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CURVES IN RP? AND A THEOREM OF
FABRICIUS-BJERRE

ABIGAIL, THOMPSON

1. INTRODUCTION

This paper is a brief exposition of notes from a talk given at Ore-
gon State University in June 2001. Details of the proofs and further
applications can be found in [6].

Let K be a smooth immersed curve in the plane. Fabricius-Bjerre [2]
‘found the following relation among the double tangent lines, crossings,
and inflections pomts for a “generic” K:

where 77 and 15, are the number of exterior and interior double tan-
gent lines of K, C is the number of crossings, and I is the number of
inflection points. A series of papers followed. Halpern [4] re-proved the
theorem and obtained some additional formulas using analytic tech-
niques. Banchoff [1] proved an analogue of the theorem for piece-wise
linear planar curves, using deformation methods. Fabricius-Bjerre him-
self gave a variant of the theorem for curves with cusps [3]. Weiner [7]
generalized the theorem to closed curves lying on a 2-sphere. Finally
Pignoni [5] generalized the theorem to curves in real projective space,
‘but his theorem depends, both in the statement and in theproof, on
the selection of a base point for the curve.

We will discuss two main results. The first is a generalization of the
theorem in [3] to RP?, with no basepoint requirement. The difficulties
encountered are due to the problems in distinguishing between two
“sides” of a closed geodesic in RP2. These are overcome by a careful
attention to the natural metric on the space.

The main results are tied. together by the observation that, in the
cusped version of the original theorem, the quantities in the formula
are naturally dual to each other in RP?. This leads to the second
main result, which is a dual formula for ”generic” curves in RP%. By
considering a plane curve as lying in a small disk in RP?, this specializes

Date: August 3, 2003. ‘
Research supported in part by an NSF grant and by the von Neumann Fund and

the Weyl Fund through the Institute for Advanced Study.



2 ABIGAIL THOMPSON

to a new formula for ”generic” smooth curves in the plane. This new
formula has the interesting property that it makes delicate geometric
distinctions between topologically very similar planar curves.

‘The outline of the paper is as follows: in Section 2 we state the gen-
eralization of [3] to curves in RP?, and give a brief sketch of the proof.
In Section 3 we describe the duahty between terms of the formula. In
Section 4 we state the dual formulation, and give a corollary for planar

curves.

2. A FABRICIUS-BJERRE FORMULA FOR RP?

Let RP? be endowed with the standard metric, inherited from the -
round 2-sphere of radius one. With this metric, a simple closed ge-
odesic in RP? has length m. Most of the figures will use a standard
disk model for RP?, in which the boundary of the disk twice covers a
closed geodesic. Let K be an oriented immersed curve in RP?, which
is smooth except for cusps of type 1, that is, cusps at which locally
the two branches of K coming into the cusp are on opposite sides of
the tangent geodesic. Assume that tangent lines at crossings of K are
neither parallel nor perpendicular, that the tangent line through an
inflection point or at a cusp is everywhere else transverse to K, that a
geodesic goes through at most two tangent points or cusps of K, that
no crossings occur at inflection points, and that a line normal to K at
one point is tangent'to K at at most one point and everywhere else
transverse to K. We will call such a K generic. We will need some
definitions.

Definitions.

Let 7, be the tangent geodesic to K at p, with orientation induced by
K.

Let ap, the antipodal point to p, be the point on 7, a distance /2
from p.

Tp is divided by p and a, into two pieces. Let 7,* be the segment
from p to a, and 7,~ the segment from a, to p. At cusp points 7, and
7, are not well-defined.

Let v, be the normal geodesic to K at p.

Let ¢, (which lies on 1,) be the center of curvature of K at p.

We orient v, so that the length of the (oriented) segment from p to
¢p is less than the length of the segment from ¢p to p. This orientation
is well-defined except at cusps and inflection points.

There is a natural duality from RP? to itself. Under this duahty
simple closed geodesics in RP? are sent to points and vice versa. This
duality is most easily described by passing to the 2-sphere .S which is
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the double cover of RP?; in this view a simple closed geodesic in RP?
lifts to a great circle on S. If this great circle is called the equator, the
dual point in RP? is the image of the north and south poles.

Under this duality the image of K is a dual knot K’. To describe
K’ we need only observe that a point on K comes equipped with a
tangent geodesic, 7,. The dual poznt to p, called p/, is the point dual
to the tangent geodesic 7.

Another useful description is that p’ is the point a distance 7/2 along
the normal geodesic to K at p. Notice that v, = 1, and c(p) = c(p').

An ordered pair of points (p,¢) on K is an antipodal pair if ¢ = a,,
or if p is a cusp point and ¢ is a distance 7/2 from p.

Suppose (p, g) is an antipodal pair, with p not a cusp point of K. Let
C be the geodesic dual to ¢,. We impose the additional requirement
for genericity that 7, should be neither 7, nor C. C and 7, intersect
at ¢ and divide RP? into two regions, R; and R,. One of the regions,
say Ri, contains c,. The geodesic 7, lies in one of the two regions. An
antipodal pair (p,q) is of type 1 if 7, lies in Ry, type 2 if 7, lies in Rj.
Let A; be the number of type 1 antipodal pairs of K, Ay the number
of type 2. Distinguishing the two types of pairs in which p is a cusp
point is similar.

T is a double-supporting geodesic of K if T is either a double tangent
geodesic, a tangent geodesic through a cusp or a geodesic through two
cusps. The two tangent or cusp points of X divide 7" into two segments,
one of which has length less than 7/2. We distinguish two types of
double supporting geodesics, depending on whether the two points of |
'K lie on the same side of this segment (type 1) or opposite sides (type
2). Let T} be the number of double supporting geodesics of K of type
1, T the number of type 2.

The tangent lines at a crossing of K define four angles, two of which,
a and S, are less than 7/2. In a small neighborhood of a crossing there
are four segments of K. The crossing is of type 1 if one of these seg-
ments lies in o and another in G, type 2 if two lie in « or two lie in 3.
Let C; be the number of type 1 crossings of K, C, the number of type 2.

Let I be the number of inflection points of K.
Let U be the number of (type 1) cusps of K.
- We are now ready to state the first main theorem, which is a gener-
alization of the main theorem of [2] to the projective plane. We note
specifically that, unlike [5], we do not need to choose a base-point for
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J\/

Type 1 double supporting geodesic

-Type 2 double supporting geodesic

FiGUuRrE 1

Theorem 1. Let K be a generic singular curve in RP? with type 1
cusps. Then '

T —Ty=Ci+Cy+ (1/2)1{r U — (1/2)4; + (1/2) 4,



type 1 crossing type 2 crossing

FIGURE 2

- Sketch of Proof:

The proof proceeds as in [3], with some caution being required at an-
tipodal pairs. We choose a starting point p on K. Let M," be the
number of times K intersects 7,*, M,~ be the number of times K in-
tersects 7,7, and M, = M,* — M,~. We keep track of how M, changes
as we traverse the knot. Double-supporting lines, crossings, cusps and
inflection points all behave as in [3]. The contribution of an antipodal
pair depends on the type, reflected in the sign difference in the formula.

3. DUALITY IN RP?

We describe the dual relations between crossings and double tan-
gencies, cusps and inflection points, and antipodal points and normal—
tangent pairs (defined below).

Definitions.

The points p and ¢, divide v, into two pieces, v,* from p to ¢, and v,~
from ¢, to p. An ordered pair of points (p, q) on K is a normal-tangent
pairif 7, = v,. A normal-tangent pair (p, q) is of type 1 if ¢ lies on v,
type 2 if ¢ lies on 15,*. Let N; be the number of type 1 normal-tangent
pairs of K, N, the number of type 2 (Figure 3).

Proposition 2. Let K be a generic curve in RP?, with dual curve K'.
Leti=1,2. Then:

1) A crossing of type @ in K is dual to a double tangent line of type 1
n K.

2) A cusp in K is dual to an inflection point in K' .

8) An antipodal pair of type i in K is dual to a normal-tangent pazr of
type i in K'.

As the dual of K' is again K, these correspondences work in both di-
Tections.
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./

qv ‘ c(p) /P

(p.q) is a type 1 normal-tangent pair

)
p

c(p) q

(p,q) is a type 2 normal-tangent pair

FIGURE 3

The proof is left to the reader.

This correspondence breaks down slightly when we con81der double
supporting lines between cusps and tangents, or cusps and cusps, which
are dual to quantities involving inflection points of the curves. In order
to incorporate curves with inflection points we need to add mﬂectwn
geodeszcs to our picture of K.

Let p be an inflection point of K, with tangent geodesic 7,. Endow
T, —p with a normal direction at each point (except the 1nﬂect10n point)
by the convention shown in Figure 4.

Definition.

Call this the inflection geodesic to K at p.

For crossings between K and an inflection geodesic 7,, or between
two inflection geodesics, the piece of 7, in the neighborhood of the
crossing should be construed as bending slightly towards its normal
direction for the purposes of classifying the crossing type. A point on
the inflection geodesic has center of curvature a distance 7/2 in the
normal direction. '



inflection geodesic with normal direction

FiGURE 4

Definition.

Let K be K together with all its inflection geodesics, with crossings
and normal tangencies counted as described above.

If K is a generic curve with dual X”, then double supporting geodesics
in K involving cusp points correspond to crossings in K’ involving in-
flection geodesics, and an antipodal pair (p,q) with p a cusp point
will correspond to a normal-tangent pair (p/,¢’) with p’ a point on an
inflection’ geodesic in K'.

4. A DuaL FORMULA

The simplest version of the dual theorem applies to curves with no
inflection points.

Theorem 3. Let K be a gemeric szngular curve in RP2 with type 1
cusps and no znﬂectwn points. Then

G —=Co=T1+ T+ (1/2)U — (1/2)N7 + (1/2) N,
Since inflection points are dual to cusps, we also have:

- Corollary 4. Let K be the dual in RP? of a smooth singular curve.
"~ Then Theorem & holds for K.

Sketch of proof (of Theorem 3):
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FIGURE 5

- The theorem can either be proved directly, via duality on the for-

mula, or by considering the dual of the tangent geodesic in the original
argument, essentially constructing the dual argument. Since the sec-
ond approach allows a direct proof for curves in the plane, we describe
it briefly. '

The geodesics 7, and v, intersect in a single point (at p) and divide
RP? into two regions. We first define the tangent-normal frame F, to
K at p as follows: F}, is the union of 7, and v, together with a black-
and-white coloring of the two regions of RP?2. We color them by the
convention that if we think of 7, and v, at P as being analogous to the
standard z— and y— axiis, the region corresponding to the quadrants
where z and y have the same sign is colored white, the complementary
region black. The frame and its coloring are well-defined (this is one
place where inflection points in K would cause some difficulty). At
cusps, the orientations of 7, and v, both reverse, with the happy effect
that the coloring of the normal-tangent frame is well-defined as we pass
through a cusp point (notice that this is not true if we allow type 2
cusps) (Figure 5).



Cy=1
Cy=0 - C;:O
Cy=1

Nj=Nj=0
Ny=4 1582

FIGURE 6

At a given point p on K, we define W, to be the number of geodesics
through p and tangent to K which lie in the white region and B, to be
the number of geodesics through p and tangent to K which lie in the
black region. Let V, = B, — W,. The proof proceeds by tracking the
changes in V,, as we traverse K. V,, B, and W, are the natural duals
to My, My and M, .

Theorem 5. Let K be a generic singular curve in RP? with type 1
cusps. Then for _f?,_

Ci—Cy=Ti+ T+ (/20 + 1 = (1/2)N: + (1/2)N,

With the addition of the inflection geodesics, we can adapt our orig-
inal argument to prove:

Theorem 6. Let K be a generic singular curve in RP? with type 1
cusps. Then for K,
N1 —To=Ci+Co+ (1/2)I+U — (1/2)A;1 + (1/2) A,

And finally for K a curve with no cusps, inflection points, or an-
tipodal pairs (or for a smooth immersed curve in R? with no inflection
points), we can combine these results to obtain:

Corollary 7.
4T1 - 401 = Nl — N2
4T2 + 402 = Nl - Nz

Note that for the two curves shown in Figure 6, we obviously have the
- values Ty = 1, Ty = 0. For the right-hand curve, C; = 1 and C; = 0,
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while for the left, C; = 0 and C, = 1. By observation, the right curve
has no normal-tangent pairs, and the two equations in corollary 7 are
easily seen to be satisfied. Applymg corollary 7 to the left-hand curve,
however, we obtain

4 = Nl bl N2
and we can locate four normal-tangent pairs of type 1 (Figure 6).
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On the Cell-hke Equwalence of CAT(0) Group Boundaries

byF Ancel C. Guilbault’ and.J Wllson

Roughly speaklng, two metric compacta X and Y are shape equ:valent

denoted X ~eh Y, if when X and Y are embedded in the Hilbert cube [0, 117, they
have homotopy equivalent ne:ghborhood sequences mod index shifts. (See [C]
page 39, for example for the premse deﬂnmon ) ~

Examples.

Defihition A metri'c compactum is a Jcell—like;set‘if it is shape equivaleht '
toa pornt A function f: X — Y between metric compact is oell—l1ke if f' 1(y) isa
cell-like set for every y E Y.

Defmltlon Two fmlte dlmensmnal metric compacta X and Y are cell-l/ke

equrvalent denoted X - ~ce Y if there is a finite’ “zigzag” sequence. of finite
. dimensional metric compacta and cell-like maps ~

/\/\/ \?K

jomlng X to Y

Fact [Sh] For finite dimensional mefric compacta X e ¥ = X~Sh Y.

’ Remark. - This tmphcatzon is false w:thout the assumption of finite |
dimensionality for X, Y and all the Z,sin vthe definition of "cell-like equivalent”. [T]

1 The second author wishes to acknowledge {he support of the National Science Foundaticn.
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Al-so, the converse of this implication is false:

Example. [F]

, Defmltlon lf p and g are dlstmct points in the Euchdean plane H:!2 et
Ip.al denote the straight line segmerit joining them and let C[p.q] denote. the
unique circle with diameter [p ql. The Hawauan eamng is the space o

A_ H = Upa1CH0.0),(1/n,0)]

More generally, if X is any compact totally dlsconnected mfmxte subset of the
X axis EH X {O} and b€ X; any space homeomorphrc to : ~

SHXb) = U{Clbpl:peX)

iscalled a generalized Hawaiian earring.

Lemma™. If X.is any compact totally dlsconnected lnﬁnlte subse’c of the
x axis and b & X, then H(X,b) ~ ~ee Ho '

Proof. CHX, b) 5/ z(X) ﬁ{ CX)UJ N H,
Where:

s 2(X) denotes the suspension of X and the cell- like' map Z(X) — (X b) is the
‘ guotient map obtained from Z(X) by crushmg the suspensron arc through the
pum[ bioa ocmf , .

12 .



« - Jis the shortest closed interval in the x axis containing the set X, C(X) is the
cone over the set X from a vertex point lymg above the x axis in }HZ and.the

 cel- like map C(X) Ud=3IX IS the quotrent map obtained from C(X) U J by ,
: orushmg Jtoa pomt ' '

*  The cell-like map frm CcXyu J — 'H. is the quotient map obtained from
7 C(X) U d by crushing C(X) to a point. (The resulting quotient space is the
wedge of a decreasing sequence of circles. Thzs space is homeomorphlc to
S HY)O o : :

Results like th’is are found in [DV]. -

Geometric group theory ongmated in the work of M. Dehn who in 1 912 proved,
- that the fundamental group of a surface of genus = 2 has a solvable word
problem. His proof is geometnc It exploits the fact that the universal cover of a_
surface of genus = 2 can be identified with the hyperbolrc plane so that the
fundamental group of the surface acts by isometry on the hyperbolic plane. In

. the 1980's, M. Gromov achieved a sweeping generalization of Dehn's work by

introducing and studyxng hyperbolic groups. These are groups that act by

. isometry on métric spaces which have negative curvature in a very general

“sense. A further generalization to groups that act by isometry on rion-positively
= curved (or CAT(0)) metric spaces has led to the study of CAT(O) groups

Defmmon X isa CAT(0) space if:

» Xisa geodesrc metric space. (For any two pomts p and qE X, if d d(p a),
-~ then there is an embedding e :[0,d] — X such that e(O) p, e(d) =q, and
d(e(s),e(t)) = Is~tl forall s, t € [0 d] )

* Xis a proper mefric spac:e (For every p € X and every r> O the closed
metric. balf Bp)={qEX:d(p,g)=r }is compact.)

» Distances in geodesrc tnangles in X are domlnated by dtstances in
companson triangles in " ' ‘

/.

in

G
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_ The concept of a CAT(O) space comes from the work of A Alexandrov in
the 1950's, although the termmology is Gromov s. The book [BH] is a
comprehensrve source.

Definition. A space X is hyperbollc ifitasa proper geodesrc metrrc space
and there is a & > 0 such that all geodesic triangles in X are &-slim. A geodesic
tnangle T in a metric space X is 8-slim if every non-vertex point p of T is dlstance
< 8 from a point on one of the two sides of T that doesn't contarn P

Defmmon Let X be a CAT(0) space and choose a basepomt b E X.
Then X has a visual boundary dencted dX: . -

X = { geodesrc rays in X emanating from b} = "in BBr(b)-;‘ '

=

Remark. We regard geodesrc rays as functions from [0,%) into X, and we .~

, put the compact-open topology on dX. The CAT(0) property implies that 9X is

independent of the choice.of basepoint. ~Alternatively, the. CAT(0) Pproperty

: rmplres thatforO<r<s, a geodesxc joining b'to a point of dB4(b) intersects aB,(b)
at a unique point. This observation gives rise to the "geodesic retraction" g srt
dB¢(b) — 9B, (b). Hence, we obtain an inverse system { 0By(b), g, s } which-has
an inverse limit Iir_n 3By(b). This inverse limit is alsp homeomorphic to dX.

[—»0 -

Remark.. The visual boundary ofa hyperbohc space is defined- srmr!ar!v
See [BH] page 427, for detarls

Defmltsen A group Gis a CAT(O) group if G acts geomelrrca ly ona -
CAT(0) space. The action of a group G on a metric space X is geometric if ’rh@
action is: )
= propetly discontinuous (For every compact subsei Cof X,

{geG: Cﬂg(C)x@}rsfmlte) : :

¢ caﬁampam (The orbri: space /(/G is compact.), and-
Y i&&matry

14



Defm:tlon A group is hyperbo]zc if it acts geometncally oh a hyperbohc |
space L . o :

Remark. h‘ a CAT(O) (or hyperbolic) group G acts geometncaﬂy on a

- CAT(0 ) {or hyperbolic) space X, then the action of G on X extends to an action of

G on X (because the elements of G are isometries of X, and isometries of X
carry geodesrc rays to geodesic rays). :

Def-m’clon if a. CAT(D) (or hyperbohc) group G acts geometnoal!y ona
~ CAT(0) (or hyperbolxc) ‘space X, then the visual boundary oX of X is caHed a
boundary of G. :

. “Remark. There is an lntlmate connectron between certain algebralc
' propertles of a CAT(0) group G and certain topological propertles of the
, boundanes of G. For example;

s [f3Gi is any boundary of G, then c-dinﬁz G= dim(aG‘) +1. [BM], [B]

.+ [fGis aone- ended CAT(0) group, 3G is any boundary of G, and ae has a
- global cut point, then G contains an infinite torsmn subgroup that flxes the
global cut point. [Sw] ' :

Theorem (Gromov) lf Gris a. hyperbohc group, then all the boundanes of .
G are equrvanantly homeomorphlc ([G] page 189.) -

, Remark The use of “equivariant” makes sense here because the actlon .
of G on X extends to an action of G on ax :

Example. The Croke-Kieiner group is the group
T =(abcdl[ab=[bc=lcd=1).

. (In other words, T" is the free group generated by a, b, c and d modulo the
smallest normaI subgroup oontarmng the three commutators [a,b] = aba™ b

[b,c] = bcb~ ¢ and [co} cde™'d™ )PlsaCAT(O)groupwrth non-
_homeomorph!c boundaries. [CK]

Theore‘m, [B] If G is a CAT(0) group, then all the bOundaries of G are
shape equivalent. ' : ‘ - ' c

Question. [B] Ate all the boundaries of a given CAT(0) group celi-like -
equivalent? : ' : o
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Digression. W}thm the dlsciphne of the philosophy. of science, an oft

. quoted example of an appafent scientific law is the statement "All crows are

- black". (The questlon raised in conjunction with this law is whether a non-black

non-crow {e.g., & white rabbit) should-be regarded as supporting evidence for this
law.) Regardless of whether this statement is truly a- scientific law, thereisan
assertion whtch at this moment in time may be fegarded asa truth o

All known crows are bl-ack

Encouraged by this example of a scxentn‘xc truth, we state the pnncnpal result of
this amcie A

- - Theorem 1. (F. Ancel, C. Guilbault, J. Wilson) All knowri baUndéries of .
the Croke-Kleiner group are cell-like eq-uiva{ent - 'fo the Hawaelian earring H.

; - More premse!y In [CK] an infinite famlly of CAT(0) spaces X(a), 0<-a =
w2, is desctibed with the property that the Croke—Kletnef group I acts

~ geometrically on each of them, and the their visual boundaries are not all
homeomorphtc “At the rmioment this is being written, the visual boundaries of the
spaces X(a), 0 < o <T1/2, are the only know boundaries of the. Croke-Kleiner
group I'. We prove that for eacho € {0,w/2], the visual boundary of X{a) is cell-

like equwa{ent to the Hawaiian eamng ‘H.

Sketch of proof of Theorem 1. We first describe some basic featu res of
the CAT{0) spaces X(e). Let@<a=<mf2. X{a) is the universal cover of a space

Y(c) that is the union of three 2- dxmens:onal tori T_ , To, and T,. Each of these tori
is obtained by isometrically identifying opposite edges of a paralielogram in which
each side has edge length 1 and the angles between the sides are . and 1Tt — a..
~ Thus, the fundamental group of each forus is generated by two closed geodesics
of length 1 that intersect in a single point where the angle between them is a. To
form the space Y{a) from the three tori, let b and ¢ denote the twe length 1

closed geodesm Ty —generators on TO, ldentlfy b with one of the length 1 closed
g,ecdeszc rrfgeneratofg on T_, and identify ¢ with one of the length 1 closed
geodesic my-generators onT,. fwe let a denote the other (non- ldentxfled) length
1 closed geodeStc my-generator on T_, and we let d denote the other (nen-~
ldentlﬂed) fengih i closed geodesic m-generator on T, then clearly m(Y(c«t}) I
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V@) =T_UT, UT,
: b e

We let X() be the universal cover of Y(o), and we lift the geometry of Y(a) to

X(o) by declaring the length of a path in X(o) to be the same as the length of its

- 'image in Y(e). This makes X(a) a CAT(O) space, and it makes Tact
~.geomc=tncally on X(oc) :

_ lt Is useful to organize the structure of X(a) into “blocks”. There aré two
types of blocks in X(a): —blocks and +blocks. Each component in X(oc) ofthe "

mverse image of T_ U TO under the covering map X(ot) — Y(o) is calied a ~b/ock

and each component in X(oc ) of the i mverse tmage of TO U T, under the oovenng

A map X(a) = Y(a) is called a +block. Thus, each —block i IS a universal cover of
‘ T U Ty and each +block isa universal cover of To U T,. Slnce the spaces

7. U TO and TO U T, are homeomorphxc to 8 x 8 (where 8 denotes a

: topo!ogxcal ﬁgure 8), then each block is homeomorphlc toBRx T (where T
denotes an mfmrte 4-valent tree = the uruversal cover of 8). ‘

In X(a) dlstmct ~blocks are dlSJomt and distinct +blocks are dlSJomt A
~block and a +block may be disjoint, or they may mtersect ina 2-dimensional

“plane (called a wall ) that is a component of the inverse image of Tp under the

- covering map X(a) —> Y(a): Itishelpful to encode the: intersection pattern of the

blocks in a 1:complex called the nerve. The vertices of the nerve correspond to

- the blocks in X(ar), and two vertices of the nerve are connected by an edge: ifand.
~only if the two corresponding blocks share a common wall. The nerve is a treein

- which each vertex has Mg edges emanatmg from it. If the vertex at one end of
an edge corresponds to a —block, then the vertex at the other end must '
correspond to a+ +block, and vice versd.
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. Since each block B | is homeomorphrc to B x 'ﬂ' then its visual boundary
- oBis homeomorphlc to the suspension of a Cantor set 2(C).  The visual
~ boundary of each block is embedded as a subset of the visual boundary 9X(o) of |
. X(a). If two blocks B and B~ share a common wall W (and therefore, represent
- adjacent vertices'in the nerve) then their visual boundaries B = >(C)and oB’ =
2(C") intersect in a circle which is the visual boundary 8W -of that common wall.
(C and C’ are Cantor sets.) The suspensions 3(C) and 3(C") are giued togéther
along the common circle oW with a twist through the angie a. In other words, the
. -suspension points of Z(C) appear as dlametncally opposed poles on the circle
dW, as do the suspension points of 2(C7), and the angle between the north pole
of 3(C) and the north pole of 3(C*) is a.." (a is also the angle between the south
pole of 3(C) and the south pole of 3(C").) The union of the visual boundanes of
. aH the blocks is a dense subset of the entire vrsual boundary of X(a)

By ane!yzing the positions and limit properties of the poles in GX(d), one
.can distinguish visual boundaries dX(a) and 3X(p) for certain values of e and B..
The first result along these lines was:
?Theere;m. [CK] If O <a< /2, then X (o) is not homeomorphic to aX(11/2).
Thus the Croke-Kleiner group F has at least two dlstrnct boundanes

More recent!y, we have establrehed

Theorem. [AW] !f 0 <o <T/2n < (3 <TE/2 for some posmve rnterger n, then |
oX(o ) is not homeomorph!c to 6)(({3) ' , :

Thus, the Croke-r{!einer group I has at least ¥, distinct boundaries.

To prove that each visual boundary dX(a) is cell-like equivalent to the
Mawaiian earring H, it is useful to consider the inverse limit representation of
dX(e). To this end, we choose-a basepoint b of X(a). (For technical reasons, we .

choose b so that it doesn’t lie in any wall of X(a).) Forr=>0, let S, dénote the
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v"sphere of radius r centered at bin X(&). Thenfor0<r<r, there is a geodesic
retraction from Sy~ to S;. Choose an mcreasmg sequence of posmve real
numbers convergmg to.«: 0 < ry<rg<rg<... For eachn =1, let On: Srm

~ Sy, denote the geodesxc retractlon Then aA(a) is homeomorphsc to the
lnverse hmlt o ‘ : ‘

: ;:1: {SrnGn}-

. n—o

) - Each S isa ﬂnlte 1—complex that.is a union of CIrcles Here isa. ploture of .
a typlcal S, for o =1/2 andr = 2 13 '

To analyze the mverse eys’:em {S

rn’

Qn,}, we expahd to the inver_sé
Sequence A
) 91 g2 I 9s -
SréﬂT*'(_S ".‘Tzé“S +T3 :

h1 hy

‘ bymterpo!a’tmg a second inverse sequen ce {Tp, Py (Thus, ”:f {Tahn} =

N>

- 19



hm mJs, ,gn} aX(a) )  Furthermore, wé choose the inverse sequence {Tp,hy}

n—-> ® .
'so that it has the fo‘l'loWing properties. For eachn = 1: N
* Tyis afinite 1- complex. - -

e Therei isa ﬂmte subset A, of T such that T, A is contractlble and for each

' n‘.';“ cardinality (A,) = <.
* No point of A,isan “essenﬁal véﬁek" of T (In other words each point of A
has a nelghborhood in T, that is homeomorphlc to m)

. hn Iocally sepa’rates its image_ at ea_ch -point_of hh_ {(Ap). (In other words, for ]
every X € h, (A, for each arc neighborhood U of h{x) In-T,, there is an arc -
neighborhood V of xin Ty, such that h(V) C'U and h maps the two
‘components of V - {x}into di'sﬁnct corn'pohents of U={h, (X)}.)- ‘

v ~ Now, to flmsh the proof of Theorem 1 (le that aX(a) ce ) it sufﬁce_s’to;
establish: -

Lemmaz2. lm I (T} ~ce : .

n—->00

Outhne of proof of Lemma 2. In each Tn, "blow up“ each point of A, t0 '
an arc. : :




-If done carefuny, thts process "blows up" ’the entlre inverse sequence {Th, n} 1o,
an inverse sequence {Tn,h } with mverse fimit. Tw, giving rise to an infinite
-commutative dlagram

h-{ ’ h2 - '537

'I~'~1.': 4—'_:‘:2 .<—— T" 4—_ -I:oo | ’
I

T e T s Ty e . X

| hy | hz Lo hs |

For each n=1, T is the union of nmtely many arcs (the "blow ups" of the points
of A.) and a compact contrac’nble set P (the closure of the i mverse image of
C Ta— A, under the biow up map) Passing to the mverse limit, we: see that Te

- the union of a Cantor. set's worth of arcs and a cell- hke set Po. (Pwis the m\/erse
limit of the sequence of contractible sets {Pn}.) Furthermore, since the blow up

-maps T — T, are cell-like and converge to the map T — aX(a) then the map
T — aX(a) is cell hke

Now consider quotient space Te /P C!early, TolPeisa Cantor set s
worth of arcs with all of their endpomts identified to a single pomt Because of '

the way that T arises as an inverse limit, one can see that Too/Pa i, in fact, a
generahzed Hawaiian eamng 'H,(C b) where C i is a Cantor set Also, since Py is
a cell-like set, then the quotient map T — TolPy is ce!i like. “Thus, we have

cell-like maps
3%(0) « Tw = TwlPw = H(Ch).
Hence aX(a ~ce ‘}i.(C b).

In addition, Lemma 1 implies H(C, b) e ‘H, We conclude that 6X(oe) ~e
H. O
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Questions

Question 1) Are the known boundanes of the Croke-Klexner group T (} e,
_ the oX(a)'s for 0 < a =T/2) the only boundarles of I'? :

Question’ 2) Assumlng the answerto Question 1 is “no”: areé aU the
: boundanes of T cell like equwalent to the Hawaiian earring H?

: Deﬁmtlon Suppose that a group G aots on the finite dimensional rnetnc ,
compacta X and Y. We say that X and Y are equrvanam‘/y cell-like equivalent if

there is aflnlte sequence Z4, 22, oy Zopa of ﬂmte dimensional metric compacta o
on which G acts and a “zigzag® sequence . : :

/ \/ \/ \/m\

of equwarlant cell hke maps

Recall: Ifa CAT(O) group G acts geometncaﬂy ona CAT(O) space X,
~then the action of Gon X extends to an actlon of Gon oxX.

. Questlon 3) Are any two boundaries of the Croke-Klelner group 1“
equ1vanantly oell-like equuvalem’?

Deﬂmﬁnon Suppose that a CAT(O) group G acts geometnca!ly on: CAT( )
spaces X and Y. We say that oX and 3Y are equzvanantly cell-like equivalent

through boundaries of G if there is & finite sequence Z-[, Zo, .. .+ Zpnyt Of CAT(O)
spaces on which G acts. geometncany and a zngzag sequence :

az?_nT‘l

zx/xz AVAN

- 8Zo
of equi.vanant cell‘«l@ke maps.

Question 4) Are any two boundaries of the Croke-Kleiner group I’
equivariantly cell-like equivalent through boundaries of I'?-

" The next two questions are refinements of Question 4.
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‘Question 5) If the Croke-Kleiner group T acts geometrically on.the

CAT(0) spaces X and Y, then does I" act geometrlcal!y on a CAT(0) space Zso
that there are equrvanant cell-ike maps ™" .

/\

Question 6) Is there a maximal Croke- Klemer group boundary'? In other

words, does the Croke-Kleiner group T act geometrically on a CAT(0) space Z
with the property that if I" acts geometrically on any other CAT( ) quce X, then
there is an equivariant cell- hke map 9z — axv o .

- [AW]

Bl

BEM)
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CLASSIFYING STARLIKE BODIES

- DANIEL AZAGRA AND TADEUSZ DOBROWOLSKI

ABSTRACT. We are interested in the structure of starlike bodies. Topological and smooth
classifications of such bodies in the infinite-dimensional spaces are given. This involves an
- approximation of convex sets by smooth convex bodies. Some finite-dimensional examples

are also discussed.
This is a preliminary report; the details will appear elswhere.

A closed subset A of a Banach space X is a starlike body if its interior int A is nonempty
and there exists a point zg € int A such that every ray emanating from zg meets 0A, the
boundary of A, at most once. With the use of suitable translation, we can always assume
(and we will do so) that zo = 0 is the origin of X ..

For a starlike body A, we define the characteristic cone of A as

ccA ={z € X|rz € A for all > 0},

and the Minkowski functional of A as
. 1
pA(z) = inf{\ > OIX:E € A}

for all z € X. It is easily seen that for every starlike body A its Minkowski fuﬁctional LA s
a continuous function which satisfies pa (rz) = rua(z) for every r > 0 and u;*(0) = ccA.
Moreover, A = {z € X|ua(z) < 1}, and 84 = {z € X | pa(z) = 1}. Conversely, if
¥ : X — [0,00) is continuous and satisfies y(Ax) = Ayp(z) for all A > 0, then Ay = {z €
X | ¢(z) < 1} is a starlike body. More generally, for a continuous function 'zp : X — [0, 00)
such that ¥z (A) = ¥(A\z), A > 0, is increasing and sup "gbw(/\)'> e for every z € X\ ~1(0),
the set 91([0,€]) is a starlike body whose characteristic cone is 1~1(0). Starlike bodies
that are convex are called convex bodies. For a convex body U, ccU is always a convex set,

» Typeset by ApS-TEX
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26 DANIEL AZAGRA AND TADEUSZ DOBROWOLSKI

but in general the characteristic cone of a starlike body is not convex. We will say that A
is a CP (or, real-analytic) smooth starlike body provided its Minkowski functional p 4 is CP
smooth (or, real-analytic) on the set X \ccA = X\ p;*(0). Finally, two (smooth) starlike
bodies A, B in a Banach space X are relatively homeomorphic (relatively diffeomorphic)
if there exists a self-homeomorphism (diffeomorphism) g: X — X so that g(4) = B.

Starlike bodies often appear in nonlinear functional analysis as natural substitutes of
convex bodies or-in connection with polynomials, more precisely, for every n-homogeneous
polynomial P : X — R the set {z € X|P(z) < ¢}, ¢ > 0, is either a (real-analytic) starlike
body or its complement is an interior of such a body (see [AD]). It is therefore reasonable
to ask to what extent the geometrical properties of convex bodies are shared with the more |
general class of starlike bodies. In [AD] the question of whether James’ theorem on the
characterization of reflexivity (one of the deepest classical results of functional analysis)
is true for starlike bodies was answered in the negative. In [AC] it was shown that the
boundary of a smooth Lipschitz bounded starlike bodyk in an infinite-dimensional Banach
space is smoothly Lipschitz contractible; furthermore, the boundary is a smooth Lipschitz
retract of the body. Here, we deal with the question as to what extent the known results
on the topological classification of convex bodies can be generalized for the class of starlike
bodies.

In [K], Klee gave a topological classiﬁéation of the convex bodies of a Hilbert space. This
result was generalized for every Banach space with the help of Bessaga’s non-complete norm
technique (see [BP]). To get a better insight in the history of the topological classification

“of convex bodies the reader should consult the papers By Stocker [S], Corson and Klee
[CK], Bessaga and Klee [BK1, BK2], and Dobrowolski [Do1]. These results have recently
been sharpened to obtain a full classification of the CP smooth convex bodies in every
Banach space [ADo]. In its most general form the result on the topological classification
of (smooth) convex bodies reads as follows (see [ADo]); here, p = 0, 1,2, ..+, 00, and “«CO0

diffeomorphic” means just “homeomorphic”.

Theorem 1. Let U be a CP conver body in a Banach space X .

(a) If ccU is a linear subspace of finite codimension (say X = ccU ® Z, with Z finite-

dimensional), then U is CP relatively diffeomorphic to ccU + Bz, where Bz is an



STARLIKE BODIES » 27

Euclidean ball in Z.
(b) If ccU is not a linear subspace or ccU is a linear subspace such that the quotient
space X/ccU is infinite-dimensional, then U is CP relatively diffeomorphic to a

closed half-space (that is, {z € X | z*(z) > 0}, for some z* € X*). [

Let us discuss to what extent this result can be generalized for (smooth) starlike bodies.
The following simple example shows that the assertion (b) of Theorem 1 is not true for

starlike bodies whose characteristic cones are not convex sets.

Example 1. Let A = {(z,y) € R?|z?y? < 1}. It is clear that A is a (real-analytic) starlike
body in R?, whose characteristic cone is the union of the coordinate axes. Hence A, having

its boundary disconnected, cannot be relatively honieoniorphic to a half-plane in R?2. [J

However, every two (smooth) starlike bodies with the same characteristic cone are rel-
atively homeomorphic (diffeomorphic). Though this fact is elementary, the proof of the

smooth case must be done with some care. The real-analytic counterpart of this fact is

unknown to us.

Proposition 1. Let X be a Banach space, and let Ay, Ay be CP smooth starlike bodies
such that ccA; = ccAy. Then there exists a CP diffeomorphism g : X — X such that
g(A1) = Ay, g(0A;) = 8A;, and g(0) = 0. Moreover, g(z) = n(z)x, wheren : X — [0, 00),

and hence g preserves the rays emanating from the origin. O

~ As said above, it is impossible to extend Theorem 1(b) to the class of starlike bodies.
The variety of the characteristic cones of (unbouhded) starlike bodies is enormous. If one
wants to stick with the Bessaga-Klee classification scheme then the best result one can aim
at is the assertion of Theorem 1 for the class of starlike bodies whose characteristic cones
are convex sets. | |

We will state such a result, which relies on the following proposition, which might be
of independent interest in the theory of smoothness in Banach spaces, and which implies
that every closed convex cone in a separable Banach space can be regarded both as the
characteristic cone of some C* smooth convex body and as the set ovf zeros of a C'*° smooth

convex function. We say that a nonempty subset C of a Banach space X is a cone (resp.,
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a cone over a set K) provided [0,00)C = C (resp., C = [0,00)K). The cone C is proper if
C+#X. ‘

Proposition 2. For every pfoper closed convez set C in a separable Banach space X there
ezists a O smooth conves function f: X — [0,00) so that f~1(0) = C and f'(z) # 0
for allz € X'\ C. Moreover, when C is a cone, U = f~1([0,1]) is a C* smooth convez

body in X so that ccU = C. [
Now we have arrived at the following generalization of Theorem 1.

Theorem 2. Let A be a C?P starlike body in a separable Banach space
X. Assume that ccA is a conﬂez subset of X.
(a) If ccA is a linear subspace of finite codimension (say X = ccU @ Z, with Z finite-
dimensional), then A is CP relatively diffeomorphic to ccA + By, whgre Bz is a

Euclidean ball in Z.
(b) If ccA 1is either not a linear subspace or else ccA is a linear subspace such that the

quotient space X /ccA is infinite-dimensional, then U is CP relatively diffeomorphic

to a closed half-space.

In the case p = 0, the assertions (a) and (b) hold for all Banach spaces X.

Proof. To obtain (a) it is enough to apply Proposition 1 for A; = A and Ay = ccA+ Bz.
~ To obtain (b) write C = ccA for the closed convex cone of X. By Proposition 2, there
exists a C*° smooth convex body U so that ccU = C = ccA. Then, by Proposition 1,
the starlike bodies U -and A are CP relatively diffeomorphic. On the other hand, by the
assumption, ccU = C is either not a linear subspace or else is a linear subspace such that
- dim(X/C) = oo. Now, by Theorem 1(b), U is CP relatively diffeomorphic to a closed
half-space, and hence so is A. - o
Iﬁ the case p = 0, it is easy to see that, for every closed convex cone C C X, the set

U = C+ B, where B is the unit ball of X, is a closed convex body so that C' = ccU.

Hence, the above argument applies. O

It is natural to ask whether, for starlike bodies A and B with homeomorphic boundaries

0A and 0B, A and B are relatively homeomorphic.
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The following theorem, answering this question in the affirmative, provides a full clas-
sification of starlike bodies in terms of the homotoki:)y type of their boundaries in infinite-

dimensional Banach spaces.

- Theorem 3. Let X be a Banach space and let A, B be starlike bodies in X with boundaries
0A and OB. The following statements are equivalent:

. (1) OA has the same homotopy type as OB;
(2) A and OB are homeomorphic;
(3) ‘A and B are Télatively homeomorphic.

The proof involves infinite-dimensional topology, see [BP]. The bodies A and B, and
their boundaries 0A and OB are so-called Hilbert manifolds. Since A and B are con-
tractible, in fact, they are homeomorphic to X. Moreover, A and 8B are the so-called
Z-sets in A and B, respectively. The fact that 84 and 8B have the same homotopy type
implies they actually are homeomorphic. By the homeomorphism extension theorem for
Z-sets, any homeomorphism h : 94 — OB extends to a homeomorphism H of A onto B.

Finally, it is easy to extend H to a self—homeomorphism of X.

Starlike bodies in a Banédch space X afe, in some sense, in one-to-one correspondence
with closed subset K (open subsets U) of the unit sphere S of X. Let A be a starlike body
in X. Let 7 : X\ {0} — S be the radial retraction. Clearly, S(A) = r(ccA\{0}) is a closed
subset of S such that ccA = [0, 00)S(A), the cone over S(A), and (84) = S\ S(A) is an
opén Subsef of S. As it is easily seen below, a closed subset K of S gives rise to a starlike

body whose characteristic cone is the cone over K.

Proposition 3. Let K be a closed subset of S. There exists a starlike body A = Ay such
that S(A) = K. If X is separable and CP smooth, then we may require that the body A is

CP smooth as well.

Proof. Take any continuous function A : § — [0,1] with A~1(0) - K. Define ¢(z) =
Ha:”)\(”z—”) for  # 0 and ¥ (0) = 0. We see that ¢ : X — [0, c0) is a positively homogeneous
continuous function with 1~!(0) = [0, 00) K. It is enough to set A = %~*([0,1]).

In the smooth case, if X is CP smooth, there‘ exists a bounded CP smooth starlike

body whose charcteristic cone is {0} [DGZ]. Let u stand for the Minkowski functional of
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this body. Using the fact that X admits CP smooth parﬁtio_ns of unity, one can find a
continuous function A : X — [0,1] which is CP smooth off A=1(0) = [0,00)K. Define
Y(z) = w(x) A7) for z # 0 and ¢(O) = 0. Clearly, ¥ : X — [0,00) is a positively
homogeneous continuous function which is CP smooth off ¥~1(0) = [0,00)K. Set A =
$71(0,1)). O |

Remark 1. The smooth assertion holds true if one replaces the separability assumption by

the existence of CP smooth partions of unity. [

In the proof of Proposition 3, instead of using the functional u, we could have used a
weak hilbertian norm w on the separable space X, that is, a continuous norm of the form
w(z) = ||T(z)| that is determined by an injective continuous linear operator T : X — £5.
In such a case, w is real-analytic off w™1(0). If K is a compact subset of S, then Ky =
([0,00)K) N B, where B,, is the unit w-sphere, is also compact. Hence, T(Kj) is compact
in £3 and, by [Do2], there exists a continuous function A : B, — [0, 1] that is real-analytic

off )\_1 (O) = Ko.

Remark 2. Letting ¢(z) = w(:c)/\(w(“m)) for z # 0 and ¥(0) = 0, the set A = zp_l([O, 1) isa
real-analytic starlike body with ccA = [0,00)K. As a consequence, in a separable Banach
space, for every starlike body A with the locally compact ccA there exists a real-analytic

starlike body Ag with ccAg = ccA. O
We do not know whether this last statement holds for an arbitrary starlike body A.
However, if ccA is weakly closed, then we can find a weak hilbertian norm w so that ccA

is w-closed. We can then construct a continuous function A : Bw — [0,1] that is C* off

A71(0) = ccANB,,. Since the characteristic cone of a weakly closed starlike body is weakly

closed, we have the following:

Remark 8. For a starlike body A in a separable Banach space, which is closed in the weak -

topology, there exists a C*° starlike body Ap with ccA = ccAy. O

For a closed set K C S, all (smooth) starlike bodies of the form Ag are relatively

(diffeomorphic) homeomorphic. As a consequené_e of Theorem 3, we have:

Corollary 1. For two closed sets Ki, Ky C S in an infinite-dimensional Banach space X,
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the starlike bodies Ay, and Ay, are relatively homeomorphic if and only if the complements

S\ K; and S\ K, have the same homotopy type.

Proof. This is a consequence of Theorem 3 because the boundary of Ak, is homeomorphic
to S\ K;, i=1,2. O

It is unknown what necessary and sufficient conditions for K, i = 1,2 one has tolimpose
| in order for their complements in S to have the same homotopy type. (Since the sphere S
is homeomorphic to X, we can replace S by X.) If K is a Z-set in S (e.g., K is compact),
then the complement of K is homeomorphic to S; hence, in such a case, Ak is relatively
homeomorphic to the unit ball. If K; is a one-point set and Kz is a small closed ball
' intersected with S, then K is a Z-set, while Bj is not a Z-set, but the complements of K3
'~ and K3 have the same homotopy type (they are contractible), and therefore Ag, and Ag,
are relatively homeomorphic (with the unit ball). The following simple example shows
that the contractibility of K and K3 does not suffice to obtain the same homotopy type

of their complements.

Example 2.. Let K7 C S be a one point set and K3 = SN Xy, where X is a codimension
1 vector subspacé of X. Then, K; and K> are contractible, but the complement of Kj
is disconnected, while the complement of K; is contractible (even homeomorphic to X).
We see that Ag, is relatively homeomorphic to the unit ball in X, while ccA K, = Xo
and, consequently, Ag, is relatively homeomorphic to Xo x [—1, 1], which, in turn, (having

disconnected boundary in Xo x R) is not homeomorphic to the unit ball in X. O

Since, for a Zg-set Z (that is, Z is a countable union of Z-sets) in S, the spaces S\ Z
and S are homeomorphic, one can hope that if K7 and K, have the same homotopy type
modulo Z,-set, then the complements of K;, ¢ = 1, 2, have the same homotopy type. (Two
closed sets vPl, P, are meant to have the same homotopy type modulo Z,-set if there are
closed sets P; C B, i = 1,2, such that P/ ,vz' = 1,2, have the same homotopy type and
both P; \ P{ and P, \ Pj are Z,-sets.) This, however, is not the case because K7 and K,

of Eiample 2 have the same homotopy type modulo Z,-set.

The finite-dimensional case. Below we provide several examples showing that Corol-

lary 1 cannot be extended in any reasonable way for the finite-dimensional space X.
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Example 3. Let S = S and B be the unit sphere and the unit ball in X = R2, respec-
tively. Consider two compacta K; and K» in S; K; is a copy of an infinite convergent
sequence space and K3 is a copy of the Cantor set. Then, the bodies Ak, and Ak, (having

their boundaries homeomorphic) are not homeomorphic.

To see this it suﬂ"ices to notice that each Ag, is homeomorphic to B\ K;. It is then
clear that any non-isolated point of K has a basis of neighborhoods (in Ag,) that can be
chosen to be topologically different from any neighborhood of any point of Ky. We can
obviously make those starlike bodies to be real-analytic, so an improvement in smoothness

is not any help. O
In higher dimensions, one can provide more regular examples.

Exémple 4. Let § = S be the unit sphere in X =R3. Consider C; = U; UU,UUs, where
Ur = {(z,y,2) € S||z| < 1/8}, Uz = {(=,y,2) € S|z — 1] < 1/8}, and Us = —Uj, and
Co =UUU; UGS, where Uz =A{z,y,2) € S|z—1/2| < 1/8,y > 0}. Letting K; = S\ C;,
© = 1,2, we see that the boundaries of the starlike bodies Ag, (being homeomorphic to

C;) are homeomorphic. Howevef, there is no homeomorphism of A K, onto Ag,. O

In R*, we have the following example.

Example 5. Let S = S3 be the unit sphere in X = R*%. Let K be the (doubled) Fox-Artin
arc in 5, that is, K is a topological arc whose complement is a contractible 3-manifold
which is not homeomorphic to R3, see [Ru, p. 68]. Then, for a starlike body A= Ag, ccA
is the cone over an arc, therefore, it is contractible. Moreover, Ag is not homeomorphlc

to a half—space in R* though both bodies have contractible boundaries. [

Ih generzﬂ, for every bn > 4, the sphere S = S""! in X = R" contains an open con-
tractible (n — 1)-manifold U that is not homeomorphic to R”!. One can take U to be
the éo—called Whitehead manifold. kIn each diménsion, there are continuum many pairwise
non-homeomorphic such objects. While the cofnplement S3\U is a céntinuum that is
not contractible, for n > 4, always one can pick U so that S"~1\ U is a contractible
(n — 1)-manifold. To see this, let M be a contractible (n — 1)-manifold with non-simply

connected boundary; the existence of M is due to N.H.A. Newman for n > 5 (see [G]),
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and due to B. Mazur and V. Poenaru for n = 5. Gluing together two copies of M along
their boundaries we obtain the double space N, which is a topological copy of S™~! (cf.
[AG, p. 2, items (4) and (9)]). The complement of one copy of M in N is just the interior
of the other copy, which yields a requested manifold U. Since U is not simply connected
at infinity, U is not homeomorphic to R™~!; moreover, the manifold U, being the interior |

of a contractible manifold, is itself contractible.

Example 5. Write K = 5\ U. Any starlike body Ax in R™, n > 4, has both ccAx and

O0Ak contractible. However, Ax is not homeomorphic to a half-space in R*. O

We wish to thank Craig Guilbault for his helpful observations that are included in

Examples 4-5.
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The fundamental group of a visual boundary
versus the fundamental group at infinity

Greg Conner and Hanspeter Fischer

June 2001

There is a natural homomorphism from the fundamental group of the boundary of any non-

positively curved geodesic space to its fundamental group at infinity. We will show that
this homomorphism is an isomorphism in case the boundary admits a universal covering

space, and that it is injective in case the boundary is one-dimensional.

1. DEFINITIONS

A metric space is called properif all of its closed metric balls are compact. A geodesic
space is a metric space in which any two points lie in a geodesic, i.e. a subset that is
isometric to an interval of the real line in its usual metric. )

A proper geodesic space X is said to be non-positively curved if any two points
on-the sides of a geodesic triangle in X are no further apart than their corresponding
points on a reference triangle in Euclidean 2-space.

- The boundary of a-non-positively curved geodesic space X, denoted by bdy X, is
defined to be the set of all geodesic rays emanating from a fixed base point z, endowed
with the compact-open topology. (This definition is independent of the choice of z
[1, Proposition 11.8.8].) Examples of such boundaries include the Sierpinski gasket
and the one-dimensional Menger space [2].

While bdy X has a well-defined fundamental group m (bdy X,w) based at a
geodesic ray w : [0,00) — X with w(0) = o, there is also the notion of a funda-
mental group at infinity of X based at w, denoted by n°(X,w). It is defined to be
the limit of the inverse system whose terms are the fundamental groups of comple-
ments of compact subsets of X and whose bonds are induced by inclusion. Since the
sequence of closed metric balls B(k) = {z € X | d(z,z0) < k} is cofinal in the system
of compact subsets of X, we get S '

7rf°(X,w) , : R
= lim (m (X \ B(1),w(2)) & m(X \ B@),w(3)) & m(X \ BE),w(4) &),
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where 7y, is defined to be the the composition of the inclusion induced homomorphism
incley T (X \ B(k),w(k + 1)) — m(X \ B(k —1),w(k + 1)) and the isomorphism
sp: m(X \ B(k—1),w(k+ 1)) = m(X \ B(k — 1),w(k)), which “slides” the base .
point from w(k + 1) to w(k) along w.

For the remainder of this note let us fix a non-positively curved geodesic space X
with base point zy and a geodesic ray w emanating from z,. We shall be interested
in the relationship between m (bdy X,w) and 73°(X, w).

2. THE NATURAL HOMOMORPHISM

LEMMA 1. There is a natural homomorphism  : mi(bdy X, w) — 7§°(X, w).

PROOF. Denoting by [Zo, z] the (unique) geodesic in X from zy to z, we define a
geodesic retraction map ry : S(k) — S(k—1) by z — [zo; 2] N S(k — 1). Similarly we
define ry, : X\ B(k—1) — S(k—1) by z +— [z, z] N S(k —1). This allows us to write

bdy X = lim (S(1) & 5(2) & S(3) &£ ),

where we now interpret a geodesic ray v : [0, 00) — X with v(0) = z; as the sequence
(7(1),7(2),---). Notice that the diagram :

m(X\ BL),w(2) <& m(X\ B@),u(3) < -
Ty Nncly /13y
m(S(1),w(1)) £ m(S(2),w(2) <

commutes. Hence its top row is pro-equivalent to its bottom row. Therefore the limit
of the top inverse sequence, which defines 7$°(X, w), agrees with that of the bottom
one. We obtain

72X, w) = lim (m(S(1),w(1) ¥ m(S(2),w(2) ¥ m(S(E3),w(3) ). ()

The inverse limit projections gx : bdy X — S(k) clearly induce homomorphisms
gr : m(bdy X,w) — m1(S(k),w(k)) that commute with the homomorphisms ry4.
We therefore get an induced homomorphism ¢ : m(bdy X,w) — 7%°(X,w) defined by
[a] = ([ou], [@2], - - ), where for a map o : (S*, %) — (bdy X,w) we put ax = gz o a./ '
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3. COINCIDENCE WITH THE FIRST SHAPE GROUP

The typical examples of non-positively curved geodesic spaces have the structure of
certain locally finite simplicial complexes whose simplices are isometric to simplices
in a complete simply connected Riemannian manifold of some constant sectional
curvature. In such spaces, metric spheres are ANRs. It is therefore not very restrictive

to make the following

GENERAL ASSUMPTION. Each (S(k),w(k)) has the homotopy type of a pointed ANR.

Consequently, the projection

T4

(bdy X,w) 4 ((S(1), (1)) & (5(2),w(2) & (S(3),w(3)) & )

induces an HPol,-expansion in the sense of shape theory [8]. It follows from (1) that
the fundamental group at infinity 7§°(X,w) coincides with the first shape group of
(bdy X,w), which we will denote by #;(bdy X,w). We record

LEMMA 2. 7$°(X,w) z'frl(bdyX,w).// ,

4. BOUNDARIES WITH UNIVERSAL COVERS

THEOREM 1. If bdy X admits a universal covering space, then the natural homo-
‘morphism ¢ : m1(bdy X,w) — 7¥°(X,w) is an isomorhism.

We recall the definition of the pointed Cech system of a pointed compact metric
space (Z, z) from [6] and [8]: ~

Consider the collection C of finite open covers U of Z which contain exactly one
element v(U) € U with z € v(U). Then C is naturally directed by refinement.
Denote by (N(U),v(U)) a geometric realization of the pointed nerve of I, i.e. of the
abstract simplicial complex {A | § # A C U, A # 0} with distinguished vertex
v(U). For every U,V € C such that V refines U, choose a pointed simplicial map
puy - (N(V),v(V)) — (N(U),v(U)) with the property that the vertex corresponding
to an element V' € V gets mapped to a vertex corresponding to an element U € U
with V' C U. (Any assignment on the vertices which is induced by the refinement
property will extend linearly.) Then pyy is unique up to pointed homotopy and
we denote its pointed homotopy class by [pyy]. For each ¢ € C choose a pointed
map py : (Z,z) — (NU),v(U)) such that p*(SH{U,NU)) C U for all U € U,
where St(U, N(U)) denotes the open star of the vertex of N(U/) which corresponds to
U. (For example, define py based on a partition of unity subordinated to I/ .) Again,
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such a map py is unique ﬁp to pointed homotopy and we denote its pointed homotopy

class by [py]. Then [pyv o py] = [py], and (Z, 2) () (NU),v(U)), [puv],C) is an
HPol,-expansion, so that

11(Z, 2) = lim (m(N(U), v(U)), puv,C). @)
A proof of the following lemma can be found in Section 2 of [3]: |

LEMMA 3. LetV € C. Suppose every element of V is connected and every loop which
lies in the union of any two elements of V contracts in Z, then the homomorphism
pyu 11 (Z, z) — m(N(V),v(V)) is an isomorphism.

To prove Theorem 1, we let (Z, z) = (bdy X,w). In view of (2) and Lemma 2, it
suffices now to show that for every element & € C there is an element V € C such
that V refines U and pyy : i (bdy X, w) — m (N(V),v(V)) is an isomorphism. Since
by assumption, bdy X is a connected, locally path connected, semi-locally simply
connected, compact metric space, every U € C can easily be refined by an element
V € C that satisfies the requirements of Lemma 3.

5. ONE-DIMENSIONAL BOUNDARIES

THEOREM 2. If bdy X 1is one-dimensional, then the natural homomorphism
@ :m(bdy X,w) — 7°(X, w) is injective.

PROOF.  Suppose (P, px) is any sequence of pointed compact metric spaces hav-
ing the homotopy type of pointed ANRs, and fy_14% : (Pe,pr) — (Pe_1,Pp—1) aTe
continuous maps such that

(bdy X,w) = lim (P, p1) & (Po,pa) & (Py,ps) £ ).

Then the projections f; : (bdy X,w) — (Pg, px) induce a canonical homomorphism

% :m(bdy X,w) — G = 1+1r_n (Wl(Pl,Pl) Fae 7T1(P27P2) £ m1(Ps, p3) . ) ;

defined by w([a]) = ([fl 0 a]: [f2 © CM], [f3 © Ck], te ) Since
; fa, T3,
(bdy X,w) L ((Phpl) b (Py,p2) <= (Ps,ps) & )
is another HPol,—expansion, there is an isomorphism ¢ : #;(bdy X,w) — G such
that 4 0 ¢ = 1. The assertion of the theorem will follow if we choose the sequence
((Px> k), fr—1,) such that 9 : 71 (bdy X,w) — G is injective. This can be done using
any one of the following three theorems. / ‘
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THEOREM. [4] Let Z be the one-dimensional Menger space, obtained by intersecting
the standard nested sequence (Pg) of three-dimensional handlebodies. Fiz a point
z € Z. Then the canonical homomorphism

incl incl incl
“Z# 7T1(P2,Z) “‘(L-C—# 7T1(P3,,Z) “(7:‘3_.#‘...>

Y :m(Z,z) — lim <7r1(P1,z)
15 injective.

REMARK. This theorem suffices to finish the proof of Theorem 2, since every one-
dimensional compact metric space ¥ embeds in the one-dimensional Menger space
Z so that the induced homomorphism on fundamental groups m1(Y,y) — m(Z, 2) is
injective: ‘

n(Yy) ™% 52,2
Lo

incl

n(Y,y) — (2 z)

THEOREM. [7] Let Z be the limit of an inverse sequence P, & P & P &
of one-dimensional compact polyhedra and z = (p,) € Z. Then the canonical homo-

morphism

f: f: fa
iy 7T1(P27P2') ‘3—# 7T1(P3>103) s )

Y:m(Z,2) = 14511 <7T1(P1,7P1)
15 injective.
‘REMARK. This theorem suffices to finish the proof of Theorem 2, because every

-one-dimensional compact metric space is the limit of an inverse sequence of one-
dimensional compact polyhedra.

THEOREM. [5] Let Z be a one-dimensional, compact, connected metric space, and
z € Z. Then Z can be embedded in three-dimensional Euclidean space such that there
eTists a sequence P O Py D P3 D --- of handlebodies with (P, = Z and such that
the canonical homomorphism ' ‘

incly incly incly

¢:W1(Z;2)—>E111(71(P172) — (P, z) W;(Ps;z) — )

15 injective.
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ENDS OF MANIFOLDS: RECENT PROGRESS
CRAIG R. GUILBAULT |

ABSTRACT. In this note we describe some recent work on ends of manifolds. In
particular, we discuss progress on two different approaches to generalizing Sieben-
mann’s thesis to include manifolds with non-stable fundamental groups at infinity.

1. INTRODUCTION

In this note we d1scuss some of our recent Work on ends of manifolds. For simplicity
we focus our attention on one-ended open manifolds.

* A manifold M™ is open if it is noncompact and has no boundary.
e A subset V' of M™ is a neighborhood of infinity if M™ — V is compact.

e M™ is one-ended if each neighborhood of infinity contains a connected neigh-
borhood of infinity. .

Example 1. R™ is an open n-manifold for alln > 1. ]fn’> 2, then R™ is one-ended.

Example 2. If P" is a closed connected manifold, then P xRF is an open manifold
foralln > 1. P* x R* is one-ended iff k > 2.

Example 3. Let P" be a compact manifold wzth non-empty connected boundary.
Then int (P™) is a one-ended open manifold.

A natural question to ask about open manifolds is the following.

Question. When is an open n-manifold M™ just the interior of a compact manifold
~with boundary?

Equivalent Question. When does M™ contain an g‘open collar” neighborhood of
infinity? (V' is an open collar if V = 8V x [0,1).

These questions were answered (in high dimensions) by Siebenmann in his 1965
Ph.D. thesis.

Theorem 1.1 (see [Si]). A one ended open n-manifold M™ (n > 6) contains an open
collar neighborhood of infinity if and only if each of the following is satisfied: -

(1) M™ is inward tame at infinity,

(2) m is stable at infinity, and

Date: December 28, 2001.
41 -
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(3) oo (M™) € Ko (Z[m1(e(M™))]) is trivial.

In the above theorem:
e inward tame means V neighborhood V' of infinity, 3 homotopy H Vx|[0,1] —
V such that Hy = id and Hy(V) is compact.

o m stable at infinity means 3 a sequence V5 2 V4 D V4, D --- of neighbor-
hoods of infinity with (V; = 0 and inclusion induced homomorphisms all
isomorphisms:

m (Vo) & my (Vi) 2 my (V) &

e Condition 3) ensures that the V;’s have finite homotopy type.

Remark. Siebenmann’s Theorem (and variations due to Quinn) have been extremely
important in manifold topology—especially embedding theory. In other situations—
for example the study of universal covering spaces—the hypotheses are too strong.
Thus, it has been asked:

Question. Are there versions of Siebenmann’s Theorem that apply to a more general
class of manifolds?

The main goal of this note is to discuss two different (but related) programs for
generalizing Siebenmann’s Theorem.

2. GENERALIZING SIEBENMANN’S THESIS: APPROACH #1

We begin by generalizing the notion of an open collar to that of a “pseudo-collar”. We
then seek conditions that imply that a given open n-manifold contains a pseudo-collar

neighborhood of infinity.

¢ A manifold U with compact boundary is a homotopy collar if U — U is a
homotopy equivalence.

e If in addition, U contains arb1trar1ly small homotopy collar neighborhoods of
infinity, we call U a pseudo-collar.

One nice aspect of a pseudo-collar structure is that it may be decomposed into a
countable union of compact “one-sided h-cobordisms”. (A one-sided h-cobordism can
be deformation retracted onto one of its boundary components, but not necessarily
onto the other.) These cobordisms have been the object of frequent study. See for
example [DT] and Sections 11.1 and 11.2 of [FQ]. Given a pseudo-collar U and a
cofinal sequence U; D Uy D Us D --- of homotopy collar neighborhoods of infinity,
let W; = U;_y —int(U;). Then each (W;, dU;_1,0U;) is a one-sided h-cobordism. See
Figure 1 for a schematic picture. ‘

Example 4. A particularly interesting collection of pseudo-collarable (but not col-
larable) open n- mamfolds are the exotic universal covering spaces constructed by M.

Davis in [Da).
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So far, our best theorem for ensuring pseudo-collarability in an open n-manifold is:

Theorem 2.1 (see [Gul]). A one-ended open n-manifold M™ (n > 7) is pseudo-
collarable provided each of the following is satisfied:

(1) M™ is inward tame at infinity,

(2) m is perfectly semistable at infinity,

(3) 0o (M™) € lim {I?oﬂl(M"\A) | A a M”} is zero, and

(4) m, is semistable at infinity.

In this theorem:

o T semistable at z'hﬁm’ty means 3 a sequenée VWw2Vi 2V, D of neigh-
borhoods of infinity with () V; = @ and inclusion induced homomorphisms all
surjective:

7r1(%)<'—'\—1—7T1(V1)<—'\—2—7r1(V2 Mo

e perfectly semistable means that, in addition, we can arrange that ker()\;) is

perfect for each 1, ' ‘
e requiring that o, (M™) = 0 ensures that the V;’s have finite homotopy types,

and
o Ty semistable at infinity means what you think it does...

Remark. Conditions 1)-3) are also necessary. Hence, the following question is
‘natural. '

Question. Can Condition 4) be eliminated from Theorem 2.1?

Another intriguing open problem is:

Question. Does condition 2) follow from Condition 1)?
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Combining the above two questions we arrive at:

Big Question #1. Do conditions 1) and 3) suffice?

3. GENERALIZING SIEBENMANN’S THESIS: APPROACH #2

Instead of viewing Theorem 1.1 as detecting open collar neighborhoods of infinity, one
may view it as answering the question: “When can an open manifold be compactified
to a manifold with boundary by adding a boundary (n — 1)-manifold?”. Taking
this point of view, our second approach to generalizing Theorem 1.1 is to look for
compactifications which permit a less rigid sort of boundary (a “Z-boundary”).

~® A closed subset A of a compact ANR Y is a Z-set if, for every open set U of
Y, U\A — U is a homotopy equivalence.

e A compactlﬁcatlon X ofa space X is a Z-compactification if X \X is a Z-set
in X. In this case, we call X \X a Z-boundary for X. '

Example 5. If P" is a manifold with boundary, then any closed subset of OP™ is a
Z-set in P™.

Example 6. Adding a manifold boundary to an open mamfold is a (partzcularly nice)
- Z-compactification.

Example 7. Davis’ ea:otzc universal covering spaces admit Z- compactzfzcatzons—but
not manifold compactifications.

Example 8. If P" is a closed aspherical manifold with CAT(0) or word hyperbolzc
fundamental group, then P" admits a Z- compactzfzcatzon

Question. Under what conditions does a one-ended open mamfold admit a Z-com-
- pactification?

For the case of Hilbert cube manifolds, thls question was ansvvered by the following
theorem.

Theorem 3.1 (see CS). A Hilbert cube manifold X admits a Z- compactzfzcatzon iff
each of the following is satisfied.
a) X is inward tame at infinity.

b) 0o (X) € lim {f?oﬂ'l(X\A) | A T X} is zero.
€) Teo (X) € lim' {T/Vhﬂ'l(X\‘A) | A fa X} is zero.

Corollary 3.2. For any locally compact ANR'Y , the above conditions are necessary
and sufficient for Y x [0,1]% to be Z-compactifiable. ' ‘
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This corollary raises a natural question first posed by Chapman and Siebenmann.

Question. Are these conditions sufficient for the ANR Y itself to be Z-compactifi-
able?

In [Gu2| we answered this question in the negative. The counterexample is a 2-
dimensional polyhedron, but not a manifold. We consider the following to be an

‘important open problem.

Big Question #2. Does an open manifold satisfying conditions a)-c) admit a Z-
compactification?

4. RECENT PROGRESS

~ In this section we describe some recent progress on some of the questions raised
‘in the previous two sections. Proofs will be contained in a pair of papers that are
currently in progress.
The first new result reveals a connection between conditions 1) and 2) of Theorem
2.1. Note, however, that it does not imply that condition 1) implies condition 2).

Theorem 4.1. Let M™ be a one-ended open n-manifold. If M™ is inward tame at
infinity, then m is semistable at infinity.

The second new result is related to “Big Question #2”. Although it does not settle
the problem, it provides the best possible “stabilized” answer to that question.

Theorem 4.2. Let M™ be a one-ended open n-manifold (n > 5). Then M™ x [0, 1]
admits a Z-compactification (in fact M™ x [0,1] is a “missing boundary manifold”)
if and only if M™ satisfies a)-c) of Theorem 8.1. :

Remark. In [Fe], Ferry has shown that if a k-dimensional polyhedron K satisfies
a)-c), then K x [0, 1]***® admits a Z-compactification. Previously, in [OB], O’Brien
- showed that [0, 1]° suffices if K is a one-ended open manifold.
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ON THE EXISTENCE OF EXTENSION DIMENSION

IvaN IvANSIG AND LEONARD R. RUBIN

ABSTRACT. We prove the existence of extension dimension for all stratifiable spaces of a
fixed bounded weight with respect to the class of all simplicial complexes. Since the class
of stratifiable spaces contains the class of metrizable spaces, the result applies to metrizable

spaces.

| The starting notion is that of absolute extensor. Let X be a topological space, K be a
simplicial complex, and | K| be its associated polyhedron. The notation K € AE(X) (or
|K| € AE(X)) means that for every closed subspace A of X and map f: A — |K]|, there
exists a map F': X — |K| which is an extension of f. Two other notations for K € AE(X)
are X7K and dim X < K. | R *

Let S be a class of simplicial complexes and C a class of spaces. Let K, K’ be simplicial
‘complexes. The origin of the whole theory is the following postulation:

If it is true thd;f for all X EIAC, |K| € AE(X) implies that |K'| € AE(X), then we write
K<K. | | |

" This defines a preorder among simplicial complexes (see [DD]). One specifies K ~ K’
if and only if K < K’ and K’ < K; then ~ is an equivalence relation on the class of
simplicial complexes. An equivaleriée class under this relation is called an extension type,
or more precisely, a (C, S)-extension type, since it depends on the considered classes C and
S. We then write dim X < [K] to mean that dim X < K’ for all K’ € [K]. Denote by
ET(C, S) the class of all extension types. Thebn‘the above relation < induces a partial order
on ET(C, S). So, for a given space X € C we may ask if there is a minimal element in the

following class of extension types:

(*) {[L] € ET(C, S)]d?mX < [L]}.

1991 Mathematics Subject Classification. 54C55, 54F45. : »
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If there is a minimal element [K], then it is called the extension dimension of X relative
to (C,S) and is denoted by ext-dim s)(X) = [K]. If S is the class of all (simplicial)
polyhedra, then for X € C we simply say extension dimension of X and write ext-dim(X) =
[K].

In [Dr] A.N. Dranishnikov considered the existence of extension dimension. for compact
Hausdorff spaces. Later he and J. Dydak [DD] went further in this direction. They defined
a class of spaces named ext-spaces. Their proof that extension dimension exists for ext-
spaces has a gap, so we sought a tool that would allow us to approach the problem from a
different direction. The content of this contributed talk was the presentation of the main
steps of the proof fhat ext-dimc, s) exists where C, is the class of all stratifiable spaces
of Wéight <a and S is the class of all polyhedra.

The notion of stratifiable space was introduced in 1966 by J. Ceder [Ce] as a gener-
aliéation of metrizable spaces. The class of stratifiable spaces lies between the classes of
paracompact and met‘rizable spaces. Since this class of spaces is not widely used, we give

the definition and list some important facts.

1. Definition. A T\-space X is stratifiable provided there is a function (a stratification)
assigning to each open subset U of X a sequence (U,) of open subsets of X such that

(S1) U, C U for eachn,
(S2) UU,=U, and
n=1 . i
(S3) U c V implies U, C V,, for each n.

Some important facts are:

(a) Stratifiable spaces are hereditarily paracompact. 7

(b) The trace of a stratification on a subspace is again a stratification.
(¢) Any countable product of stratifiable spaces is stratifiable.

(d) Every CW-complex is stratifiable. | '

(e) CW-complexes are absolute neighborhood extensors for stratifiable spaces.

Assume for the sequel that every class C of spaces under study has the property that
polyhedra are absolute neighborhood extensors for all its elements. In a series of preceeding

papers the class of all CW-complexes was considered instead of the class of all simplicial
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complexes. In our approach we find simplicial complexes more convenient. Since every
CW-complex is homotopy' equivalent to a polyhedron we may use simplicial complexes
instead of CW-complexes.

Homotopy types and extension types of polyhedra (or CW-complexes) are related.
Namely, if simplicial complexes are homotopy equivalent, i.e., the associated polyhedra
are homotopy equivalent, then they have the same extension type. The converse is not
true, as a simple example shows: S™ and S™ Vv 57+ have the same extension type with
respect to any class of paracompacta, but have different homotopy types. '

In order to decide whether (*) has a minimal element for a considered class of spaces
C and the class of all simplicial complexes one may notice that the wedge, or one point
union, of simplicial complexes is a helpful construction since if K V K’ € AE(X), then
obviously K € AE(X) and K’ € AE(X),or KVK' < K and KV K’ < K’'. But finding a
minimal element in (*) causes us to require the opposite implication: if K € AE(X) and
K’ € AE(X) then KV K’ € AE(X), and not only for two summands but for a collection,
in other Words we need a so-called wedge theorem. |

For which class of spaces will a wedge theorem apply? We define X to be a dd-space if
X has the property that |K| € AE(X) for every contractible simplicial complex K, i.e., a
simplicial complex whose polyhedron |K| is contractible. One may easily detect that the

following classes of spaces are dd-spaces.
2. Lemma. If X is either compact Hausdorff or stratifiable, then X is a dd-space.
Let us state the following wedge theorem needed later.

3. Theorem. Let X be a dd-space and {Ky|a € I‘} be a collection bf simplicial complezes.
Put K = \/K,, where say v is a vertex common to each Ko;. Suppose that for each a € T,

| K| € AI%}(X). Then |K| € AE(X). Conversely, for any space X, if |K| € AE(X), then
K| € AB(X) for alla €T. | |

As a consequence of this, the wedge theorem holds for stratifiable or compact Hausdorff

spaces. _
If f: X — |K| is a map, where K is a simplicial complex, then there is a minimal

subcomplex L C K such that f(X) C|L|. What is the cardinal number card L of the set
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of vertices of L? It turns out that card L is bounded above by the weight of the space X,
card L < wt X. But if we wish to extend a map from a closed subset A C X to X, then we
need to engulf L by a subcomplex of K, say F, such that |F| € AE(X), i.e., L is engulfed
by an absolute extensor F' for X. Related to this is the question, when is |K| € AE(X) if
K is a union of subcomplexes which are absolute extensors for X7 These questions led us

to introduce two notions related to infinite cardinals. Here are their definitions, where I

denotes the unit segment.

4. Definition. Let o be an infinite cardinal and oy the first cardinal with o1 > «a.
We define an increasing well-ordered collection {T;|c < a1} of cardinals as follows. Put

To = card Yy where Yy is the collection of all subsets of I¢ x I%. Note,
(1) a < 7. |
Now suppose 0 < B < o and we have defined 7, forkall o< f.
(2) If B is a limit ordinal, then let 75 = sup{7s|o < B}
(3) If 6 = 0+ 1, then put 75 = card Yy41, where Y, 41 is the collection of all subsets
of I® x I™. o
Finally we define

excd(a) = sup{7s|oc < a1}
and call it the extension cardinal of «.

5. Definition. Let o be an infinite cardinal. Suppose that X is a space having the
property that for every simplicial compler K with |K| € AE(X), there exists a collection

F of subcomplezes of K so that:
(a) For each subcomplex L of K with card L < «, there exists F € F with L C F;
(b) |F| € AE(X) for all F € F;
(c) card F < excd(a) for all F € F, and
d) K =UF. |

Then we shall say that X s an exty-space.

One may ask the reason for the powers of the unit segment in the definition of the

extension cardinal. Let us recall that the Tychonoff cube I® is universal for the class of
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Tychonoff spaces of weight < o and that |L| embeds into %4, Having these notions
formulated one can use a transfinite induction argument to prove that there is a wide class

of ext,-spaces, namely the following theorem holds:

6. Theorem. Let a be an infinite cardinal and X be a space such that
(a) wt X < o, and
(b) X is Tychonoff.

Then X is an exty-space.

Narrowing slightly the class of spaces in the previous theorem to the class of stratifiable
Aspaces, we have the following statement which gives a sufficient condition for a simplicial

complex to be an AE(X) if it is the union of subcomplexes each of which is an AE(X).

7. Lemma. Let o be an infinite cardinal, X be a stratifiable space with wt(X) < a, K be
a simplicial complez, and F be a collection of subcomplezes of K sﬁch that
(a) for every subcomplex L of K with card L < «, there exists F' € F such that L C F,'
(b) |F| € AE(X) for all F € F, and
(c) K=UF. |
Then |K| € AE(X).
8. Theorem. Let o be an infinite cardinal. Put S equal the class of all simplicial com-
plezes and C, the class of stmtzﬁable spaces of weight < o. Then for each X € C,, th

class
{[L] € ET(Cq, S)|dim X < L}

has a minimal element.

Proof. Let 8 = excd(c). Choose a set Sp C S such that for every L € S with card L < 8,
thereisan L' € Sy with L’ isomorphic to L. We shall show that the minimum is represented
by V

K=\/[{L|dmX < L,L € &}.

Since X is a dd-space, Theorem 3 shows that |K | € AE(X), or dim X < K. We have
to show that for all L in § if dim X < L, then for Y € C,, dimY < K implies dimY < L.
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Now by Theorem 6, X is an extq-space so by Definition 5, there is a collection F of
subcomplexes of L, so that L = | JF, and for each F' € F, |F| € AE(X), and card F < (3.
Then by the definition of K, every F' € F is, up to isomorphism, a summand of K. Thus
by Theorem 3, we have |F'| € AE(Y) for all F' € F. By Lemma 7 applied to Y, one has
that |I| € AE(Y), or dmY < L. O |
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Z/p>*-ACYCLIC RESOLUTIONS FOR METRIZABLE COMPACTA

LEONARD R. RUBIN AND PHILIP J. SCHAPIRO

ABSTRACT. We shall prove a G-acyclic resolution theorem for dimg, cohomological dimension
modulo the group G = Z/p®°, in the class of metrizable compacta. This means that, given
a metrizable compactum X such that dimg/,ec X < n (n > 2), there exists a metrizable
compactum Z and a surjective map 7 : Z — X such that:

(a) m is Z/p™>-acyclic,
- (b) dimZ <n-+1, and
(c) dimg/peo Z < m.

To say that a map 7 is G-acyclic, for an abelian group G, means that each fiber 7=1(z) of
is G-acyclic, i.e., that all the reduced Cech cohomology groups of 1(z) modulo the group
G are trivial.

The Edwards-Walsh resolution theorem, the first resolution theorem for cohomological
dimension, was proved in [Wa] (see also [Ed]). It states that if X is a metrizable compactum
and dimz X < n (n > 0), then there exists a metrizable‘compactum Z with dimZ < n
and a surjective cell-like map 7 : Z — X. This result, in conjunction with Dranishnikov’s
work ([Drl]) showing that in the class of metrizable compacta, dimz is distinct from
dim, was a key ingredient for proving that cell-like maps could raise dimension (see [Rul]
for background). For the reader seeking fundamentals on the theory of cohomological
dimension, dimg, the references [Ku], [Dr3], [Dy], and [Sh] could be helpful.

| Now a map is cell-like provided that each of its fibers is cell-like, or, equivalently, has the
shape of a point ([MS1}). Every cell-like compactum has trivial reduced Cech cohomology
with respect to any abelian group G. This means that for every abelian group G, every
“cell-like map is G-acyclic, i.e., all its fibers have trivial reduced Cech cohomology with
respect to the group G. Moreover, when a Hausdorff compactum or metrizable space X

has dim X < n, then also dimz X < n.
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With these ideas in mind, one may ask, what kind of parallel resolution theorems can
be obtained under the assumption that dimg X < ﬁ, where G is an abelian group different
from Z7 It turns out that it is not possible always to have cell-like resolutions as in the
Edwards-Walsh theorem, nor can one even require in such propositions that dim Z < n be
true (see [KY2]). So, what kind of resolution theorems can we expect? The main result of

this paper exemplifies the situation. Let IP denote the set of prime numbers.

1.1. Theorem. For each p € P, n > 2, and metrizable compactum X with dimg/pe X <

n, there exists a metrizable compactum Z and a surjective map 7 : Z — X such that:

(a) m is Z/p™-acyclic,
(b) dimZ <n+1, and

(c) dimg/pee Z < 1.
This and the Edwards-Walsh theorem are special cases of the following conjecture:

1.2, Conjecture. Let G be an abelian group and X be a metrizable compactum with

dimg X <n (n>2). Then there exists a metrizable compactum Z and a surjective map

T Z — X such that:

(a) 7 is G-acyclic,
(b) dimZ <n+1, and
" (¢) dimg Z < n.

Let us mention that the Edwards-Walsh theorem has been generalized to the class of
arbitrary metrizable spaces by Rubin and Schapiro ([RS1]) and to the class of arbitrary
compact Hausdorff spaces by Mardesié¢ and Rubin ([MR]). Conjecture 1.2 was proved by
Dranishnikov ([Dr2]) for the group Z/p, where p is an arbitrary prime number, but with
the stronger outcome that dim Z < n. Later, Koyama and Yokoi ([KY1]) were able to
obtain this Z/p-resolution theorem of Dranishnikov both for the class of metrizable spaces
and for that of compact Hausdorff spaces. V

In their work [KY?2], Koyama and Yokoi have made a substantial amount of progress
in the resolution theory of metrizable compacta, that is, towards proving Conjecture 1.2.

Their method relies heavily on the existence of Edwards-Walsh resolutions, which had
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been studied by Dydak and Walsh in [DW], and Whit;h had been applied originally, in a
rudimentary form, in [Wa]. The definition of an Edwards-Walsh resolution can be found
in [KY2], but we shall not use it herein.

To overcome a flaw in the proof of Lemma 4.4 of [DW], Koyama and Yokoi bproved the
existence of Edwards-Walsh résolutions for some groups G, but under a stronger set of
assumptions on G than had been thought necessary in [DW]. It is still not known if these
stronger assumptions are needed to insure the existence of the resolutions. Nevertheless,
Koyama and Yokoi were able to prove substantial G-acyclic resolution theorems. Let us
state two of the important theorems from [KY2] (Theorems 4.9 and 4.12, respectively),
which greatly influenced the direction of the work in this paper. |

1.3. Theorem. Conjecture 1.2 is true for every torsion free abelian group G.

1.4. Theorem. Let G be an arbitrary abelian group and X be a metrizable compactum
with dimg X < n, n > 2. Then there ezists a surjective G-acyclic map 7:Z — X from a

metrizable compactum Z where dmZ <n+2 and dimg Z < n + 1.

In case G is a torsion group, they prove (Theo’rem 4.11) that conjecture 1.2 holds,
- but without part (c). Of course Theorem 1.4 falls short of providing a positive solution
of Conjecture 1.2. We observed that one of the main reasons for the relative weékness
~of this theorem was that Koyama and Yokoi proved it by an indirect technique, a type
of “finesse.” Their approach depends heavily on the Bockstein basis theorém and the
Bockstein inequalities (see [Ku]), instead‘of the more direct method, involving Edwards-
Walsh resolutions, used to prove Theorem 1.3. |

We want to point out that Theorem 1.3 includes as a corollary, and therefore redeems,
the Q-resolution theorem of Dranishnikov ([Drd]). The Koyama and Yokoi proof shows
that in the proof of Theorem 3.2 of [Dr4], the statement that cu, o w.,, is an Edwards-
Walsh resolution over Tr(,ff *1) is not true. This was a subtle pt;int; to fully understand it,‘
the interested reader may examine the text immediately following the proof of Fact 1 of
the proof of Theorem 3.1 in [KY2]. Getting around the barrier riaturally led to a quite
complicated construction. - | |

Our proof of Theorem 1.1 ‘Wi].l be direct, using extensions which are different from
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Edwards-Walsh resolutions. We shall employ the technique of inverse sequences both to

represent our given space X and to determine the resolving space Z. Themap 7: Z — X

will be obtained in a standard, yet complicated manner similar to that used in [Wa]. The

full text can be found in the preprint [RS2].
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Neighborhoods of crumpled manifold boundaries

by F. C. Tinsley

I. Setting: Let S™ denote the n-sphere and let A : §"~! — S" be an embedding. Identify
S™=1 with A(S""1). In other words, assume S™~! sits in S™. Then, S™ ! separates S™
~ into two components. Denote the closure of one of these components by C™. We call C™
a crumpled cube. Observe that bdy(C™) = S™~! naturally.

EXAMPLE 1: Think of S*~! in R™ as the set of points a distance one from the origin
and S™ as the one-point compactification of R™. Then the crumpled cube containing the
origin is, in fact, a cell. : '
DEFINITION 1: §™! is tame in C™ if C™ is a cell. Otherwise, S™~! is wild in C™.

We also may refer to a cell as a t¢rivial crumpled cube.

EXAMPLE 2: The most famous example of a wild sphere is Alexander’s Horned Sphere
(n = 3) shown below in R®. 52 is wild in its bounded component, C®. Specifically, its
interior, C*\\S2, is not simply connected and so cannot be the interior of a cell. The loo
labeled hv an arrow does not. honnd a disk in (73 missine §2. '
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II. Some History: The study of wild embeddings of spheres has a rich history extending
back more than half a century. In particular, myriads of necessary and sufficient conditions
for a crumpled cube to be a cell have been developed. Morton Brown developed the
following characterization that is valid in all dimensions: '

PROPOSITION 1: A crumpled cube, C™, is a cell if and only if S®! is collared in C™,
ie, if and only if there is an embedding ¢ : S*~! x [0, 1] — C™ with cp|S™! the identity.

A second, highly useful characterization was developed. This result is due to R. H. Bing
in dimension 3, Frank Quinn in dimensions 4 and 5, and Bob Daverman in dimensions 6

and higher. ‘

PROPOSITION 2: A crumpled cube, C™, is a cell if and only if S*~! has 1-LCC com-
plement in C™, ie, given any z € S™ ! and ¢ > 0 there is a § > 0 so that loops in

N5 (z,C™)\S™! bound 2-disks in N, (z,C™)\S™"1.

In short, C™ is a cell if and only if small loops near S*~! and missing S™~! bound small
disks near S"~! and missing S™~1.-

" One obviously necessary condition for tameéness still remains a candidate for also being
a sufficient condition. S™! is free in C™ if for each ¢ > 0 there is a map f. : S»1 —
C™\S™! with d(z, f(z)) < € for all z € S™~L.

FREE SPHERE QUESTION: Suppose S™1 is free in C™. Is C™ a cell?

ITI. Strategy of Investigation:

For n = 3, the free surface question is an extremely difficult and well-known unsolved
problem. Also, Bob Daverman has developed methods for ”inflating” examples of crumpled
cubes from dimension n to dimension n + 1. These facts suggest that the answer to the
question is YES for n = 3 and NO for n > 3. From 1985-1995, Daverman and I constructed
many new, intrinsically high-dimensional examples of non-trivial crumpled cubes. This
research focuses on whether our new knowledge has anything to say about the free surface
question in high dimensions. '

We begin with what may be an easier question. For n = 3 it is well known that if S? is
free in C3, then C3\S? is homeomorphic to an open 3-cell. The proof relies on the Sphere
Theorem, an intrinsically 3-dimensional result. '
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POSSIBLY EASIER QUESTION: Suppose n > 3and S 1is free in C™, then is C™\§"1
homeomorphic to an open (n-1)-cell?

IV. Some Progress:

We focus for a moment on a small loop, s, in C™\S"~! near S"~! and categorize what s
may bound in order of increasing nastiness. : '

1. s bounds a small disk in C™\S™ ! near S™L.

2. s bounds a large disk in C™\S™ ! near S™71.

3. s bounds a half-open annulus properly embedded in C’”\S” ~1 near S™ L.

4. s bounds a small disk with a Cantor set’s worth of holes properly embedded in
C™\S" ! near S"1.

Comments:
1. This is the 1-LCC complement condition referred to above. So, S™~! is tame in C™.

2. This condition implies that C™\S"1! is homeomorphlc to the interior of an n-disk. It
often is descrlbed by saying C™"\S" 1 is 1-LC at infinity.

3. Alternatively, we may say that s can be "tubed to infinity”. In our setting, this is
equivalent to E™\S™~! being outward tame, ie, closed subsets of E™\S™! near S"~! can
‘be homotoped in E™\S™! arbirarily close to S”1. (See the article by Craig Guilbault in
these proceedings.)

4. In general, this is the most we can hope for. However, a bit more is true. Any loop, s,
can be made to bound a 2-disk in C™ so that the preimage in this disk of its intersection

with §"~! is a compact 0-dimensional set.

We show that crumpled cubes that belong to our category 3 and have S™! free in C"
also have Euclidean interior.

PROPOSITION 3: Suppose S™~! is free in C™ and given any neighborhood U of S ! in -
C™ there is a neighborhood V of S?~! in C™ such that any loop s in V' can be tubed to

infinity in U. Then C”\S” L Rn,

Proof: We need to show that loops close to S™7! in C™\S™~! bound disks close to S™?
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in C™\S™~! (the 1-LC at oo condition).

_To this end, let U be an arbitrary neighborhood of S*~! in C™. Let V be the neighborhood
S™~1in C™ satisfying the hypthesis of this theorem. Let s be an arbitrary loop in V\S™~1.
Then, s bounds a half-open annulus, A S' x [0, 00), entirely contained in U and properly
embedded in C™\S™~1.

Let € > 0 be a small positive number and, by freeness, let f : S"1 — C™\S™"! be an
e-map. If € is small enough, then f(S™!) C V, f(S™ 1) will separate s from S™~!, and
f will be a degree one map. Assume that f is in general position with respect to itself
and A. Since A is embedded, f~!(A) is a finite union of simple closed curves in S™~1, say
81,82, , 5m. Finally, for at least one 7, f|s;: S' — A is essential at the m; level since f
is of degree one (we the details of this argument to the reader).

Let p: U — U be the umversal covering space of U. Since S™! is simply connected, the
map f lifts to a map f: S ! — U. Consider a component A, of p~1(A). Now, A must
be either a half-plane or again an annulus. But, A cannot be a half-plane because, on the
one hand, f|s; is essential and would lift to a line but, on the other hand, f |s; must lift

to a loop since s; C ™! and f lifts. Thus, A is a half-open annulus.

Then f ]fl : A — Aisakto 1 map for some positive integer k. We argue that &£ = 1. Let
a = * x [0,00) be an arc in A running from * € s out to S»1. Without loss of generality,
assume f and « are in general position so that their intersection is a finite number of
points. Using orientations on S"~!, C", and «, we may assign a +1 or a —1 to each point
of intersection. Since f is of degree one, the sum of these must be +1 or —1. However,
since f|s; lifts to A for each i, 1 < i < m, the sum must be congruent to 0 mod k. The

only possibility is for £ = 1.
V. Closing:

What makes our category 3 tractible is that the annulus, 4, is a has an abelian fundamental
group (Z). As a result, study of the covering spaces of A is straightforward. The situation
in general is considerably more complicated. We are led to understanding the intersections
between f and disks with more than one hole. These objects have free fundamental groups
with more than one generator and, thus, have a plethora of covering spaces. :

The possible advantage to this complexity is that it may make aid in finding a counterex-
ample. We close with a specific intersection pattern that would allow us possibly to use the
our constructions referred to above. We abbreviate the commutator of two group elements,

a and b, by [a,b], ie, a7 b7 ab = [a,b].
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FINAL QUESTION: Let G be Higman’s group presented with four generators and four
relators as

(ailai = [ai, a'i+l]7 as = Q1 1 S ) S 4>
Is there a non-trivial crumpled cube C™ with S™! free in C™, a loop s bounding a disk
with four holes H, and a map f : S""! — C™\S™~! whose intersection pattern with H
yields Higman’s group?

We illustrate H with only the first of the four relators, a; = [a1, as]. There would be three
similar curves relating the other consecutive pairs of holes:
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Genus of a Cantor set
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Abstract
We define a genus of a Cantor set as a minimal number of the maximal number
of handles over all possible defining sequences for it. The relationship between the
local and the global genus is studied for genus 0 and 1. The criterion for estimating
local genus is proved along with the example of Cantor set having prescribed genus.
It is shown that some condition similar to 1-ULC implies local genus equal to 0.
Keywords: Cantor set, defining sequence, genus, 1-ULC

AMS classification: 57TM30

1 Introduction

We will consider Cantor sets embedded in 3-dimensional Euclidean space E3. A defining
sequence for a Cantor set X C E? is a sequence (M;) of compact 3-manifolds M; with
boundary such that each M; consists of d1s;omt cubes with handles, M+1 C Int M; for
each 7 and X =, M;.

Armentrout [?] proved that every Cantor set has a defining sequence. In fact every
Cantor set has many nonequivalent (see [?] for definition) defining sequences and in general
there is no canonical way to choose one. One approach is to compress unnecessary handles
in the given defining sequence for a Cantor set. A class for which this process terminates
is characterized by some property similar to 1-ULC (see [?] for details). But in general
this process is infinite so the “incompressible” defining sequence may not exist. Hence
we look at the minimal number of the maximal number of handles over all possible
defining sequences for it and take the defining sequence for which this number is minimal.
Unfortunately this sequence need not to be canonical, but the mlmmal number (i.e. the
genus) itself has some interesting properties.

Using different terminology Babich [?] actually proved that the genus of a wild scrawny
(see [?] for definition) Cantor set is at least 2.

2 The genus

Let M be a cube with handles. We denote the number of handles of M by g(M). For
disjoint union of cubes with handles M = I__J)\E A M), we define g(M) = sup{g(M)); X €
A} :

*Permanent address: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19,
1000 Ljubljana, Slovenia; E-mail: matjaz.zeljko@fmf.uni~1j.si
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Let (M) be a defining sequence for a Cantor set X C E®. For any subset A C X we
denote by M an union of these components of M; which intersect A. Define

9a(X; (M) = sup{g(M?); i >0} and
94(X) = inf{ga(X;(M)); (M;) € D(X)}.

The number g4(X) is called the genus of the Cantor set X with respect to the subset A.
For A = X we call the number gx(X) the genus of the Cantor set X and denote it simply
by g(X). For any point € X we call the number g(4}(X) the local genus of the Cantor
set X at the point x and denote it by g,(X).

As a trivial consequence of the definition one can prove
Lemma 1 Genus of a Cantor set is a monotone function. Precisely:
1. For AC B C X where X is a Cantor set we have ga(X) < gg(X).

2. For AC X CY where X is a closed subset of a Cantor set Y we have gA(X)
| g9a(Y).

By standard construction of Antoine necklace A we know g(.A) < 1. As Cantor set A is
wild we conclude g(A) = 1. So there exist a Cantor set of genus 1. We call such Cantor

sets toroidal. :
Using the result of A. Babich [?] one can prove that there exists a Cantor set of genus

2. We will extend the theorem [?, Theorem 2] to obtain a criterion for estimating the
local genus and thus constructing a Cantor set of arbitrary genus.

3 GenusO0

By theorem of Bing [?] we know that the Cantor set X C E? is tame if and only if
g(X) = 0. By theorem of Osborne [?, Theorem 4] we know that the Cantor set X C E?

is tame if and only if g,(X) = 0 for every point z € X.

Theorem 2 Let x be an arbitrary point of a Cantor set X C E3. If for everye > 0
exists 0 > 0 such that for every mapping f: S* — Int B(x f) \X ezists such map F: 32
Int B(z,e) \ X that F|s1 = f then g-(X) = 0. _

REMARK. The reader may note that the hypotheéis of this theorem is not enough for the
~ Cantor set X to be locally tame at z. However if the hypothesis of the theorem is satisfied
for every z € X we obtain the well known 1-ULC taming theorem due to R. H. Bing [?].

4 The existence of a Cantor set of arbitrary genus

Let T' be a tree having r + 1 nodes. For k € {2,3,...,r} we denote by G(T,r k) the
number of nodes of I' whose degree is at most k.- We deﬁne

G(r,k) = inf{G(T); T is a tree with r +1 nodes}.

One can estimate
[r+1—£(r—1)] <G(r,k) <r+1,
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where [z] denotes the least integer not less than given z € R (for example [7] = 4).
REMARK. For k = 2 we have G(r,2) > [2] and for k = r we have G(r,r) > [r+ 1] =

7+ 1.
Using the following criterion we can estimate the lower bound for local genus of a Cantor

set.

Theorem 3 Let X C E? be a Cantor set and 7o € X its arbitrary point. Let there exist
a 3-disk B and 2-disks Dy, ..., D, such that -~

1. For every disk D; we have D; N X =Int D; N X = {z,}.
2. For distinct pair of disks D; in D; we have D; N D; = {zo}.
3. The point g lies in the interior of B and Fr D; N B =0 for every disk D;.

4. If there exist planar compact surface in B\ X which boundary components lie in
(D1U---UD,)NFr B then this surface has at least k + 1 bundary components.

Then g.,(X) > G(r, k).

PRrROOF. We will prove that every cube with handles N C Int B such that zo € N and
FrN N X = 0, has at least G(r,k) handles. We may assume that D; intersects Fr V
transversally (shortly D; h Fr V) and that Fr N has minimal genus. We may also assume
that among all cubes with g(Fr N) handles N minimizes the number of components of
FrNN(DiU---UD,).

Fix disk D;. The intersection D; NFr N has at least one component and each of them
bounds a disk in Int D;. If some of such disks in Int D; does not contain zy we pick the
innermost one and denote it by £. (Disk E need not to be unique.) The loop Fr E bounds
a disk £* C Fr N as otherwise N could be compressed along E and hence g(Fr N) would
decrease. So we can replace £ by E* in order to decrease the number of components in
FrNND,.

Therefore the components of D; N Fr N are nested and eaoh of them bounds a dlsk
containing zp. The number of components is odd as zo € D; NN and FrD; N N = {.
If D; N Fr N has at least three components there exist consecutive two of them which
bound an annulus A C D; such that ANFrN = FrA and A C N. Now we cut N along
A to obtain the manifold N* which has at most two components. As x(A) = 0 we have
x(FrN) = x(Fr N*). If N* has two components we dispose that one which does not
contain zo. Therefore g(Fr N*) < g(Fr N) and the number of components of Fr N* N D; is
less than the number of components of Fr N N D;. We repeat the procedure until there is
only one component of Fr N ﬂ D; left. The remaining component (say 7;) separates Fr N
as D; separates N.

So there are exactly r + 1 components of Fr N\ (7 U---Un,). Let us denote their
closures by K7, ..., K,41. For every i the compact surface K is either nonplanar having at
least one boundary component or planar having &+ 1 boundary components. The surface
K; cannot be a disk with less than & holes as otherwise one can attach onto it appropriate
annuli in D; bound by 7; and Fr B N D; to obtain a planar surface in B \ X having at
most &k boundary components (and all of them are contained in (D; U ---U D,) N Fr B).

Finally we construct a graph I' related to the components of Fr N \ (my U -+ U 7,).
The nodes of " shall be {Kj, ..., K;41}. The nodes K; and K are connected in T' if and
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only if K; N K; # 0. The graph T is a tree as each of 1, ..., 7, separates Fr N. The tree
I' has at least G(r k) nodes of degree at most k so there are at least G(r k) nonplanar
components in {Kj,..., K,41}. Hence g(Fr N) > G(r, k). |
REMARK. It is easier to check the last condition in the statement of the theorem when &
is small but we get the most out of this criterion for k£ = r as we have G(r,r) = r + 1.

Theorem 4 For every number r € NU{0, 00} there ezist o Cantor set X C E® such that
g(X)=r.

PROOF. For the sake of simplicity we replace E3 by S3. We know that every tame Cantor
set has genus 0 and for example the Antoinone necklace has genus 1. Therefore we may
assume 2 < r < 0.

Fix arbitrary point zo € S3. We will construct a defining sequence (34;) for the Cantor
set X. Let M, be a cube with r handles containing z in its interior. The manifold M,
shall have 57 + 1 components. One of them (denoted by MY) is a cube with r handles
containing zo in its interior. We link each handle of M2 by a chain of five tori and
this chain is spread along the core of some of the handles in M;. Now we construct the
manifold Ms. The components of M3 which lie in toroidal components of M, for a chain
of linked tori (use the Antoine construction) and there are 57+ 1 components of M; in M}
‘embedded in the-same way as M, is embedded in M;. Repeat the procedure inductively.

(See figure ?? for details. There are only two “legs” of X drawn in the figure, the
remaining r — 2 ones are supposed to be in the dotted part in the middle.)

Figure 1: Defining sequence for a Cantor set of genus r, r > 2

By construction it is clear that g(X) < r. Using the r — 1 disks Dy, ..., D,_; and the
~criterion 77 we will prove that g,,(X) > r. '

We have to prove that there does not exist a planar surface F C Int B\ X which has
r boundary components 7, ..., 7, such that ;,-C D; and +; is parallel to Fr D; in D;.
Assume to the contrary: let such F' exist.

Simple. connected curves -y; bounds disks E; C Int D; and z, € Int E; for every i. By
attaching disks E; to the surface F' we obtain a singular sphere . As there are 7 + 1
“legs” of Cantor set joining in zo but only r “peaks® in T there exist a point a € X close
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to zo such that lkgz,(¥,a) = 1 (i.e. singular sphere & winds around a). Let A be the
“leg” of X which contains a. Therefore A is a Cantor set obviously homeomorphic to the
Antoine necklace. The singular sphere ¥ can be modified near z, so that it lies in S\ A.
(One has just to space out the peaks of & near zg.) Let f: 5% — ¥ be a continuos map

representing 3. Let
hima(S3\ A) — Hy(S3\ A; Z)

be a Hurewicz homomorphism and
m: Hy(S®\ A;Z) — Hy(S3\ A; Zy)

be a map induced by homomorphism mod 2: Z — Z,. Kernel of a map h is a subgroup of
m2(S®\ A) which we denote be N. If [f] € N then also mh([f]) = 0 € Hy(S®\ 4;Zs) but
this contradicts lkz,(¥,a) = 1. Hence [f] ¢ N. Using the sphere theorem we replace f
by a nonsingular sphere g: $* — 5%\ X. As [g] # 0 € m3(S® \ X) the sphere g(5?) winds
around at least one point of A, but not around all of them. Therefore some two points
of A can be separated by sphere in 5%\ A. But it is well known that this is impossible.
Hence by theorem ?? we have g,,(X) > r and therefore g(X) = r.

Finally we prove the case r = co. Let X, be a Cantor set of genus r € N. One can
take a disjoint union of X,’s converging to the point (say o). Therefore X =[] X, is
a Cantor set and g, (X) = co = g(X). [ |
REMARK. The Cantor set in the previous theorem does not have simply connected
complement (except for 7 = 0). It is interesting to note that using the same construction
one can exhibit a Cantor of arbitrary genus with simply connected complement. We just
have to replace the building block: instead of Antoine necklace we use Bing-Whitehead
Cantor set as its complement is simply connected (see [?] for details). The proof itself
is almost the same: for the final contradiction we refer to [?, Paragraph 5] as Bing-
Whitehead Cantor set can be separated by spheres but not with arbitrarily small ones.

Let X C E? be a Cantor set. From ?? we see that 92(X) < g(X) for every point
z € X. The author believes that the following conjecture may not be true in general:

Conjecture 1 For every Cantor set X there ezist a point z € X such that 9:(X) = g(X).
The conjecture may be restated as

Conjecture 2 Let g,(X) < r for every point z of a Cantor set X. Then g(X) < r.

For r = 0, however, this is true [?]. We will prove this conjecture for 7 = 1 under
some additional technical hypothesis. '

5 Local genus vs. global génus

Let X C E? be a Cantor set. We say that the Cantor set X is splittable if there exist a
2-sphere S in the complement of X which separates some two points of X. For a splittable
Cantor set we may define u(X) = inf{diam(S); S € S} where S is a set of separating
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2-spheres for X. If a Cantor set X is not splittable we set x(X) = co. The number u(X)
is called the lower bound of splitability.

The number p(X) certainly depends on embedding X < E2. One can prove that for
equivalently embedded (see [?] for definition) Cantor sets X and X’ we have

1

M(X) =0 if and only if ,u(X ) =0,
w(X)>0 ifandonlyif wu(X')>0,
p(X) =00 ifandonlyif u(X')=co.

fI

Obviously u(X) = 0 for a tame Cantor set X. One can easily construct a wild Cantor set
X such that u(X) = 0. As the Antoine necklace A is not splittable we have u(A) = co.
Finally there exist a wild cantor set with positive lower bound of splitability (see [?,
page. 361] for more details). :

Lemma 5 Let u(X) >0 for a given Cantor set X C E2. Let M and N be two solid tori
in B3 such that Fr M M Fr N, X C MUN \ (Fr M UFr N) and diam(M U N) < u(X).
Then for every n > 0 there exist (at most) two disjoint solid tori whose interiors cover X .
and each of them lies entirely in {z € E3; dist(z, M) < n} or {z € E?; dist(z, N) < n}.

Lemma 6 Let w(X) > 0 for a given Cantor set X C E2. Then for every solid torus
T C E? and every 8-disk B C E?, such that X C IntT\ B, B ¢ T, Fr B h Fr T and
diam(T' U B) < u(X), there ezists a solid torus T' C T \ B which contains X in its
interior. ‘

Now we can state the main theorem for Cantor sets having local genus equal to 1.

Theorem 7 Let pu(X) > 0 for a given Cantor set X C E3. If g.(X) =1 for every point
z € X then g(X) = 1.

PROOF. Denote p(X) simply by x and fix e > 0. We will ﬁnd a finite collection of disjoint
small tori whose interiors cover X.

Using the assumption that g,(X) = 1 for every point z of a compact set X there exist a
~ finite collection 7 = {T }i2, of tori such that diam(T;) < min{e, < 2} and FrT,NX =0
for every ¢ = 1, 2 ,m. We may also assume that boundaries of these tori intersect

transversally. .
We assign the number ¢(7) = 3, ., ;< Cij to the cover 7 where

o= 0, 1fFrTr“]FrT—®,
%711, otherwise.

- If ¢;; = 0 for every i and j the torl are d15301nt and 7 is the collection we are lookmg for.
Otherwise we define

Cp= miﬁ{ﬁ, min{dist(7;, 73); T: N T; = 0} }

and pick the least pair of indexes (z,7), ¢ < j, such that ¢;; = 1. Using the lemma 77
for the pair of tori M := T; and N := T; with control 7 we replace the tori T} in 7} with
disjoint 7} in T} to obtain a new cover 7’. The number n was chosen appropriately to
assure that for every k& # 4,j we have: T/ N Ty, = Qif TiNTy = @ and T; N T = 0 if
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T; N Ty = @. Therefore ¢(7") < ¢(7) and we repeat the procedure with new cover 7.
The diameters of tori T} in 77 has increased at most by 2(m—51)' The procedure must stop

after at most -m(—m—) steps so the diameters of components increase at most to 2¢ as every
torus is involved in the procedure at most m — 1 times. n
As a trivial consequence of the preceding theorem we obtain

Corollary 8 Let X C E? be a nonsphttable Cantor set. If 9z(X) = 1 for every point
z € X then g(X) = 1.

We say that the Cantor set X is locally nonsplittable, if for every point z € X there exists
a neighbourhood U C E? of z such that X N U is a nonsplittable Cantor set. Therefore

Corollary 9 Every locally nonsplittable and locally toroidal Cantor set is toroidal.

6 Genus of an union of Cantor sets
If the Cantor sets X and Y are disjoint we have g(X UY) = max{g(X), g(Y)}. A tame
Cantor set behaves nicely with respect to the genus as we have

Theorem 10 Let X C E® be a tame Cantor set. Then g(XUY) = g(Y) for every Cantor
set Y C 3.

Theorem 11 Let X,Y C E? be Cantor sets. If XNY C T(X)NT(Y), then g(XUY) =
max{g(X),g(Y)}. |

Theorem 12 Let X,Y C E3 be nondisjoint Cantor sets and a € X NY such poz’ht that
there ezist a 3-disk B and a 2-disk D C B such that

1.aentB, FrD=DNFrB, Dﬂ(XUY) = {a} and

2. we have X N B C Bx U {a} and Y N B C By U {a} where Bx and By are the
components of B\ D.

Then go(X UY) = go(X) + ga(Y).

REMARK. Using the preceding theorem one can alternatively prove the existence of the
Cantor set of given genus.

Summarizing the above theorems one may conjecture:

Conjecture 3 For arbitrary Cantor sets X,Y C E® we have
max{g(X),g(Y)} < g(X UY) < g(X) + g(Y). | (1)

Using (?7) we easily prove the left inequality above. But the right inequality above is not
true in general. We will briefly explain the defining sequences for such Cantor sets.

Let X and Y be a self-similar Cantor sets be given by defining sequences (M;) in
(V;) which are symmetric with respect to E2 x {0} C E? (see figure ?7). The plane
E? x {0} C E? contains equators of all 3-disks.

We have X NY C E? x {0} hence the (Cantor) set X NY is tame. Obviously
g(X) = g(Y) = 1 and one can prove that g,(X UY) =3 for every a € X NY. '

Hence the new conjecture is

68



Figure 2: Example of g(X UY) = g(X) +g(Y) +1

Conjecture 4 If the intersection of Cantor sets X C E? and Y C E2 is a tame (. C’antor)

set, we have
g(XUY)<g(X)+g(Y)+1.

The author believes that in general genus of the union of Cantor is not related to g(X) +
g(Y"), more precisely

Conjecture 5 For every r € N there ezist Cantor sets X and Y, such that

gXUY) 2 g(X)+g(Y)+r
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Problem Session

Matjaz Zelko:

For all known rigid Cantor Sets X C E3, we have 7r1(E3 \ X) # 0. Does
there exist a rigid Cantor Set in E? with 51mp1y connected complement?
Note: A subset A of E™ is rigid if and only if for any homeomorphism
f:E™ — E", with f(A) = A, we have f|s = id,.

David Wright: '
Find a manifold M (closed, orientable, dimension n) so that each homeo-

morphism is isotopic to the identity.

Tadek Dobrowolski:

Find necessary and sufficient condltlons on closed subsets A, B C #3 such
that £ \ A is homeomorphic to 45 \ B.

Define A and B to have the same homotopy type mod Z, if for some closed
sets A’ in A and B’ in B, where A\ A’ and B\ B’ are Z, sets in £3, A’ and .
B’ have the same homotopy type. :
Are 5\ A and 45 \ B homeomorphic if (and only if) A and B have the same
homotopy type mod Z,7

Tom Thickstun:

Conjecture: (Brin-Thickstun) If a noncompact 3-manifold contains a sin-
gular, proper essential annulus, then it contains an embedded one.
Definition: A singular proper essential annulus in U is a proper map
K St % [0,1) — U such that f(S* x {0}) is not null homotoplc

Craig Gullbault

 Does there exist a homology sphere Y™ (n # 3) that admits a map f :
S™ — X" such that the degree of f is not 07 Equivalently, does there exist
a homology sphere X" (n # 3) such that the universal cover X" is a rational
homology sphere?

Notes: ;

(1) In dimension 3, the covering projection p : S® — P3 where P3 is the
Poincare homology sphere has degree 120. v

(2) By an Euler characteristic argument, examples cannot exist for n even.

- (More problems on next page)
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Ric Ancel:
Introduction: The paper "Boundaries of Nonpositively Curved Groups of
- the Form G x Z™ " by Philip Bowers and Kim Ruane (Glasgow Math J. 38
(1996), 177-189) presents two distinct geometric group actions of the group
F, x Z (where F; is the free group of rank 2) on the CAT(0) space T' x R
(where T' is the Cayley graph of F, = an infinite 4-valent tree). One of the
actions, -, is the product of the natural action of F3 on T with the natural
action of Z on R. The other action, *, is determined as follows. Let a and b
be the generators of F3, and let 1 be the generator of Z. For (¢,7) € T x R:

ax(t,r)=a-(t,r) = (at,r)
bx(t,r) = (bt,r+2) |
1% (t,7) —;1-(t,r)= (t,r+1)

The visual boundary, (T x R) of T x R is a suspension of a Cantor set.
The actions - and * naturally extend to actions on 9(T x R). Bowers and
Ruane show there is no equivariant homeomorphism from (8(T x R),-) to
(O(T x R),*). However, it is not difficult to find an action o of F} x Z on
O(T x R) and equivariant cell like maps (8(T x R),0) — (8(T x R),-). and
(0(T'x R),0) — (8(T x R),*). In other words, (8(T'x R),-) and (8(T x R), *)
are equivariantly cell like equivalent. But it is not clear whether the action o
of F3 x Z on (T x R) extends to a geometric action of Fy x Z on a CAT(0) -
space. S
Question: Is there a geometric action # of Fy x Z on a CAT(0) space
X and equivariant cell like maps (0X,#) — (9(T x R),-) and (08X, #) —
(O(T'x R), *)? In other words, are (8(T'x R), -) and (8(T'x R), *) equivariantly
cell like equivalent through the boundary restriction of a geometric action of
F3 x Z on a CAT(0) space? '
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