


The Fourth Annual Western Workshop in Geometric Topology was held at

Oregon State University in Corvallis, Oregon on June 18—20, 1987. The participants

were:
Robert Andersen Oregon State University
Mladen Bestvina University of California at Los Angeles
Philip Bowers Florida State University
James Cannon Brigham Young University
Robert Daverman University of Tennessee
Helmut Doll Oregon State University
Robert Edwards University of California at Los Angeles
Dennis Garity Oregon State University
Craig Guilbault University of Tennessee
Jim Hoste Oregon State University
Isa Jubran Oregon State University
Jack Lamoreaux Brigham Young University
Dale Rohm Oregon State University
Richard Schori Oregon State University
David Snyder University of Tennessee
Frederick Tinsley Colorado College
James Van Buskirk University of Oregon
John Walsh University of California at Riverside
David Wright Brigham Young University

These proceedings contain the notes of two one-hour talks given by the

principal speaker, Robert Edwards, and summaries of talks given by other
participants. The success of the conference was due in large psrt to funding
provided by the National Science Foundation (DMS-8702818) and the Mathematics
Department at Oregon State University. [ would like to thank the National Science

Foundation and the Mathematics Department for their support.

Dennis Garity

-i-



TABLE OF CONTENTS

R.D. Edwards, Some Remarks on the Hilbert-Smith Conjecture ..coccviviiiiiiiiiiiiiiiiennen,

M. Bestvina, Shrinking Certain Cell-Like Decompositions Quasi-Conformally .............

P.L. Bowers, Maximal Convex Metrics on Some Classical Metric Spaces ...........ooolil.

J.W. Cannon, Continuation SPACES .cieeiiiiiiiiiiiiiiiiitiiinttieaniernrsrrssresaserisrnraaseaiaasneraseins

R.J. Daverman, Submanifold Decompositions that Induce Approximate Fibrations .......

D.J. Garity, Stable Maps and Universal MapS .ccoiiciiiiiiiiiiiiiiiiiiiiiciiiiini e

J. Hoste and J.H. Przytycki, An Invariant of Dichromatic Links ..cvveieiiiiiiiiiiiin.

J.W. Lamoreaux, Homogeneous Cantor Sets in E3 ....................................................

D.M. Rohm, Alternate Characterizations of Weak Infinite-Dimensionality .................

D. Snyder, Homology Sphere Decompositions Yielding Generalized Manifolds ............ 3

F.C. Tinsley, Perfect Subgroups of Locally Indicable Groups ......... e eeerreeaeenrereaeraanan

J. Walsh and J. Dydak, The Local Constancy of the Orientation Sheaf of a Homology

Manifold: An Easy Proofl .ot i

D.G. Wright, A Note on the Whitehead Contractible 3-Manifold ....ccoeviviiiiiin.

g ey o 1=] 11 T T PP

“ii-

52



Some Remarks on the Hilbert —Smith Conjecture

R. D. Edwards

(As transcribed from notes taken by D. Garity)

Hilbert —Smith Conjecture, Version 1:

No p—adic group Ap can act effectively on a manifold M.

In what follows we denote by Ap, where p is a fixed prime, the inverse limit
of the inverse system
Zp — Zpz = Zpa = - -
We say that Ap acts effectively on a topological manifold M if Ap is a topological

subgroup of the group of self homeomorphisms of M, Homeo(M), where Homeo(M) is
given the compact open topology.

Note that Ap is a compact topological group, and that the underlying space of
Ap is a Cantor set. Also, Ap is topologically generated by a certain self
homeomorphism h of the Cantor set. That is, there is an element (homeomorphism)
h of Ap whose pOWe..I‘S are densé in Ap. This homeomorphism is the infinite
composition of homeomorphisms, h = h1°h2°h3°. . . , where the i-th
homeomorphism interchanges the first two intervals of the i-th stage of the
construction of the Cantor set. Further, we note that if G is a closed subgroup of

AP’ then either G is trivial, or G is the kernel of one of the natural epimorphisms

Ap-—> an , and hence G has finite index in Ap and is isomorphic to Ap.'

Some Background on the Hilbert —Smith Conjecture:

Gleason, Montgomery and Zippin have shown that a locally compact
topological group that is a manifold is a Lie group. This is often credited as a

solution to Hilbert’s fifth problem. Hilbert's fifth problem also asked which



compact topological groups can act effectively on manifolds. This leads to a second

version of the Hilbert —Smith Conjecture.

Hilbert Smith Conjecture, Version 2:

There does not exist a self homeomorphism h of a
compact manifold M such that: -

1. Each orbit { h™(x) | n € Z } has small diameter
with respect to M, and

2. {n" I n € Z } C Homeo(M) is a relatively
compact subgroup. (i.e. This set is uniformly

continuous in M and in Z)

The two versions are equivalent. We will outline why Version 2 being false
implies that version 1 is false. Let G = closure { h" ] neZ } C Homeo(M). As
input, we know that version 2 is true for compact Lie groups, using a theorem of
Newman discussed below. The explanation is completed by applying the fact that a
compact topological group G such that G contains no Lie subgroups contains a
subgroup Ap for some p. This, like the Gleason - Montgomery - Zippin work, is
based upon the fundamental Peter-Weyl theorem? which has as a corollary that any
compact topological group is an inverse limit of Lie groups, andr hence locally

homeomorphic to Euclidean space crossed with some totally disconnected compactum.

The Theorems of Newman and Montgomery.

There is a remarkable pair of theorems of W.H.A. Newman, proved in the

early 1930’s, which affirmatively answer Version 2 of the conjecture in many cases.

Theorem (Newman). Suppose M is a compact manifold. Then there is an € =

e(M) > 0 such that if G is any finite group of homeomorphisms of M for which

each orbit { g(x) | g € G } has diameter less than ¢, then G must be the trivial

group.
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Closely related to this we have:

Theorem (Newman). Suppose G is a finite group of homeomorphisms of a

manifold M. Then the set of points in M whose orbits are full ( i.e. those points
left fixed only by the identity in G) is open and dense in M. In particular, the

fixed set of G cannot have interior.

[ learned the proofs of these theorems from a marvelous article by A. Dress
in Topology, volume 8, 1969. (Newman’s original article is quite formidable.) For
the first theorem, his argument can be summarized as follows. It is relatively easy

to reduce to the case where the order of G is some prime p, so we will discuss only

0

this case.

Let h:M fbM be a generator of G; hence n? = idM . Let g:M — Q be the
quotient map of M onto the orbit space of h, that is, the points of Q are the orbits
of h. Note that each orbit has either p points or just one point, and the latter
subset of M, call it F (for “fixed point set” of h), is closed. If the orbits of h have
sufficiently small diameter, then one can define a certain “center of gravity” map
o:Q — M such that o°q is close to idM , and hence homotopic to idM , and also
oeq|F = idF . For example, o:Q — M can be defined by regarding M as a subset
of some Euclidean space, and hence a retract of some neighborhood there. And so

if an orbit of h has sufficiently small diameter, its Euclidean center of gravity

[:—. %) Zil hi(x) ] will lie in this neighborhood and hence can be retracted to M.

Now one argues that on the one hand, the degree of o°q:M — M is one,

since o°q is homotopic to idM , whereas on the other hand its degree is a multiple

of p. This latter fact follows because h is acting freely on the open set M \ F, and

ogeq(F) = F, and so q is a p-fold covering space over o"l(M \ F). Since the degree

of a map can be measured over any open set, and since degree is multiplicative, and

p-fold covering maps have degree p (we suppress orientation considerations here), -



the claim follows. Hence p can only be 1, hence the first theorem is established.

As for the second theorem, which is a bit more difficult, it is proved by
localizing to the neighborhood of a point the above argument. In more detail:
First, it is fairly easy to reduce the theorem to the case as above, where the order
of G = {1, h, h2, ...n? } is some prime p. Then the problem is to show that if F
(as above) has interior, then p = 1. Assuming int(F) £ & , it is not hard to find a
small coordinate chart in M, which we denote by R™ , such that ]R_rf.1 C F, where
RT = upper half space of R™, and such that 0 is a limit point of M \ F. Now one
argues that a center of gravity map o:V — M (as above) can be defined on a
neighborhood V of q(0) in Q, and that o°q has local degree at 0 equal to one (since
ooq ~ id near 0, keeping the preimage of 0 always just O itself), whereas this local
degree must be a multiple of p, by the factor-through-the-covering-map argument.

Hence p = 1, as desired.

It is perhaps also worth remarking here that the Ap version of the second
theorem remains open. That is, if Ap acts effectively on a manifold, is it possible
that the fixed point set of the action has interior. McAuley has been pursuing this
question recently.

We remark that both of the above theorems are true for G an arbitrary
compact Lie group. The proofs are similar; one constructs o:Q — M just as above,
and when dim(G) > 1, one argues that (c°q)y:Hp(M) — Hp(M) cannot possibly be
the identity, for Q cannot carry homologically the image g.[M] of the fundamental
class of M.

Finally, we recall a result sometimes referred to as the “point wise periodic

implies periodic” theorem.

Theorem (Montgomery) Suppose h is a point wise-periodic homeomorphism of

a connected manifold. Then h is periodic.



That is, if each orbit of h is finite, then in fact there is a uniform bound on
the orbit size. The proof of this ( American Journal of Mathematics, 1936 ) is a

clever two-step application of Newman'’s second theorem above.

Note that this theorem together with Newman’s first theorem says that a
homeomorphism h such as in Version 2 above cannot be point wise .periodic,
Similarly, these theorems imply that for any effective Ap-action on a manifold, at
least one orbit must be full, i.e. at least one point stabilizer must be trivial. For

otherwise all orbits would be finite, and hence uniformly finite, i.e. the Ap-action

would reduce to a finite group action.

The Equivalence of Conjecture Versions 1 and 2

The above theorems have relevance to the Hilbert —Smith conjecture. For
suppose that G is a compact group of homeomorphisms of a manifold M. If G is not
a Lie group, then by the Peter-Weyl Theorem G has a non-finite, totally
disconnected subgroup H. Such an H is an inverse limit of finite subgroups, and
indeed by passing to a further subgroup if necessary, we may assume that H is of
the form H = inv. lim. ( Zy, ¢ Zp, ¢ Zn, + - - - ) where 1 divides n;,q and

the homeomorphisms are simply reduction mod n; . Now by the first theorem of

Newman, H cannot have arbitrarily small nontrivial finite subgroups. This forces H

to have as a subgroup some Ap. Hence Ap would therefore be acting effectively on
a manifold. In other words, the conjecture that the only compact groups which act

effectively on manifolds are Lie groups is equivalent to the Hilbert —Smith
Conjecture (Version 1).

The equivalence of Versions 1 and 2 (above) of the Hilbert —Smith
Conjecture should now be fairly clear. First, suppose Version 1 is false, i.e.

suppose some Ap acts effectively on some manifold M. By passing to a small



subgroup (which is isomorphic to Ap) we can assume that the orbits of this action

are small. Hence a topological generator h:M =S M of this Ap would offer a
counterexample to Version 2.
Conversely, suppose Version 2 is false. Then the closure G of the powers

{ h"| n€ Z } in Homeo(M) is a nontrivial compact subgroup. By hypothesis 1 and

Newman’s first theorem, G can contain no finite subgroups (and hence no Lie

subgroups). Such a G must then contain Ap.

Some Current Work.

We ask the guestion: What sorts of spaces can or can’t Ap act effectively
on ?

Example: A, acts on I*° = Hle C(ZZ') since 22i acts on 22; . Hence A,
acts freely on I°° minus the cone point; which is homeomorphic to I X [0,00) .

Question: Can A2 act freely on a compact Hilbert cube manifold?

Observation: Zp cannot act freely on a finite dimensional cell-like set X.

However, Ap can act freely on a two-dimensional cell-like set.

Sketch of proof of observation: For Z, , the proof of the first part of the

observation depends on constructing the following diagram for some n, where the
map from X to S® is equivariant. The point is that 7 is a two to one covering map,
and hence is classified by some such map to RP®. On the other hand, X — X/Z.2
. - o o n+1 n+l1
effectively serves as a classifying space, classifying e.g. S — RP by some

map IRPIH'1 — X /Z, which leads to a violation of the Borsuk —Ulam Theorem.

X sn

X/Z4 RP"



The example that Ap can act freely on a two dimensional set is due to
Z
o

Edwards and Bestvina. First, understand the map S3 Lp which is the

join of Zp acting on S1 with itself. Next understand the degrees in the following

diagram.

deg q° 'Sg

deg p| Zp Zpq deg pq

A false start for X would be the following.
S3 .« « X’ = inv. lim.

g3 — g3

Lp Lp2

R -

Note that Zp acts freely on X’ . Now alter the bonding maps on the lower level to
preserve the action on =« , but so the maps are of degree 0. To do this, take the
connected sum of two maps of degree p to get a map of degree 0 and use the fact
that Lpz # S3 is homeomorphic to Lpz. The resulting map acts the same on 7T .
The correct diagram to obtain the example is the following where X is now cell-like

since the maps are of degree 0. The inverse limit X can be made two dimensional by

homotoping the images into the two skeleta.
S3 . . . X = inv. lim.

g3 — g3

Lp p4

— kP

This completes the example.



Other I[deas.
One approach for thinking about the comjecture is the following. Suppose

there is a free Ap action on R™.

Rﬂ
n
R"/Ap
We want to map ¢ ;‘Id Ap equivariantly into R, Start with £ = 1. Map Ap onto
-fo
join

the orbit of some point x in RT, mapping the identity to x. Next, Ap*Ap =
[C(AP)XAP] / [Ap on base] . First map in the cone, then let Ap act on the cone.

Continue this process, obtaining the following.

Rn

|

’EAP /Ap___ R"/Ap

*kA
ep

Assume that IRn/Ap is finite dimensional. Obtain the following diagram where the

right hand side has Menger manifolds.
n+2

R"™ L

Thr
Ap

A / n 2
7Ap/Ap L RU/Ap L 20

The cohomological dimension of ]RH/Ap is known to be n+2. Try to argue that £

cannot be too large.



SHRINKING CERTAIN CELL-LIKE DECOMPOSITIONS QUASI-CONFORMALLY

Mladen Bestvina

Let F be a closed oriented surface of genus >1. Then F supports a
hyperbolic structure, and contains a lot of hereditarily indecomposable
1-dimensional continua that can be obtained by passing to the Hausdorff
limit of a generic convergent sequence of simple closed geodesics on F.
Such continua are called geodesic laminations . Generic geodesic
laminations have simply-connected complementary components. The
universal cover of F is the hyperbolic plane, and it naturally compactifies
to a closed disc D2. The closure of the preimage (under the covering map)

of the geodesic lamination determines a cell-like decomposition G of D2,
Now double D2 to get S2 with a natural action of 74(F) (double of the

covering action), and complete G by points on the other copy of D2. Now the
group action leaves G invariant, so the group acts on the decompoasition
space SZ/GESZ, and the limit set of this new action is a dendrite.

In the talk | proposed a way of shrinking G quasi-conformally to obtain g

uniformly quasi-conformal action of m4(F) on S2 with limit set a dendrite.



Maximal Convex Metrics on some Classical Metric Spaces

Philip L. Bowers

Abstract. It is proved that every convex, complete, two point
homogeneous metric for which small spheres are connected has
maximal symmetry. This in turn implies that the standard metrics
on the classical spaces of geometry are maximally symmetric.

R. Williamson & L. Janos prove the following theorem.

Theorem: For every natural number n, the enclidean metric on RE
has maximal symmetry.

A metric d on a set X has maximal symmetry provided its isometry
group Iso(d) is not properly contained in the isometry group of

any metric equivalent to 4.

The following theorem generalizes this result of Williamson and
Janos. .

Theorem: Every convex, complete, two-point homogeneous metric
for which small spheres are connected has maximal symmetry.

Definitions: Let (x,d) be a metric space.

1. A point g in X is between points p and r provided
P 7 q#%randd(p,q) + d(g,r) = d(p,r).

2. d is convex if every pair of distinct points has at
least one between point.

3. d is homogeneous if Iso(d) acts transitively on X.

4. d is two-point homogeneous if Iso(d) acts transitively
on pairs of equidistant points of X.

The ¢ ,-metric on I{Z is not maximally symmetric even though it

posses%es many nice qualities. It is convex, complete,
homogeneous and spheres are connected. The key to the Theorem is

the two-point homogeneity.

Examples: 1. [Wang, 1952] Up to similarity, the only convex,
compact, two-point homogeneous spaces are riemannian manifolds
with underlying space one of the following:
s® , rRp®, o, 0p® , cayp?
“ -~ / N——
projective spaces Cayley projective plane
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2. [Tits, 1955] Up to similarity, the only convex locally
compact two-point homogeneous non-compact spaces are riemannian
mainfolds with underlying space one of the following:

R", ®H", cH", oHD, cav® - .

3. From 1 and 2, the classical metric gpaces of geometryn namely
enclidean space E, _elliptic space RP" and the sphere S, and
hyperbolic space are maximally symmetric.

4. Any hilbert space is maximally symmetric. 1In fact, the
Theorem can be generalized by replacing the hypotheses "convex"
and "complete" by the existence of metric sygments between
points. This implies that any prehilbert space (real or complex
inner product space) with its natural inner product metric is

maximal.

What does two-point homogeneity give us?
Exercise: If (X,d) is a two-point homogeneous space and 4”7
is a metric equivalent to d with Iso(d)c Iso(d”), then there

is a function ¢:imd*[o,=) such that d’ = @ed.

Such a function ¢ is called a scale change for d. More preisely,
given a metric d, a function eo: imd+[o0,») is a scale change for d
provided ¢@ed is a metric eguivalent to d. The exercise calls us
to look for ceonditions on a metric d that will ensure that no
scale change of d can enlarge the isometry group.

Main Proposition: Let (X,d) be a metric space such that
(1) every pair of points can be connected by a d-segment,
(1i) 3 u>0 such that Vx,yeX and o<e<, Sd(x,s) is connected and,

if d(x,y)<e, then Sd(x,s)rusd(y,s)# .

Then Iso(d) = Iso(¢d) for every scale change © of 4.

Outline'of proof: Easily Iso(ed) DIso(d) and it suffices to show
Iso(ed) = Iso(d). Let Ae Iso(ed).

Step 1: Show V6>0, Z0<r<§ such that A preserves d-distance
r;i.e.,vx,yeX, d(x,y) = r< d(Ax, Ay)=r.

Step 2: Use Step 1. to show that , pPreserves the d-length of
d-recfifiable arcs in X.

For the proof of the Theorem, convexity and completeness imply
(1) of the Main Proposition and two-point homogenity and small
spheres are connected imply (ii) of the Main Proposition.

For details, see [Bowers, 1987].
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Continvuation Spaces

J. W. Cannon
This research was supported in part by NSF Research Grant No. DM-8411740.

"Abstract. For those mathematicians who: have worked extensively

w2th covering spaces, orbifolds, and group graphs, it is apparent that all
of these notions are essentially equivalent. We show, in fact, how

covering space and orbifold questions can be reduced quickly and intuitively
to problems about 3Jroup graphs.



14

SUBMANIFOLD DECOMFOSITIONS THAT INDUCE APPROXIMATE FIBRATIONS

by R. J. Daverman

The setting involves the following data: a specific closed,

orientable n—-manifold N ; another orientable (n+k)-manifold M ,

where nzk ; and a usc (i.e., upper semicontinuous) decompasition

G of M into copies of N , where dim(B=M/G) < ® . The

subject is the following

GQUESTION: When is p:M -+ B an approximate fibration?

When it is, Coram and Duvall have an exact sequence relating the

homotopy groups of N , M, and B , just like the one for

genuine fibrations. It provides the most efficient means

available for extracting structural information about M from

that of N and B , evidenced in the Corollaries to Theorem 1.

The above question is unsolved for n=3 and N arbitrarvy,

even when k=1 . An impediment exists there because it is not

known (at least to me) whether every degree 1 map N -+ N induces
ﬂl—isumorphisms.
Some old answers have been given by Daverman—Walsh. The map
is the n—sphere. In

p must be an approximate fibration if N

addition, whenever N is simply connected p restricts to an

approximate fibration over its continuity set (consisting of

1

b€EB such that every retraction R:U - p b on a

those points

neighborhood U of pnib induces isomorphisms Hn(p

Hn(p_lb) for all b° sufficiently clase tg b ).

Here is a related elementary fact: in case N 1is aspherical

with Hopfian fundamental group, then p restricts to an
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approximate fibration over its continuity set. (A group H is

said to be Hopfian provided every epimorphism 6:H -+ H isg

necessarily an isomorphism.) Every degree 1 map N -+ N an an

aspherical manifold N with nl(N) Hopfian is a homotopy

equivalence, simply because such maps induce ﬁl—epimmrphisms.

Theorem 1. I¥f n=k=2 and xX(N)<O s then p 1is an

approximate fibration.

Corollary. Given'any (orientable) 2-manifold N # SleI y

there is no usc decomposition aof S into copies of N.

n=k=2 X(N)<O , and X(B)XO , then M is

¥

Corollary. If

aspherical and vI(H) is the semi-direct product of vl(N) and

vl(B) -

Sketch of the proof of Theorem 1. By another result of

Daverman-Walsh, B is a 2-manifold and the discontinuity set D

of p (namely, the complement in B of the continuity set) is

locally finite. Thus, the issue reduces to the case where B is

an open disk and p 1is an approximate fibration over B\b .

Name g€G such that p(g)=b , specify a retraction FR:M = g

fix g'#g , and study Rl:g’ - g.

CLAIM: Deg(RI)#0 implies R! is a homotopy equivalence.

This can be verified by examining
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g*
> Ie
RI
g’ > g

where 6:g% + g is the covering corresponding to (R!)#ﬁl(g')

and ©6A = Rl . That deg(RI)#0 implies g* is campact, with

2

more handles than g and g unless 6 1is a homeomorphism.

But A:g’ + g 1induces a ﬂl-epimorphism, so g* cannot have

tw, (g”) =

more handles than g , and € must be 1-1. Hence, A# 1

w, (g*) induces a self-epimorphism of the Hopfian group ﬁl(N) '

i
which indicates A is homotopic to a homeomorphism.

Assume deg(RI1)=0 . Here Hl(H\g) - Hi(M)éHl(g) is

sur jective and ﬂl(H\g) is given by
1- nl(g') > ﬂi(M\g) =+ Z 31 .

Abelianization shows Hl(H\g) is determined by Hl(g‘) and one

additional generator. By a result of [Zieschang—Vogt—-Caldeway,

p-1001,
rank (image Hlfg')) = rank(Hl(H))/E = rank(HI(g))/E .

which is impossible.

As a consequence, RI :g’ + g is a homotopy equivalence far

all g’ sufficiently close to g . The analysis of approximate

fibrations by Coram-Duvall shows p is one.

Two remarks are in order. First, nonorientable analogs of

Theorem 1 hold. Second, when k=2 and n is unrestricted P

is not invariably an approximate fibration; counterexamples arise
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with N the mapping torus of any periodic homeomorphism h:T => T

defined on a closed (n—1)—-manifold T .

Proposition 2. Whenever ﬁl(N) is finite, p is an
approximate fibration over its continuity set.

This is accnmblished by (1§ca11y) lifting G +to the
universal cover and examining the induced decomposition into

n—spheres, which is known to determine an approximate fibration.

.Theorem S« I ﬁl(N) is finite and k=2 , then p is an

approximate fibration.

The stategy is to show p has no discontinuities and to

apply Proposition 2. Details involve algebraic diagram—chasing.

Corollary. I+ N is elliptic and k=2 , then p is an

approximate fibration.
In closing, here are two obvious unsettled topics.

Guestion 1. For n=3 , k=2 |, and N not a bundle over the

circle, is p an approximate fibration? What if, in addition,
N 1is aspherical?
In Theorem 1 can p be approximated by locally

Guestion 2.

trivial bundle maps?
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STABLE MAPS AND UNIVERSAL MAPS

Dennis J. Garity

This represents joint work with Dale Rohm. We will begin with a summary
of results that are known about stable maps into n-cells and into the Hilbert cube.
Stable maps are also known as »Alexander—Hopf essential maps [NI, [GTI].
Krasinkiewicz has given a general definition of essential maps into the product of
manifolds [K] that coincides with the definition of stable maps in the cases under
consideration. All spaces are separable metric spaces and the dimension of a space

X, dim(X), means covering dimension [HW]. -

It is well known that a space has covering dimension greater than or equal to
n if and only if it admits a stable map into I®. If f is stable, then the composition
of f with any self homeomorphism of I" is also stable since self homeomorphisms of
1" take boundary points to boundary points. It is also well known that a. compact
space is strongly infinite-dimensional if and only if it admits a stable map into the
Hilbert cube. This is because if f is a map from a compact space X into the Hilbert
cube, the inverse images of pairs of opposite faces of the Hilbert cube form an
essential family in X if and only if f is stable [W]. However, self homeomorphisms
of the Hilbert cube lack the invariance of domain mentioned above. If f is a stable
map from X into the Hilbert cube, the composition of f with self homeomorphisms of

the Hilbert cube should preserve stability and should give rise to new essential



families in X. We show that this is indeed the case. We use the concept of

universal maps introduced by Holsztynski to prdve this result.
Definition. A map f:X—I" is stable if there does mnot exist a map

g:X ~s™ gith f g

rlisml) r-lisml)
Theorem 1. [HW] The dimension of X is greater thanm or equal to n if and

only if there exists a stable map f:X =17,

The definition of stable maps together with the fact that self

homeomorphisms of an n-cell take boundary points to boundary points immediately
vields the following result.

Theorem 2. A map f:X —I" is stable if and only if gof:X —I" is stable for
each self homeomorphism g of I™.

We now turn to stable maps into the Hilbert cube. Stable maps into the
Hilbert cube are defined only for compact spaces to avoid the possibility of a map
from a disjoint union of n-cells of increasing dimension into the Hilbert cube being

stable. See [W] and [B] for a more detailed description of stable maps.

Definition. A map f:X—I* where X is a compact space is stable if

ppof:X -1 is stable for each positive integer n and every projection pp of I onto

the first (or any) n factors.

Our goal is to prove a result for the Hilbert cube which is analogous to that
contained in Theorem 2. The same techniques will not work because there are many
self homeomorphisms of I*° which do not preserve projections onto the factors. A
characterization of stable maps in terms of a property preserved by self

homeomorphisms is needed. Universal maps, a concept introduced by Holsztynski,

is one such property. Using universal maps, we can prove the following Theorem.
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Theorem 3. A map f:X —I*° from a compact space X is stable if and only if

gof:X —=I°° is stable for each self homeomorphism g of I°.

Universal maps were introduced by Holsztynski [H1] and have been used in
conjunction with the study of fixed point theory and confluent maps. See [H2],
[H3], [H4], [HS], [HS], [H7], [GT] and [N]. In order to prove theorem 3, we need

results concerning the relation between universal maps and stable maps, and we need

results about universal maps into products of spaces.

Definition. [H1] A map f:X—Y is universal if for every map g:X—Y there
exists a point p in X with f(p) = g(p). |
The relationship of universal maps to the fixed point property is made clear
in the following theorem.
Theorem 4 [H2]. Given a space Y, the following conditions are equivalent.
1. Y has the fixed point property.
2. The identity map from Y to itself is universal.

3. There exists a space X and a universal map f: X =Y.

Note. A map f:X —Y is universal if and only if hof:X —Y is universal for

each self homeomorphism h of Y. For if g is any map from X to Y and if T is
universal, then there is a point p with h'log(p) = f(p). So hof(p) = g(p).

Conversely, if hof is universal, then there is a point g with hof(q) = hog(q).

Thus, f(q) = g(q).



We are now in a position to prove the theorem stated at the end of the

previous section.

Proof of Theorem 3. Let f:X —I®° be a map and let g be any self

homeomorphism of I®°. If J is a finite subset, then we set = HjEJ Ij and let

pJ:I°° —DI‘I denote projection of I°° onto I‘I.,

By definition, the map f is stable if and only if 1:;Jc>f:X—)I‘I is stable for each
finite subset J of Z,_. By theorem 5, this is equivalent to saying that pjof‘ :X—»I‘I
is universal for each finite subset J of 2+ which, by theorem 6, is equivalent to
saying that f is a universal map to the Hilbert cube. By the note after thgorem 4,
we see that f is universal if and only if gof is universal for each self
homeomorphism g of I®. By theorem 6, this is equivalent to saying that
Iz.Jo(gof’):X—bl'.‘I is universal for each finite subset J of Z_,_ which is then, by
theorem 5, equivalent to saying that p Jo(gof )‘:X—bIJ is stable for each finite subset

J of Z,. Finally, by definition, this is equivalent to saying that gof is a stable

map to the Hilbert cube. -

The next corollary follows immediately from the preceding Theorem and the

fact that maps as described in the Corollary are stable.

Corollary Let { (Ai , Bi) };':1 be an essential family for a strongly infinite
dimensional space X and let f be a map from X into I*° so that A = (pi°f)—1(——1)
and so that B; = (piof)_l(l) for each i. If h is any self homeomorphism of I°°,

(o]
. is also an essential family for X.
1=

then { ((ponenTH—1), (penen i) }
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An Invariant of Dichromatic Links

by
Jim Hoste and Jozef H. Przytycki

A 1-trivial dichromatic link in S% is a link having at least two

components, one of which is unknotted and labeled, or colored, "1" , while
all other components are colored “2". By using methods similar to those of
Kauffman [K], we define a polynomial invariant of such links which is
analogous to the Jones polynomial [J]. This polynomial has since been
generalized by Hoste and Kidwell [H-K]. However their approach is far
more complicated, just as the establishment of the skein polynomial is
more complicated then Kauffman's approach to the Jones polynomial
[F-Y-H-L-M-Q], [P-TI. : _ _

If L is a 1-trivial dichromatic link then we may isotope L until the
1-component, that is the component colored "1", is the z-axis union the
point at infinity. If we now project the link into the x-y plane we obtain a
diagram of the 2-sublink in the punctured plane R%-{0}. Two such
punctured diagrams represent isotopic 1-trivial dichromatic links if and
only if one can be transformed to the other by a finite sequence of
Reidemeister moves in R%-{0} followed by pessibly “flipping over” the plane
of projection, that is by viewing the x-y plane from the other side.

If D is a diagram, we denote by sw(D) the self writhe of D. This is the
sum of the'.'-signs of those crossings between strands belonging to the same

component.
Theorem 1  There exists a unique polynomial invariant in Z[A* h] of
unoriented 1-trivial dichromatic links given by

ay (An)=(-a%) VP py

where D is any punctured diagram of the link L and <D is the invariant
of D determined by the following properties:
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30X Y= A (> + AT
4, <+ OK>=-(A%+A"2¢. k> K#g
5. <O K> =-(AZA 2. K> Kig

Here we follow Kauffman's notation [K] with the additional convention of
marking the puncture with a dot. Later, when working with ordinary
diagrams, we will also subscript the components with their colors.

Proof: Let D be a punctured diagram. Then, proceeding in a fashion
similar to Kauffman [K], one sees that properties 1-5 uniquely determine
<D>. Moreover, <D> is preserved by Type II and III Reidemeister moves as
well as flipping over the plane of projection. However the effect of a Type I

Reidemeister move is given by

Aoy =-A3¢) >
<> =-A3¢ )

From this it follows that d is a well defined isotopy invariant of unoriented
1-trivial dichromatic links. |

Of course, d behaves similarly to the Jones polynomial with respect to
connected sum, mutation, companionship, etc. Therefore we list only a

few additional properties of d.

1. Let L be a link represented by the punctured diagram D. Let L be
represented by the diagram D obtained from D by reflecting in the plane
of the projection. In other words, D is obtained from D by changing every

crossing from over to under. Then
d (Ah)=di (A1),

2. If one uses ordinary diagrams rather than punctured diagrams then
the following “clasp” rule holds . }

A2d, +A2d = (A2+A"D)hd 4]
iy Ay o)

4 )
_):/., z’(j ¢ J

(4



3. Using ordinary (or punctufed) diagrams, one has the following rule
\ ' P
A o mA Ayt ™IF)y
A ) =

2’ N2 2 2
4. We may define an invariant d of 1-trivial dichromatic links with
oriented 2-sublink as follows. In general, if L is any link, some of whose
components are oriented, let lk(L) denote the sum of the linking numbers

between each pair of oriented components. Now let

-21k(L)
d|

(-A%)

EL = ('AS)

where [L| denotes L stripped of‘ its orientation. Then, again using ordinary
(or punctured) diagrams, the following rule holds

~Ad a= (AT2-A0 ]
N

A4d
4 ¢
22 zZ Z 2 2

5. If Lis a 1-trivial dichromatic link, let wrap(L) be the wrapping

number of the 2-sublink around the 1-component. That is, the minimal
geometric intersection number of the 2-sublink with any disk spanning

the 1-component. Then
degy, d;, s wrap(L)
where degh’is the highest degree of h appearing in dj.
6.a) If the 2-sublink L, is oriented then the Jones polynomial of Lois
| Vi, (a9 =dp(a0).
b) If L is oriented then the Jones polynomial of L is

VLA = —(a2+472) (A% T (4, (%A /(824 A72)),
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We mention two applications of d.
Suppose L is a link that is both 1-trivial and 2-trivial. In other words

the 2-sublink is also an unknot. Hence we may compute d relative to
either component. Call these two invariants d} and d? respectively. If L is
interchangeable, that is there is an isotopy exchanging the components,

mmd-%

We may also use d to investigate periodic links.

Theorem 2 Let r be prime. Suppose L is a 1-trivial dichromatic link
invariant under a Z,-action on S° with fixed peint set the 1-component.

Then : A .
d(Ah)=dp (A1 h) mod (A% -1, 1),

In other words, the two polynomials differ by an element of the ideal
generated by A%-1 and r.

Proof: We can find an oriented punctured diagram D having r-fold
rotational symmetry and such that ID| represents L. Let Dgvrm( K2 )

sym( r& ) and Dsym( TC) denote three punctured diagrams having
r-fold rotational symmetry and which are identical except near the orbit
of a single crossing where, at all r crossings, they appear instead with
right, left and smoothed crossings respectively. Now using an idea of
Murasugi's [M] (see also [P2]) and property 4 we obtain

A 4r T _aA=4r3 —(A=2r_a2n\3
A stym("/\‘ ) ~A stym( ) =(AT4T-A )stym< 50 mod r.

Therefore
~ - ~ 4r—
dsym("/‘)"ds (X‘)mod(A. 1, 1)

d

and hence
— 4r_
Deyrm( 3¢ ) —stym( ) mod (A®F-1, r).

But this allows one to change ID| to IDl without changing d mod (A%"-1, r).
Now applying property 1 gives the desired result. |

Example: Let L= 72 with the components colored as shown below.



2
The link 76

Then d?=-A12+A%4A~44(A12-A841-A"9)h2. It is laborious to compute d2,
but one can compute.the coefficient of h* more easily. It equals

A+2A12 9p% 1 Hence 72 is not interchangeable and the wrapping
numnbers are 2 and 4 respectively. By Theorem 2, there are no r-fold
rotational symmetries about the 1-component with r>3 or about the

2-component with r>2 where r is prime.
Finally, we note that Theorem 1 can be interpreted in the language of

skein modules [P1]. In particular, the theorem implies that the skein

module
82,.(S1xD?, Z[A*1] )(A)

is a free module with infinite basis {h;} 5y, where h, is an unknot and by
consists of i longitudes.
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Homogeneous Cantor Sets in E

by Jack W. Lamoreaux

If C is a tame cantor set in E, then every homeomorphism f mapping C onto C

can be extended to a homeomorphism F of E3 onto itself. At the other end of

the spectrum a rigid cantor set is one such that the only homeomorphism which

can be extended is the identity.

We say that a set in B is strongly homogeneous if every homeomorphism of A

onto itself can be extended to a homeomorphism of B onto itself. A natural

question to ask would be the following: If a cantor set C is strongly
homogeneous 1is it tame? Bob Daverman has answered this question in the
negative for E" (n > 5). However, at the present time the answer is not known
for E3.

The standard four-link antoine’s necklace can be shown to be 1-homogeneous

but not 2-homogeneous. A set A in B is n-homogeneous if (xl, ey xn) and
(yl, . yn) are each sets of n distinct points in A and there exists a
homeomorphism f of B onto itself which when restricted to A is a homeomorphism

onto A and for each i; f(xi) = Y- It can also be shown that a set which uses

alternating links of Bing and Whitehead is (for any n) n-homogeneous but not

strongly homogeneous. At the present time the following question is unknown:

. ; P . 3 .
Are there Z-homeogenous cantor sets in E” which are not 3 homogeneous?



ALTERNATE CHARACTERIZATIONS OF WEAK
INFINITE-DIMENSIONALITY
Dale M. Rohm

The cell-like dimension raising map question is one of the foremost
unanswered questions in topology. Because it is known that the image of such
a map must be infinite-dimensional, see [S] for a more detailed description of
this question, it becomes important to determine exactly what types of infinite-
dimensionality such an image could possess. Ancel has extensively studied this
aspect of the question [Al] [A2]. In particular, Ancel has shown that a cell-like
map defined on a finite-dimensional domain raises dimension if and only if the
image does not have property C, a covering property first defined in [H] for
metric spaces and later generalized in [AG] for more general spaces. While
evefy space with property C is weakly infinite-dimensional, it is unknown
whether or not the converse is true. In [R]l, a characterization of weak
infinite-dimensionality in terms of open covers, similar in form to the definition

of property C, was given by the author. This charact'erization is generalized
by the following definitions.

Definitions 1. Let r€{2, 3,4,---}. A space X will be said to have the
property Cr if every countable sequence {Un:n €N} of open covers of X,
where for each n €N the [Un |l <r, has for each n €N a precise pairwise
disjoint open shrinkage ¥y of Up such that the |J{¥,:n€N) forms an open
cover of X. If a space X has property Cp for every r€({2, 3, 4,---}, then X
will be said to have the property Co- A space X will be said to have the
property C,; if every countable sequence {Up:n €N} of open covers of X
has for each n&€IN a precise pairwise disjoint open shrinkage ¥ of Up such

that the |J{Up:n €N} forms an open cover of X.

It is obvious that a space X has prqperty C2 if and only if the space X
is weakly infinite-dimensional. It is also quite easy to show that a space X has
property C if and only if the space X has property Cy, - The equivalence of
the property C2 with weak infinite-dimensionality motivates the fairly obvious
generalizations of the definitions of essential family .and weak infinite-
dimensionality contained in the following definitions. The original definition of

essential family as given in [RSW] is the case where r =2.

31



Definitions 2. A closed subset SCX of a space X will be said to be a
separator of a discrete collection of closed subsets (A%:o €T) contained in
the space X if SCX separates the collection (A%:a €T) in X; that is the
complement X\S ={U%:a €T} where {U%:a €T} 1is a collection of pairwise
disjoint open subsets of X such that for each o« €T the closed set AS C U<,
A countable family of discrete collections of closed subsets
{(AF:x €ET):neN} of a space X will be called inessential if for each neNN
there exists a closed set S, CX which separates (AT :a €Ty) in X with the
[{Sn:n€N}=@. Let re{2,3,4,-), then a space X will be said to be

weakly infinite-dimensional with respect to r-tuples, and denoted by WID,, if

any countable family of r-iuples of pairwise disjoint closed subsets
{(All-f:k=1, 2,7, r):n€NY} of X is inessential. If the space X is WID, for
every re€{2, 3, 4,---}, then the space X will be said to be WIDs. If every
countable family of discrete collections of closed subsets {(A%:a €lp)inelN}

of a space X is inessential, then the space X will be said to be WID,.

The ungainly definition of WID,, may be simplified by assuming
separability, for then we need only consider whether or mnot all countable
families of discrete sequences of closed subsets {(Alézk EN):neN} are

inessential. In any event, these last properties are seen to be equivalent

through an application of the following lemma.

Lemma. Let re€{2,3,4,..-}U{w} and let (A%:2 €T) be a discrete

collection, an r-tuple when r€({2, 3, 4,---}, of closed subsets of a space X.

Let SCX be a closed subset of X which separates (A%:a e€Tr) in X. If
T CX is a closed subset of X which separates the pair (|J{A%:x €T}, S) in

X, then the closed subset T is also a separator of the original collection
(A%:2 €T) in X.
Theorem 1. Let re€{2, 3,4, }U{w) be fixed but arbitrary. A space

is WIDr if and only if the space is weakly infinite-dimensional.

When we combining these results with more basic results we obtain the

following diagram of implications.
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Summary 1. Let re&{(2, 3, 4,---}. Metric spaces satisfy the following
implications of properties.

== Cr+1 == Ceo = C, e property C

I ! l | l

WID = WID2 == WIDy = W’IDr +1= WID == WID,,

C2 = Cf

The remaining reverse implications are harder to analyze. A “generic”

proof, similar to the proof of theorem 1, was not found. However, there is an

inductive proof, giving most of the reverse implications, which also provides
some insight into possible essential differences between property C and weak
infinite-dimensionality.

Theorem 2. Let re{2, 3, 4,---} be fixed but arbitrary. If a space has
the property Cp, then the space also has the property Cr+1' Thus, if a

space has property Cp for some r€{2, 3, 4,---}, then the space has property

Cr for every re€{2, 3, 4,---}; that is the space has property Cco .

Corollary. Let re€{2, 3, 4,---}. If a space is WIDr, then the space also
has property C.

After combining these results with previous results, we obtain the

following summary.

Summary 2. Let r€{2, 3, 4,---}. A space X satisfies the following

implications of properties.

C2 == Cp =°Cr+1' Coo = C, == property C

| I | | !

WID == WID2 == WIDp = WIDF_,_ 1= WID == WID,,

Finally, we obtain characterizations of property C and weak infinite-

dimensionality which, while very similar in form, have clearly delineated

differences, particularly when applied to compacta.
Theorem 3. A compactum X has property C if and only if every
of X has precise

such that the

countable collection of finite open covers {Up:neEN}
pairwise disjoint open shrinkages ¥ of Uy for each néeN

WUH{¥g:n €N} forms a cover of X.



Theorem 4. A compactum X is weakly infinite-dimensional if and only if

every countable collection of finite open covers {Up:n €N} of X, with the
sup {|Up|:n EIN} < oo, has precise pairwise disjoint open shrinkages ¥ of Up

for each n €N such that the [J{¥p:nEN} forms a cover of X.

We end by asking two related questions.

Question 1. Can we always write a weakly infinite-dimensional space X

as X =KUZ where K is a compact weakly infinite-dimensional subspace and Z
is a subspace which has property C?

Question 2. Let f:X—Y be a proper open and closed surjective
mapping. If Y has property C and if f'l(y) has property C for every y €Y,

.then must X also have property C?
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HOMOLOGY SPHERE DECOMPOSITIONS YIELDING GENERALIZED MANIFOLDS
David Snyder

Let G denote an uppersemicontinuous decomposition of an (n 4+ k) — manifold

M into compacta each having the shape of a homology n-sphere. What can be sai&

about the decomposition space M/G? Is it an ANR; k-gm; k-manifold?

PAST RESULTS:

1) (Coram-Duvall) If M=S® and n=1, then M/G=S2,

2) (Daverman) If k=1, then M /G is a l-manifold.

3) (Daverman-Walsh) If k=2 and M is orientable then M /G is a 2-manifold.

4) (Daverman-Walsh) If 2<k<n and M is orientable, then M /G is a k-gm.
N.B. These last two results hold for more general manifold decompositions.

5) (Lacher) If f:S2" *1 - N is a n-sphere mapping onto the manifold N, then N

is a homotopy n-sphere (if no fiber of f is trivial).

6) (Coram-Duvall) Such a k-sphere mapping is an approximate fibration off a

finite set of points FC N.

n-winding functions:

Given bsB= M/G, let U be a nbhd of b such that p ‘U retracts to p’'b

(where p is the decomposition map) via r,: p ' U — p7'b. For each y=U define et (y)

I(rblp'ly)*(l_)l where(r, [p~'y)*: ,H"(llla"‘b;Z) - H”(II,J"y;Z).

We say the
decomposition z

G is non-degenerate if for every bsB = M/G, a,>£ 0 on a nbhd of b.
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The Leray Sheaf 7"p] of the decomposition map is a topological space with

map II:36"p] — B satisfying:

1) OI™'b = Z with the discrete topology =HMp™'t;Z) = IiE’ H(p™'U;2).
2) The group operations are continuous.

3) II is a local homeomorphism.

Given Y C B, a section over Y into J6(pl, is a continuous map o: Y3 p] so

that oo = Jdy.

The set of sections over Y forms a group, by 1) and 2).

J6[pl is locally conmstant at beB if 3 nbhd U of bI'U=Ux Zand I =

projection to the first factor.

Proposition G a homology n-sphere decomposition of the manifold Mn *.

Then: -
1) G is nondegenerate J6(pl is T,.

2) «a, is continuous at be3"[p] is locally constant at b.

Proposition (Dydak-Walsh)

1"[p] is locally constant over an open dense subset C of B.

Set F = B\C. The Leray spectral sequence yields

Proposition 1 For each U®"C B there is a l. e. s. e — H(U;Z)—
?I‘(p'IU;Z)—>I‘—'I"”(U;3-B”[p])—+
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Proposition 2 For each nbhd U of xeB there is a l.e.s. - = HUU — xxZ) —

H(p™(U,p™ (U — x%Z)—HE"(U,U — x; % pD— ---
Corollary 1
TFAE:
1. Bis i-—clcz at b.

2. Bisi —n —1) — clc%n[p] at b.

Corollary 2

B is clc?

Corollary 3

If F = ¢ then B is a generalized manifold. (if dim B< 0)

Corollary 4

B — F is a generalized manifold (if dim B < oo)

Proposition
If G is a non-degenerate homology n-sphere decomposition of the (2n -+ 1)-

manifold M and dim B <oo then Hi(B,B—{b}Z) ——~{%v loTh:r—\,_vilse for each b=B.

Theorem
If Gis a non-degenerate homology n-sphere decomposition of M?"! and dim B<o,

then F is locally finite and B is a generalized manifold.
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This theorem extends a result of Daverman-Walsh [DW Theorem 3.1].

Questions

1) Is the theorem true if the hypothesis “non-degenerate” is omitted?

2) Is there a u.s.c. decomposition of a orientable manifold into [compacta having

the shape of] close orientable n-

manifolds so that the decomposition space is not an
ANR?

3) Is there a u.s.c. decomposition of a closed (2n -+ 2)-manifold into homology n-

spheres so that the decomposition Space is not a generalized manif old?
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Perfect Subgroups of Locally Indicable Groups

by

F. C. Tinsley

Background:
Daverman and Tinsley showed that if G is a finitely presented

group and P<G is a non-trivial finitely generated perfect subgroup,

then there exists an acyclic map of closed n-manifolds (n>5)

f:M" 5 A" such that wl(Mn)=G, wl(Nn)zG/<P>, and Map(f), the mapping
cylinder of f, embeds in an (n+1)-manifold (Da-Ti, Theorem 5.2).

We investigate whether the condition that P be finitely generated is,

indeed, necessary.

Group Theoretic Formulation:
The topology of acyclic maps yields the following group theoretic

It depends, 1in part, on the notion of movability

characterization.
of a compactum (see Da-Ti, p.345, for example).

Fact: Suppose G=m (M) where M is a closed n-manifald (n>5). There
exists an acyclic map of closed manifolds f:M = N with ker(f#)#l
and with f'l(y) nearly l-movable for each y N if and only if there

is an infinite sequence of homomorphisms:

is non-trivial,
Z) for
is contained

where each Gi is finitely presented, each Gj + Gi+1
each Gi + (31.+1 induces the tr1v1a1maka(Gi;Z) + Hk(Gi+l;
“k=1,2,7and for each i there s 3 J-such that For every k Gj

in the normal closure of Gk in Gi'

Questign: Is there such a group G which contains no finitely
generated perfect subgroups?
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Whitehead's Conjecture:
In a sequence of papers fram 1979 to the present Howie investigat

the behav or of perfect subgroups under certain group theoretic
operations while working on the following:
Question: (Whitehead, 1941) 1Is every subcomplex of an aspherical
2-complex itself aspherical?
Howie modifies a result of Adams (Ad) to obtain:

(Ho, Cor. to Theorem A) Let L be a subcomplex of the
inclusion map. If z

kernel of the induced
finitely generated,

Theorem:
aspherical 2-complex M, and Jlet i:L >+ M be the

is a O-cell of L such that WZ(L,Z)#O, then the
map i#:nl(L,z) - wl(M,z) contains a non-trivial,

perfect subgroup P. ' _
Howie considers the following classes of groups.

?F = {G|G contains no non-trivial perfect subgroups}

U = {G|G contains no non-trivial finitely generated perfect subgroups}

Ciearly,?ﬁ(:ﬂA. He reformulates Whitehead's question in this context.
Qu:jtion: If G=w1(K,z) where K is an aspherical 2-complex, then
is GeY? '

The Class & :
~We formulate a third class of groups.

Definition: G has property * if there is a closed n-manifold M
M)=G and an acyclic map f:M -~ N with N an n-manifold,

with nl(
ker(f#)#l, and f'l(y) nearly l-movable for each yeN.

Qi = {G|G does not satisfy property =*}

If we restrict our attention tovfinite]y presented groups, then clearly

B—ICX. Also, from the result of Daverman and Tinsley, d C A .
uestion: Is UCK?

If so, then the only acyclic maps of manifolds arise when the fundamental

group of the source contains a finite]ngeneratgd perfect subgroup.
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We consider how they behave

mated procycts and HNN
0lTowing forZ%:and

tructions of ama?ga
Howie proves the f
Theorem: (Ho, Theop

extensions.

em E) The classes “F and ?A are closed under
split dmalgamated free products.
Coro71arx: The class U is closed under split HNN extensions
He gives

, =1 =1
<x7,yi,zi[xi-x. v

-1 -1
;

S M A P P R N N

hism to 7. It follows easily that a Tocally

tain any finfte]y generated perfect subgroups,
Question: 1f G is a finite?y presented Tocally indicable group,

Ad J. F. Adams, ' new

pProof of g théorem of W. H.
J. London Math.

Cockcroft ',
Society, 49(1955), 482-83.

Da-Ti R..J. Daverman and F, c.

Tinsley, 'Laminatfons, finitely
denerated perfect;groups, and acuclic maps', Mich. Math. g.
33 (1986), P. 343-571.
Ho J. Howie, ‘Aspherica] and acyclic 2-comp7exes', J
Math,

. London
Soc. (2) 20 (1979), 549-538,
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THE LOCAL CONSTANCY OF THE ORIENTATION SHEAF OF A
HOMOLOGY MANIFOLD: AN EASY PROOF

by

J. Dydak and J. Walsh

A result that establishes that locally finitely generated presheaves, on complete spaces,
with mutually isomorphic and finitely generated stalks induce sheaves that are locally
constant on a dense open set is combined with standard arguments involving the Mayer—

Vietoris sequence to prove the following.

Theorem. Let n be a positive integer and suppose that X is a locally compact metriz-

able space satisfying: :
a) X is homologically locally connected with respect to a principal ideal domain R;
b) there is a finitely generated R-~module M such that, for each z € X,

Hn(X7X_{z};R) ~ M;

c) the homology sheaves H, ., and H,_; are locally constant and the stalks of H,; are

finitely generated.
Then the n—th homology sheaf H, is locally constant.

A corollary is the result originally proved by Bredon that the orientation sheaf of a
homology manifold is locally constant.
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A NOTE ON THE WHITEHEAD CONTRACTIBLE 3-MANIFOLD
David G. Wright

This paper is the summary of an expository talk given at the Fourth Annual Western
Regional Miniconference on Geometric Topology held at Oregon State University,
Corvallis, Oregon on June 18-20, 1987.

1. Introduction.

Let M be a closed, orientable, irreducible 3-manifold such that 7;(M) is infinite. One
easily checks that the univeral covering space is a contractible open 3-manifold. For all
known M, the universal covering space must be R3. McMillan and Thickstun [M-T]
pointed out that there must be contractible open 3-manifolds that are not universal covering
spaces for such manifolds because there are uncountably many contractible open 3-
manifolds and only countably many closed 3-manifolds. Recently, Robert Myers [M] gave
specific examples of contractible open 3-manifolds that are not covering spaces. In
particular he showed that the Whitehead contractible 3-manifold [Wh] is not a covering
space. We do not prove this result, but we give a proof of what Myers calls his "key

insight" for the Whitehead manifold.

2. Some Basic Facts.
The Whitehead manifold W is the union UT; , -ee<i<es, of tori such that Tjisa

Whitehead link in Tj, 1 as shown in Figure 1. Let X = (T , -co<i<eo, We call X a core
for the Whitehead manifold.
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Figure 1

We list 3 basic facts about the Whitehead manifold. The proofs appear in [W]. The
proofs for 1 and 2 can be found in [M].

Fact 1. The manifold W - X is irreducible; i.e., every bicollared 2-sphere bounds a
3-ball.

Fact 2. For each i, the boundary of Tj is incompressible in W - X i.e., the
inclusion from  w(Bd Tj) into ;(W - X)'is a monomorphism.

Fact 3. If loopsy; andvy, are contained in Bd T; and Bd Tj , respectively for iz
and if y; and ¥, are homotopic in W - X, theny; and Y, are both inessential in W - X.

3. The Key Insight.

Theorem. If C is a continuum in the interior of T; that can be isotoped into the
complement of T, 1 by an isotopy of W so that the track of C misses the core X, then C

lies in a 3-ball of W.

Proof. We suppose that C does not lie in a 3-ball of W. Let F; be an isotopy where
Fj equals the identity and F;(C) misses Tj,;. By the Covering Isotopy Theorem [E-K],
[C], we may assume that X is fixed under the isotopy. Furthermore, we assume that F 1(Bd

Tj) is in general position with Bd Tj,;. LetJ be a simple closed curvein  F;(Bd T) N

Bd Tj,;. Then the isotopy shows that J is homotopic to the curve F;-1(J) which lies in T
by a homotopy which misses X. Hence by Facts 2 and 3, we see that J must bound a disk

in both Fy(Bd T;) and Bd T;, ;. Now choose a curve of F;(Bd T;) N Bd Ty, thatis an
innermost curve in Bd T, ;. The union of the disks bounded by J in F;(Bd T;) and Bd
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Ti, forms a 2-sphere that bounds a 3-ball in W - X by Fact 1. If C fails to lie in a 3-ball ,
then so does F;(C). Hence, there is an isotopy, fixing F;(C) and X, that reduces the

number of intersection curves of Fi(Bd T) "Bd T;;; By an inductive argument, we may
assume that F;(Bd T;) N Bd Ti11=0. So F;(Bd T)) is either contained in the interior of
Tiy1 or F1(Bd T;) is contained in the complement of Tj,;. We now show that both of these
cases are impossible.

If F;(Bd Ty) is contained in the interior of Ti,1, then F(T;) is contained in the interior
of Tj;1. But this contradicts the fact that F(C) is contained in the complement of Tit1- '

If F1(Bd T)) is contained in the complement of Ti41, then the isotopy shows that any
curve on Bd T; is homotopic to a curve in the complement of Tj,; by a homotopy
that misses X. LetH: S1xI > W-X bea homotopy between a non-trivial curve Hyin
Bd T;and acurve H; in the complement of Ty, ;. We may suppose that the homotopy is
in general position with respect to Bd Ti¢1- One of the simple closed curve components of
H-1(Bd Tj,;) must separate the boundary components of the domain of H. Restricting H
to the proper subset of this annulus gives a homotopy in W - X between Hy and a loop in
Bd Tjy;. Now Fact 2 implies that Hy is a trivial curve Hy in Bd Tj, contradicting the
choice of Hj, '

The above contradiction stemmed from the supposition that C does not lie in a 3-ball
of W, and our theorem is proved.
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PROBLEMS
1987 WESTERN WORKSHOP IN GEOMETRIC TOPOLOGY

The cell-like dimension raising map problem. Is there a cell-like map defined on a

finite-dimensional compact metric space which raises dimension?

The Hilbert-Smith conjecture. Ap cannot act effectively on any topological

manifold. (See the write up of R. Edwards’ talk for more information.)

The Resolution Problem. Do all ENR homology manifolds have cell-like resolutions ?

(R. Edwards) Suppose that M is an open contractible n-manifold that admits degree 1

maps arbitrarily close to infinity. Is M homeomorphic to R 9

(D. Wright) Sticky Cantor Set Problem. Is there a Cantor set C in E! and an €>0

such that for every e-homeomorphism h:En-—bEn, CNh(C)=w 2
(R. Daverman) Are homotopy equivalent homology spheres homeomorphic?

(R. Edwards) Recall that Ap acts freely (indeed principally) on i:Ap, the k-fold join of
Ap. If £ > k, is it possible to have an Ap equivariant map from EAP to ;Ap ?

(Surely not, but how about a nice proof?)

(R. Edwards) For fixed n and for £ sufficiently large with respect to n, is it true that

for any map ¢:zAp-—)]Rn, ¢ necessarily fails to embed some Ap orbit, or that ¢

necessarily maps some Ap orbit to a point?

(R. Edwards) Suppose E is any finite dimensional space on which Ap acts freely with
finite dimensional quotient B. Suppose X is a compactum and f is any map from X to
B. Let W be the pullback of E by f; hence Ap acts freely on W with quotient X. If
X is locally l-connected, then this Ap action on W is in fact principal, i.e., X has an
. .‘U.p} such that over each °LLi, W looks like ‘U.iXAp with the

Can one bound p solely in terms of the dimension of B? (For

open cover {U,, U,, .
obvious product action.

example, p = dimension(B) + 1.) It turns out that one may as well assume that E is

a Bestvina (Menger) manifold of some finite dimension, on which Ap acts freely, since

such spaces serve as classifying spaces for free Ap actions on compacta having finite

dimensional quotients.
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11.
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15.

16.
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18.

19.

(R. Edwards) Can Ap act freely on
a. some compact ANR, that is (after crossing with I°®), on some compact Hilbert

cube manifold? (Recall that Ap acts on the Hilbert cube fixing a single point, and

freely off of that point. Hernce Ap acts freely on I®°\ point which is homeomorphic

to I%° X [0, o). )
b. some compact contractible (possibly finite dimeusional or with finite dimensional

quotient) space ? (Recall the Bestvina-Edwards example shows that Ap acts freely

on some two-dimensional cell-like compactum.)
¢. some compactum which is locally contractible or perhaps locally n-connected for

all n?

(R. Edwards) Can one have an open map from a compact manifold onto a space such
that all of the point inverses are one-dimensional solenoids, and such that the map
raises dimension by any pre-specified amount? (If solenoid is replaced by Cantor set,

then there are such maps by work of Walsh and Wﬂson.)

(R. Edwards) Suppose that X is a cell-like compactum such that XX is contractible.
Must X be contractible? Note that X has the singular homology of a point by a

Mayer-Vietoi‘is argument, so X must be path connected.

(J. Lamoreaux) If C is a Cantor set which is strongly homogeneously embedded in E3,

then must C be tame?

(J. Lamoreaux) Is there a Cantor set in E3 which is 2-homogeneously embedded, but

not 3-homogeneously embedded?

(J. Cannon) Consider two figure eight knots in S3 separated by a 2-sphere. Perform
surgery on each to obtain a connected sum of two hyperbolic homology spheres. Can

the group be killed by a single element ?

(J. Hoste) Can every homology sphere be obtained by surgery on a knot ?
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(D. Wright) If M is a contractible 3-manifold, M7=’IR3, then can M cover a closed

manifold (or any manifold not equal to itself) ?

(M. Bestvina) Suppose that M is a K(G,1)-manifold where G is finitely generated. Does
M have finitely many ends? What if M is covered by R™?

(J. Hoste) Can a connected sum of three different manifolds be obtained by surgery on
a knot?
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27.

29.

30.

31.

32.

33.

(R. FEdwards) Can you construct open maps having 1-dimensional solenoids for point

inverses which raise dimension?

(R. Daverman) If G is a decomposition of a manifold M into k-dimensional submanifolds,

then is the dimension of M/G less than infinity ? This is not known when k=1, even

for continuous decompositions.

(R. Daverman, attributed to S. Ferry) If complexes P and Q are cell-like equivalent

through LC1 spaces, the are they simple homotopy aquivalent ?

(R. Daverman) Given any closed orientable n-manifold N, does there exist a usc

decomposition g of some (n+k)-manifold M (with k unrestricted) such that p:M—M/G

fails to be an approximate fibration?

(R. Daverman) If G is an usc decomposition of a 5-manifold M into copies of a 3-

manifold N other than a surface bundle over St is p:M—M/G an approximate

fibration? What if N is known to be aspherical?

(R. Daverman) If G is an usc decomposition of a 4-manifold M into copies of a 2-

manifold N = S'XS!, can p:M—M/G be approximated by fibrations?

(R. Daverman) If £:5*—S* is a surjective map for which the closure of the image of

the nondegeneracy set is O-dimensional, is cell-like?

(P. Bowers) Is Borsuk’s conjecture true ? Can every bonded subset of R" be
partitioned into n+41 pieces with strictly smaller diameter? This is known for n<3.

Is there a polynomial bound on the number of such subsets needed?

(J. Walsh) Is there a finite-dimensional homogeneous AR?

(D. Snyder) Other than [*°, is there a compact homogeneous space which is

homeomorphic to its cone?

(D. Snyder) Is there a usc decomposition of a orientable manifold into [compacta

having the shape of] close orientable n-manifolds so that the decomposition space is

not an ANR?

2)-manifold into homology

anifold?

(D. Snyder) Is there a usc decomposition of a closed (Cn +

n-spheres so that the decomposition space is not a generalized m
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