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To: Participants in Topology Workshop in Corvallis May 21, 1990

From: Dennis Garity

Lodging is being provided for out of state participants at the Towne House Motor Inn, 350
SW 4th Street, Corvallis. Reservations have already been made for the nights you indicated on your
registration form. The Airport limousine from both Portland and Eugene stops at this motel. Call
Airport Express (503-757-7731) or Away Travel Agency (503-757-9792) to make reservations. If you
are driving, take Interstate 5 to U.S. 20 (or to U.S. 34) to Corvallis.

The conference will begin at 8:30 Thursday morning. Maps are included indicating the route
from the motel to the conference center (Stewart Center on campus at 875 SW 26th). It is about a 20
minute walk from the motel to the conference center. A university van will pick up participants who

need a ride at the motel at 7:55 A. M. and transport them to the conference center.

I am including a list of restaurants in Corvallis. The motel is in downtown Corvallis and there
are a number of places to eat nearby. The following is a tentative schedule. Let me know if any
corrections need to be made. An overhead projector and dry erase boards will be available for the

talks.

Thursday:

8:00 - 8:30 Refreshments 8:30 - 9:30 R. Daverman
9:45 - 10:15 F. Tinsley 10:20 - 10:50 R. Schori
10:55 - 11:25 Y. Im 11:30 - 12:00 D. Silver
12:00 -2:00 lunch 2:00 - 2:30 J. Walsh
Friday:

8:00 - 8:30 Refreshments 8:30 - 9:00 D. Garity
9:15 - 9:45 R. Andersen 9:50 - 10:20 C. Guilbault
10:25 - 10:55 D. Wright 11:00 - 11:30 M. Kelly
11:30 - 2:00 lunch 2:00 - 2:30 J. Hempel

evening- after dinner gathering at R. Schori’s house.

Saturday:
8:30 - 9:00 Refreshments 9:00 - 10:00 R. Daverman
10:15 - 11:15 Problem session afternoon- Outing to Mary’s Peak.

If there are any problems, please contact me at 612-255-4734, 612-255-3001, or by e-mail at
Garity@math.orst.edu.
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A General Position Property for Recognizing 3-Manifolds
Robert Daverman

(from notes transcribed by Dennis Garity)

1. History

In 1977, R. Edwards proved the following characterization theorem:

Theorem: A resolvable generalized n-manifold (n >4) is a real manifold if and only if X

has the Disjoint Discs Property.

A generalized n-manifold X is resolvable if there exists a cell-like map P:M"——X
where M" is a genuine n-manifold. A space X has the disjoint discs property, DDP, if
any two singular 2-cells in X can be approximated arbitrarily closely by disjoint singular
2-cells. So the DDP is a minimal sort of general position property that distinguishes
resolvable generalized n-manifolds from the real thing when n>4. The following

theorem, due to F. Quinn in 1987, deals with the question of when a generalized n-

manifold is resolvable.

Theorem: A generalized n-manifold X, (n>3), is resolvable if and only if a certain

obstruction i(X) =1.

J. Cannon’s conjecture from 1977 is that a generalized n-manifold X, n>4, is a

real n-manifold if and only if X has the DDP.

2. Generalized 3-manifolds
The results presented here represent joint work with Dusan Repovs.

Main Theorem: A resolvable generalized 3-manifold M is a real 3-manifold if and only

if it has the Spherical Simplicial Approximation Property.

A space X has the Spherical Simplicial Approximation Property, SSAP, if and
only if each map f:5?—X can be arbitrarily closely approximated by maps g such that X
contains a 2-complex K with g(S?) in K and with each 2-simplex of K 1-LCC embedded
in X. (This formulation works when K has no local cut points. If v is a local cut point

of K, we need K to be 1-FLG in X at v — see the final paragrphs of this writeup for an



explanation.) A subset C of X is 1-LCC in X if each neighborhood U in X of an
arbitrary point p in C contains another neighborhood V in X of p such that all maps
from S' into V\C extend to maps of I? into U\C .

R. H. Bing, S. Armentrout, M. Starbird and others have theorems about when
cell-like decompositions G of 3-manifolds M yield 3-manifold decomposition spaces
M/G. The conditions in their theorems involve general position properties in the source
manifold M. Cannon has a result with conditions depending on the target M/G only.
This is the first general position condition giving results about decompositions of 3-
manifolds with no hypothesis on the singular set of M/G. In general, it is difficult to

find an appropriate general position property in the 3-manifold setting.
We point out some additional results involving the SSAP:

Proposition: A generalized n-manifold, n >4, has the DDP if and only if it has the
SSAP.

Proposition: If a generalized 3-manifold has the SSAP, then X has a cellular resolution.

That is, each p ~!(x) is cellular in the domain.

Proposition: A cellular resolution p:M—X is a near homeomorphism if and only if X has

the SSAP.

Corollary: Suppose X is a resolvable generalized 3-manifold with the dimension of the
singular set of X less than three. Suppose for each map f:B?-~X and for each € >0,
there is a 2-complex K with no local cut points and an e-approximation f' to f with

£(B?) in K and with all 2-simplices of K 1-LCC in X. Then X is a 3-manifold.

3. Ingredients and Outlines of Proof:
The following Theorem of Cannon uses Bing 3-space techniques in its proof.

Theorem: If X is a resolvable generalized 3-manifold, and if the singular set of X,
S(X), is in a 2-cell D that is 1-LCC embedded in X, then X is a 3-manifold.

Definition: An upper semi-continuous decomposition G of a metric space X is locally
semi-controlled shrinkable if for each g in G and for each neighborhood U of g, there is a
neighborhood W of g such that for all € > 0 and for all homeomorphisms h: X—X there
is another homeomorphism h’:S—S§ satisfying:

1) h and b’ agree on X\U,

2) the diameter of h’(g) is less than € for all g in W, and

3) the diameter of h'(g) is less than € 4+ diameter(h(g)) for all g.



The following two theorems are also useful:
Theorem: (Cannon/Woodruff) If G is a locally semi-controlled shrinkable
decomposition of a locally compact space metric space S with S/G finite dimensional,

then p:S—S/G is a near homeomorphism.

Theorem: (Edwards Countable Shrinking property) Suppose f is a cellular map from an
n-manifold M to X and ¥ = {A, :1 <j < oo} is a collection of closed sets in X such that

f can be arbitrarily closely approximated by cellular maps f; that are one-to-one over

A;. Then f can be arbitrarily closely approximated by a cellular map F that is one-to-

one over UJY.

Outline of Proof of Cannon-Woodruff Theorem in compact case:

Let m be the dimension of S/G. Fix € >0. Cover S/G by open sets of diameter

less than m—€+1' Find a refinement Al of this cover which splits into m + 1 pairwise
disjoint collections U,, . . . , U, ;. For each g in G find a p~*(U) for some U in U

containing g and find a W as in the definition of locally semi-controlled shrinkable

decomposition. Order the sets W thus obtained based on the subcollections U; above.

Apply the definition to obtain homeomorphisms h;:5—S such that :
1) h; and h; , ; agree on S\p ~}(U;);
2) the diameter of h;(g) is less than % for all gin W;

3) the diameter of h;(g) < diameter(h;_,(g)) +-2% for all g in G.
The final homeomorphism hy, shrinks all g in G to small size and p o hy, is € close to p. O

Outline of Proof that a cellular resolution p:M—X is a near homeomorphism if and only
if X has the SSAP.

As an initial simplification, apply the SSAP to find a collection of 2-complexes
{K;} in X that are 1-LCC embedded such that all singular 2-spheres in X can be
approximated by a singular 2-sphere in some K;. Apply the Countable Shrinking

Principle to approximate p by a cellular map p"“M—X that is one-to-one over the union
of the K.
Let N, be the union of {y € M| (p)~H(p'(y) #y}. Note that dim(p'(N,)) =0

and that singular discs in X can be approximated by singular disks missing (p’(Np,)).
this by itself does not imply that p’ is a near homeomorphism since every countable

cellular decomposition has this property.



The plan is to now show that the decomposition of M induced by p’ is locally
semi-controlled shrinkable. Fix a g, in this decomposition and let x, be p’(g,). Fix an
open 3-cell neighborhood Ug of g,. Choose a neighborhood V in X of x, with (p') ~!(V)
contained in U,. Find a map % from S? into V\x, that is null homotopic in V, but not
in V\x, such that the image S separates x, from X\V. Let W denote the component of
X\S containing x, and let Wy be (p’) ~}(W).

Note that p’ is one-to-one over K,. Let K’ be the preimage of K, under p’.
The 2-simplices of K’ are 1-LCC embedded in M since the 1-LCC property lifts to M. If
K’ has no local cut points, a result of Nicholson from 1972 now implies that K’ is tame
in M. Construct a regular neighborhood N of K’ and a cell-like map q:M—M collapsing
N to K’ while fixing g, The map q should also be a homeomorphism of M\N onto
M\K".

Now apply the Sphere theorem to find a P.L. 2-sphere S in q~!(K') separating g,
from M\W,. The 2-sphere S bounds a P.L. 3-cell C in W, containing g,. Find a
homeomorphism h from M to itself fixed outside of C so that the diameter of

(p'0q) ~!(x) is less than € for all x in (p’ 0 q)(C)\Ko.

Next find a map f from M to itself that shrinks out nontrivial point preimages of
hoq~! without allowing the sizes of h({p’oq) ~!(x)) to grow too much. This can be
done by a sequence of small moves. Anytime some (p’oq)~!(x) begins to grow
dangerously large, don’t adjust it in subsequent moves. The nullity of these

(p' 0 q) ~*(x) makes this possible.

We need to consider what happens when complexes in X have local cut points.
We need such a complex K to be 1-FLG (to have free local fundamental groups). This
means that for each neighborhood U of a local cut point v, there is a neighborhood V of
v such that the homomorphism from 7;(V\K) to m;(U\K) has free image, and that this
image also equals the image of 7;(W\K) for any smaller neighborhood W.

Nicholson uses this as a characterization of tameness for 2-complexes in 3-
manifolds. We then need to make sure that near v the 2-sphere S meets N is a disc.
We can then excise the unnecessary part of K’ and reform N so that the previous

argument applies. This completes the outline of the proof. O

Some questions related to this material are listed in the problems at the end of

these proceedings.



DECOMPOSITIONS INTO SUBMANIFOLDS OF FIXED CODIMENSION:

AN UPDATE

R. J. Daverman

Given an arbitrary géneralized n—manifold X , nx4 s ona
would like to know whether X is the cell-like image of an n—
manitoid. Guinn L[i9871 reduced this rescivability matter to the
the triviality of a certain obstruction i({X} £ 1+BZ”. Whatever
the obstruction, Buinn has aliso shown [197%9] that there is an
approximate fibration f:M =+ X defined on some Zn—manifold where
each point preimage has the shape of g”" . The latter fact
provides exemplary motivation for studying the larger class of
closed maps with manifolid domain such that all point preimages
{up to shape) are manifolds of a fixed codimension. It is
relevant +o observe that this class also includes all orbit maps
of free, compact (connected) Lie group actions on manifolds and
all locally trivial fiber bundle projections where both the total
space and the fiber are manifolds. An earlier survey L[1984]
iisted two other, more personal reasons for my interest in this
topic.

Standard MNotation: M is an (n+k)—manifold; G 1is a usc
decomposition of M into closed connected n—manifolds {up to
=hape); B is the decomposition space ®M/G ; and p:M =B 1is
the decomposition map. For simplicity, G will be cailed a

rodimension k {(manifold) decomposition, and unless other hypo-—

theses are given, you are supposed to assume this is alwavs the



sort of decomposition under discussion. Bawar=: some results
also require the extra hypothesis that both ™M and the elements
of G are orientable, while others presume the finite-—
dimensionality of B .

Broadly viewed, a basic issue here is, given full informa-
tion about two of the following items — (i) ™ , (ii) B , and
{iii) the elements of 5 —-— to describe the third. Other key
problems are to characterize the manifolds M admitting
codimension E decompositions and to determine the spaces B
arising as images.

We end this introduction by outlining the contents of this
survey. The first section presents a philosophy for addressing
these issues. The next 3 set forth known results for smalil
values of &k (there the reader should note that the overriding
codimension hypothesis is provided only by the section title and
is not explicitly repeated in statements of theorems). 85 moves
to the case of general codimension, where typically to derive
interesting conclusions about B the results include hypotheses
on tiriviality of some homology groups {(for all the decomposition
elements). 86 and 87 treat special topics, one about approximate
fibrators, and the other about PL maps p to polyhedra. §8
provides conditions leading to information about the structure of
M . 8% briefly deals with generalizations to decompositions
involving closed manifolds of variable dimensions. Finally, 810
offers a list of guestions {(presumeably unsolved}. The

bibliography is intentionally extensive.



1. Approaches

A fulcrum giving initial leverage in this area involves a

concept loosely referrad to as the continuity set of p:M +F .
It is éhe maxiaml open subset C of B over which the nth
cohomology sheat of the map ‘p is locally constant. Alterna-
tively, LC consists of ail bQEE such that for a {shape)
retraction 4 = p_ibD defined on some neighborhocod U of p
1b& and for all bEB with p”ib cu, rib:pﬁib = p~lbﬁ is a
degree one map. Coram and Duvall [197%] have shown C to be

dense (and open) in B . A spectral sequence analysis leads to

the following fundamental result [Daverman 17711:

Theorem 1.1. The continuity set L[ of p:H =+ B (dimC < o)

iz a generalized k—manifold.

Under additional hypothesas one can hope for stronger
conclusions, such as, for example, that B itself is a manifold.
Branching out from 1.1, one2 has at least two directions to
pursue: further analysis of C ; and investigation of the

discontinuity set D = B\L . The latter has a secondary subdivi-

sion, organized about the degeneracy set K consisting of those
points bIEB such that for a retraction r:id = p—ibi as above,
arbitrarily close to bi is some bEE such that rijb:b =+ bi

induces the trivial homomorphism on nth cohomology. A trouble-—

some spot, the degeneracy set is a breeding ground for pathology.



Another device that comes up, not as often but obviously

eneficial when it does, is the concept of approximate fibration,

o

also introduced by Coram and Duvall [19771. A map f:E + A is

rcalled an approximate fibration if given any homotopy h+:x - A

tial 1lift %:X = A (where F¥=h_ ), and gx0 5 there is an

Jeds
[N

n

]
approximate i1ifting ¢t=x =+ E with ¢ﬁ=¢ and with §¢+,h+ &—
close for all t . Coram and Duvall proved that all point

preimages in approximate fibrations have the same homotopy tvpe

(shape):and, just as with Hurewicz fibrations, the homotopy

groups are related by the exact sequence:

i+1 i i T

When p:M =+ B is an approximate fibration, this homotopy =xact

sequence provides desireable interrelations among M , B ; and

the point preimages under p .

Theorem 1.2 [Daverman—Husch 17847]. If dimB < ©w , then B

contains a dense, open subset A over which p 1is an

approximate fibration.

Cilmarly A C C .
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2. The Codimension One Case

Theorem Z.1 [Daverman 19851. B=M/G is a l1-manifoid,
possibly with boundary, and §B=8 provided both ™M and the

elements of § are orientable.

- 1 . - . . .
Theorem 2.2. If BaR~ , then each inclusion g -+ M induces

homology isomorphisms H (g) -+ H%iﬂ) -
The two preceding results combine to give that the

continuity set C 2 IntB (in fact, C = IntB ).

Theorem 2.3. If 2ach g&€G is Z2-sided and locally flatly
embeddad in M , then p:M + B is an approximate fibration;
moreover, if M is noncompact, then for sach g&€G M is homeoc—
morphic to ngl {via a homeomorphism sending gcﬁ to g=0 ).

Without the local flatness hypothesis of 2.2, the eslements
of G can be homotopically inequivalent for n>Z {(not so for
n=2a 1} Illustrative examples basically stem from the following

£ wm

laminated plus construction:

Theorem 2.4 [Daverman—-Tinsley 19841. Suppose N is a
closed n-manifold (n»3) and P is a finitely generated perfect
subgoup of ﬂl(N) . Then there exists a compact (n+l)-manifold

M having two boundary components N,N+ such that (1) ﬂl(N+)

X

T, (M}/F , (2) the inclusion N+ -+ M 1is a homotopy equivalence,



(Z) the inclusion N + M is an homology equivalence, and (4) M
= AU{M\A)} where A denotes a collar on N+ and M\MA is

homeomorphic to N=[0;1) -

Tinsiey and I have a new example showing that this structure
:an‘uc:ur even when P is just the normal closure of a finite
set, rather than being finitely generated, but the extent to
which comparable structure can be identified in this more general

setting remains undecided.

10



F. The Codimension Two Case

Theorem =.1 [Daverman—Walsh 1985Sb; Daverman 19881. B=M/G

is a Z-manifold, possibly with boundary if M is nonorientable.

Theorem 3.2. The complement of the continuity set C of
p:M + B is locally finite (in B J.

Theorem Z.3 L[Daverman—Walsh 1985al. If all elements of O
have the shape o+t g" , then p:M =+ B is an approximate
fibration for nxl and it is an approximate fibration over the
complement of a locally finite set for n=1 .

Seg also 9.8 for information about the structure of M .

4. The Codimension Three Case

Theaorem 4.1 [Daverman 19B&]. dim{B)=3 .

Example 4.2.- B need not be a generalized Z—manifold; it

could be, say, the open cones over a torus. This results from the

. C s - A R i i
decomposition of 587 =57 =R into the torus S =5 =0 and 2-
e
spheres of the form slxsﬁxrs {r>Q) . A similar codimension n+l

Fah

decomposition of Nann+1 vields the open cone over any

preassigned manifold N

11



5. The Case of Higher Codimensiaon

Example S5.1. Dranishnikov [19881 has an exampie of a cell-
like decomposition K of S? with infinite-dimensional decom—
position space. Composition of the obvious maps H=S?3Nn —* 57 -
S7JH induces a codimension 7 manifold {(up to shape! decomposi-
tion of M Ffor which B (% s"/K) is infinite dimensional.

=
o s n ST s . . - . =
Recently Dydak and Walsh announced this could be done with S

in place of §° , which in turn implies dimension-raising can

occur with codimension 5 decompositions.
Theorem 3.2 [Dydak 19771. B is locally l-connected.

Say that a decomposition G is m—acyciic if the reduced
Steenrod homology {(integer coefficients) of each g&b6 is trivial

in dimensions less than m+1l .

Theorem 5.3 [Daverman—Walsh 1987]. Suppose G is a (k-1)-
acyclic codimension k manifold decomposition of a manifoid ™

with k*2 and dimB<s . Then B is a generalized k—manifold.

Corcilary S5.4. Under the hypotheses of 5.3, if additionally
gach g€&€G has the shape of a simply connected manifold, then

p:M = B is an approximate fibration.

Theorem 5.5 [Snyder 192881. Any nondegenerate (k—2)-acyclic

codimension k decomposition G of an orientable (n+k)—-manifold

12



M (3=k=n+1) vields a generalized k-manifold B as decomposi-
tion space, provided dimB<® and B\C does not locally separate
B . {Addendum: for n=k+1 the hypothesis that § is nondegen-—
erate, which amounts to requiring Hausdorffness in the nth-—

cochomology sheaf of p:f + B , is not necessary.!

Corollary S.b. I+ B is a usc decomposition of a (Zn+l)-—-
manifold ™M into compacta with the shape of homology n—spheres
{n>2) such that dimB<®m and B\C nowhere locally separates E ,

then B 1is a generalized (n+l)-manifold.

13



&. Approximate fibrators

An n—manifold N is called a codimension k fibrator if

whenever G5 is a decomposition of an (n+k)-manifold M such
that each g€G6 has the shape of N and dim{M/G) < w0 , then
p:M =+ M/6 is an approximate fibration. I+ their appeal is not
transparent, recall that associated with any approximate fibra—
tion is an exact sequence relating homotopy groups of M , B ,

and the tvpical fiber.

n

Examples. By 5.4, 8 is a codimension k fibrator for

nzk*2? : furthermore, all simply connected manifolds are

H

codimension 2 fibrators. 0On the other hand, no N % SixX is &

codimension 2 fibrator; neither is any manifold that is a regular

cyclic cover of itself. Since the join of anvy homology n—sphere
2n+1

Z with itself is & , Lacher's construction [Lacher 19731

s

shows that £ is not a2 codimension n+l fibrator.

Aside from the consequences of 5.4, information on this
scora pertains largely to k=2 . Manifolds with finite first
homology frequently possess the codimension Z property, and it is
possible for those with infinite first homology to have it as

well.

Thearem &.1 [Daverman 198%91. Real projective n—space is a

codimension 2 fibrator.

14



Theaorem &.2 [Daverman 1990]1. Suppose N is an n—-manifold
such that for any usc decomposition of an (n+Z)-manifold ® . into
copies of N , the map p:M *+ B is an approximate fibration over
its continuity set. Suppose HiiN) is finite and for each
integer dx1 egual to the order of some HEH1(N) ., N admits no

map N =+ N of degree d . Then N is a codimension 2 fibrator.-

in the setting of 4.2 p will be an approximate fibration
over C if every degree 1 map N = N is a homotopy equivalence.
For fairly trivial reasons, this is the case provided either:
1 ﬁl(N) is finite, or
2y N is aspherical and w_ (M) is Hopfian.

= 1

Theoram 6.3 [Iml. Any finite product of orientable surfaces

of genus at least 2 is a codimension 2 fibrator.

15



This section treats work in progress. Throughout it we
suppose p:M =+ B is a FL map from an orientabie FL (n+kJ-—-
manifold M onto a polyhedron B such that e=ach p—lb has the
homotopy type of a closed (connected, orientable) n—manifold-.
This category has particularly useful advantages because it

allows induction arguments {based on k J.

.
1

(3

1

Let B denote the t-skelston of B .
- (k—23 . 3 - -1, (-2}
Theorem 7.1. B\B is a k-manifold and pl sp (B 3
{k—27 . . - - .
= H is an approximate fibration.

Theorem 7.2. BAC separates no open susbet of B .

o

Theoram 7.3. For n+k=4 and n=1 EB is a 3—-manifol

The argument relies on analysis of possible {(generalized

~—

Seifert fiberings of the 3—-manifold boundaries of regular

ey

321

neighborhoods of p b , inspired by [Seifert 1732

Theorem 7.4. If H.{p B)20 Ffor 1=Zi=(k-1)/2 , then B 1is

a generalized k—manifold.

Corollary 7.3. If p:M =+ B has homology n—spheres as coint

inverses and k=2n , then B is a generalized k—manifold.

16
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Example 7.7. There is a FL map p:5 =R = B such that sach
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p “ba5 but B is not a manifold. Hare B can be the open
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Theorsm 7.5B. I+ p:M =+ B is a FL map suc

for all bBEB and ™M is caompackt, then x{(M = 0 .

Corollary 7.9. x{M) = 0 when n is odd.

Thearem 7.10. If M is a clossd 4—manifold with H_(F) =

=%, : o T i -
H, (8§ and p:M +EF is FLy, then n=0 .
- - 41 ZHk - - ;
Theorem 7.11i. Suppose p:H =+ R 1is a FPL map with each

-1, . . - . - - \
p b homotopy egquivalent to an orientable surface of {fixsd genus

at least 2. Then p is an approximate fibration.
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8. STRUCTURE THEOREMS

Theorem 8.1 [Liem 1%851. I+ © 1is a usc decomposition of
- - ' i -+ 1 .
o L into n—spheres (n=31, then p:ﬁq '+ B can be approximated

by a locally trivial n—sphere bundle map.

A technical structurs theorem, very general and partially
unsatisfying, about arbitrary codimension one decompositions is

provided in [Daverman 1%851. It implies:

Theorem B.2. If a closed manifold M admits a codimension
i manifold decomposition, then x{(M)=0 .
i 4
Theorem 8.3 [Husch 1%977J. An approximate fibration p:ﬂn+*
4
- g {n®*5) can be approximated by locally trivial bundle maps if

and only if p is homotopic to one.

Example 8.4 [Husch 19771. Thera exists a closed {(n+l)-—
manifold M and an approximate fibration p:M = Sl such that
2ach p—ls is homeamorphic to a certain ciosed n—manifold F

but p is not a locally trivial F-bundle over Sl -

Example 8.5 [Chapman—Ferry 19831. For nZ4 there exist a

~
o

closed (n+2)-manifold M and approximate fibration p:M =+ 5
with n—manifold fiber such that p 1is homotopic to a bundle

projection but cannot be approximated by one.

18




Theor=am 8.4& [Hughes i98%1. An approximate fibration p:M =+
B between closed manifolds {(dimMz3) can be approximated
arbitrarily ciosely by locally trivial bundle projections if and
only if p is homotopic through approximate fibrations to a

bundlie projection.

Theorem 8.7 [Buinn 177721. I+ p:M =+ B is an approximate
fibration, n®5 , B is a polyhedron, and the fiber F
satisfies 'Nhfﬂl(F)xZE) = 0 Ffor all ¥ , then ®M has the
structure of a topological bliock bundle over B ; moresover, for
every £x3 there is an &—homotopy ht:ﬁ -+ B starting at p .
ending with a block bundle projection, and for which each h+ is

an approximate fibration.

A topological block bundle with fiber F is a map f:E =+ K

{k triangulated) such that for each simplex otk there is a

homeaomorphism f—iic) % F*o carrvying f_l(aa) to F=po .

Caroilary 8.8. For codimension Z manifold decompositions in
which all point preimages are l—connected, M 1is a topological
block bundle over B and p:M -+ B can be approximated by block

bundle projections.
Using results from [Farrell-Jones 19891, Im has proved:

Theorem 8.%2 L[Iml. if p:M -+ B is an approximate fibration,

nzS , B is a polvyhedron, and the fiber F 1is a compact Rieman-—

19



nian manifold of nonnegative curvature, then p can be approx-—

imated by locally trivial bundlie projections with F as fiber.

Corpliary 8.10. I+ B is a polyhedron and p:M =+ B is a
FL map from a FL manifold ™M such that .dimHES and each point
preimage is a fixed closed hyperbolic surface F , then M is
the total space of a locally trivial F-bundle and p can be
approximated by locally trivial bundle projecticons with F as
fiber.

Froct. See also 7.11.

Borel and Serre [1950] have shown esuclidean space never has
the structure of a locally trivial fiber bundle with compact
fiber: Conner [1%57]1 obtained the same sort of result for the
complement of a point in any simply connected manifold. One
suspects similar nonexistence statements hold for arbitrary
codimension k decompositions, but currently this has been

verified only For small k values.

n

Theorem S.11- E admits no codimension 1 or 2 manifold

decomposition.

Theorem S.12. No noncompact manifold having an isolated end
o such that Hliw) % 0 admits a codimension 2 manifold

decomposition.
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2. OTHER STUFF

Theoram .1 [Daverman—Montejanol. An orientable 3-manifold
M admits a usc decomposition G into l-manifolds and 22—
manifolds (at least 1 of each dimensicn) if and only if M is a
graph manifold in the sense of Waldhausen (i.e., M contains a

locally finite collection of pairwise disjoint, locally flat tori

T. such that MWUT, 1is an Si—bundle over some Z-manifold

o

basea).

Thecrem 2.2. If B is a usc decomposition of any homology

S—sphere £~ into l-manifolds and 2-manifolds, then £°/G is a

cactoid-

Theorem 2.3 [Davermani. Suppﬁse G is a usc decomposition

af an n—manifold M and

1 £d. < d, £ « « « £ d_=n {5
O 1 =
are integers such that each g€G has the shape of a closed,
connected, arienéable (n—di)—manifold, for some i=i{g} . Then

c—dim7(ﬁ/83 = (Zdi) - 5 3

moreover, if 1 < d. ,

The svmbolism c—dim. in &.3 stands for "Integral
cohomological dimension", which of course coincides with, say,

covering dimension provided M/G is finite dimensional.
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10. GUESTIONS

1. Is B an ANR? What if the elements of G are pairwise
homeomarphic? Describe the various possible image spaces B .

2. What can be 'said about the structwe of M 7?7 Why has no one
found any codimension k decomposition aof En+k 7

F. Suppose nxil , M is an (n+2)-manifold, and the elements of
5 are all n—spheres. Is M an n—sphere bundle aover B 7

4, For which integers n and k is there a decomposition G
of the (n+k)-sphere into n-spheres? into n—tori? 1into fixed
products of spherss? into closed connected n—manifolds?

Sa If 5 is a usc decomposition of M into n—spheres, where
2Ln+1<k<2Zn+2 , is B a generalized k-manifold? What about into
hamology n—spheres?

5. I1¥f elements of GG just have the shape of manifolds, does

-

M admit a related decomposition G% into genuine n—manifolds?
7 Is B Ffinite-dimensional when elements of G are genuine
manifolds? if the elements of G are simple closed curves?

8. Is the set C of continuity points necessarily connected?

-

2. Assume M is éloged and the degeneracy set ¥ is empty.
Is therz an upper bound tc the degrees of maps g -+ 9 induced
by the restrictions of neighborhood retractions U -+ =P i

10, In case k=3, is the set of points at which B +fails to be a
generalized F—-manifold locally finite?

i1. In case M is noncompact and k=1 , must M have the

homotopy type of a claosed n—manifold?
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12, If the elements of G in #11 are pairwise homeomorphic, is
M topologically =squivalent to g=-=E1 {(geiBy 7

1= I+ W is a compact (n+l)—manifold with §W#8 and the
inclusion N = W of some component N of §W is a homotopy
equivalence, does W admit a lamination (i.e., a decomposition
into closed n—-manifolds)? What if the kernel of the induced T
homomorphism is simple (but contains no f.g. perfect groups)

i4. Suppose (W,M.,M") is a laminated cobordism. Is thers soms

manifold N admitting acvyclic maps N =+ M & N =+®" 7

15. ‘Let 9{M = {M’: there exists a laminated

cobordism (W,M,M" 33 .

Compars &(M) with the group of homology cobordism classes.

-

15, Is there a Z-—-manifold M whose fundamental group has
nontrivial wild group K but ™M is laminated cobordant to no

M where o, {M"} = ﬂitﬂ)fﬁ - What i+ M is the exterior of a

1
knot with trivial Alexander polynomial?

i7. Find H4 with vi(H4) = A4(5), the alternating group on 5

symbols, and laminated cobordism to a l-connected 4-manifold.

iB. If a &—manifold (with §) is an h—cobordism, is it laminable?

Is its interior a product?

i%. Which Z—-manifolds result from a decomposition of a fixed

&

-
—

{n+2)—manifold into n—-manifolds? Is there an ™M vyie=lding all
manifolds of genus na larger than half the rank of Hiiﬁ) ?
20. What is the role of local knottedness in codimension 2
manifold decompositions?

2i. Which k—-manifolds result from a decomposition of a fixed

{i+k)—manifold ™M into l-spheres?
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?2. Is there a decomposition of the n—ball into circles? of a
compact contractible space? of a cell-iike set?

2Z. Does there exist a usc decomposition of the S—spheres into
simple closed curves and two circles worth of points?

24, if k=% , n=1 , and the degensracy set K is empty, is F

a generalized Z-manifold?

?5. Does local constancy of the ith cohomology sheaf associated
with p , for ifk—-i, imply B 1is a generalized k—-manifold?

24. Given an arbitrary closed manifold N , does there axist a
decomposition § of some (n+k)-manifold M into copies of N
such that p:M -+ B is NOT an approximate fibration. Are there
any examples of such N besides those with homology sphere
farctors and those that regularly, cyclically cover themselves?
27, I+ B is an AMR, n=2, and 'p:ﬁ =+ B is an approximate
fibration, can p be approximated by a locally trivial bundle
map with Z-manifold fibers? Is B resolvable (the Z-sphere
fibers case is particularly interestingl?

?8. Suppose p:M -+ B is an approximate fibration between
manifolds, with B aspherical, that is homotopic to a {locally
trivial) bundle map. Can p be approximated by such maps?

29, For which n—-manifolds N and integers k does the hypothe—
=iz that all elements of G are copies of N imply p:f =B is
an appraoximate fibration? What if ﬂ1(N) is finite and k=2 7
What if M 1is covered by the n—-sphere? What if N 1is hyper-—

bolic? What if all g€6 are required to be locally flat in ™ 7

S0, If a closed S—-manifold fails to be a codimension 2 fibrator,

is it a Seifert fiber space?
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[y

-
-

- For n=2m, k=2m+! does there exist a PL map p:M = B from

a PL (n+k)—-manifold ™M to a simplicial complex B which is not

a generalized manifold, such that Hiig)éﬁ whan O<j<n 7

- e . PR . 1 m
2. What are the FL locally trivial n—sphere bundles on 5 =5 7
3. Suppose for k=n+132Z both ™M and all gelB are spheres.

Is therz an example where the degeneracy set KB} contains mora

than one point?

4. For odd k is there a codimension k decomposition of some

ciosad in+k)-manifold ™M having nonzero Euler characteristic?

=5. Do all FL M' with x(M)=0 admit circle decompositions?
What about those that fiber over 51 ?

ZH. Is there a closed n—-manifold which regularly covers itseld
via a noncyclic group [T of deck transformations that alsoc acts
freelvy on some sphers? on some homology sphere?

I7. What can be said about decompositions into (n—-17- and {(n-3)-—
manifolds? What if they are all FL manifolds?

e .
-

8. Can every 4-manifold (n—-mfld) be decomposed into i- and

manifolds?

I._.'.l

2. I1¥ the dimension of {closed manifold) point-preimages of
p:M =+ B varies,.can dimB excesd dimM ¥
40. Dpes there exist a continuous decomposition of Euclidean n—

zpace into solenoids?

25



BIBLIOGRAPHY

A. Borel and J.-F. Serre, Impossibilite de fibre2r un espace
guclidean par des fibres compactes, C. R. Acad. Sci. Faris Z30

(1950), 2258-22&0.

5. E. Bredon, Introduction to Compact Transformation Sroups,
Arademic Fress, New York, 197Z.

T. 4. Chapman, Approximation results in topological manifolds,
Memoirs Amer. Math. Soc. 34, no. 251, 1981,

, Proper fibrations with n—manifold fibers,

T. A. Chapman and 5. Ferry, Hurewicz fiber maps with ANMR fibers,
Topology 1& (1977), 131-143.

, Constructing approximate fibrations, Trans. Amer.
Math. Soc. 278 (198B3), 737-774.

P. E. Conner, On the impossibility of fibering certain manifolds
bv a compact fiber, Michigan Math. J. 4 (1737, 24%-235.

D. 5. Coram, Approximate fibrations —— a geometric parspective,
in Shape Theory and Geometric Topaology (5. Mardesic and J. Segal,
eds. ), Lecture Notes in Math. #3870, Springer—Verlag, Berlin,
1981, 3F7-47.

D. 5. Coram and P. F. Duvall, Approximate fibrations, Rocky Mtn.
J. Math. 7 (1977, 275-288.

Approximate fibrations and a movability condition +ar
maps, Pacific J. Math. 72 (1977), 41-36.

- -

, Mappings from S~ to §° whose point inverses have
the shaps of a circle, General Topology and Appl. 10 (1979}, 239-

, MNondegenerate k—sphersa mappings, Topoliogy Froc. 4
(1979, &7-B2.

, A Hurswicz—type theorem for approximate fibrations,
Proc. Amer. Math. Soc. 78 (1980, 443-448.

, Local n—connectivity and approximate lifting,
e

Topology Appl. 13 (1981), Z25-228.

, Finiteness theorems for approximate fibrations,
Trans. Amer. Math. Soc. 269 (1%BZ2), 383-394.

-

. hon cell-like decompositions of S&, Facific J. Fath.
115 (1984, 47-35.

26



K. J. Daverman, Decompositions into codimension one submanifolds,
Comp. Math. 35 (1985}, 185-207.

Decompositions into codimension two submanifolds: the
nonorientable case, Topology Appl. 24 (i98&), 7i-81.

The I-dimensionality of certain codimension three
decompositions, Proc. Amer. Math. Soc. 2& (19861, 173-179.

_, Decompositions of Manifoglids, Academic Fress, Orlando,

_________ , Decompositions into submanifolds of fixed dimension,
in Beometric and Algebraic Topology (H. Torunczvk, 5. Jackowski,
and S. Spiez, eds.), Banach Center Fubl., vol. 18, FWN, Warsaw,
1984, 10%-114. :

Submanifold decompositions that induce approximate
ibrations, Topology Appl. 33 (198%), 173-184.

“y
o

~

Manifolds with finite first homology as codimension 2
fibrators, Proc. Amer. Math. Soc., to appear.

Decompositions into regularly aligned submanifolds,
in progress.
, FL maps with manifold fibers, in progress.

The dimension of submanifold decompositions, preprint.

R. J. Daverman and L. 5. Husch, Decompositions and approximate
fibrations, Michigan Math. J. 31 (1%84), 197-214.

R. J. Daverman and L. Montejano, Mixed manifold decompositions of
Z—manifolds, in progress.

R. J. Daverman and F. C. Tinsley, Laminated decompositions
involving a given submanifold, Topology Appl. 20 {(ig8Z)y, 107-1i%.

_________ , Laminations, finitely generated perfect groups, and
acyclic mappings, Michigan Math. J. 33 (1i98&), 343-351.

_________ , 1n progress.

R. J. Daverman and J. J. Walsh, Decompositions into codimension
two spheres and approximate fibrations, Topology Appl. 1% (19853,

103-121.

Decompositions into codimension two manifolds, Trans.
Amer. Math. Soc. 2BB (1985), Z73-2%91.

____  _, Decompositions into submanifolds that yvield
generalized manifolds, Topolaogy Appl. 26 (1987), 1432-1462.

27



&. M. Dranishnikov, On a problem of F. 5. Alexandroff {in
Russian), Mat. Sh. 135 (177) (1988), 551-357.

. Dydak, Some properties of nearly l-movable continua, Bull.
cad. Fol. Sci. 25 (1977, &£B85-48%9.

I Ca

J. Dydak and J. Segal, Local n—connectivity of decomposition
spaces, JTopology Appl. 18 (1984, 43-358.

J. Dydak and J. Walsh, Sheaves that are localliy constant with
applications to homology manifolds, in Geometric Topology and
Shape Theory (5. Mardesic and J. Segal, eds.), Lecture Notes in
Math. #1283, Springer—-Verlag, Berlin, 1787, 45-87.

, Sheaves with finitely generated isomorphic stalks
ng thalagy manifolds, Proc. Amer. Math. Soc. 103 (1788), 555-
&

£~ W
C:l

, Cohomology local connectedness of decomposition
spaces, Froc. Amer. Math. Soc. 107 (1989), 1095-1105.

, Estimates of cohomological dimension in
decomposition spaces, to appear.

Cohomological dimension 2, preprint.

E. Dyer and M.-E. Hamstrom, Completely regular mappings,
Fund. HMath. 45 {1257), 103Z-148.

D. B. A. Epstein, The degree of a map, Froc. London Math. Soc.
{3} 16 (194463, Z4H&F-3B3.

F. T. Farrell and L. E. Jones, A topological analogue of Mostow's

-

rigidity theorem, J. Amer. Math. Soc. 2 (1989}, 2537-370.

o
T

5. Ferry, Approxim i
197

= brations with non—finite fibers, Froc.
Amer. Math. Soc. 54 7 =3

, I35-345.

flexander duality and Hurewicz fibrations, preprint.

8. E. Hatcher, Higher simple homotopy theory, &nn. of Math. 10Z
{1975), 101-137.

J. Hempel, Residual finiteness of surface groups, Froc. Amar.
Math. Soc. 32 (1972, Z23. :

H. Hop+, Zur Algebra der Abbildungen von Mannigfaltigkeiten, dJ.
Reine Angew. Math. 1463 (1230}, 71-88.

C. B. Hughes, Approximate fibrations on topoliogical manifolds,
Michigan HMath. J. 32 (1983), 1&47-183Z.

C. B. Hughes, L. R. Taylor, and E. B. Williams, Bundi= theories
for topological manifolds, Trans. Amer. Math. Soc.. to appear.

28



. Manifold approximate fibrations are
approximately bundles, preprint.

L. S. Husch, Approxzimating approximate fibrations by fibrations,
Canad. J. Math. 29 (1%77), B%7-913.

D. Husemoller, Fiber Bundles, Springer—Verliag, Berlin, 1275,

¥. H. Im, in progress.

R. C. lLacher, k—sphere mappings on SLH+1, in Geometric Topoloagy
(L. C. Glaser and T. B. Rushing, eds.), Lecture Notes in Math.

#4378, Springer—VYerlag, Berlin, 1975,

Y. T. Liem, Manifolds accepting codimension one spherse—like
decompositions, Topology Appl. 21 (19835), 77-B4.

Y. Matsumoto, On 4-manifolds fibered by tori, Froc. Japan Acad.
58 (19821, .

P. Orlik, Seifert Manifolds, Lecture Notes in Math. #2221,
Springer—Verlag, Berlin, 197Z.

F. Buinn, Ends of Maps, I, Ann. of Math. 110 (197%9), 273-331.
________ , An obstruction to the resoclution of homology manifoids,

Michigan Math. J. 34 (i987), 285-2%1.

F. Raymond, Local triviality for Hurewicz fiberings of manifolds,

Topology 3 (19435) 43-57.

F. Raymond and J. Tollefson, Closed Z-manifolds with no periodic
maps, Trans. Amer. Math. Soc. 221 (1974, 403~-418. BSee also
Correction, TAMS 272 (1982}, B0O3-807.

T -

C. P. Rourke and B. J. Sanderson, Block bundies: I. II, III, Ann.
of Math. 87 (19&8), 1-28; 255-277:; 431-483.

5. F. Scott, The. geometries of 3—manifolds, Bull. London Math.
Soc. 15 (1983}, 401-4B87.

H. Seifert, Topologie dreidimensionaler gefaserter Raume, Acta
Math. &0 (1932), 147-238.

D. F. Snvder, Partially acyclic manifold decompositions yielding
generalized manifolds, Fh.D. Dissertation, Univ. Tennessee, 1988.

J. L. Tollefson, On Z-manifolds that cover themsslves, Michigan

Math. J. 1& (1947}, 103-109.

J. A. Wolf, Spaces of Constant Curvature, McGraw—Hill Bock Co.,
New York, 1247.

29



A NEW PROOF THAT JV3= 0

Fredric D. Ancel and Craig R. Guilbault

In [5], C. Rourke gives a brief clever proof of the classical result of
V.A. Rokhlin [4] that every closed orientable 3-manifold bounds a compact
orientable 4-manifold (i.e., Qa= 0). The non-orientable version of Rohklin's
theorem, originally proven by R. Thom [6], guarantees that every closed
3-manifold (possibly non-orientable) bounds a compact 4-manifold (ff3= 0). In
this presentation, we indicate how Rourke's approach can be extended to give
a short proof of this latter theorem.

In [5], Q3= 0 is deduced as a corollary of a stronger theorem (proven
earlier in [7] and [2]) that every closed orientable 3-manifold can be
reduced to S° by a finite number of elementary Dehn surgeries. Here
"elementary" means that a meridian of the attached solid torus is identified
with a curve in the boundary of the removed solid torus that is homotopic to
the core of the removed solid torus. Then Qa = 0 follows from the observation
that any two closed orientable 3-manifolds which differ by an elementary Dehn
surgery cobound a compact orientable 4-manifold.

Similarly we can deduce that N3= 0 from a stronger theorem (first proven
in [3]) about the reducibility by surgery of every non-orientable 3-manifold
to a simple model. In the non-orientable situation the simple model which

replaces s® is the non-orientable 2-sphere bundle over s!, which we denote T.

Our basic theorem is:

THEOREM Every closed non-orientable 3-manifold can be reduced to T by a

finite number of elementary Dehn surgeries.

Since T bounds the non-orientable B? bundle over S!, and since any two

closed 3-manifolds (orientable or not) which differ by an elementary Dehn
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surgery cobound a compact 4-manifold, we have:

(COROLLARY. ( N3= 0 ) Every closed 3-manifold bounds a compact

4-manifold.

We describe how to extend Rourke's techniques to give an elementary
proof of the above Theorem . As in [5], we will use an induction argument
based on a complexity assigned to Heegaard diagrams.

Suppose M = H1 u H2 is a Heegaard splitting of a non-orientable
3-manifold M. Then I-I1 and H2 are non-orientable handlebodies meeting along a
non-orientable surface S. If the Hi's are of genus n, then S has Euler
characteristic 2-2n, and we will call S a non-orientable surface of genus n.

A set of n disjoint 2-sided (i.e., having an annular regular neighborhood)
simple closed curves on S whose complement is a punctured disk is called a
complete system of curves on S. (Every non-orientable surface of genus n has
a cotnplete system of curves.) It is easy to see that if >X and Y are complete
systems of curves on S with the property that each element of X bounds a disk
in Hj and each element of ¥ bou’nds a disk in Hz’ then M is completely
determined by S, X and Y. We then call S(X,¥) a Héegard diagram for M.
Moreover, any Heegaard diagram, S(X,Y), uniquely determines a 3-manifold
which we will denote M(X,Y).

A 2-sided curve x on a non-orientale surface S is called exceptional if
S - x is orientable, otherwise it is called ordinary. A complete system of
curves on S is called uniform if it contains only ordinary curves, or if
genus(S) = 1. It is easy to see that evéry non-orientable surface of genus n
has a uniform complete system of curves. Note that a genus 1 complete system
necessarily contains a single exceptional curve. A Heegaard diagram S(X,Y)

will be called a uniform if both X and ¥ are uniform systems.
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REMARK. The assumption of ""2-sidedness" for all curves used in a

Heegaard diagram is of utmost importance. While this property is automatic

for a curve on an orientable surface, the situation is much different for
non-orientable surfaces. On the other hand, our preference for ordinary
curves evolved during our work on this problem. Use of uniform Heegard
diagrams substantially simplified our original proof. Much of the work done
in proving the our theorem is aimed at securing these properties when
choosing new curves (see for example the lemma below).

To a.uniform Heegaard diagram S(X,Y), where S is non-orientable, assign
a complexity ®(X,Y) = (n,k) where n = genus(S) and
k = min{lxn yl : x € X, y €Y}. Note that since S is non-orientable, then
n 2 1. Our proof is by induction on the complexity of these uniform Heegaard
diagrams under the lexicographic ordering.

While many facts about surfaces and 3-manifolds must be verified to give

a complete proof of the theorem, the key is the following:

LEMMA Suppose x and y are two non-separating 2-sided curves on a
non-orientable genus n surface S and that x meets y transversally. Let
Ix n y| denote the number of intersection points.

(a) If Ix n y| = 0 and both x and y are ordinary, then there is a
(necessarily ordinary) n-on-separating 2-sided curve z on S which meets each of
x and y transversally in a single point.

(b) If 1x n yl > 1, then there is a non-separating 2-sided curve z on S
with 1xn 2zl < lxn yl and |y n 2zl < |x n yl. Moreover, if x and y are

ordinary then z can be chosen to be ordinary.

Proof of this lemma requires careful examination of approximately ten
different cases. Its complete proof as well as the remaining ingredients in

the proof of the main theorem can be found in [1]
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HIGHER DIMENSIONAL DUNCE HATS
by
Robert N. Andersen

This paper represents joint work with Richard M. Schori, and was presented
at the 1990 Workshop in Geometric Topology in Corvallis Oregon in June 1990.

1. Introduction.

Higher dimensional dunce hats, D?®, n > 1, are defined in [M-S] using the
hyperspace of closed subsets version of symmetric products where D? is the standard
(two-dimensional) topological dunce hat. The standard topological dunce hat is
known to be the simplest example of a contractible space, in the sense of homotopy,
that is not collapsible in the sense of Whitehead. See Zeeman [Z] for a comprehensive
article on the dunce hat and its relation to problems in manifold theory. In [M-§]
they give a homology proof that the spaces D?" are contractible. In this paper we
give a (non-symmetric product) simple, inductive construction for spaces D", n > 0,
“and prove, using a homotopy argument, that D?", n > 0, is contractible; that
D?+1 n > 0, has the homotopy type of the (2n + 1)-sphere, S?"*!; and that

D™, n > 1, is not collapsible.
2. The contréctibility of the Duhce Hat.

The topological dunce hat D is obtained by taking a 2-simplex, A?, and iden-
tifying the edges as indicated in Figure 1. The contractibility of D is well known
but it is not at all geometrically evident.
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Dunce Hat
Fig. 1

We will now give a more formal definition of the dunce hat which will facilitate
a proof of the contractibility of D and it will motivate our definition of higher

dimensional dunce hats. First we need a few definitions. .

Let A®, n > 0, be a standard n-simplex < vg,...,v, > and if 0 <m < n, let
(A™)(™ denote the m-skeleton of A™. Thus the boundary of A", denoted Bd A™, is
the space (A™)(*~D. Fori =0,...,n+1, let d* : A"—Bd A™"! be the face map
which linearly injects A™ onto the n-face of A™*! opposite the vertex v; such that the
order of the vertices is preserved. Thus, d*(< vg,...,Un >) =< V0,.. ., Diyen.,Un >,

where ¥; means v; has been deleted.

If X and Y are disjoint topological spaces, let X ¥ Y denote their topological
sum, and if A is a closed subset of X and f : A—Y is a map, then let the adjunction
space X |J; Y denote the quotient space X Y/ ~ where a ~ f(a) for each a € A.

The following is a basic theorem from homotopy theory and can be found in [V, p.

117].

2.1. Theorem. If f,g : Bd A®—Y are homotopic maps into a space Y, then
the adjunction spaces A™J 7Y and A" U s Y are of the same homotopy type.

Let D! be a copy of S and let * be a specified point of D'. Let ¢; : A'— D!
be a map taking Bd Al to * that is one-to-one on Int A', wrapping A! around
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D1, in a counterclockwise direction. If we orient A! with an arrow and take images
of A! under the d; maps, 7 = 0,1,2, then we obtain an identification pattern on
the boundary of A? that yields the dunce hat, D. To realize this with maps, let
@2 : Bd A2— D! be defined by |di(A!) = g1 0d;?, for 0 < i < 2. The map g, is
well-defined since the intersection of any two d;(A!) = A%, say AZNAZ = {v1}, is

a vertex of A2 and hence its image under each ¢; o d;'! is the point *.

Y2
A
q

. S 2
Vo vy b!

T

1
q
v > i >
0 Yi
Fig. 2

2.2. Definition. The dunce hat D? = A?(J;, D' is the adjunction space
where A? is attached to D! by .

2.3. Theorem. The Dunce Hat D? is contractible.

Proof. We will argue that g, is homotopic to a homeomorphism. If we start
at the vertex vy and move counterclockwise around Bd A2, g, maps each of [vg, v1]
and [vy,vz] once around D! in the same direction and maps [vs,vg] around D? in
the opposite direction. The last two wraps around D! are in the opposite direction
and hence homotopically cancel each other and consequently gz is homotopic to a
homeomorphism & : Bd A2—D*. Consequently, by Theorem 2.1, D? = A?{J,, D*
is of the same homotopy type as A? |, D!, and this latter space is homeomorhic to

A? since h is a homeomorphism and consequently D? is contractible since A? is. W

36



3. Defining Dunce Hats Inductively.

In this section we will inductively define spaces D*, for n =0,1,2,..., where
D? is the dunce hat. For even values of n greater than 0, D™ will be contractible

but not collapsible, the important properties of the dunce hat.

We need one additional definition related to an adjunction space, X (J Y,
where AC X,and f: A—Y. fp: XY —X Uf Y is the projection map, define
f:X——»XUfY by f =p|x. Le.

2N ) f(z) fzeAd
f(z)_{z ifzeX— A

We now begin our inductive definition of spaces D™.

Let D° = A°, which is a single point vy. Let go : A°—D° be the map from
A? to D°. Now define a map § : Bd A'—D° by, §1(vo) = §1(v1) = vo.

We now let D' = A, DO and define a map ¢; : A'—D?! by
Q= 81 : Al— D1,

Assume that n > 1 and that ¢,—; : A""'—D™"! has been defined such that
Gn—1 © d:-"'z = gn_p, for i = 0,...,n — 1. Define g, : Bd A®"—D""! by letting
qnld?-l(A,,_l) = Qn-10 (d:-"'l)'1 for i =0,...,n. See Lemma 3.2 to verify that g,
is well-defined. Let D™ = A"}, D" ! and ¢, = q,, : A®—D".

We illustrate this inductive definition with the following diagram:

Bd A"+1
hd? —n\l
A 25 Dpr
(3.1) Tin
Bd A" in
Ar-l 223 pnel
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It is not obvious that the maps g, are well defined. We thus show that these

maps are well defined with the following Lemma.
3.1. Lemma. The maps §n = qn—1 0 (d?™1)™! are well defined.

Proof. For n = 1, the map §,, is clearly well defined. For n > 1 we need to

check that §, is defined the same way on the intersection,

O =< VgyernyDiyereyDjyere,tn >, of dP7H(A™ 1) and dF7H(A?).

We have
(d?—l)_l(d) =< Ug,--- ,'&j, cosslUn—y > and

(d;-’_l)—l(a') =< UgyeenyUiyers,Upal >

By the inductive hypothesis

Gn—1(< Ugy-n oy BiyensyUnag >) = Gno1(< Ugyeeny BiyenyUn—1 >) =

Gnoz 0 (¥ Y (< ugy. .y BiyevryUna1 >) = Gn—2(< Wo,...,...,Wa—2 > and
Gn-1(< Uoyer oy UjyeeeyUnog >) = Fno1(< Ugyee s Ujyenn,Upay >) =

Gn—2 0 (d?"z)"’l(< UgyeeoyBjyererUpai >) = gn-2(< Wo,...y...,Wn—2 >. Hence

dn 1s well defined. B
4. The Mai‘n Result.

In this section it is convenient to use some additional tools from homotopy

theory.

4.1. Theorem. Let A, B, X be CW-Complezes. If AC X, and h : A—B

i a homotopy equivalence, then h: X—X Un B 1s also a homotopy equivalence.

The proof of Theorem 4.1 is found in Whitehead [Wh] as Corollary 5.12 in
Chapter 1.
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4.2. Corollary. For A, X CW-Complezes, if A is a contractible closed subset
of X, then the identification map p : X— X /A defined by

x ifc€e A
P(m)={z freX—A

i8 a homotopy equivalence.

Proof. The map p : A—* is a homotopy equivalence since A is contractible,

and X/A=XJ,*. W
We will use the Homotopy Addition Theorem as found in Hu [Hu].

4.3. Homotopy Addition Theorem. For any map

f: (Bd A™L (AP (n=1)(X, z4), the homotopy class of f,[f] € Ta(X,x0),
n+1

and forn > 2 we always have [f] = Z(—l)i[f od}], where
=0

the d? : A™—Bd A™*! are the face maps, and for n =1 we have

[fl=1[fod3]-[fodg]-[fodi]™.
4.4. Theorem. The space D?" is contractible and D?"*! ~ S27+1 n > 0.

Proof. We have already proved that D® and D? are contractible and that D?
is homeomorphic to S'. Let n > 2 be odd and assume that D®~! is contractible.
Now D" = A" Uq." D1 and since D™"! is contractible, by Corollary 4.2, the
projection p : D®"—sD"/D™! is a homotopy equivalence. Furthermore, D"/ D!
is homeomorphic is S™ since it is equivalent to A™/Bd A™. This verifies that
D™ ~ S™, for n odd.

We now apply the Homotopy Addition Theorem to the map of pairs
DO Jng1 : (Bd AL (AP (n=1))_(57 &),

We have
n+1 _ n+1 )
po fuss] = (1)l o Gusr 0 dF] = 3 (1) lp ol
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Since n is odd, we have an odd number of maps each of which is the same except
for sign, and thus [po gnt1] = [P0 gn]. Thus, [P0 gnt1] as an element of 7,(S", ) is
represented by p o g, : (A", dA™)—(S™, x), which represents the identity element
of m,(S™) since the restriction of p o g, to the interior of A™ is a homeomorphism.

Consequently, p o §p41 : A" — 8" is homotopic to a homeomorphism and is

therefore a homotopy equivalence.

By hypothesis, D"~! is contractible and consequently p : D*—D"/D™"! is
a homotopy equivalence by Corollary 4.2. Therefore if p’ is a homotopy inverse
of p, then Guy1 =~ p' 0p 0 Jpy1 : OA™H1—D"™ is a homotopy equivalence. It
follows directly from Theorem 4.1 that D"+! = A"+ Ug, ., D™ ~ A™*!, which is

contractible. W

To see that the n—dimensional dunce hat is not collapsible we follow the poly-

hedral definition of collapsing in Zeeman [Z].

4.5. Definition. Let X be a polyhedron and Y a subpolyhedron. There is
an elementary collapse from X to Y if for some n there is an n—ball B™ with face

B™1 such that
X=YuB"

Bl =Y NnB"

We describe the eleﬁentaw collapse from X to Y by saying collapse across B™ onto
B™1 or collapse across B™ from B*~1 where B}~! is the complementary face of
B™. We say X collapses to Y, written X \, Y if there is a sequence of elementary

collapses

X=X\ X1 ...\ Xp =Y.
If Y is a point we call X collapsible and write X Y\ 0.

4.6. Theorem. The n-dimensional dunce hat D™ is collapsible if and only

ifn=0.
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Proof. For any polyhedron X to be collapsible there must exist a cell B C X
with a free face on which to begin the collapse. For D™, n > 1, we observe that the
map ¢, : A"— D™ is a quotient map that identifies all faces of the same dimension
to a single face of that dimension. Hence for any triangulation of D™ there will be
no free faces on which to begin the collapse. For n = 0, D° is a single point and

thus is trivially collapsible. W

R. M. Schori has a more detailed proof of this theorem in a paper that was

authored by Schori and Marjanovic.
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THIN CODIMENSION ONE DECOMPOSITIONS

Dennis J. Garity

1. Introduction: In [G], for each n greater than 4 and for each positive k less than n,
examples of generalized n-manifolds X and cellular maps 7 from R" onto X are
constructed having the following properties. = The nonmanifold part of X is
homeomorphic to a k-cell, and if A is any closed subspace of X of dimension less than k,
then the decomposition of R" induced over A is shrinkable. In particular, the
nonmanifold nature of X is not detectable by examining closed subsets of X of
dimension less than k. These examples are produced by combining mixing techniques
for producing generalized n-manifolds whose nonmanifold part is a Cantor set, with

decompositions arising from special functions from the Cantor set onto a k-cell.

Such spaces are called generalized manifolds arising from thin decompositions of
R™. This terminology was suggested by R. J. Daverman and indicates the fact that the
nonmanifold nature of X can only be detected by examining large dimensional
subspaces of X. This contrasts with other examples of decompositions of R" that yield
nonmanifolds. In these other examples, the nonmanifold part of the decomposition
space is detectable by examining certain closed 0-dimensional subspaces of the
decomposition space. The examples produced in [G] generalize a construction of

McCauley and Woodruff [MW] in R3 to higher dimensions.

In this talk, the techniques for producing the examples in [G] are outlined, and
ideas for generalizing these techniques to produce analogous thin decompositions of the
Hilbert Cube are discussed.

First, note that for a thin decomposition as described above, the decomposition

map = from R" onto X is cellular since R"/7~1(p) =& R" for each point p in R"/G.
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Also, note that the thin decomposition G is intrinsically 0-dimensional. For the
quotient map 7:R"— X is approximable by a cell-like map f that is one to one over the
manifold part of X and over any (k-1)-dimensional F, subset of the nonmanifold part
of X by using standard techniques from decomposition theory. This (k—1)-dimensional
subset can be chosen so that its complement (with respect to the nonmanifold part of
X) is 0-dimensional by an argument from dimension theory. Decompositions that are
intrinsically 0-dimensional and have nonmanifold part of dimension k can also be
constructed by having 0-dimensional decompositions “limit down” to a k-cell. However,
such decompositions would not have the thinness property described above. The
nonmanifold nature of such decompositions could be detected by examining certain

closed zero-dimensional subsets.

As mentioned above, the two key ingredients in the construction of the examples
are mixing techniques for producing generalized n-manifolds whose nonmanifold part is
a Cantor set, and decompositions arising from special functions from the Cantor set

onto a k-cell. The special functions from the Cantor set onto a k-cell will be described

first.

9. Cantor Functions: Let C be the standard Cantor Set in I = [0,1], and let f:1 » I be
the standard Cantor map which is constant on the closure of each component of I \ C
Note that f}] ¢ is two to one over the dyadic rationals in I, f| e is one to one over the
complement of the dyadic rationals, and f itself is one to one over the complement of
the dyadic rationals.

Next, let C* ¢ I* be the product of k copies of C, and let £*: I¥ » I* be defined
by f(x) = (f(xy),. . . , f(xy) ). It follows that ()™ (p) is a cell for each point p in
I¥ . The dimension of this cell corresponds to the number of dyadic rational coordinates

that p has. One can easily check that if G is the decomposition of I* induced by f*,
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then G is cellular and upper semicontinuous, and that if p is a point of C* with no

triadic rational coordinates, then (f¥)" o f*(p) = p.

A few key properties of the Cantor function and the decomposition G are listed

in the following lemmas. Details can be found in [G].

Lemma If A is a nowhere dense subset of I¥ then there exists a dense subset D of
C* so that f*(D) N A = 0 and (f*)* (f*(d)) = d for each d in D.
Lemma Let G be the decomposition of R® induced by the map f¥." Then Tq

from R™ to R"/G is approximable by homeomorphisms and Wg(Ik) is a tame k-cell.

In order to have the decompositions from the next section match up in the
correct way with the decompositions induced by the Cantor map described above, we

need to view C¥ as arising in a special way. The next lemma gives the necessary
description.

Lemma The Cantor set C¥ ¢ I¥ x {0} c I¥ x I"™* ¢ R" can be obtained as
N2, A; where A; ¢ A;_, , (i>1), and where each A; consists of 4° pairwise disjoint n-
cells of the form ( (n-1)-cell ) x [- —}-— , —1‘— ] , and where each n-cell in A; has exactly 4
n-cells of A, in its interior.

The n-cells of A, are denoted by A(e, €, . . . €_1,6,) Where ¢, is of the form
(ig, jx) for i and j; in {1, 2}. We require in addition that the n-cells be chosen so
that the following lemma is satisfied:

Lemma Ifp=N32; A(e, €, - .. ¢;) and if there exists an N so that past stage

N, either the first coordinates of ¢; alternate, or the second coordinates of ¢; alternate,

then p has no triadic rational coordinates, and f*(p) has no dyadic rational coordinates.

Thus (f*)~1of*(p) = p.
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3. Zero-dimensional Decompositions of R" obtained by mixing:

The mixing technique referred to was developed independently by Daverman and
Eaton. The specific technique used here is more similar to Eaton’s construction [Ea].

Fix n greater than or equal to five, and fix k less than n for the rest of this section.

The goal is to produce a cell-like usc decomposition H of R" with the following
properties: P1. For each nondegenerate element h of H, h N I¥ is a point in CX;
P2. Let f, and f, be maps from B? into R"/H and let A be any dense
subset of CX. Then f, and f, are approximable by maps g; and g,
satisfying: (i) g,(B*) N g(B?) C my(A), and (ii) ifpisa
point of € with mu(p) € (81(B?) \ £2(B”) U (e(B") \ &:(B?),

then p has no triadic rational coordinates.

P3. R"/H has nonmanifold part equal to =(C¥).

Conditions P1 and P3 are satisfied for the decomposition of R" described in [Wr].
Additional care in the construction allows one to construct such a decomposition so that
it also satisfies P2. The special description of the Cantor Set from the previous section

allows one to carry out the additional details of the construction. See [G] for details.

4. The Examples in R™:

Let H be the cellular decomposition of R* described in the previous section and
Ty be the quotient map from R® to R®/H. Let G be the cellular decomposition of R*
induced by the map f*: I*-If from section 3, and let 7 be the quotient map from R" to

R*/G. Let K be the decomposition of R" given by x g if and only if rgorglomy( y )

N rgomglomy( x ) # 0. Let X = R*/K. Let = be the induced decomposition from

from R™ to X.

One can then check that K is the desired decomposition.
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Theorem The decomposition K satisfies the following three properties: 1) K is
cellular; 2) the nonmanifold part of X is homeomorphic to a k-cell; and 3) If A is any

closed subspace of X of dimension < k-1, then the decomposition of R™ induced over A

1s shrinkable.

5. Generalizing the examples to the Hilbert Cube:

In generalizing these examples to the Hilbert Cube, one needs to generalize the
constructions of sections two and three. The generalization of the decomposition
induced by the Cantor function seems to go through without any problem. One uses
the infinite product of the Cantor function to get a function from the Cantor Set onto
the Hilbert Cube. Additional notational care is needed to obtain a description of the

Cantor Set in the Hilbert Cube analogous to the description from section two.

Generalizing mixing decompositions to the Hilbert Cube has been done in [L].
Modifications of the techniques in this reference so as to mesh with the Cantor

decomposition should be possible. The comments here describe work in progress.
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HOMOLOGY OF COVERINGS OF
3-MANIFOLDS BRANCHED OVER LINKS

JOHN HEMPEL

Rice University, Houston, Texas

It is a theorem of Plans [P] that the first homology of an odd degree cyclic branched
cover M of S®, branched over a knot, is always a direct double: H;(M) = A @ A. This
extends [VW] to cyclic covers of homology 3-spheres branched over links — modulo p-
torsion for primes p dividing the degree of the cover. Some independent information about
the first betti number and torsion numbers prime to the degree for such covers (cyclic
covers branched over links in homology 3-spheres) is given in [CM].

We show that the arguments of [VW] and [CM] can easily be adapted to treat cyclic
covers M — M branched over a link in an arbitrary 3-manifold, M, and show that the
change from Hy(M) to H;(M) follows the same pattern. This allows us to give quali-
tative information about the homology of branched coverings which can be factored as a
composition of cyclic coverings.

We also describe a procedure for calculating the first homology of a general branched
covering from a relative Jacobian matrix of free derivatives of a presentation of a certain
group pair in much the same way (c.f. [Hz]) as one calculates the first homology of an
unbranched covering from a Jacobian of a presentation of the fundamental group of the
base.

Statements of the results follow. Proofs and related material will appear in [Hey]

Theorem A. Let p : M — M be a cyclic branched covering of closed, orientable 3-
manifolds branched over a Iink L C M and of prime degree d.

If d is odd then:

(1) po(M) = B1(M) + (d — 1)r for somer > 0.

(2) For each prime q # d

g-torsion(Hy (M)) = g-torsion(Hy (M)) @ A'm(2:94(2)

for some group A; where gq(q) is the order of q in the multiplicative group Zg*.
If d = 2 and the nontrivial covering transformation of p has an orientation preserving
square root then:

(1') B1(M) = B1(M) + 2r for somer > 0.
(2') For each prime q # 2

g-torsion(Hy (M)) = g-torsion(Hy (M)) & A®

Typeset by ApS-TEX
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for some group A.

In all cases we have:

(3) Suppose (M) = 0. If nontrivial branching occurs, then d- torsion(Hy(M)) is
a quotient group of d-torsion(H;(M)). In any event the image of d-torsion(H;(M)) in
d-torsion(Hy(M)) has index < d.

(4) If L is connected, f1(M) = 0 and B1(M) > 0 then d-torsion(Hy(M)) # 0

We regard each finitely generated abelian group A as being decomposed as a direct
sum of a free abelian group and cyclic groups of prime power order. Then for a prime g¢,
g-torsion(A) is just the sum of those summands whose orders are powers of ¢. The result
of dividing A by all the g-torsion summands for which ¢ divides a fixed integer n is called
the n-reduction of A and denoted n-red(A). A branched covering will be called subsolvable
if it can be factored as a composition of cyclic branched covers — and so can further be
factored as a composition of cyclic branched covers of prime degree. Any regular branched
cover with solvable covering group is subsolvable; but there are lots of irregular subsolvable
branched covers. Theorem A clearly yields

Theorem B. Let p: M — M be a subsolvable branched cover of odd degree n of closed,
orientable 3-manifolds branched over a link L C M .Then:

(1) 51(]\;1) = B1(M) + 2r, for some r > 0;

(2) n-red(H;(M)) = n-red(H;(M)) ® A @ A, for some group A;

(3) Ifq® is the highest power of the prime g which divides n, then o(g-torsion( Hy (]\7[)) >
o(g-torsion(Hy(M))/q*.

Suppose (M, B) is a finite CW-pair with M connected. The associated joined pair
(M*,B*) is obtained from (M, B) by fixing a component of B and joining the remaining
components of B to a basepoint in the fixed component by arcs whose interiors are disjoint
from M. This gives a well defined joined fundamental group system (mwi(M*),1ym1(B*)).
Clearly m(M*) = m (M) * F' where F is free of rank fy(B) — 1 and 71 (B*) is the free
product of the fundamental groups of the components of B.

Given a covering space p : M — M with monodromy p:m (M) — S4 and a retraction
f: M* — M the covering M* — M* whose monodromy is ¢ o fy is an extension of
p:M — M. In the following it will not matter which retraction f is chosen , but in doing
calculations a consistent choice must be made.

We always regard the symmetric group Sq on d symbols as being a subgroup of GL(d,Z)
by identifying a permutation with the linear transformation which so permutes the stan-
dard basis vectors:

@+ (bie 5)

Theorem C. Let
p:M—-M

be a d-sheeted covering space of a connected CW-complex M, B be a non-empty subcom-
plex of M, B =p ~1(B), and

pi:m(M*)— Sq C GL(d,Z)
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be the monodromy of an extension of p to a cover of M*. If J is the relative Jacobian
matrix of a presentation of the joined fundamental group system (m1(M*),i3m1(B*)) (c.f.
[He,]), then the m-d x n-d matrix of integers ¢(J) presents H1 (M, B) as an abelian group.

Now consider an orientable 3-manifold M with a k-component link L C Int(M).
Remove an open regular neighborhood of L from M to obtain a 3-manifold N. Let
w={u1,...,ux} be a system of meridians for L in ON. Let

p: M —M
be a degree d cover branched over L and with monodromy
p:m(N)— Sq.
Let

c(p(1)) = # of components of (p™"(u))
=Y clp(ui))

where ¢(¢p(u;)) is the number of cycles of the permutation ¢(u;). From Theorem C we get:

Theorem D. Let J be the relative Jacobian of any presentation of the joined fundamental
group system (w1 (N*),iym1(p*)). Then o(J) is a presentation matrix over Z of

Hl(M) @ 7)1,
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CODIMENSION 2 FIBRATOR

Young H. Im

A proper map p: M - B between locally compact ANRs is
called an approximate fibration if it has the following
homotopy property: Given an open cover € of B, an arbitrary
space X and two maps g: X - M and F: XxI - B such that
peg = F,, there exists a map G: XxI - M such that G; + g and
p°G is e-close to F.

To determine whether a proper map p: M - B 1is an

approximate fibration or not, we define the following term.

DEFINITION A closed manifold N" is a codimension 2 fibrator

if whenever G is a usc decomposition of an arbitrary M™2 such
that each g€G is shape equivalent to N", then p: M - B (=M/G)

is an approximate fibration.

In [D], R.J. Daverman showed that any closed surface N for
which % (N)#0 is a codimension 2 fibrator. We will show the

following result extending Daverman's result.

THEOREM 1 Any finite product of closed orientable surfaces of

genus at least 2 is a codimension 2 fibrator.

First, we will state the key fact to investigate

codimension 2 fibrator, which can be found in [D-W].

THEOREM 2 If G is a usc decomposition of an orientable (n+2)-
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manifold M into closed orientable n-manifolds, then the
decomposition space B is a 2-manifold and D = B\C is locally
finite in B, where C represents the continuity set of

p: M - B; if either M or some elements of G are non-
orientable, B is a manifold with boundary (possibly empty) and
D' = Int B\C' is locally finite in B, where C' represents the

mod 2 continuity set.

As a consequence, we can localize the problem to that of an
open disk B, where p: M - B is an approximate fibration over

B\b for some bE€B.

To prove our result, we need the following several lemmas.

LEMMA 3 Suppose N" is a closed orientable aspherical manifold
with Hopfian fundamental group, G is a usc decomposition of
M™K into copies of N", and dim M/G < ©. Then p: M - M/G is an

approximate fibration over its continuity set C.

LEMMA 4 Let F? be a closed orientable surface with g handles,
and @, and B, be the standard oriented simple closed curves
around the k-th handle of F2 for 1 < k £ g. Suppose

(a1,b1,.¢,.,ag,bg) is an element of H,(F). Then by iterations of
Dehn twists and the Euclidean algorithm, there is a
homeomorphism of F?2 onto itself which induces an automorphism
on H,(F) carrying (a;,b;,....,a5,bg) to (4d,0,¢cc¢c..,0,0), where

d = g.c.d. (a1,b1,.,..,,ag,bg}e

LEMMA 5 [2-V-C] Let f: F, » F, be a continuous map such that
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the degree of f is zero, where F, is a closed orientable
surface of genus g, for i =1, 2. Then we have
rank f, < g,,

where f,: H,(F,) - H,(F,) is the induced homomorphism.

LEMMA 6 Let ¢: N - N be a continuous map which is not degree

1. Then

rank ¢, < rank H,(N) - min gy,
1<i<n

where ¢.: H,(N) - H;(N) and N is a finite product of closed

orientable surfaces of genus at least 2.

Sketch of the proof If n = 1, it is simply a consequence of
Lemma 5. For simplicity, we assume n = 2. For n 2 3, the

conclusion follows from the inductive step. Now ¢, induces an

mxm matrix of the following form

By using Dehn twists and cohomology ring of N, we can reduce

so that ¢. induces either

A 00r
0 B

0 B
A o|°

In the first case, ¢, can be written as
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b = (d;xd,).: H(N) - H(N). In fact ¢ is the map of
composition with homeomorphisms, but we abuse notation. Here
¢,: F, » F, is defined by ¢;=p;°¢or; for i = 1, 2, and p; andi;
are the projection and inclusion, respectively. Also we can
easily show that the degree of ¢ is the same as the degree of
¢,x¢p,. Since the degree of ¢ is not 1, the degree of ¢, is
zero or the degree of ¢, is zero. By Lemma 5, the result
follows directly.

In case 2, if F, = F,, by a homeomorphism h: N + N defined
by h(x,y) = (y,x) for (x,y) € F,xF, (=N), we can reduce to the
previot:ls case. If F, * F, (9,<9;) where g; is the genus of F;
for i = 1,2, then the conclusion follows by using

deg p,°dper, = 0.

Sketch of the proof of Theorem 1 We consider 2 cases.
case 1 M is orientable

Theorem 2 implies that the decomposition space B is a 2-
manifold and the discontinuity set D=B\C is locally finite.
Now we can assume p: M - B is an approximate fibration over
B\b,. Name g,€G such that p(g,) = by, specify a retraction
r: M - G, and fix g # g, in G. Consider the following
homotopy exact sequence

1 - m(g) = m(M\G) - T,(B\by) - 1.

After abelinization, we have

H, (M\g,) /im[i.H;(g) ] =2,
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where i: g - M\g, is the inclusion. Notice that
H, (M\g,) - H (M) is surjective. Then we can show that
rank (rei), 2 rank H(N) - 1.

By Lemma 6, r°i is a degree 1 map, and hence a m,-epimorphism.
Hopfian property implies that rei induces an isomorphism.
Asphericity of N then implies rei is a homotopy equivalence,
and the conclusion follows from [C-D,].
case 2 M is non-orientable

We use the mod 2 continuity set C' instead of continuity
set C.As above, p is an approximate fibration over the mod 2
continuity set C' of B. By the same way as case 1, we can show
c'NInt B = Int B and B is a 2-manifold without boundary. This

completes the proof of Theorem 1.
We have the following corollaries.

COROLLARY 7 Let M™ be a simply connected manifold,N" be a
finite product of closed orientable surfaces of genus at least

2. Then there is no usc decomposition of M™? into copies of N.

COROLLARY 8 If G is a usc decomposition of M™? into copies of
N", a finite product of closed orientable surfaces of genus at
least 2, and % (B) < 0, then M™? is aspherical and w,(M) is an

extension of w,(N) by m,(B).

Also we can extend Theorem 1 so that any finite product of
closed orientable surfaces with non-zero Euler characteristic

is a codimension 2 fibrator.
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NIELSEN THEORY AND HOMEOMORPHISMS OF SMOOTH MANIFOLDS

Michael R. Kelly

0. Introduction

In an attempt to gain an understanding of the dyﬁa.mics of surface self-maps,
J. Nielsen developed a method for estimating the number of fixed points for a
given map. This method, now referred to as Nielsen Theory, applies to a large
class of spaces which includes all compact polyhedra. The general idea is to use the
induced map on the fundamental group to obtain a homotopy invariant called the
Nielsen number. It turns out that the Nielsen number is a natural generalization of
the Lefschetz number and improves on the classical Lefschetz Theorem by giving
a lower bound for the number of fixed points for a given map.
This talk first reviews the definition and properties of the Nielsen number and
"then mentions some important results concerning this number, focusing on the
question of the realizability of the Nielsen number by a given map. Finally, we
discuss the following special case: suppose that the space X is a manifold and
h:X — X is a homeomorphism. Then isotopy is a more natural framework than
homotopy to work in. Since the Nielsen number itself does not distinguish between
homotopy and isotopy, it is still the natural candidate for an optimal lower bound.

We present here some results in this direction.
1. Nielsen number

What follows is a brief outline of the definition of the Nielsen number and
some of its properties. The reader can find more details in [Br] or [J1]. Let X be
a compact polyhedraand f: X — X a continuous self-map. For convenience of

presentation we assume that Fiz(f) = {z € X|f(z) = z} is a finite set of points.
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The simplicial approximation theorem guarantees the existence of such a map in
each homotopy class.

Define an equivalence relation on Fiz(f) by saying z ~ y iff there exists a path
ain X from z to y such that f(a) is homotopic to a rel {z,y}. An equivalence class
is often referred to as a fixed point class (or sometimes a Nielsen class). Secondly,
there exists an integer valued, additive index defined on Fiz(f). A special case
can be described when X is a manifold. Then the boundary of a neighborhood
of a fixed point is a sphere of dimension k. After normalizing, f induces a map

¢ : Sk — S* and then index(f,p) = deg(¢). By additivity, for a fixed point class

Now define the Nielsen number, N(f), to be the number of fixed point classes

having a nonzero index. This number satisfies the following:

(1) the sum of indices of the fixed point classes is equal to the Lefschetz number,
L(f). In particular, if N(f) =0 then L(f) =0.

(2) if f is homotopic to g then N(f) = N(g).

As a consequence of (2) and the definition we have
Theorem 1. Forany f:X — X, #Fiz(f) > N(f).

It is then natural to ask if this lower bound for the cardinality of the fixed
point set can actually be achieved by some map in a given homotopy class. With

this in mind we define
MF(f]= mgin{#Fiz(g) |g is homotopic to f}.
Work by a number of authors (see [Bo|, [N], [W], [We|, [J2]) has lead to the

following very concise result:
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Theorem 2. Suppose that X is a compact polyhedron which (1) does not
contain any local separating points and (2) is not a surface with negative Euler

characteristic, then for any self-map f: X — X, MF|[f] = N(f).

Counterexamples under hypothesis (1) have been known for a long time and
are quite straightforward to produce (see [Br] for example). On the other hand,
(2) is more subtle as Weier [We], in 1956, presented without proof a potential
counterexample but not until Jiang [J4] in 1984 was one verified. Since then more
examples have been produced (see [J5], [K1], [K2], [Z], [T]), including verification

of Weier’s original claim, but the problem is still not well understood.
3. Homeomorphisms of manifolds

One special case of the previous discussion is noteworthy. Suppose that h :
F — F is a homeomorphism of a compact surface (possibly with nonempty bound-
ary). As a result of the Nielsen/Thurston classification of surface automorphisms
it can be shown that MF[h]| = N(h), (see [J3], [I]). Putting this together with
Theorem 2
Corollary 3: If M is a topological manifold and h : M — M a homeomorphism
then M F[h] = N(h).

It is this result that suggests considering the following variation of the min-
imization problem in Nielsen theory. Under the hypothesis of Corollary 3 it is
often more natural to consider isotopy as opposed to homotopy of homeomor-

phisms which leads us to consider the following quantity
MIlh| = mgin{#Fiz(g)lg is isotopic to h}.
Certainly N(h) is an isotopy invariant and so MI[h] > N(h) but what about

equality? For example, if dim(M) = 2 then it is well known that homotopy
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implies isotopy and so from Corollary 3 any surface homeomorphism is isotopic
to one having N(-) fixed points. In higher dimensions homotopy does not imply
isotopy and so naturally other methods are needed. In fact, it is the purpose of

this talk to announce the following partial result.

Theorem 4. Suppose that M is a smooth manifold with dim(M) > 5 and let
h:M — M be a diffeomorphism. Then MI[h] = N(h).

The following gives a brief description of the proof of this theorem. By analogy
we first consider a proof of corollary 3 when dim(M) > 3.

A ball B in M is said to be homotopy-standard if i4 : m [B U h(B)] — m1 (M)
is the trivial map. By techniques of Wecken [W] and Weier [We] it can be shown
that if B is homotopy-standard then h is homotopic to k' with support on B so
that Fiz(h') N B is at most one point. Moreover, if index(h, B) = 0 then A’ has
no fixed points in B. Finally, the definition of Nielsen class allows us to enclose
every fixed point class in a homotopy-standard ball. Hence, we have exactly N (k)
fixed points.

Our approach is to define a special class of balls, called isotopy-standard. It is
much more restrictive than homotopy-standard but we are able to show analogous
results. Namely:

(1) if B is isotopy-standard and index(h,B) = 0 then h is isotopic to R

(rel M — B) so that Fiz(h') N B = ¢ and,
(2) if, in addition, dim(M) > 5 then each fixed point class can be enclosed in

an tsotopy-standard ball.

The proof of (1) will appear in [K3| while (2) will appear elsewhere.
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HIGHER DIMENSIONAL DUNCE HATS AS SYMMETRIC PRODUCTS

by
Richard M. Schori

1. Introduction.

In this talk we will summarize some joint work done jointly with M.M. Marjanovic.
We will construct a sequence D2n’ n>1, of even dimensional CW complexes where D?
is the traditional topological Dunce Hat and prove that each of the spaces is
contractible but not collapsible, the two salient properties of the Dunce Hat.
Consequently, we call the spaces D2n, n>2, higher dimensional Dunce Hats. For the
construction we will use the type of symmetric product tha
hyperspace of subsets of a continuum containing n or fewer points with the
metric. Our contractibility proof is based on a homology argument.

The topological Dunce Hat D is discussed in detail by E.C. Zeeman in [Z]. The
space D is remarkable because it is the simplest example of a polyhedron that is
contractible, in the sense of homotopy, but not collapsible, in the sense of Whitehead.
The point of [Z] was to analyse the Dunce Hat, and the manifolds of which it is a spine
because of some intimate relations to the Poincare Conjecture. The point of this
connection was that the phenomenon of being contractible yet not collapsible had been
identified as a primary source of difficulty in the study of manifolds of dimension >3.
In this paper, we will omit most of the proofs in Sections 4 and 5 as they will appear

elsewhere. The author thanks Dennis Garity for helpful suggestions.

an

ausdorff

2. Background and Preliminaries.
We start with giving the necessary background for symmetric products. The

following definitions are valid in a more general setting, see [S], but for convenience we

will make our definitions for more restrictive spaces.
Definitions 2.1.

a). The n-fold symmetric product.
For a compact metric space X, if X% is the n-fold cartesian product of X,
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define the n-fold symmetric product of X,
X(n) = X®/~,

where ~ is the equivalence relation on X" defined by

(%1 ... »xn) ~ (¥1; ... »yn) if and only if {xy, ... xn} = {y1, ... ,¥yn}
Thus, two points in X" are equivalent if the sets consisting of their coordinates are
equal. If n=2, this means that (x,y)~(y,x), butif n>3, then not only do we have
identification under permutations of coordinates, but we also have the extra

identifications as illustrated by the case for n=3 where (a,a,b)~(a,b,b).

The n-fold symmetric product of X, X(n), is well known, see [S], to be
homeomorphic to the space of (closed) subsets of X consisting of n or fewer points
topologized with the Hausdorff metric

D(A,B)= inf{e>0: A c U(B,) and B c U(Aje)},
where A and B are closed subsets of X and U(C,¢) is the open e-ball about C c X.
In fact, for the rest of this paper we will think of X(n) as the “hyperspace” of n or
fewer points of X. 4
For the closed unit interval I=[0,1] and for n>2, we let
Iin) = {A eI(n):0,1 € A}.

That is, Ii(n) consists of those subset of I that contain n or fewer points and that
contain the points 0 and 1. We remark that the space I5(3) is homeomorphic to the
1-sphere S' as can be seen by noting that the generic point of I;(3) is x={0,b,1}, for
bel and as b moves from 0 to 1, the point x moves from the base point
#=1{0,1} around a circle and back to *. In the next section we will see that I5(4) is the

classical topological Dunce Hat.

b). Contractible and Collapsible.

A topological space X is contractible if the identity map from X onto itself is
homotopic to a constant map. In order to define collapsible we must first define the
notion of an elementary collapse. Let K be a finite simplicial complex with an n-
simplex ¢ with an (n—1)-face r. We say that ris a free face of K if it is a proper
face of only one simplex of K. In this case, we say that there is an elementary collapse
of |K| onto |[K|—(8U%). A (compact) polyhedron P=[K] is collapsible if P can be

reduced to a point after some finite sequence of elementary collapses.
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c). Adjunction spaces.

Let X and Y be disjoint topological spaces, let A be a closed subset of X, and
let £: A>Y bea continuous map. Topologize X U Y as the topological sum and let
~ be the least equivalence relation on X U Y such that a ~ f(a) for all a € A. Then
the adjunction space determined by f is the quotient space X U Y/~ and is denoted
by X U Y. We also say that X is attached to Y by L.

We will be constructing spaces by attaching n-cells B® to a space Y by amap f:
Bd B2~ Y. Spaces inductively built this way are CW-complexes.

d). Finite CW-Complex.
Let X° be a finite discrete set of points. For k>0, XX is obtained from
by attaching a finite set of n-cells by maps from their boundaries into xk=1 " 1f for

k-1

some 1,
XK
0

X

i Chks

k
then X is called a (finite) CW-complez. For each k=0, 1,...,n, the space xk i
called the k-skeleton of X.

Remark 2.3. Finite CW-complexes are compact metric spaces.

Remark 2.4. If A is a closed subset of the compact metric space Y and

f: (B®, Bd BY) =+ (Y, A)

is a relative homeomorphism (that is, f is a continuous surjection and f | B®~ Bd B
is one-to-one), then Y = B™ Ur A where T =f| Bd B™
3. The Traditional Topological Dunce Hat.

The Dunce Hat D is obtained from a solid triangle, say ABC, by identifying the
sides AB = AC = BC. By identifying just the first two sides AB = AC we get a
cone which has been known as the traditional dunce hat. This one of course is both

contractible and collapsible and is topologically a 2-cell.
A — C

Fig. 1
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We state and prove the following theorem to motivate the next section where these

ideas are generalized.

Theorem 3.1. The space I;(4) is the Dunce Hat.

Proof. Let o° = {(ab) € I* 0<a<b<l} and define q:o’~ I(4) by
q(a,b)={0,a,b,1}. The edge of o> labeled BA in Figure 1 is the set {(0,b): bel} and
is mapped onto I3(3) = S' by q with positive orientation. This is easily seen since
q(0,b) = {0,0,b,1} = {0,b,1}. Likewise, the edges AC = {(b,1): bel} and BC =
{(b,b): bel} are mapped onto Ij3) by q with positive orientations. Consequently,
under the map q the edges BA, AC, and BC are identified as indicated in Figure 2.
Furthermore, the map q restricted to the interior of o° is one-to-one and hence the
diagram at the right in Figure 2 faithfully represents the space I3(4).

v

A C —

B

Fig. 2
The orientations of the edges of this figure differ somewhat from the orientations in
Figure 1, but the spaces are obviously homeomorphic and hence I3(4) is topologically a

Dunce Hat. O

4. Higher Dimensional Dunce Hats.
The symmetric product representation of a Dunce Hat as presented above gives a

natural way for defining higher dimensional analogues.

Definition 4.1. For each integer n>0, let
D? = I}(n+2) = {C € I(n+2) : 0eC and 1€C}.
(We remark the D° is a point,  and' D' is homeomorphic to a circle S'.)
Furthermore, let
. o = {(a1,as, ... yan) : 0<a;<a,< -+ <ap<l1}
and define qn: o™ - D" by

qn(a1,a2; ... an) = {Oaa'l)a?s 7a'n71}
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Lemma 4.2. The map gp: (o-"', Bdo‘n) - (Dn, D"’"I), n>1, as a map of pairs,
is a relative homeomorphism and hence D" = o" anDn“l, the CW-complez

obtained by attaching o™ to D" with the map Tp, = qn/ Bdo™.

Thus we have a sequence of CW-complexes
D°cDic...c Dn_'1 cD®c ..

where DT is formed by attaching the n-cell % to D21 with the map
Gp : Bd o® > DL,

The use of rectangular coordinates in the description of

o = {(a1,as, ... ,an) : 0<a;<a,< --- <apn<1}

has been very convenient for the construction of D™. We now switch to barycentric
coordinates for an n-simplex in the rest of the paper.

Let vo,vi, ... ,vn be independent points in E™ and let A™ = [vq,vy, ... ,vn] be
the convex hull of {v;,vy, ... ,vn}. Then a point x € A™ is uniquely determined as x
= AoVo+A1Vi+ -+ +Apvp where Ag+M+ .- +2p = 1 and each A 0. Then op:
AY - o defined by ap(x) = (Ao, Ao+Ay, -ov 5 Ao+ oo +A,_1) is a homeomorphism
and pp : A" - D® defined by

Pn(x) = {0, Ao, Ao+A1, coo s Aot - +A, g, 1}

is topologically equivalent to qp: o™ - D®. That is, the following diagram

Al PR opo
\Lan \l/id
g @ po

commutes (pp= Qpoap) where the vertical arrows are homeomorphisms.

We remark that in [T], Thomas gives a different but equivalent definition of the

spaces D™ but neither states nor proves any properties of the D™

We will now set up some notation to deal with a homology proof of the
contractibility of D20, Let di: A 5 An+1, i=0, ... ,n+1, be the face map which
1

takes AT simplicially onto the face of AT [Vo,V1y - 5Vp +1] opposite the vertex v;.

The map di is defined by
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1-1 1-1

di(AOVO'*' oo +AnVn) = A()VO + e F A V. + OVi -+ Aivi+1+ +/\nvn+1.
and di[vo, e sVal = [Voy ... ,ffi, <. wp4i)- The following lemma provides a very

convenient relationship between the face maps di and the maps pp.

Lemma 4.3. The following diagram commutes, where i is injection.
an & pn

ool

A+l Pryi pntl

5. Homology Considerations.
Our proof that D2D s contractible is based on using the following Whitehead

theorem [Ma, Cor. 3.3.11, p. 329).

Theorem 5.1. If X is a connected and simply connected CW-complez and, for all
n, Hy(X) =0, then X is contractible.

Following Munkres [Mu, Section 39] we create the cellular chain complex of D" as
a means of computing the homology of D®. Here we will use the skeleton structure of
DR, D°cD'c .- c Dk c .-- ¢ DB, as constructed in Section 4. Let Ck(Dn) =
Hk(Dk,Dk'l) and define a boundary operator 4: Ck(Dn) - Ck_l(Dn) as the
composite .
Hk(Dk,Dk-l) O Hk-l(Dk-l) 1 Hk_l(Dk-l,Dk-2)
where 94 is the boundary homomorphism in the long exact sequence of the pair
(Dk,Dk"l), and j is inclusion. Then the chain complex ¢(D") = {Ck(Dn),ak} is
called the cellular chain complez of D™. The homology of €(D®) yields the homology
of DY, thatis, H (D") = Hk(c(Dn)) for each k.
Z, if 0<k<n
Lemma 5.2. The chain group Cp(D") = Hk(Dk,Dk'I) = {

0, otherwise.

Consequently, Hk(Dn) is the corresponding homology group of the chain complex

0 i} 0
On_j-lz_._.z_]icz-o—»z —90.
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We will now analyse the boundary operators of this chain complex to compute the

homology.

Lemma 5.3. If p: Bdak*1 |, DF is the map pk+1/ BdAk+1 and j: (Dk,ﬂ) -
(.Dk,Dk"I ) 1is inclusion, then the composite homomorphism

H (Bia**1) % m (D%) & g, (DF, D)
is an isomorphism if k i3 odd and 0 if k is even.

Theorem 5.4. The homomorphism

D**1pk) o B (DF,DF1)

Oppr Hpgl
is an isomorphism if k is odd and is 0 i3 k i3 even.

Proof. Consider the commutative diagram

k1 o kt+l, O k+1
H,(a“, Bda*h) 3 Hy (Bda +
'(Pk+1)* Px

A \'
k+1 o ] -
m, 0Dk % m @Y ¥ E(DN pk-ly.

The map Pk+1° (Ak+1, BdAk+1) - (Dk+1, Dk) is a relative homeomorphism and
hence the left vertical arrow in the diagram is an isomorphism. The map 84 at the
top of the diagram is an isomorphism as seen from looking at the long exact sequence of
the pair (Ak+1, BdAk+~1), and by Lemma 5.3 the homomorphism jyxo pyx is an
isomorphism if k is odd and 0 if k is even. The theorem follows. O

We are now ready to make our final homology calculations for Hk(Dn).

Theorem 5.5. The reduced homology of D" is as follows:

. 0, if n even
Hk(Dn#{ Z, if n oddand k= n
0, if n odd and k # n.
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Theorem 5.6. The spaces D2'"‘, n>0, are contractible, and for n>1, D" is not

collapsible.

Remark 5.7. See the paper by Robert N. Andersen in these proceeding

representing joint work with this author for additional results concerning these higher

dimensional Dunce Hats.
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An Application of Group Endomorphism Growth Rates to Knot Theory
Daniel S. Silver

This paper is a summary and expansion of a talk given at the Seventh Annual Western
Workshop on Geometric Topology held at Oregon State University, Corvallis, Oregon,
May 31 - June 2, 1990. Details will appear in [S;] and [S;].

Introduction. Let K be any oriented spherical or disk n-knot, and denote its exterior
by X(K). If ter;(X(K)) is represented by a meridian of K (with preferred orientation
from K), then conjugation by ¢ induces an automorphism p; of the commutator subgroup
71 (X (K)). We borrow the notion of ezponential growth rate of group endomorphism from
R. Bowen’s study [Bn] of topological entropy in order to define an invariant vz whenever
1 (X (K)) is finitely generated: If the elements g1,..., g, generate 7} (X (K)), then vg is

the exponential growth rate y(u;) of p: defined by
—1 k
7(ps) = max  lim —log |p;(g:)|-
H k—ook

Here |z| denotes the length of a shortest word in glﬂ, ..., g% representing z. Elementary
properties of exponential growth rate in [FLP] ensure that vg is finite and independent of
the choices involved.

An algorithm of M. Bestvina and M. Handel [BH] based on combinatorial techniques
of J. Stallings makes precise calculation of 4k possible whenever 7] (X (K)) is free and u;
is irreducible. Such is the case if K is a hyperbolic fibered 1-knot, and in that case, yx is
the log of the stretching factor of the pseudo-Anosov monodromy.

Some properties and applications of yx. Like pseudo-Anosov stretching factors,
vk 1s very sensitive — capable of distinguishing n-knots that have the same Alexander
modules. For example, we can prove that if f(¢) = ap + a;t + - - - + a4t? is any polynomial
with integer coefficients such that f(1) = £1 and agaqs = £1, then there exists a sequence
of doubly slice fibered ribbon 1-knots K, C S with identical Seifert forms, Alexander
polynomials equal to f(¢)f(¢7!) and lim vk, = co. (The existence of at least one such
knot had previously been established in [.KS]) |

There are several very useful identities involving the invariant yx and well-known
knot constructions. For example, vx,yx, = max{yk,, Yx,}, Whenever v yx, is defined.
This is a special case of a general result relating the invariant of any satellite n-knot to

those of its pattern and companion. Using it we can prove the following.
Proposition. Let K C S® be any 1-knot. Then vx = 0 if and only if K is a graph
knot (i.e., X(K) is a graph manifold.)
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The invariant vx also yields a useful invertibility obstruction for n-knots. Recall that
an oriented n-knot K is invertible if K is equivalent to rK, where r is an orientation-
reversing diffeomorphism of K. If K is invertible and 7} (X (K)) is finitely generated, then
it is easy to see that y(u) = v(u;?). Although v(p:) and y(u;!) are always equal when
n =1 [T], they can differ when n > 1. We have exploited this in [S;] to produce an example
of a fibered (ribbon) 2-knot that is noninvertible and yet satisfies all of the necessary
conditions of J. Hillman [H] and D. Ruberman [Ru] for any fibered even-dimensional knot
to be invertible.

It follows from work of W. Thurston [T] that log(yx) is an algebraic integer whenever
K is a fibered 1-knot. This is also true for n-knots K, n > 1, provided that 7{(X(K)) is
a finitely generated free group and p; is irreducible [BH]. Beyond this, nothing is known
about the possible values of yx.

Question. What are the possible values of yx? Is log(yk) always an algebraic
integer?

In [Fr] D. Fried gave an example of a finitely generated group automorphism a such that
log(v(a)) is not an algebraic integer. Such an example in which « is an automorphism
as above would provide a very interesting n-knot.

To date, perhaps the most striking application of the invariant is to the study of ribbon
concordance. Recall that a concordance C C S® x I between 1-knots K; C S3x{i},¢ =0, 1,
is called a ribbon concordance (from K; to K,) if the restriction to C of the projection
5% x I — I is a Morse function with no local maxima. In this case we write Ky > K. The
notion of ribbon concordance was introduced by C. Gordon in [G] where he showed that
> is a partial ordering on the set of all transfinitely nilpotent 1-knots, a collection that
includes all fibered 1-knots. In [S;] we proved that K; > Ky implies vx, > g, for any
fibered Ky, K7. (An essential component of the proof was supplied by Katura Miyazaki.)

As a direct consequence we obtain the following.

Proposition. Let Ky and K; be fibered 1-knots. If K is a graph knot and K; > Kj,
then K| is also a graph knot. :

Further results and questions. After completing [S;] I learned about some new
results of O. Kakimizu that provide a natural way to extend the definition of yg for all
l-knots. In [K] Kakimizu proved that the projection K x Sl(= 8X(K)) — S? always
extends to a fibration of a compact codimension-0 submanifold of X (K) that is maximal
and unique up to isotopy. The fiber is a subsurface m(S) of any minimal Seifert surface S
for K, and 71(m(S)) is isomorphic to the intersection Ni.zt¥m (S)t*. If we now define

pt to be the automorphism of 71(m(S)) induced by the monodromy of the fibration, then
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we can define vx to be the exponential growth rate +(u¢) just as before. This extended
invariant is often nonzero: for example, vx # 0 whenever the splice decomposition of K

(in the sense of [EN]) contains a hyperbolic fibered component.
Question. Does K; > Ky imply v, > vk, for all 1-knots Ky, K;?

A natural question concerning higher dimensions now arises: Can vy be usefully
defined for all n-knots, n > 1? The group m1(m(S)) can be described as the union of all
finitely generated subgroups H of 71(S) such that tHt~' = H. We can ask the following.

Question. Let 71(X(K)) be the group of any n-knot K and let Hg be the union of
all finitely generated subgroups of 71 (X (X)) such that tHt™! = H. Must Hg be finitely

generated?

The interest here is that whenever Hg is finitely generated, we can define yx to be the
exponential growth rate of the automorphism of Hg induced by conjugation by ¢. For
each n-knot K that we have studied so far, Hg has turned out to be finitely generated.
Indeed, the collection F of all n-knots K for which Hg is finitely generated is large: If K
is a satellite n-knot with both pattern and companion belonging to F, then K belongs to
F as well [S;]. Even if the answer to the preceeding question is no, g still can be defined

for any n-knot in the collection F.
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’Almost acyclic degree one maps of manifolds’ by F. C. Tinsley
For this summary let G be a finitely presesented group and M an n-manifold with n > 4 and = (M) = G.

If G contains a finitely generated perfect subgroup, then Daverman and Tinsley have exhibited an
acyclic 2-complex K and a locally flat a nice embedding f : K — M with m(M/f(K)) = G/ < P> . Let
7 : M — M/f(K) be the decomposition map. Now, M/f(K) is a generalized manifold which fails to be a
manifold at a single point. M/f(K) has a resolution d : N + M/ f(K) where N is an n-manifold and d has a
single non-trivial, cell-like point-preimage. For an appropriate approximate inverse A to d, the composition
how: M +— N is of degree one.

We use this construction as a model for building special degree one maps of manifolds where, in fact,
G may contain no non-trivial finitely generated perfect subsgroups. In particular, ker(iy) is not the normal
closure of a finitely generated perfect group. However, we do use maps which in some sense are almost

acyclic.
Definition 1.0: A finite 2-complex K is almost acyclic if Ho(K;Z) = 0 and H:(K;Z) is free.

Definition 1.1: A finitely presented group, H, is almost acyclic if there is a finite, almost acyclic 2-
complex, K, with = (K) = H.

Definition 1.2: Let G be a group. Denote by Wild(G) (the wild group of G) the unique maximal perfect
subgroup of G.

Observe that Wild(G) is also equal to the transfinite intersection of the derived series of G.

Suppose only that K is an almost acyclic 2-complex, f : K +— M is a locally flat embedding, fu :
m1(K) — =1 (M) is the induced homomorphism on fundamental groups, and that

(]_1) 1 ;é f#(ﬂ'l(I{)) ~ ncl(f#(Wzld(wl(K))), ﬁ'l(M))

Since f(K) is a polyhedron, M/f(K) is an ANR of finite type. Denote the decomposition map by 7 : M —
M/f(K). Now M/f(K) fails to be a manifold only at the point z = |f(K)|. However, it also fails to be a
generalized manifold at this point. In particular,

(1.2) Hy(M/f(K), M/f(K)—2;2) = Hi(K) #0

Despite this fact, M/f(K) still has a resolution. To see this first observe that
(1.3) 7 (M/f(K)) Z m(M)/nel(fz (71(K)), 7 (M))
By (1.1) necessarily
(1.4) nel(fu(m1(K)), m1(M)) = nel(fg(Wild(m(K))), m(M))
Since 71 (K) is finitely generated, there is a finite collection of elements y; € Wild(w (K)) with
(15) nel (£ (m1(K)), 71(M)) = nel ({1, - ve}, (M)
We now obtain the resolution using the technique developed by Cannon. For each y; there is an open grope,
D;, and a pointed (with basepoint in bdy(D;)) map, p; : D; — K such that p;(bdy(D;)) is a loop representing

yi € Wild(my(K)). Since f : K — M is locally flat , p; induces a map p; : D — M/f(K) where D is the
closed grope, p;(D;) C M/f(K) — z, and 5;(Df — D;) = z. Since n > 5, we may assume p;|D; is a locally

1
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flat embedding and that the images p;(D;) are mutually disjoint. For each i, identify a pinched topological
regular neighborhood, P;, of each p;(D;) C M/f(K) — z so that these neighborhoods are mutually disjoint.

Identify loops {l1,ls, ..., 1, } in K representing the generators of H1(K;Z). Homotopically move each f ()
off K in M to an embedded loop, ij, so that the homotopy is an isotopy off K and misses 1 (Uf=l P,v).
By (1.5), [; bounds a disk with holes, B;, so that (B,- - I;-) C (M -K—n7t (U2=1 P,-)) and each other
boundary component of B; is isotopic in M to p;(bdy(D;)) for some i.

Replace the interior of each neighborhood by an open cell ([C,]), we obtain a cell-like map d : YANE
M/ f(K) which has a single non-trivial point-preimage, d~'(z), homeomorphic to a wedge of arcs, Viec4s
where C is a Cantor set and A, is an arc. Let y be the wedge point. Then the map d : (Y,y) — (M/f(K),z)
induces isomorphisms on local homology. In particular,

(L6) Hy(Y,Y - y;Z) = Hy(M/F(K), M/ £(K) - = T) = Hy(K;2)
and each is finitely generated. We discuss this fact also in Appendix I.

Now,

(L7) B = (d-"or (B 1) Utn}) < ((v - 47@) Uw})

is a disk with holes with one fewer boundary components than B; (in effect I; is mapped to y). The previous
discussion allows that each boundary component of B} is homotopically trivial in in the manifold (Y — {y}).
General position in (Y — {y}) yields a wedge of 2-spheres, S = /\;=1 Sf with wedge point y where each .S']2
arises naturally as B;- with disks attached to boundary components. By construction, the inclusion of S into
Y induces isomorphisms on homology. In particular,

(1.8) Hy(S;Z) — Ha(S,S —y;2) — H2(VY — 4, 1) = @512
Let N =Y/S,p:Y — N be the decomposition map, and z = p(S5).

Claim: N is a generalized n-manifold.

Proof: A detailed proof would be quite tedious. However, the idea is as follows. Since the 2-complex
K is almost acyclic, then the complex, K, obtained by abstractly attaching disks to loops representing the
generators of Hy(K;Z), is acyclic. So if K were embedded in an n-manifold, M, then M /K would be a
generalized manifold. Our construction is homologically equivalent to this. We first collapse K obtaining
M/K. Next comes the inverse of a cell-like map which does not affect local homology. Finally, we identify
the disks attached to representatives of the generators of H1(K;Z) (which at this stage are topologically a
wedge of 2-spheres) and, in effect, complete the collapse of K in two steps.

We now investigate whether N satisfies the DDP (disjoint disks property).

Proof: Since N is a manifold except possibly at z, it is sufficient to show that given any neighborhood
U of z in N there exists a neighborhood V of z in N so that any map g : bdy(B) — V — z extends to a map
g: B+~ U — z where B is a 2-disk.

Case 1: [m(K), m1(K)] = Wild(K)

Claim: N satisfies the DDP .

Let z € U™h4 ¢ N. Since N is an ANR, there is a neighborhood V of z in U and a strong deformation
retraction of V to z in U. Let g : bdy(B) +— V be a mapping of the boundary of a disk. Since S is simply
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connected, there is a map g; : B+~ p~}(U) C Y so that and po g1|bdy(B) = g|bdy(B). But (S —y) is locally
flat in (Y — y) so we may adjust g; slightly so that g(B)((S —y) = 0.

Since Wild(m(K) = [71(K), 1(K)], we see that
(1.9) {Wild(m,(K)), 1],y -5 |15}
generates w1 (K). Since 71(K) is finitely generated, we may assume that the elements

(110) {yli"wyhllll)'")“sl}

generate 71(K). The end of (p~(U) — y) at y is homeomorphic to @ x (0,00) where @ is a closed (n-1)-
manifold and 71(Q) = H1(K;Z). The previous discussion and surface topology allow us to identify a disk
with holes, D C B, so that bdy(B) C bdy(D), and for each component, pD;, of D not equal to bdy(B),
g1(pD;) C @x (R,00) C p~1(U). Thus, each pD; itself bounds in @ X (R,c0) a disk with holes with each
boundary component freely homotopic to |l;|. Finally, we cap off each such component in (p~!(U) — y) with
a disk close to (S? — y) obtaining a map gs : (B — p~(U) —y) with p o g2|bdy(B) = g|bdy(B). We take as

our map, § = po gs.

m T 3 Ads+3 3 ¥
The other cases require some additional technical details. /en




THE HOMOTOPY THEORY BEHIND THE EXAMPLES OF INFINITE
DIMENSIONAL COMPACTA THAT HAVE COHOMOLOGICAL DIMENSION TWO

talk by John Walsh on joint work with Jerzy Dydak

The original examples of infinite dimensional compacta having finite cohomological
dimension produced by A. Dranishnikov (“On a problem of P. S. Alexandroff”, Sbornik
135, 1989) had their infinite dimensionality detected by complex K-theory with finite co-
efficients. The central feature used by Dranishnikov is that the complex K-theory of the
Eilenberg-MacLane spaces K(Z,n) had been computed by Anderson and Hodgkin (“The
K-theory if Eilenberg-MacLane complexes”, Topology 7, 1968) and, independently, by
Buchstaber and Mischenko (“K-theory on the category of infinite cell complexes”, Mathe-
matics of the USSR Izvestija 32, 1968). These computations include k*(K(Z,n),Z/p) =0
for n > 3 and p a prime. The examples of Dranishnikov include compact metric spaces X
with dim X = oo and dimz X = 3. Since K(Z,2) is represented by infinite complex pro-
jective space C P> whose K-theory with finite coeflicients does not vanish, an alternate
homotopy theoretic component is needed to produce examples of compact metric spaces X
with dim X = oo and dimz X = 2. Of course, the representation K(Z,1) ~ S* is reflected
in the equivalence dim X <1 < dimz X < 1.

The nature of K-theory itself has has no direct impact as any non-trivial generalized
cohomology theory which vanishes on K(Z,n) and whose values on a finite complex are a
finite group in each dimension can be used to produce a compactum X with dim X = oo
and dimz X = n. Apparently, the “standard” generalized cohomology theories fail to
vanish on CP°. '

The approach used by Dydak and Walsh evolved from the realization that a full blown
generalized theory was not essential. A “truncated” theory can be associated to any CW-
complex L by setting h%(X) = [X, QL] forany k = 0,—1,—2,--. (All spaces are to have
base points and all maps and homotopies are to preserve the base points.) The notation (1L
refers to the space of loops on L starting and ending at the base point of L with the constant
loop serving as the base point. The iterated loops spaces are defined by QFL = QQF1L).
For k < —1, h%(X) is a group and, for ¥ < —2, an abelian group. These “truncated”
theories satisfy a Mayer-Vietoris Theorem and, in turn, a Combinatorial Vietoris-Begle
Theorem.

Guided by work of A. Zabrodsky, the Sullivan Conjecture (which was verified by H.
Miller) can be used to establish that theories base on the choice L = S? for ¢ > 2 are

sufficient. Specifically,
h%.(K(Z,2)) = 0 for k < -3.

This provides the final ingredient needed to produce examples of compact metric spaces X
with dim X = oo and dimgz X = 2. Details appear in Dydak-Walsh, “Infinite dimensional
compacta having cohomological dimension two: an application of the Sullivan conjecture”
(preprint) and, in an expanded form, in “Dimension theory, cohomological dimension the-
ory, and the Sullivan conjecture” (preprint).
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Spaces with free fundamental group at infinity

- David G. Wright
Department of Mathematics
Brigham Young University

Provo, Utah 84602

I am indebted to Mladen Bestvina for suggesting the following definition.

DEFINITION. . The fundamental group at infinity of a space X is free if for every
compact set A in X there is a larger compact set B so than the inclusion induced
homomorphism on the level of fundamental groups with any base point from X - Binto X - A
factors through a free group.

The following lemma will be useful in recognizing when a space has free fundamental
group at infinity. It is a generalization of a theorem by R. Brown [1] and is useful in
recognizing when a simply connected, locally compact, metric absolute neighborhood retract
can be a covering space of a space whose fundamental group has an element of infinite order

[3, Theorem 9.1].

LEMMA. Let U and V be open sets of a metric space W so that loops which lie in U or
V are inessential in W. Furthermore assume that U and V are locally path connected. Then the
inclusion induced homomorphism on fundamental groups from U OV into W factors through

a free group.

Proof. Choose opén sets R, S, T so that:

a. RcU,

b. ScUnNV,

c. TcV,

d. RNnT=0

e. The components of R, S, and T form an irreducible cover of U U V.

Let G be the cover of U U V by the components of R, S, and 7. The nerve N(G) of G
is a one-dimensional polyhedron whose vertices are the elements of G. Foreachge G, let
P UL V — [0,1] be a continuous function so that ¢g(x) > Oif and only ifx € g and Zq’)g(x)
=1foreachxe UUV. Weset @: U UV — N(G) to be the barycentric map induced by the

given collection of functions [2, p.70].
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For each g € @, let P, be a point in g so that ¢g(Pg) = 1. We define a map
f: N(@) — W by sending a vertex g to the point P and a one-simplex between vertices g and A
to a path between Py and Py which lies in g U A.

We will now show that the composition fo@: U U V — W induces the same
homomorphism on fundamental group as the inclusion from U U Vinto W. Let ybe a loop in
U u V. Without loss of generality, ¥is a product of paths ¥; so that a typical % runs between
points Pg and Py and lies in g U h. But ®@oy; is a path that runs from g to 4 and lies in the open
star of the one-simplex with vertices g and h; therefore, @7 is equivalent to a path that lies in
the one-simplex with vertices g and 4. Hence, fo®oY; is equivalent in U U V to a path that lies
entirely in U or entirely in V. But % also lies in the same set (either U or V). Hence ¥ and
fodoy; are equivalent paths in W, and we see that the composition fod: U U V — W induces
the same homomorphism on fundamental group as the inclusion from U U Vinto W.

Since the fundamental group of a one-dimensional polyhedron is free, and the inclusion
induces the homomorphism fx0®, , our theorem is proved.
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PROBLEM SESSION

(R. Daverman) If the Poincare Conjecture is true, are all generalized 3-manifolds

resolvable? Is it also necessary to hypothesize that Quinn’s obstruction is trivial?

(R. Daverman) Is any cellular resolution p:M—X for M a 3-manifold a near
homeomorphism if for any two disjoint discs B and B’ in M, p(B) and p(B’) can be
approximated by disjoint singular disks? What if p | B can be approximated by an

embedding?

(R. Daverman) Is a resolvable generalized 3-manifold a real 3-manifold if it has the
Simplicial Approximation Property (which is the SSAP for 2-cells instead of 2-

spheres)?

(R. Daverman) What geﬁeral position properties characterize 4-manifolds among

resolvable 4-manifolds?

(F. Tinsley) Does the blowing up and blowing down procedure described in my talk

work in high dimensions?

(F. Ancel) Does there exist a Weakly Infinite Dimensional Space with finite
cohomological dimension? Does there exist a weakly infinite dimensional space
without Property C? It is known, by R. Pol’s example, that there exist strongly

infinite dimensional spaces without Property C.

(F. Ancel) Can you push the spine of the Mazur manifold off itself by a
homeomorphism? Are there disjoint spines for the Mazur manifold? If there exist

disjoint spines, is there a free Z action?

(D. Wright) If M is a compact, aspherical irreducible 3-manifold, is the universal

covering space of M homeomorphic to Euclidean 3-space?

(D. Wright) Give an example of a contractible 3-manifold which covers a non-

compact manifold, but does not cover a compact 3-manifold.
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10.

11.

12.

13.

14.

15.

(D. Wright) Give conditions on contractible open Q-manifolds which imply that

they cannot be non-trivial covering spaces.

(S. Bleiler) All known examples of finite surgery occur on symmetric knots. Is

this true in general?
(S. Bleiler) Are finite surgeries on hyperbolic knots integral?

(S. Bleiler) What is the maximal geometric intersection number of curves using

finite surgeries? The conjecture for hyperbolic knots is 2. The best known example

1s 22.

(S. Bleiler) Lens Space Conjecture. If L(p,q) can be obtained by surgery on a
nontrivial knot, then p > 5. The case p = 0 is Property r and is due to Gabai. The
case p = 1 is that knots are determined by their complement and is due to Gordon
and Luecke. The case p=2 is known for symmetric knots and is due to Bleiler and
Litherland. The case p =4 is known for strongly invertible knots and is due to

Thompson and Scharleman.

(D. Garity) Is their a codimension 0 thin decomposition of R™ or of the Hilbert
Cube?

Note: There is an additional list of 40 questions listed in the writeup of R. Daverman’s

talk on decompositions into submanifolds. There are also questions listed in the

writeups of a number of the other talks in these proceedings.
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