] will be called the descending and ascending arcs
of S respectively. (See Figure 4.) The following property is easily verified.

Lemma 3.5 Suppose that each of S and T either winds around k or tangles
Z from above. If the descending arc of S crosses behind a point Q) of T, then
Q is on the descending arc of T. Similarly, if the ascending arc of S crosses
in front of a point Q of T, then Q is on the ascending arc of T'.

An embedded curve v in S* x R? is a connecting path if « is contained in
some yz-plane, the endpoints of 4 lie on components of L, and the interior
of 7 is disjoint from L. A connecting annulus is an annulus in S' x R?
whose intersection with any yz-plane is a connecting path. We will say that
a connecting path can be spun if it is contained in some connecting annulus.
Clearly, any connecting path in a product braid can be spun.

- Lemma 3.6 Let L be a closed braid satisfying the hypotheses of Theorem 1.3,
and let P C S* xR? be a yz-plane. Let a, 8, and « be connecting paths in P




with common endpoints but disjoint interiors, and let D be the disc bounded
byaUB. If a and B can be spun and D contains v, then v can be spun.

Sketch of proof: The union of the connecting annuli containing o, A can
be modified to form an embedded torus T that is disjoint from L and bounds
a solid torus V containing 4. By Theorem 3.1, LNV is a product braid, so
any connecting path in V, in particular v, can be spun.

Theorem 3.7 Let L be a closed braid satisfying the hypotheses of Theo-
rem 1.3. Then every connecting path + that is parallel to the z-azis can be
spun. '

Sketch of proof: Let S; and S, be the components containing the end-
" points of 4. Set Ko = S5, U S, and construct K as in Lemma 3.4. We can
pull the descending arcs of all winding components forward from X , and
push the corresponding ascending arcs backwards, while only moving the
ascending and descending portions of the tangled arcs.

Once the winding components and descending and ascending portions of
the tangling components are pulled away from K, we can apply Lemma 3.2
to “untangle” the tangled arcs. If there were only one tangling component we
could use Lemma 3.2 to pull it down to the position illustrated in Figure 5,
thus converting it into a winding component.

If there are several tangling components, we simultaneously pull down
all of the tangled arcs to the position illustrated in Figure 5. We move the
tangled arcs in such a way that crossings remain crossings at all stages of
the motion. Furthermore, if two points P, Q on tangled arcs initially have
different projections (that is, they are not a crossing), then at no time may
their trajectories have the same projection. It remains to be proved that the
tangled arcs do not interfere with each other, either at a crossing or at the
endpoint of a descending or ascending arc. An argument similar to that used
in Lemma 3.2 shows that no such interference occurs. .

Thus we can pull down all tangled arcs, so that tangling: components
become winding components. We can then pull all of these new winding
components away from Z leaving Z as an isolated finite closed braid. Let
I be the isotopy that pulls away the winding components, pulls down the
tangled arcs, and then pulls away the new winding components. Observe
that this isotopy, I, never increases the y-coordinate of any point.

9
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Apply I to the closed braid (X,Y), leaving Z isolated. Recall that « is
the horizontal connecting path at a simple crossing of the components Sy
and S; of Z. By Theorem 3.1, Z is a trivial closed braid, so 7 can be spun to
give a connecting annulus in the braid I(Y). It follows that o = I=1(y) can
be spun in the given braid Y. Observe that « has the same endpoints as 7,

since [ leaves Z fixed, and « is above «, since I never increases y-coordinates.

By symmetry, we can use the same construction to find a connecting path
B that has the same endpoints as 7, that is entirely below 7, and that can be
spun. In the plane containing a and f3, let D be the disc bounded by aU 3.
7 is contained in D, so by Lemma 3.6, v can be spun.

4 Completion of Proof (Skefch)

Lemma 4.1 Suppose that o and B are connecting paths that intersect in
ezactly one point, either a common end-point or a transverse interior inter-
section. Let P be the yz-plane containing a and B, and let N C P be a
regular neighborhood of U B. If a and 8 can be spun, then any connecting

10




Figure 6:

path contained'in N can be spun.

This lemma is proved by taking the existing connecting annuli to have
minimum istersection, and then fattening the union of these connecting an-
nuli. This gives a solid torus whose boundary is disjoint from L, and therefore
encloses a finite braid. Every connecting path in this braid can thus be spun.

We have already shown that every horizontal connecting path can be
spun. Clearly, as we spin such a path, every connecting path along its tra-
jectory can be spun. We can use these connecting paths and Lemma 4.1 to
construct- 4 large family of connecting paths that can be spun. It can be
shown that this family includes all connecting paths, so we have:

Theorem 4.2 Let (X,Y) be a closed braid satisfying the hypotheses of The-
orem 1.3. Then every connecting path for (X,Y) can be spun.

~ With this fact about connecting paths, we are now ready to generalize
Theorem 3.1 (the finite case) to the infinite case.

Sketch of proof: Using the fact that every connecting path can be spun, it
is not difficult to show that the union of finitely many components of L and
finitely many connecting paths joining these components can be engulfed in

11



a compact solid torus with boundary disjoint from L. It follows that any
compact solid torus T' € S* x R? can be engulfed in a compact solid torus
with boundary disjoint from L. (Homotop T to any component in its interior,
as in Figure 6). We can then express S! x R? as a nested unjon of compact
solid tori with boundaries disjoint from L. Applying the finite version of the
theorem to each torus in the sequence shows that the original braid was a

full twist.
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THE DYNAMICS OF CIRCLE MAPS AND THE ONE-WAY PROPERTY
by Lauren Weinstock Ancel

Abstract. A circle map f is a continuous transformation from a circle C into itself.
An interval in C is one-way with respect to f if under repeated applications of f all
points of the interval move in the same direction. Examples are given of circle maps
which admit intervals that are locally one-way (i.e., covered by one-way subintervals)
but are not one-way. Also, it is proved that for onto circle maps, all locally one-way
intervals are one-way. ‘ .

1. Iritroduction.

A continuous transformation from a circle into itself is called a circle map. The
dynamics of a circle map concerns the behavior of points of the circle under iteration
(repeated application of the map). This paper studies an aspect of the dynamics of
circle maps called the one-way property. Let f be a circle map. If x is a point of the
circle, then the points obtained by applying f repeatedly to x are called the iterates of
X. LetJ be an oriented open interval in the circle. J is free if no iterate of a point of J
returns to J. J is positive if it is not free and if for every point x in J, any iterate of x
which returns to J lies to the positive side of x. J is negative if it is not free and if for
every point x in J, any iterate of x which returns to J lies to the negative side of x. J is
one-way if it is either free, positive, or negative. J is locally one-way if every point of J
lies in a one-way open subinterval of J. Since the dynamical behavior of a map on a
one-way interval is relatively uncomplicated and well understood, it is desirable to find
conditions under which one-way intervals exist. The main question addressed here is
the following. For which maps are all locally one-way intervals one-way?

The analogous question for maps from the real line to itself has a simple answer.
For any such map, all locally one-way intervals are one-way. The proof of this fact is
elementary. [1, Chapter 4, Lemma 6] The definition of one-way for subintervals of the
circle first appears in [2] along with a result (Lemma 3.2) which, under a strong
hypothesis on the dynamics of the map, implies that all locally one-way intervals are
one-way. (Lemma 3.2 of [2] is repeated here as Lemma 4.) The 1990 Ph.D. thesis of
M. Hero [3] explores this question carefully and extensively, but does not completely
resolve it. Hero's thesis provided motivation and background for the work in this

paper.

My research into this question began with the discovery of an example of a circle
map with respect to which there is a subinterval of the circle which is locally one-way
but not one-way. This map is not onto and my efforts to construct examples of onto
maps failed. Since circle maps that are not onto are degree zero and circle maps of
non-zero degree are onto, | originally hypothesized that the answer to this question
would depend on the degree of the map. | have proved a theorem which has the
corollary that for all circle maps of non-zero degree, every locally one-way interval is
one-way. However, the theorem does not directly involve the notion of the degree of
the map. Instead, it is based on the more fundamental concept of whether or not the
map is onto. The theorem simply states that for every onto circle map, every locally
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one-way interval is one-way. One corollary of this theorem is that an onto circle map
which has periodic points has the property that every subinterval of the circle which
contains no periodic points is one-way. This corollary provides a simple
characterization of the one-way intervals of an onto circle map with periodic points.
The proof of the theorem reveals four situations in which a non-onto circle map might
admit an interval which is locally one-way but not one-way. The example mentioned
at the beginning of this paragraph illustrates only three of these four situations. |
searched for and found a second example illustrating the fourth situation. The
theorem together with the two examples are the principal results of this paper.

The remainder of this paper is divided into six sections. Section 2 contains
definitions, statements of the theorem and four corollaries, and brief descriptions of the
two examples. Section 3 contains several observations and lemmas used in the proof
of the theorem. Section 4 presents proofs of the theorem and the corollaries. Section
5 presents the two examples in detail. Section 6 contains a concluding summary and
states several open questions. ~

2. Definitions and Statements of Results

Definition. Letf: X — X be a function from a set X to itself. For each integern2 0,
define the function f1: X — X as follows. Let f0 be the identity function on X: fO(x) = x.
Let f1 =f. For each integer n > 2, define fN by fN(x) = f(f*-1(x)). For each integern>1,
fM is called the nth iterate of . If x € X, then for each integer n >1, f(x) is called the nth
iterate of x with respect to f. If A is a subset of X, then for each integer n 2 1, fN(A) is
called the nth iterate of A with respect to f.

Definition. Let ST be the circle in B2 centered at the origin with radius 1, i.e. 81 =
{xeM2:|x| =1}. Orient S!in a counterclockwise direction. So from now on, the
"positive direction" on ST means the counterclockwise direction. ,

Definition. Let n2 3 and let x1, X2, X3, - , Xn be points of S1. Write x{ < xs < X3 <
= < X if X1, X2, X3, -+, Xn are distinct points and if moving away from x4 in S1 in the
positive direction, one encounters x1, X2, X3, - , Xp in that order before one encounters
X1 again. If in the expression xq < X2 < Xg < - < X one or more of the <'s is replaced
by <, then let this expression have the obvious meaning. ' :

Definition. Let a and b be distinct points of S1. Define (a,b) ={xeS!:a<x<b},
and call (a,b) an open interval. Define [a,b]={x € S1:a<x<b}, and call[a,b] a
closed interval. Define [a,b)={xe S1:a<x<b}and(ab]={xeST:a<x<b}and
call [a,b) and (a,b] half-open intervals.

Definition. Letf:S1 — ST be amap. Let (a,b) be an open interval in S1. (a,b) is

free (with respect to f) if f(x) & (a,b) for every x € (a,b) and every positive integer n.
(a,b) is positive (with respect to f) if (a,b) is not free and if a < x < f(x) < b whenever x,
fi(x) & (a,b) for some positive integer n. (a,b) is negative (with respect to f) if (a,b) is

14



not free and if a < fi(x) < x <b whenever x, f(x) € (a,b) for some positive integer n.
(a,b) is one-way fif it is either free, positive or negative. (a,b) is locally one-way if
every point of (a,b) is contained in a one-way open interval.

Definition. Define the map e : R — S1 by e(x) = (cos(2nx),sin(2nx)). fxe S,y €

. R and e(y) = x, then it is said that y covers x. If J is an interval in S1, K is an interval in
R and e(K) =J, then it is said that K covers J. Iff: S1 — Slandg:R — R are maps
such that f(e(x)) = e(g(x)) for all x € 81, then it is said that g covers f. If J is an interval

in 81,f:J — 81is a map, Kis an interval in R which covers J, and g : K — R is a map
such that f(e(x)) = e(g(x)) for all x € K, then it is said that g covers f.

Definition. Letf: S1 — S1be a map. The degree of f is an integer d with the
following property. If g: R — R is any map which covers f, then g(x+1) = g(x)+d for
every x € R. '

Definition. Let X be a set and let f: X — X be a function. A point x of X is a fixed
point of f if f(x) = x. A point x of X is a periodic point of f if fi(x) = x for some integer n >
1. Thus a periodic point of f is a fixed point of fM for some integern>1.

The main results of this paper are now stated.

"f' Theorem. If f : ST — S1is an onto map, then with respect to f, every locally one- -
way open interval in S1 is one-way.

- The Theorem has two immediate corollaries.

Corollary 1. If f: 81 — 81 is a map of non-zero degree, then with respect to f,
every locally one-way open interval in S1 is one-way. :

Corollary 2. If f: ST — S1is an onto map such that the set P of periodic points of f
is non-empty, and every open interval in S1 which is disjoint from P is one-way.

The proof of the Theorem concerns the situation in which f : 81 — S is a map and
a <b <c¢ <d are points of S1 such that (a,c) and (b,d) are one-way with respect to f.
The proof analyzes the question of whether (a,d) is one-way with respect to f. Since
(a,c) and (b,d) can be either positive, negative or free, there are nine cases to ,
consider. The outcome of this analysis is interesting in its own right and is described
in the following two corollaries to the proof of the Theorem.

Corollary 3. Letf:S! — 81 be amap, and let a <b < ¢ < d be points of S1.
a) If (a,c) and (b,d) are positive, then (a,d) is positive. -
b) If (a,c) and (b,d) are negative, then (a,d) is negative.
c) ltis impossible for (a,c) to be positive and (b,d) to be negative.
d) If (a,c) is positive and (b,d) is free, then (a,d) is positive.
e) If (a,c) is free and (b,d) is negative, then (a,d) is negative.
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Corollary 4. Letf: S — S1 be an onto map, and let a < b < ¢ < d be points of S1.
a) It is impossible for (a,c) to be negative and (b,d) to be positive.
b) If (a,c) is free and (b,d) is positive, then (a,d) is positive.
¢) If (a,c) is negative and (b,d) is free, then (a,d) is negative.
d) If (a,c) and (b,d) are free, then (a,d) is one-way.

Corollary 3 was already known to M. Hero. It appears in [3] as Lemma 2.4 with a
different proof.

Suppose f: 81 —+ Sl isamap and a <b < ¢ < d are points of S1 such that with
respect to f, (a,c) is either negative or free, and (b,d) is either positive or free. In
Corollary 4, these four cases considered under the hypothesis that f is onto, and it is
concluded that (a,d) is one-way with respect to f. However, if f is not onto, then it is
possible that (a,d) is not one-way with respect to f. Examples 1 and 2 show that these

possibilities can be realized. In both examples, e(0) = ag < a1 < ag < - < ag are points
im O1
nt o°*. .

Example 1. There is a map f : S — S1 with respect to which (a1,as) is negative,
(a4,ag) is positive, and (a1,ag) is not one-way. Also (a1,a7) is negative and (ag,ag) is
free, and (a1,a3) is free and (ap,ag) is positive.

Example 2. There is a map f : S1 — S1 with respect to which (a1,a4). and (as,ae)
are free and (a1,ag) is not one-way. Also (a1,as5) is negative and (as,ag) is positive.
So (a1,as) is negative and (ag,ag) is free, and (a1,a4) is free and (az,ag) is positive.

Example 1 illustrates that locally one-way does not imply one-way in the three
cases: negative-positive, negative-free and free-positive. A similar example was found
independently by M. Hero. Example 1 does not provide an illustration of the fourth
possible case: free-free. Example 2 illustrates all four cases.

3. Observations and Lemmas

First, some general observations about the covering map e : R — S1 are stated.
For each x € R, e maps the half-open interval [x,x+1) one-to-one onto S; and if x
moves in the positive direction in R, then e(x) moves in the positive direction in S1.
Hence, if x4, X2, -, Xy are points in B such that x4 < x; < Xj+1 for2<i< n, then if X <xg
< - <X if and only if e(x1) < e(xg) < - < e(x;). Also, if x <y in B, then e([x,y]) D
[e(x),e(y)]; if x <y < x+1, then e([x,y]) = [e(X),e(Y)]; and if x+1 <y, then e([x,y]) = S1.

The following comments are observations about the existence and uniqueness of
covers of points, intervals and maps. Each point of S1 is covered by a point of R; and
two points x and y of R cover the same point of S1 if and only if y = x+n for some
integer n. Each interval in S1 is covered by an interval in R, and two intervals [a,b] and
[c.d] in R cover the same interval in S1 if and only if there is an integer n such that ¢ = ,
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a+n and d = b+n. Each map from ST to itself is covered by a map from R to itself, and
twomapsf: R — R and g: R — R cover the same map from S7 to itself if and only if
there is an integer n such that h(x) = g(x)+n for all x € B. Iff: ST — S1is a map, then
there is a unique integer d with the property that if g : B — R is any cover of f, then
g(x+1) = g(x)+d for every x € R; recall that d is the degree of f. Let J be an intervalin
S1 and let K be an interval in R which covers J. Then every map from J to S1 is
covered by a map from K to R, and two maps f : K = H and g : K — B cover the same
map from J to S1 if and only if there is an integer n such that h(x) = g(x)+n for all x € K.

Next four useful observations with very simple proofs are stated.

Observation 1. a) For each integer n, define the map hp : B = A by hp(X) = x+n.
Then the h n's are the maps from R to itself which cover the identity map on S1.
b) LetJ be an interval in 81, let f.: J — S1 be a map, let K be an interval in R which
covers J, and let g : K — R be a map which covers f. For a point x € K, e(x) is a fixed
point of f if and only if g(x) = hp(x) for some integer n.
c) Let Jq be another interval in S1, and let K1 be an interval in R which covers Ji. |f
~g(K) D Ky, then f(J) 2 Js. :

Proof. a) Each hy covers the identity map of S1 because e(hy(x)) = e(x+n) = e(x).
Also if h : B — R is a map which covers the identity map on S1, then there is an integer
“n such that h(x) = hg(x)+n = hy(x) for all x € R. -

b) If f(e(x)) = e(x), then e(g(x)) = e(x). So there is an integer n such that g(x) = x+n
= hp(X). Also, if g(x) = hn(x) for some integer n, then f(e(x)) = e(g(x)) = e(hp(x)) = e(x).

¢) f(J) =f(e(K)) = e(g(K)) D e(Ky) =J1. O

Observation 2. Letf: S — S1 be a map. If J is an open interval in ST which is
locally one-way, then no point of J is a periodic point.

Proof. If x € J, then x liesin a one-way open .interval. Then clearly f"(x) = x for all n
21.0

Observation 3. Letf: ST — S be a map. If J and K are open intervals in S?
such that J C K and J is not one-way, then K is not one-way. If (a,b) is an open interval

in 81 which is not one-way, then there are ¢,d € (a,b) suchthata<c<d<band(c,d)
is not one-way.

Proof. The first sentence is obvious. If (a,b) is an open interval in ST which is not
one-way, then there are points x, y € (a,b) and positive integers m and n such that a < x
<fM(x) <band a <fi(y) <y <b. Choose points ¢, d € (a,b) suchthata<c<d<band
(c,d) contains x, y, f(x) and f(y). Then (c,d) is not one-way. O

17



Observation 4. Letf:S! — S1be a map. If (a,b) is a positive open interval in
81, then f(b) & (a,b) for every integer n > 0.

Proof. Assume fN(b) € (a,b) for some positive integer n. Let x € (f(b),b). Then
fi(b) € (a,x). Since fNis continuous, there is a y € (x,b) such that fi(ly,b)) C (a,x). This
is a contradiction because a < fl(y) < x <y <b and (a,b) is positive. I

Lemma 1. Let a and b be distinct points of ST and let g : [a,b] = S be a map with

no fixed points. ’ '

a) Ifa <g(a) < g(b) <b, then g([a,b]) = S1.

b) Ifa<g(b) <g(a)<b, then g([a,b]) O [g(a).g(b)].

¢) Ifa<b<g(a)<g(b), then g(la,b]) D [g(a),a(b)].

d) If a<b <g(b) < g(a), then g([a,b]) 2 [g(b).g(a)].

e) If a <g(a) <b <g(b), then g([a,b]) D [g(a),g(b)].

f) Ifa<g(b) <b<g(a), then g(fa,b]) 2 [g(a).a(b)].

Proof. There are points a” and b” € R such thata’ <b’ < a’+1 and [a’,b’] covers .
[a,b]. Thereisamap g’ :[a’b’] — R which covers g. For each integer n, let hy : [a",b]
— H be the map defined in Observation 1a) by the formula hn(X) = x+n; then hn covers
the identity map on S1. Since g has no fixed points, then by Observation 1b), g'(x) #

hn(x) for all integers n and all x € [a’,b]. So the graph of g is disjoint from the graph of
hn for each integer n. Hence, there is an integer m such that the graph of g lies above
the graph of hm and below the graph of hp+1. So a™+m <g’(a’) < a’+m+1 and b'+m <
g’'(b’) <b’+m+1. )

b +m+1 . b +m+1 b +m+1
| e [ 7]
Ay 1°(a)+1 " e
/ L dee
a+meif— — — a’+me1f — — a+m+1f— —
| o g'(b?)
' g Y
; : @)
— —Ab'+m — o — —Ab’+m — —Ab'+m
A" sl 1A V4
U™ b
a+m L_J : a;+m L
| b’ a’ b a’ h’

Figure 1a Figure 1b . Figure 1¢



a) Since a <g(a) <g(b) <b, thenthereisab’” € B suchthata+m<g'(@’)<b” <
b’+m and b™" covers g(b). Since b”” <b’+m <a’+m+1 <g’(b’), and both b* and g'(b)
cover g(b), then g’(b") =b™"+1. So g'(b) > g’(a’)+1. See Figure 1a. Hence, the graph
of g" extends vertically from g"(a’) to g'(b"). Therefore, g'([a’,b]) 2 [g'(a"),g’(b")] 2
[g'(@"),g’(@")+1]. (The last step uses the following Intermediate Value Theorem. Let ¢
map a closed interval [p,q] into R. If ¢(p) < d&(q), then &([p.q]) D [&p).#q)]; and if ¢(q) <
&(p), then ¢([p.q]) 2 [Kq).(p)]) Thus, g([a,b]) = g(e(fa",b’)) = e(g’([a’,b]) 2
e(lg'(a’),g"(a")+1]) = S1. |

b) Since a <g(a) <b,thena’+m <g’(a’) <b’+m. So g'(a’) sb’+m <g’(b’). See
Figure 1b. Hence, the graph of g" extends vertically from g°(a’) to g"(b"). Therefore,
g’([a’,b]) 2 [g'(a’).g"(b)]. So, by Observation 1c), g([a,b]) 2 [g(a),a(b)].

¢) Since a <b<g(a) <g(b), thenthereisab’” e‘ A such that a™+m <b+m<g'(a’) <
b™ <a’+m+1 and b™" covers g(b). So both b™* and g’(b’) lie in the interval
(b"+m,b"+m+1) and both cover g(b). Therefore,b” =g’(b"). So g'(a’) <g'(b’). See
Figure 1c. Hence, the graph of g° extends vertically from g°(a’) to g’(b’). Therefore,
g'([a’,b]) 2 [g'(@).g’(b)]. So, by Observation 1c), g([a,b]) 2 [a(a).a(b)!.

'7 b +m+1 7 b'+m+1 ﬁ b +m+1
h ) hm+1 h” - ’ 2
1 / *1=90)
a’+m+1 g.\ o a’+me+1 [ - a+m+1 e — L
g'(a) , S o ,

g g®) 9@) g

b’ 7 3 ’
g :
e — / b"l'm | __/__ h'+l’l’l — /— b"+m

A g'(a) M by  hp
a’+m L/ a’+m L . a‘+m L__ )
- b a o a b
Figure 1d | Figure 1e Figure 1f

d) Since a <b <g(b) <g(a), thenthereisab’ € A suchthat a’+m <b’+m <b"* <
g'(a’) <a’+m+1 and b covers g(b). So both b’* and g’(b") lie in the interval
(b"+m,b"+m+1) and both cover g(b). Therefore, b”" =g’(b"). So g'(b’) <g'(@). See
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FigUre 1d. Hence, the graph of g" extends vertically from g“(b") to g’(a’). Therefore,
g'(la’,b’) 3 [g’(b’).g’(a")]. So, by Observation 1c), g(la.b]) 2 [g(b).g(a)].

e) Since a < g(a) < b, the argument given in case b applies here. See Figure 1e.

f) Since a < g(b) <b < g(a), thenthereisab’™ € R suchthata+m <b”" <b’+m <
g'(a’) <a'+m+1 and b™" covers g(b). Since b’” < a’+m+1 <g’'(b*), and both b"* and
g’(b’) cover g(b), then g'(b) =b""+1. So g’(b") ~a’+m+1 > g’(a’). See Figure 1f.
Hence, the graph of g* extends vertically from g’(a") to g’(b"). Therefore, g’'([a’,b’]) 2
[g’(@),g’(b’)]. So, by Observation 1c), g([a,b]) 2 [g(a).g(b)]. OI

Lemma 2. Letf: S1 — S1be amap. If (a,b) is a positive open interval in S1, then
for every x € (a,b), there is a y € (a,b) and a positive integer n such that fi(y) € (x,b).

a" & I *
a h

Fl

Z

Figure 2

Proof. Since (a,b) is positive with respect to f, then a <z < f'(z) < b for some
integer n and some z € (a,b).

Let [a’,b’] be an interval in R which covers [a,b]. Letz" € (a’,b") cover z. Thereis a
map g : [a",b’] — R which covers fM such that a" < g(z") <a’+1. Since a<z <fN(z) <b,
thena’ <z' <g(z') <b". See Figure 2.

Since f has no fixed points in (a,b), then, by Observation 1b), g has no fixed points
in (a",b"). Since, in addition g(z") > z’, then the graph of g restricted to (a",b") lies
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above the line y = x. Therefore g(b") 2 b". See Figure 2. Hence, the graph of g
extends vertically from g(z’) to g(b"). Therefore g(z’,b") D (g(z’),g(b*)) 2 (a(z"),b’).
Hence, by Observation 1c), fi(z,b) 2 (f(2),b). '

For any x € (a,b), (x,b)n(f"(z),b) is a non-empty subset of f(z,b). Sothereisaye
(z,b) such that f'(y) € (x,b). O

Lemma 3. Letf: S! — S be a map, and let (a,b) be a positive open interval in
Sl. Ifx,y e (a,b) suchthata<x<y<bandnisa positive integer, then there is a
positive integer i such that fin(x) € (a,y] for 0 < j <i and fin(x) & (a,y].

Proof. Suppose otherwise. Since fOn(x) = x € (a,y], then fi"(x) € (a,y] for all
integers i 2 0. Since (a,b) is positive, then a < x < f(x) < f2n(x) < -- <y. Since bounded
increasing sequences converge, then { fi(x) } j > g converges to a point z € (a,yl.
Therefore, { fY(fin(x)) } j > g converges to fi(z). However, since { fnfin(x)) }i>gisa
subsequence of { fin(x) } j > g, then { f(fin(x)) } ; > g converges to z. So fN(z) = z. This is
a contradiction, because (a,b) is positive and z € (a,b). O

Lemma 4. Let f : 81 — S1 be a map. IfJ is an open interval in S1 which contains
no periodic points and J is not one-way, then U , » o f'(J) = S1.

Proof. This is Lemma 3.2 of [2]. O

4. Proofs

We restate and prove the Theorem and the four corollaries.

Theorem. If f: S1 — 81 is an onto map, then with respect to f, every locally one-
way open interval in S1 is one-way. '

Proof. Assume there is a locally one-way subinterval (ag,bg) of S which is not
one-way with respect to f. By Observation 2, no point of (ag,bg) is periodic.

Claim. There are points a, b, ¢, d in (ag,bg) such thatag<a<b<c<d <byg, (a,c)
and (b,d) are one-way, and (a,d) is not one-way.

Proof of claim. Observation 3 implies there are points a1, bt € (ag,bg) such that
ag < a1 < b1 <bg and (a1,b1) is not one-way. Hence, [a1,b1] C (ag,bg) and [a1 .b1] is
not one-way. Since (ag,bo) is locally one-way, then each x € [a1,b1] is contained in a
one-way open interval J(x) C (ag,bo). {J(x) : x € [a1,b1] } is an open cover of [a1,b4].
[a1,b1] is compact because it is a closed subset of ST which is compact. Therefore
some finite subset { J1, Jo, -, Jy } of { J(X) : x € [a1,b1] } covers [a1,b1]. Assume that nis
the smallest positive integer for which such a finite cover exists. Then for i = j, Jj does
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not contain Jj. This implies that J1, J2, -, J, can be reindexed so that Jind;,.1 # & for 1
<i<n. Jtis one-way; however, U 1 << nJjis not one-way because it contains [a1,b4].
So there is an integer k such that 1 <k <n, Uy <j<kJjis one-way, and U{ < < ic+1 Jj Bis
not one-way. There are points a, b, ¢, d € (ag,bg) such that ag <a<b <c¢ <d <by, (a,c)
=Uq ci<kdiand (b,d) = Jy+1.- So (a,d) = Uq << k+1 Ji- Therefore, (a,c) and (b,d) are
one-way, but (a,d) is not one-way.

There are nine cases to consider because (a,c) can be positive, negative or free,
and (b,d) can be positive, negative or free. In each case, a contradiction is derived

from the assumption that (a,d) is not one-way.
Case 1: (a,c) and (b,d) are positive. .

Since (a,c) is positive, then Lemma 2 implies there is an x € (a,c) and a positive
integer m such that f(x) { (b,c). Since (a,c) is positive, then a < x < fM(x) < c.

. Figure 3a

Since (a,d) is not one-way, then Observation 3 implies there is a y* € (a,d) such that
a<y’ <xand (y',d) is not one-way. Since (y’,d) C (a,d) and (a,d) is locally one-way,
then Observation 2 implies that (y’,d) contains no periodic points. Hence, Lemma 4
implies that (y",d) and its iterates cover S1. Therefore, thereisa'y € (y',d) and a
positive integer n such that fi(y) =y". So a <f(y) <x and a <fN(y) <y <d. Since (a,c)
is positive, theny € [c,d). So a <f(y) <x <fM(x) <y <d. See Figure 3a.

Since (b,d) is positive and b < fM(x) <y < d, then Lemma 3 implies there is a
positive integer k such that fk-)m(fm(x)) e (b,y] and fkm(fm(x)) ¢ (b,y]. Thus, f"M(x) € (b,y]
and y € [fkm(x),fM(f(x))). b < fM(x) < kM(x) < d because (b,d) is positive. Therefore, x <
fmM(x) < fkm(x). fkm(fm(x)) ¢ [x,fM(x)] because [x,fM(x)] C (a,c) and (a,c) is positive.

MM (x)) & [fM(x),FM(x)] because [fM(x),fkM(x)] C (b,y] and fkm(fMm(x)) & (b,y]. So
fm(fm(x)) & [x,fM(x)]. Hence, x < fM(x) < fM(x) <y < fan(fm(x)).
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[x,fM(x)] contains no fixed points of fkM because it contains no periodic points.
Hence, Lemma 1 c¢) implies that fM([x,fM(x)]) D [fkM(x),fkm(fM(x))]. Sincey €
[fkm(x),fkm(fM(x))], then y € kM([x,fM(x)]). See Figure 3b. Thus, thereisaz € [x,fm(x)]
such that fkM(z) = y. Therefore, fkm+n(z) = fi(y). So a < fkm+n(z) < x <z <fM(x) <c. This
is a contradiction because (a,c) is positive.

fkm
a M)
Md—
o Mg ¢

Figure 3b

Case 2: (a,c) and (b,d) are negative.

Reverse the orientation on S1. Thend<c <b < a, (d,b) and (c,a) are positive, and
(d,a) is not one-way. So case 1 applies here. ,

Case 3: (a,c) is positive and (b,d) is negative.

-Since (a,c) is positive and (a,d) is not one-way, then as in case 1 there are x, y €
(a,d) and positive integers m and n such that fT(x) € (b,c) and a < fi(y) <x <fM(x) <y <
d. Now fM(fM(x)) & (a,fM(x)] because (a,c) is positive, and fM(fM(x)) & [fM(x),d) because
(b,d) is negative. So fM(fM(x)) ¢ (a,d). Therefore x < M(x) <y < fM(fM(x)). Setk = 1.
Then x < fM(x) = fkM(x) <y < fkm(fM(x)). From this point the proof is the same as the
proof of case 1.

Case 4: (a,c) is positivé and (b,d) is free.

In case 3, the hypothesis that (b,d) is negative can be replaced by the hypothesis
that (b,d) is free. Then the argument for case 3 applies to this case.

Case 5: (a,c) is free and (b,d) is negative.

By reversing orientation as in case 2, the argument for case 4 applies to this case.
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Figure 3c

Case 6: (a,c) is negative and (b,d) is positive.

Let x € (b,c). Since (a,c) is negative, then x & U p, » 1 f(a,x]; and since (b,d) is
positive, then x & U n> 1fx,d). Sox¢ Un> 1f(a,d). " ‘

Since f is onto then f(y) = x for some y € S1.

Since (a,d) is locally one-way, then Observation 2 implies that (a,d) contains no
periodic points. Since (a,d) is not one-way, then by Lemma 4, (a,d) and its iterates
cover S1. In particular, there is a z € (a,d) and an integer m > 0 such that fm(z) =y. So
fM*1(z) = f(y) = x. Hence, x € fM*1(a,d). This is a contradiction. See Figure 3c.

Case 7: (a,c) is free and (b,d) is positive.

In case 6, the hypothesis that (a,c) is negative can be replaced by the hypothesis
that (a,c) is free. Then the argument for case 6 applies to this case.

Case 8: (a,c) is negative and (b,d) is free.

By reversing orientation as in case 2, the argument for case 7 applies to this case.
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Case 9: (a,c) and (b,d) are free.

In case 6, the hypothesis that (a,c) is negative and (b,d) is positive can be replaced
by the hypothesis that (a,c) and (b,d) are free. Then the argument for case 6 applies to

this case. O

Corollary 1. Iff: S! — S1is a map of non-zero degree, then with respect to f,
every locally one-way open interval in S1 is one-way.

Proof. Every map of non-zero degree is onto. O

Corollary 2. If f: S! — S1is an onto map such that the set P of periodic points of f
is non-empty, and every open interval in S which is disjoint from P is one-way. E

Proof. Let J be an open interval in ST which is. disjoint from P. Then Corollary
2.17 of [3] implies that J is locally one-way. Since f is onto, the Theorem implies that J

is one-way. O

In the proof of the Theorem, f : S' — S1is a map and a < b < ¢ <d are points of S1
such that (a,c) and (b,d) are one-way. Contradictions arise from assuming (a,d) is not
one-way. So (a,d) must be one-way. Therefore, if one of (a,c) or (b,d) is positive, then
(a,d) must be positive; and if one of (a,c) or (b,d) is negative, then (a,d) is negative.
Moreover, it is impossible for one of (a,c) and (b,d) to be positive and the other
negative. Also, the hypothesis that f is onto is used only in cases 6, 7, 8 and 9. These
comments yield the following two corollaries to the proof of the Theorem.

Corollary 3. Letf:S1 — S! beamap, and leta <b <c < d be points of S1,
a) If (a,c) and (b,d) are positive, then (a,d) is positive.
b) If (a,c) and (b,d) are negative, then (a,d) is negative.
c) Itis impossible for (a,c) to be positive and (b,d) to be negative.
d) If (a,c) is positive and (b,d) is free, then (a,d) is positive.
e) If (a,c) is free and (b,d) is negative, then (a,d) is negative.

Corollary 4. Letf: 81 — S1be an onto map, and let a < b < ¢ < d be points of S1.
a) Itis impossible for (a,c) to be negative and (b,d) to be positive.
b) If (a,c) is free and (b,d) is positive, then (a,d) is positive.
c) If (a,c) is negative and (b,d) is free, then (a,d) is negative.
d) If (a,c) and (b,d) are free, then (a,d) is one-way.

Corollary 3 was already known to M. Hero. It appears in [3. Lemma 2.4] with a
different proof.
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5. Two Examples

Suppose f: ST — STisamap and a <b < ¢ < d are points of S1 such that one of
the following four cases holds: 1) (a,c) is negative and (b,d) is positive, 2) (a,c) is
negative and (b,d) is free, 3) (a,c) is free and (b,d) is positive, or 4) (a,c) and (b,d) are
both free. Corollary 4 implies that if f is onto, then (a,d) is one-way. If f is not onto, then
(a,d) may not be one-way. Examples 1 and 2 illustrate this possibility. Example 1 is
the original example of an interval which is locally one-way but not one-way. A similar
example was found independently by M. Hero. Example 1 shows that (a,d) can fail to
be one-way in cases 1), 2) and 3). Example 2 illustrates this failure in all four cases.

In both examples, let e(0) =ag < a1 < ag < -~ < ag be points in S1, andlet 0 =bg <
b1 < bz <-- <bg <1 be points in [0,1] such that bj covers aj for 0 <i< 8.

thickened arc = f~(ag)

Figure 4a | Figure 4b

Example 1. There is a map f : S1 — S7 with with respect to which (a1,as) is
negative, (as,ag) is positive, and (a1,ag) is not one-way. Also (a,a7) is negative and
(as.,ag) is free; and (a1,ag) is free and (ap,ag) is positive.



To construct f, let g : [0,1] — R be a map such that g([0,bs]u[bg4,bs]u[bg,1]) = {0},
g((bs,bs)) = (0,b2] and g((bs,be)) = [b7 —1,0). See Figure 4b. Since g(0) = g(1), there is
a unique map from ST to itself which is covered by g. Let f: S1 — S1 be the unique .
map which is covered by g; i.e., f(e(x)) = e(g(x)) for x € [0,1]. Then

f(lag,asjulas,as]) = f(e([0,ba]ulba,bs]u[bs,1])) =
e(g([0.bz]u[ba,bs]ulbe, 1])) = {e(0)} = {ag}
f((as,a4)) = f(e((b3,b4))) = e(g((b3,b4))) = e((0,b2]) = (ao,az], and
f((as,as)) = f(e((bs.bs))) = e(a(bs.bs))) = e(lb7~1,0)) = [a7,20).
See Figure 4a. |

Next it is proved that fi(S1) = {ag} for n >2. Since f([as,a;g]u[a4,a5]) = {ap} and f(ag) =
ap, then f([ag,as]u[as,as]) = {ag} for n 21. Since f((a3,a4)u(as.a6)) = (ap,a2]ulaz,ag) ©
[a6,a3], then f"*1((ag,a4)u(as,as)) < M([ap,a3]) = {ag} for n 1. So fN((ag,as)u(as,ag)) =
{ag} for n 22. Therefore, fN(S1) = {ag} for n > 2.

The fact that (a1,as5) and (ay,a7) are negative with respect to f is a consequence of
the next three statements. f((ay,asju[as,a7)) = [a7,a0] and [a7,ag]n(a1,a7) = <.

f((as,as))n(a1,a7) = (ag,azln(as,a7) = (a1,a2]. For n 22, fY((a1,a7)) = {ao} and ag ¢
(at,az). The fact that (ag,ag) and (as,ag) are positive with respect to f is proved
similarly. (a1,a3) and (ag,ag) are free with respect to f because for n 21,

f'((a1,a3)u(ae.ag)) < fM([ag,ag]) = {ag} and ag & (as,az). O

- Example 2. There is a map f: S' — S1 with respect to which (a1,a4) and (as,ag)
are free and (a1,ap) is not one-way. Also (a1,as) is negative and (as,ag) is positive.
So (a1,as) is negative and (ag,ag) is free, and (a1,a4) is free and (ag,as) is positive.

The construction here is similar to Example 1. First a map g : [0,1] — R is defined
such that g([0,b2]u[bs,b4]ulbs,1]) = {0}, g((b2,b3)) = [b5—1,0), and g((b4,bs)) = (0,bz].
‘See Figure 5b. Thenf: 81— S1 is defined to be the unique map which is covered by

g. Therefore, f([as,az]u[as,as]) = {ao}, f((a2,a3)) = [as,a0), and f((as,a5)) = (ag,azl. See
Figure 5a.

Arguments similar to those given in Example 1 prove that f(S1) = {ag} for n >2, and
that (a1,a4) and (as,ag) are free, and that (a1,as) is negative and (ag,ag) is positive.

Thus, (a1,ag) is not one-way. O

27



thickened arc = - 1(ap)

Figure 5a : Figure 5b

6. Conclusions

In this paper it has been proved that for any onto circle map, every locally one-way
interval is one-way. One corollary of this theorem is that for a circle map of non-zero
degree, every locally one-way interval is'one-way. Another corollary is that for every
onto circle map which has a periodic point, every interval which contains no periodic
points is one-way. Also two examples of non-onto circle maps are given which admit
subintervals of the circle that are locally one-way but not one-way. The proof of the
theorem reveals four different ways in which such examples can arise. The two
examples illustrate these four possibilities. '

Some questions for future research are now posed.

Questions. Suppose f: 81 — S1is a non-onto map such that there is an open
interval J in S1 which is locally one-way but not one-way with respect to f.
1) Must the dynamical behavior of f on J resemble the dynamical behavior of the two
examples given in this paper?
2) If not, can J be broken into smaller intervals on which f resembles one or the other
of the two examples?




3) If not, is there some simple characterization of the non-onto maps which have
intervals that are locally one-way but not one-way?
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THE BING CONJECTURE

Matthew Brahm

Abstract. R.H. Bing conjectured that if a (wild) simple closed curve in
a 3-manifold shrinks in its own complement, then it bounds a nonsingu-
lar disk in the 3-manifold. The conjecture is related to some important
problems in the topology and geometry of 3-manifolds, like the recogni-
tion problem, the free surface problem, and the Plateau problem. In this
talk we will present progress towards proving the conjecture. Namely,
we can show that the simple closed curve bounds a singular disk, where
the singularities can be pushed arbitrarily close to the boundary. We
will indicate that a new general position property of 3-manifolds can be
derived from this result. Finally, we will describe ideas for approaching
the general case.

Conjecture 1 (The Bing Conjecture) Let f : D2 — M3 be a map of a
2-disk into a 3-manifold where fiap2 is one to one and f(dD?*)Nf(IntD?) = §.
Then there ezists an embedding g : D* — M3, where gipp2 = fiap2-

We can think of the conjecture as a generalization of Dehn’s lemma,
where we allow the singularites to get arbitrarily close to the boundary. When
Bing published this conjecture in 1961 (page 10 [Bi]), he was interested in
properties of 3-manifolds which could be used to detect when certain cell-
like upper semicontinuous decompositions of 3-manifolds were not actual
3-manifolds. If the Bing conjecture were true, it could be used as follows.
Suppose there is a real 2-disk in the (3-manifold) domain of a cell-like map,
where the boundary of the disk misses the nondegenerate elements of the
induced decomposition. Then the map is one-to-one over the boundary of
the disk, just as in the conjecture. If the image of the map, the decomposition
space, were a real 3-manifold, then the Bing conjecture would tell us that the
image of the boundary must bound a real disk. So, in order to prove that the
decomposition space is not a real 3-manifold, it would be sufficient to prove
(say, using the geometry of the nondegenerate elements), that the embedded
boundary does not bound a nonsingular disk in the decomposition space.

Since we imagine an application in which the image of the disk is arbi-
trary, in a space which is not necessarily a manifold, we make no assumptions
on the tameness of the image of the boundary of the disk. Therefore, it is
best to think of the boundary as wildly embedded. The conjecture is, in fact,
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true if the boundary is tamely embedded. This fact was known by Bing but
never published. One of Bing’s students, D. Henderson, later proved a slight
strengthening of this, that the conjecture is true if the image of the boundary
is “nicely” wild (Theorem V.4 [Hen]). A nicely wild simple closed curve has
either a finite number of wild points with finite penetration index, or a tame
0-dimensional set of wild points with penetration index 2.

The Bing conjecture has some characteristics of a famous unsolved prob-
lem about topologically embedded surfaces in a 3-manifold. In proving the
Bing conjecture, one imagines having to control the growth of long feelers
produced by standard cut and paste techniques. This is a difficulty often
faced in approaching the free surface problem, stated below.

Conjecture 2 (The Free Surface Problem) Let f : 52 — R3 be an em-
bedding of a 2-sphere in 3-space, such that for each € > 0 there exists a PL
map g : S — IntS? such that for any z € S?,d(f(z),9:(x)) < € (where
- IntS? denotes the bounded component of R® — f(52)). Then f(S?) bounds a
- 8-ball (i.e. f(S?) is tame on the inside). : '

The Bing conjecture is also related to a recent result in the theory of
- noncompact 3-manifolds. E. M. Brown and C. D. Feustel’s plane theorem
* (Theorem 2.2 [BnFe]), stated below, shows that given a map of a disk, as
“ in the hypothesis of the Bing conjecture, we can replace the image of the
interior of the disk with a nonsingular open disk which satisfies an essentiallity
condition. In all likelihood this nonsingular map of the open disk can not be
extended to a map of the whole disk. The-proof of the plane theorem relies
on an infinite number of applications of the loop theorem. It is the lack of
control in the loop theorem which prevents the map on the interior of the
disk from converging at the boundary.

Theorem 1 (The Plane Theorem) Let f : IntD?* — M3 be a map of
an open (unit) 2-disk into a moncompact 3-manifold, and let C C M3 be
a compact set where f(0B(0;7)) is not null homotopic in M3 — C for r
very close to 1. Then there exists an embedding g : IntD? — M3, where
g(8B(0; 1)) is not null homotopic in M® — C for r very close to 1.

Next we present progress towards proving the Bing conjecture. The
following theorem, which we call the modified Bing conjecture (Lemma 3

31



[Br]), shows that we can replace the map in the hypothesis of the Bing
conjecture with a new map which hits a compact sub—3—manlfold in a pairwise
disjoint collectlon of embedded disks.

Theorem 2 (The Modified Bing Conjecure) Let f : D* — M3 be a
map of a 2-disk into a 3-manifold where fisp2 is one to one and f(8D?)N

f(IntD?*) = 0, and let L C M® — f(dD?) be a compact 3-manifold with
boundary. Then there ezists a map g : D* — M3, where giap? = flapz, and
a compact 3—manzfold with boundary, L', where L cL c M- f(8D?),
such that g~'(L') is a collection of pazrwzee disjoint disks, F', where g|r is an
embedding.

Instead of giving a proof of the modified Bing conjecture we’ll give
the following application of the theorem. The recognition problem for n-
manifolds asks for a general position property of an n-manifold which forces
a decomposition space of an n-manifold to be a real n-manifold. In higher
dimensions (greater than 4) the appropriate property turns out to be the
following; any map of a 2-manifold can be approximated arbitrarily closely
by an embedding. Clearly this is a trivial property of manifolds of dimension
greater than 4. R. D. Edwards showed that an equivalent property, called
DDP, is enough to insure that a finite dimensional decompostion space of a
5 or higher dimensional manifold is an actual manifold [Ed]. '

In dimension 3, a generic map of a 2-manifold is obviously not approx-
imable by an embedding. A map of a 2-manifold into a 3-manifold which
is almost approximable by an embedding is a map with a 0-dimensional sin-
gular set. By almost approximable by an embedding we mean that we can
approximate by a map where the diameter of the preimage of any point in the
3-manifold can be made arbitrarily small. It is conjectured that this partic-
ular general position property of 3-manifolds is strong enough to insure that
decompositions of 3-manifolds are real 3-manifolds (Conjecture 5.4 [DaRe]).
We'll now show that the modified Bing conjecture can be used to establish
this nontrivial property of 3-manifolds (Theorem 4 [Br]).

Theorem 3 (The Almost Efnbedding Theorem) Let f: M? — M3 be .
a map of a 2-manifold into a 3-manifold where {z : f~'( f(z)) # {z}} is 0-
dimensional, and €,6 > 0. Then there exists a map g : M? — M3 such that

for any x € M? d(f(z),9(z)) < ¢, and for any y € M3, diam f- ly) < 6.
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OUTLINE OF PROOF. We take a triangulation of the 2-manifold which is
of fine mesh with respect to the given € and §. We assume that the 1-skeleton
of the triangulation has been pushed off the 0-dimensional singular set. Thus,
the map restricted to each 2-simplex in the triangulation is set up for the
modified Bing conjecture. Applying the modified Bing conjecture, we replace
the map on each of the 2-simplexes by a map with ”large” nonsingular cutting
off disks in the interior of each 2-simplex. Finally, we apply a standard cut
and paste argument to remove intersections between the image of any two
disjoint disks in the 2-skeleton of the triangulation. O A

We end by drawing the Bing conjecture into context with a famous
problem in geometry, the Plateau problem. Given a simple closed curve in 3-
space, the Plateau problem asks for a minimal area surface whose boundary
is the curve. In 1931 J. Douglas solved the problem by proving that with
no additional assumptions on the simple closed curve (i.e. it could be wild)
it bounds a singular disk of minimal area [Do]. It is of course true, that an
arbitrary simple closed curve can be knotted, so the interior of the surface
guaranteed by Douglas might hit the boundary. W. Meeks and S. Yau proved
much later that if the simple closed curve is contractible and on the boundary
of a convex 3-manifold, then the curve bounds an embedded minimal area .
disk [MeYa]. '

The connection between these results and the Bing conjecture may be
tenuous at best, but it seems that the additional structure that a minimal
surface affords may be a valuable tool in approaching the Bing conjecture.
First, it seems difficult to find a, solution to the Bing conjecture by standard
cut and paste techniques. The machinery of the theory of minimal surfaces
give us access to many more surfaces than could be generated by just rear-
ranging the simplices in the image of the map. Also, it seems inherent in the
nature of a minimal surface that excessively long feelers can’t occur. More
concretely, there is a PL mininmal surface version of the loop theorem by
W. Jaco and J. H. Rubinstein [JaRu] which, when adapted in the right way,
might provide that elusive extra control necessary to make progress on the
Bing conjecture.

So we see that the Bing conjecture is a very rich problem. It is inter-
esting in its own right as a generalization of Dehn’s lemma. It could have
applications in the study of decomposition spaces of 3-manifolds, as well as,
play a role in the characterization of 3-manifolds by general position proper-
tles. It is similar to a famous unsolved problem in topology, the free surface
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problem. Finally, we might hope to bring to bear on the problem tools from
various areas of topology and geometry. The standard techniques of PL ge-
ometric topology like cutting and pasting, Dehn’s lemma and the the loop
theorem are obviously applicable. In addition, some tricks from the theory of
noncompact 3-manifolds could prove useful. Finally, the additional stricture
of minimal surfaces could provide the necessary control missing in previous
approaches to the problem.
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Geometrically tame hyperbolic
3-manifolds

Dick Canary

Department of Mathematics, Stanford University, Stanford, CA 94305
Current address: Department of Mathematics, University of Michigan, Ann
Arbor, MI 48109

In this note we will discuss three notions of tameness for infinite
volume hyperbolic 3-manifolds. These three types of tameness (topo-
logical, geometrical and analytical) are all conjectured to be equiva-
lent, but each definition emphasizes different features of the manifolds.

A complete (orientable) Riemannian 3-manifold N is said to be
hyperbolic if it has constant sectional curvature —1. In this case,
N is the quotient of hyperbolic 3-space H3 by ‘a discrete, torsion-
free subgroup I' of the group Isom.(H3) of orientation-preserving
isometries of H3. The limit set Lr is defined to be the smallest closed
I-invariant subset of the sphere at infinity S2 for hyperbolic 3-space.

We will assume throughout this note that NV has finitely generated
fundamental group and that every homotopically non-trivial curve is
homotopic to a closed geodesic. The first assumption is essential, but
the second is only made for ease of exposition.

‘We will say that N is topologically tame if it is homeomorphic
to the interior of a compact 3-manifold. It is conjectured that all
hyperbolic 3-manifolds (with finitely generated fundamental group)
are topologically tame. This conjecture was first posed as a question
by Al Marden [6].

The basic geometric object associated to N is its convex core
C(N). C(N) is defined to be the smallest convex submanifold of N
whose inclusion into N is a homotopy equivalence. Explicitly, C(IV)
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is the quotient of the convex hull of the limit set by the action of
I'. Ahlfors finiteness’ theorem [1] asserts that the boundary 8C(N)
is a finite collection of closed hyperbolic surfaces. (In general if N
has finitely generated fundamental group, then 8C(N) is a finite col-
lection of finite area hyperbolic surfaces.) There exists a retraction
R: N — C(N) which simply takes a point in N to the nearest point
in C(N). R induces a product structure on the complement of C(NV),
in particular N — C(N) is homeomorphic to C(N) x (0,00) and the
metric is K-quasiisometric to coshztdsgc(m + dt?.

If C(N) is compact, N is said to be convex cocompact and the
manifold is clearly topologically tame. (In general, N is said to be
geometrically finite if C (V) has finite volume.) However, not all hy-
perbolic 3-manifolds are convex cocompact. In fact, the convex core
may be the entire manifold (see Jorgensen [5] for example.) But there
always exists a compact submanifold M such that the inclusion map
is a homotopy equivalence and the ends of N are in one-to-one cor-
respondence with the components of N — M (see Scott [8]). An end
E is said to be geometrically finite if some neighborhood of E misses
C(N). " :

An end is said to be simply degenerate if it is homeomorphic to
S x [0,00) and there exists a sequence of surfaces {f, : § — E} such
that {f.(S)} leaves every compact set, f,(S) is homotopic to S x {0}
(within F) and the induced geometry on f,.(S) has curvature < —1.
N is said to be geometrically tame if all its ends are either simply
degenerate or geometrically finite.

Our first existence theorem has the most desirable form: group
theoretic conditions imply a strong geometric consequence:

Theorem 1: (Bonahon [2]) If m1(N) is freely indecomposable, then
N 13 geometrically tame.

One may use this to prove:
Theorem 2: (Canary [3]) A hyperbolic 8-manifold is geometrically
tame if and only if it is geometrically tame.

Theorem 2 reduces many questions in the theory of Kleinian groups
to purely topological issues, for example Ahlfors’ measure conjecture. v

36



Also whenever one can uses topological means to guarantee topolog-
ical tameness, then one can use theorem 2 to derive geometric con-
sequences. For example, if N is a closed hyperbolic 3-manifold and
G is a finitely generated subgroup of m1(/N) whose abelianization has
infinite index in Hy(V), then H3/G is topologically and hence geo-
metrically tame.

We now turn to a third notion of tameness which carries the ana-
lytic information in the definition of geometric tameness. A hyperbolic
3-manifold is said to be analytically tame if C(NV) can be exhausted
by a sequence {C;} of compact submanifolds such that C; C C; if
¢ < j and there exists K and L such that the area of 8C; is less than
K for all z and the volume of the neighborhood of radius one of 8C;
is less than L for all . We may easily observe that

Theorem 3: (Canary [3]) If N is geometrically tame then it is also
~analytically tame.

One of the first consequences of analytical ‘tameness is that the
Ahlfors’ measure conjecture holds for such manifolds.

Theorem 4: (Thurston [11], Canary [3]) If N = H3/T is an ana-
lytically tame hyperbolic $-manifold then its limit set Lr either has
measure zero or i3 all of S%. If Lr = S%, then T’ acts ergodically on
Ly.

One may make use of work of Sullivan [9] to observe:

Theorem 5: (Thurston [11], Canary [3]) Let N be an analytically
tame hyperbolic $-manifold. Then N’s geodesic flow is ergodic if and
only if Ly = S2.

Analytically tame hyperbolic 3-manifolds are also a good setting
in which to do spectral theory. Let Ao(N) denote the bottom of the
spectrum of the Laplacian acting on N. One nice statement is:

Theorem 6: (Canary [4]) Let N be an analytically tame hyperbolic
3-manifold. Then N is geometrically finite if and only if Ao(N) = 0.

For a further discussion of spectral theory on analytically tame
hyperbolic 3-manifolds and its relationship to the Hausdorff dimension
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of the limit set (among other things), see Sullivan [10], Patterson [7]
or Canary [4].
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MANTFOLDS WITH NON-ZERO EULER CHARACTERISTIC
ARE CODIMENSION 2 FIBRATORS

by R. J. Daverman

Manifolds are taken to be connected, metrizable, boundaryless
and orientable. A closed n-manifold N is a codimension 2 fibra-
tor if, whenever p:M - B is a proper mapping from an (n+2)-mani-
fold M to a metric space B such that each p’'b is shape equi-
valent to N , p 1is an approximate fibration. The somewhat sur-

prising point is: manifolds with this desireable feature are widely
prevalent. Background appears in [D1], which this supefcedes.

A closed orientable n-manifold N is hopfian if all degree
one maps N - N inducing fundamental group isomorphisms are homo-
topy equivalences. Whether all such degree one maps N -+ N are
homotopy equivalences is an old problem, due of course to Hopf (cf.
[Ha]l). Recall that a group I is hopfian if every epimorphism T
-+ I' 1is an automorphism. The first paragraph of the proof hints at
the”rele§anCe of these concepts.

' The topic is the title statement, limited a bit by hopfian
data. The main ideas appear ahead in the breakdown into cases
depending on subgroup index size, with reference to [D2] for tech-
nical matters (the detailed proof also has been incorporated. into

an earlier version of [D2]).

Theorem. Every closed, hopfian n-manifold N with m,(N)
hopfian and %(N) # 0 is a codimension 2 fibrator.

Proof. Simplifying a little, let p:M - B be a proper map
~defined on an (n+2)-manifold M such that each p'b is a copy of
N . Just as in [DW, Prop. 4.8] or [D1, Prop. 2.8], B 1is a
2-manifold, B contains a dense subset C (the continuity set of
p'), points of B\C are isolated in B , so one can immediately
localize to the situation in which B =% E> and p is an approx-
imate fibration over the complement of the origin, 0 . (Remark:
over E®\0 = C each point preimage of p  has a neighborhood
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retraction transporting nearby preimages in degree one fashion, and
the hypothesis about N ©being a hopfian manifold with hopfian
group ensures that the restricted retractions are the homotopy
equivalences needed to produce approximate fibrations.)

Set g, = p'o . ©Properties of ANRs and relative lifting
- properties of the approximate fibration p|M\g, give rise to a
strong deformation retraction R:M - do - '

Treating the contrapositive, we show % (N) = 0 when p fails
to be an approximate fibration. In view of an idea of Im (or see
[D2, Lemma 5. 2]), we can suppose R|g does not induce an surjec-
tion H,(g) - H1(g6) for other g = p'b (beE?\0) . The exact
homotopy sequence for approximate fibrations [CD, Cor. 3.5] gives

1 = @, (E?\0) - =m,(g) - m, (M\g,) - =, (EX\0) -1,

Hence, there exists an epimorphism of wm,(M\g,) to 2 whose ker-
nel equals the image of w,(g) . Because g, has codimension 2,
- inclusion M\g, - M induces an H;-epimorphism, which makes
Hy (M) /3« (Hy(g)) = H,(gy)/Re(H,(qg)) a nontrivial cyclic group T
(j:g = M denotes inclusion). Form the cyclic covering 6:M' - M
corresponding to the kernel K . of the natural composite epimor-

phism .
T,(g) - 7 (M) - H,;(M) - T .

Since R 1lifts to another deformation retraction R':M' = y, =
9’1(9‘0) , © restricts to a cyclic covering 63:y, = N .

Case 1: [m(M):K] = o . Upon verification that vy, has
finitely generated homology, work of Milnor [Mi, Assertion 6] will
provide the conclusion g(N) = 0 .

Here y, has the homotopy type of M' -, and M'\y, Iis
partitioned into copies of N (i.e., the components of the various
sets (p8)'(z) , z#0 ). The associated decomposition map ¢
(which again is proper) makes the following diagram commutative:
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M'\yO > B!
0| ©

2
M\g, > E“\0

The induced map u:B' -+ E?\O0 is an infinite cyclic covering and
M'\y, = B' = E?> is an approximate fibration, as before; thus,
M'\y, has the homotopy type of N .

An inductive argument indicates H,(y,) is finitely gener-
ated. Obvious for k=0,1 , suppose it holds for all 3j<k>2 . Then
H, 5( ¥g) finitely generated implies the same about each of the
following, in turn: H:Q*( Yo) .+ by Poincaré duality in vy, ;
H (M',M'\Yy) , by Poincaré-Lefshetz duality in M' ; and H (M') =
Hk(yﬁ » by inspection of the long exact sequence for the pair
(M',M'\y,) .

Case 2: [m,(M):K] =m > 1 . This time R|g:g - g, has posi-
tive dégree [D2, Lemma 5.2'] (the argument is virtually identical
to the older [D2, Lemma 5;2], using rational coefficients for homo-
logy). Therefore, R|g 1ifts to a positive degree map r,ig - ¥,
with - R|g = 8r, . From naturality of cap products, any positive
degree map N; —+ N, between closed, orientable n-manifolds yields
B;(Ny) 2 B;(N,) for arbitrary Betti numbers pB; .. Application with
both 6|y, and r, establishes

Bi(N) = Bi(3) 2 Bi(Y)) 2 Bi(gp) = B;(N)
for all i , which implies gx(N) = X(Yg) =mx(N) and x(N) =0 .

Corollary 1. Every closed 4-manifold N with m,(N) hopfian
and x(N) # 0 is a codimension 2 fibrator.
Proof. Hausmann [Ha] has shown that the hopfian fundamental

group condition implies the hopfian manifold condition for n<5 .
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As a result, fundamental group properties alone most emphati-

cally do not classify codimension 2 fibrators.

COroilary 2. Every closed 4-manifold N with ﬂ1(N) hopfian
and H,(N) finite is a codimension 2 fibrator.
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The Topology of Minimal Surfaces in R3
Charles Frohman ‘

University of Iowa

This talk is on joint work with Bill Meeks. ‘ _

Let A and B be subsets of space X. We say fhat A and B are topologically equiva-
lent if there is a homeomorpism H : X --> X so that H(A) =B. We say that A and B are ho-
meomorphic if there is a homeomorphism h: A --> B .By minimal surface we mean a connected
properly embedded surface in R3 with mean curvature zero. We are interested in giving useful
necessary and sufficient conditions for two minimal surfaces to be topologically equivalent. A

minimal surface has nonpositive gauss curvature. The first theorem along these lines is due to

Meeks.

Theorem. Two properly embedded surfaces of finite genus in R® with one end are topologically

equivalent if and only if they are homeomorphic.

The theorem is proved by noting that distance from a point in R3 generically induces a morse
function on the surface that has only index 0 and index 1 critical points. This is used to show
that there is a large ball so that the intersection of the surface with the ball is a Heegaard surface
for the ball with one boundary component and that the part of the surface exterior to the ball is a
standardly embedded once punctured disk. The topological unicity of the surface inside the ball
is deduced from Waldhausen’s classification of Heegaard splittings of the three-sphere.

The next result along these lines is a theorem of mine. A surface in R3 is said to be tri-

ply periodic if it is invariant under the action of some cocompact lattice in R3.
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Theorem. Any two triply periodic minimal surfaces in R® are topologically equivalent.
This theorem led to the following theorem of Meeks and Frohman.

Theorem. Any two minimal surfaces in R? having infinite genus and one end are topologically

equivalent. -

This theorem is proved by first proving that a minimal surface with one end in R3 isa
Heegaard surface. It is still an open question whether a surface of nonpositive gauss curvature
with one end in R3 is a Heegaard surface, the unsettled case being exactly when the surface has
.inﬁnite genus. ‘ |

A Heegaard surface in a three-manifold is said to be infinitely reducible if there exists a
disjoint proper family of balls each intersecting the Heegaard surface in a surface of genus one
with one boundary component so that each end representative of the manifold contains infinitely
many of these balls. It is an easy to prove consequence of the Reidemeister -Sihger theorem that
any two infinitely reducible Heegaard surfaces of a manifold a topologically equivalent.

- Furthermore it is easy to see that any Heegaard surface of R3 of infinite genus is infinitely reduc-

ible.
Next we come to a theorem of Meeks and Yau.

Theorem. Any two minimal surfaces of finite type are topologically equivalent if and only if

they are homeomorphic.

The easiest way to see this result is to apply a theorem of Frohman. If F is a surface that is
properly embedded in the ball B then-the graph of F is defined to have as vertices the connected

components of dB - F where two vertices are connected by an edge if and only if their closures
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have nonempty intersection.

Theorem. Two Heegaard surface of the ball are topologically equivalent if and only if they have
the same genus and isomorphic graphs. Furthermore for each finite graph and each genus there is

a Heegaard splitting having that graph and genus.

To prove Meeks and Yau'’s result first prove that there is a large ball so that the part of the mini--
mal surface inside the ball is a Heegaard surface and the part of the surface outside the ball is a
family of standardly embedded once punctured disks. Then prove that the graph of the surface
inside the ball must be a line segmént . Then apply my result.

Recently Meeks and I have proven the following.

Theorem. If F is a minimal surface in R3 then there is a geometric ordering on the ends
of the surface. The betweenness relation induced by this ordering is a topological invariant of

the surface.

Let me describe the associated betweenness relation. Let A, B é.nd C be ends of F. Then
B is between A and Cif and only if there exist disjoint properly embedded planes P and Q in
R3 having compact intersection with F and end representatives a, b and c so that any arc join—
ing b to a or ¢ has Z, intersection number one with P U Q .

An end is called a limit end if it is a limit point of the ordering, this will be true if and
only if the end is a limit point in the topology induced on the space of ends of F by construction.
In fact the order topology is equivalent to the end topology. We say that E is an interior limit
end of Fif it is a limit end and it is not the rrﬁnimum or maximum in the ordering. We conjec-
ture that a minimal surface can have no interior 1imi£ ends. We say an end is even if it bounds the

end of one of the components of its complement in R? . Otherwise we say that the end is odd.
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Theorem. Let F and F’ be two minimal surfaces in R3 and assume that F has no limit ends.
Then F is topologically equivalent to F’ if and only if there is a homeomorphism h: F --> F
so that the induced map on ends preserves the parity of the ends and the induced betweenness

relation.

This theorem allows us to classify all known examples of vminirnal surfaces up to topological
equivalence. It would be intc:resting to see how much of a parallel theory exists for surfaces of
nonpositive surfaces. One of the major properties of minimal surfaces, that they carry the funda-
mental groups of the~compoﬂents of their complement definitely fails for nonbositively curved

surfaces with more than one end. This means that there should be a much richer classification

theory.
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Three Level Forms in S*

Eerik Harms

August 23, 1991

1 Introduction

William Eaton and I have been studying PL embeddings of 3-manifolds in S4.
William Eaton is especially interested in the 4-Dimensional PL Schoenflies
Conjecture. The purpose of this talk is to introduce the notion of a 3-level
form and to describe the setting for the following theorem:

Theorem 1 Any Morse ordered critical level embedding e : M3 < S* such
that e(M3) N S® x 0 is a Heegaard splitting of the equatorial 3-sphere S3 x 0
is ambiently isotopic to a 3-level form.

A 3-level form is a special type of piecewise linear embedding of a connected
3-manifold which consists of three flat spots connected by vertical collars. A
more precise definition will be given below.

William Eaton has proven the following theorem:

Theorem 2 If a piecewise linear embedding e : M3 < S* of a connected 3-
manifold has a simply connected complement then e is ambiently isotopic
to a Morse ordered critical level embedding such that e(M3)N S x 0 is a
Heegard splitting of S® x 0.

It follows from these theorems that any embedding f : ¥3 — S* where %3
is either S° or an arbitrary homotopy 3-sphere is isotopic to a 3-level form.
- As a consequence the study of 3-level forms is a possible starting point for
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investigations of the following conjectures:

The 4-Dimensional Piecewise Linear Schoenflies Conjecture:
If e: §% < S is a piecewise linear embedding then a complementary com-
ponent of e is a piecewise linear 4-ball.

The Codimension One Poincaré Conjecture:
If e: % — S* is a piecewise linear embedding of a homotopy 3-sphere
23 then X2 is piecewise linearly homeomorphic to S3.

2 The Woodwork

We think of S* as the double suspension of S3. So S* is the two point
compactification of S x (—2,2). The two points at infinity are refered to as
the north and south poles respectively and are denoted by A and S. For
an embedded 3-manifold M3 we define EXT(M?3) to be the closure of the
complementary component which contains § and INT(M?) to be the closure
of the other component.

It follows from a result of Kearton and Lickorish [1] that any 3-manifold
embedded in 5* is isotopic to a critical level embedding in S x [~1,1]. Some
references dealing with the theory of PL critical level embeddmgs are listed
in the bibliography.

A critical level embedding e : M3 < $°% x [-1,1] C S* is an embedded
manifold which for some handle-collar decomposition embeds each handle
H; horizontally in a critical level S® x ¢; and each collar vertically in such a
way that the attaching tube of each handle attaches to the collar below and
the belt tube of each handle attaches to the collar above. It is a standard
result that any critical level embedding of a 3-manifold in S® x [—1,1] can
be arranged so that the handles appear in order of increasing index. We can
also arrange that the 0 and 1-handles have critical values less than zero and
that the 2 and 3-handles have critical values more than zero. A critical level
embedding which has been arranged in this way is called a Morse ordered
form. The image of a Morse ordered form will intersect S® x 0 in a surface F’
~ whose preimage e~!(F) is a Heegaard splitting of M3. The surface F' might

not in general be a Heegaard splitting of S x 0.
There is a slight generalization of the notion of a critical level embedding
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refered to as a collar connected embedding in which the critical levels may
contain several handles and some of the collars. A 3-level form is a collar
connected embedding e : M3 < S* whose image has the form

e(M®) = (K3 x —1)U (8K x [-1,0))U(R® x 0) U(BK2 x [0,1]) U (K2 x 1)

where

1. K2 and K2 are standard cubes with handles in S3
2. (5% — K3) Cint(K2).

Several pictures of 3-level forms are given in figures 3,4 and 5. Notice
that a 3-level form will also satisfy c/(S® — K3) C int(K2). The cobordism
R3 refered to as the residue cobordism of the 3-level form. Notice that R3
is a 3-manifold in S® with two boundary components each of which is a
Heegaard splitting of S3. Notice also that the submanifold M3 is completely
determined by the residue cobordism R3.

A schematic picture of a 3-level form is given in figure 1. It is important
* that the space immmediately preceding R> x 0 lies in INT'(M?3) and the space

- immediately preceeding K3 x 1 lies in EXT(M?3) as indicated in figure 1. If
* this were not the case the the embedding would be trivially isotopic to the
7 standard embedding of S%in S*.
' It is a fact that if M is a homology sphere then INT(M3) and EXT(M?)
are homology 4-balls and that R3 is a homology product!. If R3 is an actual
product then M3 22 .53 and the embedding is isotopic to the standard em-
bedding of S® in S*. The first picture in figure 3 shows a 3-level form whose
residue cobordism is a product and figure 5 shows a 3-level form of S whose
residue cobordism is not a product.
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Figure 1: A schematic picture of a 3-level form

Figure 2: A schematic picture of a trivial embedding
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Figure 3: Product Residue Mazur’s 3-Manifold
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Figure 4: ON(RPY)#S5' x §?
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Figure 5: A 3-level form of S
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Irreducible Representations of Strongly

Countable Dimensional Spaces

Richard P. Millspaugh, Leonard R. Rubin,

and Philip J. Schapiro

Irreducible polyhedral representations for metric compacta
were introduced in a 1937 paper [F] of H. Freudenthal. The idea
is to represent a metric compactum X as the inverse limit of a
sequence {Eﬁ,ilj} of compact polyhedra each having covering
dimension [Nal] no more than that .of X and such that the bonding
maps are PL and irreducible. In 1960, E.G. Sklyarenko [Sk]
extended these results to strongly countable dimensional metric
compacta.

Recail' that a space X is said to be strongly countable

dimensional (scd) if it can be written as X’=1§1X; where each A&

is a closed finite dimensional subspacé of X.

For a simplicial compleka; a space X}.and a map f:X'é [Nt
we say that a map g:X = INl is an N-modification of f if whenever
f(x) is contained in a simplex 6 of N, so is g(x). A map f:X =
INl is said to be N-irreducible if every N-modification of f is
surjective. A map f:X - P from a space X to a polyhedron P is
said to be irreducible if there is a triangulation N of P such

that f is N-irreducible.
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Let X be g metric space and P = {Pi,fij} an inverse sequence
of metric spaces. A sequende of maps fi X - Pi is said to be an
w-representation of X in P if the map f:X -*izl)ipi given by
f(x)=(fi(x)) embeds X on a dense subspace of lim P and is called a
faithful w-representation if f is a homeomorphism onto lim P. The
W-representation is strongly countable dimensional (scd) if there
is a fixed triangulation K, for each P; such that for each x € X

sup{dim 01} < ®, where 0, denotes the carrier of fi(x) in B&.

i

Translated into these terms, Sklyarenko’s result is the fol-

lowing,
Theorem. A°metric compactum X is scd if and only if it has a
faithful scd w-representation in a sequence P = {lE&l,f;j} of

compact polyhedra.
We have extended this result in the following ways,

Theorem 1. Let X be a metric space. Then X is scd if and only if

X has an scd w-representation.

Theorem 2. Let X be a topologically complete metric space. Then

X is scd if and only if X has é faithful scd w-representation.

To prove sufficiency in the case of theorem 1, let fl:X -
lﬁal be an scd @-representation of X in P. Fix n 2 0. Define a
sequence of polyhedra I& . 8s follows:

Let Yln be the n-skeleton lKrnl of.K;.
)

Then {Yin,zzj} forms an inverse sequence of polyhedra of

-1 (n)l
'

For i 2 1 let Y1 0" (f (Yi’n)an“

i,n ii+l

dimension = n. By 27.9 of ([Nal, Y= lim{Y ,f..,} has dimension
n i,n
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at most n. Since each Y is closed in 1lim P, the desired result

is obtained by using the definition of an scd wW-representation to

show that f(X) c ] Y.
n=1"n

The chief tool used in constructing an scd w-representation
‘for an scd metric space is the following lemma, which is proved
using an extension of ideas extracted from the proof of Theorem

5.3 of [Na2]:

Lemma. Let X be an scd metric spaée. Then there exists a
function n:X - Z so that for every open cover U of X there is a
locally finite open cover ¥ of X refining U satisfying

1) orde < n(x)+1 for all x € X,

2) the nerve Nof 7 is locally'finite dimensional, and

3) there is a normal N-irreducible map b:X - INI.

Note: the map b is normal means that for every V € ¥,

b_l(star(V,N)) = V, and b is essential on each simplex of N.

The lemma is used to define inductively a sequence of fine
open covers of X whose nerves will be the required polyhedra. At
the same time, the normality of the maps b; so obtained will guar-
antee that we can find irreducible bonding maps between these
polyhedra (provided the covers of X are chosen at each stage to
refine covers which consist of inverse images of stars of vertices
in fine subdivisions of the- previousiy constructed nerves).
Uniform limits bf compositions of these bonding maps with EG’S
will provide the desired scd w-representation for X. The details

can be found in [MRS].
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The second theorem requires only noticing that the
construction given in the first will yield a faithful scd

w-representation if the space X is topologically complete.

It should be noted that similar results can be obtained in
the class of normal spaces using representations in approximate

inverse systems (see [MR]) rather than inverse sequences.
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A GEOMETRIC APPROACH
TO THE DIMENSION THEORY
OF INFINITE-DIMENSIONAL SPACES

JAN J. DIJKSTRA AND JERZY MOGILSKI!

Abstract. In this note we discuss the problem of preserving some “di-
mensionality properties” of infinite-dimensional spaces under hereditary
shape equivalences.

1. Introduction. The spaces in this note are assumed to be compact
metric. Let us recall that a (proper) surjection f : X — Y is a cell-
like map if, for every y € Y, f~!(y) is of trivial shape (i.e. f~1(y) is
a cell-like set in X). We say that f is a hereditary shape equivalence
if for every closed subset A in ¥ f[f~1(A4) : f~1(A) — A is a shape
equivalence (i.e., for each ANR Z'and each closed A C Y the map f
produces a one-to-one correspondence between the homotopy classes of
C(A,Z) and C(f~1(A), Z)). The map f is a fine homotopy equivalence
if for every open cover U of Y there exists a map ¢ : Y — X such that
fog is U-homotopic to the identity on Y and go f is f~1(&/)-homotopic
to the identity on X.

According to Haver [12] and Kozlowski [15] a cell-like map f : X — Y
between absolute neighbourhood retracts is a fine homotopy equivalence
and a hereditary shape equivalence. Hereditary shape equivalence is the
natural extension to arbitrary compacta of ﬁne homotopy equivalence
between ANRs.

The first example of a cell-like map which was not a heredltary shape
equivalence was constructed by Taylor [23]. It was shown recently by
Draninikov [8] that a cell-like image of a finite-dimensional compactum
is not necessarily finite-dimensional. It is well known, however, that fi-
nite dimension cannot be raised by hereditary shape equivalences. In this
note we will discuss the behaviour of certain “dimensionality properties”
of infinite-dimensional spaces under hereditary shape equivalences.

2. Dimension theory of infinite-dimensional spaces. If a space X
is finite dimensional we write X € FD. A space X is infinite-dimensional
(X € ID) if it is not finite-dimensional.

We say that X is strongly infinite-dimensional (X € SID) if there
exists a sequence (A;, B;)2; of pairs of closed disjoint subset of X such

1Presented by the second author at The Eight Annual Workshop in Geometrlc Topol-
ogy, Milwaukee, June 13-15, 1991.
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that for every sequence of separators (S;)2, of X between A; and B;
we have ()2, Si # 0.

The space X is weakly infinite-dimensional (X € WID) if X is not
strongly infinite-dimensional.

A space X is countable-dimensional (X € CD)if X = J2, Xi, where
X;eFDfori=1,2,. :

We say that X is .strongly countable-dimensional (X € SCD) if X =
Uiz, Xi, where X; € FD and X; is closed in X fori=1,2,... .

A space X has the property C (X € C) if for every sequence of positive
numbers (en)$2; there exists an open cover U of X such that U =

s Un, where U, is a pairwise disjoint family consisting of open sets

with diameters < €, (see [1] and [11]).

We have

FDCSCDCCDCCCWID and FD #SCD # CD #C.
PROBLEM 2.1. Is it true that C # WID?

There is one known example of a space with the property C which
is not countable dimensional (Pol [19]) but that space has a strongly
infinite dimensional subspace. It suggests the followmg question (cf.
(10, Problem 8.6] and [25, D 12]).

PROBLEM 2.2. Is there a metrizable compact space every subset of
which has the property C but that is not countable dimensional?

There are natural extensions of small and large inductive dimensions
over countable dimensional spaces (see [14, 22, 24]). If a is a countable
ordinal (@ < wy), then ind X < a if for every = € X and for every open
set U, with z € U, there éxists an open set V such that z € V Cc U
and ind (0V) < a; Ind X < « if for every closed subset A of X and for
- every open set U, with A C U, there exists an open set V such that
ACV CU and Ind (V) < a.

We have ind X = Ind X for X € FD and ind X < Ind X in general.
The following result was proved by Hurewicz [14] and Smirnov [22].

THEOREM 2.3. If X is a compactum then X € CD if and only if
indX < wy, and if and only if Ind X < w;.

3. Hereditary shape equivalence and transfinite dimension.
The following question was posed by Henderson, Kozlowski and Walsh
at the problem session of the AMS meeting in Norman, 1983.

PROBLEM 3.1. Do hereditary shape equivalences preserve countable di-
mensionality? ®

In view of results of Kozlowski [15] this question is equivalent to
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PROBLEM 3.2. Let f: X — Y be a cell-like map of a countable dimen-
sional ANR X ontoan ANRY. IsY countable dimensional?

For infinite-dimensional spaces the following is known: hereditary
shape equivalences preserve weak infinite-dimensionality ([17, 21]) and
the property C ([16, 4]) but they do not preserve strong countable di-
mensionality ([7]).

The behaviour of transfinite dimension under hered.lta.ry shape eqmv-
alences is not clearly understood. However, it turns out that it is closely

-related to Problem 3.1. Using the fact that a complete space X is count-
able dimensional if and only if ind X exists and that a cell-like map with
a countable dimensional range is a hereditary shape equivalence ([3])we
define :

7(X) = sup{indY : Y is a countable dimensional cell-like image of X}.

We have the following equivalence the sufficiency of which was proved
in [7] and the necessity was recently proved by the authors.

THEOREM 3.3. For hereditary shape equivalences to preserve countable
dimensionality it is necessary and sufficient that every countable dimen-
sional compactum X has countable n(X).

Using absorbers Dijkstra recently showed the following:

THEOREM 3.4. There exists a cell-like map from an w-dimensional com-
pact AR onto an (w + 1)-dimensional compact AR.

This is an improvement of the main result in [6] and it shows that
the transfinite dimension functions ind and Ind are not preserved under
hereditary shape equivalences. Consider now Alexandroff’s Essential

Mapping Theorem ([2]):

THEOREM 3.5. A space has dimension greater than a finite n if and
only if it admits an essential map onto the (n + 1)-cell.

Generalising an idea of Henderson [13] we define: if M is an AR with
a closed subset S then a map f from a space X onto M is called es-
sential if every map g : X — M that coincides with f on fS) is
also surjective. It is easily verified that the composite map of hereditary
shape equivalence and an essential map is again essential. Theorem 3.4
implies that essential maps cannot distinguish between certain certain
w-dimensional and (w + 1)-dimensional spaces. This solves a problem
of Henderson [13] and Pol [18]. These results show that the transfi-
nite ind and Ind are “geometrically incorrect” dimension functions. In
contrast, Pol’s index [18] and Borst’s transfinite covering dimension [5]
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are examples of dimension functions that can be characterised by es-
sential maps onto Henderson’s “cubes” [13] and that are preserved by
hereditary shape equivalences. Theorem 3.3 and Theorem 3.4 suggest a
strategy of attacking Problem 2.2 and Problem 3.1. We summarize this
strategy in the following conjectures.

CONJECTURE 3.6. For every countable ordinal ordinal a there is a
hereditary shape equivalence from an w-dimensional compactum onto
a compactum with ind > a.

Conjecture 3.6 combines with Theorem 3.3 and a result of Pol [20]
to: ' ' ~

CONJECTURE 3.7. Countable dimensionality is not preserved under he-
reditary shape equivalences.

In fact, Theorem 3.3 implies that Conjecture 3.7 is equivalent

i1z 1L U

CONJECTURE 3.8. There is a countable ordinal a such that sup{n(X) :
ind(X) < a} is uncountable. ‘

Conjecture 3.7 implies:

CONJECTURE 3.9. There is a compact space every subset of which has
property C but that is not countable dimensional.

A proof for this conjecture would also solve the open problems [10,
8.6] and [25, D 12].
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Deforming Reducible SL;(C)-Representations
of Knot Groups

Douglas Shors

0. Introduction .

In this paper we ask the following questions: First, given a reducible rep-
resentation of a knot group m in SL3(C) (these representations are easy to
characterize), when are there nearby irreducible representations of 7?7 And sec-
ond, if there are such representations, what can be said about the component(s)
of the character variety which they comprise?

Along similar lines, Thurston [T, theorem 5.6] obtains a lower bound for
the dimension of the space of small deformations of a hyperbolic structure (with
irreducible holonomy) on a 3-manifold. In particular, if X is a component of
the SLy(C)-character variety of the fundamental group of a hyperbolic link
complement (with r components) containing a lift of a hyperbolic structure
with irreducible holonomy, then dimc X > r.

In [FK], Frohman and Klassen show how, in certain cases, an abelian
SU(2)-representation of a knot group deforms into an arc of irreducible SU(2)-
representations and an arc of irreducible SLy(R)-representations.

We obtain pictures of the character variety of a knot groups near reducible

‘ representations (when the representation corresponds to a simple root of the
Alexander polynomial, and more generally, when the second Alexander polyno-
mial is nonzero—see below). We also obtain results about deforming reducible
S La(R)-representations, and reobtain the aforementioned theorem of [FK].

Some of the results stated for knot groups generalize to link groups. For
simplicity, only the knot case is discussed here.

We also determine the topological types of some $Ly(C)-character vari-
eties: the nontrivial part of the character variety for the k-twist knot is a smooth
genus k — 1 surface with & punctures. Lastly, we compute the boundary classes
corresponding to the ideal points of these character varieties. |

1. Some affine representations of knot groups
A representation I' — SL,(C) is reducible if and only if it is conjugate into
the planar affine group Aff(C) ~ {(0 1/a ) la € C—{0},be C}C SLyC).

We begin with some simple examples of such planar affine representations of knot
groups. The figures at the right show the fixed points of the respective Wirtinger
generators of the group. These examples can be kept in mind in the next section,
when questions of deforming reducible representations are addressed.
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trefoil

@ A

Alexander polynomial A(t) = t2-t+1

figure eight

Alt) = t2.3t+1

square knot

2 3,6 5
2 _//&\_ 4 .
6 A = (t2-t+1P

2. ‘Results

The following notation will be used:

T m1(58% — K) = (z1,%2,.--,Zn|T1,72,...,7n-1), a Wirtinger
presentation; K C S3 a PL knot.

R(r) Hom(w,SL,(C)), with the compact-open topology.
X(7) maximal Hausdorff quotient space of R()/SLs(C).
[p] equivalence class of p € R(7) in X(r).

A(t)  Alexander matrix of some knot K C S°.

A(t)  Alexander polynomial of K C S°.

Ak(t) k" Alexander polynomial of K.
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Below we list some elementary facts about .S Lo(C)-representations of knot
groups:

1. X(=) is an algebraic variety. (See [CS].)

2. X(r) has an algebraic component X, ~ C consisting of characters of
abelian representations © — =« /[r, 7] & Z — SL,(C).

That X, is an algebraic component of X () follows from a computation of -
its Weil tangent space at the trivial character (i. e. the character of p(z;) = I),
which shows that its dimension is equal to the dimension of X,p. (See [W] or
[H] for a discussion of the Weil tangent space.)

3. p(zi)(z) = a(z — B;) is a (reducible) representation of 7 in SLy(C) <=
(B1, B2y - -, ,Bn)T € ker A(a). Such a representation can be nonabelian (i. e.
the f3;’s are not all equal) only if A(a) = 0.

We will call a the multiplier of the representation p.

This is seen by solving for 8y, f2,. .., An in the linear equations imposed by
the Wirtinger relations. The coefficient matrix of the system turns out to be
A(a), which has a nontrivial solution (the §;’s not all equal) <= the nullity

n(A(a)) of A(a) >2 < A(a)=0.

Letting Z'(7; Ad o p) denote the Weil tangent space to R(r) at p,
4. If p is abelian with multiplier a, then dimg Z1(7r; Ad o p) = 2n(A(a)) + 1.

For this one solves the system of linear equations which follow from the
cocycle relation in Z'. (See [B].) With appropriate basis the coefficient matrix
of the system is A(0) ® A(a) & A(1/a). The result follows..

5. A(a) # 0 = p doesn’t deform into irreducible representations.
This follows from (4): A(a) # 0 = dim Z!(w; Ad 0 p) = 3 = dim, Rap(7).

A theorem from algebraic geometry says that in such a situation R,p(7) is the
only component of R(w) through p.

The next theorem is a partial converse to (5).
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Theorem 2.1. Suppose p is abelian (or reducible nonabelian) with multiplier
a.
(1) K A(a)=0 and Ay(a) # 0 then p deforms into irreducible repre-

sentations. ) )
(2) I a is a simple root of A then we have the following picture of

X (=) near [p]:
eigenvakie
of pfxx ;xj 1)

eigenvaiue

c2 ./la of p(x;)

Remark. The result is sharp in the sense that there are examples of reducible
nonabelian representations with Ag(a) = 0 which don’t deform into irreducible

representations. ‘

Idea of proof. (1) Suppose p is abelian. The fact that A(a) = 0 means that
there are reducible nonabelian representations near p; let py be one such. The
argument will show that py deforms into irreducible representations, and since p

is in the closure of the orbit of pg, so does p. Without loss pg fixes 0o € C = S2.,
so upon choosing a Wirtinger presentation for 7, po(z;)(z) = a(z—§;) for z € €.
We will begin by boring out a hole from the knot complement, 4 la Thurston
[T, chapter 5.

(B1,P2,---,Br) € ker A, and the f;’s are not all equal since Po is nonabelian.
Let (8, 4%,...,8™) € ker A(1/a), with the #%’s not all equal (so that pj(z;)(z) = -
(2 - B) is a reducible nonabelian representation of 7). By passing to a new
knot projection, if necessary, it is possible to choose a crossing with Wirtinger
relation z;z;2;' = x4 so that B; # B and B9 # BF (so that py and p}) each
represent z; and zx differently). To this crossing add a loop, as shown, and call _
the fundamental group of the new space ':

Ll - >
A ~ A A A
Xl ‘x xl 7 ly
A
x-k-_)> ' x;_‘a>

An argument along the lines of Thurston’s can be used to establish (1): For
elementary reasons each algebraic component of the representation space of
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has dimension at least 6. (Note that we continue to make a distinction between
the representation variety and the character variety—this is an issue because py
is not a stable point of R(w) and so a neighborhood of [pe] € X (7) may not be
nice.) One can write down collection of polynomial equations which vanish on
a nontrivial arc of representations of # C R(w'). One difficulty is that there are
lots of reducible representations of 7' (and 7) near po; one must be careful that
the arc obtained above does not consist solely of these representations. (The
role of the assumption Aj(a) = 0 is to give some control over the dimension of
the space of reducible representations of #’.) It should be noted that the sorts
of equations Thurston uses don’t Work because they vanish on the redumble

representations of «’.
(2) I « is a simple root of A then Aj(a) # 0 so by (1) p deforms into

irreducible representations.
The strategy of the proof is to obtain an upper bound on the dimension of

R(=) at po, where pg is a reducible nonabelian representation near p as above;
this can then be translated into a statement about X (7) near [p].

In fact, X(7) has a single nontrivial branch Xy through [p]; it can be shown
that [p] — trp(z;z “’1) is a smooth parameter on a neighborhood of [p] C X, for
¢t and j as above. [

In the following corolla.nes p is an abelian representation w1th multiplier
a.

Corollary 2.2. If « is a simple root of A and a € R, then there exists a unique
arc of SLy(R)—characters through [p].

Corollary 2.3. (Frohman-Klassen) If « is a simple root of A and |a| = 1,
then there exists a unique half-arc of 5Ly(R)-characters and a unique half-arc
of §U(2)—characters meeting at [p].

Idea of proofs. One shows that complex conjugation [p] — [p] is a smooth in-
volution on Xj at [po]. Its fixed point set is a smooth arc consisting of real
characters; these correspond to SU(2)- and SLo(R)-characters of 7. [

Let A(L, M) be the Cooper-Long polynomial and let A be the product of
the multiplicity 1 Z-irreducible factors of the Alexander polynomial. (Briefly,
A(L, M) is defined as follows: if X; is a nontrivial algebraic component of X(r),
project X; to C? by p : [p] — (L,,M,), where L, and M, are corresponding
eigenvalues of p(longitude) and p(meridian), respectively. (Of course this map is
not well-defined, but this is a minor difficulty.) Assuming X; projects to curve
in C2, the closure of p(X;) is the zero set of a single polynomial fx, (L, M) in
C?. A(L, M) is the product of these polynomials over all nontrivial algebraic
components of X(7) which project to curves in C2. See [CL].) Then



Corollary 2.4. For any K € S%, A(t2)|A(1,1).

Idea of Proof. Theorem 2.1 shows that if A(#2) = 0 then there is a nontrivial
1-dimensional component of X () passing through the abelian character with
L =1 and M = t. This component projects down to a curve in (L, M )-space.

So A(t?) = 0 = A(1,t) = 0. Since A(#2) is separable, A(#2)|A(1,¢). O

3. Character varieties of twist knots ‘

Let 7 be the fundamental group of the complement of the k-twist knot,
and let Xo(7x) be the union of the nontrivial components of X (7). F, denotes
the closed surface of genus g.

Proposition 3.1. X(7}) is diffeomorphic to Fy—, — {k points}.
Idea of proof. 7 has the following Wirtinger presentation:

—€g . . . _1
Tk = (T1,T2,. .., Thp2| Tig1 = 272125 (2 <1 <k + 1), Thpo = T1T4177 L),

where ¢; = (—1)%.

‘ Suppose p is a representation of 7x with p(z;) hyperbolic (this is the case
_ for all but finitely many p). One shows that there is an isometry ¢ of H?
~ which carries the axis of p(z;) to the axis of p(zi4+1) (reversing orientation) for
t=1,2,...,k 4+ 1. PSLy(C)-characters of 7} can be classified by tr(, and the
* SL,(C)—character variety of m; can be realized as a 2-sheeted branched cover
 of the PS Lg(C)—cha.ra.cter variety, branched over dihedral characters and ideal
. points. [

Lastly, since the above gives a fairly complete understanding of X (=), it
is possible to compute the boundary slope s associated with each of the & ideal
points of Xo(mx). (For background, see [CS] ) We only give the result of the
computation: If k is odd, it turns out that %51 of them have s = 0, " L have
.8 = 4, and one has s = -2k — 4. Forkeven, 5—-»1 of them have s -—0 g
have s = 4, and one has boundary slope s = —2k. (These are the only strict
boundary slopes, by [HT].)

We end with some questions (some of these may have been posed elsewhere): _

1. When do reducible representations with A(a) = Az(a) = 0 deform into
irreducible representations? Is each such representation equivalent in X ()
to a representation which does deform into irreducible representations?

2. Does X (7) have a nontrivial 1-dimensional component for every knot group

!
. Does A(t?)|A(1,t) for K C S3?
4. When « is a simple root of A, what is the slope of p(X,) C C3 . at p([0])?

[4-)
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THE GEOMETRY OF THE OUTER SPACE

TAD P. WHITE

Culler and Vogtmann [C-V] initiated a study of the outer automorphism group Out(Fy)
of the free group F;, on n letters by constructing a space X, upon which Out(Fy,) acts
properly discontinuously. This space, which has since come to be known as the “outer
space”, consists of free minimal actions of F,, on simplicial metric trees, where two such
trees are identified if they are equivariantly isometric. The quotient of each such tree by
such an action is a finite marked metric graph, in which each vertex has valence > 3. Here,
“metric” means that each edge has a length, and a “marking” is a preferred homotopy
equivalence of the wedge R, of n circles to this graph. One thus has two possible views of
Xp; these are interchangeable. The group Out(Fy) acts in the obvious way: one represents
an automorphism of F,, as a self-map of R,, and precomposes the marking with this map.

Culler and Vogtmann showed that X, is a finite-dimensional contractible space, and that
the OQut(F,,)-action has finite stabilizers and finite quotient. Furthermore, X, has a natural
compactification X, in which the boundary consists of actions of F}, on R-trees with cyclic
edge stabilizers. This is analogous to the situation which occurs in Thurston’s classification
of surface automorphisms; in particular, it suggests a means to study Out(F,). It is natural
to look for parallels between the two theories. In this note we announce two new results
in this vein.

1. WEIGHTED LENGTH FUNCTIONS AND FINITE SUBGROUPS OF Out(F,)

It is known that X, is contractible; this was demonstrated, for example, by Skora [Sk],
who developed a method to construct a path between two R-trees, given a morphism be-
tween them. (A morphism is a map such that each segment in the domain R-tree contains
an initial arc which is mapped isometrically.) We study the problem of constructing equi-
variant maps between arbitrary pairs of R-trees, and apply Skora’s methods to prove the
following theorem:

Theorem. There is a continuous function F : X, x X, x I — X, such that
(1) F(T07T110) = TO)
(2) F(To,T]_,l) =T1,'
(3) F(To,To,t) = TO for all t,‘ and ) .
(4) F is equivariant under the diagonal action of Out(F,) on X, X.Xn.
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TAD P. WHITE

It is known that any finite subgroup of Out(F;,) possesses a fixed point in Xo,; see, for
example, [Cu]. It then follows from the above theorem that the subset of X, fixed by a

finite subgroup of Out(Fy) is contractible.

The first step in the proof of the theorem is to give a canonical construction for maps
between R-trees. The following suffices for the present purpose:

Let T and T' be R-trees, equipped with Fj-actions, and suppose that T' is simplicial
and that its action is free. For each z € T, we first define a function ) : F, — R via
Mg) = 1/dr(z,gz) if g #1d, and A(id) = 0. We now set f(z) to be the center of the finite
subtree of T' which minimizes '

sup )\(g)dT' (¥, 9Y)-
g€
, (One must ﬁrst ascertain that this supremum is finite for all y € T", and that it is minimized
on a compact subtree.) This defines an Fj,-equivariant map from 7' to T".

One shows that f varies continuously with 7' and 7". Although f is not a morphism,
‘one can use f to obtain a morphism as follows. Use f on the vertices of T’ this map has
a unique extension to an edgewise-linear map from T to 7. This map can be converted
into a morphism simply by rescaling the edges of T. There is a natural path in the outer
space from T' to the domain Ty of this morphism, and Skora’s construction gives a path
from Ty to T'. These constructions being contmuous, we arrive at the theorem. Details

can be found in [W1].

2. IRREDUCIBLE AUTOMORPHISMS AND TRAIN-TRACKS

An outer automorphism ® of F;, is reducible if there exists a graph G together with -
a self-map f which induces @, and which leaves invariant (up to homotopy) a proper,
homotopically non-trivial subgraph. In case ® is irreducible, Bestvina and Handel [B-H]
demonstrate the existence of a “train-track” representative for ®; that is, a self-map f of
a graph G such that f" is locally injective on the interior of each edge for each n > 1.

There is a natural (asymmetric) distance function on X,,, in which two marked R-graphs
G1 and G satisfy d(G1, G;) < In K if there exists a K-Lipschitz map from G; to G which
is compatible with the markings. (This distance was originally considered by Thurston in
connection with earthquakes on hyperbolic surfaces [Th].) A map which realizes the least
possible Lipschitz constant in its (free) homotopy class is called a “minimal-stretch” map.
Out(F,) acts on X, by isometries with respect to this distance; each marked graph is
displaced a certain amount under the action of ® on X,. It turns out that the Bestvina-
Handel train-track representatives are precisely those which minimize this displacement,
and the train-track maps are the corresponding minimal-stretch maps.

It is then natural to study the behavior of this displacement function. The analogous
object in Teichmiiller theory is the displacement of a conformal structure by a pseudo-
Anosov mapping class, with respect to the Teichmiiller metric. C. J. Earle [E] proves that
this displacement function has no critical points, except for its absolute minima. We give
an independent proof of the existence of train-track representatives, and obtain the outer
space analogue of Earle’s result:
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Theorem. For any irreducible outer automorphism & of F,, the associated displacement
function on outer space has no critical points, except for absolute minima at the train-track

maps.

In our case, since outer space is not a manifold, we take this statement to mean that
given any point Go of outer space, either Gy admits a train-track map inducing &, or
else we can define a continuous deformation of outer space which strictly decreases the
displacement d(G, ®(G)) for G in a neighborhood of Gy.

We also give a new proof of the existence of train-track representatives for an irreducible
automorphism, modelled on Bers’ proof of the existence of absolutely extremal mappings
between Riemann surfaces [B]. For details on the proofs, we refer the reader to [W2].
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A Special Ratchet Lemma

David G. Wright
Department of Mathematics
‘Brigham Young University
Provo, Utah 84602

DEFINITION 1. A topological space X is said to be eventually n;-injective at infinity
if there is a fixed compact set K (a core) of X so that for every compact set A there is a
compact set B so that loops in X - B which are inessential in X - K are also inessential in
X - A

Informally, we think of this property as stating that loops close to infinity which

ZANIAR.

contract missing the core contract close to infinity. This condition is really a very mild
condition which is satisfied by all the classical contractible manifolds. In 3-manifold
theory, a manifold that is eventually 71-injective at infinity is called eventually end
irreducible 1], [2]. | | :

In a previous paper [6], we proved the following Ratchet Lemma that was
- extremely useful for showing that certain contractible manifolds could not be non-trivial
covering spaces of another manifold.

LEMMA 2 (Raichet Lemmay). Let h: W — W be a homeomorphism of a space that
is eventually mi-injective at infinity. If K is a core of W, then there is a compact set L in W

so that a loop yin W - kll:mhi(L) is inessential in W - K if and only if yis inessential in
W - h{(K) for each i.

In this paper we prove another version of this lemma which we call the Special
Ratchet Lemma. We hope that this lemma will be helplful in solving the long standing
conjecture [5, p. 96], [1] that the universal covering space of a closed, P2-irreducible 3-
manifold with infinite fundamental group must be R3.
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LEMMA 3 (Speczal Ratchet Lemma). Let M be a manifold and W be an an open subset
of M so that W is eventually mj-injective at infinity. Furthermore, suppose W , the

closure of W, is a manifold with simply connected boundary. Let h: M - M be a .
homeomorphzsm with the property that for acore K of W, h(K) and h"1(K) can be
isotoped into W. Then there i is a compact setL in M so that a loop Yin M - b{__“h‘(L) is

inessential in M - K if and only if ‘yis inessential in M - H(K) for each i.

Proof. By hypothesis there are isotopies of M that take #(K) and hI(K) to sets K+
and K-, respectively,which lie in W. Let T+ and T-, be the respective tracks of h(K) and
h~1(K) under these isotopies. Consider the compact set A = K+ U KU K- which lies in
W. Since W is eventually m;-injective at infinity, there is a a compact set B in W so that
loops in W - B which are inessential in W - X are also inessential in W - A. Note that since

W has simply connected boundary, this also implies that loops in M - B which are
inessential in M - K are also inessential in M - A. Let L be the compact set T+ U T- U B.

Now let ybe aloopin M - kJi:uhi(L). If yis inessential in M - K, then yis

inessential in M - A. Since K+ < A, ¥is inessential inM - K*. Now A(K) is isotopic to
K™ by an isotopy so that the track of 4(K) misses misses ¥. Hence, the Covering Isotopy
‘Lemma [3], [4] implies that ¥ is inessential in M - A(K). So far we have shown that if Yis
‘inessential in M - K, then ¥is inessential in M - A(K).

If 7is inessential in M - h(K), then 7is inessential in M - h(A). Since K- C A, Yis
inessential in M - (K~). Now K is isotopic to 4(K-) by an isotopy so that the track of K
misses ¥. As before, this implies that yis inessential in M - K.

We have thus shown that 7is inessential in M - KX if and only if yis inessential in M - hK).
The rest of the proof now follows by induction.
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Problem Session

1. (P. Scott, problem attributed to Jorgensen)) Does there exist a surface M
with complete hyperbolic metric, and a closed geodesic y on M with a
transverse triple point, such that the triple point persists for all complete
hyperbolic structures on M? Can a triple point persist on an open set? Does
there exist a closed geodesic on the 3-cusped sphere with a triple point? If
so, does the triple point persist as one deforms the cusps to non-cusp ends?

2. (K. Johanson) Does every minimal marking of a hyperbolic surface determine
a unique base point?

3. (J. Hempel) Let I" be your favorite universal link in s°. (a) How does one
get from one representation of a 3~manifold M as a branched cover p: Mss?
branched over I to another such representation p: M>S>. In partlcular, are
there "moves" which always do this? (b) Can one get from a Heegard splitting
for M to a representation p: M-S® as a branched cover over T by some

systematic procedure?

4. (R. Daverman) If G is the fundamental group of a closed hyperbolic
3-manifold and H is a finite index subgroup of G (H#G), can there exist an
epimorphism p: G-H?

5. (C. Guilbault and F. Ancel) A compactum X contained in the interior of an
n-manifold M" is a "spine" of M if there exists a map f: AM»X for which
(Map(f),X) is homeomorphic to (M",X). (a) Do any (or all) of the Mazur
4-manifolds contain a paJ.r of disjoint spines? (b) Does there exist a compact
contractible n-manifold M" (#B") which contains a pair of disjoint spines?
(c) Does every compact contractible n-manifold M" contain a pair of disjoint

spines?

6. (R. Daverman - the "Chogoshvili problem") If X is a compact subset of R"
such that for any (n-k-1)-dimensional hyperplane HcR" and any e:>0 there
exists a map f: X>R"™-H with d(x,£(x))<e for all xeX, is dimX<k?
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7. (3. West, problem attributed to Torunczyk and Spiez) Given metric compacta
X and Y, when is it true that for any maps f: X5R" and g:Y5R™ and any >0,
there exist e-approximations to f and g having disjoint images? Is the
assumption that dim(XxY)<n sufficient?

8. (E. Harms) If M3cs? is a genus 1 3-level form where M> is homeomorphic to
S is the middle level cobordlsm a product”

9. (W. Menasco, with A. Reid) Let M? dencte a 3-manifold and KcM® a knot for
which M3-K is hyperbolic. For what M® does there exist a K such that there
exists a totally geodesic embedding of a surface S c M>-K? (Suspicion: No
such K exists in s83. 1t is known, for example, that in this case K cannot be
alternating or a 3-braid. There do, however, exist link complements which

work.)

10. (F. Ancel) Let U be a contractible open n-manifold which covers nd compact
manifold. Patch together Z copies of U to form a contractible n-manifold ZU.

(A careful description of ZU is given below.) ZU admits a properly
discontinuous free Z-actinn. Conjecture' ZU covers no compact manifold.-
(Definition of ZU: For i=1,2, let e : x[O 1)>U be proper tame embeddings
with disjoint images. Let v=e (R"' x[0,1)) (i=1,2). Let

T R 1><(O 1) - R™" 1><(O 1) be the orientation reversing homeomorphism
T(x,t)=(x,1-t). Deﬁ.ne the homeomorphism g: intv > mtV by g =

e oro(e lintv ) . ZU is the quotient space obtamed frorn ZxU by identifying
{n}x(mtvz) w1th {n+l}x(intV1) via the map (n,x) » (n+l,g9(x)), for each neZ.)
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