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Preface

The Twenty-First Annual Workshop in Geometric Topology was held at the Uni-
versity of Wisconsin—-Milwaukee on June 10-12, 2004. A list of the participants can
be found later in these proceedings.

The principal speaker for the workshop was Professor Peter Teichner of the Univer-
sity of California, Berkeley. Professor Teichner presented a series of three one-hour
lectures titled “New obstructions for embedding 2-spheres into 4-manifolds.” Some
details about these lectures are included later in these proceedings.

As always, the workshop included a number of shorter talks contributed by the
participants, and concluded with a problem session. Summaries of several contributed
talks are printed in these proceedings, as is a summary of the problem session.

Support. Financial support for the workshop was provided by the National Sci-
ence Foundation (Grant DMS-0407583) and by the University of Wisconsin-Milwaukee.

Organizers. The Workshops in Geometric Topology are organized by:

¢ Fredric Ancel, University of Wisconsin—Milwaukee,

¢ Dennis Garity, Oregon State University,

¢ Craig Guilbault, University of Wisconsin—-Milwaukee,
¢ Frederick Tinsley, Colorado College,

¢ Gerard Venema, Calvin College, and

¢ David Wright, Brigham Young University.

The organizers also serve as editors of these proceedings.
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History of the Workshops in Geometric Topology

Year | Workshop Location Principal Speaker
2005 | Colorado College Thomas Farrell
2004 | University of Wisconsin—-Milwaukee Peter Teichner
2003 | Park City, Utah (BYU) Martin Bridson
2002 | Calvin College Alexander Dranishnikov
2001 | Oregon State University Abigail Thompson
2000 | Colorado College Robert Gompf
1999 | University of Wisconsin—Milwaukee Robert Edwards
1998 | Park City, Utah (BYU) Steve Ferry

1997 | Oregon State University James Cannon
1996 | Colorado College Michael Freedman
1995 | University of Wisconsin—Milwaukee Shmuel Weinberger
1994 | Park City, Utah (BYU) Michael Davis

1993 | Oregon State Univ. and Newport, OR | John Bryant

1992 | Colorado College Mladen Bestvina
1991 | University of Wisconsin—Milwaukee Andrew Casson
1990 | Oregon State University Robert Daverman
1989 | Brigham Young University John Luecke

1988 | Colorado College John Hempel

1987 | Oregon State University Robert Edwards
1986 | Colorado College John Walsh

1985 | Colorado College Robert Daverman
1984 | Brigham Young University none




List of Participants (2004)

Ric Ancel

Anthony Bedenokovic

Nikolay Brodskiy
James Cannon
Stephen Chan
James Conant
Greg Conner

Bob Daverman
Tadek Dobrowolski
Robert Edwards
Steve Ferry
Hanspeter Fischer
Tom Fleming

Paul Fonstad
Dennis Garity
Kailash Ghimire
Brent Gorbutt
Craig Guilbault
Yusuf Z. Gurtas
Denise Halverson
Rena Hull
Margaret May
Mark Meilstrup
Atish Mitra
Christopher Mooney
Boris Okun

David Radcliffe
Konstantin Salikhov
Carrie Schermetzler
Rob Schneiderman

University of Wisconsin-Milwaukee
Bradley University

University of Tennessee

Brigham Young University
University of California, Los Angeles
University of Tennessee

Brigham Young University
University of Tennessee

Pittsburg State University
University of California, Los Angeles
Rutgers University

Ball State University

University of California, San Diego
University of Wisconsin-Milwaukee
Oregon State University

Oregon State University

Brigham Young University
University of Wisconsin-Milwaukee
Suffolk County CC

Brigham Young University
University of California, Santa Barbara
University of Wisconsin-Milwaukee
Brigham Young University
University of Tennessee

University of Wisconsin-Milwaukee
University of Wisconsin-Milwaukee
University of Minnesota

University of Maryland

University of Wisconsin-Milwaukee
Courant Institute

(continued on next page)



vi

List of Participants (continued)

Tim Schroeder
David Snyder
Peter Teichner
Tom Thickstun
Mat Timm

Fred Tinsley
Anthony Van Groningen
Violeta Vasilevska
Gerard Venema
Shmuel Weinberger
Julia Wilson
Bobby Winters
David Wright

University of Wisconsin-Milwaukee
Texas State University, San Marcos
University of California, Berkeley
Texas State University, San Marcos
Bradley University

Colorado College

University of Wisconsin-Milwaukee
University of Tennessee

Calvin College

University of Chicago

SUNY Fredonia

Pittsburg State University
Brigham Young University



Contents

Preface

History of Workshops

List of Participants
Description of Main Lectures

Hanspeter Fischer and Andreas Zastrow
Unique path lifting and the shape group

Dennis Garity, Dusan Repovs, and Matjaz Zeljko
A construction of rigid Cantor sets in R* with simply
connected complement

Craig R. Guilbault

A stabilization theorem for open manifolds

David F. Snyder
S* admits no ucsd into shape SY's?

Frederick C. Tinsley (with Craig R. Guilbault)
Plethora of one-sided cobordisms

Bobby Neal Winters
Planes in 3—-manifolds of finite genus at infinity

Problem Session

iii

v

11

17

21

25

29
29

vii



Principal Lectures

New Obstructions to Embedding 2-spheres in S’

PETER TEICHNER
June 10-12, 200/

The principal speaker for the Twenty-First Annual Workshop in Geometric Topol-
ogy was Professor Peter Teichner of the University of California, Berkeley. His three-
lecture series on “New Obstructions for Embedding 2-spheres in S*” was the center-
piece of the workshop. The official abstract for these lectures was the following:

ABSTRACT. In joint work with Rob Schneiderman, we have developed a mew ob-
struction theory for the embedding problem for 2-spheres in 4-manifolds. It is given
in terms of the intersection theory of Whitney towers, immersed in the 4-manifold,
and it 1s related to Milnor invariants and the Kontsevich integral in the easiest cases
(where the 4-manifold is given by attaching 2-handles to a link in the 3-sphere). As
a consequence, we give an intersection theoretic explanation of the Milnor invariants,
and we relate them to the existence of embedded gropes in the 4-ball.

In this sequence of talks, we shall give an outline of the theory, explain the main
results, and discuss the remaining open problems. There are 3 papers, all joint with
Rob Schneiderman (and one also joint with Jim Conant) available on my homepage.

At the time these lectures were given, all of the main results had already been
written up and were made available to workshop participants—primarily in preprint
form. For this reason, the traditional writeup of the main lectures is not included in
these proceedings. Instead, we provide full bibliographic information and electronic
links for the corresponding papers. In addition, we have posted on the workshop
website, scanned copies of the over-head slides used in each of the three lectures.

Papers

Rob Schneiderman and Peter Teichner, Higher order intersection numbers of 2-
spheres in 4-manifolds, Algebraic & Geometric Topology, 1 (2001), 1-29.

(www.maths.warwick.ac.uk/agt/AGTVoll /agt-1-1.abs.html).
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Rob Schneiderman and Peter Teichner, Whitney towers and the Kontsevich integral,
Proceedings of a Conference in Honor of Andrew Casson, UT Austin 2003., Geo. &
Top. Monogr. 7 (2004), 101-134.
(www.maths.warwick.ac.uk/gt/GTMon7/paper4.abs.html).

James Conant, Rob Schneiderman and Peter Teichner, Jacobi identities in low-

dimensional topology, to appear in Compositio Mathematica.
(xxx.lanl.gov/abs/math.GT/0401427).

Slides from the Lectures

Lecture 1. Intersection Theory for Whitney Towers:
www.uwm.edu/Dept /Math/conf/topology /Lecturel.pdf

Lecture 2. Whitney Towers and Milnor invariants:
www.uwm.edu/Dept /Math/conf/topology /Lecture2.pdf

Lecture 3. Gropes in 3— and 4-space:
www.uwm.edu/Dept /Math /conf/topology /Lecture3.pdf



Unique path lifting and the shape group

Hanspeter Fischer* and Andreas Zastrow!

June 2004

Abstract

If a paracompact Hausdorff space X admits a (classical) universal covering
space, then the natural homomorphism ¢ : 7(X) — #1(X) from the funda-
mental group to its first shape homotopy group is an isomorphism.

We present a partial converse: a path connected topological space X admits
a generalized universal covering space if ¢ : m1(X) — 71(X) is injective. This
generalized notion of universal covering p : X — X at which we arrive, en-
joys most of the usual properties with the possible exception of evenly covered
neighborhoods.

General Assumption. (X, zq) will be a pointed path connected topological space.

§1 Introduction. Recall that a continuous map p : X — X is called a covering of X,
and X is called a covering space of X, if for every € X there is an open subset U of
X with z € U and such that U is evenly covered by p, that is, p~'(U) is the disjoint
union of open subsets of X each of which is mapped homeomorphically onto U by p.
In the classical theory, one assumes that X is, in addition, locally path connected
and wishes to classify all path connected covering spaces of X and to find among
them a wuniversal covering space, that is, a covering p : X — X with the property
that for every covering ¢ : X — X by a path connected space X there is a covering
g: X — X such that gog=p. If X is locally path connected, we have the following
well-known result, which can be found, for example, in [13] and [14]:

Every simply connected covering space of X s a universal covering space. Mo-
roever, X admits a simply connected covering space if and only if X is semilocally
simply connected, in which case the coveringsp : (X, ) — (X, zo) with path connected
X are in direct correspondence with the conjugacy classes of subgroups of m (X, x),
via the monomorphism py : m (X, %) — m (X, o).

*fischer@math.bsu.edu, Dept. Math. Sciences, Ball State University, Muncie, IN 47306, USA
tzastrow@math.univ.gda.pl, Inst. Math., University of Gdansk, 80-952 Gdaiisk, Poland



Outside of semilocally simply connected spaces, the theory is not as pleasant.
While it is still possible, based on Fox’s concept of overlay, to classify specific types
of covering spaces via the fundamental pro-group pro-m (X, zp) [8, 11], no universal
covering space might be available.

For most applications, however, the particular usefulness of a universal covering
space does not lie in the evenly covered neighborhoods, but rather in the following
properties:

(Uy) The space X is path connected, locally path connected and simply connected.

(Us) The map p: X — X is a continuous surjection.

(Us) For every path connected and locally path connected topological space Y, every
continuous f : (Y,y) — (X, ) with fu(m (Y,y)) = 1, and every & in X with
p(Z) = z, there exists a unique continuous lift g : (Y,y) — (X, %) with f = pog.

(U4) The group of covering transformations Aut(X = X) is isomorphic to m; (X, 2o).

(Us) The map p: X — X is open so that X/G ~ X, where G = Aut(X & X).

Note that Properties U;, U, and U; uniquely characterize p : X — X and that
together they imply U,. Note also that, in the presence of U; and U,, we can expect
Us to hold only if X is locally path connected.

In the absence of a universal covering, still certain Hurewicz fibrations [14] and
certain Serre fibrations [1] p : E — X with simply connected E and additional helpful
properties are sometimes available. However, these fibrations lack, in general, most
of the properties on the above list, notably local path connectivity of £ on which the
other properties hinge—even if X itself is locally path connected.

Our approach is fundamentally different. Seeking the middle ground between
restricting ourselves to overlays and considering very general fibrations, we examine
the “standard” construction of the classical universal covering and ask the question:
under what circumstances will it have properties U;—Us? This approach is in the
spirit of [15] as well as [2]. We therefore make the following

Definition. Ifamapp: X — X satisfies Properties U;—~Us, we call it the generalized
universal covering of X and we call X the generalized universal covering space of X.

Remark. Every generalized universal covering is a Serre fibration, since it has the
homotopy lifting property with respect to [0, 1]" for all n. Consequently, the homo-
morphisms py : m(X) — m;(X) are isomorphisms for i > 1. However, a generalized
universal covering need not be a covering or a Hurewicz fibration (see Example 3).

§2 The “standard” construction. Note that a generalized universal cover X of X,
if it exists, must be in one-to-one correspondence with the homotopy classes of paths
in X which emanate from z,. Accordingly, there is only one way to define the set X:
let P(X) be the set of all continuous maps « : [0, 1] — X such that a(0) = z5. On
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P(X) consider the equivalence relation given by a ~ § if and only if a(1) = 3(1) and
« is homotopic to § within X, relative to their common endpoints. Let [a] denote
the equivalence class of o and let X denote the set of all such equivalence classes.
We will denote the equivalence class containing the constant path at xy by Zy.

If now p: X — X is a generalized universal covering and if p(Zo) = xg, then the
function which assigns to a point & of X the homotopy class p4([a]), where a is any
path in X from &, to #, is a bijection from X onto X. Consequently, there is also
no ambiguity as to what the projection function p : X5 X ought to be: we define
p([a]) = a(1). ] )

Next, we need to decide on the correct topology for X. For each [a] € X and
each open subset U of X containing (1), let B([a],U) denote the set of all [5] € X
for which there exists a continuous map 7y : [0,1] — U such that y(0) = «(1),
v(1) = B(1) and [B] = [a-7]; where a -+ denotes the usual concatenation of the paths
o and . Notice that B([a], X) = X for all [a] € X and that if [3] € B([a],U), then
B([8],U) = B(|a],U). Moreover, if U C V, then B([a],U) C B([a],V). It follows
that the collection of all such sets B([a], U) forms a basis for a topology on X. From
here on forward, we will endow X with this topology.

In the event that X is locally path connected and semilocally simply connected,
X is the classical universal covering space of X and p : X — X is the classical
universal covering of X as defined in [13] and [14]. However, the topology, which we
just defined on X is, in general, finer than the quotient topology inherited from the
compact-open topology on P(X). While the two topologies agree when X is locally
path connected and semilocally simply connected, the compact-open topology does
not, in general, render X locally path connected, as can be observed in Example 1.

Example 1. If X = {(z,y) € R? | 22 + (y — 1/n)? = (1/n)? for some n € N}
is the Hawaiian Barring with base point 2o = (0,0) and if X is given the quotient
topology inherited from the compact-open topology on P(X), then X is not locally
path connected. Indeed, if [,, denotes the simple closed loop of X of radius 1/n based
at xg, then the sequence %, = [l;][l,][l1] converges to & = [l1][l1] in this topology,
although there are no small paths connecting #,, and 2.

In the following lemmas, we list some basic properties of p : X — X. Their fairly
straightforward proofs, which can be found in [15, 2|, are omitted here.

Lemma 1. The projection p : X — X is a continuous surjection; it is open if and
only if X 1is locally path connected. 0]

Lemma 2. Suppose that Y 1is path connected and locally path connected, that
f:(Y,y) = (X,2) is continuous with f4(m1(Y,y)) = 1 and that & € X with p(&) =
Then there is a continuous function g : (Y,y) — (X, &) with po g = f.

Specifically, denoting & = [a], we define g: Y — X as follows: for w € Y, choose
any path 7 :[0,1] =Y from 7(0) =y to 7(1) = w, and put g(w) =[a-(for)]. O
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Lemma 3. The space X is path connected and locally path connected; even if X is
not locally path connected. But X might not be simply connected (see Example 2). O

Lemma 4. Let #1,%, € X with p(#,) = p(&;). Then there is a homeomorphism
g: (X,%) = (X, &) with pog = p. Indeed, for & € X we may define g(&) = [3-a-7],
where &1 = [a], T2 = [B], T = [7] and a(t) = a(1 — t).

Taking &, = &y, we see that the action of w1 (X, ) on X given by [B].[v] = [8-7],
yields an isomorphism of m (X, o) onto a subgroup of Aut(X 5 X). O

Definition. We say that a map p : X — X has the unique path lifting property, if
whenever we are given two continuous maps g1, g2 : [0, 1] — X such that pog; = pogs
and ¢1(0) = g2(0), we can conclude that g; = gs.

Remark. Suppose a map p : X — X has the unique path lifting property. Let Y be
any path connected space, f : (Y,y) — (X, z) any continuous map, and & € X with
p(&) = x. If there exists a continuous map g : (V,y) — (X, #) such that po g = f,
then it is unique.

Example 2. This example is adapted from [15]. Let X be the compact subspace
of R obtained as follows: subdivide the interior of an isosceles right triangle into
infinitely many squares, accumulating along the hypotenuse as shown below (left),
change its embedding into R® by elevating the centers of all squares to unit level as
indicated, and take the closure in R?®. (For a locally connected non-compact version
of this example, instead of taking the closure, only add the boundary of the triangle.)

We claim that p : X — X does not have the unique path lifting property. Indeed,
let f:]0,1] — X be the path, which runs along the hypotenuse of our triangle with
unit speed from left to right. There is, of course, the standard lift g, : [0,1] — X given
by g1(s) = [fs], where f,(t) = f(st). However, another continuous lift g, : [0,1] — X
is given by g¢2(t) = [ay], where [oy] is the unique homotopy class of a path a; which
begins at the upper left corner of our triangle, goes straight to the bottom vertex, and
then increases back up to f(t), only using the dotted boundary lines of our squares.
While pog; = pogs = f and ¢1(0) = ¢2(0), we have g;(t) # g2(t) for all ¢ > 0. Hence,
X is not simply connected by the following lemma.

6



Lemma 5. p: X — X has the unique path lifting property if and only if X is simply
connected. 0J

Definition. We call X homotopically Hausdorff at the point x € X, if for every
g € m(X,z)\ {1} there is an open set U C X with 2 € U such that there is no loop
a: (St %) — (U, x) with [a] = ¢g. If X is homotopically Hausdorff at every one of its
points, then X is said to be homotopically Hausdorff.

Lemma 6. Suppose X is Hausdorff/metrizable. Then X is Hausdorff/metrizable if
and only if X is homotopically Hausdorff. O

Lemma 7. If p: X — X has the unique path lifting property, then X is homotopi-
cally Hausdorff. O

We summarize all of these observations in the following
Proposition 1. Suppose p : X — X has the unique path lifting property. Then
(a) The map p: X — X satisfies properties Uy, Us, Us and Uy.
(b) If X is locally path connected, then p: X — X also satisfies Us.
(c) If X is Hausdorff or metrizable, then so is X.

83 The first shape homotopy group. We briefly recall the definition of the first
shape homotopy group 71(X, zo) of X at zy from [12]. For every open cover U of X,
designate one element * € U with g € *. Let C be the collection of all pointed normal
covers (U, x) of X. (Recall that a normal cover U of X is an open cover of X, which
admits a partition of unity subordinated to /. This partition of unity can always
be chosen to be locally finite.) Then C is naturally directed by refinement. Denote
by (N(U),*) a geometric realization of the pointed nerve of U, that is, a geometric
realization of the abstract simplicial complex {A | 0 # A C U,y ea U # 0} with
distinguished vertex x. For every (U, x),(V,*) € C such that (V,*) refines (U, %),
choose a pointed simplicial map pyy : (N(V),*) — (N(U), *) with the property that
the vertex corresponding to an element V' € V gets mapped to a vertex corresponding
to an element U € U with V C U. (Any assignment on the vertices which is induced
by the refinement property will extend linearly.) Then pyy is unique up to pointed
homotopy and we denote its pointed homotopy class by [pyy]. For each (U,x*) € C
choose a pointed map py : (X, zy) — (N(U), *) such that p,;' (St(U, N(U))) C U for
all U € U, where St(U, N(U)) denotes the open star of the vertex of N(U) which
corresponds to U. (For example, define py, based on a locally finite partition of unity
subordinated to U.) Again, such a map py is unique up to pointed homotopy and
we denote its pointed homotopy class by [py]|. Then [pyy o py] = [pu]. The so-called
(pointed) Cech expansion



(X7 .’IT()) (Mu) ((N(U), *)7 [pUV]; C)
is an HPol,-expansion, so that we can define the first shape homotopy group of X,
based at z, by 71X, 20) = lim (m(N(U), *),pw#,c)_

Since the maps py induce homomorphisms pyy : m1 (X, z9) — w1 (N (U), %) such that
Pus = Puv#0Py4, whenever (V, x) refines (U, *), we obtain an induced homomorphism

o m (X, zo) = T1(X, 20)

given by ¢([a]) = ([ew]) where ay = py o a.

84 An existence theorem.

Theorem 1. Suppose X is paracompact Hausdorff. If X s locally path connected
and semilocally simply connected, then ¢ : m (X, xy) — 71(X, zo) is an isomorphism.

Remark. For a proof of Theorem 1 in the compact metric case or in the locally
simply connected case see [10] and [9], respectively.

PROOF. Since X is assumed to be paracompact Hausdorff, every open cover of X
is normal. It therefore suffices to show that every open cover U of X is refined by an
open cover V of X such that pyy : m (X, z9) — 71 (N(V), %) is an isomorphism.

Let U be any open cover of X. Since X is semilocally simply connected, there is
an open cover W of X, which refines U, such that for every W € W, m (W) — m(X)
is trivial. Since W is a normal cover of X, there is an open cover W' of X which
star-refines YW. That is, for every W] € W' there is a W € W such that for every
Wy € W' with W] N W, # 0 we have Wy C W. Since X is locally path connected,
there is an open cover V of X, which refines W and all whose elements are path
connected. We conclude that V is a cover of X by open path connected sets such
that every loop which lies in the union of any two elements of V is contractible in X.
Therefore, pyy : m1 (X, o) — m(N(V), *) is an isomorphism [3, pp. 269-271]. Since
Y refines U, the theorem follows. O

Theorem 2. If o : my (X, z0) — 71(X, 2¢) is inective, thenp : X — X has the unique
path lifting property.

PROOF. We will show that for any two continuous maps ¢, : [0,1] — X and
g2 : [0,1] — X such that po g, = po gy, the set {t € [0,1] | gi(t) = g2(t)} is either
empty or all of [0,1]. For every ¢t € [0, 1] choose continuous maps «a, 5; : [0,1] — X
with ¢1(t) = [oy] and ¢2(t) = [5¢]. Suppose, to the contrary, that there are r, s € [0, 1]
with [a,] # [5,] and [as] = [Bs]. Let us also assume, without loss of generality, that
r < s. Since [a, - B,] # 1, then by assumption, there is a normal cover U of X such
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that pyy([ay - Br]) # 1 (IV ) x). Let v be the greatest lower bound of the set
A={te]n 3] |pu#([ ﬁ_ D =1€m(NWU),*)}. Let © = (1) = B,(1). Since the
collection {p,,'(St(U, N(U))) | U € U} is an open cover of X, we may choose U € U
so that z € V = p,,'(St(U, ( )))- By continuity of g; and go, we may choose § > 0
such that [oy] € B([a], V) and [B;] € B([8,],V) for all ¢ € [0, 1] with [t — v| < 4.

(i) Suppose pyx([ay - By]) =1 € T (N(U),*). Then r < v < s. Choose t € (r,v)
such that |t — v| < §. By definition of B([a,], V) and B([B,],V), there are paths
11,72 1 [0,1] = V such [ay] = [a, - 71] and [B:] = [By - T2]. Since 7 - 72 is a loop in
V', the loop (py o 1) - (P © 72) lies in the open star of the vertex corresponding to U
in N(U), where it can be homotoped to that vertex. Consequently, py4([ay - fi]) =
pup([oy -1 T2+ Bo]) = pug([aw - By]) =1 € T (N(U), *). However t < v, so that v is
not a lower bound for the set A. This is a Contradiction.

(ii) Now suppose pyx([ay - Bo]) # 1 € m(N(U),*). Then r < v < s. Using an
argument similar to Part (i), we see that pyx([ay - Bi]) # 1 € m(N(U),*) for all
t € [v,s) with |t — v| < §. Choose u € (v,s) with |u —v| < §. Then u is a lower
bound for the set A, which is greater than v; another contradiction. O

Combining Theorem 2 with Proposition 1, we obtain our main result:

Theorem 3. Suppose ¢ : m (X, xo) — 71(X, zo) is injective. Thenp: X — X is a
generalized universal covering of X satisfying Uy—-Uy. If X is locally path connected,
then p: X — X satisfies Us. If X is Hausdorff or metrizable, then so is X.

Applications. Spaces X for which ¢ : m(X) — (X)) is known to be injective
include all subsets of closed surfaces [6], all 1-dimensional compacta [4], as well as
certain inverse limits of consecutive connected sums of closed manifolds, which are
trivialized in turn by the bonding maps (e.g. boundaries of certain Coxeter groups) [5].

Example 3. According to the above, Theorem 3 applies to the Hawaiian Earring X .
Notice, however, that p : X — X is not a classical covering. Indeed, it is not even
a Hurewicz fibration: if ¥ = p !({zo}) C X is the fiber over the origin and « is
a simple closed curve around any one of the loops of X, then the partial lifting
G:Y x {0} = X, given by G(y,0) =y, of F: Y x I — X, given by F(y,t) = a(t),
cannot be extended to a full lift. (Otherwise, for every ¢t > 0, the map g : ¥ — X
given by g(y) = G(y,t) would map the non-discrete fiber ¥ homeomorphically onto
the discrete fiber p~1({a(t)}).)

Full-length article. For a more comprehensive account of the above and related
results and a discussion of generalized intermediate covering spaces, we refer the
reader to our full-length article [7].
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A CONSTRUCTION OF RIGID CANTOR SETSIN R® WITH
SIMPLY CONNECTED COMPLEMENT

DENNIS GARITY, DUSAN REPO\S, AND MATJAZ ZELJKO

1. INTRODUCTION

This is a summary of a talk given by D. Garity on June 11, 200dhat
21st annual Workshop in Geometric Topology held at the Usityeof Wis-
consin in Milwaukee. The results, with complete proofs,lemg prepared
for publication elsewhere.

A subsetA C R"isrigid if wheneverf: R" — R" is a homeomorphism
with f(A) = Ait follows that f |5 = ida. There are known examples®3 of
wild Cantor sets that are either rigid or have simply conegcbmplement.
However, until now, no examples were known having both pribge

The class of wild Cantor sets having of simply connected dempnt
known as Bing-Whitehead Cantor sets seemed to suggestdisaich ex-
ample exists because every one-to-one mapping betweenmiendubsets
of a Bing-Whitehead Cantor s¥tC R® is extendable to a homeomorphism
of R which takesX to X (see [Wr4] for details).

Two Cantor setX andY in R® are said to beopologically distinctor
inequivalentif there is no homeomorphism & to itself takingX to Y.
In this paper we show that in fact uncountably many inegeibexam-
ples of rigid Cantor sets with simply connected complemeaisteThe key
technique used is that of local genus, introduced in [Ze].

Sher proved in [Sh] that there exist uncountably many inegdent Can-
tor sets inR®. He showed that varying the number of components in the An-
toine construction leads to these inequivalent Cantor sghdepsky used
this result and constructed a rigid Cantor seRir(see [SI]). Using slightly
different approach Wright constructed a rigid Cantor se®iras well (see
[Wr2]) and using the Blankinship construction [Bl] Wriglatér extended

Date June 11, 2004.

2000Mathematics Subject ClassificatioRrimary 54E45, 54F65 ; Secondary 57M30,
57N10.

Key words and phrasedlild Cantor set, rigid set, genus of Cantor set, defining
sequence.
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this result toR", n > 4, (see [Wr3]). All these results rely heavily on the
linking of the components of defining sequences for the Gasdts. This
linking yields non simply connected complements of the tlaatGr sets,
so these constructions cannot be modified to give examplegidfCantor
sets with simply connected complement.

2. LOCAL GENUS OF POINTS IN ACANTOR SET

The following are some basic facts from [Ze] about the gerias@antor
set and the local genus of points in a Cantor set.

Let D(X) be the set of all defining sequences ¥arLet M be a handle-
body. We denote the genus Mif by g(M). For a disjoint union of handle-
bodiesM = | |yca My, we defineg(M) = sup{g(M,); A € A}.

Let (M;) € D(X) be a defining sequence for a CantorXet R®. For any
subsefA C X we denote bV the union of those componentsidf which
intersectA. Define

ga(X; (M) = sup{g(MP); i >0} and
ga(X) = inf{ga(X;(Mi)); (Mi) € D(X)}.
The numbeiga(X) is calledthe genus of the Cantor set X with respect to
the subset AForA = {x} we call the numbeg,, (X) the local genus of the

Cantor set X at the point and denote it byy(X). For A= X we call the
numbergx (X) the genus of the Cantor setafid denote it by(X).

3. MAIN RESULTS

Lemma 3.1. Let X ¢ R® be a Cantor set and A X a countable dense
subset such that
(1) gx(X) < 2for every xe X\ A,
(2) ga(X) > 2for every ac A and
(3) ga(X) = gp(X) for a,b € Aiif and only if a=b.
Then X is a rigid Cantor setinR

The main theorem, which we will prove after detailing the stoaction,
is the following.

Theorem 3.1. For each increasing sequence=S(ng,ny,...) of integers
such that B > 2, there exists a wild Cantor set in®RX = C(S), and a
countable dense set-A{aj,ap, ...} C X such that the following assertions
hold.

(1) gx(X) < 2for every xe X\ A,

(2) g4 (X) =n; for every ac A and

(3) R®\ X is simply connected.
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An immediate consequence of this theorem is the following.

Theorem 3.2. There exist uncountably many inequivalent rigid wild Canto
sets in R with simply connected complement .

4. THE CONSTRUCTION

Let us fix an increasing sequense- (N1, ny, . ..) of integers withn; > 2.
We will construct inductively a defining sequende, M, ... for a Cantor
setX =C(S).

To begin the construction, 181 be a unknotted genug handlebody.

4.1. Stagen+1if nisodd. If nis odd then by inductive hypothesis every
component oM, is a handlebody of genus higher than 2. Nebe a genus
r component oM.

The manifoldN can be viewed as an unionohandlebodies of genus 1,
T1U...UT;, identified along some 2-discs in their boundaries as shawn i
Figure 1.

FIGURE 1. ManifoldN

We replace the componeNtof genus by a single smaller central genus
r handlebody and a linked chains of genus 2 handlebodies. &8 genus
2 handlebodies for each handleNf See Figure 2 for the linking pattern in
one of the genus 1 handlebodies whose unidw. is

Notice that the new componentshhare actually unlinked if we regard
them as handlebodies R®. Stagen-+ 1 consists of all the new compo-
nents constructed as above. The construction can be dohatseach new
component at stage+ 1 has diameter less than half of the diameter of the
component that contains it at stage



14 D. GARITY, D. REPO\S, AND M. ZELJKO

FIGURE 3. Modification in defining sequence

4.2. Stagen+1if niseven. If nis even, we replace every genusrus in
Mn, r > 2, by a parallel interior copy of itself and every genus 2 $dmy an
embedded higher genus handlebody as shown in Figure 3.

More precisely, let us assume inductively that there exastitebodies of
genusny, ny, ..., Ny among the components bf,. There are als& genus
2 components for some and we replace one of these genus 2 handlebodies
by a genus. 1 handlebody, one by a genog. 2 handlebody, ... and one
by a genusy,k handlebody. The components B, .1 then consist of
handlebodies of genus, ...nyn k.

This completes the inductive description of the definingieege. Define
the Cantor set associated with the sequehcé= C(S) to be

xzﬂm.

From the construction it is clear th#tis a Cantor set.
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4.3. The countable dense subset A. Each pointp in X can be associated
with a nondecreasing sequence of positive integers grédaer2 as fol-
lows. At stage 8— 1, pis in a unique component. Let, be the genus of
this component. The sequence we are looking fanismp,.... By con-
struction, eacm, 1 is either equal ton, or is greater tham,,. It is greater
thanm, precisely when the component of stagec®ntainingp is a genus

2 torus. LetA be the set of points iiX for which the associated sequence
is bounded. Ther is countable and each point Ais associated with a
sequence that is eventually constahis dense because each component of
eachM; contains a point &.

4.4. Remaining Details. The following results can be shown:

e The local genus at points &fis correct
e The local genus at points of\ Ais correct,
e The complement oX is simply connected.

5. QUESTIONS

As stated in the introduction Bing-Whitehead Cantor seteehgome
strong homogeneity properties and therefore are not rigid.

e Does varying the numbers of consecutive Bing links and Wieitel
links yield inequivalent Cantor sets? (This number canmoaiipi-
trary. See [Wr4] for details.)

The construction above gives a rigid Cantor set suchgh@t) < 2 for
x € X\ Aandgg (X) = n; for & € A. Henceg(X) = co.
Let a positive integer be given.

e Does there exist a rigid Cantor s¢tsuch thaigy(X) = r for every
x € X? (Forr = 1 the answer is affirmative. See [SI], [Wr2].)

e Does there exist a rigid Cantor s€having simply connected com-
plement such thadx(X) =r for everyx € X?
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A STABILIZATION THEOREM FOR OPEN MANIFOLDS
CRAIG R. GUILBAULT

ABSTRACT. In this note we present a characterization of those one-ended open n-
manifolds (n > 5), whose products with the real line are homeomorphic to interiors
of compact (n 4 1)-manifolds with boundary.

1. INTRODUCTION

This work was motivated by a question asked to me recently by Igor Belegradek.

Question (Belegradek). Let M™ be an open manifold homotopy equivalent to an
embedded compact submanifold, say a torus. Is M™ x R homeomorphic to the interior
of a compact manifold?

For the purposes of this talk, we will focus on one-ended, high-dimensional man-
ifolds; in particular, we assume that n > 5. (Although much of what we will do is
valid in all dimensions; and all of what we do can be done without restriction on the
number of ends.) We begin with a few standard definitions and examples.

e A manifold M™ is open if it is noncompact and has no boundary.

e A subset V of M™ is a neighborhood of infinity if M™ — V' is compact.

e A neighborhood of infinity is clean if it is a codimension 0 submanifold and
has bicollared boundary in M™.

e M™ is one-ended if each neighborhood of infinity contains a connected neigh-
borhood of infinity. (We assume this for convenience.)

Example 1. R" is an open n-manifold for alln > 1. If n > 2, then R™ is one-ended.

Example 2. Let P" be a compact manifold with non-empty connected boundary.
Then int (P™) is a one-ended open manifold.

Example 3. (Disk with infinitely many handles) Let M? be the 2-manifold obtained
by attaching a countably infinite discrete collection of handles to an open 2-disk.

Example 4. (The Whitehead manifold) In [Wh], J.H.C. Whitehead constructed a,
now-famous, example of a contractible (thus one-ended) open 3-manifold that is not
homeomorphic to R3.

Date: January 5, 2005.
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18 CRAIG R. GUILBAULT
The following observations about the above examples help to motivate our work.

Facts.

a) Clearly Examples 1 and 2 are themselves interiors of compact manifolds; hence,
so are their products with R.

b) The manifold M? from Exercise 3 is not the interior of a compact 2-manifold;
nor is M? x R the interior of a compact 3-manifold. (FEzercise. Why?)

¢) The Whitehead manifold W3 is not the interior of any compact 3-manifold;
however, it is well-known that W3 x R ~ R* ~ int(B*). In fact, a result of
Stallings [St] ensures that the product of any contractible n-manifold with a line is
homeomorphic to R**

Reflection upon the above examples, together with past experience with non-
compact manifolds, causes us to generalize our question to:

Generalized Belegradek Question (GBQ). If M" is open and homotopy equiv-
alent to a finite complex, is M™ x R the interior of a compact (n + 1)-manifold with
boundary? (As noted earlier, we restrict our attention to the case where M™ is one-
ended and n >5.)

2. RESULTS

In this section, we outline our solution to the GBQ in the one-ended case. As
might be expected of any work on recognizing interiors of compact high-dimensional
manifolds, we will employ the following celebrated result:

Theorem 2.1. (Siebenmann, 1965) A one ended open n-manifold M™ (n > 6) is the
intertor of a compact manifold with boundary iff:

(1) M™ is inward tame at infinity,

(2) m is stable at infinity, and

(3) 000 (M™) € Ko (Z[my(e(M™)))) is trivial.

e Here inward tame means that for any neighborhood V' of infinity, there exists
a homotopy H : V x [0,1] — V such that Hy = id and H;(V) is compact.
(Equivalently, we may require that all clean neighborhoods of infinity are are
finitely dominated.)

e Combined, conditions 1) and 3) are equivalent to requiring that all clean
neighborhoods of infinity have finite homotopy type. ( For the purposes of

this talk, we will refer to this property as super-tame at infinity.)

The following straightforward proposition begins our attack on the GBQ.

Proposition 2.2. Let M™ be a connected open n-manifold.

(1) M™ x R is inward tame at oo iff M™ is finitely dominated.
(2) M™ x R is super-tame at oo iff M"™ has finite homotopy type.
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Key Ingredient of Proof. M"™ x R has arbitrarily small neighborhoods of infinity of
the form

U=V xR)U(M x [(—o0,—r] U [r,c0)])
where V' is a clean neighborhood of infinity in M". 0J

Equipped with Proposition 2.2 and Siebenmann’s Theorem, it becomes clear that
the answer to the GBQ depends only uponon the 7;-stability at infinity (or the lack
thereof) in M™ x R. Siebenmann must have recognized this back in 1965 when he
gave a positive answer to a weaker version of the GBQ—in particular, he allowed
himself to cross with R? instead of R. The point there was that, by crossing with
R? 7,-stability at infinity becomes easy. (Verification of this fact is a good exercise.)
Before proceeding, we review the meaning of 7;-stability at infinity.

A one-ended open manifold X of dimension at least 5, is m stable at infinity if
and only if there exists a sequence Vo 2 V3 DO V5 D -+ of clean neighborhoods of
infinity with, (V; = 0, such that each of the inclusion induced homomorphisms in
the corresponding inverse sequence

m1 (Vo) & m (Vi) <2y (V) 2 -
are isomorphisms. (Actually, the definition of m; stable at infinity simply requires
that the above inverse sequence be ‘pro-stable’. In dimensions > 5, the desired
isomorphisms can then be arranged using handle trading techniques developed by
Siebenmann.)
A positive solution to the GBQ for n > 5 is obtained by proving the following:

Proposition 2.3. If M" is one-ended, open and finitely dominated, then M"™ x R is
mp-stable at co.

Sketch of Proof. Let
U=V xR)U(M x [(—o0,—r|U]r,c0)])

where V' is a connected neighborhood of co in M™.
If G =m (M™), then
m((U) =Gy G

(a free product with amalgamation), where

H = image (w1 (V) — m (M"))
So m; ‘at infinity’ looks like:
(G *xpg, G) « (G xp, G) « (G*xpgy, G) « -
where V; D V5, D V3 D -+ is a sequence of neighborhoods of co in M", and for each
H, = image (my (V) — m (M").

To complete the proof, it suffices to show that H; = H; for all ¢, j (when the V;’s are
appropriately chosen). This is accomplished by proving:
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Claim. Let K be a compactum into which M™ deforms and let V' CV C M"— K
be clean connected neighborhoods of oo. Then any loop T in V' can be pushed into V'
(with base point traveling along a given fized base ray).

To prove the claim, begin with an embedded ‘base ray’ r in M™ and assume 7 is
based on r. Choose a homotopy H : M"™ x [0,1] — M" that pulls M™ into K and is
‘nice’ near r. (For example, points of r stay in r under H. See the discussion preceding
Proposition 3.2 of [GuTi] for details.) Choose a third clean neighborhood V" C V’
sufficiently small that 7 € M™ — V”. In addition, arrange that 0V"” is connected
and r pierces V" transversely in a single point p. Consider the restricted homotopy
H|:0V" x [0,1] — M™. Adjust H| so that it is transverse to 7. Then H|™' () will
be a finite collection of circles in V" x [0,1]. By the niceness of H| near r (again
see [GuTi, Prop.3.2]), one of these circles, call it 7/, is taken in a degree 1 fashion
onto 7 by H|. Using the product structure, 7’ can be pushed into V" x {0} within
OV" x [0,1]. Composing this push with H| pushes 7 into OV" in M", as desired. [

We conclude this note with a precise statement of our main result.

Theorem 2.4. Let M"™ be a one-ended open n-manifold (n > 5), then M™ x R is
homeomorphic to the interior of a compact (n + 1)-manifold with boundary if an only
if M™ is homotopy equivalent to a finite complez.

Note. A complete write-up of this work—including the multi-ended case— is in
preparation.
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S* admits no uscd into shape S'’s?

David F. Snyder
Texas State University — San Marcos

10 June 2004

Some history.

Ron Fintushel, building on work of Raymond and Orlik, Montgomery and
Yang, classifies (1976-1978) locally smooth circle actions on: homotopy 4-spheres;
simply connected 4-manifolds; and then 4-manifolds generally.

Pao (1978) follows with a classification of nonlinear actions.

Plotnick (1982) extends the results of both to homology 4-spheres, and then
builds examples of such that admit no effective S action and thus have funda-
mental groups that cannot belong to a 3-manifold.

Theorem. [Fintushel] Let M* be the orbit space of a locally smooth S! action
on the simply connected 4-manifold M, with exceptional orbits E and fixed
point set F'. Then:

e M* is a simply-connected 3-manifold with OM™* C F*.
e The set F* — OM™ is finite, and F™* is nonempty.

e The closure of E* is a collection of polyhedral arcs and simple closed curves
in M*. The components of E* are open arcs on which orbit types are
constant, and these arcs have closures with distinct endpoints in F*—9dM*.
(continued on next slide)

e If, in addition, M is a homotopy 4-sphere, then: F is either S% or S° (in
the former case, £ = () and M* is a homotopy 3-cell with boundary F*;
in the latter case, M* is a homotopy 3-sphere). In the latter case, if there
is only one type of exceptional orbit, £* is an arc and F'* its endpoints; if
there are two types of exceptional orbits, then E* U F™* is a scc separated
by F* into two arcs, on each of which the orbit type is constant.

Conjecture. There is no proper, closed map defined on S* such that each of
its point preimages is a [shape] circle.
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Theorem. Suppose 7 : S* — B is a proper, closed surjection such that b=
7= 1(b) has the shape of S*, for all b € B; dimB < oo; and one more hypothesis
stated later in this talk. Then B is not a generalized manifold (over Q).

Assuming the existence of the map, we begin a catalogue of facts regarding
B:

o dimB = 3;
e B is simply connected (7 is a 71-epimorphism);

e and LC! (Dydak).

The Leray sheaves of .

We let H/ = HI[r] = H?[m; Q] denote the Leray sheaf in dimension j, where
j=0,1 ) o~

For each b € B and j = 0,1, the stalk H; is isomorphic to H’(b;Q) =
HI(S,,Q) = Q.

The topology on H7 is discrete when restricted to any stalk.

Aside: a crash course in sheaf topology.

_ Forbe B, let U be a saturated nbhd of b. Then there is a saturated nbhd
V C U that shape deformation retracts to bin U. For any b; € V, there is a
map Hj(IN); Q) — H’(b1;Q), the j-winding function of by about b. Note that
this function is either an isomorphism or the zero map. Given a section o of H’
at b defined on V, the section evaluated at b; will naturally correspond to the
value of the j-winding function of b; around b evaluated at o(b). This defines
the topology on H7.
Clearly, then HY is sheaf isomorphic to the constant sheaf Q x B.

More items for the catalogue ...

Theorem. [Dydak and Walsh] There is an open, dense subset C' (the con-
tinuity set) of B on which H! is locally constant.

Definition. Let K = B — C, the degeneracy set.
Corollary. Then K is nowhere dense in B.

Theorem. [Daverman and Snyder; Snyder] C is a generalized 3-manifold,
i.e. C'is an ANR with local (co)homology of a manifold:

H'(B,B-b0;Q) =Q

for ¢ = 0,3 and is trivial for all other .

Theorem. [Walsh| Via a pseudo-isotopy, we may assume that 7 is also an
open map and, hence, that K is nowhere dense in S%.

Theorem. [Shaw| K does not locally separate B and dimK < 1.

Aside: the Leray Spectral Sequence.
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HP(A; H9[m|4]) = HPT(A)
Since our Leray spectral sequence is lacunary, applied to 7|4 for any A C B
(and closed supports) we get:

= HY(A) = H'(A) — H™ (A H ] a]) — -

There is also a relative version, for compact A contained in a subset U of B:
< — H(U,U — A) — H{U,U — A) — H"Y(U,U — A;H '[r|4]) — - -

Aside: the Fary Spectral Sequence.

Let B= By D By D By D -+ be a filtration of B by closed subsets of B.
Let At = Bt — Btfl. Then

D HLL (AT (7] A = HPT(S)
t

We note here that H? *[r]|A;, (in our context) when restricted to A; is the
Leray sheaf Hq_t[ﬂ:{:}.

We apply this spectral sequence here using By = K and B, = 0 for p > 1.
Note then that C' = Ap and K = A;.

Continuing ...

Proposition. H!|¢ is isomorphic to the constant sheaf Q x C. [Proof snapshot:
over C, w corresponds to a rational circle bundle over C'.]

Proposition. The sheaf H' splits. We abuse notation and say H' = H!|c @
H k.

Let A = B, so B = S%, and apply the exact sequence (absolute version)
from the Leray spectral sequence to get the following for our catalogue:

o H'(B) is trivial (trivially, since 71 (B) is trivial)

e H?(B)= HY(B;H') = H'(B;H'|c) ® H*(B; H'|k)
e 0= H?(B;HY) =2 H*(B;H'|c) ® H*(B; H!|k)

o H*(B)= H'(B;H'lc) ® H'(B; H'|k)

o H*(B;H')=Q

NB: If coefficients are not shown, they are Q. Supports for the cohomology
are taken to be ¥, the closed subsets of B. Note, for later, that the support
V| is the collection of compact subsets of C.

Proposition. K # ().
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Proof sketch: If K = (), then C = B implies that B is a compact generalized
(co)homology 3-sphere. Thus, H?(B) is trivial, which, by the previous list,
implies H°(B;H!), the group of global sections, consists of only the zero section.
But, as noted before, H!|p—c is the constant sheaf.

Since K # 0, it has an open, dense (non-empty) subset K; on which H!|x,
is locally constant.

Lemma. Ky, and hence K, is 1-dimensional.

Proof sketch: Suppose K; is O-dimensional at b € K;. Let V' be an open set
in B, with b € V such that H! |vnk, is constant. Find a nbhd W of b contained
in V such that W N K; = (. Then W admits a section that extends to B.
Impossible!

Corollary. K has no ’totally degenerate’ points (and, so, no isolated points).

We say b is totally degenerate if its 1-winding funtion is identically 0 on its
punctured nbhd V' — {b}.

Let Ko = K — K; (the second degeneracy set), which is nowhere dense in
K.

We will add as a simplifying assumption that Ky = 0, i.e. HL is locally
constant.

Notice that H} cannot be constant, for otherwise a global section on B
exists.

Now, we move to add information from the Fary spectral sequence ...

What our Fary spectral sequence looks like in the Es term (similar to an
Sl-bundle with singularities’ - but with complicating differences):

HY(K;HYK)

HY(C;HY o) ® HY(K) HY(C;HY|¢) H*(C; HY o) HE(C; HY o)

H(C) H:(C) H*(C) HZ(C)

Using this, and the relative cohomology sequence of the pair (B, K) (with
coefficients Q), we can deduce that K is connected. Moreover, H!(K) 22 0 (from
the FSS) and H'(K;H!|x) = Q (from the LSS). (This latter fact tells us then
that H3(C) =2 Q).

Having established these facts, we move to looking at the relative version of
the LSS, and leverage the fact that B is assumed to be a 3-gm.

We are then able to prove (this still has the flavor of transformation group
theory):

Lemma. K is a homology 1-manifold.
But for n < 2, a homology n-manifold is an n-manifold. Thus K = S*.
This last statement is clearly impossible, since H!(K) # H'(S?)

Question: Is there an example of such a map where its image is not a gener-
alized manifold?

24



PLETHORA OF ONE-SIDED COBORDISMS
by F. C. Tinsley
(based on joint work with C. R. Guilbault)

This result is used in our paper, 'Manifolds with non-stable fundamental groups at infinity,
IIT’. However, the proof here is rather different may may be useful in other settings.

A cobordism is a one-sided h-cobordism if the inclusion of one of the boundary components
into the ambient manifold is a homotopy equivalence.

Theorem: Suppose (R,M,N) is a cobordism such that incy : m (N) — m (R) has
perfect kernel. Then there exists a nicely embedded, closed manifold, P C int (R), such
that the cobordism (Y, P,N) is a one-sided h-cobordism where Y is the closure of the
component of R\P that contains N and incy : m (V) — 1 (Y') has the identical kernel
to incy : m (N) — w1 (R).

Proof: Since R and N are compact, then the perfect kernel is the normal closure of a finite

set of elements. Let {l1,---,l.} be a collection of loops in N representing those elements.
Let (Z,Q, N) be the cobordism obtained by attaching r 2-handles, ©;, to N with the cores
attaching to the loops {l1,--- ,[,}. None of the construction below involves points of W\ Z.

We define a special finite 2-complex, K, that lives in N (see work of Daverman-and Tins-
ley).

Step 1: Let B C N be a bouquet of the loops {ly, - ,l,}

Step 2: Each loop, [/;, bounds in N a disk with m; handles, G;. Moreover, each handle
curve must represent an element of ker ({inc: N — W}x) < m (IV). This is the first stage
of a “grope” that must exist in N by the perfectness of the kernel.

Step 3: Each handle curve bounds in N a disk-with-holes where each other boundary
component is one of the [;’s. For each G;, there are 2 - m; such disks-with-holes. Denote
this collection by {Ai(Qj—l)v A'L(Q]) 01 S j S ml} where Ai(2j—1) and A'L(Q]) are disks-with-
holes attached to handle curves from the same handle. This geometry follows from the fact
that the handle curves also represent elements of the kernel and, thus, are in the normal
closure of the elements of 71 (V) represented by the [;’s.
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Step 4: We define K C N as follows. Let

K =Bl U1 Gl Ul{Ai(zj—UUAi@j)}
1= J=

where the unions are along the loops described in steps 1-3.

It is a straight forward application of Mayer-Vietoris to show that Hy (K) 22 0. Moreover,
K contains “all the action” as far as the perfectness of the kernel is concerned.

We perform plus constructions as follows. Fix ¢ and j for a moment and consider the
disk-with-holes, A;(2;). Assume there are n;; boundary components of A;;) other than
the handle curve of G;. For each k, 1 < k < n;j;, let ¢(i, 7, k) be the function defined so
that l4(; j.x) is k’th boundary component of A;(s;).

Define disks, F;, for 1 <¢ < r, by

Njj - Nnij +
Ai(2j) U <I€LJ D?ﬁ(i,j,k))] U Ai(2j) U <I€LJ DZ(LJE‘C))]
=1 =1

The — and + labels refer to two algebraically cancelling copies of the disk used to surger
the 7’th handle of G;. For geometric reasons (if nothing else), E; is homologous (rel 9) to
Giin N (U;_; H?) where H? is a 2-handle with core E;. Morover, G; C K C N.

5= |aU(U

mg
j=1

We perform r plus constructions using the E;’s as the cores of the 2-handles, H?. The r
cancelling 3-handles, H?, that complete the plus constructions require additional descrip-
tions.

Define disks F;, 1 < i < r, as follows:
ni; - nij +
Aiczpy U <U Eqs(i,j,k))] U {4ien U <U Eqs(i,j,k))]
k=1 k=1
Again, for geometric reasons, F; is homologous (rel 0) to the 2-cycle, C;:
ni; - i +
Aicepy <kU1 Gas(i,j,k)) U [Aien U <kU1 Gqs(i,j,k))]

where C; C K C N. By construction, R;|JC; is a 2-cycle in the complex, K. Since
Hy (K) =0, R;|JC; is null-homologous in K.

r-[aU (U

mq
=1

c-aU(U

mq
j=1
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Again by construction, the 2-sphere S? = D;|JE; is homologous in N |J (U], H?) to
R;JC;. Since m; (K) includes trivially into 7 (Z), the Hurewicz Theorem says that S?
bounds a 3-cell Z in the same relative homology class. These r 3-cells become the cores of
the three handles, H?, in the plus construction. It is easy to check that each algebraically
cancels the corresponding 2-handle, H?. The result of these plus constructions is the
desired cobordism, (Y, P,N). Note that P C int(Z). This completes the proof of the
theorem. [
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PLANES IN 3-MANIFOLDS OF FINITE GENUS AT INFINITY

BoBBY NEAL WINTERS

1. Introduction and Definitions

In the study of 3-manifolds, there is a long tradition of cutting up a 3-manifold
along embedded 2-manifolds in order to obtain pieces that are simpler in some
sense than the original manifold. One can cite the classical examples of Heegaard
splittings and the Prime Decomposition Theorem.

More recently, Jaco and Shalen in [8] and Johannson in [9] proved what is widely
known as the Characteristic Pair Theorem. This theorem states a Haken manifold
that is closed or has incompressible boundary can be split along embedded tori and
annuli into unique pieces that are of three kinds: Seifert fibered spaces, I-bundles
over surfaces, and “simple.”

A manifold is said to be simple if it contains no essential annulus or torus. On
the other hand, in most Seifert fibered spaces and I-bundles, one can construct lots
of essential annuli and tori.

In this paper, we will create a decomposition theorem for noncompact 3-manifolds
of finite genus at infinity that is analogous to the Jaco-Shalen-Johannson Theorem.
In the current decomposition, noncompact 3-manifolds that contain no nontrivial
places correspond to the simple pieces of the Jaco-Shalen-Johannson Decomposi-
tion, and a family of manifolds christened “nearnodes” correspond to the Seifert
fibered pieces.

This paper is organized into two parts. The first part deals with preliminaries
and climaxes in Theorem 5.1, which is an analog of the well-known Haken Finiteness
Theorem. The second part deals with the main result of the paper. Most of the
vocabulary needed in this paper is defined in the remainder of the current section.
However, definitions of some terms have been postponed until Part IT in hopes this
will be more convenient for the reader.

In the rest of this section, I will define the vocabulary required to state the
Theorem 5.1 precisely.

Let X and Y be topological spaces. A map f: X — Y is said to be proper if
f7Y(K) is compact for every compact K C Y. If X is a subset of Y, we say that
X is proper in Y if the inclusion map is proper; this occurs exactly when X N K is
compact for every compact K C Y.

We let #(X) denote the number of components of X.

Given amap f: X xI — X, let f; : X — X denote the map f; : z — f(z,t) for
every t € I. In the case f; is a homeomorphism for every ¢ € I and fy = 1x, then
we say that f (or f:) is an isotopy.

We say that a topological space P is a plane if P is homeomorphic to R2.
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Let V be a 3-manifold.

Suppose T is a 2-manifold in 9V that is proper in V. If F' is a 2-manifold that
is proper in V and F N9V = 9F and OF C T, then we say that F is properly
embedded in (V,T). If T = 0V, then we say that F' is properly embedded in V.

Suppose F' is properly embedded in (V,T). We say that F is parallel in V into
T provided there is a proper embedding (i.e. an embedding that is a proper map)
f:FxI—Vwith f(Fx0)=F and f((0F x I) U(F x 1)) C T. In the case
T = 0V, we say that F' is boundary parallel.

Suppose that K C V such that there is no proper homotopy h : F' x I — V with
h(F x0) = F and h(F x 1) C V — K, then we say that K traps F'.

Suppose that F is properly embedded in (V,T'). If F is incompressible in V', and
F is not parallel into T', then we say that F is essential in (V,T). If F is essential in
(V,T), and there is a compact K C V that traps F, then we say that F' is strongly
essential in (V,T).

Suppose that P is a plane that is proper in V. We say that P is nontrivial in V
if there is a compact K C V that traps P. If P is not nontrivial, then we say that
P is trivial. In the case that V is irreducible, it follows by Lemma 4.1 of [12] that
P is nontrivial in V' iff no component of cI(V — P) is homeomorphic to R? x [0, 00).
If every nontrivial plane in V is boundary parallel, we say that V is aplanar. If S is
a 2-manifold in V' that has a finite number of components each of which is a plane
that is nontrivial in V', then we say that S is a squadron in V.

Let S be a squadron in V, and suppose K is a subset of V. If there is a compact
subset T' of S such that S — T C K, then we say that K swallows the ends of S.

Let V be a noncompact 3-manifold.

If V has no compact components and OV = (3, then we say that V is open. Note
that if V' is open and M C V is a compact 3-manifold, then Fr(M) = oM.

If for every compact K C V there is a compact 3-manifold My C V such that
K C Mg — Fr(Mg) and Fr(My) is incompressible in V', then we say that V is
end-irreducible. If V is a 3-manifold that contains a compact subset K such that
cl(V — K) is end-irreducible, then we say that V is eventually end-irreducible.

If exactly one component of V' — K has noncompact closure for every compact
K C V, then we say that V has one end. Note that if V has one end and F C V is a
compact 2-manifold that separates V', then there is a compact 3-manifold Mg C V'
such that OMp = F U F’, where F' is a compact union of components of V. In
particular if no component of 9V is compact, then F bounds a compact 3-manifold
inV.

If X is a function from the nonnegative integers to the set of compact submani-
folds of V' such that

1) X(n)c X(n+1)—Fr(X(n+1)) and
2) V=_JX(n),
n=0

then we say that X is an ezhausting sequence or an exhaustion for V. We write
X, =X(n)and X = {X,,}.

Suppose that V' is a noncompact, connected 3-manifold.
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Let ¢ > 0 be an integer. Let X be an exhaustion for V. We say that X is a
genus g exhaustion if 0X,, is connected and of genus g for every n > 0. We say
that V' is of at most genus g at infinity if there exists a genus g exhaustion for X.

We say that V' is of at least genus g at infinity if there is no genus g—1 exhaustion
for V. In other words, there is a compact subset K of V such that whenever M
is a compact 3-manifold with K C M — OM and OM is connected, it follows that
genus (OM)) > g. If V' is of at most genus g at infinity and of at least genus g at
infinity, then we say that V is of genus g at infinity.

We make the following observations about a 3-manifold V' that is of most genus
g at infinity:

1) V is open and has one end.

2) V is of genus k at infinity for some 0 < k < g.

Note that if V' is of at least genus g at infinity, then there is a compact L C V such
that if L* C V is a compact 3-manifold with connected boundary which contains L
in its interior, then genus (OL*) > ¢. In this case we say that V is of at least genus
g at infinity rel L. If V is also of genus ¢ at infinity, we say that V is of genus g rel
L.

Note that if V is of at least genus ¢ at infinity it does not follow that V is open
or has only one end. For example, let A be Antoine’s Necklace in S$% and let M be
a solid torus in S® that contains A in its interior. Then V = M — A is of at least
genus g at infinity for all g > 0.

However, the terminology “genus at least g at infinity” will be used mostly when
V' is open.

Suppose that V' is of genus g at infinity rel L, where L C V is compact. Let M
be a compact 3-submanifold of V' such that cl(V — M) is connected, irreducible,
and end-irreducible, such that the inclusion induced map 71 (M) — 71 (V) is onto,
such that OM is connected, and such that L C M — dM. Then we say that M is
reqular in V' with respect to L. When there exists some compact L C V such that
M is regular in V' with respect to L, then we will say that M is regular in V.

Suppose N is a 3-manifold such that each component of ON is a plane. Suppose
that for every compact K C N, there is a closed 3-cell Bx C N such that K C
Bi —Fr(Bg) such that B N P is either a disk or empty for every component P of
ON. Then we say that N is a nearnode with $(ON) faces. (It is possible that f(ON)
is infinite.) If N is a missing boundary manifold as well as well as a nearnode, then
we say that N is a node with $(ON) faces. (Recall that N is a missing boundary
manifold if N = M — C where M is a compact manifold with boundary and C' is
a closed subset of 9M.) Note that nearnodes are irreducible and contractible.

The author has seen references to manifolds that are nearnodes in [4] and [12].
Both of these examples were of nearnodes with two faces and neither source gives
this class of manifold a name.

Observe that R? x [0, 00) is a node with one face and that R? x I is a node with
two faces. A characterization of nearnodes with two faces that are not nodes will
be given in Lemma 4.4

In general nearnodes with two faces contain a lot of nontrivial planes. For ex-
ample, we prove the following in Section 4.
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Theorem (The Nonparallel Plane Theorem)

A nearnode with two faces that is not a node contains a collection of pairwise
disjoint, pairwise nonparallel nontrivial planes with the cardinality of the Cantor
set.

Suppose that V is a noncompact 3-manifold. Suppose that IV is a nearnode with
two faces that is proper in V. If P and P’ are the components of N, then P and
P’ are said to be nearly parallel in V, and N is called a near parallelism between P
and P'. If N is a node, by Lemma 4.4, it follows that P and P’ are parallel in V,
and N is a parallelism between P and P’ in V.

Suppose that H is a noncompact 3-manifold containing a squadron P such that
the result NV of splitting H along P is a nearnode (node) with v+24(P) faces. Then
we say that H is a nearnode (node) with v faces and #(P) handles.

The author would like to thank Robert Myers for his patient guidance during the
inception of this work. Thanks are also due to the Mathematics Department of the
University of Texas where many of the main ideas of this paper took shape during
academic year 1988-89, to the National Science Foundation for providing support,
to the faculty, staff and students of Brigham Young University who provided an
environment for continued revision of this manuscript during the academic year of
1995-96, and finally to several editors and referees, of various journals, who have
suffered through earlier versions of this paper.

Part I: Basic Results
2. Surfaces in Noncompact 3-manifolds

Lemma 2.1. (The Target Lemma)

Suppose that V' is a noncompact, irreducible, connected 3-manifold. Suppose that
S is a squadron in V and suppose that K C V is a compact, connected set which
traps each component of S. For each component P of S, let Dp C P be a disk
such that KNP C Dp — 0Dp. Let Dg be the union of all the Dp’s. Suppose that
M C V is a compact 3-manifold such that KU Dg C M — Fr(M) and Fr(M) is
incompressible in V — K.

Also suppose that S meets Fr(M) transversely and that

8(S NFr(M)) < (h(S) NFr(M))
for any isotopy hy of (V,0V) that is the identity on KUDg and has compact support.
1) If J is a component of PNFr(M) for some component P of S, then J bounds
a disk Ej C P such that Dp C Ejy — J, and J is noncontractible in Fr(M).
2) If A is a component of SNcl(V — M), then A is either an annulus or a half
open annulus, and A is incompressible in cl(V — M).

3) If there are no essential annuli in (cl(V — M), Fr(M)) and P is a component
of S, then PNcl(V — M) is a half open annulus.

Proof. To prove (1), let E; be the disk in P that is bounded by J. We claim that
Dp C Ej — J. Otherwise we may choose a component J' of E; N Fr(M) which
bounds a disk E' C E; such that E' N Fr(M) = J' and J' = OF’. Since E; does
not contain Dp, it follows that £’ N Dp = (; consequently E' N (K U Dg) = 0.
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Since Fr(M) is incompressible in V — K, it follows that there is a disk D’ C Fr(M)
with 0D’ = J'. Now D’ UE’ is a 2-sphere and therefore must bound a closed
3-cell B’ C V by irreducibility. Since K is connected and K N 9B’ = (), then either
K Cc B’ or KN B’ = (. However, K is not contained in B’ because K traps each
component of S and any component of S can be homotoped off a closed 3-cell.
Hence K N B’ = ). We may therefore use B’ to reduce (S N Fr(M)) by an isotopy
with compact support that is fixed on K U Dg. This is a contradiction. Therefore
Dp C E;—J.

We claim that J is contractible in Fr(M). To get a contradiction, suppose it is
not. Let D C Fr(M) be a disk with 9D = J. We may choose P and J so that
(D —0D)NS = 0. Therefore E; N D = J. Tt follows that E; U D is a 2-sphere
which bounds a closed 3-cell B C V' because V is irreducible. We may use B to
isotop P to the plane (P — E;) U D. Note [(P — Ey) UD]N K is empty because
KNP C Ej;. This is a contradiction because K traps P.

To prove part (2), let P be a component of S. It follows that each component of
PNcl(V — M) is either an annulus or a half open annulus because each component
J of PN Fr(M) bounds a disk E; which contains Dp. We will show that each
component is incompressible.

Suppose that A is a component of P N cl(V — M). Suppose that D is a com-
pressing disk for A in cl(V — M). Let J be a component of JA. Then J is parallel
in A to dD. It follows J is contractible in cl(V — M). However J is noncontractible
in Fr(M) by part (1). Since Fr(M) is incompressible in V — K, it follows that J is
noncontractible in cl(V — M). This is a contradiction.

Part (3) follows from part (2) and the minimality of (S NFr(M)). &

Lemma 2.2. Suppose that V is a 3-manifold that has one end, is open, and is
of genus at least g > 1 at infinity rel L, where L is a compact subset of V. If
F C el(V — L) is a connected, compact 2-manifold with OF = () and genus (F) < g,
then either F' is nonseparating or F' bounds a compact 3-manifold in cl(V — L).

Proof. Suppose that F separates V. Since V has one end, there is a compact 3-
manifold M C V such that OM = F. Since V is of genus at least g at infinity rel
L and genus (F) < g, then L is not contained in M. Therefore M C cl(V — L). &

It follows immediately from Lemma 2.2 that if V is irreducible and of genus at
least one at infinity rel L, then cl(V — L) is irreducible. Note that if V' is irreducible
and of genus zero at infinity, then V is homeomorphic to R3.

Lemma 2.3. Let V be an orientable, irreducible, connected, open, eventually end-
irreducible 3-manifold with one end such that m (V) is finitely generated. Also
assume that there is a compact 3-manifold L in V such that V is of at least genus
1 at infinity rel L. For every compact K C V', there is an Mg which is regular in
V' with respect to L and such that K C My — OM.

Proof. Suppose that K C W is a compact set with L C K. Let M be a compact,
connected 3-manifold in V with K € M — 0M. This M will be gradually made

larger with the promise that at some point it will be left fixed.
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We may assume that cl(V — M) is end-irreducible because V' is eventually end-
irreducible. Since (V) is finitely generated, we may assume that the inclusion
induced map m (M) — w1 (V) is onto.

Since V' has one end, we may apply Lemma 2.2 and assume that cl(V — M)
and OM are connected by adding components of cl(V — M) to the original M.
Suppose that B C V is a closed 3-cell with 9B C V — M. Since M and cl(V — M)
are connected and L C M, it follows that B C V — M. Therefore cl(V — M) is
irreducible. &

Lemma 2.4. Let V be an orientable, irreducible, connected, open, eventually end-
irreducible 3-manifold with one end such that w1 (V') is finitely generated. Also
assume that there is a compact 3-manifold L C 'V such that V is of at least genus
g at infinity rel L for some nonnegative integer g. Suppose that M C V is a
3-manifold that is reqular in V' with respect to L.

If F CV — M is a connected 2-manifold with empty boundary that is proper in
V', then I separates V. Furthermore if the genus of F is less than g, then F' bounds
a compact 3-manifold in V. — M.

Proof. The fact that F' separates follows by a Zs-intersection number argument.
See the proof of Lemma 2.2 of [3], for example. This uses only the fact that
w1 (M) — w1 (V) is onto.

Suppose that the genus of F is less than g. Since F' separates and V has only
one end, the rest follows by Lemma 2.2.4

Lemma 2.5. Let V' be a noncompact, irreducible 3-manifold and let S C'V be a 3-
manifold that is proper in V and such that each component of S is incompressible
in V. Suppose that Q) is a squadron in V such that S swallows the ends of Q). Then
Q is isotopic in V into S.

Proof. Let Dg C @ be a 2-manifold such that Q' N Dg is a disk for each component
@’ of @ and such that Q@ —Dg C S. By an isotopy that is fixed on @ — D¢ isotop @
so that $(Q N 8S) is minimal. Since each component of @ is a plane and since 95 is
incompressible in V, the irreducibility of V' makes it possible to reduce §(Q N 95S)
by an isotopy fixed on @ — Dg whenever Q N 9S # (. It follows that @ N 9S = 0.
Since @@ — D¢ is not moved and is contained in S, it follows that @ C S. &

3. Irreducible, end-irreducible 3-manifolds

In this section, we will assume that W is an orientable, irreducible, end-irreducible
3-manifold. The first result shows us there are no non nontrivial planes in W,
the second gives sufficient conditions for a 3-submanifold of W to inherit end-
irreducibility, while the rest of the section is devoted to proving that if W has one
end, if W is an open annulus that is incompressible in W, and if the normal closure
of m (W) is w1 (W), then W = OW x [0, 00).

Lemma 3.1. If W is an orientable, irreducible, end-irreducible 3-manifold, then
every plane in W is trivial.
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Proof. Let P C W be a plane. We may assume that P is proper in W. Let K be
a compact subset of W and suppose that M C W is a compact 3-manifold with
K C M —Fr(M) such that Fr(M) is incompressible in . Since every simple closed
curve in P is contractible in P, the usual arguments involving the incompressibility
of Fr(M) in W and the irreducibility of W show that we may isotop P to be disjoint
from Fr(M). Since P is proper, PN M = (). Therefore, PN K = (). Tt follows that
P must be trivial. &

Lemma 3.2. Suppose that W is an orientable, irreducible, end-irreducible 3-manifold.
Let U be a connected 3-manifold that is proper in W such that OU is an open an-
nulus that is incompressible in W. Then U is irreducible and end-irreducible.

Proof. It is clear that U is irreducible. To show U is irreducible, let A be an annulus
in OU such that the inclusion induced map 71 (A4) — 71 (0U) an isomorphism. Let
L be a compact subset of U that contains A and is such that LN OU is an annulus.

Let M be a compact connected 3-manifold with L € M — Fr(M) such that
Fr(M) is incompressible in W. Isotop Fr(M) by an isotopy of compact support
fixed on L such that §(Fr(M) N OU) is minimal. We aim to show Fr(M NU;U) is
incompressible in U.

Let J be a component of Fr(M) N OU. Then J is a circle. We claim that J is
noncontractible on Fr(Af). To get a contradiction, suppose that J bounds a disk D
in Fr(M). We may choose J so that D NFr(M) = J. Since 9U is incompressible,
there is a disk F C 9U with OF = J. Since m(A) — m1(U) is nontrivial, A is not
a subset of E. Therefore, ANE = (. So ENL = (). Therefore EU D is a sphere
in W— L.

By the irreducibility of W, there is a 3-ball B that is bounded by E'U D. Since
m1(A) — (W) is nontrivial, L is not contained in B. Therefore, BN L = . So
we may isotop Fr(M) along B and reduce §(Fr(M) N oU). This is a contradiction,
so J is noncontractible on Fr(M).

Note that Fr(M NU;U) = Fr(M) NU. Suppose D is a compressing disk for
Fr(M NU;U) in U. Then 9D bounds a disk £ C Fr(M) that must contain a
component of Fr(M) N OU. Since these curves are noncontractible on Fr(M), this
is a contradiction. It follows that Fr(M NU;U) is incompressible in U. Therefore,
we may conclude that U is end-irreducible. &

Lemma 3.3. Let W be an orientable, irreducible, end-irreducible 3-manifold that
has only one end and is such that OW an open annulus that is incompressible in
W. Suppose that there is an annulus A C OW such that the inclusion induced map
m1(A) — 7 (OW) is an isomorphism. The following are equivalent.

1) Ewery loop in W is freely homotopic in W into A.
2) Given any compact K C W, there is a compact, connected, irreducible 3-
manifold M C W with K UA C M —Fr(M) such that
a) Fr(M) is incompressible in W,
b) Fr(M) is connected, and
c) any closed path in M is freely homotopic in M into AUFr(M).
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3) Given any compact K C W, there is a compact, connected 8-manifold M C W
with KUA C M —Fr(M) such that the triple (M, A, Fr(M)) is homeomorphic
as a triple to (A x I,Ax 0,4 x 1).

4) The pair (W, A) is homeomorphic as a pair to (A x [0,00), A X 0).

Proof. We first prove (1= 2). Let K C W be compact. Since W is end-irreducible,
there is a compact, connected 3-manifold M C W with K UA C M — Fr(M) such
that Fr(M) is incompressible in W. Since W has one end, we may argue that
cl(W — M) is connected and noncompact. It follows that M is irreducible because
W is irreducible. Since A C M and W is irreducible, it follows that cl(W — M) is
irreducible.

Let F be a component of Fr(M). If Fr(M) — F # (, there is a loop A in W
that meets F in exactly one point because cl(W — M) is connected. Now A is
freely homotopic in W into A. By a Zs-intersection number argument, we get a
contradiction. See the proof of Lemma 2.3 of [3] for example. So F' = Fr(M).

Let A : S — M be a map. We may assume that \(S') C M — M. Since every
closed path in W is freely homotopic in W into A, there exists amap A : S'xI — W
such that A(z,0) = \(z) for every z € S* and A(S! x 1) C A.

We may assume that A is transverse to F' and that $(A~!(F)) is minimal.

Of course if A=1(F) = (), then \ is freely homotopic in M into A.

Suppose that A™!(F) # () and that .J is a component of A~ (F). Since A(S? x
oI) N F =0, it follows that J is a simple closed curve. Since F' is incompressible
and f(A~1(F)) is minimal, it can be argued that J is isotopic in S x I to a curve
St x t for some t € (0,1). Alter the product structure of S* x I so that J = St x .
We may choose J so that A(S* x [0,¢)) N F = (). It now follows that X is freely
homotopic in M into F.

We now prove (2= 3). By Theorem 3.1 of [1], there is a component C' of
Fr(M) U A such that the map induced by inclusion on fundamental group is onto.
Note that 71 (Fr(M)) — m1 (M) is injective because Fr(M) is incompressible in M,
and the inclusion induced map w1 (A) — m1 (W) is injective. Therefore, by Lemma
10.2 of [6], it follows that there is a homeomorphism h : (M,C) — (C x I,C x 0).

Suppose that C = A. Then (M, A) is homeomorphic to (A x I, A x 0). Since
Fr(M) is connected and incompressible in A x I, it follows that Fr(M) is either a
disk or an annulus.

Suppose that Fr(M) is a disk. Then M must be a closed 3-cell because W is
irreducible and boundary-irreducible and cl(W — M) is connected and noncompact.
Since 71 (A) — w1 (M) is nontrivial, this is absurd.

So we may assume that Fr(M) is an annulus. Observe that cl(OM — A) is an
annulus. Since Fr(M) C cl(OM — A) and is incompressible in M, it follows that
(M, A, Fr(M)) is homeomorphic to (A x I, A x 0,A x 1).

Suppose that C' = Fr(M). Then h=1((0C x [)U(C' x1)) = MNOW. Since Fr(M)
and W are incompressible in W it can be argued that the inclusion induced map
T (M NOW) — m (M) is injective. Recall OW is an open annulus, so M N OW
must be an annulus. Since A C M N OW and A is incompressible in M, it follows
that M N OW is an annulus and is a regular neighborhood of A in W. It follows
that there is a homeomorphism from (M, A,Fr(M)) to (A x I, A x 0, A x 1).
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We now prove (3= 4). Let X be an end-irreducible exhaustion for W such that,
forn >0, A C X,, — Fr(X,,) and cl(W — X,,) is connected and noncompact, and
(X, Ap, Fr(X,,)) is homeomorphic to (Ax I, Ax0, Ax1) for n > 0. By Lemma IX.1
of [7], it follows that, for n > 1, there is a homeomorphism h,, : cl(X, — X,_1) —
A X [n — 1,n] such that h,|Fr(Xy) : Fr(Xx) — A X k is a homeomorphism for
k=n—1andn.

For n > 1, let 1, : A x [n—1,n] — A be the projection map. We define a
homeomorphism g : A x [0,00) — W as follows. Let g(x,t) = hy'(x,t) for (z,t) €
A x [0,1]. Let n > 2 be given and suppose that ¢ is defined on A x [0,n — 1] and
takes it homeomorphically onto X,,—1 with g|Ax (n—1): Ax(n—1) — Fr(X,-1) a
homeomorphism. For (x,t) € Ax [n—1,n], define g(z,t) = h; ' (nphng(x,n — 1),t).
One may check that g is well-defined, continuous, and that g|A x [0,n] : Ax[0,n] —
X, and g|A xn: Axn — X, are homeomorphisms. By continuing inductively, we
can extend g to a homeomorphism from A x [0,00) to W which takes A x 0 to A.

That (4= 1) is clear. &

4. Nearnodes

Lemma 4.1. Suppose that N is a nearnode with v > 2 faces. Suppose that C' is a
compact, connected subset of N that meets at least two components of ON. If B s
a closed 3-cell in N with C C B — Fr(B) such that BN Q is either a disk or empty
depending or whether CNQ # 0 or CNQ = 0, respectively, for each component Q
of ON, then Fr(B) is incompressible in N — C.

Proof. Suppose that D C N — C is a compressing disk for Fr(B). Let F; and Es
be the closures of the components of 9B — dD. Since D is noncontractible in
Fr(B) is follows that E; — OF; contains a component of BN IN for i = 1 and 2.
Therefore C N (E; — OF;) # 0 for 1 = 1,2. Since N is irreducible, there is a 3-cell
B; C N with 8B; = E; U D. Since C N D = (), it follows after a bit of argument
that CNoB, C By — dF,. Therefore C C By. Since B1 NON C Ey, it follows that
C N (FEy — 0F3) = () which is a contradiction. é#

Lemma 4.2. Suppose that N is a noncompact 3-manifold containing a nontrivial
plane P C N — ON which separates N. Let N’ be the result of splitting N along P.
Then N is a nearnode iff each component of N' is a nearnode.

Proof. Let Ny and Nj be the components of N and let n : N’ — N be the quotient
map of the splitting. Let P; =7~ *(P)N N, for i = 0 and 1.

(<= ) Suppose that each component of N’ is a nearnode. Let K C N be
compact. Since P is proper in N, it follows that 7 is a proper map. Therefore
n~Y(K) N N; is compact for i = 0 and 1. Since Ny is a nearnode, there is a closed
3-cell By C Ny such that By N @ is either empty or a disk for every component
of ONg and 7~ *(K) N Ny C By — Fr(By). We may take By large enough so that
Py N By is a disk.

Note that n_ln(Bo UPy)N P is a disk. Let By C Ny be a closed 3-cell such that

(' n(Bo N PRy) Un H(K)| NP C By
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and so that By N Q is either a disk or empty for every component @ of 0N;. Note
that n(BoU By) is a closed 3-cell which contains K and is such that n(ByUB;)NQ
is either a disk or empty for every component ) of N. Therefore N is a nearnode.

(= ) Now suppose that N is a nearnode. If N is connected, N is homeomor-
phic to halfspace which contains no nontrivial planes. Therefore, §(ON) > 2.

Let ¢ = 0 or 1 be given. Let K; C N; be compact. Then n(K;) C N is compact.
There is a compact, connected K C N which traps P such that K; C K, and such
that K meets at least two components of ON. Let Dp C P be a disk in P with
PNK C Dp—0Dp. Let B C N be a closed 3-cell with K U Dp C B’ — Fr(B’)
such that B’ N Q is either a disk or empty for every component @ of ON. Let Q*
be the union of components @ of ON such that B'NQ # 0 but KNQ = 0. Let U
be a regular neighborhood of @* in N — (K N Dp). Let B = cl(B’ — U). We may
choose U so that B is a closed 3-cell. Note that B N @ is either a disk or is empty
for each component @ of 9N. By Lemma 4.1 it follows that Fr(B) is incompressible
in N - K.

By Lemma 2.1, The Target Lemma, there is an isotopy of N fixed on K U
Dp which takes P to a plane P’ such that each component J of P’ N Fr(B) is
noncontractible in Fr(B) and bounds a disk E; C P’ such that Dp C E; — J.
It follows that each compact component of P’ Ncl(N — B) is an annulus that is
incompressible in cl(N — B).

Suppose that A is an annulus component of P’ Necl(N — B). Let J; and J; be
the components of JA. Let Dy and Dy be properly embedded disjoint disks in B
such that 0D; = J; for j =1 and 2. Since N is irreducible, there is a closed 3-cell
C C N with 0C = D1 UAUDs. It is not difficult to see that BUC' is a closed 3-cell.
Let B¢ be a regular neighborhood of BUC in N. Then each compact component
of P" Ncl(N — B§) is an incompressible annulus in cl(N — B¢) and

H(P' N cl(N — BE)) < #(P' Ncl(N — B)).

By continuing in this fashion, we obtain a closed 3-cell B* such that B* N N =
BN ON and P’ NFr(B*) is a simple closed curve, say J. Let E be the disk in P’
with OF = J. Let B} be the closure of the component of B* — E which contains
n(Ki).

There is a homeomorphism h : N — N that is the identity on K such that
h(P') = P. Then h(B}) is a 3-cell which meets P in a single disk, namely h(E).
Let B, = n~'h(B}). Then K; C B} — Fr(B}) and B, N Q is either a disk or empty
for each component @ of ON;. Therefore N; is a nearnode. #

Lemma 4.3. If N is a nearnode and N’ C N is a proper 3-manifold such that ON'
is a squadron in N, then N’ is a nearnode.

Proof. This follows immediately from Lemma 4.2 &

Let F'*° be the 2-manifold obtained from the closed upper half plane by removing
1
an open disk of radius 3 centered at (0,n) for n =1,2,3,.... Let £ = F> x S’

Lemma 4.4. Let N be a nearnode with two faces that is not a node, i.e. is not
a missing boundary manifold. Then there is an embedding ¢ : X°° — N which
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is proper and is such that exactly one component of cl(N — 1(X°°)) is a 2-handle
and every other component of cl(N — 1(X°°)) is homeomorphic to the exterior of a
nontrivial knot in S®.

Proof. Let B be an exhaustion for IV of closed 3-cells which meet each component
of ON in single disks. By Lemma 3.3 there is at least one loop A,, in N — B,, that is
not freely homotopic in N into Fr(B,,) for each n > 0. By taking a subsequence of
B, we may assume that B, 1 — B, contains \,,. Forn > 0, let V;, = cl(Bp4+1 — Bp).
Then (V,,, Fr(V;,)) is not homeomorphic to (S* x I x I, S x I x 9I) for any n > 0.
Note, however, that 9V}, is a torus for n > 0.

For n > 0, let U,, be a regular neighborhood of dV,, in V,, and let T;, = oU,, —

OV,. Let ¥ = U U,. It is not difficult to construct a homeomorphism from
n=0

3\ 2
¥ to £ by taking U, to F, x S, where Fy = { (z,9) € F>®|2* +3* < <2) }

2 2
1
and F,, = {(:c,y)GFOO <n+2> <z 4+y? < <n+3> }forn> 1. Let V) =

cl(V,, = Up).

Note By is a 2-handle attached to the open annulus component of 9%. Let
n > 0 be given. We claim that V! is the exterior of a nontrivial knot in S3. Since
V! C Bp41 and 9V, is a torus, it follows that V! is either a nontrivial knot exterior
or a solid torus. To get a contradiction, suppose that V! is a solid torus. Let A be
the generator of 71 (V;,). There exists v such that A\ is freely homotopic in V,, to a
loop contained in Fr(B,,). By Van Kampen’s Theorem, it follows that 71 (Bp41) is
isomorphic to (A|A” = 1). Since B,1 is simply connected, it follows that |v| = 1.
Therefore (V,,, Fr(V},)) is homeomorphic to (S x I x I, S x I x dI). This violates
the first paragraph of this proof. Therefore V! is a nontrivial knot exterior. This
ends the proof. &

The following Theorem has benefited from a discussion with Mike Starbird.

Theorem 4.5. A nearnode with two faces that is not a node contains a collection
of pairwise disjoint nontrivial planes with the cardinality of the Cantor set no two
of whose members are parallel.

Proof. As usual let I be the closed unit interval. Let K C I be the Classical Cantor
Set. Recall that K is constructed recursively by successively removing middle thirds
of closed intervals. For n > 0, let U, 1,...,U, 2» be the middle thirds removed
during the nth stage of construction.

Let ¢ > 0 and 1 < j < 2¢ be given. For [ > 1, let D;;; be a round open disk in
Ui; x [0,00) whose center is on I x (I+14). We assume that radii are chosen so that
the disks are disjoint. Let D be the set of all D;j;;. Then D is countable. Observe
that I x [0,n] meets only finitely many elements of D.

Let Fx = (I x [0,00)) — (UD). Let S = Fx x S'. For every z € K, let
Al = (z x[0,00)) x S'. Then A’ is a half open annulus for every z € K.
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Let N be a nearnode with two faces. By Lemma 4.4, we may assume that >
is contained in and proper in N and that exactly one component of cl(N — X°°) is
a 2-handle and the rest are nontrivial knot exteriors in S3.

Let H be the 2-handle component of cI(N — X°°) and let A = HNX*>°. It is not
difficult to show that Fx is homeomorphic to F*°. It follows that X is homeo-
morphic to . Indeed there is a homeomorphism of pairs b : (Sx,I x 0 x St) —
(%, A).

For each z € K, let A, = h(A’). Make the identification H = I x D? so that
A=1x0D?. Forevery z € K, let D, = x x D?> and let P, = A,UD,. Then P, is
a plane that is proper in N and for every « € K, and P, N P, = () whenever = # y.
Let P = {P,|z € K}.

We claim that P is a set of planes as in the statement of the theorem. All we
need to show is that if x # y are elements of K, then P, is not parallel in N to
P,. Let v # y € K. Let N, be the near parallelism in N between P, and P,
that is guaranteed by Lemma 4.2. There exist ¢ and j such that U;; is between
z and y. Then U;; contains infinitely many elements of D. Hence IV, contains
infinitely many of the nontrivial knot exteriors of cl(N — 3°°). One may conclude
that 71 (cl(Ngy — H)) is nonfinitely generated. It follows that N, is not a node by
Lemma 3.3.

)

The result given below extends a result of Kinoshita [10].

Theorem 4.6. Let V be a connected, orientable, irreducible open 3-manifold of
genus 1 at infinity. Suppose that Py C V s a nontrivial plane. Then V is a
nearnode with one handle.

Proof. Tt suffices to show that the manifold obtained by splitting along P, is a
nearnode with two faces. Let U be a regular neighborhood of Py in V' and let
V' = cl(V = U). Suppose that K’ is a compact subset of V'. Let P; and P, be
the components of OU. Then P; is parallel in V' to Py for ¢ = 1 and 2. Let P be
the squadron Py U Py U P,. Let K C V be a compact, connected 3-manifold which
contains K’ and traps each component of P in V. By Lemma 1 of [14], we may
assume that P; N K is a single disk for ¢ = 0,1,2. Since V is of genus 1 at infinity,
we may assume that K is chosen so that if M’ C V is a compact 3-manifold with
connected boundary such that K ¢ M’ — OM’, then OM’ is of genus at least one.
Fori=0,1,2,let D; C P; be adisk with KNP; C D;—9dD;. Since V is of genus 1 at
infinity, there is a compact 3-manifold M C V with KU (DoUD;UDy) C M —0M
such that OM is a torus.

Claim 4.6.1 OM is incompressible in V — K.

Proof: This follows because adding a compressing 2-handle to or removing a
1-handle from M in the complement of K will result in a compact 3-manifold M’
such that K € M’ —0M’ and OM’ is a 2-sphere. This contradicts our choice of K.
&

By Lemma 2.1, we may isotop P in V by an isotopy fixed on K U(DyU Dy U D5)
so that for each ¢ = 0,1, 2, each component J of P N JM bounds a disk E; C P



PLANES IN 3-MANIFOLDS OF FINITE GENUS AT INFINITY 41

such that D; C Ey — J for the appropriate ¢ and such that J is noncontractible in
oM.

Claim 4.6.2 M is a solid torus, and each component of PNJM is a meridian
of M.

Proof: Let i = 0,1 or 2, and let J be a component of P, N M and such
that (E; —J)NOM = (. Let N be a regular neighborhood of E; in M. Since
J is noncontractible in OM, it follows that cl(O0M — N) is an annulus. Hence
cl(OM — N)UFr(N; M) is a 2-sphere which must bound a 3-cell B in V. Since N
and P, are on the same side of B, and since P, is noncompact and proper in V|
it follows that BN N = Fr(N; M). Since N and B are 3-cells and V is orientable,
it follows that N U B is a solid torus. Note that (N U B) = OM. Because V is
noncompact, it follows that N U B = M and so M is a solid torus. Note that E;
is a meridian disk for M. Since each component of P N M is noncontractible in
OM, it follows that each is parallel in M to J and, therefore, must be a meridian
for M. &

Claim 4.6.3 V' is a nearnode with two faces.

Proof: First consider the case where P; N M is a single disk for each i = 0,1, 2.
Then U N M is a regular neighborhood of PN M in M. Let B = cl(M — U). Then
Bisa3-cell, BC V', and BN P, is a single disk for ¢ = 1,2. It follows that K’ C B
because K’ € M and K’ C V'. Therefore V' is a nearnode with two faces. Now
suppose that P; N M is not a single disk for some i = 0,1 or 2. Then there is an
annulus component A of P;Necl(V — W). By Claim 4.6.2 there are disjoint meridian
disks D’ and D” in M such that 9D’ U dD"” = 0A. Note that D’ U AU D" is a
2-sphere that bounds a closed 3-cell C' C V. It is not difficult to see that M U C'is
a solid torus. Let M’ be a regular neighborhood of M U C in V. By continuing in
this fashion, we may reduce to the case where P, \ M is a single disk for i = 0,1, 2.

&

The theorem now follows from these claims. &

Corollary 4.7. Let V be a connected, orientable, irreducible open 3-manifold of
genus 1 at infinity. Suppose that Py C V is a nontrivial plane. Then 7 (V) is
infinite cyclic.

5. Finiteness Conditions

Theorem 5.1. Suppose that V is a noncompact, irreducible, orientable connected
3-manifold that has one end. Assume that V' has an erhaustion X such that 0X,
is connected, of genus g > 2, and is incompressible in V — Xy forn > 1.

Let U be a 3-manifold that is proper in V' such that OU is a squadron. Let v be
the number of components of U.

1) If v > 29 — 2, then at least one component of U is a nearnode with two faces.
2) If W is a component of U, then §(0W) < 2g.

Proof. Tt is not difficult to show that there is a compact 3-manifold M C V such
that cl(V — M) is end-irreducible, and for every compact K C V with M C K there
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is a compact 3-manifold Ni such that K C Ng — 0Nk and 0N is connected, of
genus g and incompressible in W — M.
Since V is irreducible and connected and since g > 1, it follows that M may be
chosen so that cl(V — M) is irreducible.
2g—1
Suppose that Uy, ...,Usy—1 are distinct components of U. Let U’ = U U;.
=1

Let D be a 2-manifold in U’ such that D N P is a disk for every component P
of OU’ and such that OU' "M C D — 0D. Let K be a compact subset of U’.
We may assume that K N P # () for each component P of U’ and that K N U;
is connected for 1 < i < 29 — 1. Let N be a compact 3-manifold in V' such that
KUDUM C N—0ON, such that ON is connected, is of genus g, and is incompressible
inV—-(KUDUM).

By Lemma 2.1, we may move QU’ by an isotopy of V fixed on K U D U M so
that if J is a component of U’ N ON, then J is a simple closed curve that bounds
a disk E; C OU’ such that DN P C E; — J, where P is the component of U’ that
contains J. We may also assume that J is noncontractible on dN.

We first claim that no component of N NU’ or ON Ncl(V —U’) is a disk.
Suppose that F is such a disk. Let J = 9F. Then J is a component of N N oU’.
Let P be the component of QU’ which contains J. Recall there is a disk £y C P
such that OF; = Jand MNP C E; —J. Now EU Ej is a 2-sphere which must
bound a closed 3-cell B C V by irreducibility. We may use B to isotop P free of M.
However since cl(V — M) is end-irreducible, Lemma 3.1 produces a contradiction.

Let x denote the Euler characteristic. Since neither INNU’ nor IN Necl(V — U”’)
has disk components, it follows that x(ON NU’) and x(ON Necl(V — U’)) are non-
positive. Consequently

X(ON) =x(ONNU")+ x(ONNcl(V -U"))
< x(ONNU").

For1<i<2g—1,let F; =0N NU;. Then
2g—1
X(ON) < ) x(F)).
i=1
Since no component of F; is a disk and each component has boundary, it follows
that x(F;) <0for 1 <i<2g9—1.

We claim that x(F;) = 0 for some i. Otherwise x(F;) < —1 for 1 <i <2g—1,
and hence x(ON) < 1—2g. But x(ON) = 2 — 2g because IN is of genus g. This is
a contradiction.

Choose notation so that x(F;) = 0. Since no component of Fj is a disk, each
component of F; has Euler Characteristic equal to zero. Since N is orientable, no
component of I} is a mobius band. Therefore each component of F} is an annulus.

We claim there is a component A of F; such that each component of JA is
contained in a different component of dU;. In order to get a contradiction, suppose
that this is not the case. Let P be a component of 9U;. Then §(PNON) is
even since §(P NAIN) = 24(F]), where F] is the union of all the components of F}
that meet P. On the other hand, §(P NIN) must be odd because §(P NIN) =
£(0(P N N)) and exactly one component of PN N is a disk while the rest are annuli.
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Let J; and Js be the components of 9A and let P; be the component of OU; that
contains J; and let F; be the disk in P; bounded by J; for i = 1,2. Then E1UAU F,
is a 2-sphere which must bound a 3-cell By C V by irreducibility. Since A C U;
and since each component of JU; is a proper plane, it follows that By C U;.

We claim that K N U; C By. Since cl(P; — E) is noncompact and proper in V,
we know that P, — E; is not contained in By. Since K NU; and P; — Ey are on
opposite sides of By, it follows that K N U; C By.

Since U’ has only finitely many components, it follows that at least one of them,
say Uy, has an exhaustion B such that B,, is a closed 3-cell and B, N JU; is a pair
of disks each contained in a different component of 9U;. Therefore U is a nearnode
with two faces. This ends the proof of (1)

To prove (2), let W be a component of U.

There is a component F' of AN N W that meets each component of 9W. Con-
sequently #(0W) < #(OF). We will now obtain a bound on §(0F). Let gr be the
genus of the closed 2-manifold obtained from F' by capping of each component of
OF with a disk. Clearly gr < g. As before no component of F or cl(ON — F) is a
disk. So x(F) > x(ON). Hence

(2—2g9r) —H(0F) = x(F)
> x(ON)
> 2-—12g.

That is
£(0F) 29 —2gr

IAIA

2g.
It follows that #(0WW) < 2g. &

For the last result of the section it will additionally be assumed that 71 (V) is
finitely generated of rank p. We will also assume that P is a squadron in V' such
that V' — P is connected.

Lemma 5.2. Suppose that V is a noncompact connected 3-manifold that has one
end and that m (V) is finitely generated of rank p. Suppose that P is a squadron in
V' such that V. — P is connected. Then §(P) < p.

Proof. This follows by Van Kampen’s Theorem and Grushko’s Theorem.
)

Part II: Major Results
6. More Definitions

We now make our entrance into the second half of the paper, where the results are
deeper and more difficult. Before proving these results, we will state definitions of
some concepts that were not needed until this point and state some results that
could not be stated without this vocabulary.
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One of the chief goals of this portion of the paper is to create a place in a
noncompact 3-manifold into which nontrivial planes can be isotoped. This creation
proceeds in stages that will be described in broad strokes below.

In [13], the weak characteristic pair of an end-irreducible 3-manifold was intro-
duced. The noncompact components of a weak characteristic pair are Seifert fibered
spaces over noncompact 2-manifolds and [0, co)-bundles. It was shown in that pa-
per that essential, half-open annuli can be isotoped into the weak characteristic
pair.

As we've seen, in the Target Lemma, for instance, planes in eventually end-
irreducible 3-manifolds can be isotoped so as to meet the end of the ambient man-
ifold in half-open annuli. Consequently, the weak characteristic pair of the end of
the manifold catches the end of nontrivial planes of that 3-manifold.

It turns out we may alter the weak characteristic pair by adding, 2-handles,
removing 1-handles, and performing other simple modifications to obtain nearnodes
and blemishes. Nearnodes and blemishes, it turns out, have certain properties that
enable us to prove uniqueness of a particular type of decomposition.

This particular type of decomposition is called a “hangar decomposition.” Planes
are moved into hangars. The creation of the hangar is a two-stage process. Mod-
ifying the weak characteristic pair of the end produces something called a “strip.”
Strips are sufficient for a place into which planes may be isotoped, but they are
inadequate so for as having a unique structure is concerned. For this, we must
enlarge them slightly so as to obtain hangars.

Let V' be a noncompact, irreducible, connected 3-manifold. We say that V is a
missing boundary manifold if there exists a compact 3-manifold My such that V is
homeomorphic to My — L, where L is a closed subset of 0Mjy, .

Suppose that N is a noncompact, irreducible, connected orientable 3-manifold
that has one end and is a missing boundary manifold. Also suppose that every
component of N is noncompact and that N contains a nontrivial plane. Then we
say that N is a blemish. If N is a blemish and every component of N is a plane,
then we say that N is a polished blemish.

Let H be a proper 3-submanifold of V. We say that H is a prehangar for V if

1) OH is a squadron in V|

2) each component of H is either a nearnode with two faces or a polished blemish,

3) whenever N is a component of cl(V — H) that is either a nearnode with two
faces or a polished blemish, then N is a node with two faces, and

4) whenever N is a component of cl(V — H) that is a node with two faces and H’
and H" are the components of H which contain the components of N, then
H'UN U H" is neither an nearnode with two faces nor a polished blemish.

Given a proper 3-submanifold H in V that satisfies conditions 1 and 2 in the
definition of prehangar, let oo(H) be the number of components of cl(V — H) that
are either nearnodes with two faces or polished blemishes but are not nodes with
two faces. Given a squadron P in V', there is a proper 3-submanifold H of V that
satisfies 1 and 2 (a product neighborhood of P, for instance). If we choose H so that
(a(H),4(H)) is minimal when taken in lexicographic order, then it is not difficult
to show that H is a prehangar for V.
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By combining this observation with Lemma 8.3 of the sequel, we may obtain the
following.

Lemma (The Prehangar Lemma) Suppose that V' is a noncompact, irre-
ducible, orientable, connected 3-manifold such that

1) V has one end,

2) w1 (V) is finitely generated, and

3) V has an exhaustion X such that, for n > 1, 0X,, is connected, of genus g,
and incompressible in V — Xg.

Then there is a prehangar H for V such that every nontrivial plane in V that is
contained in V — H is nearly parallel in cl(V — H) to a component of OH.

If H is a prehangar for V' and cl(V — H) is aplanar, then we say that H is a
hangar for V.

We say that a set ‘H of prehangars for V is a hangar system for V if for every
squadron P C V, there is an Hp € H such that P is isotopic in V into Hp.

If N and N’ are both nearnodes with two faces or both polished blemishes, then
we say that N and N’ are of the same type.

Let V be a 3-manifold and let M C V be a compact 3-manifold. Suppose that
S C V is a 3-manifold that is proper in V' such that

1) S has a finite number of components,

2) 0S8 is incompressible in V,

3) if S’ is a component of S, then either S’ is a nearnode with two faces or a
blemish, and

4) if @Q is a squadron in V such that each component of @ Ncl(V — M) is a half
open annulus that is incompressible in cl(V — M), then @ is isotopic in V
into S,

then we say that S is a strip for V rel M. If each component of 35 is a plane, then
we shall refer to S as a polished strip for V rel M.

Let V be a noncompact 3-manifold that contains a compact 3-manifold L such
that V is of finite genus g > 2 at infinity rel L. Suppose that for every compact
3-manifold K C V there is a compact 3-manifold My C V that is regular in V
with respect to L for which there is a polished strip S for V' rel My such that if Q
is a plane in V' that is nearly parallel in V' to a component of 0.5, then @ is isotopic
in V into S. Then we say that V is pristine.

We prove the following in Lemma 8.4

Lemma (The System Lemma) Let V' be an orientable, irreducible, connected,
open, eventually end-irreducible 8-manifold with one end such that w1 (V') is finitely
generated. Suppose that L is a compact subset of V' such that V is of at least
genus g > 2 at infinity rel L and that V' is pristine. Let M be the set of compact
3-manifolds in V' that are regular in V with respect to L.

1) For every M € M, let S(V, M) be a polished strip such that if Q is a plane
in V that is nearly parallel in V' to a component of 0S(V, M), then Q is
isotopic in V into S(V, M). There is a prehangar H(V, M) for V such that
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S(V,M) C H(V,M) and every component of 0H (M, V) is either a component
of 0S(V, M) or is parallel to a component of 0S(V, M).

2) If P is a squadron in 'V, then there is a compact 3-manifold Mp that is
reqular in V' with respect to L such that P is isotopic in V into H(V, Mp).
Consequently, H(V) = {H(V,M)|M € M} is a hangar system for V.

The following two results are Theorem 8.5 and Lemma 9.1 which combine to
form the main result of this paper.

Theorem (The Hangar Theorem) Let V' be an orientable, irreducible, con-
nected, open, pristine 3-manifold with finite genus g > 2 at infinity and a finitely
generated fundamental group. Then there is a hangar H for V such that if P is a
squadron in V', then P is isotopic in V into H. Furthermore, if G is any hangar
for V, then G is isotopic in V to H.

In Lemma 9.1 we prove the following

Lemma (The Strip Lemma) Let V be an orientable, irreducible, connected,
open, eventually end-irreducible 3-manifold such that w1 (V') is finitely generated.
Also assume that there is a compact 3-manifold L such that V is of finite genus
g > 2 at infinity rel L. Suppose that M C V is a 3-manifold with L. C M that is
reqular in 'V with respect to L.

Then there is a strip S for V rel M such that if Q is a plane in V that is nearly
parallel in V' to a component of S, then Q is isotopic in V into S.

We are now able to state and prove (modulo the above results) the following
theorem which summarizes the results of Theorem 8.5 and Lemma 9.1.

Theorem 6.1. (Main Theorem) Let V be an orientable, irreducible, connected
3-manifold of finite genus g > 2 at infinity and with finitely generated fundamental
group. Then V is pristine if at least one of the following holds

1) Whenever F is a noncompact, connected 2-manifold such that the inclusion
induced map 7 (F) — w1 (V) is injective, m (F) is finitely generated, and
there is a compact K C V' that traps F', then F is a plane.

2) There is no nontrivial subgroup of m (V') that is free.

3) w1 (V) is trivial.

In any of these cases there is a hangar H for V such that if P is a squadron in

V', then P is isotopic in 'V into H. Furthermore, if G is any hangar for V, then G
is 1sotopic in 'V to H.

Proof. By Lemma 9.1, for every regular M C V there is a strip S for V rel M such
that if @ is a plane in V that is nearly parallel in V' to a component of 95, then
@ is isotopic in V into S. Each of the conditions 1,2, and 3 of the theorem ensure
that any blemish component of S is a polished blemish. Therefore, V is pristine.
The remainder follows from Theorem 8.5. &
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7. Blemishes

The following beautiful characterization of missing boundary manifolds is due to
Thomas Tucker [11]. It is stated here because it will be used in the proof of Lemma
7.2

Lemma 7.1. (Tucker) Let M be a P?-irreducible 3-manifold that is connected.
Then M is a missing boundary manifold iff for every compact C C M, each com-
ponent of M — C' has finitely generated fundamental group.

Lemma 7.2. Let N be a noncompact, irreducible connected 3-manifold. Suppose
that P C N s a nontrivial plane. Let N’ be obtained from N by splitting N along
P. Then N is a (polished) blemish iff each component of N' is a (polished) blemish.

Proof. We will prove the result for blemishes; the result for polished blemishes
follows immediately. Let  : N’ — N be the quotient map of the splitting. Since P
is proper in N, it follows that 7 is a proper map. Suppose that K’ C N’ is compact.
Then n(K’) is compact. Let K be a compact, connected 3-manifold that traps P,
and which contains n(K’) in its interior.

Since P is a proper plane, it follows that N is irreducible iff N’ is irreducible.
Henceforth, we will assume that N and N’ are irreducible. By Lemma 1 of [14],
there is a compact 3-manifold M C N with K C M — Fr(M) such that PN M is a
single disk whose boundary is noncontractible in Fr(M). Therefore cl(P — M) is a
half open annulus which is incompressible in cl(N — M).

Let Ny and N; be the components of N’. (It may be that Ngo = N; = N'.)
Let M; = n~Y(M) N N; for i = 0 and 1. Note that cI(N — M) has exactly one
noncompact component iff cl(N; — M;) has exactly one noncompact component for
i=0and 1, so N has one end iff V; has one end for i = 0 and 1, so, therefore, we
may assume that N and each component of N’ has one end.

Note that 71 (N — M) is isomorphic to either

T (N =7 (M))%r, ()
or
71 (No — Mo) *5, (a) T1 (N1 — M)

depending upon whether or not N’ is connected. By Theorems 25 and 31 of Chapter
1 of [5], we may deduce that m (N — M) is finitely generated iff the fundamental
group of each component of N’ —n~1(M) is finitely generated.

Suppose that N is a blemish. Then (N — M) is finitely generated. Let i =
0 or 1 be given. Then 7y (N; — M;) is finitely generated. Since m(M; — K') is
finitely generated, it follows that 71 (IV; — K’) is finitely generated by Van Kampen’s
Theorem. By Lemma 7.1 it follows that N’ is a missing boundary manifold. Hence
each component of N’ is a blemish.

Suppose that each component of N’ is a blemish. Then 71 (N; — M;) is finitely
generated for ¢ = 0 and 1. Therefore m (N — M) is finitely generated. Since
m1(M — K) is finitely generated, it follows by Van Kampen’s Theorem that 7 (N — K)
is finitely generated. Hence N is a missing boundary manifold. Therefore, N is a
blemish. &



48 BOBBY NEAL WINTERS

Lemma 7.3. Now suppose that N* is a connected, proper 3-submanifold of N such
that ON* C N — ON and ON* is a squadron in N. If N is a (polished) blemish,
then N* is a (polished) blemish.

Proof. This follows directly from Lemma 7.2. &

8. Prehangars and Hangar Systems

Lemma 8.1. Let V' be a noncompact, open, irreducible 3-manifold. Suppose H and
G are prehangars for V such that 0OH C G—0G. Suppose H is chosen in its isotopy
class in V with respect to this condition so H contains the fewest components of
c(V —@G). Then H C G.

Proof. Suppose that H' is a component of H. Let I' = cl(V — G). Since 0H C
G — 0G, a component of I is either contained in H’ or misses H'. Let I =T'NH’.
Note I consists of the components of T' that are contained in H’. It follows by
Lemmas 7.3 and 4.3 and the fact G is a prehangar that each component of IV is a
node with two faces. Let G’ = G N H'. Note that H' = G’ UT”, and H' C G iff
I’ = .

It suffices to prove that I = (). Suppose that IV # (). For every component P of
OH’, let Gp be the component of G’ that contains P.

Let us first suppose there is a component P of 9H’ such that Gp is a node with
two faces. Let P/ = 9Gp — P and let N be the component of IV that contains P’'.
We may use N UG p to reduce the number of components of ' contained in H' by
an isotopy that is fixed off a neighborhood of N U Gp.

Now suppose there is no plane P such that Gp is a node with two faces. Then
every component of G that meets H' must be of the same type. Let N be a
component of IV, and let Gy and G; be the components of G that meet N. Since
Go and G meet H', they are of the same type. This contradicts the assumption
that G is a prehangar. &

Lemma 8.2. Let V be a noncompact, open, irreducible 3-manifold. Suppose G is
a prehangar for V and that G’ and G" are distinct components of G. There is no
isotopy hy of G such that hy(G') C G" — 9G" .

Proof. Suppose that h; is such an isotopy. By Lemmas 7.3 and 4.3, it follows that
h1(G") and G” are of the same type. Hence G’ and G” are of the same type.

Let P’ be a component of G’. By Theorem 5 of [14], it follows there is a
parallelism N’ in V' between P’ and hy(P’). Since h1(G') C G” — 0G”, there is a
component P” of G which is contained in N' — ON’. By Lemmas 7.3 and 4.3, it
follows that there is a parallelism N” between P’ and P”. By Lemmas 7.3 and 4.3
again, we may choose P’ and P” so that N N (G’ UG") = P'n P".

If N” is a component of cl(V — @), this contradicts the fact that G is a prehangar
for V. On the other hand, if N” is not a component of cl(V — G), then N” must
contain a component of cl(V — G) which would likewise produce a contradiction.

[ )
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By Lemma 5.2, we may assume that there is a maximal squadron P such that
V — P is connected, i.e. if P’ is a squadron in V and #(P’) > #(P), then V — P’ is
not connected.

Lemma 8.3. (The Near-Parallel Lemma) Suppose that V is a noncompact,
irreducible, orientable connected 3-manifold that has one end and w1 (V') is of rank
less than p. Assume that V has an exhaustion X such that 0X, is connected,
of genus g > 2, and is incompressible in V — Xq for n > 1. Assume that P is
a squadron with the largest number of components such that V — P is connected.
Suppose that H is a prehangar for V such that P C H — OH.
1) Then #(H) <p+ (29 —2)(2g+1)+1.
2) Suppose that $(H) is as large as possible for any prehangar H for V which
contains P. Then every nontrivial plane in V that is contained in V — H is
nearly parallel in cl(V — H) to a component of OH .

Proof. To prove (1). Let N be the union of components of H that are nearnodes
with two faces and let C' = cl(H — N). By Lemma 5.1 and the fact that H is a
prehangar, it follows that §(C) < 2¢g — 2 and #(9C) < 2g(2g — 2).

To get a contradiction, suppose

8(H) > p+(29-2)(29+1)+1
= p+(29—2)+29(2g—2)+ 1.

There are at least (2g — 2) + 2¢g(2g — 2) + 1 components of H that contain no
component of P and so cl(V — H) has at least 2g(2g — 2) + 1 components that are
nearnodes with two faces. By Lemma 5.1 at most 2¢g(2g — 2) of these can meet
a component of C. Therefore at least one component of cl(V — H) is a nearnode
with two faces that meets only components of N. This contradicts that H is a
prehangar.

To prove part(2), suppose that @ is a nontrivial plane in V that is contained
in V — H. Let N be a regular neighborhood of @ in V' — H. Then N is a node
with two faces. Since #§(H) is maximal, it follows that either a component N’ of
cl(V — (HUN)) is a nearnode with two faces that is not a node or N’ is a node
with with two faces that meets components of H of the same type. Since H is
a prehangar, one component of N’ is a component of ON and the other is a
component of 9H. Let N” be the closure of the component of N — ) that meets
N’. By Lemma 4.2, N is a nearnode with two faces. So by Lemma 4.2 N’ U N”
is a nearnode with two faces. This ends the proof. &

Lemma 8.4. (The System Lemma) Let V' be an orientable, irreducible, con-
nected, open, eventually end-irreducible 3-manifold with one end such that w1 (V')
is finitely generated. Suppose that L is a compact subset of V' such that V is of
at least genus g > 2 at infinity rel L and that V is pristine. Let M be the set of
compact 3-manifolds in V' that are reqular in V' with respect to L.

1) For every M € M, let S(V, M) be a polished strip such that if Q is a plane in

V that is nearly parallel in' V' to a component of 0S(V, M), then Q is isotopic
in V into S(V,M). Then there is a prehangar H(V,M) for V such that
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S(V,M) C H(V,M) and every component of 0H(V, M) is either a component
of 0S(V, M) or is parallel to a component of dS(V, M). Consequently, If Q is
a nontrivial plane in V—H that is nearly parallel in cl(H — V') to a component
of 0H(V, M), then @ is isotopic in V into H(V,M).

2) If P is a squadron in V', then there is a compact 3-manifold Mp € M such
that P is isotopic in V into H(V, Mp). Consequently, H(V) = {H(V,M)|M €
M3} is a hangar system for V.

Proof. Let M € M and let S = S(V, M). We shall presently describe operations
that will build S into a prehangar for V. Let A/ be the set of all components of
cl(V — S) that are polished cysts or nearnodes with two faces. For each N € N,
let $(N) = cl(N — U), where U is a regular neighborhood of N in N. Let

ﬁ:Su<LJwN0.

NeN
Let K be the set of components of cl(V — H). Let £ C K. Put

HHu<UL>
LeL
If each component of H is either a nearnode with two faces or a polished cyst, we
say that H is an amalgam of H.
Let H be an amalgam of H such that cl(V — H) has the fewest components.

Claim 8.4.1 H is a prehangar for V. Furthermore each component of 0H is
parallel in V' to or equal to a component of 0S.
Proof: One may easily check the first three parts of the definition of prehangar.
Suppose that N is a component of cl(V — H) that is a node with two faces and
that H' and H" are the components of H which contain the components of ON. If
H’ and H" are of the same type, then either H U N is a nearnode with one handle
(this occurs only when H' = H”) or HU N is an amalgam of H with

#(cl(V — (HUN))) < f(cl(V — H)).

The latter case contradicts our assumption of minimality. On the other hand, if
H U N is a nearnode with one handle, then V' = H U N is of genus one at infinity
which is also a contradiction.

To see that each component of H is parallel in V' or equal to a component
of &S, one simply observes that each component of dH is parallel (or equal) to a
component of &S and OH C OH. &

Claim 8.4.2 If P is a squadron in V, then there is an Mp € M such that if
M e M and Mp C M — OM, then P is isotopic in V into H(V, M). Consequently
H(V) is a hangar system for V.

Proof: By Lemma 2.3, it follows that for every compact K C V there is an
Mg € M such that K € Mg — OMg. By Lemma 2.1 there is an Mp € M so
that if Mp C M — OM and M € M, then after an isotopy each component of
PNcl(V — M) is a half open annulus. Therefore, again after an isotopy, S(V, M)
swallows the ends of P. Hence by Lemma 2.5, P is isotopic in V into S(V, M).
Therefore P is isotopic in V into H(V, M). &
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Theorem 8.5. (The Hangar Theorem) Let V' be an orientable, irreducible, con-
nected, pristine 3-manifold with finite genus g > 2 at infinity and finitely generated
fundamental group. Then there is a hangar H for V such that if P is a squadron
in 'V, then P is isotopic in 'V into H. Furthermore, if G is any hangar for V, then
G is isotopic in'V to H.

Proof. By Lemma 2.2 of [3], it follows that V is eventually end-irreducible. There-
fore by our own Lemma 8.4 there is a hangar system H (V) for V.

Let H be a prehangar for V which contains a maximal nonseparating squadron
and has the most components of any such prehangar. By Lemmas 8.1 and 8.4,
there is an H € H(V) such that H is isotopic in V into H.

Claim 8.5.1 If P is a nontrivial plane in V' contained in V' — H, then P is
parallel in cl(V — H) to a component of 0H. Consequently, cl(V — H) is aplanar
and H is a hangar.

Proof: Let P be such a nontrivial plane. By an isotopy, we may assume that
H Cc H — 0H. By Lemma 8.3, it follows that P is nearly parallel in V to a
component P of 9H. Let N be a near parallelism in V between P and P.

Since H ¢ H—9H, it follows that N contains a component Q of 9H. By Lemma
4.2 the closure of each component of N — @ is a nearnode with two faces. Let N
be the near parallelism in V' between ) and P. Note that () may be chosen so that
N Cc c(V - H).

By Lemma 8.4, it follows that @ is parallel or equal to a component T of
9S(V, M), where M € M is chosen so that H = H(V,M). One may argue us-
ing Lemma 4.2 that there is a near parallelism L in V' between P and T

By Lemma 8.4, it follows that P is isotopic in V to a plane P’ in H — OH. By
Theorem 5 of [14], it follows that there is a parallelism in N’ in V' between P and
P'. Let P” be a component of H that is contained in N’. By Lemma 4.2, there
is a parallelism N” in V between P and P”. Note that P” can be chosen so that
N" N H = P”. This ends the proof. &

We shall now suppose that G is a prehangar for V' such that H C G — 0G.
Claim 8.5.2 If P is a nontrivial plane in V' contained in V' — G, then P is
parallel in cl(V — G) to a component of 0G.
Proof: By Claim 8.5.1 there is a parallelism N in V' between P and a component
Q of OH. Since H C G — 0G, there is a component P’ of G which is contained
in N. By Lemmas 7.2 and 4.2, there is a parallelism N’ in V between P and P’.
Note that P may be chosen so that N’ C cl(V — G). &

Claim 8.5.3 There is an isotopy h; of V such that hy(G) C H — 0H. Fur-
thermore if G’ is a component of G, then hi(G') C G'.

Proof: By Claim 8.5.1, each component of OG is parallel in V' to a component
of OH. Tt is not difficult to construct an isotopy of V' which takes 0G into H — 9H.
Therefore by Lemma 8.1, it follows that G is isotopic in V into H — 0H. Let hy
be this isotopy. Note that if G’ is a component of G, it follows by Lemma 8.2 that
MG)YCG. &
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Claim 8.5.4 @ is isotopic in V to H.

Proof: By Claim 8.5.3 there is an isotopy h; of V such that hi(G) C H — 0H
and such that, for each component G’ of G, h1(G") C G'.

We will first show that each component of G contains exactly one component
of H. Let G’ be a component of G and let H' be the component of H which
contains hq(G’). Then H' C G’ because h1(G’) C G'. Hence G’ contains at least
one component of H. Suppose that H” is a component of H which is contained in
G’'. Then hy(H") C h1(G') C H'. By Lemma 8.2 it follows that H” = H'.

Let G’ be a component of G and let H’ be the unique component of H contained
in G'. We claim that each component of cI(G' — H') is a parallelism in V' between
a component of G’ and a component of OH'. Let P be a component of 9G’. Then
hi(P) C H' — 0H'. By Theorem 5 of [14] and Lemmas 7.2 and 4.2, there is a
parallelism Np in V between P and a component Q of 9H'. We may choose Q
so that Np C cl(V — H’). Since G is a prehangar, it can be argued that Np C
cl(G" — H'); otherwise one can find components of G which are of the same type
and joined by a node with two faces.

Given this, it is not difficult to see that G is isotopic in V to H. &

Claim 8.5.5 If P is a squadron in V, then P is isotopic in V into H.

Proof: Note that OH is a squadron in V. By Lemma 2.1, there is a regular M in
V such that (perhaps after isotopies) each component of P Ncl(V — M) and each
component of OH Ncl(V — M) is a half open annulus. Therefore P and OH are
isotopic separately in V' into some polished strip for V' rel M, say S(V,M). By
Lemma 8.4, there is a K € H(V) such that 0H and P are isotopic into K. By
Lemma 8.1, we may assume that H C K — K. By Claim 8.5.4 it follows that H
is isotopic in V' to K. Therefore P is isotopic in V into H. &

Claim 8.5.6 Every hangar for V is isotopic in V to H.

Proof: Suppose that G is a hangar for V. Then 0G is a squadron in V' and so is
isotopic in V into H —9H. By Lemma 8.1 we may assume that G C H —0H. Since
cl(V — G) is aplanar, it follows that OH is isotopic in V into G — 9G. Therefore
by Lemma 8.1, it follows that H is isotopic in V into G. By Claim 8.5.4, it follows
that G is isotopic in V to H. &

A

9. The Strip for V rel M

The purpose of this section is to prove Lemma 9.1. The proof is rather complex and
makes use of results concerning the weak characteristic pair of an end-irreducible
3-manifold from [13].

Lemma 9.1. (The Strip Lemma) Let V be an orientable, irreducible, connected
3-manifold such that w1 (V') is finitely generated. Also assume there is a compact
3-manifold L such that V is of finite genus g > 2 at infinity rel L. Suppose that
M C 'V is a 3-manifold with L C M that is regular in V with respect to L.

Then there is a strip S for V rel M such that if Q is a plane in V that is nearly
parallel in V' to a component of S, then Q is isotopic in V into S.
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Proof. We will now let W = cl(V — M). By Theorem 7.6 of [13], there is a Seifert
pair (3, ®) C (W, 0W) such that Fr(XZ; W) is strongly essential in (W, 9W) and such
that if A is a 2-manifold that is properly embedded in W each of whose components
is a half open annulus that is strongly essential in (W, 9W), then A is isotopic in
(W, 0W) into (3, ®). Since OW is compact, a half open annulus is strongly essential
in (W, 0W) iff it is properly embedded and incompressible in .

Theorem 7.6 of [13] also considers a 2-manifold whose components are tori,
annuli, and open annuli. However we will not need this strength in the sequel.
Therefore we may assume that if (o, ¢) is a component of (3, @), then ¢ # @) and o
is noncompact. We will refer to the language of [13].

Let (o, ¢) be a component of (X, ®). Since ¢ C OM, it follows that ¢ is compact.
Therefore, since o is noncompact, then (o, ¢) is not an I-pair. Since ¢ # ), it follows
that (o, ¢) is not an R-pair. Therefore (o, ¢) is either an S-pair or a [0, 0o)-pair.

In the sequel, we will only be interested in the components of ¥ that swallow
the end of some plane that is nontrivial in V. Consequently, let us assume that if
(0, ¢) is a component of (X, ®), then there exists a plane P, that is nontrivial in V'
such that o swallows the end of P,. We will now leave (X, ®) fixed.

Using (3, ®) we will construct a proper 3-submanifold S = S(V, M) of V such
that if ¥ swallows the ends of the squadron P, then P is isotopic in V into S, and
if §” is a component of S, then S’ is either a nearnode with two faces or a blemish.
This S will be a strip for V rel M.

For the rest of the proof, let (0, ¢) be a component of (X, ®). Suppose that P is
a plane that is nontrivial in V' containing a disk Dp such that P— Dp C o. Assume
that §(Dp N do) is minimal for all isotopies of V' that are fixed on P — Dp.

Since o is either Seifert fibered or a [0, co)-bundle, it follows that o is irreducible
and end-irreducible.

The S!-pair case. Let us now assume that (o, ¢) is an S'-pair.

Claim 9.1.1 If U is a component of cl(V — o), then either OU is incompress-
iblein U or M C U.

Proof: Suppose that OU is compressible in U. Since Fr(o; W) is incompressible
in W, it follows that either U is not contained in W or QU is not contained in
Fr(o; W).

If U is not in W, then M C U, and we are done. Suppose OU is not contained in
Fr(o; W). Then OU meets both o and M, but they are on opposite sides of dU. As
U is a component of cl(V — ), U cannot contain o, so 0 C M, and we are done.

&

For the rest of the S*-pair case, let U denote the component of cl(V — o) which
contains M.

Claim 9.1.2 9U is an open annulus which is compressible in U by a disk E
whose boundary is a fiber in the Seifert fibration of o.

Proof:We claim that P N dc # (). Suppose otherwise. Then P C o. Recall,
however, that o is irreducible and end-irreducible. By Lemma 3.1, it follows that
P is trivial in ¢ and therefore in V' which is a contradiction. Therefore PN do # 0.

Let E be a disk in Dp such that OF is a component of P N do and

(E—-0E)Nao=0.
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Since V is irreducible and #(Dp N do) is minimal by isotopies fixed on P — Dp, it
is easy to argue that OF is noncontractible in do. Since (E — dF) N do = (), then
either E C o or E C cl(V — o).

We claim that E C cl(V — o). In order to get a contradiction, suppose otherwise.
Let 09 C 0 be a compact manifold which is a union of fibers of ¢ that contains F.
Let F be the component of dogNdo that contains OF. Then either F is an annulus
that is compressible in o and og, or F' is an incompressible torus.

As F is a compressing disk for F', F' must be a torus component of both dog
and Jo. Therefore, og is a solid torus. Consequently, o must be a solid torus. This
contradicts that o is noncompact. We must conclude that E C cl(V — o).

Note £ C U. We claim that OU is an open annulus. Otherwise OU must be a
torus since o is Seifert fibered and orientable. If QU were a torus, by Lemma 2.4,
there is a compact 3-manifold U’ C W such that QU’ = 9U. Since o and M are on
opposite sides of AU, it follows that o C U’ which is a contradiction because o is
proper in W. Therefore U must be an open annulus.

Since OF is noncontractible in QU, it is isotopic in QU to a fiber in the Seifert
fibration of ¢. This isotopy can be extended to an isotopy of V that is fixed off of
a regular neighborhood of U in V. &

Let N be a regular neighborhood of F in U such that N N9OU is an annulus that
is a union of fibers of o.

Let F be the set of all noncompact components of do — QU. Let 7 be the set
of compact components of do — QU. Then 7 is countable. For each T € 7T, let Urp
be the component of cl(V — o) which has 0Ur = T. By Lemma 2.4 it follows that
Ur is compact for each T € 7. Let

XGZNUULJ(U UT>.

TeT

Then X, is proper in V. Note that 0X, consists of the elements of F and two
planes, say P; and P, that result from compressing OU with V.

Claim 9.1.3 Every compact subset of X, is contained in a closed 3-cell that
meets P; in a single disk for ¢ = 1 and 2 and meets only a finite number of elements
of F and each of those in a single annulus that is a union of fibers of o.

Proof: Let Q be the orbit manifold of ¢ and let 1 : ¢ — € be the quotient map.
We claim that € is planar. Otherwise €2 contains a simple closed curve J that does
not separate ; hence n=1(J) is a torus which does not separate V. This gives us
a contradiction by Lemma 2.4.

Suppose that C is a compact, connected subset of X,. We may assume that
N C C. Let Qg be a compact 2-manifold in € such that Qg N n(9U) is a single arc
and n(C'No) C Q. We may assume that no component of cl(2 — ) is compact
and that Q¢ — Fr(Q0; Q) contains every compact component of 9 that g meets.
Hence if « is an arc component of Fr(£g; ), then each point of d« is contained in
a noncompact component of 9. Observe that if A is a noncompact component of
09, then each component of Q5N A is an arc.

Let J be the component of 09y that meets n(0U). Let o = J N n(0U) and
v =cl(J—a). Put A =n"1(a) and G = n~1(y). Then A is an annulus which
contains N NOU and G is an annulus which meets |  F' in annuli each of which
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is a union of fibers of o. Note that G U cl(A — N) UFr(N;U) is a 2-sphere which
must bound a 3-cell B in V.

Since N and cl(0U — A) are on opposite sides of 9B and cl(OU — A) is proper,
it follows N C B.

Since C' and N are on the same side of 0B, it follows that C C B. Note that
BNP,=(NUA)NP, is a disk for ¢ = 1,2. This ends the proof. &

Recall F is the set of all noncompact components of do —0U. Then each element
of F is an open annulus. For every F' € F, there is an annulus Ap, properly
embedded in o (a union of fibers in fact), such that one component of 0AF is a
fiber of o in F', and the other is a fiber of o in N N 9U. We may construct the
elements of {Ap|F € F} so that Ap N Ap: =) for F # F”.

For every F' € F, let E}. be a disk that is properly embedded in N such that
OFE}, = 0Ap NOU. It is clear that we may assume that E}, N E}, = 0 for F # F'.
For every F' € F, let Ep = Ej, U Ap.

Given F € F, let Up be the component of cl(V — o) which has F = 9Up. Let
Ur be the union of UF and a regular neighborhood of Fr in 0 UN. Note that OUgr
has exactly two components each of which is a plane.

Let F' be the set of elements F' of F such that Ur is a nearnode with two faces

and let
XUZXUU ( U ﬁF>

FeF'

It is easy to check, with the aid of Claim 9.1.3, every compact subset of X, is
contained in a closed ball in X, that meets P; in a single disk for i = 1 and 2 and
meets only a finite number of elements of F — F’ and each of those in an annulus
that is a union of fibers of o.

Claim 9.1.4 F — F' contains at most 2g — 2 elements.

Proof: Suppose that Fi,...,F, are distinct elements of F — F’ and that v >
2g — 2. For 1 < i < v, let U; be the union of Upl. and a regular neighborhood of
Er, in ¢ UN. Note that Uy,...,U, may be constructed to be pairwise disjoint.
By Lemma 5.1, there is a k such that Uy is a nearnode with two faces. This is a
contradiction. Consequently, v <2g —2. &

Note the set { Ep|F € F—F'} is pairwise disjoint. Let N’ be a regular neighbor-

hood of U Ep in X,. For each F € F — F', let Np be the component of N’
FeF—F'

that contains EFr. Then Ng meets F' in an annulus whose core is noncontractible

in F.

Let Sy = cl(X, — N').

Claim 9.1.5 Each component of S, is a nearnode with two faces. Further-
more if o swallows the end of a plane P’, then S, swallows the end of P’.

Proof: Suppose that C' is a compact, connected subset of S,. By Claim 9.1.3
there is a closed 3-cell B C X, such that N'UC C B — Fr(B), such that BN P,
is a disk for ¢ = 1,2, and each component of B N ¢ is a union of fibers of o for
each FF € F. Now BN S, = cl(B— N’). Let S/ be the component of S, that
contains C'. Then 05/ has two components each of which is a plane, and BN S, is
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a closed 3-cell which meets each component of 95/ in a single disk. Therefore S/,
is a nearnode with two faces.

Suppose that P’ is a proper plane in V such that o swallows the end of P’. Let
D C P’ be a disk such that P’ — D C o. Since P’ is proper, P’ N N’ is compact
and so there is a disk D’ C P’ with DU(N'NP")Cc D'—=9D'. So P — D' C S,.
&

The [0, co)-pair case. In this subsection, it will be assumed that (o, ¢) is a [0, 00)-
pair. By looking through the proof of Lemma 6.4 of [13], one can see that (o, ¢) is
homeomorphic to (¢ x [0,00), ¢ x 0). Hence o is a missing boundary manifold and
each component of cl(Jo — ¢) is a half open annulus.

Let Y be the result of compressing o completely in V', i.e. Y is obtained from
o by adding 2-handles and 3-handles and removing 1-handles so that the inclusion
induced map 1 (Y) — w1 (V) is injective. Since m1(do) is finitely generated, this
compression only requires a finite number of handle moves. Therefore Y is a missing
boundary manifold. Of course dY is incompressible in V. Let Y, =Y.

Claim 9.1.6 Y, is a missing boundary manifold, dY, is incompressible in V',
and if P’ is a proper plane whose end is swallowed by o, then Y, swallows the end
of P'.

Proof: Suppose that P’ is a proper plane in V such that o swallows the end of
P'. Let D C P’ be a disk such that P’ — D C o. Since P’ is proper, there is a disk
D’ C P’ such that D’ contains D and the intersection of P’ with each of the finite
number of handles used to obtain Y from o. Then P’ — D' CY,. &

Let 7 be the set of compact components of 9Y,. Let T' € 7. Since V has one
end, there is a compact 3-manifold Uy C V such that 0Ur = T'. Let

SUYJLJ(U UT>.

TeT

Therefore each component of 95, is noncompact, and S, is a missing boundary
manifold.

Claim 9.1.7 S, is a blemish that is proper in V and such that Y, C S, and
cl(S, — Y,) is a compact 3-manifold.

Proof: Recall that there is a nontrivial plane P C V such that o swallows the
end of P. Let Dp be a disk such that P — Dp C Y,. By Claim 9.1.6 and the
fact that Y, C S,, it will do no harm to assume that P — Dp C S,. Isotop P
in V' by an isotopy fixed on P — Dp so that §(P N 9S,) is minimal. Since 95, is
incompressible and since Dp is a disk, it follows by a minimality argument using
the irreducibility of V' that P NS, = (). Since P — Dp C S, and is fixed under
the isotopy, it follows that P C S,. Therefore S, is a blemish. &

Back to the Mainline. Let 01,...,0, be the components of ¥. For 1 <1 < v,
let S; = S,,. It would be nice to claim that
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is the strip for V rel M. This is in fact almost true. However, it may be that there
exist ¢ # j such that S; NS; # 0. We do claim that by judicious choices in the
construction of these S; that the set {S;|1 <i < v} can be made pairwise disjoint.

Let 1 <4 < v be given. Note that in each case S; can be obtained from o; by
compressing with 1- and 2-handles H{, ..., H}w to obtain an intermediate result o
and then capping off the compact components of do} with compact 3-manifolds to
obtain S;. So 9S; C do,.

Let 2 < i < v be given. Since S} is incompressible, any 2-handles in Hf, ..., H,.
can be chosen to miss S1. So 851 Ndo, = (). Since each component of cl(S; — o7)

(]
is compact and S7 is noncompact and proper in V, it is evident that S; C V — 5,

ie. S1NS; = 0.

Therefore we may assume that S; N S; = () for 2 < i < v. Note that 95; is
incompressible in V-5 for 2 < i < v. Continuing in this way the set {S;|1 <i < v}
can be made pairwise disjoint. Let

S = LVJ S;.
i=1

Claim 9.1.8 If @) is a squadron in V' and ¥ swallows the ends of @, then Q
is isotopic in V into S.
Proof: This follows by Claims 9.1.5 and 9.1.6 and Lemma 2.5. &

Claim 9.1.9 If @) is a nontrivial plane in V' that is nearly parallel in V to a
component of 95, then @ isotopic in V into S.

Proof: By Claim 9.1.8, it suffices to show that ¥ swallows the end of @ after an
isotopy.

Let Q' be the component of S to which Q is nearly parallel in V' and let H
be the near parallelism in V' between @ and @Q’. Since Q' is nontrivial, it follows
from the construction of S that there is a disk D’ C @’ such that Q' — D’ is
incompressible in Y. Since H is proper in V, it follows that H N M is compact.
Therefore there is a 3-cell B C H such that BN Q and BN Q' are both disks and
(HNM)uD' C B-Fr(B;H).

Recall W C cl(V — M). Hence (BN Q') is contained in a half open annulus
in Fr(X;W). Therefore there is an annulus A" C Fr(X; W) with one boundary
component contained in W and the other equal to (BN Q’). Let A” = Fr(B; H)
and let A =cl(Q — B). Then A” is an annulus, and A is a half open annulus.

Let A*=AUA"UA". Then A* is a half open annulus. One can argue that A*
is incompressible in W by using the fact that Fr(X; W) is strongly essential in .
Therefore there is an isotopy h of (W, 0W) such that hq(A*) C . We may extend
h¢ to an isotopy ¢ of V' which is fixed in M off of a regular neighborhood of M.
It follows that ¥ swallows the end of g1(Q). This ends the proof. &

[ )

References

[1] Matthew Brin, Klaus Johannson, and Peter Scott. Totally Peripheral 3-manifolds, Pacific
Journal of Mathematics, 1985, vol 118, pp. 37-51.



58

2
3
4]
5]
6]
7
]
9]
[10]
[11]
[12]

(13]

(14]

BOBBY NEAL WINTERS

Matthew G. Brin and T.L. Thickstun. Open, irreducible 3-manifolds which are end 1-
movable, Topology, 1987, vol 26, pp. 211-233.

E. M. Brown Contractible 3-manifolds of finite genus at infinity, Transactions of the
American Mathematical Society, vol 245, 1978, pp. 503-514.

E. M. Brown and T. W. Tucker. On proper homotopy theory for noncompact 3-manifolds,
Transactions of the American Mathematical Society, vol 188, 1974, pp. 105-126.
Daniel E. Cohen. Combinatorial Group Theory: a topological approach, London
Mathematical Society Texts 14, Cambridge University Press, Cambridge, 1989.

John Hempel. 3-manifolds, Annals of Mathematics Studies no. 86, Princeton University
Press, Princeton, New Jersey, 1976.

William Jaco. Lectures on three-manifold topology, CBMS/RCSM, American Math-
ematical Society, Providence, Rhode Island, 1980.

William H. Jaco and Peter B. Shalen. Seifert fibered spaces in 3-manifolds, Memiors of
the American Mathematical Society, vol 21, 1979.

Klaus Johannson. Homotopy equivalences of 3-manifolds with boundary, Lecture
Notes in Mathematics 761, Springer-Verlag, New York, 1979

S. Kinoshita. On infinite cyclic actions on contractible open 3-manifolds and strong irre-
ducibility, Springer Lecture Notes 299. pp. 323-327.

Thomas W. Tucker. Noncompact 3-manifolds and the missing boundary problem, Topol-
ogy. vol 13, 1974, pp. 267-273.

Peter Scott and Thomas Tucker. Some examples of exotic non-compact 3-manifolds,
Quart. J. Math. Oxford, vol 40, 1989, pp. 481-499.

Bobby Neal Winters. A weak characteristic pair for end-irreducible 3-manifolds, Trans-
actions of the American Mathematical Society, vol 341, No. 1, January 1994, pp.
377-403.

Properly homotopic nontrivial planes are parallel, Topology and its Applications, 48
(1992), pp. 235-243.





