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Defn: A sheaf is associated to each presheaf, 5, on X:

dir 1im {S(U)}
xeU

-a. stalks: xeg X Sx

0
0

- b. total space: L)Sx
xeX

c.  topology: U°pe"c: X; o &S(U)
U, = {ocxe'Sx : x €U}

d. p:5--->X, given by p(SX) = x, is a local homeomorphism. However, S
is seldom T2

Consider the sheaves associated with the examples given above of presheaves:

(11) homology sheaves By
(#,). = stalk =.dir 1im H_ (X, X - U)
k’x xell k
= Hk (X, X - x)

(21) cohomology sheaves of f : X ---> Y i B (f)
k

f proper: (Hk(f)) = stalk = dir 1im Hk(f'l(U))
, y y&l

PN -
= YLy
(31) XxG The discrete topology on G yields the constant sheaves.
¥
X
Defn: " The complete presheaf, S, associated with a sheaf, FS, S, 1s given by the

sections:
FS(U) = {s:U ---> 5 | pes(x) = x}

_ b

S
U ---->r_(U)
V) ¥ig
v -;—-> FS(V)

S

where i,(s) = s|V.



APPllCathIlS of Sheaf Theory to Geometric 1opologv§

John J. Walsh
(From notes compiled by Fred Tinsley)

Preliminaries:
X, topological space.

Presheaves on X are contravariant functors S:
open subsets of X —---> abelian groups
inclusions homomorphisms

1. homology presheaves Hk on X

Examples:

U, V open in X

U---> Hk (X, X = U)
U ij- . i,
V -—=> Hk (X, X = V)

2. cohomology presheaves Hk of a map f:X--->Y

U, V open in Y

U ---> K¢ (£71(u))
U M v i

V- 1 (£ Lv))

3. Constant presheaves on X; G abelian

U, V open in X
S(U) = G
veu  su) =195 s

The trivial presheaf on X is the constant presheaf on X with G =

0.
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The composition Presheaves ---> Sheaves ---> Complete presheaves assigns a

compiete presheaf to each presheaf:

11m1ts s
or
S(U) -=mmnm- > T_(U)
0 m=—---- > s (x) = a

However, important information may be lost. Consider the Hopf map h:S3 Y

versus the projection m: 52 X S1 -—=> 52. Note that
Hith1(s?) = Hi(s

p(sexsly = 7.

1

bl (s2)

However, the corresponding sheaves are identical.

Hl[h] = Hl[ﬂ] = 52 X Z , the constant sheaf.

1. Applications

The first application is to local connect1v1ty of decomposition spaces. In

1957 Smale proved:

Theorem: Suppose f:X ---> Y is a map of compact metric spaces with X & LCK and

f-l(y) a k-connected ANR (each y € Y). Then Y & LcK

Work in the 1960's and 1970's weakened the hypothes1s of “triviality of fiber
homotopy" to "adequate aligning of f1bers Also, the ANR hypothesis was re-

placed by a shape version.

The proofs 1nterm1ngled homotopy and homoiogy theory Sheaf theory allows
a purely homoiogical version. _

The second application is to cohomological dimension theory. Let dim(X)
and d1mZ(X) denote the dimension and cohomological dimension of X, respectively.

The c]ass1ca1 theorem states:
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Theorem: If f:X ---> Y-is a proper surjection and cardinality (f'l(y)) <n+1,

y€& Y, then dim(Y) < dim(X) + n.

Addendum: f as above. If dim(X) < « and cardinality (f'l(y)) < @, then Y

is countable dimensional.
Sheaf theory yields a cohomo1ogica1 version.

Theorem: " If fﬁX ---> Y is a proper surjection with
i) Y complete -
ii) d1mZ(X) < o
‘. *, =1 . .
jii) H (f “(y)) finitely generated, y VY.
iv) There is an n such that
rank (H<(£71(y))) <n,yeyY, k>0
cardinality (Tor(Hk(f_l(y)))) <ny €Y, k>0.

Then dim,(Y) <

7
Addendum: f as above. If f'l(y) € ANR, y €Y, then Y is cohomologically

countable dimensional.

The third application is to the study of homo]ogy manifolds, motivated from
two problems posed by Borsuk.

1. Is a finite dimensional compact, connected, and homogeneous AR a]ways a
- point?

2. . Are compact, connected, finite dimensional, homogeneous ANR's always
: homology manifolds?

Bryant gives a partial answer to (2):

Theorem: If X satisfies hypotheses of (2) and if Hy(X, X - x) is finitely

generated at some x, then X is a homology mahifo]d;

Bryant's proof uses the fact that ANR's have mapping cylinder neighborhoods.
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To see that the homology condition is necessary, let fi:S% -— S} be of

degree 2 and X be the one point}compactification of:

[ee]

U Mep (f;)

Then H, (X, X - x) is not finité]y generated.

A slightly stronger theorem avoids the deep mapping cylinder structure theorem.

Theorem: Let)X be a compact, connected, homologically locally connected metric
space with dimZ(X) =nand H, (X, X = X) = Hg (X, X - y) finitely generated
for all x, yeX. Then X is a homology manifold.

Proof: The proof depends on the two results:

1. Key Tool: (Bredon) If the homology sheaves of X are locally constant
with finitely generated stalks, then X is a homology manifold. :

Defn: A presheaf S on X is locally finitely generated provided for ail
x €U P& there v %Py, x € VCU, such that im{(S(U) --->S(V)}

is finitely generated.

Example: Let C be a Cantor set and m: C X S1 --->C be projection
on the first factor. .Then the presheaf Hl [] |
is locally constant, but the induced sheaf, Hl[ﬂ] is
not locally finitely generated.

2. Lemma: (Dydak-Walsh, Theorem 1) Suppose G is a finitely generated
abelian group and X is completely metrizable. If S is a locally
- finite]y_generated pre-sheaf with.SX =G for all x€ X, then S

is 1océ11y constant on a dense open subset of X.

Exampie: Consider

¢ T

, Note that Hl[ﬂ] has mutually isomorphic stalks but is not
locally constant.
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Together, the Key Tool and the Lemma yield the desired theorem,
for X is a homology manifold over a dense open set W< X and for
X € W, exision yields H, (X, X - x) = H, (W, W - x).

o The proof of the Lemma abpears in [Dydak-Walsh]l. We sketch
“ the proof of the Key Tool.

Key Tool: Subpose X is a compact, connected, homologically locally éonnected
metric space with dimZ(X) =n, Hy (X, X - x) = H, (X, X -y) for all
X, ¥y € X, and the homology sheaves are locally constant with finitely
generated stalks. Then X is a homology manifold. '

Pf: Let Gk[Z] denote the stalk.

To show:

Gk[Z] = \Z k=n
20 k#n

Now, G [F] = H, (X, X - pt;F), F the coefficient ring. The homology sheaf
on X naturally yields the spectral sequence. Eg’q[F], -o<p, <o, With
Eg’q[F] = HR (6_(F)). Also, ED*91F) = 0 for q > -r and p > m s0
m,-r _ Mmy-r _uC .
Eo’ [F1 =k '[FI = Hr—m(X’F)'

Take F =.Q and‘dimQ X = m. Then WLOG H?(X;Q) # 0. Let r be the
smallest integer with Gk[Q] = 0 for k < r (or r=m). By the above,

C
HT (X;6,701) = H, _ (X,Q) (k<r). Also, HZ _ (X;Q) = )0 for k<m
C .k k-m — k-m Q for k=m

So, for k = r, OFH (X36,101) = H/ (X;Q). Thus, k >m. Butr <m, so

O

r = k=m. In particular, Gm[Q] 0. In fact,
m . _.C s
He (X:6,I01) = Hg(X,Q) = Q (k m). Also,
Hg (X;Gm[Q]) = H?(X;Q) x'Gm(Q) by the universal coefficient theorem.

CThus, HI(XQ) x G,(Q) = Q.

Sole(Q) = Q and X is a rational homology manifold.



Consider the exact sequence

0 --=> GIZ] X Q -==> §[Q) ---> G 7] *_ Q ---> 0

A tor
It foliows that the free part of Gk[Z] is that of a homology manifold.

Repeat the above argument with F = Z/tZ, t prime, to see that Gk[ﬂ] has no
torsion. ’



Solvgroups Are Not Almost Convex
by
J.W. Cannon, W.J. Floyd, M.A. Grayson, and W.P. Thurston

This is a summary of an expository talk given by J.W. Cannon
at the topology conference at The Colorado College, Colorado
Springs, Colorado on June 12-14, 1986.

We show that no cocompact discrete group based on solv-

geometry, Sol, is almost convex. Almost-convexity is a metric
property satisfied by all cocompact hyperbolic groups, all
Euclidean groups, all free products with amalgamation of finite
groups, all HNN extensions of finite groups, and all small
cancellation groups. Intuition suggests that it should be
satisfied by those cocompact groups based on geometries whose
metric balls are convex. Therefore the property 1is likely to
apply to braid groups, mapping class groups, complex hyperbolic
groups, groups of higher rank symmetric spaces whose factors have
convex metric balls, etc. It is likely to apply to nilgroups as
well, whose metric balls, though not convex, are almost convex.
) Our result shows how clearly the combinatorial structure of
a geometric group mirrors the properties of the geometry on which
it is based: the metric balls in Sol are highly nonconvex and
nonsimply connected. Our result has significance in the study of
3-manifolds and their groups. W.P. Thurston has conjectured
that each low dimensional manifold (dimension <3) admits a unique
geometric structure. Thus any package of decision algorithms
designed to compute within the fundamental groups of low-dimen-
sional manifolds and orbifolds must be able to deal with the
groups from each of the standard geometries.



Menger‘»Spaces‘ and Inverse Limits
A talk given by Dennis J. Garity at ‘the Geometric Topology Conference at Colorado

College on June 12, 1986.
This represents joint work with David G. Wright.

In 1984, ‘M. Bestvina [Be] chér‘acter'izéd the Menger universal n-dimensional

compactum * u, as follows.

Theorem A space X s homeomorphi;: to g, if and only if X satisfies the
following properties: ‘
1. X 1ds compact and n-dimensional,
2. X is ¢,
3. X is ™7, and

4. X satisfies DD"P.

Using .this characterization, Bestvina showed that the various constructions in the
literature of compact universal n-dimensional spaces ([Mgl, [Lf], [Pa]) all yield ‘in' In
addition, Bestvina showed that each My is homogeneous. Prior to this result, ther‘é had
.been characterizations only of Ho (the Cantor set) and ;{1 (the universal curve)
[An]. |

Using Bestvina's characterization, it is possible to identify cértain inverse
sequences that have dp, as inverse h'mit. This leads to the construction of mod¢1s of
Mp in the Hilbert Cube. These models can be described by putting restrictions on the
- coordinates of points in the Hilbert Cube. . ' 4

Theré are a number of results in the literature giving conditions which imply that
the inversg limit of LC" compacta is itself LC". Z. Cerin [Ce] shows thét the inverée
limit is Lc" if and only if the inverse sequence is strongly n e-movable. L. McAuley

and E. Robinson [M,R] show that the inverse 11’m1’f is LC" if each bonding map is uvh,
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.For the examples we are interested in, we need conditions that yield both '0"7'1

and LCn']. Conditions 2 and 3 1in the next Theorem are sufficient for this purpose.

Theorem 1

. Let‘ _'{X.i,pi} be an inverse sequence of LCn"1 n-dimensional compacta,

satisfying the following conditions.

1. - For each i and map f:B! — X5 " there exists j > i ~and maps

“hyhyB" — X, with hy [B“] N h, [B"] =2 and p;; o hy =f for e=1.2.
2. X, is ¢,

-3. There is a constant c¢ so that for each map »f:BKH — Xy Ksn-1,
and for each map g:SK — X1 with p;q o g = f SK, there is an

R K+1 . e L c .

extension h:B — X1 with Pm,i+1 o-h within -2—1r+—1- of Pni © 9

for each m < 1.

Then X 11‘m{x1.,p1.} is homeomorphic to .

Theorem 2

-Fix n 2 0. Let P, C Ii, i 2 n, be a sequence of compact n-dimensional LC"?'1

spaces so that

1 S |
a  PyX {Oz—wr C Py and Piyq CPy X Liyy
b. P, is c", and
c.  For each map £851 — Py X Litq (K £ n-1) with f[SK] C P1.+1, there

is amap gB! — P with difg) < z_"lﬂ' and with £ | sK = g | sX.
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| N |
Let X= 0 [Pi X Qi) Then x = g,

~ The proof of Theorem 2 uses the conditions in Theorem 1.

-We -now construct a specific model satisfying the conditions in Theorem 2. Again,

fix n 2 0.

For X=Ii or Q, let

- Xy =4dx e X I for each choice of n + 1 coordinates X_ ,..X of X with
o , : ' m Mn+1 :

My <o <m at least one of the coordinates is dyadic of order < mn”.}

n+1’

= 11
Let P,-= I*..

For n =1, the one-dimensional polyhedra P1,‘ P,, and P3 are illustrated in Figure 1.

P Py P3

~ Figure 1

. i .
When n = 0, Py= I 0,-lj-}, the corner points of the i-cell I'.
j=1 2 : :

g .
Let X, = ign [Pi X Q1'+1]' Then X, is Q4. Note that X, is the Cantor Set consisting

of the corner points of the Hilbert Cube. In Theorem 3 below, we show that X = Upe
Before proving this theorem, we provide an alternate description of P; that is easier

to work with.



-12-

’

Fix n. Let P = . Let Pr: be viewed as a cell complex consisting of -

rectilinear n-cells with sides of length —ﬁlﬂ- by subdividing each factor 11. of ‘1'“_

into subintervals of lengths FLﬁ- Let An be the (n - 1) skeleton of this cell

complex.

. - n+1
Deﬁne Fn+1 CclI - as

‘ 1
_An XIpp VP X {O"?__r'n'ﬂ'}'

/

n+1
sides of length 5317{ by subdividing each factor I, of

length ——5147 A
‘ 2

Note that P can be viewed as a cell complex consisting of rectilinear n-cells with

In+1 into subintervals of

Inductively assume PJT C 1) has been defined so that PJT can be viewed as a

cell coinp]ex consisting of rectilinear n-cells with sides of length _jlﬂ' by
; . 2

subdividing each factor I, of T into subintervals of length ;'jl-F'T

Let Aj be the n - 1 skeleton of this cell complex. Define P_;” C IJ'+1 as
‘ 1
Aj X Tq VP X {o,———TzJ+ 1
Lemma 1 For each i, P, =P..

Theorem 3 X, = u.



[An]

[Be]
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MENGER SPACES AND ¢

James P. Henderson

;‘This paper is avsummary of a talk gi&en at the Geometric
Topology conference held at The Colorado College on June 12-14,
1986.

In "Menger Spaces and Inverse Limits", these proceedings,
Dennis éarity outlines a proceedure for constructing n-dimension-
al Menger spéces Xns nil, in the Hilbert cube with the property
that X, is contained in Xp4+31. Using his notation and descrip-
tions, it is possible to show that X=UX, is homeomorphic to O .
Recall that ¢ may be viewed as the set of points in Hiibert space
having at most finitely many nonzero coordinates. In order to
obtain the desired goal, we will show that X satisfies the
following characterization [He]:

X is a o -manifold if and only if:

(1) X is an ANR

(2) X is the countable union of finite dimensional compacta

(3) Each compact subset of X is a strong i—set in X

(4) For each integer k, mapping £f:RKk-->X, and € :X-->(0,1),
there is an injection £':RK-->X with d(f(x),f'(x))<e(X).

The last property is refered to as the Euclidean injection
property (EIP). Condition (3) means that if A is a compact
subset of X, for each open cover W of x and'sequeﬁce of mappings
QpsQnsene- of Q into X, there are W-approximations Bld§,-u such
that ﬁ(Bi(Q): 1<ix © ) misses a neighborhood of A [B,B,M,W].
Condition (2) is satisfied since each X, is a compact, finite

dimensional set. The space X will be shown to satisfy the other

conditions through a sequence of results.
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The first lemma involves approximating mappings of RK into
Q by mappings into X. Throughout the remainder, by a basic open
set V in Q we will mean an open set in Q of the form

V#(,Hvi)x*Qn+l where Vi is a connected, open set in Ij.

Lemma 1 Let V be a basic open subset of Q. For £:RK-->V and
e:Rk-->(0,1), there is a mapping f':RK-->D with
d(f(x),f'(x))< €(x) where D is the set of points in V having at

most finitely many nonzero coordinates.

‘We now turn to the problem of showing that X is an ANR.
According to Dugundji [Dul], it suffices to show that given any
open cover W of X, there is an open cover VY of X such that given
any simplicial complex K, any partial realization of K in Y4
_extends to a full realization of K in U . A partial realization
of K in U is a mapping h: L -->X in which L is a subcomplex of
K containing every vertex of K and such that the sets h(ans‘ )
refine W where s is a simplex of K. A full fealization of K in
W is a partial realization of K in U where K=L. The following

proposition is an easy consequence of this characterization of

ANR's.

Proposition 2 X is an ANR.

Proposition 3 follows directly from lemma 1.

Proposition 3 X satisfies the EIP
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The final necessary result is that each compact subset of X
be a strong Z-set. This can be accomplished by first showing
that each COmpact subsét of X is a Z-set in Q, and then getting -
the strongef‘property in X. Recall that a closed subset A of an
ANR X is a Z-set if the relative homology groups Hx%(U,U-A;Z)=0

for each open set U in X and A is 1-LCC embedded in X.

Proposition 4 X, is a Z-set in Q

Corollary 5 Each compact subset C of X is a Z-set in Q.

Proposition 6 Every compact subset of X is a strong Z-set in X.

Since X satisfies the characterization theorem, X is a
o-manifold. We have not shown that X is homeomorphic to o .
However, a O-manifold may be factored as |K| x 0 where K is a
countable, locally finite simplicial complex [Ch]. It follows
from Lemma 1 that I (X)=0 for all n, so Ip( K )=0 for éll n,
and K 1is contractible. Thus X is contractible and homeomorphic

to 0 since they have the same homotopy type [Chl].
Theorem 7 X is homeomorphic to o

It should be noted that a more general result follows from
the proofs of the above results. The following theorem is

immediate.
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Theorem 8 Let X=UX,, where each X, is a compact, finite dimen-—
sional Z-set in Q, with X containing the set of all points in Q
having at most finitely many nonzero coordinates. Then X is

homeormorphic to ¢ .
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ON CELLULAR DECOMFOSITIONS OF THE HILBERT CUBE

TERRY L. LAY

This paper is the summary of an expository talk given at the
topology conference at The Colorado College, Colorado Springs,

Colorado on June 12-14, 1986.

Dennis Garity, in his thesis work and later, collaborating
with R. J. Daverman, defined and then investigated the notion of
& cell=-like decomposition of EN (8" being of intrinsic dimension
ke What thio essentially means 1o that when MIEM-=3EN/G in thae

canonical gquotient mapping, then any sufficiently close cell-like
approximation f to ﬁ> has the property that f(Ns) has dimension
L k and for some f this dimension is exactly k. . (We are assuming
that En/G is finite dimensional.) To illustrate this property
Daverman and Garity [D6G1,D62]1 produced (n-2)- and then (n—-1)-
dimensional cellular decompositions of En, Although this is an
extremely pathological phenomenon, they were able to shﬁw that in
nach casa, the carrnupanding dn:qmpouition gpace EN/G X R* wau a

manifold.
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Each of the decompositions above were constructed with the
aid of a defining sequence. (See [CD1 or [DW] for discussions of
defining sequences.) Nork of the second author [L1,L2] indicated
a possible progfam for adapting a defining sequence for a finite
dimensional decomposition in order to obtain a similar structure
in the Hilbert cube Q or more generally in a @-manifold M®, Thig
program has succeeded in producing infinite dimensional versions
of the finite dimensional decompositions of Cannon-Daverman L[CD]
and Daverman-Walsh [DW11l. The current investigation has as its
goal to produce apprbpriate infinite dimensional versions of the
Daverman—-Garity decompositions.

The notion of the image of the non-degeneracy having
dimension k is inappropriate in the G-manifold setting since any
finite dimensional subset of such a space has infinite
codimension and thus the decomposition space is automatically a
manifold [DW2]. Conversations with John Walsh have produced the

following definitions which will govern the current program.

Definition 1. A subset B of a O-manifold M® has codimension 2 k

if for each closed subset A of B, each open set U
in M® and each g < k, the homology module
Ha (U,UNA) is  trivial. BE is said to have
codimension equal to k if it has codimension 2 k

but does not have codimension 2 k+1.
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Definition 2. A cellular decomposition G of a G-manifold M® ig

intrinsically of codimension by k if each

sufficiently close cell-like approximation f to
the quotient map m:M=-=>M/G has f(Ne) of

codimension £ k.

It appears that the defining sequence for the (n-2)-
dimensional decomposition in [DG1] will program quite nicely into
a cellular, intrinsically codimension 2 decomposition of .
Moreover, the defining sequence will exhibit those properties
discussed in ([L2] which will insure that G/G x I will be a @-
manifold. A much more hazy issue is the (n—-1)-dimensional
decomposition. The construction in [DG2]1 uses a particular
linking pattern which has no obvious counterpart in the infinite
dimensional setting. The only visible obstruction, however, is
this difficulty with the linking and we are optimistic that the

program will go through in this setting as well.
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Acyclic Maps of 4-manifolds

by
F. C. Tinsley

~*jlﬂ££93

Daverman constructed acyclic decompositions of special homology n-spheres
(n>5) [Das Ex. 3]. Daverman and Tinsley showed how to construct similar decomposi-
tions in 5-manifolds with fundamental groups containing finitely generated perfect
Subgroups. In light of recent developments, we investigate similar constructions
in dimension four. |

A compactum, A, in an ANR, X, is strongly ¥%-acyclic if for each U open in

X with AcJ, there is a V open in X with AC VCU and the inclusion-induced
ioiH (V3Z)--->H, (U;Z) the zero homomorphism. A map f:X--->Y of ANR's is acyclic
if fhl(y) is strongly Z-acyclic for each y C-f(X). Let €Map(f), the extended
mapping cylinder of f, be the mapping cylinder of f with a collar attached to Y.
More precisely, ¢Map(f) = X x [-1,0] Uf.Y x [0,11 where f':X x {0}--->Y x {0}
by f'(x,0) = (f(x),0).

A common source of such acyciic maps is the decomposition of a manifold.

Let G be an USC decomposition of a manifold, M, into strongly Z-acyclic

compacta. If M/G is an ANR, then the decomposition map f:M--->M/G is an acyclic

map of ANR's.

1. Examples

Ex. 1.1: Let M"be a non-simply connected homology n-sphere (nES). Let B"

be a flat n-cell in M". Then b" = clos (m" - Bn) is a non-simply connected
homology n-cell. Let G be the decomposition of M into points and the single,

n

non-degenerate set, b".  Then f:Mn—-—>Mn/G Y " is an acyclic map of manifolds.
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Note that E =EMap(f) is not an (n+l) manifold at £(b") x {0}.
For the next example, we need:
- Lemma 1.2f1: Let M" (nzﬂ) be a homology n-sphere. Then there is a locally flat

n-1

--Q>Mn, where hn'1

 embedding, t:h is a homology (n-1)-sphere and
, t#:nl(hn'l)--->w1(Mn) is a surjection. '

Pf:hn'1 fs obtained as the boundary of a topological regular neighborhood
of an acyclic 2-complex in M'.  This requires a good deal of effort, particularly
for n = 4. |
Ex. 1.2: Let M" be as in 1.1 (n>4). Now, 1.2.1 yields W1 x [0,17¢M" with
inclusion inducing sufjection on . Choose a Cantor set C€{0,1). Let G be
the decomposition of M" into points and non-degenerate sets gbn'l xc|cé& CZ
(here, b1 is the complement of a flat, open (n-1)-cell in hn'l). Then
f:Mn-—->Mn/G is an acyclic map of ANR's. u

For n>4, E = €Map(f) is a 5-manifold. For n>5, M"/6 = s". However, for
n = 4,Mn/G is not a manifold at f(bn'1 x c) for c €C.

2. Theorems for n = 4
Theorem 2.1: Let M4 be a homology 4-sphere. There exists an acyclic map

% with €Map(f) a 5-manifold.

£aMomo5S
. pe. 3 .l 3 3 .
Pf: Let h” x [0,11 ¢ M" and b~ Ch” be as in Ex. 1.2. Let
h4 = c]os<94 - b3 X [%—, %]). Let K be a 2-spine of b3. Let G be the
decomposition of M™ into points and non-degenerate sets h’ and

szslse %,%)g.

Theorem 2.2: Every homology 4-sphere laminates to st (in the sense of Da-Ti).

3. Unresolved questions

The acyclic map of 2.1 is one to one over the complement of a 1-dimensional

set.
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Question 3.1: In Theorem 2.1, can f be replaced by a map which is one to one
over the complement of a zero dimensional set?

A possibly related question is:
Question'3.2: Is there a wild Cantor set in R4 which is defined by contractible

manifolds (objects)?

Da 'Decompositions of manifolds into codimension one submanifolds',
by R. J. Daverman, Compositio Mathematica 55(1985), 185-207

Da-Ti 'Laminations, finitely generated perfect groups, and acyclic
maps', by R. J. Daverman and F. C. Tinsley, to appear Michigan
Journal of Mathematics.
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BING-WHITEHEAD DECOMPOSITIONS OF E3
David G. Wright

This paper is the summary of an expository talk given at the topology conferénce at Colorado
College, Colorado Springs, Colorado on June 12-14, 1986.

l. Introduction

Let G be an upper semi-continuous decomposition of £3 consisting of
points and components of nm, where Mo 1s solid torus and MM is obtained
from M either by the 8ing Construction (placing two solid tori in each

component as in the construction of the Bing Cantor set--see F igure 1) or
by the Whitehead Construction (placing a Whitehead 1ink in each
component--see Figure 2). If the sequence M; has only a finite number of

Whitehead constructions, then the decomposition is shrinkable by an
argument due to R. H. Bing. If the sequence M; has only finitely many Bing

constructions, then the nondegenerate elements are not 1-LCC. Hence,
the decomposition is not shrinkable. Let Ny be the number of consecutive

Bing constructions placed in Mo before the first Whitehead construction.
In general let n; be the number of consecutive Bing constructions between
the (i-1)St ang th Whithead constructions in the sequence M;. Of course n;

~ could equal zero if there are consecutive Whitehead constructions.

Recently F. D. Ancel communicated to me that such decompositions are
shrinkable if and only if £n /2! diverges. This paper outlines a proof of

this fact.
2. Divergence implies shrinkability

Definition 2.1. Let Ry, Ry, ..., Ry, By By, ..., By be disjoint meridional
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disks in a solid torus T. Let R <UA; and B =UB;. We say that (R,B) is a
k=interiacing collection of meridional disks 1f each component of
T - (RuB) has exactly one R; and one By Inits closure. We think of the

disks in R and B as being colored red and blue respectively.

Definition 2.2. Let R and B be disjoint sets and T a solid torus. We say
that (R,B) isa k-interiacing for T if there are subsets R' and B' of R and
B respectively so that (R',B') is a k-interlacing collection of meridional
disks, but it is impossible to find such subsets that form a
(k+1)-interlacing collection of meridional disks.

Lemma 2.3. If k>0 and (R,B) is a k-interlacing for a solid torus T so that
eachof RN T and BN T is the union of finitely many disjoint

meridional disks of T, then it is possible to put a Whitehead link T'in T so
that (R,B) is a (2k-1) interlacing of T"andeachof RnT and BN T is

the union of finitely many-disjoint meridional disks of T.

Lemma 2.4. If k>0 and (R,B) is a k-interlacing of a solid torus T so that
eachof RNT and BT is the union of finitely many disjoint meridional

disks of T, then it is possible to put two solid tori T1 and T2 inTas in
the Bing Construction so that (R,B) is a (k-1)-interlacing of each T and so
that each of Rn Ty and B n Ty is the union of finitely many disjoint
meridional disks of Ty, |

- Note: We say (R,B) Is a 0-inter/acing of T in case T misses either R or B.

With this definition Lemma 2.4 makes sense for k=1. Also it is clear that
if (R,B) Is a O-interlacing of T then (R,B) is a O-interlacing for any solid
torus contained in T.

Proof of divergence implies shrinkabillty.

Suppose ignilz1 diverges. We show how to construct a 'homeomorphism h

of E3, fixed outside Mg so that the components of h(M,.) are small for some
integer r. We may assume without loss of generality that the 52 factor of
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MO is small. Let (R,B) be a k-interlacing of Mg so that each of R n Mo
and B n Mg 1s the union of finitely many disjoint meridional disks of Mo
and so that any connected subset of My that misses R or B is small.

,Choose n so that the partial sum § “1"2’ is larger than k/2. ‘We now
choose the homeomorphism h so that h(M;, ) 1s embedded in h(M;) as in the

above lemmas and remark through the nth whitenead construction. Let My

be the set obtained with the nth Whitehead construction. Then (R,B) is an
m-interlacing of each component of My where m equals

max([2™'(k/2 - & n/2' - 2 172%1)], zero). But n was chosen so that m
is equal to zero. Hence, if M. is obtained as the nth whitehead
construction, then the components of h(M,.) are small.

The theorem now follows by applying the Bing shrinking criterion and the
above argument applied to components of M;.

3. Shrinkability implies divergence

Definftion 3.1. Let H be a properly embedded disk with holes in a solid
torus T so that the inclusion map is I-essential; i. e., the inclusion map on
the boundary of H cannot be extended to a map of H into the boundary of T.
We call H a meridional disk with holes for the solid torus T.

Note: The non-trivial boundary components of H must be meridional simple
closed curves of T whose algebraic sum is #1.

Definition 3.2. We define a &#-inter/acing collection of meridional disks
with holes by replacing meridional disks in Definition 2.1 by mer/d/ona/
aisks with holes.

‘Definition 3.3. Let R and B be disjoint sets and T a solid torus. We say
that (R,B) isa «-inter/acing for T if there are subsets R and B’ of R and
B respectively so that (R',B') is a k-interlacing collection of meridional
disks with holes, but it is impossible to find such subsets that form a
(k+)-interlacing collection of meridional disks with holes.
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Note: This generalizes Definition 2.2.

Lemma 3.4. Suppose R and B are disjoint 2-manifolds properly embedded
in a solid torus T so that (R,B) is a k-interlacing for T. If T' is a Whitehead
link In T that is in general position with respect to R U B, then (R,B) is a

k' interlacing for T* where k'> 2k - 1.

Lemma 3.5, Suppose R and B are dis joint 2-manifolds properly embedded
Inasolid torus T so that (R,B) is a k-interlacing for T. If TyandTyare

~embedded in T by the Bing construction and are in general position with
respect toR U B, then(RB)isak' interlacing for either T, or T2 where

K'2Kk-1.

The proofs of the above lemmas require looking at the universal cover of
T and an understanding of how an I-essential disk with holes in the

universal cover meets the lifts of T' and T]U‘Tz.

Proof of shrinkability implies divergence.

Suppose that j?,ni/z’ converges. Let K be a positive integer so that k/2 is
greater than ﬁnifzi + 1. Let (R,B) be a k-interlacing for Mg so that each of

“RNOT and BOT is the union of finitely many disjoint meridional disks

of My. We further suppose that R U B is in general position with each M,
for f21. Let M. be the set obtained with the nt Whitehead construction.
Then by the above lemmas (R,B) is an m-interlacing for some component
of M. where m fs greater than or equal to 2™'(k/2 - B n,s2! - 2 1/21*),

But k was chosen so that this number is positive for any choice of n.
Hence for all 1 some component of M must be Targe enough to meet both R

and B. But this contradicts the fact that the diameter of the components
of M; tend to zero as f gets large. This contradiction arose from the



-29-

supposition that :‘ni/z’ converges. Therefore we conclude that ‘f‘ni/z’
diverges.

Figure 1

- Figure 2

Brigham Young Un1versity
Provo, Utah 84602
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QUESTIONS POSED BY PARTICIPANTS AT THE
1986 GEOMETRIC TOPOLOGY CONFERENCE
THE COLORADO COLLEGE

Is there a wild Cantor set in E3 such that no wild sub-Cantor set is open,
closed, and definable by solid tori? '

Find a Cantor set so that any handlebody description has an unbounded number
of handles.

Is every strongly homogeneously embedded Cantor set tame in E3?

Is there a wild Cantor set in R4 defined by contractible manifolds (objects)?

Does the Garity-Wright construction of Menger sets in the Hilbert cube show

homogeneity of those sets?

Can the spine of a Mazur 4-manifold be pushed off itself by a homeomorphism
fixing the boundary?

Are the Daverman Cantor sets sficky?

Is there a map f:B" ---> X compact with dim(f(C)) = « for every non-
degenerate continuum C?

Let X be a locally compact ANR such that H,(X,X-x) = 0 for all xeéX. Is Xx12

a Q-manifold? Does X satisfy the disjoint Cech carriers property? Does X
contain a 2-dimensional closed subset?

A space, X, has property Cn if for every sequence of covers Ups Ups --- with
each U; having cardinality n, there is a sequence Hys Wos oe- where each

W; is a pairwise disjoint collection of open sets refining Us and thi covers X.

Is there a space, X, with property C, but not property-C3? If so, then property
CZWID.

Let G be an U.S.C. decomposition of a locally compact ANR X into ANR's. To
what extent is it true that X/G is homologically locally connected?

Does every homology sphere h" bound an (n+1)-dimensional homology cell with in-
clusion inducing an injection of fundamental groups?

Is every fihite]y presented perfect group the normal closure of a single
element?

Is there a locally indicable finitely presented group which embeds in its
own wild group?

Does every compact ANR have a point at which the local homology is finitely
generated? . :
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Let f be a cellular map of polyhedra, f:P---> Q, with dim(P) = 4. Is f
approximabie by homeomorphisms?

Is every cocompact discrete nil group aimost convex?

Suppose‘XICL XZC:)Q§<;"" &.Q where Xi is n-dimensional Menger space and

Xs 1§?§iz_SEt jn X1+1.‘ Isil:J1 X; = o?

Is evéky strongly homogeneous 2-sphere in R3 tame?

Is there'a finite dimensional homogeneous ANR homology manifold that is not
a manifold? .

If an arc'innEn can be instantly isotoped off itself, is the arc tame? Q
instead of E'?



