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Preface

The Twenty-First Annual Workshop in Geometric Topology was held at the Uni-
versity of Wisconsin�Milwaukee on June 10-12, 2004. A list of the participants can
be found later in these proceedings.
The principal speaker for the workshop was Professor Peter Teichner of the Univer-

sity of California, Berkeley. Professor Teichner presented a series of three one-hour
lectures titled �New obstructions for embedding 2-spheres into 4-manifolds.� Some
details about these lectures are included later in these proceedings.
As always, the workshop included a number of shorter talks contributed by the

participants, and concluded with a problem session. Summaries of several contributed
talks are printed in these proceedings, as is a summary of the problem session.

Support. Financial support for the workshop was provided by the National Sci-
ence Foundation (Grant DMS-0407583) and by the University ofWisconsin�Milwaukee.

Organizers. The Workshops in Geometric Topology are organized by:

� Fredric Ancel, University of Wisconsin�Milwaukee,
� Dennis Garity, Oregon State University,
� Craig Guilbault, University of Wisconsin�Milwaukee,
� Frederick Tinsley, Colorado College,
� Gerard Venema, Calvin College, and
� David Wright, Brigham Young University.

The organizers also serve as editors of these proceedings.
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History of the Workshops in Geometric Topology

Year Workshop Location Principal Speaker
2005 Colorado College Thomas Farrell
2004 University of Wisconsin�Milwaukee Peter Teichner
2003 Park City, Utah (BYU) Martin Bridson
2002 Calvin College Alexander Dranishnikov
2001 Oregon State University Abigail Thompson
2000 Colorado College Robert Gompf
1999 University of Wisconsin�Milwaukee Robert Edwards
1998 Park City, Utah (BYU) Steve Ferry
1997 Oregon State University James Cannon
1996 Colorado College Michael Freedman
1995 University of Wisconsin�Milwaukee Shmuel Weinberger
1994 Park City, Utah (BYU) Michael Davis
1993 Oregon State Univ. and Newport, OR John Bryant
1992 Colorado College Mladen Bestvina
1991 University of Wisconsin�Milwaukee Andrew Casson
1990 Oregon State University Robert Daverman
1989 Brigham Young University John Luecke
1988 Colorado College John Hempel
1987 Oregon State University Robert Edwards
1986 Colorado College John Walsh
1985 Colorado College Robert Daverman
1984 Brigham Young University none
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List of Participants (2004)

Ric Ancel University of Wisconsin-Milwaukee
Anthony Bedenokovic Bradley University
Nikolay Brodskiy University of Tennessee
James Cannon Brigham Young University
Stephen Chan University of California, Los Angeles
James Conant University of Tennessee
Greg Conner Brigham Young University
Bob Daverman University of Tennessee
Tadek Dobrowolski Pittsburg State University
Robert Edwards University of California, Los Angeles
Steve Ferry Rutgers University
Hanspeter Fischer Ball State University
Tom Fleming University of California, San Diego
Paul Fonstad University of Wisconsin-Milwaukee
Dennis Garity Oregon State University
Kailash Ghimire Oregon State University
Brent Gorbutt Brigham Young University
Craig Guilbault University of Wisconsin-Milwaukee
Yusuf Z. Gurtas Su¤olk County CC
Denise Halverson Brigham Young University
Rena Hull University of California, Santa Barbara
Margaret May University of Wisconsin-Milwaukee
Mark Meilstrup Brigham Young University
Atish Mitra University of Tennessee
Christopher Mooney University of Wisconsin-Milwaukee
Boris Okun University of Wisconsin-Milwaukee
David Radcli¤e University of Minnesota
Konstantin Salikhov University of Maryland
Carrie Schermetzler University of Wisconsin-Milwaukee
Rob Schneiderman Courant Institute

(continued on next page)
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List of Participants (continued)

Tim Schroeder University of Wisconsin-Milwaukee
David Snyder Texas State University, San Marcos
Peter Teichner University of California, Berkeley
Tom Thickstun Texas State University, San Marcos
Mat Timm Bradley University
Fred Tinsley Colorado College
Anthony Van Groningen University of Wisconsin-Milwaukee
Violeta Vasilevska University of Tennessee
Gerard Venema Calvin College
Shmuel Weinberger University of Chicago
Julia Wilson SUNY Fredonia
Bobby Winters Pittsburg State University
David Wright Brigham Young University
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Principal Lectures

New Obstructions to Embedding 2�spheres in S4

Peter Teichner

June 10-12, 2004

The principal speaker for the Twenty-First Annual Workshop in Geometric Topol-
ogy was Professor Peter Teichner of the University of California, Berkeley. His three-
lecture series on �New Obstructions for Embedding 2�spheres in S4�was the center-
piece of the workshop. The o¢ cial abstract for these lectures was the following:

Abstract. In joint work with Rob Schneiderman, we have developed a new ob-
struction theory for the embedding problem for 2-spheres in 4-manifolds. It is given
in terms of the intersection theory of Whitney towers, immersed in the 4-manifold,
and it is related to Milnor invariants and the Kontsevich integral in the easiest cases
(where the 4-manifold is given by attaching 2-handles to a link in the 3-sphere). As
a consequence, we give an intersection theoretic explanation of the Milnor invariants,
and we relate them to the existence of embedded gropes in the 4-ball.
In this sequence of talks, we shall give an outline of the theory, explain the main

results, and discuss the remaining open problems. There are 3 papers, all joint with
Rob Schneiderman (and one also joint with Jim Conant) available on my homepage.

At the time these lectures were given, all of the main results had already been
written up and were made available to workshop participants� primarily in preprint
form. For this reason, the traditional writeup of the main lectures is not included in
these proceedings. Instead, we provide full bibliographic information and electronic
links for the corresponding papers. In addition, we have posted on the workshop
website, scanned copies of the over-head slides used in each of the three lectures.

Papers

Rob Schneiderman and Peter Teichner, Higher order intersection numbers of 2-
spheres in 4-manifolds, Algebraic & Geometric Topology, 1 (2001), 1-29.
(www.maths.warwick.ac.uk/agt/AGTVol1/agt-1-1.abs.html).
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Rob Schneiderman and Peter Teichner,Whitney towers and the Kontsevich integral,
Proceedings of a Conference in Honor of Andrew Casson, UT Austin 2003., Geo. &
Top. Monogr. 7 (2004), 101-134.
(www.maths.warwick.ac.uk/gt/GTMon7/paper4.abs.html).

James Conant, Rob Schneiderman and Peter Teichner, Jacobi identities in low-
dimensional topology, to appear in Compositio Mathematica.
(xxx.lanl.gov/abs/math.GT/0401427).

Slides from the Lectures

Lecture 1. Intersection Theory for Whitney Towers:
www.uwm.edu/Dept/Math/conf/topology/Lecture1.pdf

Lecture 2. Whitney Towers and Milnor invariants:
www.uwm.edu/Dept/Math/conf/topology/Lecture2.pdf

Lecture 3. Gropes in 3�and 4�space:
www.uwm.edu/Dept/Math/conf/topology/Lecture3.pdf
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A CONSTRUCTION OF RIGID CANTOR SETS IN R3 WITH
SIMPLY CONNECTED COMPLEMENT

DENNIS GARITY, DUŠAN REPOV̌S, AND MATJAŽ ŽELJKO

1. INTRODUCTION

This is a summary of a talk given by D. Garity on June 11, 2004 atthe
21st annual Workshop in Geometric Topology held at the University of Wis-
consin in Milwaukee. The results, with complete proofs, arebeing prepared
for publication elsewhere.

A subsetA ⊂ R
n is rigid if whenever f : Rn → Rn is a homeomorphism

with f (A) = A it follows that f |A = idA. There are known examples inR3 of
wild Cantor sets that are either rigid or have simply connected complement.
However, until now, no examples were known having both properties.

The class of wild Cantor sets having of simply connected complement
known as Bing-Whitehead Cantor sets seemed to suggest that no such ex-
ample exists because every one-to-one mapping between two finite subsets
of a Bing-Whitehead Cantor setX ⊂ R3 is extendable to a homeomorphism
of R3 which takesX to X (see [Wr4] for details).

Two Cantor setsX andY in R3 are said to betopologically distinctor
inequivalentif there is no homeomorphism ofR3 to itself takingX to Y.
In this paper we show that in fact uncountably many inequivalent exam-
ples of rigid Cantor sets with simply connected complement exist. The key
technique used is that of local genus, introduced in [Ze].

Sher proved in [Sh] that there exist uncountably many inequivalent Can-
tor sets inR3. He showed that varying the number of components in the An-
toine construction leads to these inequivalent Cantor sets. Shilepsky used
this result and constructed a rigid Cantor set inR3 (see [Sl]). Using slightly
different approach Wright constructed a rigid Cantor set inR3 as well (see
[Wr2]) and using the Blankinship construction [Bl] Wright later extended

Date: June 11, 2004.
2000Mathematics Subject Classification.Primary 54E45, 54F65 ; Secondary 57M30,

57N10.
Key words and phrases.Wild Cantor set, rigid set, genus of Cantor set, defining

sequence.
The first author was supported in part by N.S.F. grants DMS 0139678 and DMS

0104325. The second and third author were supported in part by M.E.S.S. grant 0101-
509. All authors were supported in part by M.E.S.S. grant SLO-US 2002/01.
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12 D. GARITY, D. REPOV̌S, AND M. ŽELJKO

this result toRn, n ≥ 4, (see [Wr3]). All these results rely heavily on the
linking of the components of defining sequences for the Cantor sets. This
linking yields non simply connected complements of the the Cantor sets,
so these constructions cannot be modified to give examples ofrigid Cantor
sets with simply connected complement.

2. LOCAL GENUS OF POINTS IN ACANTOR SET

The following are some basic facts from [Ze] about the genus of a Cantor
set and the local genus of points in a Cantor set.

Let D(X) be the set of all defining sequences forX. Let M be a handle-
body. We denote the genus ofM by g(M). For a disjoint union of handle-
bodiesM =

F
λ∈Λ Mλ, we defineg(M) = sup{g(Mλ); λ ∈ Λ}.

Let (Mi)∈ D(X) be a defining sequence for a Cantor setX ⊂R3. For any
subsetA⊂ X we denote byMA

i the union of those components ofMi which
intersectA. Define

gA(X;(Mi)) = sup{g(MA
i ); i ≥ 0} and

gA(X) = inf{gA(X;(Mi)); (Mi) ∈ D(X)}.

The numbergA(X) is calledthe genus of the Cantor set X with respect to
the subset A. ForA= {x} we call the numberg{x}(X) the local genus of the
Cantor set X at the point xand denote it bygx(X). For A = X we call the
numbergX(X) the genus of the Cantor set Xand denote it byg(X).

3. MAIN RESULTS

Lemma 3.1. Let X ⊂ R3 be a Cantor set and A⊂ X a countable dense
subset such that

(1) gx(X) ≤ 2 for every x∈ X \A,
(2) ga(X) > 2 for every a∈ A and
(3) ga(X) = gb(X) for a,b∈ A if and only if a= b.

Then X is a rigid Cantor set in R3.

The main theorem, which we will prove after detailing the construction,
is the following.

Theorem 3.1. For each increasing sequence S= (n1,n2, . . .) of integers
such that n1 > 2, there exists a wild Cantor set in R3, X = C(S), and a
countable dense set A= {a1,a2, . . .} ⊂ X such that the following assertions
hold.

(1) gx(X) ≤ 2 for every x∈ X \A,
(2) gai(X) = ni for every ai ∈ A and
(3) R3\X is simply connected.
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An immediate consequence of this theorem is the following.

Theorem 3.2. There exist uncountably many inequivalent rigid wild Cantor
sets in R3 with simply connected complement .

4. THE CONSTRUCTION

Let us fix an increasing sequenceS= (n1,n2, . . .) of integers withn1 > 2.
We will construct inductively a defining sequenceM1, M2, . . . for a Cantor
setX = C(S).

To begin the construction, letM1 be a unknotted genusn1 handlebody.

4.1. Stage n+1 if n is odd. If n is odd then by inductive hypothesis every
component ofMn is a handlebody of genus higher than 2. LetN be a genus
r component ofMn.

The manifoldN can be viewed as an union ofr handlebodies of genus 1,
T1∪ . . .∪Tr , identified along some 2-discs in their boundaries as shown in
Figure 1.

x0
bcbcbcbc

FIGURE 1. ManifoldN

We replace the componentN of genusr by a single smaller central genus
r handlebody and a linked chains of genus 2 handlebodies. We use 6 genus
2 handlebodies for each handle ofN. See Figure 2 for the linking pattern in
one of the genus 1 handlebodies whose union isN.

Notice that the new components inN are actually unlinked if we regard
them as handlebodies inR3. Stagen+ 1 consists of all the new compo-
nents constructed as above. The construction can be done so that each new
component at stagen+1 has diameter less than half of the diameter of the
component that contains it at stagen.
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x0 bc

FIGURE 2. Linking along the spine of some handle ofN

bc

FIGURE 3. Modification in defining sequence

4.2. Stage n+1 if n is even. If n is even, we replace every genusr torus in
Mn, r > 2, by a parallel interior copy of itself and every genus 2 torus by an
embedded higher genus handlebody as shown in Figure 3.

More precisely, let us assume inductively that there exist handlebodies of
genusn1,n2, . . . ,nN among the components ofMn. There are alsoK genus
2 components for someK and we replace one of these genus 2 handlebodies
by a genusnN+1 handlebody, one by a genusnN+2 handlebody, . . . and one
by a genusnN+K handlebody. The components ofMn+1 then consist of
handlebodies of genusn1, . . .nN+K .

This completes the inductive description of the defining sequence. Define
the Cantor set associated with the sequenceS, X = C(S) to be

X =
\
i

Mi .

From the construction it is clear thatX is a Cantor set.
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4.3. The countable dense subset A. Each pointp in X can be associated
with a nondecreasing sequence of positive integers greaterthan 2 as fol-
lows. At stage 2n−1, p is in a unique component. Letmn be the genus of
this component. The sequence we are looking for ism1,m2, . . .. By con-
struction, eachmn+1 is either equal tomn or is greater thanmn. It is greater
thanmn precisely when the component of stage 2n containingp is a genus
2 torus. LetA be the set of points inX for which the associated sequence
is bounded. ThenA is countable and each point inA is associated with a
sequence that is eventually constant.A is dense because each component of
eachMi contains a point ofA.

4.4. Remaining Details. The following results can be shown:
• The local genus at points ofA is correct
• The local genus at points ofX \A is correct,
• The complement ofX is simply connected.

5. QUESTIONS

As stated in the introduction Bing-Whitehead Cantor sets have some
strong homogeneity properties and therefore are not rigid.

• Does varying the numbers of consecutive Bing links and Whitehead
links yield inequivalent Cantor sets? (This number cannot be arbi-
trary. See [Wr4] for details.)

The construction above gives a rigid Cantor set such thatgx(X) ≤ 2 for
x∈ X \A andgai (X) = ni for ai ∈ A. Henceg(X) = ∞.

Let a positive integerr be given.
• Does there exist a rigid Cantor setX such thatgx(X) = r for every

x∈ X? (Forr = 1 the answer is affirmative. See [Sl], [Wr2].)
• Does there exist a rigid Cantor setX having simply connected com-

plement such thatgx(X) = r for everyx∈ X?
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[Ze] M. Željko, Rigid Cantor sets, Rocky Mountain J. Math., to appear.

MATHEMATICS DEPARTMENT, OREGONSTATE UNIVERSITY, CORVALLIS , OR 97331,
U.S.A.

E-mail address: garity@math.oregonstate.edu

INSTITUTE OFMATHEMATICS, PHYSICS AND MECHANICS, UNIVERSITY OF LJUBL-
JANA, JADRANSKA 19, P.O.BOX 2964, LJUBLJANA, SLOVENIA

E-mail address: dusan.repovs@uni-lj.si

INSTITUTE OFMATHEMATICS, PHYSICS AND MECHANICS, UNIVERSITY OF LJUBL-
JANA, JADRANSKA 19, P.O.BOX 2964, LJUBLJANA, SLOVENIA

E-mail address: matjaz.zeljko@fmf.uni-lj.si



A STABILIZATION THEOREM FOR OPEN MANIFOLDS

CRAIG R. GUILBAULT

Abstract. In this note we present a characterization of those one-ended open n-
manifolds (n � 5), whose products with the real line are homeomorphic to interiors
of compact (n+ 1)-manifolds with boundary.

1. Introduction

This work was motivated by a question asked to me recently by Igor Belegradek.

Question (Belegradek). Let Mn be an open manifold homotopy equivalent to an
embedded compact submanifold, say a torus. Is Mn�R homeomorphic to the interior
of a compact manifold?

For the purposes of this talk, we will focus on one-ended, high-dimensional man-
ifolds; in particular, we assume that n � 5. (Although much of what we will do is
valid in all dimensions; and all of what we do can be done without restriction on the
number of ends.) We begin with a few standard de�nitions and examples.

� A manifold Mn is open if it is noncompact and has no boundary.

� A subset V of Mn is a neighborhood of in�nity if Mn � V is compact.
� A neighborhood of in�nity is clean if it is a codimension 0 submanifold and
has bicollared boundary in Mn.

� Mn is one-ended if each neighborhood of in�nity contains a connected neigh-
borhood of in�nity. (We assume this for convenience.)

Example 1. Rn is an open n-manifold for all n � 1. If n � 2, then Rn is one-ended.

Example 2. Let P n be a compact manifold with non-empty connected boundary.
Then int (P n) is a one-ended open manifold.

Example 3. (Disk with in�nitely many handles) Let M2 be the 2-manifold obtained
by attaching a countably in�nite discrete collection of handles to an open 2-disk.

Example 4. (The Whitehead manifold) In [Wh], J.H.C. Whitehead constructed a,
now-famous, example of a contractible (thus one-ended) open 3-manifold that is not
homeomorphic to R3.

Date: January 5, 2005.
1991 Mathematics Subject Classi�cation. Primary 57N15, 57Q12.
Key words and phrases. manifold, end, stabilization, Siebenmann�s thesis.
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18 CRAIG R. GUILBAULT

The following observations about the above examples help to motivate our work.

Facts.
a) Clearly Examples 1 and 2 are themselves interiors of compact manifolds; hence,

so are their products with R.
b) The manifold M2 from Exercise 3 is not the interior of a compact 2-manifold;

nor is M2 � R the interior of a compact 3-manifold. (Exercise. Why?)
c) The Whitehead manifold W 3 is not the interior of any compact 3-manifold;

however, it is well-known that W 3 � R � R4 � int (B4). In fact, a result of
Stallings [St] ensures that the product of any contractible n-manifold with a line is
homeomorphic to Rn+1

Re�ection upon the above examples, together with past experience with non-
compact manifolds, causes us to generalize our question to:

Generalized Belegradek Question (GBQ). If Mn is open and homotopy equiv-
alent to a �nite complex, is Mn � R the interior of a compact (n+ 1)-manifold with
boundary? (As noted earlier, we restrict our attention to the case where Mn is one-
ended and n � 5.)

2. Results

In this section, we outline our solution to the GBQ in the one-ended case. As
might be expected of any work on recognizing interiors of compact high-dimensional
manifolds, we will employ the following celebrated result:

Theorem 2.1. (Siebenmann, 1965) A one ended open n-manifold Mn (n � 6) is the
interior of a compact manifold with boundary i¤:
(1) Mn is inward tame at in�nity,
(2) �1 is stable at in�nity, and
(3) �1 (Mn) 2 eK0 (Z[�1("(Mn))]) is trivial.

� Here inward tame means that for any neighborhood V of in�nity, there exists
a homotopy H : V � [0; 1] ! V such that H0 = id and H1(V ) is compact.
(Equivalently, we may require that all clean neighborhoods of in�nity are are
�nitely dominated.)
� Combined, conditions 1) and 3) are equivalent to requiring that all clean
neighborhoods of in�nity have �nite homotopy type. ( For the purposes of
this talk, we will refer to this property as super-tame at in�nity.)

The following straightforward proposition begins our attack on the GBQ.

Proposition 2.2. Let Mn be a connected open n-manifold.
(1) Mn � R is inward tame at 1 i¤ Mn is �nitely dominated.
(2) Mn � R is super-tame at 1 i¤ Mn has �nite homotopy type.
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Key Ingredient of Proof. Mn � R has arbitrarily small neighborhoods of in�nity of
the form

U = (V � R) [ (M � [(�1;�r] [ [r;1)])
where V is a clean neighborhood of in�nity in Mn. �
Equipped with Proposition 2.2 and Siebenmann�s Theorem, it becomes clear that

the answer to the GBQ depends only uponon the �1-stability at in�nity (or the lack
thereof) in Mn � R. Siebenmann must have recognized this back in 1965 when he
gave a positive answer to a weaker version of the GBQ� in particular, he allowed
himself to cross with R2 instead of R. The point there was that, by crossing with
R2, �1-stability at in�nity becomes easy. (Veri�cation of this fact is a good exercise.)
Before proceeding, we review the meaning of �1-stability at in�nity.
A one-ended open manifold X of dimension at least 5, is �1 stable at in�nity if

and only if there exists a sequence V0 � V1 � V2 � � � � of clean neighborhoods of
in�nity with,

T
Vi = ;, such that each of the inclusion induced homomorphisms in

the corresponding inverse sequence

�1 (V0)
�1 � �1 (V1)

�2 � �1 (V2)
�3 � � � � :

are isomorphisms. (Actually, the de�nition of �1 stable at in�nity simply requires
that the above inverse sequence be �pro-stable�. In dimensions � 5, the desired
isomorphisms can then be arranged using handle trading techniques developed by
Siebenmann.)
A positive solution to the GBQ for n � 5 is obtained by proving the following:

Proposition 2.3. If Mn is one-ended, open and �nitely dominated, then Mn �R is
�1-stable at 1.

Sketch of Proof. Let

U = (V � R) [ (M � [(�1;�r] [ [r;1)])
where V is a connected neighborhood of 1 in Mn.
If G = �1 (Mn), then

�1 (U) �= G �H G
(a free product with amalgamation), where

H = image (�1 (V )! �1 (M
n))

So �1 �at in�nity�looks like:

(G �H1 G)� (G �H2 G)� (G �H3 G)� � � �
where V1 � V2 � V3 � � � � is a sequence of neighborhoods of1 in Mn, and for each i

Hi = image (�1 (Vi)! �1 (M
n)) :

To complete the proof, it su¢ ces to show that Hi = Hj for all i; j (when the Vi�s are
appropriately chosen). This is accomplished by proving:
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Claim. Let K be a compactum into which Mn deforms and let V 0 � V �Mn�K
be clean connected neighborhoods of 1. Then any loop � in V can be pushed into V 0
(with base point traveling along a given �xed base ray).

To prove the claim, begin with an embedded �base ray�r in Mn and assume � is
based on r. Choose a homotopy H : Mn � [0; 1]! Mn that pulls Mn into K and is
�nice�near r. (For example, points of r stay in r underH. See the discussion preceding
Proposition 3.2 of [GuTi] for details.) Choose a third clean neighborhood V 00 � V 0
su¢ ciently small that � � Mn � V 00. In addition, arrange that @V 00 is connected
and r pierces @V 00 transversely in a single point p. Consider the restricted homotopy
Hj : @V 00 � [0; 1]!Mn. Adjust Hj so that it is transverse to � . Then Hj�1 (�) will
be a �nite collection of circles in @V 00 � [0; 1]. By the niceness of Hj near r (again
see [GuTi, Prop.3.2]), one of these circles, call it � 0, is taken in a degree 1 fashion
onto � by Hj. Using the product structure, � 0 can be pushed into @V 00 � f0g within
@V 00� [0; 1]. Composing this push with Hj pushes � into @V 00 in Mn, as desired. �

We conclude this note with a precise statement of our main result.

Theorem 2.4. Let Mn be a one-ended open n-manifold (n � 5), then Mn � R is
homeomorphic to the interior of a compact (n+ 1)-manifold with boundary if an only
if Mn is homotopy equivalent to a �nite complex.

Note. A complete write-up of this work� including the multi-ended case� is in
preparation.
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S4 admits no uscd into shape S1�s?

David F. Snyder
Texas State University �San Marcos

10 June 2004

Some history.

Ron Fintushel, building on work of Raymond and Orlik, Montgomery and
Yang, classi�es (1976-1978) locally smooth circle actions on: homotopy 4-spheres;
simply connected 4-manifolds; and then 4-manifolds generally.
Pao (1978) follows with a classi�cation of nonlinear actions.
Plotnick (1982) extends the results of both to homology 4-spheres, and then

builds examples of such that admit no e¤ective S1 action and thus have funda-
mental groups that cannot belong to a 3-manifold.

Theorem. [Fintushel] Let M� be the orbit space of a locally smooth S1 action
on the simply connected 4-manifold M , with exceptional orbits E and �xed
point set F . Then:

� M� is a simply-connected 3-manifold with @M� � F �.

� The set F � � @M� is �nite, and F � is nonempty.

� The closure of E� is a collection of polyhedral arcs and simple closed curves
in M�. The components of E� are open arcs on which orbit types are
constant, and these arcs have closures with distinct endpoints in F ��@M�.
(continued on next slide)

� If, in addition, M is a homotopy 4-sphere, then: F is either S2 or S0 (in
the former case, E = ; and M� is a homotopy 3-cell with boundary F �;
in the latter case, M� is a homotopy 3-sphere). In the latter case, if there
is only one type of exceptional orbit, E� is an arc and F � its endpoints; if
there are two types of exceptional orbits, then E� [ F � is a scc separated
by F � into two arcs, on each of which the orbit type is constant.

Conjecture. There is no proper, closed map de�ned on S4 such that each of
its point preimages is a [shape] circle.
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Theorem. Suppose � : S4 ! B is a proper, closed surjection such that ~b =
��1(b) has the shape of S1, for all b 2 B; dimB <1; and one more hypothesis
stated later in this talk. Then B is not a generalized manifold (over Q).
Assuming the existence of the map, we begin a catalogue of facts regarding

B:

� dimB = 3;

� B is simply connected (� is a �1-epimorphism);

� and LC1 (Dydak).

The Leray sheaves of �.

We let Hj = Hj [�] = Hj [�;Q] denote the Leray sheaf in dimension j, where
j = 0; 1
For each b 2 B and j = 0; 1, the stalk Hj

b is isomorphic to �Hj(~b;Q) �=
Hj(S1;Q) �= Q.
The topology on Hj is discrete when restricted to any stalk.

Aside: a crash course in sheaf topology.

For b 2 B, let eU be a saturated nbhd of ~b. Then there is a saturated nbhdeV � eU that shape deformation retracts to ~b in eU . For any b1 2 V , there is a
map Hj(~b;Q) ! Hj(eb1;Q), the j-winding function of b1 about b. Note that
this function is either an isomorphism or the zero map. Given a section � of Hj

at b de�ned on V , the section evaluated at b1 will naturally correspond to the
value of the j-winding function of b1 around b evaluated at �(b). This de�nes
the topology on Hj .
Clearly, then H0 is sheaf isomorphic to the constant sheaf Q�B.

More items for the catalogue ...

Theorem. [Dydak and Walsh] There is an open, dense subset C (the con-
tinuity set) of B on which H1 is locally constant.
De�nition. Let K = B � C, the degeneracy set.

Corollary. Then K is nowhere dense in B.
Theorem. [Daverman and Snyder; Snyder] C is a generalized 3-manifold,

i.e. C is an ANR with local (co)homology of a manifold:

Hi(B;B � b;Q) �= Q

for i = 0; 3 and is trivial for all other i.
Theorem. [Walsh] Via a pseudo-isotopy, we may assume that � is also an

open map and, hence, that eK is nowhere dense in S4.
Theorem. [Shaw] K does not locally separate B and dimK � 1.

Aside: the Leray Spectral Sequence.
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Hp(A;Hq[�jA])) Hp+q( eA)
Since our Leray spectral sequence is lacunary, applied to �jA for any A � B

(and closed supports) we get:

� � � ! Hi(A)! Hi( eA)! Hi�1(A;H1[�jA])! � � �

There is also a relative version, for compact A contained in a subset U of B:

� � � ! Hi(U;U �A)! Hi(eU; eU � eA)! Hi�1(U;U �A;H1[�jA])! � � �

Aside: the Fary Spectral Sequence.

Let B = B0 � B1 � B2 � � � � be a �ltration of B by closed subsets of B.
Let At = Bt �Bt�1. ThenM

t

Hp+t
�jAt

(At;Hq�t[�]jAt)) Hp+q(S4)

We note here that Hq�t[�]jAt, (in our context) when restricted to At is the
Leray sheaf Hq�t[�jfAt].
We apply this spectral sequence here using B1 = K and Bp = 0 for p > 1.

Note then that C = A0 and K = A1.

Continuing ...

Proposition. H1jC is isomorphic to the constant sheaf Q�C. [Proof snapshot:
over C, � corresponds to a rational circle bundle over C.]

Proposition. The sheaf H1 splits. We abuse notation and say H1 = H1jC �
H1jK .
Let A = B, so eB = S4, and apply the exact sequence (absolute version)

from the Leray spectral sequence to get the following for our catalogue:

� H1(B) is trivial (trivially, since �1(B) is trivial)

� H2(B) �= H0(B;H1) �= H0(B;H1jC)�H0(B;H1jK)

� 0 �= H2(B;H1) �= H2(B;H1jC)�H2(B;H1jK)

� H3(B) �= H1(B;H1jC)�H1(B;H1jK)

� H2(B;H1) �= Q

NB: If coe¢ cients are not shown, they are Q. Supports for the cohomology
are taken to be 	, the closed subsets of B. Note, for later, that the support
	jC is the collection of compact subsets of C.

Proposition. K 6= ;.
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Proof sketch: If K = ;, then C = B implies that B is a compact generalized
(co)homology 3-sphere. Thus, H2(B) is trivial, which, by the previous list,
impliesH0(B;H1), the group of global sections, consists of only the zero section.
But, as noted before, H1jB=C is the constant sheaf.
Since K 6= ;, it has an open, dense (non-empty) subset K1 on which H1jK1

is locally constant.

Lemma. K1, and hence K, is 1-dimensional.
Proof sketch: Suppose K1 is 0-dimensional at b 2 K1. Let V be an open set

in B, with b 2 V such that H1jV \K1
is constant. Find a nbhd W of b contained

in V such that W \ K1 = ;. Then W admits a section that extends to B.
Impossible!

Corollary. K has no �totally degenerate�points (and, so, no isolated points).
We say b is totally degenerate if its 1-winding funtion is identically 0 on its

punctured nbhd V � fbg.
Let K2 = K � K1 (the second degeneracy set), which is nowhere dense in

K.
We will add as a simplifying assumption that K2 = ;, i.e. H1

K is locally
constant.
Notice that H1

K cannot be constant, for otherwise a global section on B
exists.
Now, we move to add information from the Fary spectral sequence ...
What our Fary spectral sequence looks like in the E2 term (similar to an

S1-bundle with singularities�- but with complicating di¤erences):
H1(K;H1jK)

H0
c (C;H1jC)�H1(K) H1

c (C;H1jC) H2(C;H1jC) H3
c (C;H1jC)

H0
c (C) H1

c (C) H2(C) H3
c (C)

Using this, and the relative cohomology sequence of the pair (B;K) (with
coe¢ cients Q), we can deduce that K is connected. Moreover, H1(K) �= 0 (from
the FSS) and H1(K;H1jK) �= Q (from the LSS). (This latter fact tells us then
that H3

c (C)
�= Q).

Having established these facts, we move to looking at the relative version of
the LSS, and leverage the fact that B is assumed to be a 3-gm.
We are then able to prove (this still has the �avor of transformation group

theory):

Lemma. K is a homology 1-manifold.
But for n � 2, a homology n-manifold is an n-manifold. Thus K �= S1.
This last statement is clearly impossible, since H1(K) 6= H1(S1)

Question: Is there an example of such a map where its image is not a gener-
alized manifold?
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PLETHORA OF ONE-SIDED COBORDISMS

by F. C. Tinsley

(based on joint work with C. R. Guilbault)

This result is used in our paper, ’Manifolds with non-stable fundamental groups at infinity,
III’. However, the proof here is rather different may may be useful in other settings.

A cobordism is a one-sided h-cobordism if the inclusion of one of the boundary components
into the ambient manifold is a homotopy equivalence.

Theorem: Suppose (R,M,N) is a cobordism such that inc# : π1 (N) → π1 (R) has
perfect kernel. Then there exists a nicely embedded, closed manifold, P ⊂ int (R), such
that the cobordism (Y,P,N) is a one-sided h-cobordism where Y is the closure of the
component of R\P that contains N and inc# : π1 (N) → π1 (Y ) has the identical kernel
to inc# : π1 (N) → π1 (R).

Proof: Since R and N are compact, then the perfect kernel is the normal closure of a finite
set of elements. Let {l1, · · · , lr} be a collection of loops in N representing those elements.
Let (Z,Q,N) be the cobordism obtained by attaching r 2-handles, Θi, to N with the cores
attaching to the loops {l1, · · · , lr}. None of the construction below involves points of W\Z.

We define a special finite 2-complex, K, that lives in N (see work of Daverman-and Tins-
ley).

Step 1: Let B ⊂ N be a bouquet of the loops {l1, · · · , lr}

Step 2: Each loop, li, bounds in N a disk with mi handles, Gi. Moreover, each handle
curve must represent an element of ker ({inc : N → W}#) < π1 (N). This is the first stage
of a “grope” that must exist in N by the perfectness of the kernel.

Step 3: Each handle curve bounds in N a disk-with-holes where each other boundary
component is one of the li’s. For each Gi, there are 2 · mi such disks-with-holes. Denote
this collection by

{
Ai(2j−1), Ai(2j) : 1 ≤ j ≤ mi

}
where Ai(2j−1) and Ai(2j) are disks-with-

holes attached to handle curves from the same handle. This geometry follows from the fact
that the handle curves also represent elements of the kernel and, thus, are in the normal
closure of the elements of π1(N) represented by the li’s.
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Step 4: We define K ⊂ N as follows. Let

K = B
⋃



r⋃

i=1


Gi

⋃



mi⋃

j=1

{
Ai(2j−1)

⋃
Ai(2j)

}







where the unions are along the loops described in steps 1-3.

It is a straight forward application of Mayer-Vietoris to show that H2 (K) ∼= 0. Moreover,
K contains “all the action” as far as the perfectness of the kernel is concerned.

We perform plus constructions as follows. Fix i and j for a moment and consider the
disk-with-holes, Ai(2j). Assume there are nij boundary components of Ai(2j) other than
the handle curve of Gi. For each k, 1 ≤ k ≤ nij , let φ(i, j, k) be the function defined so
that lφ(i,j,k) is k’th boundary component of Ai(2j).

Define disks, Ei, for 1 ≤ i ≤ r, by

Ei =


Gi

⋃



mi⋃

j=1





[
Ai(2j)

⋃( nij⋃

k=1

D2
φ(i,j,k)

)]−⋃[
Ai(2j)

⋃( nij⋃

k=1

D2
φ(i,j,k)

)]+









The − and + labels refer to two algebraically cancelling copies of the disk used to surger
the j’th handle of Gi. For geometric reasons (if nothing else), Ei is homologous (rel ∂) to
Gi in N

⋃(⋃r
i=1 H2

i

)
where H2

i is a 2-handle with core Ei. Morover, Gi ⊂ K ⊂ N .

We perform r plus constructions using the Ei’s as the cores of the 2-handles, H2
i . The r

cancelling 3-handles, H3
i , that complete the plus constructions require additional descrip-

tions.

Define disks Fi, 1 ≤ i ≤ r, as follows:

Fi =


Gi

⋃



mi⋃

j=1





[
Ai(2j)

⋃( nij⋃

k=1

Eφ(i,j,k)

)]−⋃[
Ai(2j)

⋃( nij⋃

k=1

Eφ(i,j,k)

)]+









Again, for geometric reasons, Fi is homologous (rel ∂) to the 2-cycle, Ci:

Ci = Gi

⋃



mi⋃

j=1





[
Ai(2j)

⋃( nij⋃

k=1

Gφ(i,j,k)

)]−⋃[
Ai(2j)

⋃( nij⋃

k=1

Gφ(i,j,k)

)]+







where Ci ⊂ K ⊂ N . By construction, Ri

⋃
Ci is a 2-cycle in the complex, K. Since

H2 (K) = 0, Ri

⋃
Ci is null-homologous in K.
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Again by construction, the 2-sphere S2
i = Di

⋃
Ei is homologous in N

⋃(⋃r
i=1 H2

i

)
to

Ri

⋃
Ci. Since π1 (K) includes trivially into π1 (Z), the Hurewicz Theorem says that S2

i

bounds a 3-cell Z in the same relative homology class. These r 3-cells become the cores of
the three handles, H3

i , in the plus construction. It is easy to check that each algebraically
cancels the corresponding 2-handle, H2

i . The result of these plus constructions is the
desired cobordism, (Y,P,N). Note that P ⊂ int(Z). This completes the proof of the
theorem. �
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PLANES IN 3-MANIFOLDS OF FINITE GENUS AT INFINITY

Bobby Neal Winters

1. Introduction and Definitions

In the study of 3-manifolds, there is a long tradition of cutting up a 3-manifold
along embedded 2-manifolds in order to obtain pieces that are simpler in some
sense than the original manifold. One can cite the classical examples of Heegaard
splittings and the Prime Decomposition Theorem.

More recently, Jaco and Shalen in [8] and Johannson in [9] proved what is widely
known as the Characteristic Pair Theorem. This theorem states a Haken manifold
that is closed or has incompressible boundary can be split along embedded tori and
annuli into unique pieces that are of three kinds: Seifert fibered spaces, I-bundles
over surfaces, and “simple.”

A manifold is said to be simple if it contains no essential annulus or torus. On
the other hand, in most Seifert fibered spaces and I-bundles, one can construct lots
of essential annuli and tori.

In this paper, we will create a decomposition theorem for noncompact 3-manifolds
of finite genus at infinity that is analogous to the Jaco-Shalen-Johannson Theorem.
In the current decomposition, noncompact 3-manifolds that contain no nontrivial
places correspond to the simple pieces of the Jaco-Shalen-Johannson Decomposi-
tion, and a family of manifolds christened “nearnodes” correspond to the Seifert
fibered pieces.

This paper is organized into two parts. The first part deals with preliminaries
and climaxes in Theorem 5.1, which is an analog of the well-known Haken Finiteness
Theorem. The second part deals with the main result of the paper. Most of the
vocabulary needed in this paper is defined in the remainder of the current section.
However, definitions of some terms have been postponed until Part II in hopes this
will be more convenient for the reader.

In the rest of this section, I will define the vocabulary required to state the
Theorem 5.1 precisely.

Let X and Y be topological spaces. A map f : X → Y is said to be proper if
f−1(K) is compact for every compact K ⊂ Y . If X is a subset of Y , we say that
X is proper in Y if the inclusion map is proper; this occurs exactly when X ∩K is
compact for every compact K ⊂ Y .

We let ](X) denote the number of components of X.
Given a map f : X × I → X, let ft : X → X denote the map ft : x 7→ f(x, t) for

every t ∈ I. In the case ft is a homeomorphism for every t ∈ I and f0 = 1X , then
we say that f (or ft) is an isotopy.

We say that a topological space P is a plane if P is homeomorphic to R2.
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Let V be a 3-manifold.
Suppose T is a 2-manifold in ∂V that is proper in V . If F is a 2-manifold that

is proper in V and F ∩ ∂V = ∂F and ∂F ⊂ T , then we say that F is properly
embedded in (V, T ). If T = ∂V , then we say that F is properly embedded in V .

Suppose F is properly embedded in (V, T ). We say that F is parallel in V into
T provided there is a proper embedding (i.e. an embedding that is a proper map)
f : F × I → V with f(F × 0) = F and f((∂F × I) ∪ (F × 1)) ⊂ T . In the case
T = ∂V , we say that F is boundary parallel.

Suppose that K ⊂ V such that there is no proper homotopy h : F × I → V with
h(F × 0) = F and h(F × 1) ⊂ V −K, then we say that K traps F .

Suppose that F is properly embedded in (V, T ). If F is incompressible in V , and
F is not parallel into T , then we say that F is essential in (V, T ). If F is essential in
(V, T ), and there is a compact K ⊂ V that traps F , then we say that F is strongly
essential in (V, T ).

Suppose that P is a plane that is proper in V . We say that P is nontrivial in V
if there is a compact K ⊂ V that traps P . If P is not nontrivial, then we say that
P is trivial. In the case that V is irreducible, it follows by Lemma 4.1 of [12] that
P is nontrivial in V iff no component of cl(V − P ) is homeomorphic to R2× [0,∞).
If every nontrivial plane in V is boundary parallel, we say that V is aplanar. If S is
a 2-manifold in V that has a finite number of components each of which is a plane
that is nontrivial in V , then we say that S is a squadron in V .

Let S be a squadron in V , and suppose K is a subset of V . If there is a compact
subset T of S such that S − T ⊂ K, then we say that K swallows the ends of S.

Let V be a noncompact 3-manifold.
If V has no compact components and ∂V = ∅, then we say that V is open. Note

that if V is open and M ⊂ V is a compact 3-manifold, then Fr(M) = ∂M .
If for every compact K ⊂ V there is a compact 3-manifold MK ⊂ V such that

K ⊂ MK − Fr(MK) and Fr(MK) is incompressible in V , then we say that V is
end-irreducible. If V is a 3-manifold that contains a compact subset K such that
cl(V −K) is end-irreducible, then we say that V is eventually end-irreducible.

If exactly one component of V −K has noncompact closure for every compact
K ⊂ V , then we say that V has one end. Note that if V has one end and F ⊂ V is a
compact 2-manifold that separates V , then there is a compact 3-manifold MF ⊂ V
such that ∂MF = F ∪ F ′, where F ′ is a compact union of components of ∂V . In
particular if no component of ∂V is compact, then F bounds a compact 3-manifold
in V .

If X is a function from the nonnegative integers to the set of compact submani-
folds of V such that

1) X(n) ⊂ X(n+ 1)− Fr(X(n+ 1)) and

2) V =
∞⋃

n=0

X(n),

then we say that X is an exhausting sequence or an exhaustion for V . We write
Xn = X(n) and X = {Xn}.

Suppose that V is a noncompact, connected 3-manifold.
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Let g ≥ 0 be an integer. Let X be an exhaustion for V . We say that X is a
genus g exhaustion if ∂Xn is connected and of genus g for every n ≥ 0. We say
that V is of at most genus g at infinity if there exists a genus g exhaustion for X.

We say that V is of at least genus g at infinity if there is no genus g−1 exhaustion
for V . In other words, there is a compact subset K of V such that whenever M
is a compact 3-manifold with K ⊂ M − ∂M and ∂M is connected, it follows that
genus (∂M)) ≥ g. If V is of at most genus g at infinity and of at least genus g at
infinity, then we say that V is of genus g at infinity.

We make the following observations about a 3-manifold V that is of most genus
g at infinity:

1) V is open and has one end.
2) V is of genus k at infinity for some 0 ≤ k ≤ g.

Note that if V is of at least genus g at infinity, then there is a compact L ⊂ V such
that if L∗ ⊂ V is a compact 3-manifold with connected boundary which contains L
in its interior, then genus (∂L∗) ≥ g. In this case we say that V is of at least genus
g at infinity rel L. If V is also of genus g at infinity, we say that V is of genus g rel
L.

Note that if V is of at least genus g at infinity it does not follow that V is open
or has only one end. For example, let A be Antoine’s Necklace in S3 and let M be
a solid torus in S3 that contains A in its interior. Then V = M − A is of at least
genus g at infinity for all g ≥ 0.

However, the terminology “genus at least g at infinity” will be used mostly when
V is open.

Suppose that V is of genus g at infinity rel L, where L ⊂ V is compact. Let M
be a compact 3-submanifold of V such that cl(V −M) is connected, irreducible,
and end-irreducible, such that the inclusion induced map π1(M) → π1(V ) is onto,
such that ∂M is connected, and such that L ⊂ M − ∂M . Then we say that M is
regular in V with respect to L. When there exists some compact L ⊂ V such that
M is regular in V with respect to L, then we will say that M is regular in V .

Suppose N is a 3-manifold such that each component of ∂N is a plane. Suppose
that for every compact K ⊂ N , there is a closed 3-cell BK ⊂ N such that K ⊂
BK −Fr(BK) such that BK ∩P is either a disk or empty for every component P of
∂N . Then we say that N is a nearnode with ](∂N) faces. (It is possible that ](∂N)
is infinite.) If N is a missing boundary manifold as well as well as a nearnode, then
we say that N is a node with ](∂N) faces. (Recall that N is a missing boundary
manifold if N = M − C where M is a compact manifold with boundary and C is
a closed subset of ∂M .) Note that nearnodes are irreducible and contractible.

The author has seen references to manifolds that are nearnodes in [4] and [12].
Both of these examples were of nearnodes with two faces and neither source gives
this class of manifold a name.

Observe that R2× [0,∞) is a node with one face and that R2× I is a node with
two faces. A characterization of nearnodes with two faces that are not nodes will
be given in Lemma 4.4

In general nearnodes with two faces contain a lot of nontrivial planes. For ex-
ample, we prove the following in Section 4.
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Theorem (The Nonparallel Plane Theorem)
A nearnode with two faces that is not a node contains a collection of pairwise

disjoint, pairwise nonparallel nontrivial planes with the cardinality of the Cantor
set.

Suppose that V is a noncompact 3-manifold. Suppose that N is a nearnode with
two faces that is proper in V . If P and P ′ are the components of ∂N , then P and
P ′ are said to be nearly parallel in V , and N is called a near parallelism between P
and P ′. If N is a node, by Lemma 4.4, it follows that P and P ′ are parallel in V ,
and N is a parallelism between P and P ′ in V .

Suppose that H is a noncompact 3-manifold containing a squadron P such that
the result N of splitting H along P is a nearnode (node) with ν+2](P ) faces. Then
we say that H is a nearnode (node) with ν faces and ](P ) handles.

The author would like to thank Robert Myers for his patient guidance during the
inception of this work. Thanks are also due to the Mathematics Department of the
University of Texas where many of the main ideas of this paper took shape during
academic year 1988-89, to the National Science Foundation for providing support,
to the faculty, staff and students of Brigham Young University who provided an
environment for continued revision of this manuscript during the academic year of
1995–96, and finally to several editors and referees, of various journals, who have
suffered through earlier versions of this paper.

Part I: Basic Results

2. Surfaces in Noncompact 3-manifolds

Lemma 2.1. (The Target Lemma)
Suppose that V is a noncompact, irreducible, connected 3-manifold. Suppose that

S is a squadron in V and suppose that K ⊂ V is a compact, connected set which
traps each component of S. For each component P of S, let DP ⊂ P be a disk
such that K ∩ P ⊂ DP − ∂DP . Let DS be the union of all the DP ’s. Suppose that
M ⊂ V is a compact 3-manifold such that K ∪ DS ⊂ M − Fr(M) and Fr(M) is
incompressible in V −K.

Also suppose that S meets Fr(M) transversely and that

](S ∩ Fr(M)) ≤ ](h1(S) ∩ Fr(M))

for any isotopy ht of (V, ∂V ) that is the identity on K∪DS and has compact support.
1) If J is a component of P ∩Fr(M) for some component P of S, then J bounds

a disk EJ ⊂ P such that DP ⊂ EJ − J , and J is noncontractible in Fr(M).
2) If A is a component of S ∩ cl(V −M), then A is either an annulus or a half

open annulus, and A is incompressible in cl(V −M).
3) If there are no essential annuli in (cl(V −M),Fr(M)) and P is a component

of S, then P ∩ cl(V −M) is a half open annulus.

Proof. To prove (1), let EJ be the disk in P that is bounded by J . We claim that
DP ⊂ EJ − J . Otherwise we may choose a component J ′ of EJ ∩ Fr(M) which
bounds a disk E′ ⊂ EJ such that E′ ∩ Fr(M) = J ′ and J ′ = ∂E′. Since EJ does
not contain DP , it follows that E′ ∩ DP = ∅; consequently E′ ∩ (K ∪ DS) = ∅.
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Since Fr(M) is incompressible in V −K, it follows that there is a disk D′ ⊂ Fr(M)
with ∂D′ = J ′. Now D′ ∪ E′ is a 2-sphere and therefore must bound a closed
3-cell B′ ⊂ V by irreducibility. Since K is connected and K ∩ ∂B′ = ∅, then either
K ⊂ B′ or K ∩ B′ = ∅. However, K is not contained in B′ because K traps each
component of S and any component of S can be homotoped off a closed 3-cell.
Hence K ∩B′ = ∅. We may therefore use B′ to reduce ](S ∩ Fr(M)) by an isotopy
with compact support that is fixed on K ∪DS . This is a contradiction. Therefore
DP ⊂ EJ − J .

We claim that J is contractible in Fr(M). To get a contradiction, suppose it is
not. Let D ⊂ Fr(M) be a disk with ∂D = J . We may choose P and J so that
(D − ∂D) ∩ S = ∅. Therefore EJ ∩ D = J . It follows that EJ ∪ D is a 2-sphere
which bounds a closed 3-cell B ⊂ V because V is irreducible. We may use B to
isotop P to the plane (P − EJ) ∪ D. Note [(P − EJ) ∪ D] ∩K is empty because
K ∩ P ⊂ EJ . This is a contradiction because K traps P .

To prove part (2), let P be a component of S. It follows that each component of
P ∩ cl(V −M) is either an annulus or a half open annulus because each component
J of P ∩ Fr(M) bounds a disk EJ which contains DP . We will show that each
component is incompressible.

Suppose that A is a component of P ∩ cl(V −M). Suppose that D is a com-
pressing disk for A in cl(V −M). Let J be a component of ∂A. Then J is parallel
in A to ∂D. It follows J is contractible in cl(V −M). However J is noncontractible
in Fr(M) by part (1). Since Fr(M) is incompressible in V −K, it follows that J is
noncontractible in cl(V −M). This is a contradiction.

Part (3) follows from part (2) and the minimality of ](S ∩ Fr(M)). ♠

Lemma 2.2. Suppose that V is a 3-manifold that has one end, is open, and is
of genus at least g ≥ 1 at infinity rel L, where L is a compact subset of V . If
F ⊂ cl(V − L) is a connected, compact 2-manifold with ∂F = ∅ and genus (F ) < g,
then either F is nonseparating or F bounds a compact 3-manifold in cl(V − L).

Proof. Suppose that F separates V . Since V has one end, there is a compact 3-
manifold M ⊂ V such that ∂M = F . Since V is of genus at least g at infinity rel
L and genus (F ) < g, then L is not contained in M . Therefore M ⊂ cl(V − L). ♠

It follows immediately from Lemma 2.2 that if V is irreducible and of genus at
least one at infinity rel L, then cl(V − L) is irreducible. Note that if V is irreducible
and of genus zero at infinity, then V is homeomorphic to R3.

Lemma 2.3. Let V be an orientable, irreducible, connected, open, eventually end-
irreducible 3-manifold with one end such that π1(V ) is finitely generated. Also
assume that there is a compact 3-manifold L in V such that V is of at least genus
1 at infinity rel L. For every compact K ⊂ V , there is an MK which is regular in
V with respect to L and such that K ⊂MK − ∂MK .

Proof. Suppose that K ⊂ W is a compact set with L ⊂ K. Let M be a compact,
connected 3-manifold in V with K ⊂ M − ∂M . This M will be gradually made
larger with the promise that at some point it will be left fixed.
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We may assume that cl(V −M) is end-irreducible because V is eventually end-
irreducible. Since π1(V ) is finitely generated, we may assume that the inclusion
induced map π1(M) → π1(V ) is onto.

Since V has one end, we may apply Lemma 2.2 and assume that cl(V −M)
and ∂M are connected by adding components of cl(V −M) to the original M .
Suppose that B ⊂ V is a closed 3-cell with ∂B ⊂ V −M . Since M and cl(V −M)
are connected and L ⊂ M , it follows that B ⊂ V −M . Therefore cl(V −M) is
irreducible. ♠

Lemma 2.4. Let V be an orientable, irreducible, connected, open, eventually end-
irreducible 3-manifold with one end such that π1(V ) is finitely generated. Also
assume that there is a compact 3-manifold L ⊂ V such that V is of at least genus
g at infinity rel L for some nonnegative integer g. Suppose that M ⊂ V is a
3-manifold that is regular in V with respect to L.

If F ⊂ V −M is a connected 2-manifold with empty boundary that is proper in
V , then F separates V . Furthermore if the genus of F is less than g, then F bounds
a compact 3-manifold in V −M .

Proof. The fact that F separates follows by a Z2-intersection number argument.
See the proof of Lemma 2.2 of [3], for example. This uses only the fact that
π1(M) → π1(V ) is onto.

Suppose that the genus of F is less than g. Since F separates and V has only
one end, the rest follows by Lemma 2.2.♠

Lemma 2.5. Let V be a noncompact, irreducible 3-manifold and let S ⊂ V be a 3-
manifold that is proper in V and such that each component of ∂S is incompressible
in V . Suppose that Q is a squadron in V such that S swallows the ends of Q. Then
Q is isotopic in V into S.

Proof. Let DQ ⊂ Q be a 2-manifold such that Q′∩DQ is a disk for each component
Q′ of Q and such that Q−DQ ⊂ S. By an isotopy that is fixed on Q−DQ isotop Q
so that ](Q ∩ ∂S) is minimal. Since each component of Q is a plane and since ∂S is
incompressible in V , the irreducibility of V makes it possible to reduce ](Q ∩ ∂S)
by an isotopy fixed on Q−DQ whenever Q ∩ ∂S 6= ∅. It follows that Q ∩ ∂S = ∅.
Since Q−DQ is not moved and is contained in S, it follows that Q ⊂ S. ♠

3. Irreducible, end-irreducible 3-manifolds

In this section, we will assume that W is an orientable, irreducible, end-irreducible
3-manifold. The first result shows us there are no non nontrivial planes in W ,
the second gives sufficient conditions for a 3-submanifold of W to inherit end-
irreducibility, while the rest of the section is devoted to proving that if W has one
end, if ∂W is an open annulus that is incompressible in W , and if the normal closure
of π1(∂W ) is π1(W ), then W = ∂W × [0,∞).

Lemma 3.1. If W is an orientable, irreducible, end-irreducible 3-manifold, then
every plane in W is trivial.
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Proof. Let P ⊂ W be a plane. We may assume that P is proper in W . Let K be
a compact subset of W and suppose that M ⊂ W is a compact 3-manifold with
K ⊂M−Fr(M) such that Fr(M) is incompressible in W . Since every simple closed
curve in P is contractible in P , the usual arguments involving the incompressibility
of Fr(M) in W and the irreducibility of W show that we may isotop P to be disjoint
from Fr(M). Since P is proper, P ∩M = ∅. Therefore, P ∩K = ∅. It follows that
P must be trivial. ♠

Lemma 3.2. Suppose that W is an orientable, irreducible, end-irreducible 3-manifold.
Let U be a connected 3-manifold that is proper in W such that ∂U is an open an-
nulus that is incompressible in W . Then U is irreducible and end-irreducible.

Proof. It is clear that U is irreducible. To show U is irreducible, let A be an annulus
in ∂U such that the inclusion induced map π1(A) → π1(∂U) an isomorphism. Let
L be a compact subset of U that contains A and is such that L∩ ∂U is an annulus.

Let M be a compact connected 3-manifold with L ⊂ M − Fr(M) such that
Fr(M) is incompressible in W . Isotop Fr(M) by an isotopy of compact support
fixed on L such that ](Fr(M) ∩ ∂U) is minimal. We aim to show Fr(M ∩ U ;U) is
incompressible in U .

Let J be a component of Fr(M) ∩ ∂U . Then J is a circle. We claim that J is
noncontractible on Fr(M). To get a contradiction, suppose that J bounds a disk D
in Fr(M). We may choose J so that D ∩ Fr(M) = J . Since ∂U is incompressible,
there is a disk E ⊂ ∂U with ∂E = J . Since π1(A) → π1(U) is nontrivial, A is not
a subset of E. Therefore, A ∩ E = ∅. So E ∩ L = ∅. Therefore E ∪D is a sphere
in W − L.

By the irreducibility of W , there is a 3-ball B that is bounded by E ∪D. Since
π1(A) → π1(W ) is nontrivial, L is not contained in B. Therefore, B ∩ L = ∅. So
we may isotop Fr(M) along B and reduce ](Fr(M) ∩ ∂U). This is a contradiction,
so J is noncontractible on Fr(M).

Note that Fr(M ∩ U ;U) = Fr(M) ∩ U . Suppose D is a compressing disk for
Fr(M ∩ U ;U) in U . Then ∂D bounds a disk E ⊂ Fr(M) that must contain a
component of Fr(M) ∩ ∂U . Since these curves are noncontractible on Fr(M), this
is a contradiction. It follows that Fr(M ∩ U ;U) is incompressible in U . Therefore,
we may conclude that U is end-irreducible. ♠

Lemma 3.3. Let W be an orientable, irreducible, end-irreducible 3-manifold that
has only one end and is such that ∂W an open annulus that is incompressible in
W . Suppose that there is an annulus A ⊂ ∂W such that the inclusion induced map
π1(A) → π1(∂W ) is an isomorphism. The following are equivalent.

1) Every loop in W is freely homotopic in W into A.
2) Given any compact K ⊂ W , there is a compact, connected, irreducible 3-

manifold M ⊂W with K ∪A ⊂M − Fr(M) such that
a) Fr(M) is incompressible in W ,
b) Fr(M) is connected, and
c) any closed path in M is freely homotopic in M into A ∪ Fr(M).
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3) Given any compact K ⊂W , there is a compact, connected 3-manifold M ⊂W
with K∪A ⊂M−Fr(M) such that the triple (M,A,Fr(M)) is homeomorphic
as a triple to (A× I,A× 0, A× 1).

4) The pair (W,A) is homeomorphic as a pair to (A× [0,∞), A× 0).

Proof. We first prove (1=⇒ 2). LetK ⊂W be compact. SinceW is end-irreducible,
there is a compact, connected 3-manifold M ⊂ W with K ∪ A ⊂M − Fr(M) such
that Fr(M) is incompressible in W . Since W has one end, we may argue that
cl(W −M) is connected and noncompact. It follows that M is irreducible because
W is irreducible. Since A ⊂ M and W is irreducible, it follows that cl(W −M) is
irreducible.

Let F be a component of Fr(M). If Fr(M) − F 6= ∅, there is a loop λ in W
that meets F in exactly one point because cl(W −M) is connected. Now λ is
freely homotopic in W into A. By a Z2-intersection number argument, we get a
contradiction. See the proof of Lemma 2.3 of [3] for example. So F = Fr(M).

Let λ : S1 →M be a map. We may assume that λ(S1) ⊂M − ∂M . Since every
closed path inW is freely homotopic inW into A, there exists a map Λ : S1×I →W
such that Λ(z, 0) = λ(z) for every z ∈ S1 and Λ(S1 × 1) ⊂ A.

We may assume that Λ is transverse to F and that ](Λ−1(F )) is minimal.
Of course if Λ−1(F ) = ∅, then λ is freely homotopic in M into A.
Suppose that Λ−1(F ) 6= ∅ and that J is a component of Λ−1(F ). Since Λ(S1 ×

∂I) ∩ F = ∅, it follows that J is a simple closed curve. Since F is incompressible
and ](Λ−1(F )) is minimal, it can be argued that J is isotopic in S1 × I to a curve
S1× t for some t ∈ (0, 1). Alter the product structure of S1× I so that J = S1× t.
We may choose J so that Λ(S1 × [0, t)) ∩ F = ∅. It now follows that λ is freely
homotopic in M into F .

We now prove (2=⇒ 3). By Theorem 3.1 of [1], there is a component C of
Fr(M) ∪ A such that the map induced by inclusion on fundamental group is onto.
Note that π1(Fr(M)) → π1(M) is injective because Fr(M) is incompressible in M ,
and the inclusion induced map π1(A) → π1(W ) is injective. Therefore, by Lemma
10.2 of [6], it follows that there is a homeomorphism h : (M,C) → (C × I, C × 0).

Suppose that C = A. Then (M,A) is homeomorphic to (A× I, A× 0). Since
Fr(M) is connected and incompressible in A × I, it follows that Fr(M) is either a
disk or an annulus.

Suppose that Fr(M) is a disk. Then M must be a closed 3-cell because W is
irreducible and boundary-irreducible and cl(W −M) is connected and noncompact.
Since π1(A) → π1(M) is nontrivial, this is absurd.

So we may assume that Fr(M) is an annulus. Observe that cl(∂M −A) is an
annulus. Since Fr(M) ⊂ cl(∂M −A) and is incompressible in M , it follows that
(M,A,Fr(M)) is homeomorphic to (A× I, A× 0, A× 1).

Suppose that C = Fr(M). Then h−1((∂C×I)∪(C×1)) = M∩∂W . Since Fr(M)
and ∂W are incompressible in W , it can be argued that the inclusion induced map
π1(M ∩ ∂W ) → π1(M) is injective. Recall ∂W is an open annulus, so M ∩ ∂W
must be an annulus. Since A ⊂ M ∩ ∂W and A is incompressible in M , it follows
that M ∩ ∂W is an annulus and is a regular neighborhood of A in ∂W . It follows
that there is a homeomorphism from (M,A,Fr(M)) to (A× I,A× 0, A× 1).
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We now prove (3=⇒ 4). Let X be an end-irreducible exhaustion for W such that,
for n ≥ 0, A ⊂ Xn − Fr(Xn) and cl(W −Xn) is connected and noncompact, and
(Xn, An,Fr(Xn)) is homeomorphic to (A×I,A×0, A×1) for n ≥ 0. By Lemma IX.1
of [7], it follows that, for n ≥ 1, there is a homeomorphism hn : cl(Xn −Xn−1) →
A × [n − 1, n] such that hn|Fr(Xk) : Fr(Xk) → A × k is a homeomorphism for
k = n− 1 and n.

For n ≥ 1, let ηn : A × [n − 1, n] → A be the projection map. We define a
homeomorphism g : A× [0,∞) → W as follows. Let g(x, t) = h−1

1 (x, t) for (x, t) ∈
A × [0, 1]. Let n ≥ 2 be given and suppose that g is defined on A × [0, n − 1] and
takes it homeomorphically onto Xn−1 with g|A×(n−1) : A×(n−1) → Fr(Xn−1) a
homeomorphism. For (x, t) ∈ A× [n−1, n], define g(x, t) = h−1

n (ηnhng(x, n− 1), t).
One may check that g is well-defined, continuous, and that g|A× [0, n] : A× [0, n] →
Xn and g|A×n : A×n→ Xn are homeomorphisms. By continuing inductively, we
can extend g to a homeomorphism from A× [0,∞) to W which takes A× 0 to A.

That (4=⇒ 1) is clear. ♠

4. Nearnodes

Lemma 4.1. Suppose that N is a nearnode with ν ≥ 2 faces. Suppose that C is a
compact, connected subset of N that meets at least two components of ∂N . If B is
a closed 3-cell in N with C ⊂ B −Fr(B) such that B ∩Q is either a disk or empty
depending or whether C ∩Q 6= ∅ or C ∩Q = ∅, respectively, for each component Q
of ∂N , then Fr(B) is incompressible in N − C.

Proof. Suppose that D ⊂ N − C is a compressing disk for Fr(B). Let E1 and E2

be the closures of the components of ∂B − ∂D. Since ∂D is noncontractible in
Fr(B) is follows that Ei − ∂Ei contains a component of B ∩ ∂N for i = 1 and 2.
Therefore C ∩ (Ei − ∂Ei) 6= ∅ for i = 1, 2. Since N is irreducible, there is a 3-cell
B1 ⊂ N with ∂B1 = E1 ∪D. Since C ∩D = ∅, it follows after a bit of argument
that C ∩ ∂B1 ⊂ E1 − ∂E1. Therefore C ⊂ B1. Since B1 ∩ ∂N ⊂ E1, it follows that
C ∩ (E2 − ∂E2) = ∅ which is a contradiction. ♠

Lemma 4.2. Suppose that N is a noncompact 3-manifold containing a nontrivial
plane P ⊂ N − ∂N which separates N . Let N ′ be the result of splitting N along P .
Then N is a nearnode iff each component of N ′ is a nearnode.

Proof. Let N0 and N1 be the components of N ′ and let η : N ′ → N be the quotient
map of the splitting. Let Pi = η−1(P ) ∩Ni for i = 0 and 1.

(⇐= ) Suppose that each component of N ′ is a nearnode. Let K ⊂ N be
compact. Since P is proper in N , it follows that η is a proper map. Therefore
η−1(K) ∩Ni is compact for i = 0 and 1. Since N0 is a nearnode, there is a closed
3-cell B0 ⊂ N0 such that B0 ∩ Q is either empty or a disk for every component
of ∂N0 and η−1(K) ∩ N0 ⊂ B0 − Fr(B0). We may take B0 large enough so that
P0 ∩B0 is a disk.

Note that η−1η(B0 ∪P0)∩P1 is a disk. Let B1 ⊂ N1 be a closed 3-cell such that[
η−1η(B0 ∩ P0) ∪ η−1(K)

]
∩ P1 ⊂ B1
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and so that B1 ∩Q is either a disk or empty for every component Q of ∂N1. Note
that η(B0 ∪B1) is a closed 3-cell which contains K and is such that η(B0 ∪B1)∩Q
is either a disk or empty for every component Q of N . Therefore N is a nearnode.

(=⇒ ) Now suppose that N is a nearnode. If ∂N is connected, N is homeomor-
phic to halfspace which contains no nontrivial planes. Therefore, ](∂N) ≥ 2.

Let i = 0 or 1 be given. Let Ki ⊂ Ni be compact. Then η(Ki) ⊂ N is compact.
There is a compact, connected K ⊂ N which traps P such that Ki ⊂ K, and such
that K meets at least two components of ∂N . Let DP ⊂ P be a disk in P with
P ∩K ⊂ DP − ∂DP . Let B′ ⊂ N be a closed 3-cell with K ∪DP ⊂ B′ − Fr(B′)
such that B′ ∩Q is either a disk or empty for every component Q of ∂N . Let Q∗

be the union of components Q of ∂N such that B′ ∩Q 6= ∅ but K ∩Q = ∅. Let U
be a regular neighborhood of Q∗ in N − (K ∩DP ). Let B = cl(B′ − U). We may
choose U so that B is a closed 3-cell. Note that B ∩Q is either a disk or is empty
for each component Q of ∂N . By Lemma 4.1 it follows that Fr(B) is incompressible
in N −K.

By Lemma 2.1, The Target Lemma, there is an isotopy of N fixed on K ∪
DP which takes P to a plane P ′ such that each component J of P ′ ∩ Fr(B) is
noncontractible in Fr(B) and bounds a disk EJ ⊂ P ′ such that DP ⊂ EJ − J .
It follows that each compact component of P ′ ∩ cl(N −B) is an annulus that is
incompressible in cl(N −B).

Suppose that A is an annulus component of P ′ ∩ cl(N −B). Let J1 and J2 be
the components of ∂A. Let D1 and D2 be properly embedded disjoint disks in B
such that ∂Dj = Jj for j = 1 and 2. Since N is irreducible, there is a closed 3-cell
C ⊂ N with ∂C = D1∪A∪D2. It is not difficult to see that B∪C is a closed 3-cell.
Let B∗C be a regular neighborhood of B ∪ C in N . Then each compact component
of P ′ ∩ cl(N −B∗C) is an incompressible annulus in cl(N −B∗C) and

](P ′ ∩ cl(N −B∗C)) < ](P ′ ∩ cl(N −B)).

By continuing in this fashion, we obtain a closed 3-cell B∗ such that B∗ ∩ ∂N =
B ∩ ∂N and P ′ ∩ Fr(B∗) is a simple closed curve, say J . Let E be the disk in P ′

with ∂E = J . Let B∗i be the closure of the component of B∗ − E which contains
η(Ki).

There is a homeomorphism h : N → N that is the identity on K such that
h(P ′) = P . Then h(B∗i ) is a 3-cell which meets P in a single disk, namely h(E).
Let B′i = η−1h(B∗i ). Then Ki ⊂ B′i − Fr(B′i) and B′i ∩Q is either a disk or empty
for each component Q of ∂Ni. Therefore Ni is a nearnode. ♠

Lemma 4.3. If N is a nearnode and N ′ ⊂ N is a proper 3-manifold such that ∂N ′

is a squadron in N , then N ′ is a nearnode.

Proof. This follows immediately from Lemma 4.2 ♠

Let F∞ be the 2-manifold obtained from the closed upper half plane by removing

an open disk of radius
1
3

centered at (0, n) for n = 1, 2, 3, . . . . Let Σ∞ = F∞ × S1.

Lemma 4.4. Let N be a nearnode with two faces that is not a node, i.e. is not
a missing boundary manifold. Then there is an embedding ι : Σ∞ → N which
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is proper and is such that exactly one component of cl(N − ι(Σ∞)) is a 2-handle
and every other component of cl(N − ι(Σ∞)) is homeomorphic to the exterior of a
nontrivial knot in S3.

Proof. Let B be an exhaustion for N of closed 3-cells which meet each component
of ∂N in single disks. By Lemma 3.3 there is at least one loop λn in N −Bn that is
not freely homotopic in N into Fr(Bn) for each n ≥ 0. By taking a subsequence of
B, we may assume that Bn+1−Bn contains λn. For n ≥ 0, let Vn = cl(Bn+1 −Bn).
Then (Vn,Fr(Vn)) is not homeomorphic to (S1 × I × I, S1 × I × ∂I) for any n ≥ 0.
Note, however, that ∂Vn is a torus for n ≥ 0.

For n ≥ 0, let Un be a regular neighborhood of ∂Vn in Vn and let Tn = ∂Un −

∂Vn. Let Σ =
∞⋃

n=0

Un. It is not difficult to construct a homeomorphism from

Σ to Σ∞ by taking Un to Fn × S1, where F0 =

{
(x, y) ∈ F∞|x2 + y2 ≤

(
3
2

)2
}

and Fn =

{
(x, y) ∈ F∞|

(
n+

1
2

)2

≤ x2 + y2 ≤
(
n+

3
2

)2
}

for n ≥ 1. Let V ′n =

cl(Vn − Un).
Note B0 is a 2-handle attached to the open annulus component of ∂Σ. Let

n ≥ 0 be given. We claim that V ′n is the exterior of a nontrivial knot in S3. Since
V ′n ⊂ Bn+1 and ∂V ′n is a torus, it follows that V ′n is either a nontrivial knot exterior
or a solid torus. To get a contradiction, suppose that V ′n is a solid torus. Let λ be
the generator of π1(Vn). There exists ν such that λν is freely homotopic in Vn to a
loop contained in Fr(Bn). By Van Kampen’s Theorem, it follows that π1(Bn+1) is
isomorphic to 〈λ|λν = 1〉. Since Bn+1 is simply connected, it follows that |ν| = 1.
Therefore (Vn,Fr(Vn)) is homeomorphic to (S1 × I × I, S1 × I × ∂I). This violates
the first paragraph of this proof. Therefore V ′n is a nontrivial knot exterior. This
ends the proof. ♠

The following Theorem has benefited from a discussion with Mike Starbird.

Theorem 4.5. A nearnode with two faces that is not a node contains a collection
of pairwise disjoint nontrivial planes with the cardinality of the Cantor set no two
of whose members are parallel.

Proof. As usual let I be the closed unit interval. Let K ⊂ I be the Classical Cantor
Set. Recall thatK is constructed recursively by successively removing middle thirds
of closed intervals. For n ≥ 0, let Un,1, . . . , Un,2n be the middle thirds removed
during the nth stage of construction.

Let i ≥ 0 and 1 ≤ j ≤ 2i be given. For l ≥ 1, let Dijl be a round open disk in
Uij × [0,∞) whose center is on I × (l+ i). We assume that radii are chosen so that
the disks are disjoint. Let D be the set of all Dijl. Then D is countable. Observe
that I × [0, n] meets only finitely many elements of D.

Let FK = (I × [0,∞)) − (
⋃
D). Let ΣK = FK × S1. For every x ∈ K, let

A′x = (x× [0,∞))× S1. Then A′x is a half open annulus for every x ∈ K.
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Let N be a nearnode with two faces. By Lemma 4.4, we may assume that Σ∞

is contained in and proper in N and that exactly one component of cl(N − Σ∞) is
a 2-handle and the rest are nontrivial knot exteriors in S3.

Let H be the 2-handle component of cl(N − Σ∞) and let A = H ∩Σ∞. It is not
difficult to show that FK is homeomorphic to F∞. It follows that ΣK is homeo-
morphic to Σ∞. Indeed there is a homeomorphism of pairs h : (ΣK , I × 0× S1) →
(Σ, A).

For each x ∈ K, let Ax = h(A′x). Make the identification H = I × D2 so that
A = I×∂D2. For every x ∈ K, let Dx = x×D2 and let Px = Ax∪Dx. Then Px is
a plane that is proper in N and for every x ∈ K, and Px ∩Py = ∅ whenever x 6= y.
Let PK = {Px|x ∈ K}.

We claim that PK is a set of planes as in the statement of the theorem. All we
need to show is that if x 6= y are elements of K, then Px is not parallel in N to
Py. Let x 6= y ∈ K. Let Nxy be the near parallelism in N between Px and Py

that is guaranteed by Lemma 4.2. There exist i and j such that Uij is between
x and y. Then Uij contains infinitely many elements of D. Hence Nxy contains
infinitely many of the nontrivial knot exteriors of cl(N − Σ∞). One may conclude
that π1(cl(Nxy −H)) is nonfinitely generated. It follows that Nxy is not a node by
Lemma 3.3.
♠

The result given below extends a result of Kinoshita [10].

Theorem 4.6. Let V be a connected, orientable, irreducible open 3-manifold of
genus 1 at infinity. Suppose that P0 ⊂ V is a nontrivial plane. Then V is a
nearnode with one handle.

Proof. It suffices to show that the manifold obtained by splitting along P0 is a
nearnode with two faces. Let U be a regular neighborhood of P0 in V and let
V ′ = cl(V − U). Suppose that K ′ is a compact subset of V ′. Let P1 and P2 be
the components of ∂U . Then Pi is parallel in V to P0 for i = 1 and 2. Let P be
the squadron P0 ∪ P1 ∪ P2. Let K ⊂ V be a compact, connected 3-manifold which
contains K ′ and traps each component of P in V . By Lemma 1 of [14], we may
assume that Pi ∩K is a single disk for i = 0, 1, 2. Since V is of genus 1 at infinity,
we may assume that K is chosen so that if M ′ ⊂ V is a compact 3-manifold with
connected boundary such that K ⊂ M ′ − ∂M ′, then ∂M ′ is of genus at least one.
For i = 0, 1, 2, let Di ⊂ Pi be a disk with K∩Pi ⊂ Di−∂Di. Since V is of genus 1 at
infinity, there is a compact 3-manifold M ⊂ V with K ∪ (D0∪D1∪D2) ⊂M −∂M
such that ∂M is a torus.

Claim 4.6.1 ∂M is incompressible in V −K.
Proof: This follows because adding a compressing 2-handle to or removing a

1-handle from M in the complement of K will result in a compact 3-manifold M ′

such that K ⊂M ′− ∂M ′ and ∂M ′ is a 2-sphere. This contradicts our choice of K.
♣

By Lemma 2.1, we may isotop P in V by an isotopy fixed on K ∪ (D0∪D1∪D2)
so that for each i = 0, 1, 2, each component J of P ∩ ∂M bounds a disk EJ ⊂ P
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such that Di ⊂ EJ − J for the appropriate i and such that J is noncontractible in
∂M .

Claim 4.6.2 M is a solid torus, and each component of P ∩∂M is a meridian
of M .

Proof: Let i = 0, 1 or 2, and let J be a component of Pi ∩ ∂M and such
that (EJ − J) ∩ ∂M = ∅. Let N be a regular neighborhood of EJ in M . Since
J is noncontractible in ∂M , it follows that cl(∂M −N) is an annulus. Hence
cl(∂M −N) ∪ Fr(N ;M) is a 2-sphere which must bound a 3-cell B in V . Since N
and P0 are on the same side of ∂B, and since P0 is noncompact and proper in V ,
it follows that B ∩N = Fr(N ;M). Since N and B are 3-cells and V is orientable,
it follows that N ∪ B is a solid torus. Note that ∂(N ∪ B) = ∂M . Because V is
noncompact, it follows that N ∪ B = M and so M is a solid torus. Note that EJ

is a meridian disk for M . Since each component of P ∩ ∂M is noncontractible in
∂M , it follows that each is parallel in ∂M to J and, therefore, must be a meridian
for M . ♣

Claim 4.6.3 V ′ is a nearnode with two faces.
Proof: First consider the case where Pi ∩M is a single disk for each i = 0, 1, 2.

Then U ∩M is a regular neighborhood of P0∩M in M . Let B = cl(M − U). Then
B is a 3-cell, B ⊂ V ′, and B∩Pi is a single disk for i = 1, 2. It follows that K ′ ⊂ B
because K ′ ⊂ M and K ′ ⊂ V ′. Therefore V ′ is a nearnode with two faces. Now
suppose that Pi ∩M is not a single disk for some i = 0, 1 or 2. Then there is an
annulus component A of Pi∩cl(V −W ). By Claim 4.6.2 there are disjoint meridian
disks D′ and D′′ in M such that ∂D′ ∪ ∂D′′ = ∂A. Note that D′ ∪ A ∪ D′′ is a
2-sphere that bounds a closed 3-cell C ⊂ V . It is not difficult to see that M ∪C is
a solid torus. Let M ′ be a regular neighborhood of M ∪ C in V . By continuing in
this fashion, we may reduce to the case where Pi ∩M is a single disk for i = 0, 1, 2.
♣

The theorem now follows from these claims. ♠

Corollary 4.7. Let V be a connected, orientable, irreducible open 3-manifold of
genus 1 at infinity. Suppose that P0 ⊂ V is a nontrivial plane. Then π1(V ) is
infinite cyclic.

5. Finiteness Conditions

Theorem 5.1. Suppose that V is a noncompact, irreducible, orientable connected
3-manifold that has one end. Assume that V has an exhaustion X such that ∂Xn

is connected, of genus g ≥ 2, and is incompressible in V −X0 for n ≥ 1.
Let U be a 3-manifold that is proper in V such that ∂U is a squadron. Let ν be

the number of components of U .
1) If ν > 2g− 2, then at least one component of U is a nearnode with two faces.
2) If W is a component of U , then ](∂W ) ≤ 2g.

Proof. It is not difficult to show that there is a compact 3-manifold M ⊂ V such
that cl(V −M) is end-irreducible, and for every compact K ⊂ V with M ⊂ K there
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is a compact 3-manifold NK such that K ⊂ NK − ∂NK and ∂NK is connected, of
genus g and incompressible in W −M .

Since V is irreducible and connected and since g ≥ 1, it follows that M may be
chosen so that cl(V −M) is irreducible.

Suppose that U1, . . . , U2g−1 are distinct components of U . Let U ′ =
2g−1⋃
i=1

Ui.

Let D be a 2-manifold in ∂U ′ such that D ∩ P is a disk for every component P
of ∂U ′ and such that ∂U ′ ∩ M ⊂ D − ∂D. Let K be a compact subset of U ′.
We may assume that K ∩ P 6= ∅ for each component P of ∂U ′ and that K ∩ Ui

is connected for 1 ≤ i ≤ 2g − 1. Let N be a compact 3-manifold in V such that
K∪D∪M ⊂ N−∂N , such that ∂N is connected, is of genus g, and is incompressible
in V − (K ∪D ∪M).

By Lemma 2.1, we may move ∂U ′ by an isotopy of V fixed on K ∪ D ∪M so
that if J is a component of ∂U ′ ∩ ∂N , then J is a simple closed curve that bounds
a disk EJ ⊂ ∂U ′ such that D∩P ⊂ EJ −J , where P is the component of ∂U ′ that
contains J . We may also assume that J is noncontractible on ∂N .

We first claim that no component of ∂N ∩ U ′ or ∂N ∩ cl(V − U ′) is a disk.
Suppose that E is such a disk. Let J = ∂E. Then J is a component of ∂N ∩ ∂U ′.
Let P be the component of ∂U ′ which contains J . Recall there is a disk EJ ⊂ P
such that ∂EJ = J and M ∩ P ⊂ EJ − J . Now E ∪ EJ is a 2-sphere which must
bound a closed 3-cell B ⊂ V by irreducibility. We may use B to isotop P free of M .
However since cl(V −M) is end-irreducible, Lemma 3.1 produces a contradiction.

Let χ denote the Euler characteristic. Since neither ∂N ∩U ′ nor ∂N ∩cl(V − U ′)
has disk components, it follows that χ(∂N ∩ U ′) and χ(∂N ∩ cl(V − U ′)) are non-
positive. Consequently

χ(∂N) = χ(∂N ∩ U ′) + χ(∂N ∩ cl(V − U ′))
≤ χ(∂N ∩ U ′).

For 1 ≤ i ≤ 2g − 1, let Fi = ∂N ∩ Ui. Then

χ(∂N) ≤
2g−1∑
i=1

χ(Fi).

Since no component of Fi is a disk and each component has boundary, it follows
that χ(Fi) ≤ 0 for 1 ≤ i ≤ 2g − 1.

We claim that χ(Fi) = 0 for some i. Otherwise χ(Fi) ≤ −1 for 1 ≤ i ≤ 2g − 1,
and hence χ(∂N) ≤ 1− 2g. But χ(∂N) = 2− 2g because ∂N is of genus g. This is
a contradiction.

Choose notation so that χ(F1) = 0. Since no component of F1 is a disk, each
component of F1 has Euler Characteristic equal to zero. Since ∂N is orientable, no
component of F1 is a mobius band. Therefore each component of F1 is an annulus.

We claim there is a component A of F1 such that each component of ∂A is
contained in a different component of ∂U1. In order to get a contradiction, suppose
that this is not the case. Let P be a component of ∂U1. Then ](P ∩ ∂N) is
even since ](P ∩ ∂N) = 2](F ′1), where F ′1 is the union of all the components of F1

that meet P . On the other hand, ](P ∩ ∂N) must be odd because ](P ∩ ∂N) =
](∂(P ∩N)) and exactly one component of P ∩N is a disk while the rest are annuli.
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Let J1 and J2 be the components of ∂A and let Pi be the component of ∂U1 that
contains Ji and let Ei be the disk in Pi bounded by Ji for i = 1, 2. Then E1∪A∪E2

is a 2-sphere which must bound a 3-cell B0 ⊂ V by irreducibility. Since A ⊂ U1

and since each component of ∂U1 is a proper plane, it follows that B0 ⊂ U1.
We claim that K ∩U1 ⊂ B0. Since cl(P1 − E1) is noncompact and proper in V ,

we know that P1 − E1 is not contained in B0. Since K ∩ U1 and P1 − E1 are on
opposite sides of ∂B0, it follows that K ∩ U1 ⊂ B0.

Since U ′ has only finitely many components, it follows that at least one of them,
say U1, has an exhaustion B such that Bn is a closed 3-cell and Bn ∩ ∂U1 is a pair
of disks each contained in a different component of ∂U1. Therefore U1 is a nearnode
with two faces. This ends the proof of (1)

To prove (2), let W be a component of U .
There is a component F of ∂N ∩W that meets each component of ∂W . Con-

sequently ](∂W ) ≤ ](∂F ). We will now obtain a bound on ](∂F ). Let gF be the
genus of the closed 2-manifold obtained from F by capping of each component of
∂F with a disk. Clearly gF ≤ g. As before no component of F or cl(∂N − F ) is a
disk. So χ(F ) ≥ χ(∂N). Hence

(2− 2gF )− ](∂F ) = χ(F )
≥ χ(∂N)
≥ 2− 2g.

That is

](∂F ) ≤ 2g − 2gF

≤ 2g.

It follows that ](∂W ) ≤ 2g. ♠

For the last result of the section it will additionally be assumed that π1(V ) is
finitely generated of rank ρ. We will also assume that P is a squadron in V such
that V − P is connected.

Lemma 5.2. Suppose that V is a noncompact connected 3-manifold that has one
end and that π1(V ) is finitely generated of rank ρ. Suppose that P is a squadron in
V such that V − P is connected. Then ](P ) ≤ ρ.

Proof. This follows by Van Kampen’s Theorem and Grushko’s Theorem.
♠

Part II: Major Results

6. More Definitions

We now make our entrance into the second half of the paper, where the results are
deeper and more difficult. Before proving these results, we will state definitions of
some concepts that were not needed until this point and state some results that
could not be stated without this vocabulary.
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One of the chief goals of this portion of the paper is to create a place in a
noncompact 3-manifold into which nontrivial planes can be isotoped. This creation
proceeds in stages that will be described in broad strokes below.

In [13], the weak characteristic pair of an end-irreducible 3-manifold was intro-
duced. The noncompact components of a weak characteristic pair are Seifert fibered
spaces over noncompact 2-manifolds and [0,∞)-bundles. It was shown in that pa-
per that essential, half-open annuli can be isotoped into the weak characteristic
pair.

As we’ve seen, in the Target Lemma, for instance, planes in eventually end-
irreducible 3-manifolds can be isotoped so as to meet the end of the ambient man-
ifold in half-open annuli. Consequently, the weak characteristic pair of the end of
the manifold catches the end of nontrivial planes of that 3-manifold.

It turns out we may alter the weak characteristic pair by adding, 2-handles,
removing 1-handles, and performing other simple modifications to obtain nearnodes
and blemishes. Nearnodes and blemishes, it turns out, have certain properties that
enable us to prove uniqueness of a particular type of decomposition.

This particular type of decomposition is called a “hangar decomposition.” Planes
are moved into hangars. The creation of the hangar is a two-stage process. Mod-
ifying the weak characteristic pair of the end produces something called a “strip.”
Strips are sufficient for a place into which planes may be isotoped, but they are
inadequate so for as having a unique structure is concerned. For this, we must
enlarge them slightly so as to obtain hangars.

Let V be a noncompact, irreducible, connected 3-manifold. We say that V is a
missing boundary manifold if there exists a compact 3-manifold MV such that V is
homeomorphic to MV − L, where L is a closed subset of ∂MV .

Suppose that N is a noncompact, irreducible, connected orientable 3-manifold
that has one end and is a missing boundary manifold. Also suppose that every
component of ∂N is noncompact and that N contains a nontrivial plane. Then we
say that N is a blemish. If N is a blemish and every component of ∂N is a plane,
then we say that N is a polished blemish.

Let H be a proper 3-submanifold of V . We say that H is a prehangar for V if

1) ∂H is a squadron in V ,
2) each component ofH is either a nearnode with two faces or a polished blemish,
3) whenever N is a component of cl(V −H) that is either a nearnode with two

faces or a polished blemish, then N is a node with two faces, and
4) whenever N is a component of cl(V −H) that is a node with two faces and H ′

and H ′′ are the components of H which contain the components of ∂N , then
H ′ ∪N ∪H ′′ is neither an nearnode with two faces nor a polished blemish.

Given a proper 3-submanifold H in V that satisfies conditions 1 and 2 in the
definition of prehangar, let α(H) be the number of components of cl(V −H) that
are either nearnodes with two faces or polished blemishes but are not nodes with
two faces. Given a squadron P in V , there is a proper 3-submanifold H of V that
satisfies 1 and 2 (a product neighborhood of P , for instance). If we choose H so that
(α(H), ](H)) is minimal when taken in lexicographic order, then it is not difficult
to show that H is a prehangar for V .
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By combining this observation with Lemma 8.3 of the sequel, we may obtain the
following.

Lemma (The Prehangar Lemma) Suppose that V is a noncompact, irre-
ducible, orientable, connected 3-manifold such that

1) V has one end,
2) π1(V ) is finitely generated, and
3) V has an exhaustion X such that, for n ≥ 1, ∂Xn is connected, of genus g,

and incompressible in V −X0.
Then there is a prehangar H for V such that every nontrivial plane in V that is
contained in V −H is nearly parallel in cl(V −H) to a component of ∂H.

If H is a prehangar for V and cl(V −H) is aplanar, then we say that H is a
hangar for V .

We say that a set H of prehangars for V is a hangar system for V if for every
squadron P ⊂ V , there is an HP ∈ H such that P is isotopic in V into HP .

If N and N ′ are both nearnodes with two faces or both polished blemishes, then
we say that N and N ′ are of the same type.

Let V be a 3-manifold and let M ⊂ V be a compact 3-manifold. Suppose that
S ⊂ V is a 3-manifold that is proper in V such that

1) S has a finite number of components,
2) ∂S is incompressible in V ,
3) if S′ is a component of S, then either S′ is a nearnode with two faces or a

blemish, and
4) if Q is a squadron in V such that each component of Q∩ cl(V −M) is a half

open annulus that is incompressible in cl(V −M), then Q is isotopic in V
into S,

then we say that S is a strip for V rel M . If each component of ∂S is a plane, then
we shall refer to S as a polished strip for V rel M .

Let V be a noncompact 3-manifold that contains a compact 3-manifold L such
that V is of finite genus g ≥ 2 at infinity rel L. Suppose that for every compact
3-manifold K ⊂ V there is a compact 3-manifold MK ⊂ V that is regular in V
with respect to L for which there is a polished strip S for V rel MK such that if Q
is a plane in V that is nearly parallel in V to a component of ∂S, then Q is isotopic
in V into S. Then we say that V is pristine.

We prove the following in Lemma 8.4

Lemma (The System Lemma) Let V be an orientable, irreducible, connected,
open, eventually end-irreducible 3-manifold with one end such that π1(V ) is finitely
generated. Suppose that L is a compact subset of V such that V is of at least
genus g ≥ 2 at infinity rel L and that V is pristine. Let M be the set of compact
3-manifolds in V that are regular in V with respect to L.

1) For every M ∈ M, let S(V,M) be a polished strip such that if Q is a plane
in V that is nearly parallel in V to a component of ∂S(V,M), then Q is
isotopic in V into S(V,M). There is a prehangar H(V,M) for V such that
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S(V,M) ⊂ H(V,M) and every component of ∂H(M,V ) is either a component
of ∂S(V,M) or is parallel to a component of ∂S(V,M).

2) If P is a squadron in V , then there is a compact 3-manifold MP that is
regular in V with respect to L such that P is isotopic in V into H(V,MP ).
Consequently, H(V ) = {H(V,M)|M ∈M} is a hangar system for V .

The following two results are Theorem 8.5 and Lemma 9.1 which combine to
form the main result of this paper.

Theorem (The Hangar Theorem) Let V be an orientable, irreducible, con-
nected, open, pristine 3-manifold with finite genus g ≥ 2 at infinity and a finitely
generated fundamental group. Then there is a hangar H for V such that if P is a
squadron in V , then P is isotopic in V into H. Furthermore, if G is any hangar
for V , then G is isotopic in V to H.

In Lemma 9.1 we prove the following

Lemma (The Strip Lemma) Let V be an orientable, irreducible, connected,
open, eventually end-irreducible 3-manifold such that π1(V ) is finitely generated.
Also assume that there is a compact 3-manifold L such that V is of finite genus
g ≥ 2 at infinity rel L. Suppose that M ⊂ V is a 3-manifold with L ⊂ M that is
regular in V with respect to L.

Then there is a strip S for V rel M such that if Q is a plane in V that is nearly
parallel in V to a component of ∂S, then Q is isotopic in V into S.

We are now able to state and prove (modulo the above results) the following
theorem which summarizes the results of Theorem 8.5 and Lemma 9.1.

Theorem 6.1. (Main Theorem) Let V be an orientable, irreducible, connected
3-manifold of finite genus g ≥ 2 at infinity and with finitely generated fundamental
group. Then V is pristine if at least one of the following holds

1) Whenever F is a noncompact, connected 2-manifold such that the inclusion
induced map π1(F ) → π1(V ) is injective, π1(F ) is finitely generated, and
there is a compact K ⊂ V that traps F , then F is a plane.

2) There is no nontrivial subgroup of π1(V ) that is free.
3) π1(V ) is trivial.

In any of these cases there is a hangar H for V such that if P is a squadron in
V , then P is isotopic in V into H. Furthermore, if G is any hangar for V , then G
is isotopic in V to H.

Proof. By Lemma 9.1, for every regular M ⊂ V there is a strip S for V rel M such
that if Q is a plane in V that is nearly parallel in V to a component of ∂S, then
Q is isotopic in V into S. Each of the conditions 1,2, and 3 of the theorem ensure
that any blemish component of S is a polished blemish. Therefore, V is pristine.
The remainder follows from Theorem 8.5. ♠
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7. Blemishes

The following beautiful characterization of missing boundary manifolds is due to
Thomas Tucker [11]. It is stated here because it will be used in the proof of Lemma
7.2

Lemma 7.1. (Tucker) Let M be a P2-irreducible 3-manifold that is connected.
Then M is a missing boundary manifold iff for every compact C ⊂ M , each com-
ponent of M − C has finitely generated fundamental group.

Lemma 7.2. Let N be a noncompact, irreducible connected 3-manifold. Suppose
that P ⊂ N is a nontrivial plane. Let N ′ be obtained from N by splitting N along
P . Then N is a (polished) blemish iff each component of N ′ is a (polished) blemish.

Proof. We will prove the result for blemishes; the result for polished blemishes
follows immediately. Let η : N ′ → N be the quotient map of the splitting. Since P
is proper in N , it follows that η is a proper map. Suppose that K ′ ⊂ N ′ is compact.
Then η(K ′) is compact. Let K be a compact, connected 3-manifold that traps P ,
and which contains η(K ′) in its interior.

Since P is a proper plane, it follows that N is irreducible iff N ′ is irreducible.
Henceforth, we will assume that N and N ′ are irreducible. By Lemma 1 of [14],
there is a compact 3-manifold M ⊂ N with K ⊂M − Fr(M) such that P ∩M is a
single disk whose boundary is noncontractible in Fr(M). Therefore cl(P −M) is a
half open annulus which is incompressible in cl(N −M).

Let N0 and N1 be the components of N ′. (It may be that N0 = N1 = N ′.)
Let Mi = η−1(M) ∩ Ni for i = 0 and 1. Note that cl(N −M) has exactly one
noncompact component iff cl(Ni −Mi) has exactly one noncompact component for
i = 0 and 1, so N has one end iff Ni has one end for i = 0 and 1, so, therefore, we
may assume that N and each component of N ′ has one end.

Note that π1(N −M) is isomorphic to either

π1(N ′ − η−1(M))∗π1(A)

or
π1(N0 −M0) ∗π1(A) π1(N1 −M1)

depending upon whether or notN ′ is connected. By Theorems 25 and 31 of Chapter
1 of [5], we may deduce that π1(N −M) is finitely generated iff the fundamental
group of each component of N ′ − η−1(M) is finitely generated.

Suppose that N is a blemish. Then π1(N −M) is finitely generated. Let i =
0 or 1 be given. Then π1(Ni −Mi) is finitely generated. Since π1(Mi −K ′) is
finitely generated, it follows that π1(Ni −K ′) is finitely generated by Van Kampen’s
Theorem. By Lemma 7.1 it follows that N ′ is a missing boundary manifold. Hence
each component of N ′ is a blemish.

Suppose that each component of N ′ is a blemish. Then π1(Ni −Mi) is finitely
generated for i = 0 and 1. Therefore π1(N −M) is finitely generated. Since
π1(M −K) is finitely generated, it follows by Van Kampen’s Theorem that π1(N −K)
is finitely generated. Hence N is a missing boundary manifold. Therefore, N is a
blemish. ♠
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Lemma 7.3. Now suppose that N∗ is a connected, proper 3-submanifold of N such
that ∂N∗ ⊂ N − ∂N and ∂N∗ is a squadron in N . If N is a (polished) blemish,
then N∗ is a (polished) blemish.

Proof. This follows directly from Lemma 7.2. ♠

8. Prehangars and Hangar Systems

Lemma 8.1. Let V be a noncompact, open, irreducible 3-manifold. Suppose H and
G are prehangars for V such that ∂H ⊂ G−∂G. Suppose H is chosen in its isotopy
class in V with respect to this condition so H contains the fewest components of
cl(V −G). Then H ⊂ G.

Proof. Suppose that H ′ is a component of H. Let Γ = cl(V −G). Since ∂H ⊂
G− ∂G, a component of Γ is either contained in H ′ or misses H ′. Let Γ′ = Γ∩H ′.
Note Γ′ consists of the components of Γ that are contained in H ′. It follows by
Lemmas 7.3 and 4.3 and the fact G is a prehangar that each component of Γ′ is a
node with two faces. Let G′ = G ∩ H ′. Note that H ′ = G′ ∪ Γ′, and H ′ ⊂ G iff
Γ′ = ∅.

It suffices to prove that Γ′ = ∅. Suppose that Γ′ 6= ∅. For every component P of
∂H ′, let GP be the component of G′ that contains P .

Let us first suppose there is a component P of ∂H ′ such that GP is a node with
two faces. Let P ′ = ∂GP − P and let N be the component of Γ′ that contains P ′.
We may use N ∪GP to reduce the number of components of Γ contained in H ′ by
an isotopy that is fixed off a neighborhood of N ∪GP .

Now suppose there is no plane P such that GP is a node with two faces. Then
every component of G that meets H ′ must be of the same type. Let N be a
component of Γ′, and let G0 and G1 be the components of G that meet N . Since
G0 and G1 meet H ′, they are of the same type. This contradicts the assumption
that G is a prehangar. ♠

Lemma 8.2. Let V be a noncompact, open, irreducible 3-manifold. Suppose G is
a prehangar for V and that G′ and G′′ are distinct components of G. There is no
isotopy ht of G such that h1(G′) ⊂ G′′ − ∂G′′.

Proof. Suppose that ht is such an isotopy. By Lemmas 7.3 and 4.3, it follows that
h1(G′) and G′′ are of the same type. Hence G′ and G′′ are of the same type.

Let P ′ be a component of ∂G′. By Theorem 5 of [14], it follows there is a
parallelism N ′ in V between P ′ and h1(P ′). Since h1(G′) ⊂ G′′ − ∂G′′, there is a
component P ′′ of ∂G′′ which is contained in N ′ − ∂N ′. By Lemmas 7.3 and 4.3, it
follows that there is a parallelism N ′′ between P ′ and P ′′. By Lemmas 7.3 and 4.3
again, we may choose P ′ and P ′′ so that N ′′ ∩ (G′ ∪G′′) = P ′ ∩ P ′′.

If N ′′ is a component of cl(V −G), this contradicts the fact that G is a prehangar
for V . On the other hand, if N ′′ is not a component of cl(V −G), then N ′′ must
contain a component of cl(V −G) which would likewise produce a contradiction.
♠
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By Lemma 5.2, we may assume that there is a maximal squadron P such that
V − P is connected, i.e. if P ′ is a squadron in V and ](P ′) > ](P ), then V − P ′ is
not connected.

Lemma 8.3. (The Near-Parallel Lemma) Suppose that V is a noncompact,
irreducible, orientable connected 3-manifold that has one end and π1(V ) is of rank
less than ρ. Assume that V has an exhaustion X such that ∂Xn is connected,
of genus g ≥ 2, and is incompressible in V − X0 for n ≥ 1. Assume that P is
a squadron with the largest number of components such that V − P is connected.
Suppose that H is a prehangar for V such that P ⊂ H − ∂H.

1) Then ](H) ≤ ρ+ (2g − 2)(2g + 1) + 1.
2) Suppose that ](H) is as large as possible for any prehangar H for V which

contains P . Then every nontrivial plane in V that is contained in V −H is
nearly parallel in cl(V −H) to a component of ∂H.

Proof. To prove (1). Let N be the union of components of H that are nearnodes
with two faces and let C = cl(H −N). By Lemma 5.1 and the fact that H is a
prehangar, it follows that ](C) ≤ 2g − 2 and ](∂C) ≤ 2g(2g − 2).

To get a contradiction, suppose

](H) > ρ+ (2g − 2)(2g + 1) + 1
= ρ+ (2g − 2) + 2g(2g − 2) + 1.

There are at least (2g − 2) + 2g(2g − 2) + 1 components of H that contain no
component of P and so cl(V −H) has at least 2g(2g − 2) + 1 components that are
nearnodes with two faces. By Lemma 5.1 at most 2g(2g − 2) of these can meet
a component of C. Therefore at least one component of cl(V −H) is a nearnode
with two faces that meets only components of N . This contradicts that H is a
prehangar.

To prove part(2), suppose that Q is a nontrivial plane in V that is contained
in V − H. Let N be a regular neighborhood of Q in V − H. Then N is a node
with two faces. Since ](H) is maximal, it follows that either a component N ′ of
cl(V − (H ∪N)) is a nearnode with two faces that is not a node or N ′ is a node
with with two faces that meets components of H of the same type. Since H is
a prehangar, one component of ∂N ′ is a component of ∂N and the other is a
component of ∂H. Let N ′′ be the closure of the component of N − Q that meets
N ′. By Lemma 4.2, N ′′ is a nearnode with two faces. So by Lemma 4.2 N ′ ∪N ′′

is a nearnode with two faces. This ends the proof. ♠

Lemma 8.4. (The System Lemma) Let V be an orientable, irreducible, con-
nected, open, eventually end-irreducible 3-manifold with one end such that π1(V )
is finitely generated. Suppose that L is a compact subset of V such that V is of
at least genus g ≥ 2 at infinity rel L and that V is pristine. Let M be the set of
compact 3-manifolds in V that are regular in V with respect to L.

1) For every M ∈M, let S(V,M) be a polished strip such that if Q is a plane in
V that is nearly parallel in V to a component of ∂S(V,M), then Q is isotopic
in V into S(V,M). Then there is a prehangar H(V,M) for V such that
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S(V,M) ⊂ H(V,M) and every component of ∂H(V,M) is either a component
of ∂S(V,M) or is parallel to a component of ∂S(V,M). Consequently, If Q is
a nontrivial plane in V −H that is nearly parallel in cl(H − V ) to a component
of ∂H(V,M), then Q is isotopic in V into H(V,M).

2) If P is a squadron in V , then there is a compact 3-manifold MP ∈ M such
that P is isotopic in V into H(V,MP ). Consequently, H(V ) = {H(V,M)|M ∈
M} is a hangar system for V .

Proof. Let M ∈ M and let S = S(V,M). We shall presently describe operations
that will build S into a prehangar for V . Let N be the set of all components of
cl(V − S) that are polished cysts or nearnodes with two faces. For each N ∈ N ,
let ψ(N) = cl(N − U), where U is a regular neighborhood of ∂N in N . Let

H̃ = S ∪

( ⋃
N∈N

ψ(N)

)
.

Let K be the set of components of cl(V − H̃). Let L ⊂ K. Put

H = H̃ ∪

(⋃
L∈L

L

)
.

If each component of H is either a nearnode with two faces or a polished cyst, we
say that H is an amalgam of H̃.

Let H be an amalgam of H̃ such that cl(V −H) has the fewest components.
Claim 8.4.1 H is a prehangar for V . Furthermore each component of ∂H is

parallel in V to or equal to a component of ∂S.
Proof: One may easily check the first three parts of the definition of prehangar.
Suppose that N is a component of cl(V −H) that is a node with two faces and

that H ′ and H ′′ are the components of H which contain the components of ∂N . If
H ′ and H ′′ are of the same type, then either H ∪N is a nearnode with one handle
(this occurs only when H ′ = H ′′) or H ∪N is an amalgam of H̃ with

](cl(V − (H ∪N))) < ](cl(V −H)).

The latter case contradicts our assumption of minimality. On the other hand, if
H ∪N is a nearnode with one handle, then V = H ∪N is of genus one at infinity
which is also a contradiction.

To see that each component of ∂H is parallel in V or equal to a component
of ∂S, one simply observes that each component of ∂H̃ is parallel (or equal) to a
component of ∂S and ∂H ⊂ ∂H̃. ♣

Claim 8.4.2 If P is a squadron in V , then there is an MP ∈ M such that if
M ∈M and MP ⊂M − ∂M , then P is isotopic in V into H(V,M). Consequently
H(V ) is a hangar system for V .

Proof: By Lemma 2.3, it follows that for every compact K ⊂ V there is an
MK ∈ M such that K ⊂ MK − ∂MK . By Lemma 2.1 there is an MP ∈ M so
that if MP ⊂ M − ∂M and M ∈ M, then after an isotopy each component of
P ∩ cl(V −M) is a half open annulus. Therefore, again after an isotopy, S(V,M)
swallows the ends of P . Hence by Lemma 2.5, P is isotopic in V into S(V,M).
Therefore P is isotopic in V into H(V,M). ♣



PLANES IN 3-MANIFOLDS OF FINITE GENUS AT INFINITY 51

♠

Theorem 8.5. (The Hangar Theorem) Let V be an orientable, irreducible, con-
nected, pristine 3-manifold with finite genus g ≥ 2 at infinity and finitely generated
fundamental group. Then there is a hangar H for V such that if P is a squadron
in V , then P is isotopic in V into H. Furthermore, if G is any hangar for V , then
G is isotopic in V to H.

Proof. By Lemma 2.2 of [3], it follows that V is eventually end-irreducible. There-
fore by our own Lemma 8.4 there is a hangar system H(V ) for V .

Let H̃ be a prehangar for V which contains a maximal nonseparating squadron
and has the most components of any such prehangar. By Lemmas 8.1 and 8.4,
there is an H ∈ H(V ) such that H̃ is isotopic in V into H.

Claim 8.5.1 If P is a nontrivial plane in V contained in V − H, then P is
parallel in cl(V −H) to a component of ∂H. Consequently, cl(V −H) is aplanar
and H is a hangar.

Proof: Let P be such a nontrivial plane. By an isotopy, we may assume that
H̃ ⊂ H − ∂H. By Lemma 8.3, it follows that P is nearly parallel in V to a
component P̃ of ∂H̃. Let Ñ be a near parallelism in V between P and P̃ .

Since H̃ ⊂ H−∂H, it follows that Ñ contains a component Q of ∂H. By Lemma
4.2 the closure of each component of Ñ − Q is a nearnode with two faces. Let N
be the near parallelism in V between Q and P . Note that Q may be chosen so that
N ⊂ cl(V −H).

By Lemma 8.4, it follows that Q is parallel or equal to a component T of
∂S(V,M), where M ∈ M is chosen so that H = H(V,M). One may argue us-
ing Lemma 4.2 that there is a near parallelism L in V between P and T .

By Lemma 8.4, it follows that P is isotopic in V to a plane P ′ in H − ∂H. By
Theorem 5 of [14], it follows that there is a parallelism in N ′ in V between P and
P ′. Let P ′′ be a component of ∂H that is contained in N ′. By Lemma 4.2, there
is a parallelism N ′′ in V between P and P ′′. Note that P ′′ can be chosen so that
N ′′ ∩H = P ′′. This ends the proof. ♣

We shall now suppose that G is a prehangar for V such that H ⊂ G− ∂G.
Claim 8.5.2 If P is a nontrivial plane in V contained in V − G, then P is

parallel in cl(V −G) to a component of ∂G.
Proof: By Claim 8.5.1 there is a parallelism N in V between P and a component

Q of ∂H. Since H ⊂ G − ∂G, there is a component P ′ of ∂G which is contained
in N . By Lemmas 7.2 and 4.2, there is a parallelism N ′ in V between P and P ′.
Note that P may be chosen so that N ′ ⊂ cl(V −G). ♣

Claim 8.5.3 There is an isotopy ht of V such that h1(G) ⊂ H − ∂H. Fur-
thermore if G′ is a component of G, then h1(G′) ⊂ G′.

Proof: By Claim 8.5.1, each component of ∂G is parallel in V to a component
of ∂H. It is not difficult to construct an isotopy of V which takes ∂G into H−∂H.
Therefore by Lemma 8.1, it follows that G is isotopic in V into H − ∂H. Let ht

be this isotopy. Note that if G′ is a component of G, it follows by Lemma 8.2 that
h1(G′) ⊂ G′. ♣
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Claim 8.5.4 G is isotopic in V to H.
Proof: By Claim 8.5.3 there is an isotopy ht of V such that h1(G) ⊂ H − ∂H

and such that, for each component G′ of G, h1(G′) ⊂ G′.
We will first show that each component of G contains exactly one component

of H. Let G′ be a component of G and let H ′ be the component of H which
contains h1(G′). Then H ′ ⊂ G′ because h1(G′) ⊂ G′. Hence G′ contains at least
one component of H. Suppose that H ′′ is a component of H which is contained in
G′. Then h1(H ′′) ⊂ h1(G′) ⊂ H ′. By Lemma 8.2 it follows that H ′′ = H ′.

Let G′ be a component of G and let H ′ be the unique component of H contained
in G′. We claim that each component of cl(G′ −H ′) is a parallelism in V between
a component of ∂G′ and a component of ∂H ′. Let P be a component of ∂G′. Then
h1(P ) ⊂ H ′ − ∂H ′. By Theorem 5 of [14] and Lemmas 7.2 and 4.2, there is a
parallelism NP in V between P and a component Q of ∂H ′. We may choose Q
so that NP ⊂ cl(V −H ′). Since G is a prehangar, it can be argued that NP ⊂
cl(G′ −H ′); otherwise one can find components of G which are of the same type
and joined by a node with two faces.

Given this, it is not difficult to see that G is isotopic in V to H. ♣
Claim 8.5.5 If P is a squadron in V , then P is isotopic in V into H.

Proof: Note that ∂H is a squadron in V . By Lemma 2.1, there is a regular M in
V such that (perhaps after isotopies) each component of P ∩ cl(V −M) and each
component of ∂H ∩ cl(V −M) is a half open annulus. Therefore P and ∂H are
isotopic separately in V into some polished strip for V rel M , say S(V,M). By
Lemma 8.4, there is a K ∈ H(V ) such that ∂H and P are isotopic into K. By
Lemma 8.1, we may assume that H ⊂ K − ∂K. By Claim 8.5.4 it follows that H
is isotopic in V to K. Therefore P is isotopic in V into H. ♣

Claim 8.5.6 Every hangar for V is isotopic in V to H.
Proof: Suppose that G is a hangar for V . Then ∂G is a squadron in V and so is

isotopic in V into H−∂H. By Lemma 8.1 we may assume that G ⊂ H−∂H. Since
cl(V −G) is aplanar, it follows that ∂H is isotopic in V into G − ∂G. Therefore
by Lemma 8.1, it follows that H is isotopic in V into G. By Claim 8.5.4, it follows
that G is isotopic in V to H. ♣

♠

9. The Strip for V rel M

The purpose of this section is to prove Lemma 9.1. The proof is rather complex and
makes use of results concerning the weak characteristic pair of an end-irreducible
3-manifold from [13].

Lemma 9.1. (The Strip Lemma) Let V be an orientable, irreducible, connected
3-manifold such that π1(V ) is finitely generated. Also assume there is a compact
3-manifold L such that V is of finite genus g ≥ 2 at infinity rel L. Suppose that
M ⊂ V is a 3-manifold with L ⊂M that is regular in V with respect to L.

Then there is a strip S for V rel M such that if Q is a plane in V that is nearly
parallel in V to a component of ∂S, then Q is isotopic in V into S.
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Proof. We will now let W = cl(V −M). By Theorem 7.6 of [13], there is a Seifert
pair (Σ,Φ) ⊂ (W,∂W ) such that Fr(Σ;W ) is strongly essential in (W,∂W ) and such
that if A is a 2-manifold that is properly embedded in W each of whose components
is a half open annulus that is strongly essential in (W,∂W ), then A is isotopic in
(W,∂W ) into (Σ,Φ). Since ∂W is compact, a half open annulus is strongly essential
in (W,∂W ) iff it is properly embedded and incompressible in W .

Theorem 7.6 of [13] also considers a 2-manifold whose components are tori,
annuli, and open annuli. However we will not need this strength in the sequel.
Therefore we may assume that if (σ, φ) is a component of (Σ,Φ), then φ 6= ∅ and σ
is noncompact. We will refer to the language of [13].

Let (σ, φ) be a component of (Σ,Φ). Since φ ⊂ ∂M , it follows that φ is compact.
Therefore, since σ is noncompact, then (σ, φ) is not an I-pair. Since φ 6= ∅, it follows
that (σ, φ) is not an R-pair. Therefore (σ, φ) is either an S1-pair or a [0,∞)-pair.

In the sequel, we will only be interested in the components of Σ that swallow
the end of some plane that is nontrivial in V . Consequently, let us assume that if
(σ, φ) is a component of (Σ,Φ), then there exists a plane Pσ that is nontrivial in V
such that σ swallows the end of Pσ. We will now leave (Σ,Φ) fixed.

Using (Σ,Φ) we will construct a proper 3-submanifold S = S(V,M) of V such
that if Σ swallows the ends of the squadron P , then P is isotopic in V into S, and
if S′ is a component of S, then S′ is either a nearnode with two faces or a blemish.
This S will be a strip for V rel M .

For the rest of the proof, let (σ, φ) be a component of (Σ,Φ). Suppose that P is
a plane that is nontrivial in V containing a disk DP such that P −DP ⊂ σ. Assume
that ](DP ∩ ∂σ) is minimal for all isotopies of V that are fixed on P −DP .

Since σ is either Seifert fibered or a [0,∞)-bundle, it follows that σ is irreducible
and end-irreducible.

The S1-pair case. Let us now assume that (σ, φ) is an S1-pair.
Claim 9.1.1 If U is a component of cl(V − σ), then either ∂U is incompress-

ible in U or M ⊂ U .
Proof: Suppose that ∂U is compressible in U . Since Fr(σ;W ) is incompressible

in W , it follows that either U is not contained in W or ∂U is not contained in
Fr(σ;W ).

If U is not in W , then M ⊂ U , and we are done. Suppose ∂U is not contained in
Fr(σ;W ). Then ∂U meets both σ and M , but they are on opposite sides of ∂U . As
U is a component of cl(V − σ), U cannot contain σ, so σ ⊂ M , and we are done.
♣

For the rest of the S1-pair case, let U denote the component of cl(V − σ) which
contains M .

Claim 9.1.2 ∂U is an open annulus which is compressible in U by a disk E
whose boundary is a fiber in the Seifert fibration of σ.

Proof:We claim that P ∩ ∂σ 6= ∅. Suppose otherwise. Then P ⊂ σ. Recall,
however, that σ is irreducible and end-irreducible. By Lemma 3.1, it follows that
P is trivial in σ and therefore in V which is a contradiction. Therefore P ∩∂σ 6= ∅.

Let E be a disk in DP such that ∂E is a component of P ∩ ∂σ and

(E − ∂E) ∩ σ = ∅.
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Since V is irreducible and ](DP ∩ ∂σ) is minimal by isotopies fixed on P −DP , it
is easy to argue that ∂E is noncontractible in ∂σ. Since (E − ∂E) ∩ ∂σ = ∅, then
either E ⊂ σ or E ⊂ cl(V − σ).

We claim that E ⊂ cl(V − σ). In order to get a contradiction, suppose otherwise.
Let σ0 ⊂ σ be a compact manifold which is a union of fibers of σ that contains E.
Let F be the component of ∂σ0∩∂σ that contains ∂E. Then either F is an annulus
that is compressible in σ and σ0, or F is an incompressible torus.

As E is a compressing disk for F , F must be a torus component of both ∂σ0

and ∂σ. Therefore, σ0 is a solid torus. Consequently, σ must be a solid torus. This
contradicts that σ is noncompact. We must conclude that E ⊂ cl(V − σ).

Note E ⊂ U . We claim that ∂U is an open annulus. Otherwise ∂U must be a
torus since σ is Seifert fibered and orientable. If ∂U were a torus, by Lemma 2.4,
there is a compact 3-manifold U ′ ⊂W such that ∂U ′ = ∂U . Since σ and M are on
opposite sides of ∂U , it follows that σ ⊂ U ′ which is a contradiction because σ is
proper in W . Therefore ∂U must be an open annulus.

Since ∂E is noncontractible in ∂U , it is isotopic in ∂U to a fiber in the Seifert
fibration of σ. This isotopy can be extended to an isotopy of V that is fixed off of
a regular neighborhood of ∂U in V . ♣

Let N be a regular neighborhood of E in U such that N ∩∂U is an annulus that
is a union of fibers of σ.

Let F be the set of all noncompact components of ∂σ − ∂U . Let T be the set
of compact components of ∂σ − ∂U . Then T is countable. For each T ∈ T , let UT

be the component of cl(V − σ) which has ∂UT = T . By Lemma 2.4 it follows that
UT is compact for each T ∈ T . Let

Xσ = N ∪ σ ∪

( ⋃
T∈T

UT

)
.

Then Xσ is proper in V . Note that ∂Xσ consists of the elements of F and two
planes, say P1 and P2, that result from compressing ∂U with N .

Claim 9.1.3 Every compact subset of Xσ is contained in a closed 3-cell that
meets Pi in a single disk for i = 1 and 2 and meets only a finite number of elements
of F and each of those in a single annulus that is a union of fibers of σ.

Proof: Let Ω be the orbit manifold of σ and let η : σ → Ω be the quotient map.
We claim that Ω is planar. Otherwise Ω contains a simple closed curve J that does
not separate Ω; hence η−1(J) is a torus which does not separate V . This gives us
a contradiction by Lemma 2.4.

Suppose that C is a compact, connected subset of Xσ. We may assume that
N ⊂ C. Let Ω0 be a compact 2-manifold in Ω such that Ω0 ∩ η(∂U) is a single arc
and η(C ∩ σ) ⊂ Ω0. We may assume that no component of cl(Ω− Ω0) is compact
and that Ω0 − Fr(Ω0; Ω) contains every compact component of ∂Ω that Ω0 meets.
Hence if α is an arc component of Fr(Ω0; Ω), then each point of ∂α is contained in
a noncompact component of ∂Ω. Observe that if λ is a noncompact component of
∂Ω, then each component of Ω0 ∩ λ is an arc.

Let J be the component of ∂Ω0 that meets η(∂U). Let α = J ∩ η(∂U) and
γ = cl(J − α). Put A = η−1(α) and G = η−1(γ). Then A is an annulus which
contains N ∩∂U and G is an annulus which meets

⋃
F∈F F in annuli each of which
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is a union of fibers of σ. Note that G ∪ cl(A−N) ∪ Fr(N ;U) is a 2-sphere which
must bound a 3-cell B in V .

Since N and cl(∂U −A) are on opposite sides of ∂B and cl(∂U −A) is proper,
it follows N ⊂ B.

Since C and N are on the same side of ∂B, it follows that C ⊂ B. Note that
B ∩ Pi = (N ∪A) ∩ Pi is a disk for i = 1, 2. This ends the proof. ♣

Recall F is the set of all noncompact components of ∂σ−∂U . Then each element
of F is an open annulus. For every F ∈ F , there is an annulus AF , properly
embedded in σ (a union of fibers in fact), such that one component of ∂AF is a
fiber of σ in F , and the other is a fiber of σ in N ∩ ∂U . We may construct the
elements of {AF |F ∈ F} so that AF ∩AF ′ = ∅ for F 6= F ′.

For every F ∈ F , let E∗F be a disk that is properly embedded in N such that
∂E∗F = ∂AF ∩ ∂U . It is clear that we may assume that E∗F ∩ E∗F ′ = ∅ for F 6= F ′.
For every F ∈ F , let EF = E∗F ∪AF .

Given F ∈ F , let ŨF be the component of cl(V − σ) which has F = ∂ŨF . Let
UF be the union of ŨF and a regular neighborhood of EF in σ∪N . Note that ∂UF

has exactly two components each of which is a plane.
Let F ′ be the set of elements F of F such that UF is a nearnode with two faces

and let

X̃σ = Xσ ∪

( ⋃
F∈F ′

ŨF

)
.

It is easy to check, with the aid of Claim 9.1.3, every compact subset of X̃σ is
contained in a closed ball in X̃σ that meets Pi in a single disk for i = 1 and 2 and
meets only a finite number of elements of F − F ′ and each of those in an annulus
that is a union of fibers of σ.

Claim 9.1.4 F − F ′ contains at most 2g − 2 elements.
Proof: Suppose that F1, . . . , Fν are distinct elements of F − F ′ and that ν >

2g − 2. For 1 ≤ i ≤ ν, let Ui be the union of ŨFi and a regular neighborhood of
EFi in σ ∪ N . Note that U1, . . . , Uν may be constructed to be pairwise disjoint.
By Lemma 5.1, there is a k such that Uk is a nearnode with two faces. This is a
contradiction. Consequently, ν ≤ 2g − 2. ♣

Note the set {EF |F ∈ F−F ′} is pairwise disjoint. Let N ′ be a regular neighbor-
hood of

⋃
F∈F−F ′

EF in X̃σ. For each F ∈ F − F ′, let NF be the component of N ′

that contains EF . Then NF meets F in an annulus whose core is noncontractible
in F .

Let Sσ = cl(X̃σ −N ′).
Claim 9.1.5 Each component of Sσ is a nearnode with two faces. Further-

more if σ swallows the end of a plane P ′, then Sσ swallows the end of P ′.
Proof: Suppose that C is a compact, connected subset of Sσ. By Claim 9.1.3

there is a closed 3-cell B ⊂ Xσ such that N ′ ∪ C ⊂ B − Fr(B), such that B ∩ Pi

is a disk for i = 1, 2, and each component of B ∩ σ is a union of fibers of σ for
each F ∈ F . Now B ∩ Sσ = cl(B −N ′). Let S′σ be the component of Sσ that
contains C. Then ∂S′σ has two components each of which is a plane, and B ∩S′σ is
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a closed 3-cell which meets each component of ∂S′σ in a single disk. Therefore S′σ
is a nearnode with two faces.

Suppose that P ′ is a proper plane in V such that σ swallows the end of P ′. Let
D ⊂ P ′ be a disk such that P ′ − D ⊂ σ. Since P ′ is proper, P ′ ∩ N ′ is compact
and so there is a disk D′ ⊂ P ′ with D ∪ (N ′ ∩ P ′) ⊂ D′ − ∂D′. So P ′ −D′ ⊂ Sσ.
♣

The [0,∞)-pair case. In this subsection, it will be assumed that (σ, φ) is a [0,∞)-
pair. By looking through the proof of Lemma 6.4 of [13], one can see that (σ, φ) is
homeomorphic to (φ× [0,∞), φ× 0). Hence σ is a missing boundary manifold and
each component of cl(∂σ − φ) is a half open annulus.

Let Y be the result of compressing σ completely in V , i.e. Y is obtained from
σ by adding 2-handles and 3-handles and removing 1-handles so that the inclusion
induced map π1(Y ) → π1(V ) is injective. Since π1(∂σ) is finitely generated, this
compression only requires a finite number of handle moves. Therefore Y is a missing
boundary manifold. Of course ∂Y is incompressible in V . Let Yσ = Y .

Claim 9.1.6 Yσ is a missing boundary manifold, ∂Yσ is incompressible in V ,
and if P ′ is a proper plane whose end is swallowed by σ, then Yσ swallows the end
of P ′.

Proof: Suppose that P ′ is a proper plane in V such that σ swallows the end of
P ′. Let D ⊂ P ′ be a disk such that P ′ −D ⊂ σ. Since P ′ is proper, there is a disk
D′ ⊂ P ′ such that D′ contains D and the intersection of P ′ with each of the finite
number of handles used to obtain Y from σ. Then P ′ −D′ ⊂ Yσ. ♣

Let T be the set of compact components of ∂Yσ. Let T ∈ T . Since V has one
end, there is a compact 3-manifold UT ⊂ V such that ∂UT = T . Let

Sσ = Yσ ∪

( ⋃
T∈T

UT

)
.

Therefore each component of ∂Sσ is noncompact, and Sσ is a missing boundary
manifold.

Claim 9.1.7 Sσ is a blemish that is proper in V and such that Yσ ⊂ Sσ and
cl(Sσ − Yσ) is a compact 3-manifold.

Proof: Recall that there is a nontrivial plane P ⊂ V such that σ swallows the
end of P . Let DP be a disk such that P − DP ⊂ Yσ. By Claim 9.1.6 and the
fact that Yσ ⊂ Sσ, it will do no harm to assume that P − DP ⊂ Sσ. Isotop P
in V by an isotopy fixed on P −DP so that ](P ∩ ∂Sσ) is minimal. Since ∂Sσ is
incompressible and since DP is a disk, it follows by a minimality argument using
the irreducibility of V that P ∩ ∂Sσ = ∅. Since P − DP ⊂ Sσ and is fixed under
the isotopy, it follows that P ⊂ Sσ. Therefore Sσ is a blemish. ♣

Back to the Mainline. Let σ1, . . . , σν be the components of Σ. For 1 ≤ i ≤ ν,
let Si = Sσi

. It would be nice to claim that
ν⋃

i=1

Si
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is the strip for V rel M . This is in fact almost true. However, it may be that there
exist i 6= j such that Sj ∩ Sj 6= ∅. We do claim that by judicious choices in the
construction of these Si that the set {Si|1 ≤ i ≤ ν} can be made pairwise disjoint.

Let 1 ≤ i ≤ ν be given. Note that in each case Si can be obtained from σi by
compressing with 1- and 2-handles Hi

1, . . . ,H
i
mi

to obtain an intermediate result σ′i
and then capping off the compact components of ∂σ′i with compact 3-manifolds to
obtain Si. So ∂Si ⊂ ∂σ′i.

Let 2 ≤ i ≤ ν be given. Since ∂S1 is incompressible, any 2-handles inHi
1, . . . ,H

i
mi

can be chosen to miss S1. So ∂S1 ∩ ∂σ′i = ∅. Since each component of cl(Si − σ′i)
is compact and S1 is noncompact and proper in V , it is evident that S1 ⊂ V − Si,
i.e. S1 ∩ Si = ∅.

Therefore we may assume that S1 ∩ Si = ∅ for 2 ≤ i ≤ ν. Note that ∂Si is
incompressible in V −S1 for 2 ≤ i ≤ ν. Continuing in this way the set {Si|1 ≤ i ≤ ν}
can be made pairwise disjoint. Let

S =
ν⋃

i=1

Si.

Claim 9.1.8 If Q is a squadron in V and Σ swallows the ends of Q, then Q
is isotopic in V into S.

Proof: This follows by Claims 9.1.5 and 9.1.6 and Lemma 2.5. ♣

Claim 9.1.9 If Q is a nontrivial plane in V that is nearly parallel in V to a
component of ∂S, then Q isotopic in V into S.

Proof: By Claim 9.1.8, it suffices to show that Σ swallows the end of Q after an
isotopy.

Let Q′ be the component of ∂S to which Q is nearly parallel in V and let H
be the near parallelism in V between Q and Q′. Since Q′ is nontrivial, it follows
from the construction of S that there is a disk D′ ⊂ Q′ such that Q′ − D′ is
incompressible in Σ. Since H is proper in V , it follows that H ∩M is compact.
Therefore there is a 3-cell B ⊂ H such that B ∩Q and B ∩Q′ are both disks and
(H ∩M) ∪D′ ⊂ B − Fr(B;H).

Recall W ⊂ cl(V −M). Hence ∂(B ∩ Q′) is contained in a half open annulus
in Fr(Σ;W ). Therefore there is an annulus A′ ⊂ Fr(Σ;W ) with one boundary
component contained in ∂W and the other equal to ∂(B ∩Q′). Let A′′ = Fr(B;H)
and let A = cl(Q−B). Then A′′ is an annulus, and A is a half open annulus.

Let A∗ = A ∪A′ ∪A′′. Then A∗ is a half open annulus. One can argue that A∗

is incompressible in W by using the fact that Fr(Σ;W ) is strongly essential in W .
Therefore there is an isotopy ht of (W,∂W ) such that h1(A∗) ⊂ Σ. We may extend
ht to an isotopy gt of V which is fixed in M off of a regular neighborhood of ∂M .
It follows that Σ swallows the end of g1(Q). This ends the proof. ♣

♠

References

[1] Matthew Brin, Klaus Johannson, and Peter Scott. Totally Peripheral 3-manifolds, Pacific
Journal of Mathematics, 1985, vol 118, pp. 37–51.



58 BOBBY NEAL WINTERS

[2] Matthew G. Brin and T.L. Thickstun. Open, irreducible 3-manifolds which are end 1-

movable, Topology, 1987, vol 26, pp. 211–233.

[3] E. M. Brown Contractible 3-manifolds of finite genus at infinity, Transactions of the

American Mathematical Society, vol 245, 1978, pp. 503–514.

[4] E. M. Brown and T. W. Tucker. On proper homotopy theory for noncompact 3-manifolds,

Transactions of the American Mathematical Society, vol 188, 1974, pp. 105–126.

[5] Daniel E. Cohen. Combinatorial Group Theory: a topological approach, London

Mathematical Society Texts 14, Cambridge University Press, Cambridge, 1989.

[6] John Hempel. 3-manifolds, Annals of Mathematics Studies no. 86, Princeton University

Press, Princeton, New Jersey, 1976.

[7] William Jaco. Lectures on three-manifold topology, CBMS/RCSM, American Math-

ematical Society, Providence, Rhode Island, 1980.

[8] William H. Jaco and Peter B. Shalen. Seifert fibered spaces in 3-manifolds, Memiors of

the American Mathematical Society, vol 21, 1979.

[9] Klaus Johannson. Homotopy equivalences of 3-manifolds with boundary, Lecture
Notes in Mathematics 761, Springer-Verlag, New York, 1979

[10] S. Kinoshita. On infinite cyclic actions on contractible open 3-manifolds and strong irre-
ducibility, Springer Lecture Notes 299. pp. 323–327.

[11] Thomas W. Tucker. Noncompact 3-manifolds and the missing boundary problem, Topol-
ogy. vol 13, 1974, pp. 267–273.

[12] Peter Scott and Thomas Tucker. Some examples of exotic non-compact 3-manifolds,
Quart. J. Math. Oxford, vol 40, 1989, pp. 481–499.

[13] Bobby Neal Winters. A weak characteristic pair for end-irreducible 3-manifolds, Trans-
actions of the American Mathematical Society, vol 341, No. 1, January 1994, pp.

377–403.

[14] Properly homotopic nontrivial planes are parallel, Topology and its Applications, 48
(1992), pp. 235-243.




