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"The lattice of 3-manifolds as branched
covers over a universal knot"

by John Hempel

(Nofes compiled by Fred Tinsley)

1. Introduction

The classification of closed, orientable, irreducible 3-
manifolds initially focuses on the fundamental group.
Although some exceedingly difficult questions rewain, such
manifolds with finite fundamental group are reasunably well
understood. Among those manifolds with infinite fundamental
group, the Haken manifolds are also well understood.

Definition: A closed, orientable, irreducible 3-manifold
which contains an incompressible surface is called =a
Haken manifold.

Of current interest is a larger class of S-manifolds.

Definition: A closed, orientable 3-manifold which admits a

finite cover by a Haken manifold is called = virtually
Hzken manifolid,

Conjecture: A closed, orientable, irreducible 3-manifold
which contains an immersed incompressible surface is
virtually Haken.

There is a good deal of hope that many results for
Haken manifolds can be extended to virtually Haken manifolds.
In light of the above, one attack is to study finite group
actions on Haken manifolds.

Relevance to the classification theorem is given by:

Conjecture: All closed, orientable, irreducible manifolds
with infinite fundamental group are virtually Haken.

2. Properties of the Fundamental Group

Definition: A group G is Z-representable if it admits a
surjective homomorphism to Z.

Definition: A group G is virtually ZF-representable if it
has a subgroup of finite index which is Z-representable.




Theorem: If a closed, orientable 3-manifold M is

irreducible and has a Z-representable fundsmental group,
then M is Haken.

Sketch of proof: Since 8! is aspherical, map M to Sl

realizing the the homomorphism of (M) %wEIQ;Hl(SIZ::,:;- e

Put the map in general position with respect to a point. The
inverse image of that point will be a 2-manifold which can be
altered to be incompressible.

Corallary: If a closed, orientable 3-manifold M is

irreducible and has a virtually Z-representable
fundamental group, then M is virtually Haken.

The converse to the corollary is conjectured to be
true.

3. Branched Covers of Closed 3-Mznifolds
Definition: A map of 3-manifolds ;:ﬁ » M of degree d is
a branched covering over a lirk L in M if
pl: (M - p7I(L)) & M-L is a covering
and
pl: p—l(L) +* L is a covering locally nice near

p_l(L), ie, locally, meridian is mapped to

meridian via z + 20 (see sketch below). The
integer n is called the branching index for this

component of p‘l(L).

S (R E—
S (— 0

These n's may vary from component to component; however,
when counted with appropriate multiplicity, they must sum to
d, the degree of the branched cover.

Definition: A branched cover is called a true cover if all
n’'s are equal to one.



Definition: A link in 8% is wniversal if every closed,
orientable 3-manifold is a branched cover over that
link.

Examples of universal links include non-torus 2-bridge
links (eg, figure eight knot), Boromean rings, and the

Whitehead link. - Since it is Seifert-fibered, the trefoil
link is not universal, not even for Seifert fiberings.

Definition: The monodremy of a branched covering, p:ﬁ + M
is the obvious homomorphism ¢: mq(M - L) » 54 where 5y
is the symmetric group on d letters and ¥ describes the

action of my(M - L) on a fiber p"l(XQ).

3. Lattice of Branched Covers Over a Manifold:
The covers of M branched over L form a lattice. The
order relation is: Hl p M2 if there is a branching map g so

that the diagram of tranched covers commutes,

(El’il) g (ﬁz;iz)

P1 & © P2
(M, L)

where Li = p71(L;) (i=1,2). This is equivalent to the
lattice of subgroups of finite index in m1(H-L) ordered by
reverse inclusion. From now on we use N = M-L.

The supremum of two branched covers

=F (ﬁi,ii) + (M,L) for i=1,2 is the covering corresponding

to the unbranched covering, p: N + N satisfying p#(ﬂl(ﬁl)> =

P14(m(Ny,%1)) M py,(my(Ny, %)) (recall N = M-I and

Ni = (Ml - Ll)

Let G = my(H-L) and Fi: G * 54, be the monodromies of
i

the two branched covers. Then there is a natural map
?1 x P51 G ¥ Sdl'd2 which although not in general transitive

~

does determine all the pullbacks of p1 and pp. Let M be a

pullback and J¥ a component of p_l(J) in the diagram:



M

91 . 492
Py u P o
M

EQQL: The branching index of p at Jx is equal to the least_
common multiple of the branchlng index of py at ql(J*)
and the branching index of py at go(Jx).

Corollsry: If each branch.index of p1 divides the
corresponding branch index of Py, then gy is a true

ccver.

This yields two results about the branched covering
space in terms of data about the base space.

Corollarvy: Suppose Pyi: ﬁl + M is a finite-sheeted, branched
ccvering and my(M) is virtually F-representable, then

is virtually Z-representable, ie, each member of

1
ttiee—aboveM—is—also virtually Z=representable;

Proof: Let Py ﬁZ +* M be the finite-shested true cover
corresponding to a Z£-representable subgroup of finite index
in mi(H). Let M be the pullback.

H
91 & %92
Mq 4p Mo
Py = P2
o}

Now, po has all branching indices equal to 1 so by the
previous corollary 31 is also a true cover. Also, 4o is a

finite-sheeted branched cover so nl(M) contains a
Z-representable subgroup of finite 1ndex and thus,*is
virtually Z-representable. But ql#(”l(M)) has finite index
in my(Mq).
Similar argumfnts also yield:
Corollary: If p: M # M is a finite sheeted branched cover,
M is virtually Haken, and ﬁ is irreducible, then

ﬁ is virtually Haken.



4. Branched Covers over 83:

Since all closed, orientable 3-manifolds are branched

covers of 33 it is natural to investigate criteria which
insure that the covering space 1s Z-representable. However,

nl(SS) is trivial and certainly not Z-representable.

Example: Consider Higman's group

G i=1, . . . ,4

-1 - a2
‘BiTRip185 = afyy |

G has no proper subgroup of finite index. However, G
is not the fundamental group of a 3-manifold.

Definition: A finitely presented Eroup G is resentable if it

is the fundamental group of a closed 3-manifold and
contains no proper subgroups of finite index.

Question: Are there any resentable groups?

The following shows the relevance to the questlon of
which 3-manifold groups are virtually Z-representable.

Involution Theorem: Let M be an orientable, closed

3-manifold. If M admits an orientation-reversing
inveolution, T, and o(wl(M)) > 2 (or if o(nl(M))-Z and

Fix(T) is not equal to FPZ), then m(M) is elther
virtually Z-representable or resentabls.

5. The Involution Theorem and Branched Coverings
The following, then, is a natural question.

Question: Given a manifold-link pair (M,L), an

orientation-reversing involution T: (M,L) * (M,L),
and a finite-sheeted branched covering

p: (M,L) + (M,L), when can T be lifted to an involution

and the involution theorem applied?

The following three facts yvield one set of criteria.
Recall that for a branched covering p: (ﬁ,ﬂ) » (M,L) there
15 an a55001ated unbranched covering pl : ﬁ + N where
N=H-1L and N = M - L.

Fact I: For TI: N + N to 1ift to = N + N with +2 = id
it must be the case that:



i. Ty must be invariant up to inner automorphism
on pﬁ(nl(ﬁ)). This is needed to lift T to a map
of ﬁ.

ii. If Fix(T) = J, a component of L, then a 1lift of T
need not have order two. To get this, an odd
branch index is usually needed over J for T must
reverse orientation on J and, thus, “"rotate" a
normal disk, D, to J through a fixed point of .
Then & can be written as a path product H# = =g
where B = 7Towm Now suppose a component X, of

"1(5D) is 1nvar1ant under a lift, T, of T. A
path in X from x@ to T(XQ) would be of the form

o:lﬁl' L ':':kgk’xk'i'l where pﬂ-xi = « and pC'F'?J- = B.
If +2 = id, then deg p(X = 2k+1, and is odd.

Note conversely that if some branching index over

J is odd and if the cover N + N is regular, then
the above argument can be reversed to find some

lift of T of order two if a lift exists at all.

This cannot hold in general: the lens space

L(5,2) is the double branched cover of S3
branched over the figure eight knot. The

orientation reversing involution of 83 leaving
the figure eight knot invariant lifts to an order

four map of L(5,2). Of course, L(5,2) does not
admit an orientation reversing involution.

iii. To extend T to all of ﬁ, some equivariance
is needed (eg, branching indicies are permuted
and must match up).
Fact II: If H = S3 and ﬁ either has a knotted component or

for some component J of L p 1(J) is not connected, then
ﬂl(M) # 1. We say that such a cover is generic.

Proof: Smith theory and the Smith 6onjebtﬁfe.

Fact III: If M = g3 and the cover is regular, then nl(M)
is not resentable. (Shalen)

The following basic theorem results. First, a
definition is necessary.



Definition: Let L be a link 1in 83 with components Jl, J2,
-» Jy and let g = (a1.Q2, - . . ,Q), a; . oA
branched (over L) covering is divisible by q if each
branching index of p at each component of p—l(Ji) is
divisible by qj. Also, g is T-invariant if q; = qj

whenever T(Ji) = Jj.

L]

Theorem: If there exists an orientation reversing
inveolution T: (SS,L) > (83,L) where L has compo-
nents (Jy,J5p, Jg)» @ = (1,93, - . .,q) is
T-invariant (in case Fix(T) < Ji’ then g; must be odd),

and Py ﬁl * 83 is branched over L, generic, and

divisible by @, then nl(gl) is virtually

Z-representable.

Froof: There is a special regular covering

~

Pg: Mq e 83 branched over L which is a qlqz...qk—sheeted

cover whose associated unbranched cover has covering
i i i £ B F & & 2
transformations isomorphic to dql ﬁqz ... )

Consider the pullback diagram:

M
9 s*1

Previous work yields that ry is a true cover. So nl(ﬁl) is

virtually Z-representable if

suffices to show that ﬂl(ﬁq)

and only if nl(ﬁ) is; so it

is virtually Z-representable.

Sketch of proof: This follows from the involution
theorem. Fact I andAits converse are usgd to 1lift 7 to

an involution of ﬁé. Fact II is used to show o(nl(ﬁq))>2.

Finally, Fact III is used to show nl(ﬁq) is not resentable.

Corollary: For L equal to the Figure Eight Knot any cover

M with all branching indices divisible by g > 2 has
m1(M) virtually Z-representable.

Proof: For q odd this follows from the theorem. The
case q = 4 requires an explicit construction.



B. General 3-manifold Data

Question: In general, to which 3-manifolds does the
corollary apply?

Unfortunately, a priori, not many. However, the Figure

Eight Knot complement is a bundle over S! with fiber, F, a
punctured torus.

Definition: The wrapping number of a bundle is the number

of components of p“l(F). This is also called the
wrapping number of the associated branch cavering.

The following fact is helpful in studying covers
branched over any fibered’knot.

Fact: Suppose p: N = N is a bundle. The wrapping number of
the associated branched covering divides all branch
indices.

Now, the Figure Eight Knot has an embedding in

83 = R3 U ® so that the involution T: S5 = 83 given by
T(x) = -x has Fix(T) = {6,w} = L.
(2%

[~
Thus, it follows easliy that:

Theorem: Any covering p: ﬁ 4 83 branched over the Figure

Eight Knot with wrapping number > 2 hsas nl(ﬁ) virtually
£-representable.



7. Concluding Comments and Questions

Many cobstacles remain in the way of this promising
approach to classification of 3-manifolds. Of particular
interest is:

Question: Can one detect from the monodrpmy Qf a_bpaqphe@

covering whether ﬁ is Seifert fibered? whether nl(ﬁ)

is finite?

The branched covering representation of a 3-manifold is
highly non-unique. In particular, there is = degree 720
covering pi; g3 3 g3 branched over the Figure Eight EKnot

with branching indices 1°s, 2°'s, and 4°s and with p—l(L)
containing the Figure Eight RKnot. This raises obvious
general guestions. : :

Question: What can be said about the desree of

non-uniqueness of representation of 3-manifolds
by branched coverings? What about .he minimal
periodicity of representation?



Two applications of topology to physics
by Fredric D. Ancel

I. Stephen Hawking has predicted that black holes can "evaporate”
and disappear from the universe. From the point of view of the universe as
a3 d4-manifald with a preferred time direction, one possible explanation of
the disappearance of a black hoie is as an increase in the number of
components in the cross-sections of the universe transverse to the time
direction as time increases. (See Figure 1.

Evaporated
black hole

the universe CP2# RPY-(2 points)

(also CP2-(3 points))
) Figure 2
Figure 1 -

The universe is a spacetime; ie, 3 smooth 4-manifold with 3 Lorentz
metric (a semi-Riemannian metric with signature: -+ ++). John Friedman
of the Physics Department at the University of Wisconsin, Milwaukee asked
for explicit examples of spacetimes which exhibit such behavior. In other
words, he asked for specific examples of spacetimes in which the number
of components in the cross-sections transverse to the time direction
increases with increasing time?

It is simple to discover such examples based on the observation that
a smooth manifold admits a Lorentz metric if it admits a non-zero vector
field. (The vectors point in the direction of increasing time.) This
obserwvation reduces the question to an exercise in using the Poincaré-Hopf
Index Theorem. '

10



T

CP? has Euler characteristic 3. Hence, it admits a vector field with
3 zeroes which can be chosen to be one source and two sinks. (Both
sources and sinks have index +1 in dimension 4. Thus, CP2-{3 points) has
a Lorentz metric in which the number of companents in the cross-sections
transverse to the time direction changes from [ to 2. Furthermore, a
typical section with 2 components separates CP2-(3 points) into three

noncompact pieces. (See Figure 1 again.)

RP4 has Euler characteristic | and, therefore, admits a vector field
with one source (and some closed trajectories). Hence, CPZRP* has 3
vector field with one source and one sink. Thus, CP2#RP4-(2 points) has a
Lorentz metric in which the number of components in the cross-sections
transverse to the time direction changes from 1 to 2. Furthermore, a
tupical section with 2 components separates CP2# RP4-(2 points) into two
noncompact pieces and one comwpacd piece containing closed  time-like
particle paths. (Sze Figure 2.)

II. At the 1988 Spring Topology Conference in Gainesville, Florida,
Otto Laback, an Austrian physicist, posed the following question. Given that
we can directly observe only certain subsets of RM (such as smoothly
embedded 1-manifalds corresponding to particle paths), what possible
topologies on R" are compatible with the usual topolegy on physically
observable subsets? To make this more precise, for a collection A of
subsets of R" Jet

Ty = {UC R":UNS is a relatively open subset of S for each S ¢ & }
= the largest topology on RM which induces the standard topology on

each element of 4,
and let
¥ g = the homeomorphism group of R with the topology T g

Then we reformulate Laback's question as follows:

11



Question. for which collections 4 of subsets of R" is T 4 the
stangard topology on R, and is % 4 the standard homeomorphism group of

RM?
We answer this question for two different choices of 4.

Theorem 1. JX & /s 3 colfection of subsets of RN which contazins
B EF embegided I-manifolds, then T 8 15 the standard topology on RN and
W g 15 the standsrd homsomorphism grous of RD

A subset S of R is a swwoéi sef if for each p € S, there is a
neighborhood U of p in RP, thereisanr = 1, and thereisa C"*'map f : U -
R such that f°%0) = Snl and f has a non-zero partial derivative of order
= r at each point of U. For example, every C? embedded submanifold of RP

1s @ smooth set, and the zero set of every non-zero polynomial is a smooth
set.

Theorem 2. /X A /5 fhe coffection of 8/l smooth subsefs s RN,
&hen T g S8 SIriclly larger that fhe siandard fopslogy on RY, and W 4
REFEROE CORLEINE NOr 18 Contained in £he SEanaaed bomeomorphism FoLp oF
R

The following lemma is the 'keg to the proof of Theorem 2.

Lemma 1. 7here is o fame are & in RN sith engoointg O such (hat
120 LBy smth subsef S of R, 7 0 € 5, fher 0 ¢ cl(Sn{A-{Oh).

Then A-{0} is a closed subset of R" with respect to the topology

T g, but A-{0} is not closed in the standard topology on R". Furthermore,

the standard homeomorphism of R" which carries a straight line segment
onto A is not continuous under the topology ‘J‘A, and, hence, iz not an
element of 3 5 (A slight strengthening of this lemma is used to produce
an element of ¥ 4 which is not a standard homeomorphism.)

12



To produce the arc A, we use the following notation. Set w =
{0,1,2,+} For a = (a;,+,3,) € w", set

”a“ = Za,-,
al = T(a;l),

%3 = Mk for x = (x,,%,) € RN,

(a) -(_a_""__a_‘"’?_.__a_aﬂ
*7p) = \GKJ [@XJ [axn) f(p) for f:U-R,Uan open

subset of R® and p ¢ U.

Let r = 1, and let U be an open subset of R". A functionf : U = R is
of cfass &7 if for each a € w" with llall < r, f(a)(p) exists and is continuous
at every p € U. Let C'(U) denote the collection of all functions from U to R
which are of class CF.

For r = 1, U an open subset of R", f ¢ C"(U), and p € U, the TRgrEr
Faglar polynomial of +af 7 is

Tk} = Y % (@) ¢ for x € R".
a€wh
llall = r

We can now state

A Version of Taylor's Theorem. /Zof r = 1, /ot U b2 an open
subsel of R, fef 1 € CTYKW), o Jof p e U FF 2 € R" swh that U
contains the straight line segment from p fo p+x, fhen there is 5 6 ¢
(0,1) suwch that

+x) = T + F L l@piend
 aewh -
llall = r+1

13



We observe that a subset S of R" is a smooth if for each p € 5, there
s @ neighborhood U of p in R", there is anr = 1, and there is an € C"*'(U)
such that -(0) = SnU and Trqf = 0 for each g e U.

To prove Lemma 1, we impose a linear order < on w" as follows. For
a, b€ wh, we declare that a < b if either '

llall < Hibll

ar

llall = libll and there is a k such that 1 < k < n, 3 = b; for 1 =i < Kk,
and ap < by.

To prove Lemma 1, we also need

(91,90 2 [0,1] » R" saas

Lemma 2. 7here /s an smbedding P
38 a, bewh gnd b < a, Hen

@rin
lim P(t)

t=0 ¢bey

wh )

m

(Aere P = TRUNZ for & = (5,,3,)

Proof of Lemma 2. First define ¢ : [0,1] = [0,1] by ¥(0) = 0 and
Y1) =1 2/In2-1nt) for 0 <t = 1. Then L'Hospital's Rule implies that
forangr = 0, t/($()" =0 ast-=0. For 1 =i < n, set P, = Yooy (the
i-fold compasition of ¢ with itself). Then for any r = 0, $;(1)/{$;, (1N =
0 ast-0,for ! =i =n Finally, set $;(1) =tH(t) for 1 =iz n D

Proof of Lemma 1. Set A = $[0,1]. Suppose S is a smooth subset
of R" and 0 ¢ S. Then there is a neighborhood U of O in R, there is an r
= 1, and there is an f ¢ C™*XU) such that f7(0) = SnU and T,f = 0 for
each p € U. We shall show that 0 ¢ cl{Sn{A-{0})). For assume Sn{A-{0})
contains a sequence that converges to 0. We shall argue that TFyf = 0, and
thereby reach a contradiction.



By our assumption, there is a sequence {t;} in (0,1] converging to O
such that for each 1 = 1, P(t;) € SNU and U contains the straight line
segment from 0 to P{t;). According to Taylor's Theorem, for every i = 1,
there is a 8; € (0,1) such that

0 = 1tpt)) = Toree) + 5 L@ 9 |
a€wh
lall = r+1
f(02(0) = 1(0) = 0, because 0 € 5. Now suppose b € w" |Ibll = r and
7)) = o ror every a € wh such that a < b. We shall argue that f(b)(o) =

0. It will then follow that TMyf = 0.

For i = 1:if 0 = s = r, set %3 = 0;and if s = r+1, set Kgj =
8;P(t;). Then the above Taylor formula becomes

1 f@(xﬁaﬂﬂ-z 9215 |
wh
r

O
!
u, U\m[\/J

a
lfall
b

Divide this eguation by tPt‘(t ) and let i = oo Thpn atcordmg to Lemma 2
we are left with (1/6Df®(0) = 0.0 =

15



Bounding the complexity of simplicial group actions on trees.

Mladen Bestvina and Mark Feighn

The first author gave a talk on the theorem stated below.
This result generalizes theorems of Grushko and Dunwoody in
combinatorial group theory, the discussion of which, as well a
motivation for our theorem, can be found in excellent articles
Peter G. Scott-C.T.C. Wall , Topological methods in group theory,
in Homological Group Theory , ed. C.T.C. Wall, London Math. Soc.
Lecture Notes 36 (1979) 137-203 and M.J. Dunwoody, The
accessibility of finitely presented groups, Inv. Math. 81 (1985)
449-457.

A group action on a tree is hyperbolic if some pair of
axes of hyperbolic elements of the group intersect in a compact
set (and, in particular, high powers of the elements Jenerate a
free subgroup of rank two). A group is small if it admits no
hyperbolic action. A group action on a tree is minimal if there
is no proper invariant subtree, and is reduced if the quotient
graph does not contain a valence two vertex whose stabilizer is
equal to the stabilizer of an incident edge.

THEOREM. For every finitely presented group G there
exists an integer G(G) with the following property. The quotient
graph associated to a minimal and reduced action of G on a tree
with small edge stabilizers has less than G (G) vertices and
edges.

The theorem fails for finitely generated groups.

16



MULTI-LAYERED MANIFOLD DECOMPOSITIONS OF 3I-MANIFOLDS

by Robert J. Daverman

The work described here was done jointly with Luis

Montejanao.
An upper semicontinuous decomposition 6 of a 3-manifold M

is called a multi-layered manifold decomposition if each geG is

a closed, connected (usually, orientable) i- or 2-manifold, and
G includes both types.

Let T,T’ be solid tori and B a 3-cell with T CcB CT”
and T wunknotted in B . The key constuction is an usc decom-—

position G of T'\IntT into sinple closed curves. This leads

to several examples.

i. E'—5 admits a multi-layered manifold decomposition.

2. Every solenoid can be embedded in 83 so its complement
admits a multi-layered manifold decomposition.

. {(Consequence of fhe construction — a better result
follows from the Structure Theorem below.) Suppose Hi and HE
are 3-manifolds admitting usc decompositions into simple closed
curves. Then M #ME admits a multi—layered manifold

1

decomposition.

MAIN RESULT

Structure Theorem. Suppose the connected, orientable 3—manifold

-

M~ admits a multi-layered manifold decomposition G . Then M

contains a lecally finite collection {Ci} of pairwise disjoint

17



objects, where Dj is either (1) a closed, connected Z-manifold
for which x(Ei)=O » (2) T#T (where T denotes a solid torus),
or (3) TH#RP™ y, such that H&\UCi admits a usc decomposition into

simple closed curves.

Remarks: all three possibilities can be realized. Proof details
involve analysis of l-winding functions for the (GS) subcollec—-

tion of scc’'s. Other analysis in the argument reveals that every

g€b satisfies x(g)z0 .

AFPFLICATIONS
1) Suppose M~ is a closed, irreducible, orientable 3-manifold
that conteins no incompressible tori and G is a multi-layered
manifold decomposition of M. Then M~ admits a decomposition
either into Z2-manifolds or into 1-manifolds.
2} Suppose M~ is a closed, irreducible 3—manifold with ﬂlfﬁé)
finite and G is a multi-layered manifold decomposition of MY .

=r

Then M~ admits a decomposition into 1-manifolds.

3 EY is the only contractible 3-manifold admitting a multi-

layered manifold decomposition; similarly, §° is the only

homotopy 3Z-sphere admitting one.

4) Suppose that for i=1,2 Bi is a multi-layered manifold

decomposition of the connected, orientable 3-manifold Mi - Then

18



MJ#M? admits a multi-layered manifold decomposition.

3) I+ G is a multi-layered manifold decomposition of s~ s then
S°/G is a cactoid.

FUESTION. Which non—compact M~ that admit Z2-manifold
decompositions also admit multi-layered ones? Are there any

others besides line bundles over surface 8 where ¥(S)=0 7
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SOME QUESTIONS ABOUT SYMMETRIC PRODUCTS

Dennis J. Garity

Definitions and History.

The n-fold symmetric product of a space X, X(n), is the subspace of the hyperspace of all closed
subspaces of X, 2X, consisting of all sets of cardinality less than or equal to n. The topology on X(n)
is the Vietoris finite topology. A basis for this topology can be described as follows. Let
Uy, Uy, . . ., U, besetsin X. Let

<Up,...U;> ={A CX(@m)|A C.LleUi and A N U; # 0 for each i }.
i=
A basis for the topology on X(n) is {<U,, ... U,> | each U, is open in X}. If X is metrizable via a
metric d, this topology is equivalent to the topology induced by the Hausdorff metric. This metric d is
given by

d (A, B) = ma.x{astel% {inf (b} ), sup {if {d(a)}) 2

For Hausdorff spaces, the symmetric product X(n) can also be viewed as a quotient space of
the n-fold topological product of X, X". Define an equivalence relation G on X" by (Xgy + oy Xn) ~

(Yir---s¥n)if {x;, ..., xn} = {y1, ..., yn}. Then X(n) & X"/ G.

Symmetric Products were introduced by Borsuk and Ulam [B-U] in 1931. They were interested
in using symmetric products to learn more about hyperspaces, since the collection {X(n) [n €‘Z+} is
dense in 2X. They showed that local connectedness, separability, compactness and arcwise
connectedness are invariants under the operation of taking symmetric products. They also showed that
forn = 1, 2 or 3, I(n) is homeomorphic to I*, that S'(2) is homeomorphic to the Mobius band, and

that I(n) is not homeomorphic to a subset of R” for n > 4.
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In 1952, R. Bott [B] showed that S'(3) = S3. In 1954, V. Ganea [G] showed that the

dimension of X(n) is equal to the dimension of X" for X separable metric, that symmetric products

preserve contractibility and local contractibility for Hausdorff spaces, and that symmetric products

preserve compact metric finite dimensional ARs and ANRs. In 1954, S. Liao shoed that S%2) is. .

homeomorphic to CP2. R. Molski [M] in 1956 showed that the symmetric square of a closed 2-

manifold is a closed 4-manifold, that I(n) is not homeomorphic to any subset of R?" and that for n >

3, I"(2) is not homeomorphic with any subset of R%",

R. Schori [S] in 1969 showed that I™(n) contains I”™ as a factor for m = 00, 1,2, ... . He

also showed that I™(2) is homeomorphic to C(RP™™!) x I™. J. Jaworowski [J] in 1971 showed that

symmetric products of compact ANRs are ANRs. Kodama, Spiez and Watanabe [KSW] in 1978

proved that if Sh(X) > Sh(Y) then Sh(X(n)) > Sh(Y(n)). In 1980, C. Wagner [W] showed that T(2)

is a nontrivial bundle over T with fiber S?, where T = S'x S

V. Fedorchuk [F] in 1981 investigated symmetric products from a functorial point of view and

showed that symmetric products of Q manifolds are Q manifolds. A. Dranishnikov [D] in 1984 showed

that there was a non AR (non ANR) whose symmetric square is an AR (ANR).

Questions.
1. Which 4-manifolds arise as symmetric products of 2-manifolds?
2. Can I™(n) be described in terms of familiar spaces?
3. Is local homological connectedness of local homotopical connectedness preserved by symmetric
products?
4. Are noncompact ANRs preserved by symmetric products?
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A 4-Dimensional Open Collar Theorem

Craig R. Guilbault

A natural question to ask about a manifold M™ with boundary
is whether it has the simplest possible structure, i.e., whether
or not M® is homeomorphic to dMx[0,1). It was shown by Whitehead
in 1937 that it is not sufficient to assume that AM c M is a
homotopy equivalence. In 1969, Siebenmann’s "Open Collar Theorem"
showed that, with the additional assumption that MM® have a
"stable end" with the correct fundamental group, the desired
conclusion holds whenever m>5. The main result discussed here is
an extension of The Open Collar Theorem to dimension 4, provided
71 (M®) falls into a certain class of groups.

The necessary fundamental group restrictions are the
following. Let F denote the set of all Freedman groups (groups
for which Freedman’s disk embedding theorem can be proved), and
let S denote the set of all groups G such that Wh(G) (the
Whitehead group of G) is trivial. The set of allowable groups for

cur theorem is A = F n S.

THEOREM 1 (4-Dimensional Open Collar Theorem)
Let M be a 4-manifold with ny{(M) € A. Then M is homeomorphic to
dMx[0,1) iff each of the following each of the following

conditions holds:

(a) M ¢ M is a homotopy equivalence.
(b) 71 is stable at infinity with 11(») = w1 (M) an

isomorphism.
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An easy consequence is the following;

COROLLARY 2 A 4-manifold M with w1 (M) € A is homeomorphic to

dMx[0,1) iff the two are proper homotopy equivalent.

Theorem 1 is proved by building a proper h-cobordism between
M and dMx[0,1), and then applying the 5-dimensional proper
s-cobordism theorem (see [F-Q]). The main tool is engulfing
(including radial engulfing) along with an application of
Siebenmann’'s (higher dimensional) Open Collar Theorem to help
get the necessary homotopy conditions. Details can be found in
[Guy] or [Gujp].

As an application of Theorem 1 we are able to solve a
problem concerning embeddings of 2-spheres in s4. An embedded
k-sphere 5K ¢ SD is said to be "weakly flat" provided its
complement is homeomorphic to the complement of the standard
k-sphere in ST. An especially interesting case occurs whéﬁ k=n-2.
Results by Daverman (n=3) and Hollingsworth and Rushing (n>5)
characterize weakly flat (n-2)-spheres in ST as those which
satisfy a certain embedding conditionA(En_zlis_globally l-alg),
along with sn_zn-2 being homotopy equivalent to a circle. The
latter is needed to prevent knotting. We are able to extend this

characterization to include 2-spheres in S4. The theorem is as

follows;

THEOREM 3 A 2-sphere 32 c 8% is weakly flat iff it is globally

l-alg and s4-3 is homotopy équivalent to sl.
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The "global 1l-alg condition referred to above is defined in

the following way. An embedded k-sphere sk c sM is globally l-alg
provided each neighborhood U of ¥ contains a neighborhood V of X
such that loops which are null-homologous in V-% are contractible
in U-X. : - R

Proof of Theorem 3 is accomplished by removing the interior
of a regular neighborhood of a generator of the fundamental group
of S4-%. Theorem 1 is then employed to verify that what is left

is simply an open collar. The 1l-alg condition is used to verify

condition (b) of Theorem 1. Again details can be found in [Guq]

or [Gug].
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Hyperbolic Structures on Branched Covers
Over the Figure-Eight Knot

Kerry Jdones, Rice University
Recall Thurston's construction of hyperbolic metrics on the figure-8 knot
complement, using the fact that the figure-8 knot complement may be written as
the union of two tetrahedra with vertices deleted: Ideal hyperbolic tetrahedra
are parametrized by complex numbers in the upper half-plane, and the conditions
for two tetrahedra, parametrized by w and z, to yield an (incomplete) hyperbolic
structure on the figure-8 knot complement are polynomial equations in w and z.
Some of these structures may be completed to induce hyperbolic structures on
certaih branched covers of spaces obtained by Dehn surgery along the figure-8
knot {namely those branched covers which have all their branching indices equal)

and the conditions for this to happen are also polynomial equations in w and z.

Branched covers over the figure-8 knot (including all closed, orientable 3-mfds.
by universality) can be subjected to an extension of the same analysis: let M be
a branched cover over K, the figure-8 knot, with monodromys ¢:n1(S3 - K)»S4 and
branched covering p:M=S3. Then, M - p-1(K) may be written as the union of 2d
ideal tetrahedra, parametrized by wi, ..., Wd, 2], ..., Zd. Conditions for

hyperbolic structures to be induced by this decomposition on ﬁ} a branched cover

over M with branching index nj at all components of the pre-image in M of Kj» the

Jjth component of p-1(K), are as follows (writing permutations as operators on the
right):
(l-WJ)(l—wd¢(§))(l—2j¢(aa))(l-zi¢(a))zjwj¢(aa)=(l-23)(1—WJ¢(35)) v j=Lse..sd

234325 (ab)Wj4(ba) (1-254(b) ) (1-434(3))=Zj9(b)¥j(3) v §Tlseeesd
el’l’ﬂ/n‘] = O(dJ(a)tMJ) ZJ¢(akb§C)qub(akb§)(1'ZJ¢(akb)) Vj:l""’d
k=1 Zj¢(akb)) A

(but note that only q of these are distinct, where g=# cycles in g(a))
Where a,b,c refer to specific generators for ﬂﬁs3 - K) =

<a,b,c:b=cac, c=[a,b]>
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Note that a complete hyperbolic structure corresponds to a solution where none of
the WJ'S and Zj's are real, while a complete hyperbolic foliation corresponds to
a solution where all of the Wj'S and ZJ'S are real. Note also that we may look

for hyperbolic structures on M itself by setting all nj's to 1.

Define a tetrahedral hyperbolic structure to be a complete hyperbolic structure

that arises in this fashion. Note that whether or not a given structure is

tetrahedral may depend on the particular branched covering representation for M

(and thus?ﬁ).

Prop. 1: if M has any branching index equal to 1, then M has no tetrahedral

hyperbolic structures.

Prop. 2: if p~1(K) is connected, then M has a complete hyperbolic structure if M

has a tetrahedral hyperbolic structure.

One necessary condition for a given hyperbolic structure to be tetrahearal is
that the geodesics in the free hemotopy classes of distinct components of the
branch locus not intersect. If this condition is violated, we have:

Prop. 3: if two distinct components of the branch locus of (hyperbolic) M are
freely homotopic to intersecting geodosics, then M contains an injectively
immersed closed surface of genus > 2.

Question: are there branched covers over K that have hyperbolic structufes, but

not tetrahedral hyperbolic structures?
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Surface Mapping Class Groups
Heegaard Splittings of S3 and Homology Spheres

Ning Lu
Let Mg be the mapping class group of the closed orientable surface

of genus g, we prove that Mg is generated by three elements in

general. They'é;é*iﬁé'1iﬁéar’éﬁfifﬁé:

L = [aqbq, by, ao, bo, ..., ag, bgl,

the normal cutting

N = [xapby, a1, aixbo, ap, a3, ..., bgl,
where x = [aq1,bq] [ap,bp], and

the transport

T = [ag, bg, @y, b1, ..., ag-1, bg_11,
where, as a convention we denote
f = [f(aq), f(b1), ..., flag), f(bg)]
by the fact that, the mapping class f is determined by them.
In particular, when g=1, we have T=1, and #1=<LqN|N6=1, NL=LN2..
And when g=2, we have T=N3, and M2z <LqN|N6=1, (LN)5=1, (LN)5(NL)5=1
L«<> N2LN2, L<>N3LN3, N3<«>(LNLNL)%>
and an interesting consideration is that, denote Di:NiLNi, i=0, 1,
.+, 5, then we have
i) All are Dehn twists, and any five of them form a family of
Lickorish generators.
ii) N=DuD1DpD3Dy=D1DpD3DyD5=...=D5DuD1D2oD3
ii1) Let velut (M), v(f) def NfN, then v(Dj)=Dji,q.
And Which induces us a possibly nice and new field of the group

theory, the balanced group theory. (A group G is balanced, if it

admits an element av G, and a (periodic) automorphism ve Aut(G), such
that the family {vM(a) | neZ} generates the group G. e.g.4po is

balanced) .
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Question: What kind of groups is balanced? And an easy combination
is that also #; is balanced, since N=LNLN when g=1.
The most important application of the new generators is that the

Heegaard splittings of the 3- sphere S3 may be well classified and

explicity described whose assdéiétéﬁfﬁébpiﬁgféiésgéé"f&?ﬁﬂﬁhgl“
semiproduct LA *Wof the subgroups Z, #land A.

Where A/z T, N3, P2, PN2P is coﬁtélhéa i;wghe Subéet of
mapping classes which can be extended to both handle bodies,

L - riLri i=0, 1, ..., g-1 and

) = TimTi i=0, 1, ..., g-1

are free abelian Subgroups of rank g, where M = NLN.
As a consequence of our result, we show easily that any homology
sphere is associated by some mapping class from the Torelli subgroup

of the mapping class groupjﬂg. And at the same time, more properties

are investigated.



A PRELIMINARY REPORT ON
CLOSED PRE-IMAGES OF C-SPACES

Yasunao Hattori, . Dale M.N.Ro,hm"_‘ and Kohzo Yamada

For the purposes of this discussion, all spaces are assumed to be metric,
although results do hold for more general topological spaces. The reader is
referred to [R1] and [R2] for statements of the definitions and an introduction

to the topics given in this note. Two types of questions will be considered, the

first being

Question 1. When is the product of two weakly infinite-dimensional (in

the sense of Alexandroff) spaces weakly infinite-dimensional?

Although R. Pol showed that this is not always the case [P2], the factors
of his counter-example are not compact. It is unknown whether the product of
two compact weakly infinite-dimensional spaces must always be weakly infinite-
dimensional. Shortly thereafter, E. Pol showed that the product of two weakly
infinite-dimensional spaces does not need to be weakly infinite-dimensional even

when one factor is zero-dimensional [P].

A space is said to be a C-space if it has the covering property C as
defined by Addis and Gresham {AG]. Every countable-dimensional space has
property C and every C-space is weakly infinite-dimensional, however R. Pol
has constructed a C-space which is not countable-dimensional [P1]. It is not
known whether every weakly infinite-dimensional space must have property C.
In particular, the weakly infinite-dimensional factors of the strongly infinite-
dimensional products mentioned above are actually C-spaces. It is known that

the product of two C-spaces, with one Tactor compact, is again a C-space [R2].

The other type of question to be considered is

Question 2. What can be said about the domain of a closed map with
weakly infinite-dimensional image?

Answers to this question can be thought of as results on dimension-
lowering maps for the infinite-dimensional dimension theories discussed above.

As such, these answers complement, and provide partial converses to, the

results on dimension-raising maps given in [G] and [GR].
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In particular, Hattori and Yamada have generalized the product theorem
for C-spaces, in so doing answering [R1, Question 2] and [R2, Question 2], to
obtain the following infinite-dimensional version of a classical dimension theory

Hurewicz-Morita theorem [E, Theorems 1.1248nd 436}.

Theorem 1. Let f:X—Y be closed mapping onto a C-space Y, then the
domain X is a C-space if and only if f™'(y) is a C-space for each y €Y.

Using a characterization of weak infinite-dimensionality in terms of open covers
the second author has shown

Theorem 2. The product of a C-space with a compact weakly infinite-

dimensional space is weakly infinite-dimensional.

This immediately generalizes by the techniques of Tlattori and Yamada to give

Theorem 3. Let f:X—Y be closed mapping onto a C-space Y, then the
domain X is weakly infinite-dimensional if and only if f™'(y) is weakly infinite-

dimensional for each YEY.

With all spaces metric, the authors do not know whether the assumption of
property C in Theorems 2 and 3 can be weakened to weak infinite-
dimensionality. The following corollary is singled out as a special case of

separate interest.
Corollary. A compact space X is weakly infinite-dimensional if and only
if X X1 is weakly infinite-dimensional.

Because of the similarities between these results and the Dowker

Conjecture the following question is raised.

Question 3. If X X1 is weakly infinite-dimensnional then must X be a C-
space. If so for every compact space X, then every compact weakly infinite-

dimensional space is a C-space.
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The K-Theory of Eilenberg-Maclane Complexes Revisited

JOHN J. WALSH

The focus of the talk is the “K-theoretic component” of the construction-by A. Dranis-
nikov [Dr] of an infinite dimensional compact metric space having integral cohomological
dimension three. Briefly, Dranidnikov combines a construction from [Wa] that produces

compacta having finite cohomological dimension with a “K-theoretic” invariant that de- -

tects that the dimension is strictly larger than the cohomological dimension and, therefore,
is infinite. There are two sources for the K~theory computations; namely, [AH] or [BM].

The talk is based on [AH].
The theory needed is complex K-theory, denoted by k(X,A). Reduced groups are

denoted by k(X,A) and the groups with coefficients Z, are denoted by k(X, A;Z,). The
specific fact used in [Dr] is the following:

é*(K(%Z,n); Z,)~0,n >3, pa prime
where K (G, n) denotes an Eilenberg-Maclane complex associated to an abelian group G.
That is, K(G,n) is a CW-complex with 7,(K(G,n)) ~ G and 7;(K(G,n)) ~ 0 for j # n.
r T
Since K(®Z,n) ~ [[K(Z,n), the Kunneth formula reduces the computation to showing
1 1

that .
k*(K(Z,n);Z,) ~ 0, n> 3, p a prime.

The first step in the proof is to analyze the universal coefficient theorem

0— k*(X)® Z, — k*(X;Z,) — Tor(k*(X), Z,)—0

and reduce the computation to showing that I::*(K (Z,n)) is p-torsion free and p-divisible

for n > 3.
The second step which is the “heart of the proof” is to establish that

F*(K(Z,n)) ~ k*(K(Q,n)), n > 3,

the isomorphism being induced by the “natural” homomorphism Z — Z ® Q ~ Q. A brief-

outline of this step is given below.

The third step is to establish that ﬁ*(I((Q, n); Z) is torsion free and divisible, i. e., a Q
-module. This is carried out by induction on n. For n = 1, a standard model for K(Q, 1)
is the mapping telescope of the sequence of maps a, : S — S! where «, has degree n.
Using this model, which is a 2-dimensional complex, it is immediate that H HK(Q,1);Z) ~
0, for £ > 3. It is an easy exercise to show that K(Q, 1) admits no essential maps to S! and,
thus, H1(K(Q,1); Z) ~ 0. Further analyses shows that H*(K(Q,1); Z) ~ lim'{X;}, where
X; is the mapping telescope of ay, ag, - - , ;. Finally, using the explicit description of the

Typeset by Ap4S-TpX
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group lim? {Xi}, it is easy to establish that the group is both torsion free and divisible.
For n > 2, analyses using the Serre spectral sequence associated to the fibration

K(Q,n—-1)— E— K(Q,n)

(be reminded that E is contractible) and induction complete the proof.

The fourth and final step is to use the spectral sequence whose Es-terms are the groups- * -

H*(X; k*(point)) and which converges to k*(X) and establish that, for a space X with
H*(X;Z) torsion free, k*(X) ~ H**(X;Z) as abelian groups. Recall that E*(X) = k(X))@
k'(X)and H**(X;Z) = H®(X; Z) GBHOd(X; Z), where H®V(X;Z) is the group of formal
power series having coefficients in the groups H?(X;Z) and H Od(X ;Z) is the group of
formal power series having coefficients in the groups H**+1(X; Z). In view of step 3, this
applies to K(Q,n) and it follows that k*(K(Q,n)) is divisible and torsion free.

As promised, a brief outline of step 2, namely, that

() k*(K(Z,n)) ~ k" (K(Q,n)), n > 3,
follows. The short exact sequence Z «— Q — Q /Z gives rise to a sequence of fibrations:
Q/Z — K(Z,1) - K(Q,1)
K(Q/Z,1) — K(Z,2) - K(Q,?2)
K(Q/Z,2) — K(Z,3) — K(Q,3)

In particular, the isomorphism in (1) follows (via a Vietoris type theorem) from
(1) kK(Q/Z,n) ~0,n> 2.

The computation in (1) is a consequence of Q/Z being a countable torsion group. A
countable torsion group is the union of an increasing sequence of finite subgroups and,
thus, K(Q/Z,n) can be represented as the increasing union of K(m,n)’s where 7 is a
finite group. The groups k(K (Q/Z, n)) are determined by the inverse sequence of groups
k(K (m,n)) and (1) can be extracted once it is known that

k(K (m,n)) ~0, for 7 a finite abelian group and n > 2,

Of course it is this last computation that forms the core of [AH] and the reader is di-
rected there for the details. The starting point is the explicit computation in [At] of the
groups k(K (7,1)), for 7 a finite abelian group. The Serre spectral sequence of the fibration
K(m,1) < E — K(m,2) is used, along with profinite analyses, to deduce from the explicit
computation of k(K (r,1)) that k(K (7,2)) =~ 0. In turn, the same spectral sequence ap-
plied to K(m,n - 1) — E — K(w,n) and induction establish (much more easily) that

E(K(x, n)) ~ 0 for n > 3 as well.
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A STICKY ARC IN S" n>3)
David G. Wright

. This paper is the summary of an expository talk given at-the topology conference at
Colorado College, Colorado Springs, Colorado on June 16-18,1988.

1. Introduction. If X and Y are subsets of a metric space S, we say that X can be
slipped off Y in S if for each € > 0 there is an e-homeomorphism h:S — S such that h(X)
MY = Q; otherwise, we say X cannot be slipped off Y. Results of Armentrout [A] and

McMillian [M;] show that if A and B are arcs in E3, then A can be slipped off B. Previous
results of the author [W] show that in E®, n > 3, there exist cellular arcs A and B such that
A cannot be slipped off B. The examples depend heavily on a result of McMillian [M;]. In
this note we show that we can choose A and B so that they have only an endpoint in
common. Furthermore, we show the existence of a single arc A in E™ so that A cannot be
slipped off itself.

McMillan constructed two disjoint continua in S* which we denote by X, and X._.
The set X4 = F,? H; and X_. = F\l K; where H; and K; are disjoint unknotted cubes with
1= 1=

two handles. The set H; U K has the property that it is not I -equivalent to H U K where

H and K are disjoint unknotted cubes with two handles in 3 which can be separated by a
2-sphere. This observation leads to the fact that certain 4-manifolds cannot be embedded in

S*. Such 4-manifolds M; can be obtained from a 4-ball by attaching two more disjoint 4-
balls along H; and K, respectively, via the identity mapping. The continuum X_ is cell-

like. The continuum X3 is not cell-like, but the suspension Z X4 is PL cellular in Z s3
= §%. |
Let G denote the upper semi-continuous decomposition of S* whose non-degenerate
elements are Z X+ and and the disjoint copies of X_ found in the levels of Z X_. The
decomposition G is shrinkable [E-M],[P-E]. Let f:S*—S* be a map whose only non-
degenerate point inverses are the non-degenerate elements of G. Letp = f(z X4) andJ =
f(z X4+ U Z X_). ThenJis a simple closed curve in §%. Let A, B be arcs in J such that
AN B={p].

THEOREM 1. The arcs A and B are cellular sets such that A cannot be slipped off B.

THEOREM 2. The arc A U B is a cellular set that cannot be slipped off itself.

The fact that the arcs are cellular follows because given neighborhoods U and V of p
and the arc, respectively, there exists a homeomorphism of S*, fixed outside V that takes V
into U.
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Proof of Theorem 1. Let g be an element of J - (A U B). Let A'and B' be the arcs in J
with endpoints p,q containing the arcs A and B, respectively. By techniques in [W], there

1s a homeomorphism h:S%—8% such that h(A) " B' = {q} and h fixes points on a
neighborhood of q. The arc h(A') U B' has a neighborhood which is homeomorphic to
M,;, for some i. But M; does not embed in S$%, a contradiction.

Proof of Theorem 2. If A U B can be slipped off itself, then A can be slipped off B.
This contradicts Theorem 1.

Theorems 1 and 2 remain vailid for n > 4. The modifications are the same as used by
McMillan [Ma]. [

REFERENCES

[A] S. Armentrout, Decompositions of E3 with a compact O-dimensional set of
nondegenerate elements, Trans. Amer. Math Soc. 123 (1966), 165-177.

[E-M] R. D. Edwards and R. T. Miller, Cell-like closed O-dimensional decompositions of
R3 are R* factors, Trans. Amer. Math. Soc. 214 (1976), 191-203.

[M;] D.R.McMillan, Jr., An arc in a PL n-manifold with no neighborhood that embeds
in S™, n>4., Michigan Math. J. 25 (1978), 29-43.

[M;] , Jr., An arc in a PL. n-manifold with no neighborhood that embeds
in S™, n=4., Michigan Math. J. 25 (1978), 29-43.

[W] D. G. Wright, Sticky arcs in E® (n24), Proc. Amer. Math. Soc. 66 (1977), 181-182.

37



19.

11

12.

13.

14.

15.

186.

Problem Session
Saturday, June 18 at 11:30 am

Are irreducible 3- manlfolds w1th 1nf1n1te fundamental group
virtually Haken? -

Is there a resentable 3-manifold group?

Does there exist an infinite 3-manifold group which contains
a surface group? If so, is it virtually Haken?

Is every hyperbolic 3-manifold virtually Z-representable?

Given & branched cover, is a hyperbolic structure
necessarily tetrahedral with respect to that branched cover?

If G is an usc decomposition of a 4-manifold into cirecles
with no degeneracy, is the decomposition space a generalized
3-manifold?

Does there exist an usc decomposition of the n-cell
(compact,contractible set) ((cell-like set)) into circles?

Recall that if Ui, Uz, . . s Un form a cover of Tn, then
for some j, Im(H1(Us) ---> H1(Tn)) # 8. Is it possible to
identify all {Im(Hl(Ud))|1<3<n}? Suppose Ui, . . . , Un is
a shrinking of Ui, . . ;Un; is it possible to identify

all relations Im(Hl(Ud))C:Im(HlfUd)°

Is Dranishnikov’'s example strongly infinite dimensional?
Which 4-manifolds are symmetric products?

What local homology or homotopy properties are preserved
under symmetric products?

Are the Mazur and standard link I-equivalent by a smooth
surface?

Characterize all spaces whose product with any @-dimensional
space is weakly infinite dimensional. Is the image of every
cell-like dimension-raising map strongly infinite
dimensional?

If XxI is weakly infinite dimensional, then must X have
property C?

Can a 2-sphere in S3 be weakly flat but not PL weakly flat?

Given an usc decomposition of Mn+k into orientable, closed
n-manifolds, what is the largest k for which M/G is always a
generalized n-manifold?
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17.

18.

19.

20.

21.

Is there a decomposition of 33 into circles?
Under what conditions can you put a wild end on a manifold?

If you have a degree 1 map from a closed n-manifold to
itself, must it be a homotopy equivalence?

Find invariants to detect non-I equivalence for smooth, PL
or locally flat categories.

Define a syllabus to be a motivated, briefly annotated, and
directed reading list, shortzsr than and at a more elementary
level than the usual survey article.

Continued mathematical produ:tivity often requires
transition from field to field. Wide-spread, short, current
syllabi could greatly aid such transitions.

Describe the appropriate format for such syllabi. Give
sample syllabi for your field. Cite examples of such
syllabi in the published lit :rature.

Should there be a journal devoted to such syllabi? H¥Would
"study guide" be a better term?
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