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Notes on the Knot Complement Problem

JOHN LUECKE

81. An outline

Let K C S° be a knot, that is, X is a circle smoothly embedded in §3. Two
knots K, R’ C S are called equivalent if there is an orientation preserving home-
omorphism of 5% to itself taking K to K'. The exterior of K, denoted X, is the
complement in 5% of an open tubular neighborhood of K. Clearly, equivalent knots
have homeomorphic exteriors. In these notes we will be concerned with proving the

converse,

Knot Complement Problem. Two knots are equivalent iff their exteriors are

homeomorphic.

The question of whether or not a knot is determined by its complement was
asked as early as 1908 by Tietze and is a natural one in light of the fact that the
classical knot invariants were topological invariants of the knot exterior.

Let m be the isotopy class of an essential, simple, closed curve on 8.X . K(=)
is the closed 3-manifold obtained by attaching a solid torus, Jy, to X via a home-
omorphism of 8/, to X that sends the boundary of a meridional disk of J, to
7. For example, if 7 is the meridian of X then K (w) is S®. These notes will be

devoted to the proof of the following theorem:
Theorem 1. If K(x) is S3, then = is the meridian of K.

Theorem 1 implies the Knot Complement Problem. Let A, K’ C S be two
different knots with a common exterior, X. One obtains K C §° from X by
attaching a solid torus to X in a particular way (the core of the solid torus becomes

K). One obtains K’ C S° by attaching a solid torus to X in a different way. But
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Theorem 1 says there is only one way to attach a solid torus to X to get S3. So K
and K' must be equivalent.

Theorem 1 along with the work of Waldhausen on Haken 3-manifolds gives the
following [W, p.26].

Corollary. Prime knots K and K' are equivalent iff their exteriors have isomorphic

fundamental groups.

Note: The square knot and granny knot are different composite knots whose

exteriors have isomorphic fundamental groups.

Theorem 1 is proven in [GL]. These notes are meant to outline this result, to
give examples of some of the techniques used, and to record simplifications to the
arguments made by Hatcher and Parry. For more details or more precise definitions
refer to [GL]. The rest of this section will be devoted to outlining the proof of
Theorem 1.

The 3-sphere minus its north and south poles is the product of the 2-sphere
with an open interval. This gives a height function & : S — R whose level sets
(off the north and south pole) are 2-spheres. Let & C S? be a knot. A Morse
presentation of K is an isotopy of K so that A|K is a Morse function (1.e -K is
transverse to the level 2-spheres everywhere except at relative maxima and minima
which occur at distinct levels). Given a Morse presentation of A, let Sy,...,5,
be level 2-spheres between the consecutive pairs of critical levels of &. Define the
complexity of this Morse presentation of K as Ei=1‘n |Si N K| (see figure 1.1). A

thin presentation of K is a Morse presentation of minimal complexity.
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Figure 1.1

Let X be the exterior of K and v be the meridian of K in X. Assume for
contradiction that there is a slope 7 # v such that K(m) = 8% = K(v). The cores
of the attached solid tori J,, Jx become knots K, K, (resp.) in K(v), K(7) (resp.).

Put K in a thin presentation in K(v) under a height function 2 : K(y) = R
as described above. A level 2-sphere, Cj, of h that intersects X transversely gives a
punctured 2-sphere, @ = Cj N X, properly embedded in X. @ is called a punctured
level sphere for the thin presentation of XK. Note that 0Q is a collection of disjoint,
simple, closed curves on 8X each in the isotopy class 7.

Similarly, put K in a thin presentation under a height function A, : K(7) —
RR. A level 2-sphere, P, that intersects Ky transversely gives rise to a punctured
sphere, P = PnNX , whose boundary is a collection of disjbint, sirnple, closed curves
in 8X that lie in the isotopy class w. P is called a punctured level sphere for the

thin presentation of K.



Figure 1.2






We will find a punctured level sphere, P, from the thin presentation of K,
and a punctured level sphere Q from the thin presentation of K that tniersect
essentially. We will define “intersect essentially” shortly but one property is that
P and @Q intersect transversely. Thus we get a graph Gp in the level 2-sphere P
defined by

(fat} vertices of Gp = components of AP

edges of Gp = arc components of PNQ in P .

Similarly we get the graph Gg in the level 2-sphere . Note that the edges of Gp
and Ggq are in 1-1 correspondence. Two examples of punctured spheres P, and
the associated graphs Gp,Gq are given in figures 1.2 and 1.3.

We number the components of 8P and 8Q in the order of their appearance on
0.X. This allows us to label the endpoints of edges in Gp (Gg) by components of
8Q (9P, resp.). To say that P and Q intersect essentially also means that 8P and
0Q intersect minimally. Thus around each vertex of @ P (Gq) we see the vertices
of Gg (Gp, resp.) appearing consecutively as labels, each ;’ertex of Gg (Gp, resp.)
appearing as a label exactly as many times as the algebraic intersection number
between v and 7 on 8X (in figure 1.2, i9x (v, m) = 2; in figure 1.3 iax (v, 7) = 1).

We say that a vertex, v, of Gp (Gg) has a positive sign if the labels around v
appear in an anti-clockwise order and has a negative sign if the order is clockwise.
Two vertices of Gp (Gg) are called parallel iff they have the same sign. They are
called anti-parallel otherwise. The orientability of X gives us then the

Parity rule. An edge connects parallel vertices in Gp (Gg) iff it connects anti-

parallel vertices in Gg (Gp, resp.).

A 1-sided face in Gp (Gg)is a face in Gp (Gg) with exactly one edge in its
boundary (i.e. this edge is an arc of P N @ which is parallel into 8P (8Q, resp.)).
Definition. P and Q intersect essentially iff

1) P and Q intersect transversely and each component of 9P intersects each

- component of 8Q minimally on 84X,
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2) Neither Gp nor Gg contains a 1-sided face.

Proposition 2. There are punctured level spheres P and Q where P comes from
the thin presentation of K, and Q comes from the thin presentation of K such that
P and Q intersect essentially.

We will sketch a proof of this in section two.
Let’s see that the examples in figures 1.2 and 1.3 cannot arise from level spheres.

Figure 1.2. Here we see a face, f, on Gp called a Scharlemann cycle. A Scharle-
mann cycle is a face, f, of the graph whose boundary can be oriented so that the
tail of each edge (in 9f) has the same label, p, and the head of each edge has the
same label ¢. In figure 1.2, p = 1 and ¢ = 2. Now () separates X and f lies on one
side of Q. Let @ C K(7) = S® be the level sphere on which Q lies and let B be
the ball bounded by @ that does not contain f. Let A be the annulus in 8X that
runs between components 1 and 2 of Q. Recall that J is the solid torus attached
to X to give A'(v). Let H be the.3-ba.ll component of J, — B containing 4. Then a
regular neighborhood of the union of B (0-handle), H (1-handle), and f {2-handle)
is a punctured R P?. See figure 1.4. But K () = 5. 0

Figure 1.4
The same argument more generally shows that if Gp (Gg) contains a Scharle-

mann cycle then K(v) (K(r), resp.) contains a punctured lens space, giving a
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contradiction.

Figure 1.3. Let f; and f; be the faces of Gp pictured in figure 1.3. Let § be the
level 2-sphere in K () on which Q Yes. Then f; and f, are on the same side of Cj
Let B be the 3-ball bounded by @ that does not contain f; and f;. Let Hyq, H34 be
the 3-ball component of J, — int(B) that runs between components 1 and 2,3 and
4 (resp.) of @. Let N be the submanifold of K(v) that is a regular neighborhood
of the union of fi, f» (2-handles) and Hq, Hay (1-handles) and B (0-handle). See
figure 1.5. Then

Ip7
H{(N)=
W= (1,-2))
and since
2 1
1 —2|=79

we see that H;(N) has 5-torsion. Since K () = §? cannot contain a codimension 0
submanifold with torsion in first homology, this shows that P and @ cannot arise

from level 2-spheres. 0O

Figure 1.5
In general the plan to show that P and Q cannot exist is to find a collection
of faces on Gp or Gg that will give rise to a submanifold in K(v) or K(x) with
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non-trivial torsion in first homology. Let p be the number of components of 8P and
g be the number of components of . Let f be a face of Gp. 8f is the union of
arcs ay, by, as, b2, ...,a,,b, wherea; CPNQ and b; C PN X (figure 1.6). Each
b; runs between some pair of components j,j + 1 of 8Q. Orienting 0f, we say that
b; represents (4,7 + 1) or —(j,7 + 1) according to whether 4; runs fromjtoj+1or
vice versa. Given f, we assign an ordered g-tuple a{f) = (a1(f)yea(f)s. .. aq(f))
where a;(f) is the algebraic number of times 8f runs over (7,7 +1). Note that a(f)
is defined only to a multiple of 1. Similarly, to each face, f, of G we assign the
p-tuple a(f). See figure 1.7.

Figure 1.6
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Figure 1.7

We say that Gp represents all types if there is a collection, F, of disk faces of
G p such that

1) for each face f € F and any given orientation of 8f, all occurrences of

(4,7 + 1) have the same sign (for each j)

2) for each ordered g-type € = (€1,€2,...,&4) in {£1}9 there is a face f, € F
and an n € {+1} such that for each i = 1,q, & = 5 - sign{ai(f.)). |

@i(f) = 0 then we say automatically that e; = 5 - sign(ei(f.)).]

Similarly we define the concept of Gg representing all types.

Example 1. If Gp contains a Scharlemann cycle then Gp represents all types.

Example 2. With Gp as in figure 1.3, setting F = {f;, fa} we see that Gp

represents all types:
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12 28 34 4

f1 represents types £1 - (+ , + , + , +)
£ -+, +, +, =)

1 - (+, -, +, 4)

1 - (+, —, +, =)

12 23 3¢ 41

f2 represents types &£1 - (+ , + , — v +)
-+, + .=, -)

1 - (+, -, =, +)
-+, -, =, )

Proposition 3. Let P and Q be the punctured level spheres given by Proposition 2.

Either Gp represents all types or Ggq contains a Scharlemann cycle.

We will outline the combinatorics involved in the proof of Proposition 3 in
section four, after going through its proof in section three in the special case where
K is a 2-bridge knot.

Propositions 2 and 3 combine to give a proof of Theorem 1. Suppose that
K(y) =8 = K(x). Let P and Q be the punctured level spheres given by Propo-
sition 2. Apply Proposition 3. Assume that Gp represents all types. In [GL],
chapter 3 is devoted to showing that this gives a contradiction to the fact that Q
comes from a thin presentation of X in K (7) = 5% However, we can avoid this
chapter by appealing to a recent ( algebraic) result of Walter Parry [P].

First note that Q separates X into, say, a White side and a Black side and that
a face of Gp is consequently either white or black. If F is the collection of faces
of Gp representing all types then it is not hard to see that we may assume that
F consists entirely of white faces or entirely of black faces. We assume F consists
entirely of white faces. Let @ be the level sphere in K(+) on which @ lies. Let B
be the 3-ball in K(y) bounded by § and containing the black side of Q. Recall
that J, is the solid torus attached to X to give K(y). Let H;, j = 1,q, be the
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3-ball component of J, — @ that runs between components j and j + 1 of 8Q. Let
H = {H; | aj(f) # 0 for some f € F} (note that H is a subset of the components
of J, — B, since F consists entirely of white faces). Think of B as a 0-handle,
H as a collection of 1-handles, and F as a collection of 2-handles that constitute
a submanifold of A'(y). The theorem of Parry [P] says that if one has a set of
generators, H, of a free abelian group and a set of relations F that represents all
types in those generators (in the same way that the faces in F represent all types in
the intervals (j,j + 1)) and if no element of F has length one in the generators H,
then one can find a subset, H', of H and a subset, F’, of F such that the abeljan
group with generators H' and relations F” has non-trivial torsion. So let N be a
regular neighborhood in K(7) of the union of B with the 1-handies corresponding
to H' along with 2-handles corresponding to F (note that no element of F has
length one in H because P contains no 1-sided face). Then N is a codimension 0
submanifold of K(+) with non-trivial torsion in first homology. But this contradicts
the fact that K(v) is $3. Therefore Gp cannot represent all types.

If Gg, on the other hand, contains a Scharlemann cycle then we can etther note
that this means that Gg represents all types and use the previous argument or we
can directly construct a lens space summand in K(m) as was done in showing that
figure 1.2 could not represent the intersection of two level spheres.

In either case, Proposition 3 leads to a contradiction with the fact that A" (v) =
S? = K(=).

§2. Finding P and Q

This section will outline a proof of Proposition 2 of section one. Let K(v) =
5% = K(7) and K, K, be as in section one. Recall that we put K, A in thin

presentation under the height functions k, A, (resp.) of A (v), K(x) (resp.). Recall

Proposition 2. There is a2 punctured level sphere, ), from the thin presentation
of K in K(v) and a punctured level sphere, P, from the thin presentation of K in

K(r) such that

(1) P and Q intersect transversely and OP intersects 8Q minimally



(2) PN Q contains no arc components which are boundary parallel in either
Por@.

The idea behind the proof of Proposition 2 comes from the following beautiful
lemma that is taken from Gabai’s proof of Property R. In fact, Gabai independently

proved Proposition 2 and knew of its application to the knot complement problem.

Lemma 2.1. [Ga, §4A]. Let Q be a punctured level sphere in the thin presentation
of K. There is a punctured level sphere, P, in the thin presentation of K, such

that

(1) P and Q intersect transversely and 8P intersects 8Q minimally
(2) PN Q contains no arc component which is boundary paralle! on Q.

Praof of lemma. Look at @ in K(x). Define a middle level of the thin presentation
of K to be the interval of level 2-spheres between two consecutive critical levels of
K, such that the critical level just above this interval is a relative maximum and
the critical level just below the interval is a relative minimum (fgure 2.1). Pick one
such middle level. Isotop 0Q on X so that 8@ intersects minimally the boundary
of each level sphere in this middle level. Furthermore, isotop Q so that its pro jection
under %y ifi this middle level has only non-degenerate critical points occurring at

distinct levels.

/ \/ []
) 1 1
t 21 }
R .
. lmJo‘[e lE‘VCl

1\ SN N

Figure 2.1
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Let P be a level sphere in this middle level which is not a critical level of Q.

"To say that some arc of PN Q is boundary parallel in Q gives the picture in K ()
of figure 2.2. We call P a high sphere or low sphere according to figure 2.2. We
assume for contradiction that each level sphere in this middle level that is not a
critical level of @ is either a high sphere or a low sphere. Note that such a level
sphere cannot be both high and low because one could reduce the complexity of
HKx. See figure 2.3. Also note that any two level spheres in this middle level of Ky
that have no critical levels of Q between them will either both be high spheres or
both be low spheres. Thus the critical levels i1,43,...,1, of Q in this middle level
break up the middle level into subintervals of level spheres such that all level spheres
in a given subinterval are either high or all are low. See figure 2.4. Furthermore,
the subinterval of level spheres above 7; obviously consists of low spheres and the
subinterval below i, obviously consists of high spheres. Thus there is a critical level,

ik, of Q such that the level spheres just above i are low and the level spheres just
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below i; are high. But then the picture in K(x) at this critical level is either as
in figure 2.3 or figure 2.5. In either case we can reduce the complexity of K, as
ilustrated in figure 2.3 and figure 2.6 (2.6 corresponds to 2.5). This contradicts the

thinness of the presentation of A, thereby proving Lemma 2.1. 0
'_Z - [‘ / faw
.i — £ / \. / l tow
,— & { Q \\ low
. L ' 'jh
I & o high
1y
Z \ /)

Figure 2.4

~
a

Figure 2.5

Figure 2.6
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Thus, given a level sphere Q of A we can find a level sphere P of K, that
satisfies (1) of Proposition 2 and such that P N Q has no arc component which is
boundary parallel on Q. Similarly, given a level sphere P of K, we can find a level
sphere @ of K such that (1) of Proposition 2 is satisfied and such that no component
of PN @ is a boundary parallel arc on P. The additional content of Proposition 2
is that we can find P and @ so that these conditions hold simultaneously.

This is done by taking the argument of Lemma 2.1 and crossing it with R. We
pick a one parameter family of level 2-spheres in the thin presentation of X that are
between an adjacent local maximum and local minimum of X (1.e. we pick a middle
level for the thin presentation of K). This becomes a 1-parameter family, {Q())}, of
punctured level spheres properly embedded in X. We first isotop the family {Q())}
in X so that {8Q(A)} intersects the boundaries of the level spheres of b, minimally.
We then perturb the family {Q(A)} so that it is in general position with respect to
hy. This means that for all but finitely many A, i, | @(A) is a Morse function and
that each Q(A) with A, | Q()\) not Morse has non-degenerate singularities (i.e. is
Morse) except for a single critical value where we see a singularity corresponding
to a birth, death, or exchange of tangencies (a “Cerf” singularity).

Assume for contradiction that Proposition 2 is false. The argument of Lemma 2.1
allows one to associate to each Q(A) such that A, | @(}) is Morse a punctured level
sphere Py of K, which intersects Q()) transversely and is such that Q(A\) N Py
contains an arc component which is boundary-parallel on Py (because there are no
boundary-parallel arcs of Q(A) N Py on Q(A)). If the corresponding arc lies above
(below) Q(A) in K (), then Q()) is called low (high, resp.) as in Lemma 2.1 (where
there it is the P which is either high or low). Again Q(A) cannot be both high or
low else we could reduce the complexity of the thin presentation of K. One observes
that as A increases, Q()) starts off high and ends up low. By the thinness of the
presentation of K, a change from high to low in {Q(A)} can only occur at a A such
that A, | @(A¢) is not Morse. One analyses what happens at Q(\y) (i.e. at the
level of K (7} where the Cerf singularity occurs), using the special way in which P,

is constructed for Q(A), and eventually arrives at a contradiction to the thinness of
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K under h.
This completes an outline of the argument for Proposition 2. For more details

see Chapter 1 of [GL]. Q.E.D.

For those going through the details of the proof given in Chapter 1 of [GL]
I would like to include the following simplification due to Allen Hatcher. The
following replaces Lemmas 1.3, 1.4, and 1.5 and is taken almost verbatim from a

letter I received from Hatcher. All references are to [GL].

First, starting in the middle of page 378, Hatcher suggests that
p:I? =T — R be defined so that

>0 if P(A)is high w.r.t. Q{u)
p(A, 1) <0 if P(A)is low w.r.t. Q(u)

=0 otherwise.

Define g : I? =T’ — R similarly. That is, he suggests that > 0, < 0, = 0 be
used rather than H, L, N. As stated in (P.1) on p.378 [or by Lemma 1.1] p
and g are well-defined, p is single-signed on verticals in I?, and ¢ is single-
signed on horizontals in I%. On the edges of I? we have the inequalities
pictured in figure 2.7 (this is (P.4), (P.5) on p.378).

1(0

pro p<o

H L | 3)0

A

Figure 2.7

To prove Proposition 2 we need to find a component of I? — T with
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p =g = 0. Choose (s,1) so that

p 2 0 on verticals just to the left of A= s
P £ 0 on verticals just to the right of A=
g 2 0 on horizontals just below u =1

¢ <0 on horizontals just above u=1

L z
p - §:°

t
i
|

A=s

Figure 2.8

Figure 2.9
Thenp=0on A=3s,¢g=00n u=t(see figure 2.8). If there is no region
with p = g = 0, then the four dotted lines of figure 2.8 must be separated
by curves of I'. That is we must have fizure 2.9. Then p, ¢ must take
the local values pictured in figure 2.10. This argument takes us through

Lemma 1.5 and now continue as in [GL)] beginning on page 381 with line 5.
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Figure 2.10

I would like to thank Hatcher for this argument.

§3. 2-bridge knots are determined by their complements

Given a Morse presentation of K, the bridge index of this presentation is the
number of relative maxima in the presentation. The bridge number of K is the
minimum bridge index of all Morse presentations of K.

In this section we prove

Theorem 3.1. Let K be a knot with bridge number 2. If K(r) is the 3-sphere

then m is the meridian of K.

For the rest of this section we assume for contradiction that 3.1 is false; that
is, there is a K such that K(r) = $? = K(y) where 7 # 4 = meridian of K.
By applying Proposition 2 of section one we get two punctured level spheres P, Q)
coming from thin presentations of K, K (resp.) such that P and @ intersect
essentially. It is not hard to see for 2-bridge knots that a Morse presentation of
minimal bridge index is in fact a thin presentation. Thus we may assume that the
number of components of [0Q| < 4. In fact, from the proof of Proposition 2 in

section two we see that [0Q| = 4. As in section one we will be done if we can prove:
Theorem 3.2. Either Gp represents all types or Gq contains a Scharlemann cycle.

An example of a possible P and Q is given by figure 1.3. We will assume
that at a vertex of P each label appears exactly once, that is, that the algebraic

intersection number between 7 and + is one. Otherwise we may apply the short
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argument of [CGLS, Proposition 2.5.6] to conclude that either G p or Gg contains
2 Scharlemann cycle, thereby establishing Theocrem 3.2.

The rest of this section is devoted to the proof of Theorem 3.2. We need to
find a disk face in Gp representing each of the types listed in figure 3.1. We will
assume for simplicity that Gp is a connected graph. In particula.r,A all faces of Gp

are disk faces.

12 23 2+ 4 t2 23 34 ¥i | 2 23 3% Y4I
T4, 1) AR AR A t(t, -t~
Tt 4, -, 4)

via :t + - <+ +)
Tr\ ‘ 41‘5! ‘ 4 ) . ClqsgB

(-4, ]

Class A

~—

Nnr\-'{'rl.w'qll 'L‘\j]ﬁe.‘a‘

Figure 3.1
Lemma 3.3. Either there is a face in Gp representing the trivial type or there is

a Scharlemann cycle in Gg.

Proof. We have two cases:
Case 1: There is a vertex, z, of Gp such that at most one label at z, y(z), say, is
the endpoint of an edge of Gp that connects z to a paralle] vertex. (Note that there

can be no loops based at z.)

Proof in Case 1. Recall the Parity Rule for edges: an edge connects parallel

vertices in G p iff it connects anti-parallel vertices in Go.

Let G be the subgraph of G g consisting of all vertices of Gq plus all edges
of Gg that connect parallel vertices of Gq. Let A be an innermost component of
G that does not contain the vertex ¥(z). The hypothesis of Case 1 along with the
Parity Rule implies that every vertex, z, in A has the following property: the edge
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incident to z with label z is in A. Thus, starting at any vertex, z;, of A we can leave
that vertex at label z and go to another vertex, z,, in A. We can then leave z3 on
label z and go to another vertex, z3, in A (no edge in A can have both endpoints
labelled z because of the Parity Rule). Eventually we will get a cycle z1,25,...,2,
whose interior contains only vertices of A; that is, its interior contains only parallel
vertices. This is what is called a great z-cycle in [CGLS), and by inducting on the
size of a great v-cycle, v a vertex of Gp, we find that there must be a Scharlemann

cycle in the interior of this great z-cycle (see [GL, Lemma 2.0.2}). C

Case 2: Every vertex, z, of Gp has at least two labels y(z), y2(z) such that the

edges incident to z at y;(z) and y,(z) connect z to parallel vertices.

Proof in Case 2. Let G'5 be the subgraph of Gp consisting of the vertices of Gp
along with all edges of Gp connecting parallel vertices. Let A be an innermost
component of G». The hypothesis of Case 2 guarantees a circuit of edges in A. An
interior face of A will be a face, f, of Gp that touches only parallel vertices of G P-
f then represents the trivial type (+,+,+,+). O

This finishes the proof of Lemma 3.3. Q.E.D.

Lemma 3.4. If 7 is a type of class A (figure 3.1) then + is represented by a face
of Gp.

Figure 3.2
Proof. WLOG we assume 7 = (+,+, +,—). Associated to T we define the “stars”

T4, T_ pictured in figure 3.2. A star-is an abstract vertex, v, of Gp where to an
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interval on v between consecutive labels 7,7 + 1 on v we assign an arrow based on
the sign of r;, where r = (1,1, 73, 74) = (+, +, +,~), and on the sign of v. In
figure 3.2 we have stars for a positive and negative vertex of Gp. Note that one
gets the star T_ from T by reversing all arrows. The clockwise switch of T_ and
that of T, correspond to the same label, 1. Similarly, the anti-clockwise switch of
T_ and T have the same label, 4. We write the fact that T,,T_ come from T by
[T4] = 7 = [T-]. We now construct the oriented dual graph associated to 7, which

we denote I';, as follows:

Vertices of ', = {“fat” vertices} U {“dual” vertices}
{fat vertices} = {vertices of Gp}

{dual vertices} = {faces of Gp}

Each edge of ', connects a fat vertex with a dual vertex and
is oriented according to T4 or 7 depending on the sign of the

incident fat vertex.
In figure 3.3, T, is constructed for the example in figure 1.3.

Remark. The notation I', differs from that of [GL] in that here we don’t distinguish

between I' and I'*. In that notation our I', would be ry.

[
1\
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Figure 3.3
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T’y is constructed so that the sinks and sources of I’y (which necessarily occur

at dual vertices of I'; since 7 is a non-trivial type) correspond to faces of Gp that

represent T.

To prove Lemma 3.4 we need to show that I',. contains a sink or source. To do

this we do an index calculation.

A switch at a vertex, v, of ', is a pair of adjacent edges incident to v whose

orientations are opposite at v (figure 3.4).

v

Swiddn ad v 2 swides areund £

Figure 3.4

A switch of a face, f, of I'; is a pair of adjacent edges of 8f incident to a vertex

v, say, on Jf whose orientations agree at v (figure 3.4).
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Figuré 3.5
The index, I(v), of a vertex v of I'; is defined to be 1 — "(”) where s(v) is the
number of switches at v. The index, I(f), of a face f of I, is defined to be 1 — 3—%"1
where s(f) is the number switches of f (see figure 3.5). Note that a vertex of T is
a sink or source iff its index is 1, and a face of ', is a cycle iff its index is 1. QOne
now has the following lemma from [Glass], whose proof is an Euler characteristic
count.

Index Lemma. " I(v)+ Y I(f)=2

vertices faces

Now assume that there is no sink or source at a dual vertex of I',. That is,
fvisa dua.l‘vertex of I'; then I{v) < 0. Note also that if v is a fat vertex of
Ir.then I(v) = 0. Thus by the Index Lemma there is a face f; of I'; such that
I(f1) = 1. Since we assume that Gp is connected, f; corresponds to an edge, e,

of Gp and, in fact, one easily sees that e must be one of the two edges pictured in
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figure 3.6. Note that e has both endpoints with the same label. This means that
e represents a loop in Gg. Because Gq has only 4 vertices, the only way Gq can
have a loop is if G contains a 1-sided face. But this contradicts the fact that P
and Q intersect essentially. Thus I'y must have a sink or sourse at a dual vertex,

which proves Lemma 3.4. Q.E.D.

of, s a cloichwise
ele of I

Q‘Ft 15 an aﬂ'in'dachu:.st

tyele of r',r

Figure 3.6
Lemma 3.5. If 7 is a type of class B (figure 3.1) then either T is represented by a

face of Gp or G contains a Scharlemann cycle.

Proof. 7T = (4,—,+,—). Associated to 7 we define the stars T, ,T_ pictured in
figure 3.7 (i.e. [T4] = 7 = [T.]). Again, note that T_ is obtained from T by
reversing the arrows. The clockwise switches of 7 and T, have the same labels,
and the anti-clockwise switches of T, and T_ have the same labels. As in the proof
of Lemma 3.4 we construct the oriented dual graph corresponding to = using the
stars of figure 3.7. Figure 3.8 shows I'; for the example of figure 1.3. Again, (because
7 is non-trivial) a sink or source in I', correspends to a face of Gp representing T.
So we assume that I'; contains no sinks or sources. If v is a fat vertex of T’y then
I{v) = —1. By assumption if v is a dual vertex of I'; then I(v) < 0. Let p be the
number of vertices of Gp. By the Index Lemma we have 3", __ I(f) > 2+ p. Thus
I’y must contain more than p faces of index 1. Again, the faces of ', correspond to
edges of Gp and a face, f, of I'; of index one will be one of the edges pictured in

figure 3.9.
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Figure 3.9

Let F = {faces, f, in T'; [ I{f) = 1 and 8f is a clockwise cycle}. WLOG we
may assume || > p/2. Define £ = {e | e is an edge of G p corresponding to f € F}.
Then |E] > p/2. If e € £ then e is one of the edges of figure 3.9. If e has both
endpoints labelled by the same vertex of Gq then e corresponds to a loop in Ci'Q
and this leads to the contradiction that Gq contains a 1-sided face. Thus we may
assume that e has one endpoint labelled 1 and one endpoint labelled 3. Since 1
and 3 are parallel vertices on Gg, the Parity Rule guarantees that if e € £ then e
cannot be a loop in Gp. Since || > p/2 there must be some vertex, z, in Gp with
two edges e, e; € £ incident to it. See figure 3.10. In G the edges e; and e; form
an z-cycle (figure 3.10). An z-cycle in Gg is a cycle of edges in G that connect
only parallel vertices of Gg and has the property that there is an orientation of the
cycle such that the tail of each edge has the label z. Furthermore, an z-cycle, o,
is called a great z-cycle if one side contains only vertices that are parallel to the
vertices in ¢. Because Gg has only 4 vertices and contains no 1-sided faces, it is
easy to see that one side of the z-cycle formed by e, and es will have no vertices of

Gq. Thus this z-cycle is a great z-cycle. Now, by induction on the size of a great
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v-cycle, where v is a vertex of Gp, one can see that the interior of this great z-cycle
contains a Scharlemann cycle [GL, Lemma 2.0.2].

This proves Lemma 3.5. Q.E.D.

3
G. = @
i GQ

Figure 3.10

Lemma 3.3, 3.4, 3.5 prove Theorem 3.2 and consequently Theorem 3.1.

84. Proof of Proposition 3

We now consider the proof of Proposition 3 in the general case. We want to
show that we can find a collection of faces on G p representing all types or that we
can find a Scharlemann cycle on Gg.

The argument, in the last section, of Lemma 3.3 (that either Gp represents
the trivial type or G contains a Scharlemann cycle) works in general. So we need
to show that we can find a face of Gp representing a non-trivial type, T (or show
that Gg contains a Scharlemann cycle). This is done exactly as in section three.
Namely, we construct stars T, ,7_, and an oriented dual graph, Iy, corresponding
to the desired type, then argue that there must be a sink or source in I'; (again,
in the notation of [GL] our I'; would be I'}). In the 2-bridge case we showed that
the lack of a face representing  (i.e. the lack of a sink or source in I';) gave rise,
via an index count, to an z-cycle (note that a loop is automatically an z-cycle) on

Gg. We were then able to see that either this z-cycle gave rise to a 1-sided face,
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contradicting that P and @ intersected essentially, or was a “great” z-cycle. But
then a great z-cycle always contains a Scharlemann cycle in its interior. The fact

that K was a two-bridge knot came in two ways:

1. When K is 2-bridge, T, always had the following property:

All of the clockwise switches at a fat vertex of I', are
(*1) labelled by parallel vertices of Gq. Similarly, all anti-clockwise
switches were labelled with parallel vertices of Gag

The property (1), the absence of a sink or source in I'», and an index
count combined to give rise to an z-cycle on Go (see Lemmas 3.4 and

3.5).

2. Because G had only four vertices, this z-cycle had to be a “great” z-cycle
(i.e. all the vertices on one side were parallel to the vertices in the z-cycle).

A great z-cycle always contains a Scharlemann cycle in its interior.

In general one has problems with both 1) and 2) and we outline the techniques used

to handle them.

[T+] = (+1+J+J+;- J+J+l-—)

Figure 4.1
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Figure 4.2

1. The oriented dual graph, I',, corresponding to the non-trivial type, ,
will not in general have property (x1). For example, let 7 be the type 7 =

(+,+,+,+,—,+,+, =) for the graph Gp pictured in figure 4.2. The star, T, with
[74] = 7 is given in figure 4.1. The oriented dual graph I'; is given in figure 4.2.
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We introduce the operation of taking the derivative of a star (or type) which when
applied inductively reduces the problem to that of trying to find a face of a subgraph
of Gp that represents a new type, derived from 7, whose corresponding dual graph
(of the subgraph along with the derived type) does satisfy (+1) (p.389 and p.393 of
[GL]). Say as for 7 above, one has that the anti-clockwise switches fail (*1). Let T
be such that [T] = 7. Let C(T') be the set of vertices in Gq that label the clockwise
switches of T' (in the example C(T) = {1,6}). Consider the subgraph, Gp(C(T)),
of Gp consisting of all vertices of Gp along with all edges of Gp that have at least
one endpoint with label in C(T). See figure 4.3. We construct a star, the derivative
of T, which we denote dT, corresponding to an abstract vertex of & p(C(T)) as in
figure 4.4. (The construction of dT from T is given on p.389 of [GL]). In the graph
Gp(C(T)) we look for a face that represents [dT]. We then argue (p.399 of [GL],
Corollary 2.4.2) that such a face in Gp(C(T)) will contain within it a face in Gp
representing type 7. Figure 4.5 depicts a face of Gp(C(T)) representing [dT], from
figure 4.3, and one sees within it a face representing [T] = 7, from figure 4.2. By
repeatedly taking derivatives we eventually arrive at a subgraph G p(C(d"~¥(T))) of
G p and a type d*T for that subgraph with the property that, I'(d™T), the oriented
dual graph (built from Gp(é(d"_l(T)))) corresponding to d"T, satisfies (+1). If
we find a face in Gp(C(d®~(T'))) that represents d"(T) then we know, by working
backwards inductively, that there is a face in G p representing 7. Otherwise we may
apply the Index Lemma from section three to I'(d"T) as we did in section three to
conclude that there is an z-cycle, o, in Gg. Note that the vertices of Ggq in ¢ label

switches of d”T, hence label clockwise switches of 7.



Cclﬂe O{ GP (C(T}) N N
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Figure 4.3
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If the clockwise switches of T had failed (*1) instead of the anti-clockwise
switches, then reverse all arrows in 7' and make this 7' instead. Now we are in the

case above.

2. In general, once we find the z-cycle, o, in Gg it will probably not be true
that o is a great z-cycle. So what we would like to do is to “induct” on the vertices

inside of .
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Let Ly be the set of vertices of Ggq in the interior of 0. Let Gp(Ly) be the
subgraph of Gp obtained by taking the vertices of Gp along with only those edges
of G'p that have an endpoint labelled with a vertex in Ly. We assume, by induction,
that Gp(Lo) represents all types (otherwise we use procedure (1) to find & new z-
cycle on Gg among the vertices of Ly). Note that for Gp(Ly) a type is an ordered
[Lo|-tuple, called an Lq-type, see p.387 of [GL).

Recall from (1) above that we arrived at the z-cycle, o, in pursuit of a non-
trivial type, 7, by taking a sequence of derivatives of the star, T, corresponding

to 7: .
T;=dT,\_, =d'T 1=1,m

To=T
The problem of finding a face in Gp representing 7 is reduced (in the general
inductive step T will be an L-type, where L is some subset of the vertices of Gg,
and we will be looking for a face in Gp(L) that represents T) to that of finding a face
in Gp(C(Tn-1)) [Gp(C(Ta-1)) is the subgraph of Gp consisting of the vertices of
G p along with all edges in Gp that have an endpoint labelled by a clockwise switch
of Ty} representing [T},]. We want to use the inductive hypothesis, that Gp(ZLp)
represents all Lo-types, so we change this sequence of derivatives to a sequence
which is relative to the subgraph G(Lg). This relative derivative d L, is defined on
p-389 and p.393 of [GL]. Essentially, by taking the relative derivative rather than
the absolute derivative we ensure that at each step G(Lg) remains a subgraph of

the new derived graph. Thus we now look at the new sequence of stars:

R;,=d; Ri_, t=1,m

Ro=T, =T
By repeatedly applying Lemma 2.4.1, p-397, we still have that if we can find a
face in Gp(C(Rn-1) U Lg) [i.e. the subgraph of Gp consisting of all edges with at
least one endpoint labelled by a vertex of G that is either in Lg or is a clockwise
switch of Rp_] representing [R,] then we can find a face of Gp representing 7.

(To apply 2.4.1 we have to first note the rather subtle point that &(T(R;)) =
I'(dLeRi) = I'(Ri41), which uses the fact that the vertices of o, the “exceptional
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labels” of Gp(Lyg), are clockwise switches of R;.) We now use the assumption that
G p(Log) represents all Ly-types to find a face representing [R,]. Because Gp(Ly) is
a subgraph of Gp(C(Rp—1) U Lg) we must do the following.

Given the star R, and an interval on the star between two consecutive labels
in Lo (an “Lo-interval”), section 2.6 of [GL] defines that interval to be good or
bad according to the sign of the abstract vertex R, and the switches of R, in this
Lg-interval. That is, each Lg-interval on R, is either good or bad. This gives us
an Lo-type by assigning a + to the Lg-interval if it is good and a — if it is bad. By
assumption Gp(Lg) contains a face, F, representing this Lo-type. We now argue
that within the face, F, of Gp(Lg) there is a face, f, of Gp(C(Rp_1) U Ly) that
represents K,. This is done by an index count on the oriented dual graph associated
to R, restricted to F, and is given in Lemmas 2.7.1 and 2.3.3 of [GL].

Thus the assumption that Gp(Lg) represents all Lo-types implies that there
is a face of Gp(C(Rp—1)U Lyg) representing [R,]. This in turn implies that there
is a face in Gp(C(Rn—2) U Ly) representing [Rrn—1],..., which in turn means there
is a face o;f Gp(C(Ro) U Ly) representing [R:], which means there is a face in Gp
representing [Ry] = [Tp] = r. (Again, this last series of inductions comes from
Lemma 2.4.1 and uses the fact that $T(Riy) = f‘(dLu R;_1). See the top of page
409.) This is what we were looking for.

If Gp(Lo) does not represent all Ly-types, then, as mentioned above, we would
apply the procedure of (1) to find a new z-cycle o' within the vertices of Lo on Gg.
Replace o with o' and let Ly be the vertices inside o'. Note that we have reduced
the size of Lqg, so eventually we will either get that |Lg| < 1, which will give us a

great z-cycle on either Gp or Gq, or that Gp(Ly) represents all types.

This outlines the proof of Proposition 3.

Remark. The motivating example for the argument in 2) is when Gp is discon-
nected, i.e. when there are no edges of Gq connecting Lg with the z-cycle o. Then
G p(Lo) has no exceptional labels, that is, each endpoint of each edge of Gp(Ly) is
labelled by a vertex of Gg in Lq. It is probably helpful to understand the argument
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of 2) in this case first. Furthermore, in this case one has that if G P(Lo) represents
all |Lg|-types then Gp represents all g-types. The proof of this fact is really the
same as the proof of Lemma 3.3 of [GL), though there the context is a little differ-
ent. We sketch the argument here. Assume Gp(Lg) has no exceptional labels and

let Gp(Lo) represent all |Lo|-types. Let T be a g-type.

Claim. There is a sequence of stars Xy, X, ... y X n such that

(1) X =r |
(2) [_Y,‘] = dLoX{._]_ or dLQ‘Y"_l 3 2 S 1 <n ’
(3) [X.] is an Lo-type

Proof of claim. Same as the proof of the claim in Lemma 3.3 of [GL]. |

Because Gp(Lyp) represents all |Lg|-types and [X.] is an |Ly)-type we have that
there is a face F' of Gp(Ly) representing [X,]. Since Gp{Ly) has no exceptional
labels, we have by Lemma 2.2.2 of [GL] that &7, (I'(X;_, )) =T(dL, Xi—1) = T(X;).
By successively applying Lemma 2.4.1 of [GL] we get a face of Gp representing
[X1] = 7 (it might also be helpful to go through the proof of Lemma 2.4.1 in this
setting). This is what we were looking for.

In general when Gp(Lg) has exceptional labels it is not true that the existence
of a collection of faces of Gp(Lg) representing all Lyo-types implies that G'p repre-
sents all types. This is illustrated by figure 4.6. Here the collection {F,F, F3} of
faces of Gp(Lg) represents all Ly-types; however, there is no face of & p (at least
in Gp restricted to the pictured faces of G(Lg)) representing the original type [R)
(s.e. there is no sink or source for ['(g). This example illustrates the necessity of
some relationship between the original type [R] and the z-cycle, o, which defines
Lg, e.g., the fact that all the vertices of G in o (the exceptional labels of Gp(Lo))

are clockwise switches of R.
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AROUND THE HILBERT-SMITH CONJECTURE

by EIIaden Bestvina and Robert D. Edwards

A special case of the Hilbert-Smith Conjecture (for an introduction to the Conjecture
and a discussion of our approach see [1]) asserts that the group

Ap =lm(Z/p — Z/p* — ---)

of the p-adic integers does not act freely on the n-dimensional torus T™. Denote by X
the orbit space T /A4, of such a presumed action and assume in addition that X is finite-
dimensional (in fact it is known that in that case dimX = n + 2). Now “suspend” this
action in the folowing way. Pick a large integer m, and a free abelian subgroup F = 4,
of rank m. Let F act on the Euclidean space R™ in the standard way, and form the
orbit space A = R™ . T"/F where F acts diagonally on the product. Projection to the
second factor induces a map f: M — X whose point preimages are generalized solenoids
R™ - A, /F which have trivial (integral Cech) homology in positive dimensionus. Note that
M is a manifold which can be taken to be homeomorphic to the (m+n)-torus. Thus we
are led to the following question.

Question. Does for every g there exist n = n(g) such that every map f from the
n-torus to a g-dimensional space {e.g. RY) has a point preimage f~'(pt) such that the
inclusion induced homomorphism H(f~'(pt)) — H,(T™) is noun-trivial (integer coeffi-

cients)?

This question should be contrasted with the following fact (which is a version of the
Lusternik-Schnirelman theorem): If f:T" — X is ¢ map with dimX - n, then there erists
z & X such that the inclusion induced homomorphism HY(T™) — H'Y(f '(z)) is non-
trivial. (Proof: Otherwise every point preimage is contractible in the torus, and therefore
X admits an open cover U such that for every U < U the set f~!(I/} is contractible in 7",
Since dimX < n, we can take U to have u elements {7}, a, ..., [/, each of which has the
property that the closure of its preimage is contractible in the torus. It follows that the
it* coordinate projection p;: T™ — §! is homotopic to a map p; such that g;( f~'(7;)) is a
proper subset of 5'. But then 5 -+ ... « 5,:T" — T" is a non-surjective map homotopic
to the identity, a contradiction).

It follows that the answer to the above question is affirmative if we restrict ourselves
to “nice” maps, e.g. those that have ANR point preimages, In that case we can take
n = ¢+ 1 {vauishing homology would imply vanishing cohomology). The following two
examples illustrate the subtlety of this question.

Example 1. Recall [1] that 4, acts freely on a 2-dimensional cell-like set C with 2-

dimensional orbit space Q. Performing the above construction to C yields T = R™ « C /F,
which as before maps to Q with generalized solenoids for point preimages. On the other
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hand, projection to the first coordinate induces a cell-like map p : T — T™. Hence the
above question has a negative answer (for ¢ = 2) if we pose it in the larger class of “shape
tori”.

Example 2. Let k be the largest integer with 2(k 4+ 2) + 2 < m, and denote by
K the k-skeleton of T™. Let K = p"(f\) be the “shape k-skeleton” in the shape torus
T. Note that dimA = & + 2 and hence plI\ can be approximated by an embedding. We
write £ C T™ and observe that 7™ — T is homeomorphic to ™ — K and therefore there
is a natural map g : T™ — cU to the cone over the dual (m — k — 1)-skeleton L in T™,
sending K to the cone point. Also the map E - @ (restriction of the map T — Q@ from
example 1) extends to amap h : T™ — I for an embedding of @ into the 5-cell. The map
g = h:T™ — (cL) = I° has homologically trivial point preimages, and the dimension of
the target space is m — k + 5, just slightly above m/2. This example shows that in general
n = g + 1 doesn’t suffice. An elaboration of this argument yields that n must be bounded
below by an exponential function of ¢ (if it exists).

There is another related question. It can be posed so that it more closely resembles the
classical Lusternik-Schnirelman theorem, which states that every open cover I7,, U3, --, U,
of the n-torus has an element that contains a loop essential in the torus.

Question. Does for every g there exist n = n(g) such that the following holds?
Suppose that for every i = 1,2,-.- we are given an open cover U' = {U{,Ui,. ., Ui{} of
the n-torus such that for every j = 1,2,...,¢q the sets U} D U}' T +-- form a shrinking
sequence. Then there is an essential loop in the torus which is homologous into some

element of each open cover U'.

(1] Robert D. Edwards : Some Remarks on the Hilbert-Smith Conjecture , Proc. of the
Fourth Annual Western Workshop in Geomeirie Topology, Oregon State Univ. 1987.
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On Knotting of Randomly Embedded n-gons in R3

Yuanan Diao
Department of Mathematics
Florida State University

Consider a circle consisting of n line segments which is randomly
embedded in R3, i.e.,, a randomly embedded n-gon in R3. This circle
can be either knotted or unknotted, so one may ask the question:
what is the probability for a randomly embedded n-gon to be
knotted? This question is of interest to both mathematicians and
scientists. It was first raised by some physists and chemists in early
1960's in the context of estimating topological self-entanglement of
molecules ({11, [2]). The importance of studying this problem can be
secen from the study of topological constraints in the statistical
mechanics of long polymer molecules, and the effects of knots on the
long time memory in melts of linear polymers ([11, [2], [3]). Another
example is the recent application of knot theory to DNA research,
where knotting of circular DNA molecules is used to detect enzyme

action ([5]).

Of course, the first thing for us to do is to make clear the meaning of
"randomly embedded n-gon in R3", and it turns out that one may
have different models, depending on point of view. We give two
models here, one mathematically easier to deal with, and the other
one preferred by scientists.

In this field, there is a conjecture raised by Frisch, Wasserman and
Delbruck which says that the knot probability for a randomly
embedded n-gon goes to 1 as n goes to infinity. The conjecture is
usually called FWD conjecture. One would like to express the
probability of knotting for a randomly embedded n-gon as a function
of n. For example, this probability is always O when n is less than or
equal to 5. But this becomes very difficult when n is large. In this
paper, we discuss a proof of the FWD conjecture for two random
polygon models. These models are versions of the continuum case;
there is also a discrete model called " seif-avoiding walks on the
lattice” (SAW), for which the conjectrue has been proved by Sumners

and Wittington ([6]).

Definition 1. A Gaussian random vector (or point) X in R3 is an
ordered triple (x, y, z) such that x, y, z are independent Gaussian
random variables, each with a =0and o = 1. (We say that x is a
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Gaussian random variable if x is a random variable and its density
function is given by exp(-(x-a)2/2c62)/(2rc2)1/2, where a is its
expectation and o2 is its variance.) '

Definition 2. A Gaussian random walk of n steps is a sequence of n
random points Xj, X2, ..., Xn (Xi = (xi,¥i,zi)) such that Xy4+1 - Xk, k =0,
1, ..., n-1 (here we take Xp to be the origin O) is a sequence of
independent Gaussian points. We denote it by GWy.

Definition 3. A Gaussian random loop of n steps is a Gaussian
random walk with both end points fixed at the origin O. We denote it

Theorem 1. There exists a constant £> (0 such that P(GL, is knotted)
2 1 - exp(-nf), provided that n is large enough.

Definitions 1 to 3 defined the first model. It is nicer to deal with
since one can explicitly write down the density function of GL, and
the probability integrations will always be over R3n.

Definition 4. An equilateral random walk of n steps is a linear
chain consisting of n unit line segments and is denoted by EWp. If we
number the end points of these line segments from one end of the
chain by Xp, X1, ..., Xn, then we have 1Xj41 - Xl =1 for i =0, 1, ..., n-1.
Usually we take Xg to be the origin. Once X; is given, the distribution
of Xj+1 will be independent of those end points of EW, before Xj, and
is evenly distributed on S(X;j,1), the unit sphere centered at Xj, in
other words, Xj.1 - Xj, i =0, 1, ..., n-1 is a sequence of n independent
random points, all are evenly distributed on the unit sphere S(O,1).

Definition 5., An equilateral random loop of n steps is an EW, that
with last end point X; also to be the origin. We denote 1t by ELj.

Theorem 2. There exists a constant € > 0 such that P(EL, is knotted)
2 1 - exp(-nf), provided that n is large enough.

When modelling long chain polymers, the equilateral random walk
model is preferred to the Gaussian randoem walk model. The knotting
probability results in the two models are similar, but, as one may not
expect, we have a better estimation for the number e in the E-case
than in the G-case. We estimate that € > 0.05 in the E-case but only

get € > 0.01 in the G-case.
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The following figure shows an equilateral random walk of 4 steps.
The probability for the first vertex Xji to be in the region A is simply
the area of A divided by the total area of the unit sphere, 1i.e.,

area(A)/4r.

Az
A
-
O y
X
Figure 1

In this paper, we give only the sketch of the proof for the second
model. The details for the Gaussian model will appear in [14] and the
details for the equilateral model will appear in [15].

The Sketch of The Proof. The effort is to show that with a high
probability, a random loop will always contain at least one trefoil
(actually any given knot pattern) as a direct sum component when n
is large. To see such a summand, one has to look for a (connected)
part of the loop that has the given knot pattern and is bounded by a
topological 3-ball such that this ball is disjoint from the rest of the
loop. It is not difficult for one to show that a given part of the loop
(say, the first 10 steps) has a positive probability to form the given
knot component (say, a trefoil component) of the loop (provided that
this part is long enough to form such a knot pattern). The main
difficulty arises when one tries to show that there is at least one such
component in the loop with a high probability. The reason 1s as
follows. Take the trefoil pattern as example. Divide the loop into
several parts so that each part can form a trefoil pattern. Number
them by 1, 2, ..., k. Let T; be the event that the i-th part forms a
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trefoil component of the loop in some topological 3-ball so that the
rest of the loop will not intersect that ball, If the events Tj's were all
independent, we would have no problem. The trouble is that once
one of the Ti's has happened, say Tj, then the rest of the loop can not
enter the ball that bounds the first part of the loop, hence the rest
Ti's are effected, that is, the Tj's are dependent. The following sketch
1s for the case of equilateral random loops; a similar argument holds
for Gaussian random loops. For the sake of simplicity, we suppose
that n = 10m and let Y; = Xq0i, .1 = 0, 1, ..., m-1. Also, let EWylX,
denote an equilateral random walk of n steps under the condition
that the last point X is fixed.

Lemma 1. There exists a constant 6 such that 0 < 8 < 1/2 and for any
Xy in the ball B(0O,8), we have

P(All the vertices Y;,..., Ym-1 of EWy/X, ¢ B(0,6)) 2 1/2
where B(0,8) is the ball of radius 8 that centered at O.

Corollary 1. No ball of radius 6 can contain more than m% of those
vertices Yj, Ya,..., Yim-; of EL, except with a probability at most
mexp(-aym@®) where aj is some positive constant and a = 1/20.

Corollary 2. No ball of radius 15 in R3 can contain more than azm®
vertices Yp Yy, ..., Ym-1 of EL, except with a probability < mexp(-
aym®), where az is some positive constant.

Definition 6. For the vertices Xg=Yo(=0), Y1, ..., Ym-1 of EL, we say
that two adjacent ones (Yg, Yk+1) form a closing pair if it happens
that the distance between them is less or equal to 6.

Lemma 2. EL, has at least bm closing pairs except with a
probability at most exp(-azm), where b and a3 are some positive

constants.

Corollary 3. When n is large enough, EL, will have at least agm!-¢
special closing pairs such that each of them has a distance at least 14
from any of the rest, except with a probability < exp(-azm) + mexp(-
aym®), where aygis also a positive constant. We call these special
pairs "far away closing pairs”.
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Now we construct ELp in three steps. First, we determine the vertices
Y1, ..., Ypp-1. After that we get m parts of EL; with end points from
the Yi's, we call each such part a stretch. Remember that each stretch
is an EWjp with both end points fixed. By the above lemmas and
corollaries, we now have at least agsml-¢ far away closing pairs except
with a small probability. Let's take any aqml-@ far away closing pairs
and denote the stretches bounded by them by Si, S2, .., Sy where t =
agml-@_ We then fill in the stretches other than the chosen ones. Once
having done so, we will have each remaining stretch bounded in a
ball of radius 6 since the end points of all of them are “closing” pairs.
On the other hand, these closing pairs are far away from each other,
hence the remaining strecthes will not interfere with each other. In
other word, what happens to one such stretch is independent of the
rest. Without loss of generality, we can suppose that S; is bounded
by (Yp,Y1). Let's try to estimate the probability for it to form a
trefoil component. Since each S; is bounded in a ball of radius 6

2 4°

— e eem — e

X Figure 2

and there are at most 10apm® steps of EL, other than S; intersecting '
the ball (Cor.2), we can find a cylinder of length 2 and radius asm-%,
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where as = (20az)-! is a constant, with its center line parallel to the
z-axis and the distance of it to the z-axis being between 1/2 and 1,
such that it does not intersect any previously fixed step of GLn.

To see the claim, project all the fixed steps in B(O, 5) onto the
annulus 1/4 ¢ x2 + y2 < 1, z = 0. The result is at most 10azm® line
segments, each with length at most 1. Enhance each such line
segment to a rectangle with length 1 + 2asm-% and width 2asm-%(<
1/2 when n is large), such that the line segment lies in the middle of
the rectangle. Now the total area of these rectangles is at most
40asm®asm-¢ = 2, which is less than the area of the anulus (3n/4),
thus we can always find a point on the anulus that is at least asm-@
away from these line segments. Obviously, the cylinder that has this
point as its center, parellel to the z-axis and of radius asm-2, length 2
is what we want. The situation is shown in fig.2.

We can then prove that the probability for S; to form a trefoil
pattern in the cylinder we just found is at least cm-132 for some
constant ¢ > 0. If we let G; be the event that the i-th stretch forms a
trefoil component, then we have seen that they are independent and
P(Gj) > cm-15@, So the probability for at laest one of them to appear is
1 - (1- em152)t, where t = agm1-@, Substituting o by 1/20, we can
see that this is greater than 1 - exp(-n3/20), provided that n is large
enough, Finally, combining all the results together, we have

P(EL, is knotted) > 1 - exp(-a3m) - mexp(-a;ym®) - exp(-n3/20)

Which is clearly larger than 1 - exp(-n€) for some € > 0 when n is
large enough. We can take € to be 0.05 by choosing a a little larger
than 1/20 at the begining.

We can state a stronger result as follows:

Theorem 3. Let K be any knot pattern, then the probability for EL,
to contain K as a dirrect sum component exceeds 1 - exp(-n¢’)
provided that n is large enough, where € > 01is a constant (related to

K). Similar results hold for GLp.

Of course, all the results here hold for GWp, and EWp,, the only
difference being that these are open chains, hence it does not make
sence to talk about the knotting problem. But one can still discuss

. this up to local knotting and local knot patterns.
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The auther thanks N. Pippenger and D.W. Sumners for helpful
conversations.
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Dessert Example
by
Fred Tinsley

During the dessert party at Carolyn and David
Wright’s residence Bestvina, Walsh, and I constructed the
following example of an inclusion map of manifolds which induces
isomorphisms on homology groups and fundamental groups but fails
to bé a homotopy equivalence. Such examples are, of course,
well-known. We claim neither originality nor insight.
However, since there exists no collection, Counterexamples in

Geometric Topology, it seems desireable fto have such examples

readily available.

The proof is essentially self-contained and depends only on
a minimal understanding of the relative homology long exact

sequence and duality.

The construction employs the Quillen Plus
Construction (see Venema's characterization of knot complements,
these proceedings) which very naturally yields the homology

equivalence. A modicum of group theory also is needed.

Example: There is an inclusion map of manifolds i:N -+ W

which induces isomorphisms on homology and fundamental groups but

is not a homotopy equivalence,

Fact 1: Suppose (W,M,N) is a cobordism with the inclusion i:N -

W a homotopy equivalence. Let j:M -+ W be inclusion. Then the

kernel of the induced map j#: wl(M) - WI(W) is perfect.

Proof of Faet 1: Let ﬁ denote the universal cover of W.

This induces a triple (ﬁ,ﬁ,ﬁ) where N is the universal cover of N

and M is the cover of M corresponding to ker(j#). Now i: N - W

is. a proper homotopy equivalence so the relative cohomology (with
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compact supports) is trivial, ie, Hé(ﬁ,ﬁ) = 0. By duality, we

have H_(W,M) = 0. In particular, Hl(ﬁ) = Hl(ﬁ) = 0 so ker(j,) is

perfect.B

Let G be the group presented by <x,y]y=y_1x_1yx>.

Fact 2: G has no non-trivial perfect subgroups.

Proof of Fact 2: Let K he the obvious 2—complex with one

O-cell, 2 1-cells, and 1 2-cell with WI(K) = G. Let K be the
infinite cyclic covering corresponding to the homomorphism G 2,z
with yp = 0 and xp = 1 . Then Nl(ﬁ):= ker(yp} has a presentation

given naturally by the cell structure of E:
< l 2 2_ 2 S
LR | Y_11YOIY1:Y21-" LR | Y_l—YO:YO—ylnyl—yzz---

where the image of Yi in wl(K) is the conjugate x—kyxk. Also,

ker(p) is the commutator subgroup of G and, and therefore, must
contain any perfect subgroup of G. But ker(p) is abelian (the

direct limit of embeddings Z X2, Z) and so contains no

non-trivial perfect subgroups.j

Let M be your favorite n-manifold (n>4) with Wl(M) = G.

Let y* be a loop in M representing y. Then y* bounds a disk with
one handle, T, in M with spanning curves homotopic to
representatives of y and X respectively (use the relation in the
fundamental group of M and general position). Attach a 2-handle
to y*x{1} in Mx[0,1] to obtain a cobordism (W’ ,M,M’). It follows
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that rl(M’) = Z and the inelusion M’ - W' induces an isomorphism

on fundamental groups. In particular, the spanning curve of T
homotopie to y* bounds in M’ a disk, D, which intersects the belt
sphere of the 2-handle exactly once.

We identify the singular image of a map of 82 into M': Take
Tx{1} together with the core of the 2-handle together with the
disk, D. Then D is the image of two mutually disjoint disks in

82. The algebraic intersection of these two with the belt sphere

of the 2-handle is zero. As a result the algebraic intersection

of this map of 82 into M’ is 11 (depending on orientation).
General position gives an embedded 2-sphere which algebraically
cancels the 2-handie. Attach a 3-handle to M’ along this sphere
to obtain the desired cobordism (W,M,N).

By construction, H‘(W,M) = 0. So by duality, H (W,N) = 0.
Also, the universal coefficient theorem for cohomology yields

that H_(W,N) = 0. Finally, also by construction, i:N - W

induces an isomorphism on fundamental groups. But i: N2 W
cannot be a homotopy equivalence by Facts 1 and 2. In

particular, ker(j#) is not perfect.

Note: Venema used the Plus Construction on a knot complement

whose fundamental group abelianizes to Z with perfect kernel. In
fact, the kernel is equal to the intersection of the derived
series of the fundamental group of the knot complement (the wild

group, per Cannon). . However, in the example above ker(j#) is

equal to the intersection of the lower central series of G (ie,

the "omegatators" of G, per McMillan).
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TANGLE EQUATIONS AND DEHN SURGERY
by Claus Ernst

1. Introduction

This paper deals with mathematical problems which arise in a topelogical model for enzyme mechanisms
in DNA recombination experiments, [SE|. The mathematics which can be used to model this 2-strand
interaction is that of 2-string tangles. When bound to a circular DNA substrate, the enzyme naturally
seperates the DNA molecule into two complementary tangles. Enzyme action on circular DNA can be
viewed as tangle surgery, the action of the enzyme is to delete one of these tangles, replacing it by another,
This leads to equations, where on one side we have a sum of tangles, while on the other we have a known
knot or link. The goal is to solve these equations for the unknown tangles.

In general solving tangle equations is a difficult task, and only special cares are mentioned here.

2. DBackground

A 2-string tangle {or just tangle) is a pair (B,t), where B is a 3-ball and t is a pair of {uneriented) arcs
properly embedded in B {C,L1]|. A tangle is rational if there exist a homeomorphism of pairs from {B.t) to
the trivial tangle (D*z ], {z,y}=z I}, where D? is the unit 2-ball in R? and {x,y} are points interior to D>.
A tangle is locally knotted if there exist a local knot in one of its strands, that is, there exists a 2-splere
in B meeting ¢ tranversly in 2 pts., and such that the 3 ball it bounds in B meets t in a knotted spanning
arc. A tangle is prime if it is neither rational nor locally knotted.

In order to compare tangles, we need to think of them as having “the same” boundary. As in [Bo3],
we define a model 2-sphere §% in R* to be the boundary at the unit 3-ball D? in B®, equipped with ¢
distinguished equatorial points P = {NE, SE, SW, NW}. We require that every tangle comes equipped
with o boundary parametersation, that is, a homeomorphism ¢ : {(38,t) — (S%, P). So a tangle is a triple
B = (B,t,¢). Two tangles B = (B,t,¢} and B' = (B',t', $'} are isomorphic if there is a homeomorphism
H:(B,t) — {B' t') such that ¢ = #'H on 8B, We write B = B".

Given two tangles {A,B}, we define tangle addition as shown in Figure 1, and denote the result by A +
B. Note that A + B may contain a simple closed curve, in which case A + B is not a 2-string tangle. The
numerator construction applied to a tangle A is shown in Figure 2. Note that the knot (link) N(A+B) is

topologically equivalent to that obtained by glueing A to B along their “common” S2-boundary.



Rational tangles admit very nice classification schemas [C, ES]. There exists a 1-1 correspondence
between isomarphism classes of rational tangles and the extended rational numbers f/e e QU {1/0 = eo},
where e NV U {0}, feZ and ged(e,f) = 1. If A and B are rational tangles, then N(A+B) yields an
unoriented 4-plat (2 bridge knot or link) {BZ]. The 2-fold branched cover of a rational tangle is a solid

torus , see Figure 3.

So N(A+B) has as 2-fold branched cover the Lens space L{w, f} obtained as the union of 2 solid tori.
The 4 plat covered by the Lens space L{a, £} Is denoted as b(a, B}.

Two 4 plats b{a, #) and b{a', f'} are equivalent iff @ = o' and §*' = §' (mod a),[BZ]. The numbers
and 8 of b{a, A) are standard if 0<A<e. There are two exceptions. The unknot b(1,0} is covered by 5°

and the unlink of two components b{0,1) is covered by 5§’ x S=.

4-plats and rational tangles are closely related via the numerator construction. If §/x is a rational

tangle with §/a > 1 then N{A/a) = b(3, —a).

Tangle equations involving only rational tangles are very well understood. In [ES], we prove the

following.

O THEOREM 1 Let A, & A5 be rational tangles, and X, and K5 be 4-plats. There are at most 2 distinct
rational tangle solutions te the equations

NX+4,)=K,

N{X + 42) = Ko

This theorem is sharp as can be seen by the following E.{nmple
A= 1/3, 42 = 51/7, K, = b(5,3) and K+ = b(29, 17).

The two solutions for X are X = -70/239 and X = -75/254.

It may happen that two equations of the above form have no solutions of any kind (prime, rational, or

locally knotted) as we will see.
3. Tangle equations and Dehn Surgery

Let X be a prime tangle with two fold branced cover X'. Then X' is a compact connected, irreducible,

orientable 3 manifold with X’ a torus. Let A be a rational tangle, Then in equation N (X +4) = b(x, 41}
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gives rise to a decomposition of L, 8) = X' Up A’, whers 4’ the two fold branched cover of A is a solid
torus and F is a glueing man from 84’ — 3X'. In other words L{a, A) is obtained by surgery on X'
In the following we will use this to derive necessary algebraic conditions for two tangle equations to have
solutions. The next lemma is a generalization of a result of Lickorish {L2].
LEMMA

Let X be any tangle, T and f/« be rational tangles, and b(p,q) be a 4-plat, such that N{X + T) = [1]
and N(X + f/a) = b(p, q)
(1) If T = oo then L{p,q) can be obtained by (f + sc)/cx surgery along a knot in 5%, where s is an integer
and p = + (4 + sa).
(2) If T = (0) then L{p,q) can be obtained by (a+ s8)/8 surgery along a knot in S?, where s is an integer

and p = £{e + sf).

Proof: The 2-fold branched cyclic cover X’ of X is a knot complement, and the 2-fold branched caver T
of T is a solid torus. For the montent let us assume T = co. Then the arcs NW to SW and SW to SE on
dT lift respectively to a meridian p’ and a longitude A’ on 87, The first equation implies X' U, (c0) = 57,
where g : {co) — 3X is a glueing map. Lifting to 2-fold branched covers we have X'UgJT' = 83 where
g': dT" — 8X'. Choose a meridian g = g'(¢’) and a longitude A on 3X'. Then A is isotopic to the

curve g'(p') + sg'(A’) for some integer s. There exist [Mo] orientation preserving homeomorphisms ¥ and

F, where

(i) F maps the co tangle to the f/a tangle.
(i1} ¥ :3T" — 3T sends the meridian & 10 a curve isotopic to Fu' + ad’,
{iii) The maps Fly and ¢ commute with the covering map ply : 37" — 37T, that is

(pla)(Fla) = w(pta).

Using the second equation N(X + /a) = b{p,q), the 2-fald branched cover L{p,q) of b{p,q) can be
constructed as X'Ugawa. The glueing map g'4 : 37" — X' maps ' to a curve isotopic to (F-+sa)p-+A.
Hence L(p,q) is obtained by (8 + sa)/a surgery on the knot complement X*. H,{L{p, q)) = Z, is generated
by the meridan g, so p = £{f -+ sa). The result for the case T = {0) is proved in the same way. The



only difference is that the map ¢ sends the meridan ap’ (the lift of the SW SE arc) to a curve isotopic to

[J-! + ,BA’.

THEOREM 2 Let X be any tangle, T and f/« are rational tangles, and let b{(p,q} be a 4-plas, where
N{X+T) =1 and N(X + B/a) =b{p,g). If T = co then g = xat” (mod p) for some integer t. If T =
(0) then ¢ = £4¢* (mod p) for some integer t.

Proof: Let us recall the following facts:
(i) L(p,q) is obtained by p/q surgery on the unknot in 53

(ii) Suppose M is a 3-manifold and H{(M) = Z,. If M is obtained by p/q surgery on a knot k in 57,

then the linking form

L:H (M) H{M)— Q/Z is such that L(g,g) = q/p were g is a generator of H (M) representing

2 meridian of the knot k [L2].

By (i) and (ii} there exist a generator & of H,(L(p,q)) such that L(£,&) = g/p. By Lemma 3.6
and (ii} there exists a generator ¢ of H,(L{p, q}) such that L{¢,¢) = a/(f + sa) = 2apif T = oo and
Lis,s) = B/{a+38) = £B/p i T = (0). Hy(L, (p.q)) is cyclic, so € = t¢ for some integer 1, and q/p =
t°Lis,¢) in Q/Z.

The following corollary (and proof) are due to M. Boileau.

Corollary (Boileau) If T is either co or (0}, then there is no sangle X which satisfies the equations
(i) N(X+T)=[1] and
(i) N({X + (x1)) = b(8,5).

Proof: This follows from Theorem 3.7 using @ = f = 1,p =8 and ¢ = 3, since 5 = £¢* (mod 8) has no

solution for t.

Theorem 3 Let X be any tangle, 81/, and fa/an are rational tangles, and let b(py,q,) and b(pa, g2)
be 4-plates, where N(X + 8, /) = b{p;,q1) and N(X + fa/an) = b(p2,q2) If |a1f2 — Braaj > 1 then X

is a Seifert Fiber space.



Proof: Let X', T\ and T2 be the 2-fold branched cover of X, f;/; and f2/aa, respectively. Using the
parametersation of the tangles we can assume 3(f;/a;) = 9(fz/xz) = S° (the unit sphere in R*) and 8T}

= dT3 = 8T, Then the arcs NW to SW and SW to SE on §° lift respectively to a meridian o' and a

longitude A on 37T.

There exists [Mo| arientation preserving homeomorphisms y; and F; i = 1, 2 where

(i) Fi mans the co tangle to the §;/a; tangle.

(ii) ¥ : 8T — 37T sends a meridian p' and a longitude A’ to curves isotopic to the elements given by

matrix multiplication

. I
(s'A") ( g‘, g? ) = (Bip' + ou Xy o' + LX) where B f] — aiaf = 1.

(ilf} The mans F;}3 and 4; commute with the covering man

PladT — 3(B: /o).
Therefore F = Fa F’l_l sends the §; /o tangle to the Bo/on tangle. The lift A = 14 ¢;1 : T — 8T
sends u' to a curve isotopic to (~3{f; + af aa) ' + (o) fa — fras).
The first equation implies X' U, (8,/a,) = S§°, where g: 3(co) — d X is a glueing man. Lifting to

2-fold branched covers we liave

X'up T = L{py,q) where ¢’ : 8T — 39X’

Choose a meridian g = y'(x') and a longitude A = g'{A') on O.X.

Thus L{p,q) is obtained [rom X' by surgery sending p' to p.

Using the second equation V(X + fa/aa) = b(pa, g2}, the two fold cover L(ps, gz) can be construcsed
as X' Uya T, The glueing man ¢’ A : 8T — 3.X' maps p' to a curve isotopic to C = (8] @z + b as) 4
+ (o 82 — fr az)A

[f lay fs — f1 a2| > 1 then the minimal intersection number between C and g is greater one. The
Cyclic Surgery Theorem [CG| implies that X' is a Seifert Fiber Space.

In order to solve the equations of Theorem 3 under the conditions |a, fa — @28 > 1 it would be useful

to know that X is a Montesinos tangle, that is a tangle made out of national tangles as shown, in Figure 4.
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If X' is a Seifert Fiber space ther adding a torus to it can only increase the number of exceptional
fibers. Since X'UT; is a Lens space, X’ can have at most two exceptional fibers and its surface it a disk.
This leads to the following question. Suppose X' is a Seifert Fiber Space with two exceptional fibers and
orbit surface a disk. If X' is a 2-fold branched cover of a two string locally unknotted taﬁgle X, is X the
partial sum of two national tangles? The answer is not know to the author, but a yes is conjectured.

This research was partially supported by a grants from the United States Office of Naval Research and

the National Science Foundation.
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BRAIDS. GRAPHS AND REPRESENTATIONS

by
STEPHEN P. HUMPHRIES

$1 INTRODUCTION For n > 1 let B, be the group of braids on n strings.

Then B, has a presentation as a group with generators oy, ... ,\0_1 and

relations

Ti0j = 7y it 1 <i,j<n-1and |i-j| > 1;
Ci0i+10j = 0j4+10iTj+y for 1 2i<n-1,

[t is also well-known that B, has a faithful representation in Aut(F(n)),

the group of automorphisms of the free group F(n) of rank n, If

Xp are fixed free generators for F(n), then the action of B, on F(n)

K1, enn
is given by the following actions of the generators o, ... Jnh-1 Of By
on the generators Xy, ... X, of F(n}:
%] ifj=1i, i+,
cf]-(xj) = Ris] if j=1i,
Xi+1_}xixi+l it j=i+1.

[t Is easy to check that with this action the word x %> ... X 18 Tixed and

that if e Bp, then ol;) is a conjugate of some %] (we call such a word

(%) a simple word). For proofs of these results and more information

on braid groups see ([Bil, [Mal).
In this paper we associate to each braid ¢ a certain kind of graph

which completely determines ¢ and study the combinatorics of these
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graphs. We use these graphs to show (i) that certain words in F(n) are

never subwords of freely reduced simple words; (ii) that certain
representations of B, are raithrul; (iii) that there is a way of

associating to every n-braid an (n~1)-braid: and (iv) to give a new

normal form for braids.

$2. GRAPHS In this section we describe the graphs which we can

associate to braids. All words referred to will be waords in F(n) having

X1.%2, ... ,% and their inverses as letters. Note that if we can define a
pairing 7t of the letiers of such a word w = wwp ... W, such that
Tt(rt(w;)) = w; for all 12§ <n, then this defines a graph having wy, ... W
as vertices and an edge between two letters w; and W if and only iT

T{wi) = wj. Our graphs will all be constructed in this way.

1. The conjugacy graph Let o€ By, and suppose that o(x()= yiz;y;”

, and
that w = ed® %p...%0) = g]zlg]'fgzzzgz“l UnZnUn—]r where each
zj € {X1,%2, ... ,Xn}, then there is a pairing of the letters of the subwords

Y4z, - U IN W with the letters of the subwords g["].gz'], ,gn"‘ in
which a letter is paired with its inverse letter in the obvious way.

Further, each z; is paired with itself. This pairing determines the graph
Clx) for such a word w, where each z; is an isolated vertex,

2. The free reduction graph For «e By let w=w(x) be the word that we

obtained above and let wg=w,w{,Wo, ... Wq T X1 be words such that
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W

i Is obtained from w,;_, by deleting a pair of adjacent letters of the

form xixi“] or xi“]xi. Keeping track of how the letters of w cancel gives

a pairing of the letters of w which allows us to construct the graph
FR().

Assume that w = g]zTg]"gzzzgz'] UnZnUn_]- Then CFR(cx) will
denote the union of the graphs Clx) and FR(c). To be specific we will
think of CFR(«) as lying in the plane R € 52 with its vertices on the
x-axis X, the graph C{x) being drawn above X while the graph FR(«) is
drawn below. Notice that this can be done in such a way that the graph
is planar. We will always think of CFR(«) in this way. The basic property
of CFR(x) is indicated in the next result:

Proposition 2.1 let x € Bn- Then CFR(x) has exactly n components.

$3 THE (n-1)-BRAIDS ASSOCIATED TO n-BRAIDS Let T¢ B and

assume that O(xi)zUiZiUi_] in freely reduced form as in $2. If zj=x,
then we let w; be the largest subword of UiZiUi—] which does not

contain k. or xn'] and which is symmetric with respect to z;. Thus for

example, if n=4 and gizigi_'=x3x4']x3']x2x3x4x3'], then wi=><3']><2><3.
This tives n-1 words each of which is a conjugate of some x;, i=n.

Theorem 3.1 In some order the product of wy,... ,wn. is equal to

XX ... %n_q and they determine an (n-1)-braid.



Call this particular (n-1)-braid (g),. We can do the same thing

with respect to x, and similarly obtain another (n—-l)'—braid which we

call (o). We Tirst note that o is equal to the identity braid if and only

if both (o) and (o), are equai to the identity braids. We use this idea to
give another ‘normal form’ for elements of B,. Specifically this is

N R (CHM IR () DA (((CoIN DIV
Since each (o), k=1,n, is an (n-1)-briad, we proceed by induction to give

our normal form (the case n=2 is simple).

$4 REPRESENTATIQONS Using the graph CFR(e<) we can prove the

following result of Birman and Hilden [Bi-HiJ:

Theorem 4.1 Let Nk be the normal closure in F(n) of the eiements

><1k, ,xnk. Then Ny is B~invariant and the composite homomorphism

B —=> Aut(F(n)) ——> Aut(F(n)/N) is injective.

Let My be the kernel of the canonical projection
F(3) -=> 2} =<x | X >, %1.%2,%3 ==> x. Note that My is Bz-invariant. Let My’
be the commutator subgroup of M. Using properties of CFR(ex) we can

also prove:

Theorem 4.2 The representation Bz --> Aut(F(3)/M’) is faithful if and

only if k is even.
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Let G, De the normal subgroup generated by the elements
X12,%22, ... X2, (®1%2 ... k)% Note that G, is B-invariant and that the
representation By, =-> Aut(F(n)/G,) is not faithful since the square of
Lhe generator of the centre of B, belongs to the kernel. However we

prove

Theorem 4.3 The representation B, -=> Aut(F(n)/G,’") is faithful.
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Characterization of knot complements in the 4-sphere: a special case!

VO THANH LIEM AND GERARD A. VENEMAZ

In (4], knot complements in 5* are characterized as follows:

THEOREM 1. Let W be a connected open subset of S*. Then W is homeomorphic with
S* — K for some locally flat 2-sphere K C S* if and only if

(1.1) H(W)=1Z, and
(1.2) W has one end € with m(€) stable and m (€) = Z.

The purpose of this note is to sketch the proof of a special case of Theorem 1. The proof
of the general case is indirect and relies on a great deal of algebraic machinery, so it seems
worthwhile to give a direct, geometric argument which works in at least some nontrivial
cases., The proof given here is similar to the “plus construction” (cf. [6] and [2, §11.1]).
Before stating the special case, we establish some notation and make a definition.

NOTATION: W C S* is always an open subset of the 4-sphere which satisfies (1.1) and
(1.2). Define & = S* —W. We let f : m (W) — Hy(W) be the natural (Hurewicz)
homomorphism and A = ker f.

DEFINITION: A group G is perfect if G is equal to its own commutator subgroup.

We can now state the special case we intend to prove here.

THEOREM 2. If W is an open subset of S* which satisfies (1.1) and (1.2) and if A is a
perfect group, then W = §* — K for some locally flat 2-sphere K 54,

In order to get some feeling for how strong the assumption of perfection of A is, recall
that a classical knot in S? satisfies this condition if and only if its Alexander polynomial
is trivial [1].

The proof of Theorem 2, like that of Theorem 1, is based on a result of Guilbault.

THEOREM 3. (Guilbault [3]) If W is a connected open subset of 5* such that

(3.1) m(W)=1Z, and

(3.2) W has one end e with m(¢€) stable and m(e) & Z,

then there exists a compact set N C 5* such that N =2 52 x B? and NNW 2 ON x[0,1) =
5% x S x [0,1).

1The transcript of a talk presented by G. Venema.
*Research partially supported by National Science Foundation grants number DMS-8701791 and DMS-

8900822.
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Theorem 3 differs in two ways from the theorem actually stated in [3]. First, the existence

of N is not mentioned explicitly in the conclusion of {3, Theorem 4.3], but we are merely
being specific about what is actually proved in [3]. Second, the hypothesis (3.1) replaces
the apparently stronger hypothesis that W has the homotopy type of S!. But a duality
argument similar to that in [5] shows that (3.1) and (3.2) imply that the higher homotopy
groups of W vanish and thus W has the homotopy type of S'. (An alternative proof of
this fact can be based on (7, Proposition 3.3); see, e.g., [4, Theorem 3] or [2, Proposition
11.6C(1)].) _
PROOF OF THEOREM 2: First note that m;(W) is finitely generated (because of the fact
that m; (€) is finitely generated). This in turn implies that A is the normal closure of a finite
set (namely the commutators of the generators of 7 (W)). Let ¢,,..., £, be locally lat PL
embedded loops which represent this finite set. There is a collection D, ..., D, of disjoint
locally flat PL disks such that £; = 8D;. (Use finger moves to push any singularities off
edges.) These disks determine natural framings for the loops. Using these framings, do
surgery to W along the loops. Specifically, a regular neighborhood of ¢; is homeomorphic
to 5 x B?; remove the interior of such a regular neighborhood of each #; and glue in copies
of B? x 5%, The result is a new open set, called W;, which has the same end as W. Since
each of the surgeries corresponds to adding a connected summand of 5% x 52 to 5%, we
have W, C M where M is homeomorphic to the connected sum of n copies of §2 x S°.
Furthermore, since the loops {1,...,¢, normally generate A, we have that = (W;) = Z.

The second step is to do 2-dimensional surgery to M in order to get back to S* where we
can apply Theorem 3. In order to do so we will take the natural $%V . *’s which generate
Hy (M) and use [2] to re-embed them in W;. Consider one loop #;. A regular neighborhood
of £; has been replaced by a copy of B? x S2. Let 4; be the 2-sphere (B2 x {*})UD; and
let B; be the 2-sphere {0} x S2. Notice that B; misses X but that 4; likely intersects I.
Since A is perfect, #; must bound a disk-with-handles D} in W such that each loop on D!
represents an element of A. By general position we may also assume that D/N ¢ ;i =0 and,
by piping, that D; N D} = @ for i # j. Form A} from A; by replacing D; with D!. We
have then represented the homology class of the 2-sphere 4; by an embedded orientable
surface A} which is disjoint from I. Consider a symplectic basis for H, (A}). Each element
of this basis is null-homotopic in W;. Use singular disks representing one half of this basis
to surger A; and replace it with a singular 2-sphere AY c W;.

We use A to represent intersection numbers and u to represent self-intersection numbers.
(Note: it is important to remember that both are measured in Z[r;(W;)] — see [2, §1.7)).
We claim that the family of singular 2-spheres {A!, B;} satisfies

A(AY, Bj) = &;;

MAY, AY) = A(Bi, Bj) = p(A]) = p(B;) =0

66



for every ¢ and j. Once that claim has been verified, we are finished because [2, Theorem
5.1A] allows us to replace each 4 U B; with a locally flat embedded S% v $% in W;. A
tubular neighborhoods of each 52 vV §2 is then removed and replaced with a 4-ball. This
makes M back into 5% and changes W into an open set W, C §* such that = (W,) = Z
and §4 — Wy = M -~ W; = §* = W = . We then apply Theorem 3 to W, C S*. The
compact set NV given by Theorem 3 only intersects W3 in a collar of the end and both the 1-
and 2-surgeries could be done outside this collar, so N C §* and NNW = 5% x 5! x [0, 1).
The 2-sphere K in the conclusion of Theorem 2 is the core of V.

 To prove the claim we show that the excess intersection points of A{ 1 AY and AY N B;
can be paired off in such a way that each pair has a singular Whitney disk in W;. Let =
and y be a pair in the symplectic basis for A:. The curves z and y bound singular disks
D; and Dy, respectively, in W;. Let us say that, in constructing AY, we added two copies
of D; to A}. The excess intersection points will arise because of points of D, N A;-' or
D_: N B;. These points are naturally paired since two copies of D, were used in forming
AY. A singular Whitney disk for such a pair is constructed from a thin disk following an
arc in D, from the intersection point over to the point Ny together with a copy of D,. 1
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Whitehead Contractible nz-manifolds for n > 3

David G. Wright
Department of Mathematics
Brigham Young University

Provo, Utah 84602

This paper is the summary of an expository talk given at the Sixth Annual Western
Workshop on Geometric Topology held at Brigham Young University, Provo, Utah on July

27-29, 19895.
Introduction. The purpose of this note is to generalize a 3-dimensional construction of

Whitehead [9] to obtain contractible open n-manifolds of dimension n > 3 that are not
homeomorphic with Euclidean n-space. There are already many examples of such contractible
manifolds of dimension n > 3 [1], [2], [3], [6]. Hence, one may wonder why such manifolds
should be of interest. However, these manifolds are relatively easy to describe, and it is hoped
that it will be possible to show that such manifolds cannot be covering spaces as was shown by
Myers [5 Jin dimension 3 for Whitehead's contractible 3-manifold as well as for many other
contractible 3-manifolds as described by McMillan [4]. (Added September 1989. The author
has subsequently been able to show that these Whitehead contractible n-manifolds cannot non-
rivially cover any manifold.)

LEMMA 1. Ler A, B be manifolds with boundary of the same dimension so that
AcIntBand B -IntA is a manifold with boundary that is boundary incompressible; i.e.,
loops in the boundary of B - Int A are essential in B - Int A if and only if they are essential in
the boundary of B - Int A. Then for any manifold M without boundary the pair A x M, B x M
has the same properties as the pari A, B, i.e., A x M, B x M are manifolds with boundary of
the same dimension so that A X M c Int B X M and (B x M) - Int (A x M) is a manifold with

boundary that is boundary incompressible.

Proof. The boundary of B - Int A equals Bd A w Bd 8. The set
(B x M) - Int (A x M) is the manifold (B - Int A) x M whose boundary is BdAxXMUBdBxM.
Suppose 7vis a loop in the boundary of (B - Int A} x M. Without loss of generality, we assume
that ylies in the set Bd A x M. Since the fundamental group of the product is the product of
the fundamental groups, we may assume that yis equal to the product of loops & and 3 where
aisaloopin BdA x {m) and fis aloop in {a@} x M where a and m are points in Bd A and
M, respectively. We also regard «, 3 as loops in Bd A and M, respectvely. If yis trivial in
(B - Int A) x M, then, by projection into M, we see that § is trivial in M. By projection into
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B -Int A, we see that ¢ is trivial in B - Int A. By boundary incompressibility of B - Int A, « is
trivial in Bd A. Hence, 7¥is trivial in Bd A x M, and we see that (B x M) - (Int A x M) is

boundary incompressibie.

DEFINITION 2. A solid n-torus is a space homeomorphic to BQXS}xSll,x ---><S,11_2

where B2 is a 2-cell and each Sil is homeomorphic to the 1-sphere st

DEFINITION 3. A 3 -dimensional Whitehead link is a solid 3-torus TS embedded in the

interior of a solid 3-torus T° so that Tg contractsin T°and T3-Int T g is a boundary

incompressible 3-manifold with boundary. An example of a 3-dimensional Whitehead link is
shown in Figure 1.

~

T3

Figure 1
It is easy to see that TS contracts in T It is well-known [8, Lemma 4.1] that the 3-

manifold with boundary T° - Int Ty is boundary incompressible.
We wish to describe an n-dimensional Whitehead Link, n > 3, by which we mean a

solid n-torus TS embedded in the interior of a solid n-torus T so that TS contracts in 7 "and

T"- Int Tg is a boundary incompressible n-manifold with boundary.
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LEMMA 4. There exist n-dimensional Whitehead links for n > 3.
Proof. We show the existence of an n-dimensional Whitehead link by induction.

Let Ty < T% k2 3,be a k-dimensional Whitehead Link. We define T¥! = T%x 51 we

set TA* = 7§ x 5% Since TE isak-torus, we assume that TE =B2x 5] xS)x - x 5} ,.

Hence, we have that the solid (k+1)-torus Tfﬂ = B2 x Si X .5’:1Z XX Si_z x Sl. Let

P: 1‘"'1'c+1 — B2 x S'be the projection onto the first and last factors of T LetThea3-

dimensional Whitehead Link in B2 x S1  We set T](;"'l = P-|(T). We now show that Tg"'l

is a (k+1)-dimensional Whitehead Link in 7%,

Step 1. Itis easy to verify that Téﬁ'l isa solid (k+1)-torus embedded in the interior of

the soiid 4-torus Tk"'l.

Step 2. By Lemma 7.1 71 I T’lﬂ'l and Tf“ - Int T{;+1 are boundary

incompressible (k+1)-manifolds with boundary. It follows that T nt Téﬁ'l is a boundary

incompressible (k-+1)-manifold with boundary.

Step 3. Let f; be a contraction of the Whitehead link 7T in BixS I, this induces a

k+1 E+1

homotopy F; :Ty ~ — T " sothat Fpis the inclusion map and 7 maps into Tg x {5}

where s § I But TE is contractible in T‘f hence, any setin Té x {5} is contractible in

T"C+1 . Therefore, Tg“ is contractible in Tk"'1 .
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THEOREM 5. For each n > 3 there is a Whitehead contractible n-manifold W" =

O :_':OT,- where T; is an n-dimensional Whitehead link in Ti.1.
Proof. We simply form W"as the direct limit of solid #-tori T so that T; is an n-
dimensional Whitehead link in T;.1. It is now easy to check that W” does, in fact, satisfy all

the conditions for a Whitehead manifold.

McMillan [10] has shown that there are uncountably many contractible 3-manifolds
each of which is the ascending union of 3-tori T so that 7; is a 3-dimensional Whitehead link

in Ti41.

QUESTION 6. Are there uncountably many contractible n-manifolds each of which is
the ascending union of n-tori T;so thatT; is an n-dimensional Whitehead link in T;4;?
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FPROBLEMS ABOUT FINITE DIMENSIONAL MANIFOLDS

Robert J. Daverman

What follows amounts, by and large, to an annotated combina-—
tion of several lists I have been hoarding, expanding, polishing
the last few years. It is highly personalized — the title topic
is far too extensive to allow treatment of all its various
companents, so I have not even tried. Instead, the combination
identifies guestions méinly in the areas of manitold structure
theory, decomposition theory, and embedding theory. The more
significant issues, and the aone I prefer, tend to occcur where at
least two of these intersect, but admittedly several of the
problems presented are light-hearted, localized, outside any
overlap.

Before launching out into those areas named above, however,
and mindful that the effort undoubtedly will invite disputation,
I cannot resist stealing the opportunity to restate some of the
oldest, most famous problems of this subject. 0Occasional
reiteration spreads awareness, and this pccasion seems timely,
which i1s justification enough. Accordingly, well-versed readers
should not expect to discover new material in the opening list of
"Venerable Conjectures"; either they should skip it entirely or
they can scan it critically for glaring omissians ar wharever.
Any other readers will benefit, I trust, by finding such a list
in one convenient place.

The bibliogr=nhy is intended as another convenience. Exten—
sive but by ne means complete, it is devised mainly to offer
recent entry points te the literature.

At inception this project involved a host of mathematicians.
Late one Oregon summer night during the 1987 Western Workshop in
Geometric Topology, several people, including Mladen Bestvina,
Phil Bowers, Bob Edwards, Fred Tinsley, David Wright (their names
would have been protected if they were truly innocent), set out
to construct a list of lesser known, intriguing problems deserv—
ing of wider publicity. They all made suggestions, and I kept

the record. The evening’'s discussion led directly to a number of
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the problems presented here, which at one time constituted a
separate list, hut which in my tinkering I eventually groupead
under topic headings. (No one else deserves any blame for my
rearrangements.) If a guestion had strong support that evening
for inclusion in the cpllection of "not—famous—enough praoblems",
or if it just had marginal support with no major opposition, it
shows up here preceded by an asterisk.

Other problem sets about finite dimensional manifolds
published within the paét decade should be mentioned. Here are a
few. The most famous is Kirby's list(s) of low dimensional
problems [Kil [K21; the first installment is a bit old, but the
second, put together after the 1982 conference of four—manifolds,
includes a thorough ,update. Thurston [Thl has set forth some
fundamental open problems about Z—manifolds and Kleinian groups.
Much to my surprise, I could find no major collection focused an
iknot theory questions, although many such appear in Kirby’'s
lists, and information arrived at press time about an extensive
collection of hbraid theory prablems edited by Morton [Morl.
Donaldson [Dol has raised some key 4—dimensional matters. In a
more algebraic wvein, Hsiang [Hs] has surveyed gegmetric
applications of K—theory.

Finally, an acknewledgement of indebtedness to Mladen
Bestvina, Marshall Cohen, Jim Henderson, Larry Husch, Dale

Rolfsen, and Tom Thickstun for helpful comments and suggestions.
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VENERABLE CONMJECTURES

VY1: Poincaré Conjecture.

VZ2: Thurston's Geometrization Conjecture. The interior of
every compact 3—manifold has a canonical decomposition into
pieces with geometric structure, in other words, into pieces with
structure determined by a complete, locally homogensous
Riemannian metric. See [Thl. Of relatively recent vintage, this
caonjecture probably dués not qualify as "venerable"; neverthe—
less, its boldness and large-scale repercussions have endowed it
with stature clearly sufficient to support its inclusion on any
list of important topological problems. It fits here in part by
virtue of being stronger than the Poincaré Conjecture. A closely
related formulation posits that every closed orientable 3-—
manifold can be expressed as a connected sum of pieces which are
either hyperbolic, Seifert fibered, aor Haken (i.e., contains some
intnmpressible surface and each PL Z2-sphere bounds a Z-ball
there).

#Y3: Hilbert-Smith Conjecture. No p-adic group can act
effectively an a manifold. Equivalently, no compact manifold M
admits a self-homeaomarphism h such that (i) each arbit €h" (o2
has small diameter in M and (ii) {hnlnEZ} is a relatively
compact subgroup of the group of all homeomorphism M 3+ M,

V4: Pl Schoentlies Conjecture. Every PL embedding of the
(n—1)—-sphere in R" is FL standard, or eguivalently, has image
bounding a PL n—ball. The difficulty is 4—-dimensional: if true
for n=4 then the conjecture is true for all n .

V3. There is no topologically Eténdard but smoothly exotic
4—sphere. This is the 4-dimensional Foincare Conjecture in the
smooth category, and an affirmative answer implies the truth of
#v4a. In broader terms Donaldson [Dol has asked which haomotopy
types of closed l—connected #-manifolds contain distinct smooth
structures; specifically, do there exist homotopy equivalent but
smoothly inequivalent manifolds of this type such that the
positive part of the intersection form on Z-dimensional homology

is even—dimensional?
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V4: A problem of Hopf. Given a closed, orientable manifold
M, is every (absolute) degree one map F:M =+ M a homotopy
equivalence? Hausmann [Hal has split this problem inta
camponent gquestions and has provided strong partial results:

(1Y must +F induce fundamental group isomorphisms? and if sao,
2) must f induce isomorphisms of H*(N;Zﬂ) ?

V6. Hopf's problem led to the concept of Hopfian group,
namely, a group in which every self-epimorphism is 1-1 . Daoes
evaery compact 3—manifulh have Hop+fian fundamental group? Yes, if
Thurston’'s Geometrization Conjecture is valid [Hel.

V7: Whitehead Conjecture [Whl. Every subcomplex of an
aspherical Z2-complex is itself aspherical.

V7. I+ K 1is a subromplex of a contractible Z-complex, is
WI(K) locally indicable (i.e., every nontrivial, finitely
generated subgroup admits a surjective homomorphism to Z ;
groups with this property are sometimes called locally Z-
representible). As mentioned in Howie's useful survey [Hol, an
affirmative answer implies the Whitehead Conjecture.

VB: Baorel Rigidity Conjecture. Every homotopy equivalence
N - M between closed, aspherical manifolds is homotopic to a
homeomorphism. Evidence in favor of this rigidity has been
accumulating; see for example the work of Farrell-Hsiang [FH1 and
Farrell—-dJones [FJ]1. More generally, Ferry, Rmtﬁenburg and
Weinberger [FRW1 conjecture: every haomotopy equivalence hetwes=n
aspherical manifolds which is a homeomorphism over a neighbarnood
of ® is homotopic to a homeomorphism.

V?: Zeeman Conjecture [Z1. IFf X is a cantractible finite
2-complex, then X=I is collapsible. This is viewed as
unlikely, because it is stronger than the Poincarg Conjecture.
Indeed, when restricted to special spines (where all vertex links
are circles with either 0, 2 or 3 additional radii) of homology
3—cells, it is equivalent to the Poincard Conjecture L[GR1. Cohen
[Col introduced a related notion, saying an complex X is g-—
collapsible provided X=I7 s collapsible, and he showed (among
other things}) that all contractible n—~camplexes X are 2n-—

collapsible. Best possible results concerning g—collapsibility
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are yet to be achieved, but Berstein, Cohen, and Connelly [BCCI
have examples in all but very laow dimensions (suspensions of
nonsimply connected homology cells) +or which the minimal g 1is
approximately that of the complex.

V10: Codimension i1 manifold factor problem (generalized
Moore problem). If X=Y 1is a manifold, is XxRI a manifold?
The earliest formulations of this problem, calling for X to be
the image of 53 under a cell-like map (see the de:nmhnsitinn
section for a definitién), date back at least to the esarly 1740s5;
see [Da4] for a partial chronology. In the presence aof the
manifpld hypothesis on X=¥ , Buinn’'s obstruction theory L[GE31]
ensures the existence of a cell-like map from some manifold onto
XxR1 - When XxRi bas dimension at least 5, the guestion is
Jjust whether it has the following Disjoint Disks Property: any
two maps of B2 into Xle can be approximated, arbitrarily
closely, by maps having disjoint images. No comparably simple
test detects whether a 4-dimensional XKRI is a manifold. Since
XRR2 does have the Disjoint Disks Property mentioned above,
Edwards’® Cell-like Approximation Theorem [Ed] attests it is a
manifold.

#V11: Resglution Froblem. Does every generalized n—manifold
X 4 nx4, admit a cell-like resolution? That is, does there exist
a cell-like map of some n—manifoeld ™M onto X ? In one sense
this has been answered —— GBuinn (B3] showed such a resolution
exists iff a certain integer—-valued obstruction i(X)=1 — but in
another sense it remains unsettled because no one knows whether
i(X}) ever assumes -a different value. A large measure of its
significance is attached to the consequent characterization of
topological manifolds: a metric space X is an n—manifold (nz5)
iff X 1is a finite dimensional, laocally contractible, H*(X,X—x)
H (R",R"-0) for all x€X (i.e., X is a generalized n-

manifold), X has the Disjoint Disks Froperty, and 1i{X)=1 . Is

2

the final condition necessary?

V1iZ2: Kervaire Conjecture (also known as the Kervaire-—
Laudenbach Conjecturel. If A 1is a group for which the

normalizer of some element r in the free product A*Z is A#Z
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itsel+, them A 1is trivial. The main difficulty occurs in the

case of an infinite simple group A& .
again for connections to other more obviously topolaogical

See Howie's survey [Hel

problems.
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MANIFOLD AND GEMERALIZED MANIFOLD STRUCTURE FROBLEMS

A generalized n—manifold is a finite dimensional, locally
campact,; locally contractible metric space X with H*(X,X—x) =
H*(Rn,Rn—O) for all NEX . As Frablems V10 and VY11 suggest, the
central praoblems are (1) whether every generalized manifold X
is a factor of some manifold X=Y and (2) whether XﬂRl is

always a manifold.
I

Implications of homogeneity have not been fully determined,
neither for distinguishing generalized manifolds from genuine
ones nor for distinguishing locally flat embeddings of codimen-—
sion one manifolds from wild embeddings.

Mi. Does there exist a homogeneous compact absolute retract
of dimension 2<n<m ? Bing and Forsuk [BB]1 showed that every
homogeneous compact ANR (= absolute neighborhood retract) of
dimension n<3 is a topological manifold.

M2. (Homogeneus ENMRs’ versus generalized manifolds) If X is
a homogeneous, locally compact ENR (= finite dimensional ANR), is
X a generalized manifold? According to Bredon [Brel (see
al&ernatively Bryant [Bryl), it is provided H*(X,Xﬂn;i) isg
finitely generated for some (and, hence, far every) point =€X .

M2'. Does every compact ENR X contain a point Xy such
that H*(X,Xﬁxo) is finitely generated?

M3. Is every homogensous generalized manifold necessarily a

- - - - - - - o - -
genuine manifold? No if the Z—-dimensional Poincaré Conjecture is

false [Jal, but otherwise unknown.

M4. Do all finite dimensional H-spaces have the homotopy
type of a closed manifold? Cappell and Weinberger [CWI, who
attribute the original question to Browder, have recent results.

M3. I+ M is a compact manifold, is the group Homeao(M) of
all self-homeamorhisms an ANR? Ferry L[Fell proved Homeo(H) is

an AMR when M is a compact Hilbert cube manifold.
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M&. Is every closed, aspherical 3—manifold virtually Haken
{have a finite—-sheeted cover by a Haken manifold)? Even
stronger, does it‘have a finite sheeted cover by a manifold with
infinite first homology?

#M7. Is every cantractible 3-manifold W that covers a
closed 3—manifold necessarily homeomorphic to R3 7 Here one
should presume W contains no fake 3—cells (i.e., no compact,
contractible 3—manifolds other than 3—cells). Elementary
cardinality arguments fndicate some contractible 3—manifolds
cannot be wvniversal covers of any compact one, and Myers has
identified specific examples, including Whitehead’'s contractible
3—-manifold, that cannot do so. Davis’'s higher dimensional
examples [Dvl, by contrast, indicate this is a uniquely 35—
dimensional problem.

*#MB: Local connectedness aof limit sets of conformal actions
an 53 - A group G of homeomorphisms of the Z2-sphere is called
& discrete convergence group if every sequence of distinct
elements from & has a subseguence 9, for which there are

points »:,,y'ES‘i with gj = x uni#mrml; on compact subsets of

2

SE—{y} while g_j -+ v uniformly on compact subsets of S§%—{x3}
(or, equivalently, B acts properly discontinuously on
SEXSERSE—{distinct triples (x,v,2)?3 ). Its limit set L{G) is
the set of all scuh points x . I¥ L(G) is connected, must it
be locally connected?

M? (RBestvinal. Must a K(G,1) manifold M , where G is
finitely generated, have only a finite number of ends? What if
M is covered by R 7 ,

M10 (M. Davis). Must the Euler characteristic (when
nonvanishing) of a closed, aspherical Zn—manifold have the same
sign as -13" 7

Mil. Under what conditions does a closed manifold cover

itself? cover itself both regularly and cyclically? Are the twa

classes different?

M1Z2. Does there exist an aspherical hemology sphere of

dimension at least 47
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#M13: Simplified free surface problem in high dimensions -
see also E1. Suppose W is a contractible n—manifold such that,
for every compact ©C C W , there exists an essential map
Snﬂi + W-C . 1Is W topologically eguivalent to RT 7

The Lusternik-Schnirelmann category of a polyhedron F ,
written cat(F) , is the least integer k for which P can he
covered by k open sets, each cmntracfible in P . See
Montejano's surveys [Mol]l [Mo2] for a splendid array of problems
on this and related topies. Here are two eye—catching ones.

*M14, Does cat(M=S' ) = cat(M) + 17 Singhof [Sil has

answered this affirmatively for closed PL manifolds where cat(P)

I

is fairly large compared to dimP .
M15. I+ M is a closed PL manifold, does cat(M—-point) =

cat(M)} - 1 7

M16 (Ulam — problem #468 in The Scottish Book [Mal). If ™

is a compact manifaold with boundary in R? for which every
{n—1)-dimensional hyperplane H that meets M in more than a
point has HNgM an (n—1)-sphere, is M convex?

M17 (Barsuk). Can every bounded 5 C R" be partitioned
into (n+1)-—subsets Si such that diamSi < diamS5 7 What about
for finite § 7

M1B. I+ X 1is a compact, n-dimensional space having a
strongly convex metric without ramifications, is X an n—cell?
{For definitions see Rolfsen’'s work [Rol, which solves the case
n=3 .) What if X is a generalized manitold with boundary? In
that case is X-9X homogensous?

M1?. Is there a complex dominated by a Z-complex but not
homotopy equivalent to a Z-complex?

MZ0. Is every finitely presented perfect group (perfect =

trivial abelianization) the normal closure of a single element?
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DECOMFOSITION FROBLEMS

A decomposition 6 of a space X i1s a partition of X ; it
is upper semicontinuous if each g&b i1is compact and for every
open set U 2 g there exists another open set V 2 g such that
all g’'€b intersecting V are contained in U . Associated
with G is an obvious decamposition map w:X > X/G sending xEX
to the unique g&b containing = 3 here X/G6 has the guotient
topolagy. I

The study of upper semicantinuous decompositions of a space
X coincides with the study of proper closed mappings defined on
X 4 but the emphasis is much different. Decomposition theory
stresses, or aims to achieve, understanding of the image spaces
through information about the decomposition elements.

All decompositions mentioned in this part are understood to
be upper semicontinuous.

A compact subset € of an ANR is cell-like if it contracts
in every preassigned neighborhood of itself, a property invariant
under embeddings in AMRs; equivalently, C is cell-like if it
has the shape of a point. A decomposition (a map) is cell-like
if each of its elements (point inverses) is cell-like. A
decomposition G of a compact metric space X is shrinkable iff
for each £E>0 there exists a homeomorphism H:zX - X such that
diam H{(g) < &€ +for all g&€6 and d(w,mH) < &€ , where d is a
metric on X/6G ; a convenient phrasing stems from the theorem
(ef. [Dabd, p.237) showing B to be shrinkable iff w:X =+ X/0G
can be approximated, arbitrarily closely, by homeomarphisms. All
elements in a shrinkable decomposition of an n—manifold are both

celi-like and, better, cellular (i.e., can be expressed as the

intersection of a decreasing sequence of n—cells).

The initial questions concern conditions precluding a
decomposition (or a map) from raising dimension.

Di. The celi-like dimension-raising map problem for
n=4,5,4. Dranisnikov [Drl has described a cell-like map defined

on a I-dimensional metric compactum and having infinite
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dimensional image: this example auvtomatically gives rise to
another such map defined on 57 - 0On the other hand, Kozlowski-—
Walsh EKW] showed no such map can be defined on any 3-manifold.
What can happen between these bounds is still open, although
Mitchell—Repnvé—éEepin [MRS]1 have characterized the finite
dimensional cell-like images of 4—manifolds in terms of a
disjoint homological disk triples property. See also the surveys
by Draniéniknv—ééepin [DrS1 and, more recently, Mitchell-Repovs

t

[MR1.

pP2. Can a cell-like map defined on R" have infinite
dimensional image i¥ all point—inverses are contractible?
absolute retracts? cells? starlike sets? l-dimensional
compacta?

D3. If G is a usc decomposition of a compact space X
into simple closed curves, is dim(X/6) = dimX 7

D4. Could there be a decomposition G of an n—manifold ™
into closed connected manifolds (of varying dimensions?) with
dim(M/G) > n 7

DS {(Edwards). Can an open map ™M -+ X defined on a compact
manifold and having l—dimensional solenoids as point inverses
gver ralse dimension?

D4: The resclution problem for generalized 3—manifolds.
Assuming the truth of the 3—dimensicnal Foincaré Canjecture, does
every generalized I—-manifold ¥ have a cell-like resolution?
Does Xle have such a resolution? Independent of the Foincaré
Conjecture, is X the cell-like image of a "Jakobsche" -
manifold (i.e., an inverse limit of a seguence of 3—manifolds
connacted by cell—-like bonding maps, as in [Jal)? Thickstun [Tkl
varified this for X having O-dimensional nonmanifold set.

D&': Thickstun's Full Blow-up Conjecture [Tkl. A compact
homolagy n—manifold X is the conservative, strongly acyclic,
hereditarily wl—injective image of a compact n—manifold i1+ foar
each x€X there exist a compact, orientable n-manifold M and
a map (M ,9M ) > (X,X—{x2) inducing an isomorphism on n—“
dimensiun;l E;ch homology. (Terminology: a homology n—manifold a

finite—dimen=zsional, locally compact metric space for which
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H*(X,X—x) = H*(Rn,Rn—O) i by way of contrast, a generalized n-
manifold is an ANR homology n—manifold. A map is conservative if
its restriction to the preimage of the manifold set is an
embedding; it is hereditarily ﬂ1~inje:tive if its restriction to
the preimage of any connected open set induces an injection of
fundamental groups; it is strongly acyclic if for each
neighborhood U of a point preimage f—l(xJ there exists
another neighborhood V of f_i(x) such that inclusion induces
the trivial humomnrphfsm H*(V) - H*(UJ .} Thickstun avers [Tkl
this may be an overly optimistic conjecture, since it implies the
resolution conjecture for generalized n—-manifeolds and, therefore,
the 3-dimensional Poincaré conjecture as well. He adds that
according to M. H. Freedman the 4-dimensional case implies 4-—
dimensional topological surgery can be done in the same sense it
is done in higher dimensions.

D7: The Approximation Problem for 3— and 4-manifolds. Which
cell-like maps p:M =+ X Ffrom a manifold onto a finite-
dimensional space can be approximated by homeomorphisms? Is it
sufficient to know that, given any two disjoint, tame 2-cells
131,15':2 C M, there are maps ui:Bi + X approximating pJBi with
ul(Bl)ﬁuE(BE) = @ ? The question carries a degree of credability
because for nz3 the condition is equivalent to X having the

Disjoint Disks Praoperty, which vields an affirmative answer [Ed].

Next, some problems about shrinkability of cellular
decompositions of manifolds. The 3—dimensiaonal version of each
has been solved, all but D12 affirmatively.

*¥DB. Is each decomposition of R involving countably many
starlike-equivalent sets shrinkable? A compact set X C R" is

starlike if it contains a point X such that every linear ray

emanating from X meets X in an interval, and X is

starlike-equivalent if it can be transformed to a starlike set
via an ambient homeomorphism. Denman and Starbird [DeS5]1 have
established shrinkability for n=3 .

D?. Let f:5 -+ X be a map such that if f—lf(x) # x 5 then

F—lf(x) is a standardly embedded n—-cell. Can + be apprax-—
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imated by homeomorphisms?Y BSame guestion when there are countably
many nondegenerate fnif(x) y all standardly embedded (n—2)-—
cells. Although closely related, these are not formally equi-
valent. See [Ev] [SW] concerning n=3 .

Di0O. Suppnse G 1is a usc decomposition of n—space such that
sach g€5 bhas arbitrarily small neighborhaoods whose frontiers
are {(n—1)-spheres missing the nondegenerate elements of § 7 Is
G shrinkable? What if the neighborhoods are Euclidean patches?
Woodruff [Wol develmpedrthe low dimensional result.

Dil. Suppose A C R" is an n-dimensional annulus. Is there
a parameterization of A as a product Sn~1HI for which the
associated decomposition into points and the fiber arcs is
shrinkable? Daverman—Eaton [DEJ] did this when n=3 §; warlk by
Ancel-McMillan [AM] and Cannon—Daverman [CD] combines with
Buinn’'s [R2]1 homotopy—theoretic characterization of locally flat
3—spheres in R4 to take care of A C R4 as well.

D12. Is a countable, cell-like decompozsition B of R
shrinkable if every nondegenrate gé6 lies in same affine (n—-1)-
hyperplane? If all nondegenerate elements live in one of two
predetermined hyperplanes, Bing {(Bil produced a remarkable Z-
dimensional counterexample while Wright [Wr2] established
shrinkability for nz5 , but the matter is unsoclved for n=4 .

The rich variety ef nonshrinkable decompositions of F(3 is
not matched in higher dimensions; a plausible explanation is that
descriptions of unusual S—dimensional examples rely in unrepro-
ducable fashion on real world visualization experience. The next
twa problems point to Z-dimensional constructions lacking higher
dimensianal analogs.

P13. Consider any sequence {C(i)} of nondegenerate
cellular subsets of anq - Does there exist a nonshrinkable,
cellular decomposition of R"  whose nondegenerate elements form
a null seguence {g{i)3 with g(i) homeomorphic to C(i) ?
Starbird’'s 3—dimensional construction [5t] praompts the guestion

D14. Is there a nonshrinkable decomposition of n—space into

points and straight line segments? Into convex sets? Armentrout



[Ar-]1 provided a 3—dimensional example, and later Eaton [Eal

demonstrated the nonshrinkability of an older example developed

by Bing.

Presented next are some uniquely 4—-dimensional issues. Fost
are relatively unpredictable in that, like the second half of
DiZ2, higher/lower dimensional analogs transmit conflicting
information.

Di5. I+ X 1is the cell-like image of a 3—manifold ™M ,
does X embed in M=*R ? More technically, if G is a cell-like
decomposition of RE y regarded as RExO C R4 , and if B%
denotes the trivial extension of G (i.e., B* consists of the
glements from G and the singletans fram R4 - (REKO)) y 15
R4/E* topologically R4 ? This must bhe true if V10 has an
affirmative answer.

Di&. If X 1is a cellular subset of 4-space and G is a
cell-like decomposition of X such that dim(X/G)=1 , is the
trivial extension of G over 4—-space shrinkable? What if X is
an arc? No to the latter when n=3 [RW] and yes to the former
when nz3 [DaZl.

D17. Is each simple decomposition of R‘qL shrinpkable? Here
one starts with a collection {Ni} af compact n—manifalds with
boundary in R" s wWith N,

i+l
tion consisting of singletons and the components of nNi - It is

C IntNi , and studies the decomposi-—

called simple it =ach component Ci of each Ni cantzains a pair
of disjoint n-cells BI’BE such that every component C€° of
Ni+1 in Ei lies in either B1 ar E!;3 . The remarkable
nonshrinkable decomposition of Ring [Bil mentioned in D12 is
simple, whereas the Cell-like Approximation Theorem of Edwards
quickly reveals shrinkability when n>*4 [Pa4éd, p. 1831.

pig. I+ -F:S4 = 54 is a map which is 1-1 over the
complement of some Cantor set K C 54 y is + cell-like? What
if + 1is 1-1 over the complement of a noncompact O—-dimensional

set? Yes by work of McMillan [MMI for n=3 , but counterexamples

exist for n>4 L[Da3]l.
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D19. Can every cellular map ©:P -+ @ between finite 4-
complexes be approximated By homeomorphisms? Henderson [Hn1]
[HNZ1 produced approximations in the 3-dimensional case and

counterexamples in higher dimensions.

Finite dimensional compact metric spaces X,Y are CE
equivalent if they are related through a finite sequence
X = xoiéﬁ'xl =t xm =Y,
where " Xi —> X " reguires the existence of a cell-like

surjection of Déglmf the spaces onto the other. In short, the
definition is satisfied iff some compactum Z admits cell-like,
surjective mappings onto both X and Y . Ferry [Fe2] shattered
a suspicion that CE equivalences might behave like simple
homotopy equivalences; he also made repeated remarks suggesting a
closer connection if one restricts to LE1 spaces — see D22
below.

DZ0. I+f X,Y are n—-dimensional, LCn—1 compacta that are
shape equivalent, are they CE equivalent? Daverman—-Venema [DV1]
have taken care of the always—difficult n=1 case.

D21 (Ferrvy). I+ X,Y are shape equivalent LCH campacta,
are they UVH equivalent? Here one seeks a compactum Z as a
sogurce for surjective ka mappings anto X,Y , where " UVH "
means each point preimage has the shape of an i-connected object,
S-S o A QU T

D22. I+ X,Y are CE eguivalent, LC1 caompacta, are they
related through a finite sequence as in the definition of CE
equivalence above where, in addition, all intermediate spaces X
are LC1 ? What happens for homotopy equivalent but simple
hamotopy inequivalent polyhedra X,Y ? The relatianship does
hold for LED spaces [DBV2].

DZZ (Kozlowski). Suppose X is the inverse limit of a

sequence of homotopy equivalences §° « 87 . Is X CE
L]

equivalent to S§° 7
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DZ4. Let K ¢ R" denote a k-cell. Under what conditians
can K be squeezed to a (k—1)—cell, in the sense that there is a
map f:Rn = Rn for which K is conjugate to the "vertical®
projection Bk > HH_1
R'—f(K) . What if K is cellular? What if each Cantor set in

while {IRH—K is a haomeomorphism onto

K is tame? Bass [Bal provides a useful sufficient condition and
raises several other appealing gquestions. '

D25. Given a cell-like map f:M =+ X of an n—manifold onto
a finite dimensional épace, can + be approximated by a new
cell-like map F:M #*+ X such that each F_l(x) is l1-dimensional?
Specifically, can this be done when n€{3,4,3} 7

D24. Is there a decomposition of R" into k-cells (k>0) 7
Into copies of some fixed compact absolute retract (# point) 7
C+. [Jod [WW3.

D27. Is there a decomposition of B" into simple closed
curves? of a compact contractible space? of a celi-like =set?

D28 (Bestvina-Edwards). Does there exist a cell-like, non-—

contractible compactum whose suspension is contractible?

Standard Notation: M is an (n+k)—-manifuld; B is a usc
decomposition of M into closed connected n—-manifolds; B is
the decomposition space HM/G 3 and p:M + B is the decompositian
map. For convenience assume both M and all the elements of &
are orientable.

Due to similarities imposed on the set of point preimages,
one can regard the study of these maps p:M + B as somewhat
comparable to the study of cell-like maps. At anocther level,
when all point preimages are topologically the same, one can
strive for the much more regular sorts of conclusions suggested

by the theory of fibrations and/or locally trivial bundle maps.

D2%. Is B an ANR?l What i+ the elements of G are
pairwise homeomorphic?

D30. Is B AFinite—dimensional? (It deserves emphasis here
that if the elements of B are not required to be genuine

manifolds but merely to be of that shape, a fairly comman
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hypothesis in this topic, the product of 5" with a Dranis@nikov
dimension—raising cell-like decomposition of SH quickly
provides negative solutions.) What if the elements of G are
simple closed curves?

DZ1. For which integers n and k 1is there a usc

. +k: . . . .
decompasition of g" l into n—-spheres? into n—tori? into

fixed products of spheres? into closed n—manifolds? Does Rm+k

ever admit a decompositiaon into closed n—manifolds (n>0) 7

D32. When n and' k are both odd, does every closed
{(n+k)—-manifold M admitting a decomposition into closed n-
manifolds have Euler characteristic zern?

D3=. I+ 6 1is a usc decomposition of an (nt+k})-manifold H
into n-spheres, where 2<n+1<k<{2n+2 , is ™M/B a generalized k-
manifold? What if into homology n—spheres? Investigations when
k<n+1 and k=n+1 are detailed in [DW]l and [Snl, respectively.

D34. In case k=3, is the set of points at which B fails
to be a generalized 3—manifold locally finite?

D35. I+ k=% , n=1 , and the degeneracy set K(B) of local
l-winding functions is empty (i.e., the l-dimensional cohomalogy
sheat of p:M + B is Hausdorff), is B a generalized 3-
manifold?

D36. I+ k=1 and all elements of G are 2-sided in © ,
must M have the homotopy type of a closed n—manifold?

B37. If W is a compact (n+l)-manifold with JW#F and the
inclusion N =+ W of some compaonent N of dW is a homotopy
equivalence, does W admit a decomposition into closed n-
manifolds? What if the kernel of the induced ﬂl—hnmammrphism is
simple (but contains no finitely generated perfect group)?

D38. When n=3 and k=1 does there exist a decompasition
G of a connected M containing homotopy inegquivalent elements?
Information from [DaS] surrounds this 4-dimensional matter,
comparable to D15-D1%.

D39. Does there exist a compact S-manifeld W having
boundary components MD and Mi y where ﬂl(MD) 21 and ﬂi(ﬁl)
= QS y the alternating group on 5 symbols, such that W admits a

decompaosition G into closed 4-manifolds (with M Ml £EG).

07
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Daverman—-Tinsley [DT] locate W when H*(Ml) & H*(Sq) but not
when ﬂl(Mll is an arbitrary finitely presented perfect group.

D40. Given a closed manifold N , does some (n+k)-manifald
M admit a decompasition inte copies of M such that p:M + E
is not an approximate fibration? Are there other examples
besides those with homolaogy sphere factors and those that
regularly, cyclically cover themselves? Is there a 2-manifold
example N with negative Euler characteristic?

D4l. For which A-manifolds N and integers k does the
hypothesis that all elements of G are copies of N imply
p:M + B is an approximate fibration? What if wl(NJ is finite
and k=2 ? What if N is covered by the n-sphere? What if N
is hyperbolic? What if all g€G are required to be locally flat
in M7

D4Z. If k=2m, n=2Zm+1 , and p:M -+ B is a FL map from a PL
(n+k)—-manifold M to a simplicial complex B such that

Hj(pdl(b))éo whenever 0<{j<n , is B a generalized manifold 7
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and Lay have an unpublished construction), and otherwise it is
still open.

Ell. Let AX:¥X =+ M denocte a closed embedding of a
generalized n—manifold X in a genuine (n+l)-manifold M . Can
N be approximated by 1-LCC embeddings? Yes for nZ4 (see [Da3j,
p-.2821 - key ideas are due to Cannon, Bryant, and Lacher [CEBLIJ;
what about for n=3 ? What if X is a generalized n—manifold
with boundary? Ancel discusses this and related problems in
LANnI. '

E1Z2. Which homology n-spheres K bound acyclic (n+l)-
manifolds N such that wl(K) = ﬂl(N) is an isomorphism? Is
there a homology 4—sphere examplea??

E13. Let X be a cell-like subset of R' . Does R

contain an arc ® with R -« homeomorphic to R'—X 7 For nzé
R" has a 1-dimensional compact subset A with rR"-a » RM—x
[Nel.

El14. Can there exist a codimension 3 cell D in R (n>5)
such that all 2-cells in D are wildly embedded in R"  but each
arc {(each Cantor set) there is tame? This question calls for new
embedding technology, since existing examples [Dall in which all
2-cells are wild essentiallwy explnif the presence there of Cantor
s8ts wildly embedded in the ambient manifold.

E15. Can every n—dimensiaonal compact absolute retract be
embedded in R-" 7 _

El4. Can every §"-like continuum be embedded in REn ?

A metric space X is Skulike if there exist g-maps X - SH for

every E&r0 .

E17. Daoes 54 contain a Z-sphere L , possibly wildly
embedded, such that 54—2 is topologically EIHR& but not

smoothly so?

-

E18. (M. Brown) If a wedge AvEB C RY is cellular, is A

cellular??
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Problem Session

1. (Venema) If < 52 x §2 isalocally flat 2-sphere and t1( $2 x S2 - ) is infinite
cyclic, must X be flat; i.e., does 2 bound a 3-ball?

2. (Bowers) Does every orientation preserving self homeomorphism of the plane have a
square root?

3. (Wright) Give an example of a specific contractible n-manifold n > 3 that does not cover a
compact n-manifold. Do the Whitehead contractible n-manifolds cover a contractible n-
manifold? (Added before publication: These questions have been answered.)

4. (Tinsley) What is the "simplest” presentation of a 3-dimensional knot group which
abelianizes with perfect kernel? In particular, may this group be chosen to have a single
defining relator? (Hempel suggests looking at untwisted doubles.)

5. (Walsh) If an ANR has the local homology of R™, must it be finite dimensional?

6. (Walsh) Is there an usc decomposition of 5% into circles or shape circles?

7. (Bestvina) For every g does there exist n = n(q) such that every map f from the »-torus to
a g-dimensional space (e.g. RY) has a point preimage f~1(pf) such that the inclusion induced
homomorphism I':Il(f "l(pr)) -> H1(T"™) is non-trivial (integer coefficients)?

8. (Cannon) Give a truly elementary proof of the Sullivan-Rodin theorem on the rigidity of
the hexagonal circle packing in the plane.

9. (Cannon) Give an argument which verifies Gromov's assertion that most finitely presented
groups are negatively curved.

10. (Cannon) Determine simple criteria that can be used to determine whether a sequence of
shinglings of the plane is a conformal sequence of shinglings.

11. (Cannon) Give a simple proof that the dodecahedral reflection group creates a natural
sequence of tilings of §2 that is conformal.

12. (Cannon) Is ever closed 3-manifold with negatively curved fundamental group
hyperbolic?
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