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The Topology of Symplectic Manifolds

Robert E. Gompf

1. Introduction

The purpose of this article is twofold: First, we provide an informal introduction to
symplectic structures from a topological viewpoint. Second, we address the question of
whether symplectic manifolds can ultimately be described as purely topological objects.
We sketch work that will appear in {G2], pointing towards an affirmative answer to the
question. The first section of the present article motivates and defines symplectic struc-
tures, and then discusses obstructions to their existence. In Section 2, we focus on a
particular topological construction of symplectic structures, and in Section 3 we see that
the construction is likely to be universal in the sense of realizing a dense subset of all
symplectic structures on any given manifold. This would lead to a complete topological
characterization of those manifolds that admit symplectic structures, and to a reinterpre-
tation of a dense set of symplectic structures on a given manifold as a certain set that
should ultimately be describable by purely topological means. Further details will appear
in [G2]; see also [GS] for a discussion of the 4-dimensional case. For additional reading
on symplectic topology, see e.g., [McS]. In this article, manifolds will always be assumed
to be smooth, closed and oriented.

1.1. Why study symplectic manifolds?

While symplectic structures naturally arise in diverse contexts such as Hamiltonian me-
chanics and algebraic geometry, we focus on a topological application: the classification
problem for simply connected 4-manifolds. The most direct approach to a classification
problem is to begin by writing down examples. The main classical source of examples
of simply connected 4-manifolds was complex surfaces (complex manifolds of complex
dimension 2, hence real dimension 4). These can be constructed, for example, by writing
down collections of homogeneous polynomials in n 4+ 1 complex variables. The common
zero locus then specifies a well-defined subset of projective space CP™ = C**! — {0} mod-
ulo multiplication by nonzero complex scalars. If this subset happens to be a manifold,
it will automatically be complex. Complex surfaces arising in this manner are called
algebraic surfaces. Many examples of simply connected algebraic surfaces are known —
for example, any generic collection of n — 2 homogeneous polynomials will determine a
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simply connected algebraic surface in CP™ (as will some nongeneric collections of more
than n — 2 polynomials). ‘

Once we have examples of simply connected 4-manifolds, we can construct many more
by the connected sum operation: We remove the interior of a 4-ball from each of the
4-manifolds X; and X3, and glue along the resulting boundary 3-spheres so that the new
manifold X; # X inherits the same orientation from each summand. This can be thought
of as an unnecessary complication, however. We would like to restrict attention to those
4-manifolds that cannot be split as connected sums. Unfortunately, it is still unknown
whether every 4-manifold homeomorphic to the 4-sphere is actually diffeomorphic to it,
and it is even possible that every 4-manifold could split off arbitrarily many nontrivial
summands homeomorphic to S4. Thus, we define a 4-manifold X to be irreducible if for
every (smooth) decomposition X ~ X; # X5, one summand X; must be homeomorphic
(but not necessarily diffeomorphic) to 5.

We can now begin a brief history of the classification problem for simply connected,
irreducible 4-manifolds. In the 1970’s, virtually nothing was known. While there were
many examples of simply connected complex surfaces, these could in general not be dis-
tinguished from each other (up to diffeomorphism) or shown to be irreducible. In fact,
it was possible that a complete list of irreducible, simply connected 4-manifolds could
be given by S, +CP? (the complex projective plane with both orientations), S2 x 2
(= CP' xCP') and +K3 (where K3 denotes the zero locus of a generic quartic polynomial
in CIP’B). Furthermore, it was unknown whether K3 could split as X # 52 x S? for some
unknown manifold X. In the 1980’s, the situation began to change dramatically, due to
techniques pioneered by Donaldson using gauge theory. While it now seems likely (in
light of Freedman’s breakthrough for topological 4-manifolds) that any simply connected
(smooth) 4-manifold is homeomorphic to a connected sum of manifolds from the above
list, the diffeomorphism classification is much more complicated. Our present knowledge
about simply connected complex surfaces can be summed up as follows:

e There are many diffeomorphism types (sometimes infinitely many within a homeo-
morphism type).
¢ They are irreducible (when minimal).

Minimality is a technical condition that causes no essential difficulties here — any complex
surface X can be “blown down” to a minimal complex surface Y, and then X is diffeo-
morphic to a connected sum of ¥ with copies of —CP?. The K 3-surface, for example, is
minimal and hence irreducible.

This breakthrough in understanding complex surfaces highlighted our ignorance re-
garding a related question: Are all simply connected, irreducible 4-manifolds (# S*)
complex? By the end of the 1980’s, no counterexamples were known. An affirmative
answer would have reduced the classification problem to that of understanding complex
surfaces, much as the study of oriented surfaces can be reduced to that of complex curves
(Riemann surfaces). In 1990, the question was answered in the negative: Infinitely many
irreducible 4-manifolds homeomorphic to the K 3-surface were produced, and shown not
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to admit complex structures with either orientation [GM]. Subsequently, many other fam-
ilies of counterexamples have been constructed. (See [GS] for a recent survey.) However,
the underlying beauty of the question suggested looking for a generalization. It had long
been known that every simply connected complex surface is algebraic (after deformation
of the complex structure). But every algebraic manifold inherits a Kdhler structure, i.e.,
a symplectic structure compatible with its complex structure. (See 1.2-3 for definitions.)
Thus, we could generalize to the following question: Are all simply connected, irreducible
4-manifolds (# S*) symplectic? Work in the early 1990’s showed this to be a reasonable
question. In fact:

e There are many diffeomorphism types of symplectic, noncomplex 4-manifolds [G1].
For example, the exotic K 3-surfaces of [GM] are symplectic. Dropping the simple
connectivity hypothesis, we find that every finitely presented group is realized as
the fundamental group of a symplectic 4-manifold, whereas fundamental groups of
Kihler manifolds and complex surfaces are quite restricted.

e Minimal, simply connected, symplectic 4-manifolds are irreducible (Kotschick [K],
after Taubes [T]), at least when b5 # 1.

(The discussion of symplectic minimality is parallel to that of the holomorphic version
discussed above. For b, see 1.3.) At present, there are only a few known methods for
constructing simply connected, irreducible, noncomplex 4-manifolds. These are highly
restricted cut-and-paste constructions. (More general cut-and-paste constructions seem to
invariably result in connected sums of simple manifolds.) These restricted operations can
be shown to preserve symplectic structures under reasonable hypotheses [G1], [S]. Could it
be that the only way to build an irreducible manifold is by equipping it with a symplectic
structure? In fact, the answer is no: In 1996, Szabd [Sz] produced simply connected,
irreducible 4-manifolds admitting no symplectic structures, by applying these operations
under more general hypotheses. Subsequently, Fintushel and Stern [FS] generalized the
method to produce an abundance of such examples. At present, there seems to be no
reasonable question of this sort to ask to shed light on the structure of arbitrary simply
connected, irreducible 4-manifolds.

In summary, we are left with the following classes of simply connected irreducible
4-manifolds (up to diffeomorphism):

0 C {complex} C {symplectic} C {arbitrary} .

We have seen that each class contains many elements not in the previous one — in fact,
there seems to be a sense in which “most” elements of a given class lie outside the previous
one. At present, there seems to be little hope of classifying arbitrary simply connected,
irreducible 4-manifolds, so we might hope to simplify the problem by restricting to one
of the other classes. Complex surfaces, on the other hand, are difficult for a topologist to
study. There is little hope of cutting and pasting, due to the rigid nature of holomorphic
functions, so one must resort to methods of algebraic geometry. Symplectic manifolds,
however, are accessible by topological methods. The main constructions of symplectic,
noncomplex manifolds are of a cut-and-paste nature (e.g., [G1], [S]). In Sections 2 and 3
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we will discuss a different topological construction, motivated by fiber bundles, that (at
least in dimension 4) provides a complete topological characterization of those manifolds
admitting symplectic structures. Thus, one can consider the diffeomorphism classifi-
cation of simply connected, irreducible, symplectic 4-manifolds as a purely topological
problem that may be more accessible than the original classification problem for smooth
4-manifolds.

1.2. Symplectic structures

Definition 1.1. A symplectic manifold is a 2n-manifold X together with a symplectic
form w on X, i.e., a differential 2-form that is closed (dw = 0) and nondegenerate.

Here, nondegeneracy has its usual meaning in the context of bilinear forms: For any
nonzero v € Ty X there is a vector w € T, X such that w(v,w) # 0. An equivalent
condition is that the top exterior power w™ of w should be nowhere zero, i.e., a volume
form on X. (This indicates why X must have even dimension.) The volume form w”
determines an orientation on X; we will always use this orientation when considering X
as an oriented manifold. For example, we will see that CP? admits a symplectic structure
while —CP? does not. ,

It is instructive to compare the above definition with Riemannian geometry. If w
were symmetric rather than skew-symmetric, nondegeneracy would imply that w was a
Riemannian or Lorentzian metric. The condition that dw = 0 can be compared with
requiring a Riemannian metric to have constant curvature. In each case, the relevant
partial differential equation guarantees the absence of local structure — two Riemannian
n-manifolds with the same constant curvature are locally identical (i.e., any two points
have isometric neighborhoods), and the same holds for symplectic 2n-manifolds (any
two points have symplectomorphic neighborhoods). Thus, symplectic structures can be
thought of as skew-symmetric analogs of constant curvature metrics. In the Riemannian
case, constant curvature allows a classification theory, which reduces to a study of dis-
crete groups of isometries of Euclidean, hyperbolic or spherical space. One might hope
to similarly reduce the study of symplectic manifolds to a topological or combinatorial
problem. One cannot hope to generalize the Riemannian theory directly, since there is no
symplectic analog of geodesics, and since the classification problem is already difficult for
simply connected symplectic manifolds. We will use a different approach to this problem

in Section 3.

1.3. Obstructions to constructing symplectic structures

The study of which manifolds admit symplectic structures has two directions: existence
and nonexistence. We now discuss the three known sources of obstructions to existence,
and defer the discussion of constructing symplectic manifolds to the next section.

To obtain the first obstruction, note that since a symplectic.form is closed, it determines
a cohomology class [w] € H3p(X) = H?(X;R). Nondegeneracy implies that the top
exterior power [w]” = [w™] € H2%(X) = R (for X connected) is positive relative to the
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‘given orientation on X. Thus, a symplectic structure cannot exist unless there is a class
a € H%(X;R) with a™ > 0.

Examples. S?" admits no symplectic structure for n > 1, since H?(S**;R) = 0. S? x
527=2 admits no symplectic structure for n > 2, for although H?(S? x S?""%,R) = R,
the generator o has a A @ = 0. Similarly, —CP? admits no symplectic structure since the
generator of H2(—CP?; R) = R has negative square.

For the second source of obstructions, we forget the closure condition on w, and consider
arbitrary nondegenerate 2-forms on X. Such a 2-form reduces the structure group of the
tangent bundle TX from GL(2n,R) to the subgroup Sp(2n) consisting of isomorphisms
of R®" preserving the standard symplectic form dz; A dy; + -+ + dzn A dyn. (This
corresponds to the reduction to O(n) C GL(n;R) in the Riemannian case.) The group
Sp(2n) is noncompact, but it deformation retracts onto its maximal compact subgroup
U(n) € GL(n;C) (where we identify R?™ with C* in the obvious way). Since the latter
inclusion is also a homotopy equivalence, the homotopy classification of nondegenerate
2-forms on X is equivalent to the homotopy classification of almost-complez structures,
i.e., complex vector bundle structures on T'X. This is a classical problem in obstruction
theory. For example, a homotopy class of nondegenerate 2-forms inherits Chern classes
from the corresponding homotopy class of almost-complex structures.

Examples. CP? # CP? admits no symplectic structure, even though it has classes a €
H?(CP? # CP? R) with a A a > 0, because it admits no almost-complex structure. In
fact, standard characteristic class theory shows that such a structure would have a Chern
class with ¢? = 2x + 30 = 14 (where x is the Euler characteristic and o is the signature
of the wedge product pairing on H?), but a routine computation shows that no integral
cohomology class has square 14. More generally, a 4-manifold X cannot admit an almost-
complex structure unless the invariant 1(x + 0) = 1 — b1 (X) + b (X) is even, where b
is the dimension of a maximal positive definite subspace of H? under the wedge product.
In contrast, S° x S! admits a complex structure as C*> — {0} modulo multiplication by
2, and this automatically determines an almost-complex structure on S® x S!. Thus,
this manifold admits nondegenerate 2-forms. Such forms cannot be closed, however, since

H?(S% x S4;R) = 0.

We will find it useful to link symplectic structures more explicitly with almost-complex
structures. First note that the latter structures can be specified by choosing the effect
of multiplication by i on each tangent space. Thus, an almost-complex structure can
be thought of as a linear bundle isomorphism J : 77X — TX (covering idx) such that
J? = —idpx. It is routine to verify that such an isomorphism actually does specify a
complex structure; we require the induced orientation to agree with the given one on TX.

Definition 1.2. A 2-form w tames an almost-complex structure J if for any nonzero
tangent vector v we have w(v, JJv) > 0. If, in addition, w(Jv, Jw) = w(v,w) for any two
tangent vectors v, w lying in the same tangent space, we say that w and J are compatible.
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" Thus, w tames J if it is a positive area form on each complex line (in the complex orien-
tation). The compatibility condition, that J preserves w (i.e., J € Sp(T X)), corresponds
to orthogonality of J in the Riemannian case. A compatible pair (w,.J) determines a
Hermitian structure on T'X via the metric g(v,w) = w(v, Jw). For a fixed nondegenerate
form on X, the spaces of tamed and compatible almost-complex structures are nonempty
and contractible (e.g., [McS]), so either condition exhibits the above correspondence of
homotopy classes. In the remaining sections, we will make extensive use of the following

Observations. (1) If a 2-form tames some almost-complex structure, it is obviously non-
degenerate. Hence, a closed, taming form is automatically symplectic.

(2) If wy,... ,w, tame a fixed J, then any convex combination Zle tiw; (all t; > 0,
> t; = 1) will also tame J.

(3) The taming condition is open, i.e., preserved under sufficiently small perturbations
of w and J.

To verify the last observation, note that the taming condition w(v,Jv) > 0 is satisfied
provided that it holds for vectors v in the unit sphere bundle & C T'X (given by any
preassigned metric). Since ¥ is compact, taming implies that w(v, Jv) is bounded below
by a positive constant on X, so it will remain positive under small perturbations of w
and J. Note that compatibility is not an open condition. For this reason, we will mainly
use the taming condition in subsequent sections, although compatibility appears more
commonly in the literature.

Examples. While every symplectic manifold (X,w) has a compatible almost-complex
structure J, this latter structure may not come from a complex structure on X. (For J
to be a complex structure on X, it must be locally identical to C*, which is equivalent to
requiring J to satisfy a certain partial differential equation.) If J actually is a complex
structure on X, the triple (X, J,w) is called a Kdhler manifold. A standard example
of this is CP", which inherits both J and w in simple ways from C**1. (Restrict the
standard w = 3", dz; Ady; from C"? to S2"*1, then note that its projection to CP" is
well-defined by U(1)-invariance and the fact that all tangent vectors projecting to 0 pair
trivially with 7.5?"+1.) Since a complex submanifold of a Kihler manifold is Kéhler, it
follows immediately that any algebraic manifold is Kahler. (More generally, if w tames J
and Y C X is J-holomorphic, i:e., each Tyl’; C T,X is a J-complex subspace, then w|}”
tames J|Y".)

The third and final known source of obstructions to the existence of symplectic struc-
tures is the Seiberg-Witten invariants (from gauge theory) on 4-manifolds [T] (cf. also
[GS], [K]). An important example is that minimal, simply connected symplectic 4-
manifolds with b # 1 must be irreducible. Similarly, if an arbitrary symplectic 4-manifold
has a connected sum splitting, the wedge product pairing on H? must be negative definite
for all but one summand. The Seiberg-Witten invariants are much more subtle than the
previously discussed invariants, and will not be needed in the subsequent sections.
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Example. CP? # CP? # CP? has no symplectic structure, since the pairing on H 2(CP?)
is not negative definite. However, it clearly has a cohomology class o with a Aa > 0,
and can be shown to admit an almost-complex structure. Similarly, a connected sum of
3 copies of CP? with 19 copies of —CP? does not admit a symplectic structure, but it is
actually homeomorphic (although clearly not diffeomorphic) to a Ké&hler manifold. The
homeomorphism is covered by an isomorphism of tangent bundles. This shows that the
obstructions from Seiberg-Witten theory are more subtle than the homotopy-theoretic
ones discussed previously.

2. Constructing symplectic structures

We turn to the construction of symplectic manifolds. Historically, the first examples
of (compact) symplectic manifolds were the K&hler manifolds, obtained largely by al-
gebrogeometric methods. We will consider in detail the first construction of symplectic
manifolds admitting no K&hler structure. (For other topological constructions, see e.g.,
[G1], [Mc], [S].) We will then generalize the construction into a form suitable for the
applications in Section 3.

2.1. Symplectic forms on bundles

The original construction of symplectic, nonK&hler manifolds, due to Thurston [Th]
(see also [McS]), consists of finding a symplectic form on the total space of a fiber bundle.
The basic method is quite simple, and reminiscent of techniques previously introduced
into complex analysis by Grauert. We state the simplest version of Thurston’s theorem,
in which the fibers are 2-dimensional.

Theorem 2.1. [Th] Let f : X*" — Y272 be a bundle map, with X connected, Y sym-
plectic and [f~1(y)] # 0 € Hy(X;R). Then X admits a symplectic structure.

Recall that all manifolds are assumed to be compact and oriented. Thus, the fibers f~!(y)
are all closed, oriented surfaces and homologous, so the homological condition makes sense
and is independent of y. To see that this condition is necessary, consider the bundle map
f: 8% x 8 — 52 obtained by projecting to S* and applying the Hopf fibration. The
theorem generalizes to bundles with higher dimensional fibers. In that case one also needs
the fibers to be symplectic and the transition functions to be symplectomorphisms. These
additional conditions are automatically satisfied when the fibers have dimension 2, since
a symplectic form on a surface is the same as an area form.

Example. It is easy to construct a torus bundle over the torus whose total space X
has b;(X) = 3. For example, begin with a torus bundle over S! whose monodromy is a
Dehn twist, then cross with S*. This example clearly has a section, so [f~!(y)] # 0, and
Theorem 2.1 provides a symplectic structure on X. However, it is a basic fact that the
odd-degree Betti numbers of a Kahler manifold must be even, so X is not even homotopy
equivalent to a Kdhler manifold. This example from Thurston’s paper was also known to
Kodaira. It can also be seen as the quotient of (R*, dz; A dy; + dza A dys) by the discrete

-~
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group of symplectomorphisms generated by unit translations along the z1,y; and z» axes
and the map (z1,y1,%2,¥2) = (21 + 1,91, 22,92 + 1).

2.2. Symplectic forms induced by J-holomorphic maps

Although Theorem 2.1 has a simple direct proof, we will proceed by the alternate
method of generalizing the theorem and supplying a proof of the generalization that is
not significantly harder than the original proof. To motivate the generalization, first recall
that the symplectic manifold ¥ in Theorem 2.1 automatically has a compatible almost-
complex structure Jy. We can easily construct an almost-complex structure J on X for
which f is J-holomorphic, i.e., df o J = Jy odf. (That is, each df, : T X — T(o)Y is
complex linear.) For example, choose a metric on X and let H C T'X be the subbundle
of orthogonal complements to the fibers of f. Clearly, df|H : H — TV is an isomorphism
on each fiber; let J|H be the pullback of Jy. Define J on the tangent spaces to the fibers
of f to be § counterclockwise rotation (using the metric and preimage orientation and
the fact that these spaces are 2-dimensional). J is now uniquely determined on T'X by
linearity, and f is J-holomorphic by construction. Thus, the hypotheses of Theorem 2.1
are hiding almost-complex structures on X and Y making f J-holomorphic. Once we
observe this, we find that the bundle structure is completely unnecessary! We obtain the

following theorem:

Theorem 2.2. Let f : X — Y be a J-holomorphic map of almost-complex manifolds.
Let wy be a symplectic form on'Y taming Jy. Fiz a class ¢ € Hip(X). Suppose that
for each y € Y, f~'(y) has a neighborhood W, with a closed 2-form 7, such that [n,] =
c|W, € H2,(Wy), and such that n, tames J|kerdf, for each x € W,. Then X admits a
symplectic structure. :

Note that ker df; is a J-complex subspace of 7, X (since f is J-holomorphic); the taming
condition means 7y (v, Jv) > 0 for each nonzero v € ker df;.

To motivate the remaining hypotheses of Theorem 2.2, we show that it implies Theo-
rem 2.1. This is essentially the first part of Thurston’s proof. We leave it as an exercise
to state and deduce the analog of Theorem 2.1 for bundles with higher dimensional fibers.

Proof of Theorem 2.1. We assume the hypotheses of Theorem 2.1 and deduce those of
Theorem 2.2; the conclusion follows. We have already obtained the first two sentences
of Theorem 2.2. We may assume the fibers f~!(y) are connected, by passing to a finite
cover of V if necessary. Let ¢ be any class for which (c, f7(y)) = 1; such classes exist
since [f~!(y)] # 0 in H2(X;R) and H35(X) is dual to this space. For each y € Y,
let Dy be an open disk containing y and let W, = f~(D,) =~ D, x f~!(y). Choose
an area form on f~!(y) with area 1 (and inducing the preimage orientation on f~!(y)),
and let 7, be the pullback of this form to W, via the projection W, — f~!(y). Since
H,(W,) is generated by [f~!(y)], the equalities (n,, f~1(y)) = 1 = (¢, f~!(y)) show that
[ny] = c|W, € H35(W,). Since f is a bundle map, kerdf, is the tangent plane to the
fiber at z, so the required taming condition is just the obvious statement that 7, tames
J when restricted to each fiber of f in W,. 4 O
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Proof of Theorem 2.2. The proof follows Thurston’s paper, except for two deviations
where we exploit the almost-complex structures. The first step is to splice together the
locally defined forms 7, into a global closed form n on X satisfying the corresponding
hypotheses that [] = ¢ and 7 tames J|kerdf, for all z € X. Unfortunately, splicing the
forms in the obvious way by a partition of unity destroys the closure condition, so we
use a trick: Fix a representative ¢ of the deRham class ¢ = [(]. Now for each y € ¥ we
have 1, = ¢ + day on Wy, for some 1-form a, on Wy (since [r,] = ¢[W,). We splice
the forms 7, by splicing the 1-forms a, as follows. Let {p;} be a partition of unity on
Y, subordinate to a sufficiently fine cover. Pull back by f to obtain the correspond-
ing partition of unity {p; o f} on X, and let n = ( +d ,(pi o f)ay,, where the sum
splices the forms a, in the usual way via {p; o f}. Clearly, n is a closed 2-form on X
with [n] = ¢. To verify the taming condition, we carry out the differentiation to obtain
n={_+> ,(piof)day, +;(dpiodf) Aay,. The last term clearly vanishes when applied to
a pair of vectors in ker df;, so on ker df, we have n = (+ ) . (pio f)day, = >, (pio f)ny,-
This is a convex combination of forms taming J|ker df,, so it tames as required (by Ob-
servation 2 of 1.3). Note how the almost-complex structures guide the construction here
— an arbitrary convex combination of symplectic forms need not be symplectic, e.g., any
symplectic form w satisfies —w +w = 0, but w are both symplectic for the same oriented
manifold if the dimension is divisible by 4.

As in Thurston’s proof, we now wish to show that the closed form w; =t + f*wy on
X is symplectic for sufficiently small ¢ > 0. By Observation 1 of 1.3, it suffices to show
that w; tames J for small £ > 0, so we only need to verify that w;(v, Jv) > 0 on the unit
tangent bundle ¥ C TX. But

we(v, Jv) = tn(v, Jv) + wy(df (v), df (Jv))
tﬂ(v, JU) + Ldy(df(’l)), Jydf(?))) )

where the last line uses J-holomorphicity of df (df o J = Jy o df). Since wy tames Jy,
the last term is > 0, with equality if and only if v € kerdf. On the other hand, n tames
J on kerdf, so by openness of the taming condition (Observation 3 of 1.3), n(v, Jv) > 0
for v in some neighborhood U of the subset ¥ Nkerdf in X. Thus, w:(v, Jv) > 0 for all
t >0 when v € U. But £ — U is compact, so on ¥ — U, n(v, Jv) is bounded and the last
displayed term is bounded below by a positive constant (since it is positive away from

kerdf). It is now clear that for sufficiently small ¢ > 0, w;(v, Jv) > 0 for all v € X, as
O

required.

3. Characterizing symplectic manifolds

Fiber bundles form an interesting but relatively small class of manifolds. We wish to
find more general structures to which Theorem 2.2 can be applied. We ultimately define
structures with sufficient generality that they can probably be found in any symplectic
manifold, providing our desired topological characterization of manifolds admitting sym-
plectic forms. Such a structure determines an essentially unique symplectic form, and
one should be able to realize a dense subset of all symplectic forms in this manner. This
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could lead to a purely topological way of understanding the set of symplectic structures
on any given manifold.

3.1. Lefschetz pencils

We begin by considering what topological structure can be found on an algebraic
surface X. By definition, X is a holomorphic submanifold of CP¥ for some N. Let
A c CPY be a generic linear subspace of complex codimension 2 (so it is a copy of
CPV~2 cut out by two homogeneous linear equations po(z) = pi(2) = 0). Then A
intersects X transversely in a finite set B called the base locus. The set of all hyperplanes
through A is parametrized by CP*. (They are given by the equations yopo(z) + y1p1 (2) =
0, for (yo,y1) € C? — {0} up to scale.) These hyperplanes intersect X in a family of
(possibly singular) complex curves {F, | ¥ € CP'}. Since the hyperplanes fill CP"
and any two intersect precisely in A, we have J, e Fy = X and F, N F, = B for

y # y'. The canonical map CP" — 4 — CP! induced by the hyperplanes restricts to a
holomorphic map f : X — B — CP' determined by the condition f~(y) = F, — B. Since
A intersects X transversely, each F, is smooth near B, and f can be locally identified
with projectivization C> — {0} — CP! there. (In fact, the hyperplanes restrict to the
complex lines through 0 on the tangent plane to X at each b € B.) Since A is generic, so
is the function f. This means f is the complex analog of a Morse function, i.e., its critical
points are complex quadratic. The structure we have defined here is called a Lefschetz
pencil on X, and can be generalized from holomorphic to smooth manifolds.

Definition 3.1. A Lefschetz pencil on a 4-manifold X is a finite base locus B C X and
amap f: X — B — CP! such that

(1) each b € B has an orientation-preserving local coordinate map to (C?,0) under
which f corresponds to projectivization C? — {0} — CP*, and

(2) each critical point of f has an orientation-preserving local coordinate chart in which
f(z1,22) = 22 + 22 for some holomorphic local chart in CP*.

Note that there is no analog of the Morse index, since —z? = +(iz)%. In the literature,
additional conditions are sometimes imposed. For example, after perturbing f we can
assume that f is injective on the (finite) set of critical points. In addition, our algebraic
prototype has the property that each component of F, — {critical points} intersects B
(since its closure is a complex curve and hence homologically essential in the correspond-
ing hyperplane); some version of this condition is needed for constructing symplectic
structures (e.g., to rule out the torus bundle f : S3 x §* — 52%).

Like Morse functions in the real-valued setting, Lefschetz pencils determine the topol-
ogy of the underlying 4-manifolds. A useful way to exploit this is to “blow up” the
base locus B, compactifying X' — B by one-point compactifying each fiber separately
at each b € B. This changes X by connected summing with a copy of —CP? for each
b € B. We obtain a singular fibration X # k(—CP?) — CP' called a Lefschetz fibra-
tion, characterized by having only complex quadratic critical points as above. Explicit

10
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handle diagrams can be drawn for Lefschetz fibrations, using the fact that each critical
point corresponds to a 2-handle. Alternatively, one can remove the critical values from
CP' = §2, and delete the corresponding singular fibers from X, obtaining an honest fiber
bundle over S* = S? — (finite set). The monodromy around each critical value will be a
right-handed Dehn twist of the fiber (assuming f | {critical points} is injective), and the
monodromy representation 71 (S*) — Map(F) (into the group of orientation-preserving
diffeomorphisms of the fiber up to isotopy) will determine the Lefschetz fibration if the
fiber has genus > 2. Thus, the study of Lefschetz fibrations reduces to a purely combina-
torial problem about the mapping class group Map(F'). A similar reduction can be made
for Lefschetz pencils, using diffeomorphisms of the fiber that fix a point and its tangent
plane for each b € B. (In this case, one must remove an extra point from S*, around
which the monodromy is nontrivial due to the twisted normal bundles of the exceptional
spheres.) Lefschetz fibrations on 4-manifolds have recently become a particularly active
area of research. For example, many Lefschetz fibrations have been directly constructed
for which the underlying manifold X admits no complex structure. In particular, one
can use monodromy representations to construct Lefschetz fibrations whose fundamental
groups include all finitely presented groups [ABKP]. (Recall that most finitely presented
groups cannot be realized by complex surfaces.) For a recent (but rapidly becoming
outdated) survey of Lefschetz pencils and fibrations, see [GS].

Our construction of Lefschetz pencils on algebraic surfaces can be generalized to alge-
braic manifolds of any dimension. If we continue to require codimc A4 = 2, we obtain a
map f: X — B — CP', where B is a submanifold of (complex) codimension 2. The map
f will look like projectivization in the directions normal to B, and the critical points of
f will be locally modeled by f(z1,...,2n) = Y. iy z2. (These correspond to n-handles.)
Such structures are still called Lefschetz pencils. They were first used by Lefschetz to
study the topology of algebraic manifolds. (See [L].) One can analyze them using the
monodromy representation as in the 4-dimensional case, although at present, little work
has been done on this. For a further generalization, we can allow A to have complex
codimension k 4+ 1 > 2, and consider linear subspaces with codimension k containing A.
We then obtain amap f: X — B — CP* with codime B = k + 1. (For example, we
can make B finite by setting k = dim¢ X — 1. For larger k, B vanishes entirely.) The
map f will still be projectivization on normal slices to the manifold B, but critical points
will no longer be isolated and they may require higher degree terms in their local models.
(For example, the k = 2 case can be thought of as a Lefschetz pencil of pencils. A single
Lefschetz pencil has isolated critical points, but these will sweep out, sheets as we vary
through a pencil of pencils, and for some values of the parameter, quadratic critical points
will coalesce to form those of higher-degree.) Algebraic geometers call structures of this
more general form linear systems. In principle, one could try to analyze their topology
via monodromies and induction on dimension. Note that if X has a linear system for a
given k, then it has them for all smaller values of k: Simply compose f with the canonical

11
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- projection map CP* — {pt.} = CPF-1. (This corresponds to choosing a new A contain-
ing the old one with codimension 1.) Thus, the information content of a linear system
increases with .

3.2. Hyp erp.encils

Linear systems f : X — B — CP* provide the sort of “fibrationlike” structure on a 2n-
manifold X that allows us to construct symplectic forms by the method of Section 2. Qur
present goal is to carefully define such a structure in topological terms, in such a way as to
guarantee the existence of symplectic forms. A plausible starting place would be the k = n
case, where B is empty and f is a sort of singular branched covering. However, it seems
best to start with the weakest possible definition guaranteeing a symplectic structure,
meaning we should use the smallest possible value of k. But if ¥ < n — 2, the fibers
will have (real) dimension > 2, and theorems producing symplectic structures will require
hypotheses guaranteeing that the fibers and transition functions will be symplectic. Thus,
for a theorem without symplectic hypotheses, the optimal case seems to be k = n — 1,
where generic fibers are surfaces and hence are automatically symplectic. We will call
such a structure a hyperpencil, with the prefix indicating that k should be changed from 1
(for a pencil) to complex codimension 1. The definition is analogous to that of Lefschetz
pencils. However, the critical points are necessarily more complicated, so we allow them
to be modeled by any holomorphic function (provided that within each fiber they are
isolated). In fact, the situation is not significantly complicated by taking the function
to be just locally J-holomorphic with respect to almost-complex structures (subject to a
certain technical condition that is automatically satisfied in the holomorphic case or when
n < 3). We allow these almost-complex structures to be C° rather than smooth, both
for convenience and to emphasize that their primary function is homotopy-theoretic in
nature, controlling monodromies. (For example, if we allow orientation-reversing charts
at critical points in our definition of Lefschetz pencils, so that some monodromies arc
given by left-handed Dehn twists, then we can construct such structures on manifolds
admitting no symplectic forms; see e.g. [GS].) As a final generalization, we allow the
almost-complex structure on CP™ ! to be different for different points on a given fiber,
by using locally defined almost-complex structures on the bundle f*TCP™ ! rather than
on TCP™ ! itself. (The reader can simplify the setup by pretending these are given by the
standard holomorphic structure on CP™!.) We require these structures to be compatible
with the standard symplectic form wgpn-1 on CP™~! (pulled back to a skew-symmetric
pairing on f*TCP™"!). We then obtain the following definition (which can, and probably
should, be generalized even further).

Definition 3.2. A hyperpencil on a 2n-manifold X is a finite set B C X and a map
f:X — B — CP"* such that

(1) each b € B has an orientation-preserving local coordinate map to (C*,0) under
which f corresponds to projectivization C* — {0} — CP™ !,

12
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(2) each fiber F, = ¢£f~1(y) C X contains only finitely many critical points of f,
each locally modeled by a holomorphic map if n > 4, and each critical point has
a neighborhood U with C° almost-complex structures on U and f*TCP™'|U for
which the latter is compatible with wep~-1 and f is J-holomorphic, and

(3) each component of F, — {critical points} intersects B.

The construction of Section 2 can be used to produce a symplectic structure on any
manifold with a hyperpencil. In particular, any 4-manifold with a Lefschetz pencil (with
B # 0) admits a symplectic structure. (While a Lefschetz pencil need not satisfy con-
dition (3) above, the condition is actually unnecessary in this case, provided B # 0; see
[GS]. However, without the condition, we lose both the control of [w] and the uniqueness
statement given below.) The construction allows us to control the cohomology class [w].
Recall that H3,(CP™ ') = R has a canonical generator h, the hyperplane class, Poincaré
dual to [CP™"?]. The class f*h is defined on X — B, but H3gz(X — B) = H2p(X) for
n > 1, so we can think of f*h as a class in H25(X) determined by the hyperpencil. (For
n = 1, it is natural to identify f*h with the Poincaré dual of [B] € Hy(X;R).) The con-
struction allows us to arrange [w] = f*h. The form w is then completely determined by
the construction, up to isotopy. (Two symplectic forms wg, wy on X are isotopic if there
is a diffeomorphism ¢ isotopic to the identity with ¢*w; = wp. Thus, isotopic symplectic
forms only differ by a deformation of X.) Furthermore, the isotopy class is unchanged if
we deform the hyperpencil. (A deformation of hyperpencils should be roughly thought of
as a bundle Z over a path connected parameter space S, whose fibers are hyperpencils.
More precisely, we naturally generalize the definition of hyperpencil to this parametrized
setting. For example, the base locus becomes a finite covering B — S, and the local
almost-complex structures at a critical point of X become continuous families of fiber-
wise almost-complex structures defined near a point in Z.) More specifically, we obtain
our main theorem: '

Theorem 3.1. A deformation class of hyperpencils uniquely determines an isotopy class
of symplectic forms. This isotopy class is characterized as being the unique class contain-
ing representatives w for which [w] = f*h € Higx(X) and w tames a given hyperpencil in
the deformation class.

We say that w tames a hyperpencil f: X — B — CP™! if there is a C° almost-complex
structure Jppn-1 compatible with wgpn-1 on f*TCP™ !, such that each z € X has a neigh-
borhood with a C? almost-complex structure tamed by w and making f J-holomorphic.
It can be shown that if w tames f then there is a global almost-complex structure J on
X with w taming J and f J-holomorphic. Similarly, the local almost-complex structures
in (2) of the definition of hyperpencils can be made global. In each case, the global
structures (including Jgpn-1) can be arranged to be standard near B. Similar statements
apply in the setting of deformations. See [G2] for details.
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3.3. Proof of Theorem 3.1

We sketch the proof; for further details, see [G2]. To prove existence, we fix a hyper-
pencil f: X — B — CP™ ! in the given deformation class, and establish the hypotheses
of Theorem 2.2. As remarked in the previous paragraph, there are global structures
J on X and Jgpn-1 on f*TCP™ !, standard near B, making f J-holomorphic. Let
c= f*h € H3(X). For each y € CP™ !, we construct the required W, and ny: At each
critical point = € Fy, (T, X, J) can be identified with C*. Thus, the standard linear sym-
plectic form on C" tames J at z. Extend this to a closed 2-form 7, near z; we can assume
ny tames J on this neighborhood by openness of the taming condition. Since Fy is a J-
complex curve, 7y |Fy, is an area form defined near the singular points of F,. Extend this to
an area form on all of F,, whose total area on each component F; of F,, — {critical points}
is (f*h,cl F;) (which is positive since it equals the number of points in F; N B; cf. (3) of
Definition 3.2). W, and 7, can now be constructed in a manner analogous to the proof
of Theorem 2.1, by pulling back ny|Fy, by a suitable map. By construction, [r,] = ¢|I¥,.
Also, 1, tames J on each T, X near critical points, and on kerdf, = T F f(z) elsewhere
(for W, sufficiently small). (We have ignored minor technical difficulties arising, e.g., if
F, has nonconelike singularities.) A slight generalization of Theorem 2.2 now gives a
symplectic form w on X — B taming J. (Note that f : X — B — CP™! fails the hy-
potheses of Theorem 2.2 in that the domain is noncompact; this can be fixed by working
relative to a standard symplectic form defined near B.) Unfortunately, w is singular at B
— it has the form tn + f*wgpn-1, and the second term is singular. Fortunately, we have
an explicit description of w and J near each b € B (on a neighborhood identified with a
neighborhood of 0 in C™, with f given by projectivization). This local model shows that
we can dilate X at b and glue in a symplectic ball to make w smooth everywhere, without
losing the taming condition. (This construction is essentially equivalent to blowing up
B, applying Theorem 2.2 to the resulting singular fibration on a compact manifold, and
blowing back down. However it bypasses some technical difficulties involving working
with the blown-up points.) We now have the desired symplectic form. It obviously tames
fvia J, and [w] = [tn + ffwepn-1] = tc+ fHwgn-1] = (t+ 1) f*h (since [wepn-1] = L),
so w satisfies the required conditions after rescaling.

To prove uniqueness, we start with symplectic forms wg and w; on X, satisfying the
two conditions in Theorem 3.1 with respect to deformation equivalent pencils fy and fi,
respectively. We show that wp and w; are isotopic, completing the proof of the theorem.
We can assume the deformation is parametrized by the interval I = [0,1]. Each form w;
is given to tame f;, so as indicated at the end of the previous subsection, we can find
a global C° almost-complex structure J; on X making f; J;-holomorphic, and with w;
taming J;. Using the same paragraph (in the parametrized version rel {0,1} without a
taming w), we can extend Jy, J1 to a continuous family J; of almost-complex structures,
0 <t <1, with f; Ji-holomorphic for some family J; gpn—1 on frTCP"~!. (This is
the one place where Definition 3.2 requires the condition for n > 4, and compatibility
with wepn-1 rather than taming.) For each hyperpencil f: in the deformation and each
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structure Jy, construct w; taming J; as in the previous paragraph. While the resulting
forms w;, 0 < ¢t < 1, will be a priori unrelated to each other, we can make the family
smooth by a trick: By openness of the taming condition, each w; will tame each J; in
some neighborhood of ¢ € I. Thus, we can cover I by neighborhoods U, on which a single
w; tames each J;, s € U,. Using a partition of unity {p} on I subordinate to {Us,},
splice together these forms w;. The resulting smooth family (still called w;) will consist of
closed forms (since each p,, is constant on each fiber of the deformation), and each w; will
tame the corresponding J; (since it is a convex combination of taming forms). Thus, we
have a smooth family of symplectic forms on X. Furthermore, [w;] = f{h is independent
of t (since we can assume B is fixed and invoke homotopy invariance of induced maps).
The theorem now follows from:

Theorem 3.2 (Moser [M]). Let wi, 0 <t < 1, be a smooth family of symplectic forms
on X, with [w;] € H35(X) independent of t. Then there is an isotopy ¢r : X — X with

wo =idx and Yfw; = wp.

{The proof of Moser’s Theorem is actually quite short. One simply writes down a suitable
formula for a time-dependent vector field, then integrates to obtain ¢;.) O

3.4. Characterization

‘We now turn to the question of how general the hyperpencil construction of symplectic
structures is, addressing the topological characterization of symplectic manifolds. The
answer lies in work of Donaldson [D] followed by Auroux [A], the roots of which go back
to Kodaira in the holomorphic setting (the Kodaira Embedding Theorem, e.g., [GH]).
If gg,... , 0 are sections of a complex line bundle L — X, then because each fiber L,
is canonically C up to (complex) scale, the vector (go(z),...,0r(x)) in (L)t deter-
mines an element of CF™1 up to scale. Thus, projectivizing gives a well-defined map
f=loo:...:06] : X =B — CP*, where B is the common zero locus of oy, ... 0.
Kodaira used this idea to characterize which complex manifolds are algebraic (i.e., em-
bed holomorphically in CP™) in terms of line bundles: Given the existence of a suitable
holomorphic line bundle L over a complex manifold X, one can obtain arbitrarily many
holomorphic sections by taking sufficiently large tensor powers L®™ of the line bundle,
eventually yielding an embedding f : X — CPN. It automatically follows that X is
Kihler with symplectic form w = f*wepn satisfying [w] = ¢1(L®™) = me;(L). Don-
aldson’s contribution was to extend this idea to the symplectic setting. Starting with
a symplectic manifold (X,w) with w integral (i.e., [w] € Im(H?(X;Z) = H25(X))), he
chose a compatible almost-complex structure J, and arranged a line bundle L — X with
Chern class ¢; (L) = [w] to be J-holomorphic in a suitable sense. Unfortunately, in this
setting holomorphic sections rarely exist. However, by defining a suitable notion of “ap-
proximately holomorphic” sections and applying hard analysis on the line bundles L®™,
Donaldson was able to construct a Lefschetz pencil X — B — CP! on any integral sym-
plectic manifold. Subsequently, Auroux [A] generalized the method to construct a linear
system X — B — CP* for k = 2, and he is currently extending his work to arbitrary k.
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In particular, the case K = n — 1 should yield a hyperpencil (with particularly nice local
properties) tamed by the original symplectic form w, and with f*h = ¢; (L®™) = m|w] for
any given sufficiently large integer m. (It may be useful to slightly weaken the definition
of a hyperpencil here.) This would complete the proof of the following conjecture, which
currently seems to be established in dimensions < 6 (by the above cases k = 1,2.)

Conjecture 3.3. For any integral symplectic manifold (X,w) and sufficiently large m €
7, there is a hyperpencil on X for which the canonical isotopy class of symplectic forms
contains mw.

Now note that the nondegeneracy condition for symplectic forms is open, and H?(X; Q)
is dense in H35(X). Thus, rational symplectic forms on a manifold X are dense in the
space of all symplectic forms. Furthermore, any rational cohomology class can be rescaled
to an integral one. Thus, up to scale, the hyperpencil construction should give a dense
subset of all symplectic forms on any given manifold. That is:

Proposition 3.4. Let P(X) be the set of deformation classes of hyperpencils on a man-
tfold X, S(X) be the set of isotopy classes of rational symplectic structures, and § :
P(X) = S(X) be the map given by Theorem 8.1. Suppose that all integral symplectic
structures on X satisfy Conjecture 8.3. Then the induced map Q : P(X) = S(X)/Qy. is
surjective. Equivalently, there is a surjection (1 : P(X) x Qr = S(X), where ﬁ(f, q) is
obtained from Q(f) by rescaling so that [ﬁ(f, q)] is q times a primitive integral class. [

Corollary 3.5. In dimensions where Congecture 3.3 holds (e.g. dimensions < 6), a
manifold admits a symplectic structure if and only if it admits a hyperpencil. A 4-manifold
admits a symplectic structure if and only if it admits a Lefschetz pencil with B £ §. [

(For the 4-dimensional version, see also [GS].) Thus, Conjecture 3.3 topologically char-
acterizes those manifolds admitting symplectic structures. From there, to completely
determine, in topological terms, the dense subset S(X) of the space of symplectic forms

on X, we only need to identify the point preimages of 2 (which are the same as for ).

Conjecture 3.6. The point preimages ofﬁ (or equivalently, Q1) can be given by a topo-
logically defined equivalence relation on P(X).

To do this, it may be useful to strengthen the definition of hyperpencils. The main
evidence for this conjecture is that the theorems of Donaldson and Auroux come with
uniqueness statements, up to “stabilization,” or multiplying m by large integers (taking
tensor powers of the relevant line bundle). This suggests that one should be able to
topologically define stabilization maps oy : P(X) — P(X), k € Z4, with 01 = idp(x),
oroop = ok and Qoo = kQ, and that the required equivalence relation should be given
by f ~ ¢ if and only if or(f) = o¢(g) for some k,{ € Z,. However, these stabilization
maps seem complicated, even in dimension 4.
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On some classes of 8-dimensional manifolds.
Philippe Mazaud,
Western Topology Seminar, Colorado College, June 2000.

Summary of the talk:

We consider closed smooth manifolds M that accept an effective codimension-two action
of the group S% x S3 (S3: unit-quaternions). The basic philosophy is to construct nice classes
of spaces that “fiber” over a surface.

This study involves two distinct problems: that of an eguivariant classification (determin-
ing the invariants that characterize the action, up to equivalence), and the question of the
topological classification and characterization of these spaces (we may have distinct actions of
53 x S% on the same space). The first is completely solved (cf. [Maz1]): roughly, the invariants
consist of (1) the orbit data, that is, the quotient space M* (a 2-manifold or orbifold, possibly
with boundary) along with a specified isotropy structure (each point in M* has a “weight”
assigned, given as a conjugation class of stabilizers for the corresponding orbit), and (2) an
invariant that represents the obstruction to a “uniform” section to the action.

The second problem is the one we hoped to emphasize. Much remains to be done here. As
a first step in this direction one decomposes these spaces into various manifolds types, that
are in some sense irreducible. These types are actually broad families of equivariant data, but
one can show that they are in fact largely distinct topologically.

We single out two types here. The first consists of so-called Seifert-like manifolds. Equivari-
antly, all S3 x 52 orbits are fully 6-dimensional, but a finite number have finite-cyclic isotropy;
the quotient space is a closed orbifold. As it turns out, most of these spaces are indeed Seifert
fiberings in the sense of Conner-Lee-Raymond (see [LLR] for instance): quotients of principal
S3 x §3 bundles over 52 or R? or H? (the hyperbolic plane). In fact they may also be viewed
as 4-manifold bundles over S? x S?, where the fiber is itself again a Seifert fibering modeled on
principal 7% bundles (these 4-dimensional Seifert fiberings are completely classified in [OR2]).

The other type is a family of simply-connected manifolds (denoted #). Equivariantly
the quotient H* is a disk; its interior consists of free orbits, its boundary is partitioned into
finitely many vertices and edges. The vertices correspond to isolated T2-stabilized orbits (2=
maximal 2-torus in S® x $%), the edges’ interiors consist of S'-stabilized orbits, where the
circles S must sit in 72 in certain prescribed ways. These manifolds may also be viewed as
4-manifold bundles over S? x §? with toral structure group. S% x S? acts on A by bundle maps.
Now, the homeomorphism type of the fiber can be read directly from the S? x §% equivariant
data. The topological question in this case has to do with whether distinct bundles (same
fiber and base, different action of the T2 structure group) are homeomorphically distinct (see
[Maz2]). '
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FIBERED TRANSVERSE LINKS AND FOUR-DIMENSIONAL
SYMPLECTIC CONSTRUCTIONS

DAVID T. GAY

The results presented here are presented in detail with background and proof
in [3]. For further background on symplectic and contact geometry the reader is
referred to [2], [5] and [4].

An alternate title for this talk might have been “Trying to understand 4-
dimensional symplectic bordisms”. Consider the following question: In a cate-
gory where the morphisms are 4-dimensional symplectic bordisms, what should the
objects be? A general answer would be that the objects should be pairs (M, G)
where M is an oriented 3-manifold and G is a germ of a 4-dimensional symplectic
neighborhood of M. By such a germ we mean an equivalence class of symplectic 4-
manifolds containing M as a submanifold, where (X1, w;) is equivalent to (X2, ws)
if there exist neighborhoods N; of M in X; and a symplectomorphism from N; to
No which restricts to the identity on M.

To understand such pairs (M, G) we need to understand 3-dimensional data on
M which encodes the 4-dimensional germ G. There is a standard way to do this
using contact geometry. We recall some basic definitions. If A/ is an oriented
3-manifold then:

1. a 1-form o on M is a contact form if o A do is nowhere zero, and is said to

be positive if a A do: > 0 and negative if a A da < 0, and

2. a plane-field £ on M is a (positive/negative) contact structure if £ = ker o for

some (positive/negative) contact form « on M.

(Note that, if o is a contact form and f is any nonzero function on M, then
ker o = ker fa, so that a contact structure can be thought of as a conformal class
of contact forms.) Given a symplectic 4-manifold (X, w) and a vector field V, we say
that V' is a symplectic dilation (resp. contraction) if Lyw = w (resp. if Lyw = —w).
This provides a connection with contact structures as follows: If M is an oriented
3-dimensional submanifold of (X,w) and V is positively transverse to M, consider
the 1-form a = 1wy w|p. Then:

1. if V is a symplectic dilation then « is a positive contact form with do = w

and

2. if V is a symplectic contraction then « is a negative contact form with —da =

w ’ M-

Now we can see the connection between contact forms and symplectic germs. A
contact form o on an oriented 3-manifold M uniquely determines a germ G(a) of a
4-dimensional symplectic neighborhood of M in the following sense: Firstly, there
exists a symplectic 4-manifold (X,w) containing M with a symplectic dilation (if o
is positive) or contraction (if « is negative) V which is positively transverse to M
such that 1y w|as = 0. Secondly, any other symplectic 4-manifold containing M with

M
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such a dilation or contraction represents the same germ along M. The standard
example is X =R x M, w = +d(e*'a) and V = 8, (where £ is + or — according
to whether « is positive or negative). In particular, using this construction, we can
say that, given (M, a) and a positive function f on M, there exists a symplectic
bordism, topologically a product, from (M, G(a)) to (M, G(e*a)): the bordism is
simply X = {(£,p)|0 <t < f(p)} C R x M with w = +d(e*ta).

However, to get more topologically interesting bordisms we need to understand
how to attach handles symplectically along knots in a contact 3-manifold (M, a).
There is a standard result due to Eliashberg [1] and Weinstein [6] which says that,
if K C M is a Legendrian knot (this means that 7K C ¢ = kera), then we can
attach a symplectic 2-handle along K provided we use the canonical framing, the
framing determined by a vector field along K lying in € and transverse to K. This
construction gives us a bordism from (M, G(a)) to (Mk,G(ak)), where (My, ay)
is a contact 3-manifold resulting from surgery along K.

There is a basic limitation to these constructions, which is that the symplectic
forms constructed are always exact. To get beyond this limitation we now generalize
the constructions above. Suppose M is an oriented 3-manifold. Then a contact pair
is a pair (@™, a™) of 1-forms defined on open subsets M* C M with M = M*TUM~,
+o* Ado* > 0 and dot = —da™ on M° = M+ N M~. A dilation-contraction
pair on a symplectic 4-manifold (X,w) is a pair (V*,V ™) of vector fields, V*
a symplectic dilation and V'~ a symplectic contraction, defined on open subsets
X* c X, with w(V+,V~) = 0. Now note that, if M C X+ U X~ with both
V* and V'~ positively transverse to M, then o = 1y,xw|ss defines a contact pair
(at,a™) on M. Using this idea we can state the following proposition:

Proposition 0.1. A contact pair (o™, a™) uniquely determines a symplectic germ
G(a™,a™) in the sense that:
1. there ezists a symplectic 4-manifold (X,w) with a dilation-contraction pair
(V*, V™) containing M such that ot = 1yxw|p and,
2. any other such (X,w, V™,V ™) represents the same germ along M.

Now we will see that contact pairs have a natural connection to fibered links.
Given a 3-manifold M with a contact pair (a™, @), notice the following: v = +da*
is a globally defined, closed, nondegenerate 2-form on M (not necessarily exact) and
a® = at +a” is a closed 1-form on M® = M+t NM~ with a® Ay > 0. This suggests
that we specialize to the case where a® = kdp for some constant k and some fibration
p: M® — S1. This in turn suggests that we consider the case where M \ M° = L
is a link (and thus a fibered link), with L = LT UL~ and L* = M*\ M°.

Theorem 0.2. In this case, if K C L* and (a™,a~) is well-behaved near K,
then one can attach a symplectic 2-handle along K (with certain restrictions on
the framing) to get a symplectic bordism from (M, G(a™,a™)) to (Mg, G(ak, ax)),
where (M, (a};, ag)) is a 3-manifold with contact pair resulting from surgery along
K. The intersection of the co-core of the handle with My is a knot in M, which is
to say that if the handle was attached along a positive component of L, then the co-
core will lie in My, and that if the handle was attached along a negative component
then the co-core will lie in Mj.

The precise definitions of the “well-behaved” condition and the framing restric-
tions are spelled out carefully in [3]. Here we will present the essential idea by

means of an example.
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Suppose that ¥ is a compact surface with non-empty boundary. Then there
exists a 1-form @ on ¥ such that d8 > 0 and there exists a vector field V on &
such that 2ydB = [ and such that V is transverse to %. Furthermore 8 and
V can be constructed to have particular controlled behavior near 8%. First let
0¥ = 03X U0_%, where 0. X is the union of components of ¥ on which V points
out of ¥, while §_X is the union of components on which V points in to ¥. Then
we can arrange that a collar on each component of ¥ has the model [a,b] x S?,
with corresponding coordinates (z,y), such that: ,

e O, points out of X,

* (= zdy,

o V =210, and

o b>0on 0,% whileb<0on d_%.

Let ¥’ denote the interior of ¥ and let M = S x %' (we will use t as the coordinate
for this S factor). We will construct M as a Dehn-filling of M°. Choose two
positive constants kT and £~ and let a® = k*dt + 8.

Now one can draw a picture looking in at S* x 8, = S! x {b} x S'. Both
&t = kerat and €~ = kera~ will contain the vector field 8;, so that we can
see what these contact structures look like just by looking at their slopes in the
(y,t)-plane. For £t we compute that dt/dy = —z/k™, a decreasing negative slope
near z = b limiting on —b/k™, and for £~ we compute that dt/dy = z/k~, an
increasing positive slope near z = b limiting on b/k~. Similarly one can draw a
picture looking in at S* x 0_% = S x {b} x S'. Here, since b < 0, we get that £+
has a decreasing positive (y,t)-slope near z = b, again limiting on —b/k*, and that
¢~ has an increasing negative (y, t)-slope near z = b limiting on b/k~.

To construct M from M° we simply fill in the ends with (y, t)-slopes that match
the slope of £ at the positive ends (S x 8, %) and the slope of £~ at the negative
ends (S x 0_%). Then o™ will extend across the fillings of the positive ends while
o~ will extend across the fillings of the negative ends. Of course, the constants k=
and the values of b at each end should be chosen so that these slopes are rational.

Then we have a 3-manifold M with a contact pair (™, a~) such that M? fibers
over S' with fibration ¢, such that a® = (k% + k~)dt, and such that M \ MP°
is a fibered link L. The local model near each component of L is exactly the
local model which is guaranteed by the “well-behaved” condition mentioned in the
theorem above. - '

Finally, the framings which are allowed in the theorem can be seen explicitly in
this example as follows: A framing translates into a (y, t)-slope in our pictures of the
ends of M?. At the positive ends, the allowed framings are those that correspond
to slopes more positive than the limiting slope b/k~ of £, while at the negative
ends the allowed framings are those that correspond to positive slopes less than
the slope —b/k™ of £+. After the surgery associated to these framings, the contact
structure which did not extend across the Dehn filling now does extend and the
contact structure that did extend now does not.

This example can be generalized to the case where M? is a surface bundle over S?,
and thus we are working in the world of open-book decompositions of 3-manifolds.
The hope is that we can use this to understand the category of 3-manifolds with
symplectic germs and 4-dimensional symplectic bordisms through a careful analysis
of contact structures in relation to open-book decompositions of 3-manifolds.
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FAILURE OF SARDS THEOREM AND EXISTENCE OF STRANGE
SMOOTH BUMP FUNCTIONS IN INFINITE DIMENSIONS

TADEUSZ DOBROWOLSKI

ABSTRACT. We apply weak bump functions to construct smooth surjections with derivatives of rank-1 and smooth
bump functions whose derivatives are surjections in infinite-dimensional Banach spaces

Sard’s theorem precludes the existence of a smooth surjection between Euclidean spaces whose derivative
is everywhere nonsurjective. This phenomenon is, in general, not true in infinte-dimensions, as shown in [Ba]
(see also references therein). We elaborate on the technique of constructing smooth surjections presented in
[Ba], and we put this technique in the language of weak bump functions. We apply this same technique to
construct certain peculiar smooth bump functions and to obtain an extension of a result from [AD).

1. Weak bump functions. Let (X, |- ||) be a normed linear space and B = {z € X| ||lz|| < 1} be its unit
closed ball. Let us start with the following property that was isolated in [Bal:

Definition 1. We say that a separating sequence of continuous functionals (z}) C X* satisfies (B) if there
exists a sequence (z,) C B such that z%(z,,) = ,m and such that, for every € > 0, there exists k € N such
for every [k] = {n1 < ny < ...ng} we have ||[7¥ITz| < e for every z € B, where T : X — R is the
operator given by T(z) = (&4(2)), M (4) = (Uny» Unss- - Yy 07 4 = () € B, and 7 (y) = y — mp ()
Clearly, the operator T' maps X into the space cp, and the condition spelled in the above definition is
much stronger than TB is just a subset of the unit ball of cy. Recall that a function ¢ : X — [0, 1] is
called a bump function if ¢~1((0,1]) is a nonempty bounded set; to be precise such a function @ will be
called a || - |[[-bump function. (For our considerations bump functions can be ”identified” with functions
¥ : X — R with X \¢~*(0) nonempty and bounded.) Let b be a standard C° bump function on ¢o, that is,
b(y) = 1,21 AMyn) for y = (yn) € co, where A : R — [0, 1] be a fixed C*® function such that A = 1 on [-1,1]
and A = 0 when |r| > 2. It follows that b has support in the ball of radius 2 and b = 1 on the unit ball.

Proposition. There exist a norm w on X with w(z) < ||z|| and a C* w-bump function ¢ : (X,w) — [0,1]
with the following properties:
(1) ¢(z) =1ifw(z) <1 and p(z) =0 ifw(z) > 2;
(2) for every n,m € N there exists My, < oo such that | (z)|| < My, for all lz|| < n and all
0<i<m :
(3) B is not relatively w-compact.

Proof. Define w(z) = |[Tz||oo. Since w(zn — &m) =1 for n # m (for Tz, is the standard unit vector of ),
the ball B is not relatively w-compact. Let ¢(z) = b(T'z), where b is the above bump function on ¢y. The
estimate (2) is an easy consequence of the condition on T from Definition 1. O

Notice that an arbitrary C* w-bump function can easily be modified in order to satisfy (1) and, at the
same time, to maintain condition (2).

Definition 2. A norm w will be called a (B) norm if, together with some C'*° w-bump function ¢, the
condtions (1)-(3) are satisfied. The function ¢ will be referred to as a weak bump function.
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Remark 1. Assume that there exists a C° bump function b : (X,w) — [0, 1], where (X,w) stands for the
w-completion of X. Then condition (2) (for ¢(z) = b(z), z € X) is an easy consequence of the following
stronger one:

(27) for every m € N there exists M,, < oo such that w(b®(y)) < M,, for all y and 0 < i < m.

Example 1. Let X = £, p > 1. Then, for every n € N with 2n > p, w(z) = wh,(z) = ||z]lan, z € 7, is a
(B) norm.

To see this it suffices to take b(y) = A(||y]|37), where ) is the function described above the statement of
Proposition. It is clear that, for the sequence of the standard unit vectors (e,), we have W& (e, — ) = 1

for n # m.

2. An application to surjective maps. The following result is an abstraction on the technique described
in [Baj:
Theorem 1. Suppose that a Banach space (X, |- ||) admits a (B) norm w. Then for every separable Banach

space Y there exists a C surjection g : X — Y. In case (2’) is satisfied, g can be viewed as a C* surjection
of (X,w) onto Y. Furthermore, for every = € X, the derivative ¢'(z) is a rank-1 operator of X into Y.

Observe that it would be enough to construct a C* surjection onto the space 1 because an arbitrary
Banach space Y is an image of #! under a continuous linear operator.

Proof. We will be working with the normed space (X, w); we will use the symbol B,, to denote the closed ball
of this space. Since B is not relatively w-compact there exists € > 0, 0 < € < 315, and a sequence (z,) C B
such that B, (z,,4¢€) C B, and w(z, — zm) > 8¢ for n # m. Define T, : X — X by T,z = z,, + ex. We have
ToB. = B.(ze). Moreover, for a sequence (n1,n2,n3,...) € NV,

T Bo D15, Th, By D Tn 10y Ty By D - - -

is a nested sequence of w-balls. Furthermore, we have 1), T,,, ... T, T = 2, + EZp, +---+ Ek”lznk +ebz. It
follows that the intersection ;2 ; T, Tn, - - - Tn, B is nonempty in the completion (X,w), and is precisely
a one-point set, say {p}. However, since ||z,|| <1 and p=3";° "7z, , we infer that p € X and ||p| < 1.
For (n1,ns,...,ng) € N*, define Gring..ngP(TnyTny - - - Tn, )71, where @ is an w-bump function of Definition

2. More precisely,

k=1 51
T = Zj::l €77 2n,;

)-

Pning..ny (I) = (70(

ok
) i i (%) —ki, (i) ﬂl—z;c;ll eIz, . . .
For the ith derivative we have nin,...n, (2)e ™™ (— ——=). An application of (2) yields that there

exists 1 < M} < oo such that
. 2
“(pgl)ngnk(x)“ S £ k Mk

for every ||lz|| < k and 0 < i < k. Pick a sequence {y,} = D that is dense in the unit ball of Y. Define
_fr : X = Y by letting fi(z) = Z(mm’“_’nk)em 8kPrang..n. (T)Yn,, Where & < 2"“5"“2M,:1 and & = 1.

Since the sets Ty, Tn, ... Tn, (4By,), (n1,7n2,...,n) € N, are pairwise disjoint and the support of ¢ is
contained in 2B,,, each fy is C*°. Moreover, for every z € T, Tr,, - . . T,.(4B,) and every 0 < i < k, we have

flgi) (z) = 5k§0$lil)nz.-.nk (z)Yn, - This implies
173 @)l < 27% for |z <k

and every 0 < i < k. Letting f = 77, fk, it follows that f : X — Y is a C™ map. Moreover, f has
support in B, that is, f(z) = 0 for w(z) > 1. Our construction also assures that, for every I € N and every
z € X, Zi:l fi.(z) is a rank-1 operator. It follows that f/(z) is a rank-1 operator as well. Now we show
that the image of f contains the unit ball of Y. For z € 8T, Ty, . .. T, B.,, we have

f(l') = ym + 523!712 + e +6ky7lk’
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Fix y € Y with ||y|| < 1. Pick yn, € D so that

next pick y,, € D so that :
ly = Yn, — d2yn, || < 03

and so onv; finally, pick yn, € D so that
1Y = Yny — O2Uny — -+ — Oy || < g1
Now, for a so chosen sequence (n1,ns,...) € NY and © € 8Ty, Tn, - .. Tn, Bo,
ly = F@) =11y = (Yny + 02Uns + - Okyn, )| < Gpa-

Thus, for p = 322 ¥ 1z, € Noey TnyTns - - - Tny B, we have f(p) = y. Since we have already observed
that p € X, the image of f contains the unit ball of Y. Finally, fixing any z € X with w(z) = 1, we let

= T —4"z
g(@) = Y nf(=5).
n=1
Clearly, z — f( z_ﬁnz) have pairwise disjoint supports so that g is a C° map. It is easy to see that g(X ) =Y
and that g'(z) is a rank-1 operator for every z € X. In case condition (2’) is satisfied f : (X,w) = Y is a
C° map; consequently, g : (X,w) — Y will be a required C* surjection. O

As observed in [Ba] every superreflexive Banach space admits a sequence requested in Definition 1; hence,
superreflexive spaces admit (B) norms. By an application of Theorem 1, we obtain:

Corollary 1. The assertion of Theorem 1 holds for an arbitrary separable Banach space Z that admits a
noncompact continuous operator into a separable superreflexive Banach space X. In particular, this is true
if:Z = Xw; here W is a noncompact bounded balanced convex subset of X and Xy is the completion of
the space whose norm is given by the Minkowski functional of W.

Since the "identity’ operator of C[0, 1} into L?[0, 1] is noncompact, Theorem 1 holds for C|[0, 1]. Combining
our Theorem 1 and Remark 1, we obtain:

Corollary 2. For every p > 1 and n € N with 2n > p, the incomplete normed space (£r, W8 ) admits a C™
sujection g onto every separable Banach space Y so that g'(z) is a rank-1 operator for every z. [

Remark 2. The construction used in Theorem 1 provides a ”uniform” closed copy A of the irrationals P in
(X,w). Since g(A) =Y, we see that in infinite dimensions it is possible to map P, a zero-dimensional space,

onto Y in a "C*” way.

We wonder whether this pathology would remain true if we wanted to map P onto Y in a "real-analytic”
way. In general, real-analytic (polynomial) surjections exist in infinite diemsnions:

- Example 2. The map (z,) — (z3) is a polynomial sending £ onto ¢*.

Remark 3. If, in Definition 2, we replace ?C*” by "CP”, p > 1, then the assertion of Theorem 1 holds
true with C*° replaced by C?.

Condition (2) is crucial for the technique described in Theorem 1 to work. The existence of a CP bump
function on X does not, in general, imply that such a function has the pth, or even the first, derivative
bounded. (This can be equivalently phrased as follows: if ¢ is a C' bump function then ¢’ does not
necesarily give rise to a bump function. If ¢’(X) is bounded in X* then, for every z € X \ Neex ker ¢'(z),
the function z — ¢'(z)(2) can easily be modified to a bump function on X.) The case of C! weak bump
functions is simple. Namely, by Joseffson-Nissenzweig theorem, every infinite-dimensional separable Banach
space X admits an injective noncompact continuous linear operator T in cy. On the other hand, ¢y admits
a C' norm | - || (even, a C* norm). Letting w(z) = ||Tz||, one can easily see that a C! version of (2’) holds.
We can recover another main result of [Bal: '
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Corollary 3. Every infinite-dimensional separable Banach space X admits a C1 (Lipschitz) surjection g
onto an arbitrary separable Banach space Y for which ¢/(z) is a rank-1 operator. [J

On the other hand, no C? bump function, 2 < p < oo, on ¢g has its second derivative bounded and the
techinque of Theorem 1 fails. Let us restate (after [Ba]) an intriguing problem:

Question. Is there a surjective C?, 2 < p < oo map of ¢y onto £27?

3. Strange bump functions. For a Banach space X, by L*(X) we denote the space of k-linear symmetric
continuous operators of X* into R (hence, L1(X) = X*). Clearly, if X is finite-dimensional then for any
smooth bump function b, the set b(*)(X) is a bounded subset of L¥(X). As shown in [AD], this may
dramatically change for some infinite-dimensional spaces X to the effect that &’ may be surjective. We
extend that result as follows:

Theorem 2. Suppose that a separable Banach space X admits a (B) norm w w/r to a suitable C? weak
bump function p, 1 < p < oco. Then there exists another CP weak bump function 1 on X such that

P(X) = LE(X) for every 1 < k < p.

Proof. For simplicity we only consider the case of p = 2; we will follow the lines of the proof of Theo-
rem 1. Partition N into two countable sets N; and N,. Hence, (z,) = (2s)seny U (2t)ten,. For sequences
(s1,52,583,...) € N7 and (t1,t2,3,...) € N§', we have (oo T3, Ts, . . . T, B, = {p} and N1 T6 T, - - Ty B, =
{q}, where p = 3772 5712, € X and ¢ = 72 e¥7 1z, € X, and [p|, |lg|]] < 1. Define also @,,,,. s, and
®t1ty...t, as in the proof of Theorem 1. An application of (2) yields that there exists 1 < M}, < oo such that

68, (@) < ™My and o, (2)]] < e My
for every ||z|l < k and 0 < i < 2. Pick sequences (z}) and (I;) in the unit balls of X* and L2(X), repectively.
Choose 8 so that 0 < 6 < 2752601, §; = 1 and define :

f]i(z) Z OkPsyss...s5 (I)(ml‘k(z) +1)

(s1,52,...,58)ENF

and
Ly (z,z)+1 -
@)= Y Gun @O

(t1,t2,...,tx)ENE

It easily follows that f = 2, Y% fi is a C? function supported by B,,. For every = € 0T5,Ts, ... Ty, B.,
and ¢’ € 0T, T, ... Ty, B, we have f/(z) = 3, + 6237, +...6xz%, and f7(z') = b, + Oals, + . .. Oxl, . Now,
for fixed z* and [ of the unit balls of X* and L2(X), respectively, we find sequences (s1,52,83,...) € NY and
(t1,ta,t3,...) € N, and (2%, ) and (I;,) subsequences of (z*) and (l;), respectively, so that Y ohey Okl = 2*
and Y072 Oxly, = 1. It follows that for p = > o | e 1z, and g = 352, €571z, , we have f'(p) = z* and
f"(g) = l. The function f is a weak bump function such that f’(X) contains the unit ball in X* and 7 (X)
contains the unit ball in L2(X). Now, it suffices to define 9(z) = Yo nf(EE=). O

We claim that the space cg does not admit a C? w-bump function. If it did then, by Theorem 2, there
would exist a C? function 1 on co with 9’(co) = £!. This is however impossible because, by a result of [Hal,
for any C? function p on ¢y, p’ locally is a compact subset of £!; hence ¥’'(X) cannot be £'. Here are a
couple of observations in case m = 1. Firstly, a similar argument that has justified Corollary 3 yields:

Corollary 4. Every infinite-dimensional separable Banach space X admits a C' weak bump function P
with ' (X) = X*. O

Secondly, the following fact stengthens a result of [AD]).
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Corollary 5. If an infinite-dimensional separable Banach space X admits a C' bump function then it also
admits a bump function v for which ¢/(X) = X*.

Proof. Let w be a C°° weak (B) norm on X used in Corollary 3. Since X admits a C* bump function, by a
result of [DGZ, II, Proposition 5.1] there exists a functional p : X — [0, 00) that is C! away from the origin
and satisfies p(tz) = tu(z) forallt > 0 and = € X, and ||z]| < p(z) for all z € X. Then 4, = {z € X|u(z) <
1} is starlike body that is contained in the unit ball of X. Let H be a (radial) C? selfdiffeomorphism of X
that sends A4, onto the unit w-ball. With the help of H we will modify the construction of f} (now denoted
by f) from the proof of Theorem 2. Formally, fi(z) = D (51,520 05k)E NE 0k Psy,s,....5x (T) (75, (T) + 1), where
Por,2,005x (B) = Psy 2,0 (H(T)). Wehave ||Gg, o, o, (@)l < ™My || H' ()] for every  with ||H (z)|| < k.
It follows that locally f = 272 | fx is a C! function. That same argument used in the proof of Theorem 2
works to show that for a given z* € X*, ||lz*|| < 1, f/(H~1(p)) = z*. It is also clear that the support of f is
contained in the unit ball of X. Finally, as in the proof of Theorem 2, we let ¥(z) >, ~, nf(¥==). O

REFERENCES

[AD] D. Azagra and R. Deville, Starlike bodies in Banach spaces and a new characterization of separable Asplund spaces,
preprint.

[Ba] S. M. Bates, On smooth, nonlinear surjections of Banach spaces, Israel J. Math. 100 (1997), 209-220.

[DGZ] R. Deville, G. Godefroy and V. Zizler, Smoothness and Renormings in Banach Spaces, vol. 64, Pitman Monographies
and Surveys in Pure and Applied Mathematics, John Wiley & Sons Inc., New York, 1993.

[Ha] P. Héjek, Smooth functions on cg, Israel J. Math. 104 (1998), 17-27.

DEPARTMENT OF MATHEMATICS, PITTSBURG STATE UNIVERSITY, PITTSBURG, KS 66762
E-mail address: tdobrowo@mail.pittstate.edu



A STRONGER LIMIT THEOREM IN EXTENSION THEORY

LEONARD R. RUBIN

ABSTRACT. This work describes an improvement to a limit theorem which has been proved by
the author and P. J. Schapiro. In that result it was shown that for a given simplicial complex
K, if an inverse sequence of metrizable spaces X; each has the property that X;7|K]|, then it
is true that X7|K]|, where X is the limit of the sequence. The property that X7|K| means
that for each closed subset A of X and each map f : A — |K|, there exists a map F : X — |K]|
which is an extension of f. This is the fundamental notion of extension theory.

The version put forth herein is stronger in that it places a requirement only on the bonding
maps, but one which is necessarily true in case each X;7|K]|.

1. Introduction. The notion of extension theory is a generalization of dimension theories
such as covering and cohomological dimensions; good sources for extension theory can be
found in [DD] and [Sh]. Under the light shed by extension theory, it is frequently possible
to obtain theorems which apply to dimension theory, but which are much more general.
The limit theorem ([RS]) for inverse sequences of metrizable spaces in extension theory is
such an example. We have proved [Ru2| a stronger version of that limit theorem.

Recall that if K is a CW-complex and X is a space, then X7K means that for each
closed subset A of X and map f: A — K, there exists a map F : X — K which is an
extension of F'. This is the fundamental notion of extension theory.

For information about inverse sequences and their limits, one may consult [Du]. When
K below is a simplicial complex, then |K| will be given the weak topology determined by
K.

The result in [RS], Theorem 3.1, goes this way:

1.1. Theorem. Let K be a simp]ici31 complex and X = lim X, where X = (X, p;;+1,N)

is an inverse sequence of metrizable spaces X; and X;7|K| for all i € N. Then X7|K|. O
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This eclipses the original limit theorem of Nagami for covering dimension dim, Remark

27.9 of [Na2] (see also [Nal]). We state it here for convenience.

1.2. Proposition. Let n € Z and X be the limit of an inverse sequence of metrizable

spaces X; with dim X; < n for all i. Then dim X < n.

The reason 1.1 is strbnger is that, as is well-known, for a metrizable space X, dim X < n

if and only if X7S™.

In order to state the improved version, let us first give a definition taken from a notion

previously introduced by A. Dranishnikov.

1.3. Definition. Let X = (X;,p;i+1,N) be an inverse sequence and K be a CW-complex.
We shall write that XTK if for each i € N, closed subset A of X;, and map f: A — K,
there exists j > i and a map g : X; — K such that g(z) = fop; ;(z) for every x € pi"jl(A).

The next lemma is easy to prove.

1.4. Lemma. Let X = (X;,p;i+1,N) be an inverse sequence and K be a CW-complex.
Then X7K if and only if for each i € N, closed subset A of X;, and map f : A — K, there
exists j > 1 such that for all k > j, there is a map g : Xy, — K such that g(z) = f o p; x(x)

for every z € p;, (4). O
We prove the following.

1.5. Theorem. Let X = (X;,p;:y1,N) be an inverse sequence of metrizable spaces, K

be a CW-complex such that X7K, and X = limX. Then X7K.

Since every CW-complex K is homotopy equivalent to |Kjp|, for some simplicial complex
Ky, and every CW-complex is an absolute neighborhood extensor for metrizable spaces,

then Theorem 1.5 is equivalent to our main result,

1.6. Theorem. Let X = (X;,p; z‘+1,N) be an inverse sequence of metrizable spaces X;,

K be a simplicial complex such that X7|K|, and X = limX. Then X7|K]|.

Surely Theorem 1.6 implies Theorem 1.1.

The following is a seemingly weaker theorem.
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1.7. Theorem. Let X = (X, p;i+1,N) be an inverse sequence of metrizable spaces X;
with surjective bonding maps p;;;1, K be a simplicial complex such that X7|K|, and

X =1imX. Then X7|K]|.
But it is not weaker because of the ensuing fact.
1.8. Propositioh. Theorem 1.7 implies Theorem 1.6.

. Proof. Let X be an inverse sequence as in Theorem 1.6. We begin a recursive process. Let
X7 = Xj and put Y1 = X{\p;2(X32). There exists a metrizable space X; = X, U Zy where
X2 is an open and closed subspace of X3, and Z, is a discrete subspace of X3 having the
same cardinality as Y.

Define p7, : X5 — X7 so that p},| X2 = p12 and pj,(Z2) = ¥1. Such a procedure may
be continued recursively resulting in an inverse sequence X* = (X, p};, ;,N) of metrizable
spaces so that for each 7 € N,

(1) p}iyq is surjective,

(2) X, is an open and closed subspace of X7,
(3) Pfit1lXit1 = piig1: Xoy1 — X;, and,

(4) Xr\X; is a discrete subspace of X;.

Using (2)—(4), along with the information X7|K]|, the reader will easily check that
X*7|K|. Let X* =1lim X*. By Theorem 1.7, X*7|K|. Of course X* is a metrizable space;
one sees from (2) and (3) that X embeds as a closed subspace of X*. So X7|K|. [

Such a result, i.e., Theorem 1.7, for inverse systems, even for approximate inverse sys-

tems ([MR], [MW]), of compact spaces is true as has been proved in [Rul].

- 2. Extension of Results.

In recent work, [Ma], S. Mardesié has been able to improve the previously stated limit

results. To see what his work yields, let us make one definition.

2.1. Definition. A Ti-space X is called stratifiable provided for each open subset U of

X there has been assigned a sequence (Uy,) of open subsets of X in such a manner that:

(S1) U, cU,
(S2) | U =U, and
n=1
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(83) U C V implies that U, C V.

It turns out that every stratifiable space is paracompact and perfectly normal and that
stratifiable spaces are hereditarily stratifiable. In some sense, stratifiable spaces are a gen-
eralization of metrizable spaces. For example, it is true that the limit of an inverse sequence
of stratifiable spaces is stratifiable. Polyhedra form an important class of stratifiable spaces
(polyhedron means |K| for a simplicial complex K with the weak topology).

‘The main theorem of [Ma] is,

2.2. Theorem. Let X = (X;,p;it+1,N) be an inverse sequence of stratifiable spaces, K

be a CW-complex such that X7K, and X = limX. Then X7K.

As in the previous work with metrizable spaces, one may also replace the CW-complex

by a polyhedron. Thus we also have an equivalent theorem.

2.3. Theorem. Let X = (X;,p;;1+1,N) be an inverse sequence of stratifiable spaces X;
with surjective bonding maps p;;+1, K be a simplicial complex such that X7|K|, and

X =1limX. Then X7|K|.
One interesting corollary of this work is the following.

2.4. Corollary. Let X = (X;,p;it+1,N) be an inverse sequence of polyhedra with dim X; <
n for each v and X =limX. Then dim X < n.

In proving Theorem 2.3, the author introduces a new concept called a filtered factor-
ization. This enables him to give a much more descriptive proof than had occured in its
predecessors. We shall not try to lay out in this exposition how the technique of filtered
factorizations operates. We remark though, that it appears to apply to open sets U in the
- limit and how they relate to certain open sets in the coordinate spaces X;. It seems to us
that such a concept would be even more powerful if it could be stated without reference
to the sets U, but rather strictly in terms of the coordinate spaces X; (and of course the
bonding maps in the sequence). With this in mind, there still could be some new, stronger

results of this type to be found in future research.
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Title: Some Remarks on Homogeneous Continua
by R. D. Edwards

Abstract: An important issue in topology (increasingly so, in my
opinion) is to understand (and, ideally, to locally "classify") those
continua which are homogeneous. Familiar examples include
manifolds, both classical and Menger, and (conjecturally)
ENR-homology manifolds having the DDP. Also of interest is the
non-locally-connected side of the problem, particularly the
following question (raised by K. Kuperberg around 1980, and
perhaps by others earlier) :

Question: Does there exist a homogeneous continuum which is
path-connected but not locally-(path-)connected? That is: Does
there exist a homogeneous path-connected non-Peano continuum?
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On Computing the Geometric Index

Kathryn B. Andrist and David G. Wright
October 19, 2000

Abstract

We present a simple method for computing the geometric index of a knot or a
link in a solid torus.

1. INTRODUCTION AND STATEMENT OF RESULT

Throughout this paper we will be working in the piecewise-linear category. We
consider a knot or link J that lies in the interior of a solid torus 7" with meridional
disk D so that J pierces D at each point of J N D. The closure of J — D is the union
of arcs Ay, Ag,--+,Am,B1,Bs, -+, By, and C1,Cy,---,C,. For each i,1 < i < m,
the arc A; begins and ends on one side of D while the arc B; begins and ends on the
other side of D and no merdional disk of 7", which misses D, also misses A; U B;. For
each j,1 < j < n, the arc C; begins and ends on opposite sides of Das in Figure 1.
Under these conditions we conclude that the geometric index of J in T is equal to

the number of points in J N D. This number is, in fact, 2m + n.

2. DEFINITIONS

We begin by reviewing some basic definitions. For a manifold M, let intM and
OM denote the interior and boundary of M, respectively. For a set 4, let |A| denote
the cardinality of A. A solid torus is a space homeomorphic to the product of a
2-dimensional disk and a circle. Recall that a meridional disk for a solid torus T is a
disk D in T so that DN JT = JD and 8D does not separate 7. If J is a knot (a

35




On computing the geometric index

simple closed curve) in the interior of a solid torus T, the geometric index N (J,T) of
J in T' is defined to be the minimum of |J N D| where D ranges over all meridional
disks [2]. By allowing J to be a link (finite disjoint union of simple closed curves),

we can similarly define the geometric index of a link in T

3. SOME LEMMAS

In this section we state some lemmas that will lead to the proof of our proposition

on computing the geometric index. The sets J, D, and T are as in Section 1.

LemMA 1. If K is a meridional disk that misses D, then |J N K| > |J N D].

Proor. For each 4,1 < i < m, either A; or B; must meet K at least twice. For
each j,1 < j < n, C; must meet K at least once. So |[JNK|>2m+n = |JﬂD|.//

LEMMA 2. Let k be a disk that lies in intT with kN D =0k and 0kNJ = 0. Letd
be the disk bounded by Ok in the disk D. Then |J Nk| > |JNd]|.

PROOF. Suppose, to the contrary, that |J N k| < |J Nd|. Then the meridional disk
(D —d) Uk meets J in fewer points than D. This disk can be pushed off D so that
it still meets J in fewer points than D. But this contradicts Lemma 1. /

LEMMA 3. Suppose K is a meridional disk in T so that KNOT = 0K, 0KNAD = §,
K s in general position with respect to D, and JNKND = (. Then |[JNK| > |JND].

ProoF.  The proof is by induction on the number of components of K N D. If
K ND = (, then it is true by Lemma 1. Now consider a simple closed curve
component « of K N D that is ihnermost on K. Then o bounds a disk & in K and a
disk d in D. By Lemma 2 the (possibly) singular disk (K —k)Ud meets J in no more
points than K. The singularities of (K — k) U d consist of disjoint double curves that
can be cut apart to give a non-singular disk K’ that meets J in no more points than
K [1]. By pushing K’ slightly off D we obtain a disk that satisfies the hypothesis
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of the Lemma and D N K’ has fewer components. Therefore, K’ and hence K must

meet J in at least as many points as D. /

4. THE MAIN THEOREM

THEOREM 1.  Let J be a knot or link that lies in the interior of a solid torus T
with meridional disk D so that J pierces D at each point of J N D. The closure of
J — D is the union of arcs Ay, Ag,--+,Am, By, By, -+, By, and C1,Cqy---,Cy. For
each 1,1 <1 < m, the arc A; begins and ends on one side of D while the arc B; begins
and ends on the other side of D and no merdional disk of T, which misses D, also
misses A; U B;. For each j,1 < j < n, the arc C; begins and ends on opposite sides
of D. Under these conditions we conlude that the geometric index of J in T 1is equal

to the number of points in J N D. This number is, in fact, 2m + n.

PROOF. Let K be a meridional disk of T so that |J N K| is minimal. Without loss
of generality, we may assume that the disk K satisfies the hypothesis of Lemma 3.

An application of Lemma 3 givés the result. /

Figure 1
7
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ON RELATIVE CONNECTEDNESS
HANSPETER FISCHER AND DAVID G. WRIGHT

ABSTRACT. We introduce relative versions of connectedness where
A C B CY are topological spaces. We define what it means for
A to be path-connected in B, A to be one-ended in B relative to
Y, A to be simply connected in B, and A to be simply connected
at infinity in B relative to Y. When a group G acts on a space Y,
we give conditions on G and Y that yield pairs of connected sets
that have the relative versions of connectedness.

1. DEFINITIONS AND NOTATION

If W is a subset of a topological space X, we let int W and OW
denote the interior and boundary of W in X, respectively.

Definition 1.1. A topological space X is said to be locally simply
connected if for each x € X and neighborhood U of z; there is a
neighborhood V' of z with V' C U so that loops in V' are inessential in
U.

Let A C B C Y where Y is a topological space and A, B are sub-
spaces.

Definition 1.2. The set A is said to be path-connected in B if for each
pair of points p, q € A, there is a path from p to ¢ which lies in B.

Definition 1.3. The set A is said to be one-ended in B relative to Y
if A does not-lie in a compact subset of Y and for each compact set
C C Y, there is a bigger compact set D C Y so that A\D is path-
connected in B\C. We say that Y is one-ended if A = B =Y in the
above definition.

Definition 1.4. The set A is said to be simply connected in B if each
loop in A is inessential in B.

Definition 1.5. The set A is said to be simply connected at infinity
in B relative to Y if A does not lie in a compact subset of Y and for
each compact set C' C Y, there is a bigger compact set D C Y so that
A\D is simply connected in B\C. We say that Y is simply connected
at infinity if A= B =Y in the above definition.

20



HANSPETER FISCHER AND DAVID G. WRIGHT

Definition 1.6. If K is a set of homeomorphisms of a topological space
S and A C S, then

K(A) = | J{k(A)|k € K}.

Definition 1.7. A group G of homeomorphisms of a topological space
X is said to act properly discontinuously if for every compact C C X,
{g € G|g(C) N C # 0} is finite.

Definition 1.8. A group G of homeomorphisms of a topological space
X is said to act cocompactly if there is a compact set C C X, so that

G(C) = X.
2. GROUPS ACTING ON SPACES

For this section, let G be a group that acts properly discontinuously
on the connected, locally path connected, locally compact, Hausdorff
spaces X and Y, respectively. Assume further that G acts cocompactly
on X. Observe that G is necessarily finitely generated.

Theorem 2.1. For every compact set A C Y, there is a bigger compact
set B CY such that G(A) is path connected in G(B).

Proof. Let E C X be compact such that G(int E) = X. Let a compact
set A C Y be given. Choose an open, path connected set B, C Y so
that A C B,, the closure B of B, is compact, and g;(B,) N ga2(B,) # 0
whenever g1,g2 € G and g1(F) N g2(F) # 0. (This is possible since
{9 € GIENg(E) # 0} is finite.) If p,qg € G(A), then p € g,(A) and
q € gq(A) for some g,, g, € G. Pick points p’ € g,(E), ¢’ € g,(E), and
a path 7' : [0,1] — X from p’ to ¢’. Choose a positive integer n such
that for each ¢ € {1,2,--- ,n}, thereisa g; € G such that v'([£2, £]) C
gi(int E). Now we have g,(B,) N g1(B,) # 0, 94(Bo) N gn(B,) # 0, and
9i(Bs) N giv1(B,) # 0 for all ¢ € {1,2,--- ,n — 1}. Since B, is path
connected, there is a path v : [0,1] — g,(Bo) U g1(B,) U g2(Bo) - -+ U
9n(Bo) U g4(B,) C G(B) such that y(0) = p and (1) = gq. O
Theorem 2.2. Suppose X is one-ended. Then for every compact set
A CY there is a bigger compact set B C'Y so that G(A) is one-ended
in G(B) relative to Y .

Proof. The proof is a relative version of Theorem 2.1. Here are the
details. Let £ C X be compact such that G(int ) = X. Let a compact
set A C Y be given. Choose an open path connected set B, C Y so
that A C B,, the closure B of B, is compact, and g;(B,) N g2(B,) # 0
whenever g1, 92 € G and g1(E) Nga2(E) # 0. :
Now let C C Y be compact. Let C’ be the compact subset of X
given by C' = | J{g(E)|lg € G,g(B) N C # 0}. Let D’ be a compact
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subset of X so that X\D’ is path-connected in X\C’. Finally, define
- the compact subset D = J{g(B)|g € G and g(E) N D' # 0}.

Let p and g be points in G(A)\D, then there are g,, g, in G such that
P € gp(A) and q € g,(A). Hence, g,(E) N D' = () and gq(E) ND =4§.
Pick points p’ € g,(int E) and ¢ € g,(int E), and a path v’ : [0,1] —
X\C' = X\ U{g (Blg € G,9(B)NC # 0} < U{g(int E)]g € G, 9(B)N
C = 0} from p’ to ¢’. Choose a positive integer n such that for each
i € {1,2,--- ,n}, there is a g; € G with g;(B) N C = 0 such that
(52, 2]) C gi(int E). Now we have g,(B,) N g1(B,) # 0,9,(B,) N
9n(B,) # 0, and gi(B,) N giz1(B,) # 0 for all i € {1,2,--- ,n — 1}.
Furthermore, g,(B)NC =0, g,(B)NC =0, and g;(B) N C = 0, Since
B, is path connected, there is a path v : [0,1] — ¢,(B,) U ¢:1(B,) U
92(B,) U -+ U gn(B,) U g4(B,) C G(B)\C such that v(0) = p and
(1) =gq O

Lemma 2.3. Suppose Z 1is a simply connected, locally simply con-
nected, locally path connected, locally compact Hausdorff space. Then
for every compact set C C Z there is a compact set D C Z such that
C C D and C is simply connected in D.

Proof. Choose open subsets Vo, Vi, -+, Vi, Uy, Ui, - - -, Uy of Z such that
C c U{Uili =0,1,--- ,k}, U; C V; and loops in U; contract in V; for
all 7, and such that each V; has compact closure. Choose a finite col-
lection W of open path connected subsets of Z such that C C (JW
and for each pair Wi, Wy € W with W; N W, # (), there is a U; such
that Wy, U Wy C U;. We justify the existence of such a collection
W as follows. Let C' be a compact subset so that C C int C’ and
C'c HUili = 1,2,--- k}. Let ¢; : C" — [0,1] for i = 0,1,...k
be a partition of unity dominated by {U;}; i.e., each ¢; is continu-
ous, ¢;1(0,1] C U;, and Ef:o ¢i(z) = 1 for each z € C'. Define a
map F' from C’ to a k-simplex oy = (09, v, ... v;) by sending z € C’ to
F(z) = Zf:o @i(z)v;. Let W be a covering of o}, by finitely many open
sets so that for each pair of open sets W{, W} € W’ with W] NW; # 0,
W] UW;j lies in the open star S; of v; for some 4. The path components
of {F~Y(W")Nint C'|W' € W'} cover C and any two path components
of this collection which meet must lie in some U; since F~(S;) C U; -
for each i. The collection W is given by choosing finitely many of the
path components of {F~(W’) Nint C'|W' € W'}.

Define a graph I as follows. For each W € W take a vertex v(W).
Join two distinct vertices v(W) and v(W’) by an edge e(W, W’) when-
ever WN W’ # (). Choose a map p: I' — Y such that u(v(W)) € W
and p(e(W,W’)) ¢ WU W’ for all W,W’' € W. Since Y is simply
connected, there is a homotopy from x to a constant map. Choose
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the compact set D such that it contains the closure of each V; and the
image of this homotopy. A loop @ in C can now be subdivided into
finitely many paths «; so that each «; lies in an element W; € W. If we
connect the endpoints of each a; to u(v(W;)), we produce a bootstrap
pattern between o and I' whose loops lie alternately in a member of
W and in the union of two intersecting members of WW. This allows us
to homotope « into p(I") within D. From there we can contract it to
a point within D. ‘ ; 4 -0

In the proof of the next theorem we use the following notation. For
a positive integer n define the set

g(n)z{{i} < [1,2:’—1}116{0,1,--- )i e{01,- - ,n—l}}

n

u{[%zzl} x{i}ue{o,l,... n—1}5€{0,1,--- ,n}}

We also deﬁne B( ) = {P € Q(n)[P C 9[0,1]?}, Z(n) = G(n)\B(n),
and D(n) = {£,2,... 2=} x {12 ... ==l} Furthermore forz €

[0,1]2 we define N (z, n) {P € Q(n)]x € P}.

Theorem 2.4. Suppose both X and Y are simply connected and that
Y is locally simply connected. Then for every compact set A C'Y there
is a compact set B CY such that A C B and G(A) is simply connected
in G(B) relative to Y.

Proof. Let a compact set A C Y be given and let A, C Y be a compact
set so that A C int A,. We choose a path connected, open set £, C X
such that the closure E' of E, is compact, G(E,) = X, and in addition
91(Eo) N g2(E,) # 0 whenever gi,g2 € G and g1(A4) Nga(A4) # 0.
Choose an open, path connected set F, C Y so that the closure F' of
F, is compact, Ay C F,, and ({g(Fo)lg € S} # @ whenever S C G
and ({g(E)|lg € S} # 0. Put Fy = | H{g(F)lg € G,FNg(F)#0 and
g (F)Ng(F) # 0 for some ¢’ € G}. By Lemma 2.3, there is a compact
subset B C Y such that Fy C B and F, is simply connected in B.

Let v : 8]0,1]* — G(A) be a loop. Since v(8[0,1]?) C G(int A)
there is a positive integer n such that for all P € B(n) thereisa gp € G
such that y(P) C gp(int A;). We now copy this loop in X; i.e., we
choose a loop v’ : 9]0, 1]> — X with v'(P) C gp(E,) for all P € B(n).
Since X is simply connected, we may extend v’ to f' : [0,1]? — X.
Since G(FE,) = X, there is a positive integer m (m > 2) such that for
all P € G(nm) there is a gp € G such that f'(P) C gp(E,).

We now extend v to a map f from 8[0,1]2 U D(nm) to G(F,) such
that f(z) € N{gp(F,)|P € N(z,nm)} for all z € D(nm). Next extend
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f to a map from |JG(nm) to G(F,) by sending P € Z(nm) into gp(F,)
in case P C int [0,1]* and by sending P into gp(F,) U go(F,) for some
Q € B(n) with PN Q # 0 in case P ¢ int [0, 1]%. ‘
Finally, since for all 4, j € {0,1, -+ ,nm—1} thereisa P € G(nm)such
that f (0 [-L, 2] x [-L, ZH]) < gp(F,), we can, by the choice of B,
extend f to a map from [0, 1]? into (J{gp(B)|P € G(nm)}. Hence, v is
inessential in G(B) relative to Y. O

Theorem 2.5. Suppose X is simply connected at infinity and Y is
simply connected and locally simply connected. Then for every compact
set A C Y there is a compact set B C Y so that G(A) is simply
connected at infinity in G(B).

Proof. We have to change the proof of Theorem 2.4 only slightly. The
construction of B in that theorem did not use the simple connectivity
of X. We use the same B and the same setup. Let C C Y be compact.
Let C" = | J{g(E)|g € G, g(B)NC # 0}. Choose a compact set D' C X
so that X\ D’ is simply connected in X\C". Let D equal the compact
set CUU{g9(41)|g € G,g9(E)ND’ # 0}. Now if v : 9[0,1]> — G(A)\D
is a loop, then v lies in | J{g(int 4,)|g € G, g(E) N D' = 0}.

As in the proof of Theorem 2.4, we copy this loop in X. We do this
by first choosing a positive integer n so that for all P € B(n) there is a
gp € G such that v(P) C gp(int A;). Notice that for each P € B(n),
we have gp(E,) N D' = (. We choose a loop v’ : 9[0,1]> — X\D’
with v'(P) C gp(E,). Then v’ extends to f/ : [0,1]> — X\C' =
X\ U{g(B)lg € G, g(B)NC # 0} C X\ U{g(Eo)lg € G,9(B)NC # 0}.

Since G(E,) = X there is a positive integer m (m > 2) such that
for all P € G(nm) there is a gp € G such that f/(P) C gp(FE,).
As in the proof of Theorem 2.4, we use G(nm) and the map f’ to
extend the loop 7. Recall from the proof of Theorem 2.4 that the
map 7 gets extended to f : [0,1]* — (J{gp(B)|P € G(nm)} where
f'(P) C gp(E,). However, if f'(P) C gp(E,), then gp(B) N C = f;
otherwise, f'(P) C C'. Therefore f maps into G(B)\C. O

The following two well-known theorems follow from Theorem 2.2 and

Theorem 2.5. They justify the definitions of a group being one-ended
and simply connected at infinity.

Theorem 2.6. If a group G acts properly discontinuously and cocom-
pactly on the connected, locally path connected, locally compact Haus-
dorff spaces X and Y, then X is one-ended if and only if Y is one-
ended.

Theorem 2.7. If a group G acts properly discontinuously and cocom-
pactly on the connected, simply connected, locally path connected, locally
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simply connected, locally compact, Hausdorff spaces X and Y, then X
is simply connected at infinity if and only if Y is simply connected at
nfinity.
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2-GROUPS AND APPROXIMATE FIBRATIONS

ROBERT J. DAVERMAN

For the past ten years a central thrust of my research has involved a quest to
identify homotopy types through which a proper map defined on an arbitrary manifold
of a given dimension can be quickly recognized as an approximate fibration, simply
because all point preimages have the specified homotopy type. Often the goal has
been to present closed n-manifolds N which force proper maps p : M — B to be
approximate fibrations, when M is an (n + 2)-manifold and each p~!(b) has the
homotopy type (or, more generally, the shape) of N. Such a manifold N is called a
codimension-2 fibrator. A theme has been that, perhaps contrary to intuition, most
manifolds are codimension-2 fibrators; that was even the explicit title of my talk at
this conference back in 1993. '

The work outlined here was done jointly with Yongkuk Kim, who just completed
his Ph.D. at the University of Tennessee. .

1. PRELIMINARIES

Let N™ be a closed manifold. A proper map p: M — B is N™-like provided each
fiber p~1(b) is shape equivalent to N™. For simplicity, we shall assume that each fiber
p~1(b) in an N™-like map to be an ANR having the homotopy type of N™.

A map f: X — Y between ANRs is called an approzimate fibration if it satisfies
an approximate version of the familiar Hoinotopy Lifting Property used to define
the familiar class of fibrations. This class, introduced and studied by Coram and
Duvall [2] [3], seems to carry all the same useful algebraic features held by fibrations.
An n-manifold N is called a codimension-k (orientable) fibrator if every N-like map
p: M — B from an (respectively, orientable) (n + k)-manifold M onto a finite-

dimensional space B is an approximate fibration (and B necessarily is an ANR).
Research supported in part by NSF Grant 9401086.
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The issue here is codimension 2, and thus the basic objects under scrutiny are N™-
like maps p : M — B defined on (n+2)-manifolds. When N™ is orientable, one speaks
of the continuity set of p, namely, the collection C of all b € B for which there exist
a neighborhood U of p~1(b) in M and a (shape) retraction U — p~1(b) that restricts
to a degree one mapping p~1(b) — p~1(b) for all &' with p~1(¢') C U. Independent
of this orientability assumption, one can always speak of the mod 2 continuity set of
p, namely the set C' where the same statement holds when degree is computed with
Zo-coeflicients. The following fact, stemming from analysis by Coram and Duvall [4],

is central to all investigations of codimension-2 fibrators.

Proposition 1.1. [5, Proposition 2.8] In the setting just described, if M and N are
orientable, then the space B is a 2-manifold and D = B\ C is locally finite in B, where
C represents the continuity set of p. Moreover, if either M or N is nonorientable, B
is a 2-manifold with boundary (possibly empty) and D' = (int B) \ C’ is locally finite

in B, where C' represents the mod 2 continuity set of p.

Call a closed manifold N Hopfian if it is orientable and every degree one map
N — N inducing a 7;—isomorphism is a homotopy equivalence. Generally, call
N s-hopfian if N is hopfian, where N is the covering space of N corresponding to
H = ;e {H: : [m(N): H,-] = 2}, when N is non-orientable, and N itself is hopfian
otherwise; this is a variation on the strongly hopfian notion intoduced by Kim [9].

A group T is said to be hopfian is every epimorphism I"' — I is an isomorphism;
furthermore, I' is said to be hyperhopfian if every homomorphism ¢ : I' — I’ with
©(T") normal and I'/y(T") cyclic is an isomorphism (onto).

Imporﬁant connections involving these hopfian concepts are spelled out in the re-

sults below:

Proposition 1.2. Let N be a Hopfian n-manifold having hopfian fundamental group.
Then every N-like map p: M — B defined on an (n+ 2)-manifold M is an approzi-

mate fibration over its continuity set.

Proposition 1.3. [10, Theorem 3.3] Every closed s-hopfian manifold N such that

m1(N) is hyperhopfian is a codimension-2 fibrator.
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2. MAIN RESULTS

Theorem 2.1. Every closed n-manifold N whose fundamental group is an Abelian

2-group is a codimension-2 fibrator-

N. Chinen [1] proved that a closed manifold IV is a codimension-2 fibrator if 7, (V) is
a finite product of copies of any fixed cyclic 2-group,and he raised the question which
is answered by Theorem 2.1. He also asked whether the same fibrator conclusion
would hold for manifolds whose fundamental groups are 2-groups. |

Recent examples of mine [7] illustrate the need to concentrate on 2-groups. For each
odd integer m > 2 there are closed manifolds Ny, = L, , X S3 (L, denotes a Lens
space) with m (N ) cyclic of order m and Ny, not a codimension-2 fibrator; by taking
products with, say, other Lens spaces, one can produce codimension-2 nonfibrators
having fundamental group isomorphic to any finite Abelian group except a 2-group.

Finiteness of 71 (IV), not merely H;(N), is imperative in Theorem 2.1, as the well-
known nonfibrator RP"# RP™ reveals. The remaining results stated in this section
involve H;(N) conditions leading to fibrator properties.

Theorem 2.2. Let N be a closed hopfian n-manifold such that m;(N) is hopfian
and Hy(N) = Zy: for some t. Then N is a codimension-2 orientable fibrator. If, in
addition, the 2-1 cover F/Z of N is a codimenion-2 orientable fibrator, then N is a

codimension-2 fibrator.

Theorem 2.3. Let N be a closed n-manifold N for which m(N) is finite and H; (N) =
Zy & --- D Zy. If N is orientable, it is ‘a codimension-2 orientable fibrator; if the
cover ﬁ; of N corresponding to the commutator subgroup of m1(N) happens to be a

codimension-2 orientable fibrator, N is a codimension-2 fibrator.

Lemma 2.4. IfT is a finitely generated residually finite group having abelianization

Zg4, where the order of no element of T divides d, then T' is hyperhopfian.

Theorem 2.5. Suppose N isa closed, s-hopfian n-manifold such that Hy(N) is cyclic
of order d and m,(N) s a residually finite group, no element of which has order divid-
ing d. Then N is a codimension-2 fibrator. In particular, every aspherical manifold

N wnth residually finite m1(N) and finite cyclic H;(N) is a codimension-2 fibrator.
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Cyclicity of H;(N) is critical to Theorem 2.5, which does not hold for H;(N) an
arbitrary 2-group, not even for a direct sum of copies of Z;. We have an example

sharpening the contrast between 2.3 and 2.5.

Example. A closed n-manifold N, n > 4, which fails to be a codimension-2 fibrator
but Hy(N) = Zy @ Z; and m1(N) is torsion free.

3. TECHNICAL ASPECTS

Lemma 3.1. Suppose N is a closed n-manifold such that E s a codimension-2
orientable fibrator. Then every N-like map p : M — B defined on an (n+2)-manifold

M is an approzimate fibration over its mod 2 continuity set C'.

Lemma 3.2. Let N be a closed n-manifold with finite m(N) and p : M — B a
proper N—like map defined on an (n + 2)-manifold. If N is orientable, or if p an

approzimate fibration over its mod 2 continuity set C', then 8B is empty.

A cyclic decomposition of a finitely generated Abelian group A is a representation
A=Ci®---@C;@- - -®Cy, where each C; is cyclic. For convenience, we shall always
assume these to be arranged in nondecreasing order, i.e., |C;| < |Ci41] for all i. When

we write C1 B --- @ 5,- @ - -- @ C, we mean the direct sum of all C}’s except C;.

Lemma 3.3. Let N be a closed n-manifold such that Hi(N) is a 2-group, with cyclic
decomposition C, @ --- @ Cx, and let p : M — R? be a proper, N—like map defined
on an (n + 2)-manifold that restricts to an approzimate fibration over R?\ origin.
Then Hy(M \ p~!(origin)) is isomorphic either to Z & Hy(N) or to Z&C, ® --- &
6,- @ -+ @ Cx. Moreover, C', the mod 2 continuity set of p, equals R? if and only if
Hy(M \ p~(origin)) £ Z & H,(N); in case M and N are both orientable, C = R? if
and only if Hy (M \ p~*(origin)) = Ze H;(N). | |

Lemma 3.4. Suppose C; & --- & Cy is a cyclic decomposition of an Abelian 2-group
A, with|C1| < - - <|Ci|- Ifs: A— 0169---@6'1-69---@0,: s an epimorphism with
C; cyclic of order 2%, then there erzists a unique & € ker(k) such that & has order 2
and £ = 2471 . ¢ for some &' € A.
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Proof. The key algebraic fact, this is proved by induction on k. Suppose 7 = k. First
assume |Cj| < 2% for j < k. Take £ = (0,...,0,2%"1). Here £ must belong to ker(x),
for otherwise C) @- - -® Ci_; would contain the cyclic subgroup x(Cy) of order 24, and
€ is divisible by(0,...,0,1) € A. Clearly, no other nonzero element of A is divisible

by an element of order 2¢-1. Next, when |Cj_1| = 2%, examine

LN Ci® & Cry M Cr_1

note that all elements of A have order dividing 2¢ to obtain a splitting A = A;®Cj_1 =
A; ® Cy, with A; = ker(projection o k). Here A; = C; @ - - - & Ci_1, by uniqueness
of cyclic decompositions, and x(4;) = C; @ - - - ® Cr_3. Now induction applies.

When ¢ < k essentially the same reduction can be brought to bear on

projection C
S——— k-

A—LsCcoe--0Ce---0C,
0

Lemma 3.5. Suppose N is a closed n-manifold such that m (N) is an Abelian 2-
group, and suppose p : M — R? is a proper N—like map, defined on an (n + 2)-

manifold, which is an approzimate fibration over R? \ origin. Then C' = R2,

All the pieces, algebraic and geometric, come together in 3.5; 3.4 is used to show
H, (M \p~(origin)) = Z & Hy(N)) by ruling out the other possibility allowed by 3.3.
The chief result, Theorem 2.1, then follows from a combination of 3.5, 3.1, 3.2, and
1.1.

4. QUESTIONS

1. Is every closed n-manifold Hopfian? This is an old, important, and famous
question originally raised by H. Hopf. As Hausmann has shown [8], the answer is
affirmative when n < 4; he also constructed examples admitting self maps of nonzero
degree, but not degree 1, which induce noninjective epimorphisms at the fundamental
group level. - .

2. If m(N) is a finite 2-group, must N be a codimension 2 fibrator?

3. If my (V) is finite and H;(N) is a 2-group, must N be a codimension 2 fibrator?
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ADDITIVE SUBGROUPS IN BANACH SPACES THAT ARE
NOT HOMOTOPICALLY TRIVIAL (AFTER J. GRABOWSKI)

TADEUSZ DOBROWOLSKI

ABSTRACT. A locally compact, locally connected, finite-dimensional group G is a
Lie group (in particular, G is a manifold) - this is a complete solution to the 5th
Hilbert problem obtained in the early fifties. For some time it was hoped that,
for a closed subgroup G of a Hilbert space, its nice additive structure does the
job of the local compactness and the finite-dimensionality in the above result to
the effect that such a G is a manifold (finite or infinite-dimensional) provided it
is locally connected. Recently, this conjecture has been refuted by R. Cauty [Ca],
who exhibited a certain closed subgroup C in the space L?([0,1]?) and, using an
involved and lengthy argument, showed that C was locally connected but not locally
1-connected (and consequently, carrying no manifold structure).

J. Grabowski [Gr] shrewdly observed that a quotient of the well-known group
consisting of integer-valued elements of L?[0,1] can be used as a building block to
provide yet another example of such a group. We present and develop his idea.

1. INTRODUCTION

The only closed subgroups of R™ are products of discrete groups (isomorphic to
Z*, 0 < k < n) by vector subspaces (isomorphic to R¥, 0 < k < n); equivalently,
nondiscrete subgroups of R™ are vector subspaces. To show how this picture dra-
matically changes in the infinite-dimensional case let us consider in L2[0,1], the
Hilbert space of all equivalence classes of measurable functions f : [0,1] — R with

fol | (¢)|2dt < oo, the following additive, closed subgroup
L ={feL?0,1]| f(t) € Z ae}.

One easily observes the following facts.

Lemma 1. The group L% does not contain any line (that is, L% 1s a line-free

group). O

Lemma 2. The group L2 is contractible. More precisely, the map

®(f,t) = f x[0,9
Typeset by ApS-TEX
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contracts L% to a point, that is, ®(L% x [0,1]) C L%, and ® satisfies ®(f,0) = 0,
and ®(f,1) = f for every f and t. O

Since every topological contractible group is also locally contractible, L2 is locally

contractible. Actually, L2 is homeomorphic to L2[0,1] (see [Do]).

2. SUBGROUPS WITH NONTRIVIAL FUNDAMENTAL GROUP
The following elementary example of a covering map provides homogeneous
spaces with nontrivial fundamental group.

Lemma 3. If a group G is locally path-connected and 1-connected, and G' C G
is a discrete subgroup of G, then the homogeneous space G — G /G’ is a universal

covering. In particular, m(G/G') =G'. O

Combining Lemmas 2 and 3, it is now clear that if G’ is a nontrivial discrete
subgroup of L2, then I = L2 /G’ will be an additive group with nontrivial funda-
mental group. Furthermore, T’ will be locally homeomorphic to L?[0,1]. We will
now show that the quotient I' = L2 /G’ can be naturally realized as an additive

subgroup of a Hilbert space. We wish to present this in a more general setting.

Let E' be a Banach space. Let G be a nontrivial, line-free, closed (additive)
" subgroup of E. Pick any g € G, g # 0. Form the quotient Banach space E/Rg and

the quotient group G/Zg, and consider the canonical linear map
k:E — E/Rg

and its restriction

k|G : G — G/Zg,

a group homomorphism. Write i : G — F for the inclusion map.

Lemma 4. There ezists a group homomorphism
e: G/Zg — E/Rg
satisfying e o k|G = Kk o i. Moreover, e is a group-topological embedding of the
quotient group G/Zg into a Banach space E/Rg. O
To show that i is well-defined by the condition e o k|G = k o i use the fact that

G is line-free, which in turn yields GNRg = G N Zg.
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Proposition 5. Let G be a nontrivial, line-free, closed subgroup of a Banach space
- E. Pick any g € G, g # 0. Then the quotient group Go = G/Zg can be considered
as an additive, closed subgroup of E/Rg, the latter can be identified with a closed
subspace Ey of codimension 1 in E. Moreover, we have that
(a) the quotient map G — Go(= G/Zg) is a covering map; in particular, Gg is
locally homeomorphic to G, and
(b) ifG is locallybconnected and 1-connected then Gy is locally connected and 71 (Go) =

zZ. O

It follows that if a Banach space E contains a nontrivial, line-free, locally con-
nected, 1-connected, closed subgroup, then it also contains a (nontrivial, line-free)
locally connected, closed subgroup I' that is homotopically nontrivial. In view
of this, it would be interesting to know which infinite-dimensional Banach spaces
contain a nontrivial, line free, closed subgroup that is locally connected and 1-
connected. The group L2 is an example of such a group in the Hilbert space
L2[0,1]. Tt is likely that every infinite-dimensional Banach space contains a non-
trivial, contractible, line-free, closed subgroup. Note that the group L} consisting
of all integer-valued functions in the space L?[0, 1], p > 1, is also contractible. Since
the sequential Hilbert space ¢2 is linearly isomorphic to L2[0,1], £2 contains such
a group as well. It would be interesting to find a nontrivial, contractible, closed

subgroup of /P for every p > 1. Let us finish this discussion with the following fact.

Proposition 6. For no distinct p and q, p,q > 1, the groups LY, and LI are

group-topological isomorphic.

Proof. Suppose that ® : L7 — L] establishes a group-topological isomorphism,
where p # q. For a rational number r = % and f € L%, let us write (rf) =rd(f).
It is straightforward to check that ® designed in this way is a well-defined continuous
homomorphism of the group E% consisting of all rational combinations of elements of
L% into the group iqz defined in a similar way. Similarly, we can define a continuous
homomorphism ¥ : L — L% that extends &~ : L1 — LY. One easily checks that
@0l = ¥od = id. Since L5 and LY is dense in LP[0, 1] and L9]0, 1], & and & extends
to a continuous homomorphism T : LP[0,1] — L?[0,1] and S : L?[0,1] — LP[0,1],
respectively. It is clear that 7" and S are linear operators that are inverse of each

other. Since LP[0,1] is not isomorphic to L4[0, 1], we arrive to a contradiction. [
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Let us return to our specific example of L2. Formally, we can apply Proposition

5to E = L?*0,1], G = L}, g = Xjo,1- Then
1
Bo={f € 1}0,1]| [ f()dt =0}
0
and ; X
Go={re] [ fa=o0y.
0 ,
Since G is contractible, we end up with the following conclusion.

Corollary 7. The subgroup Gy of the Hilbert space Eqy above is locally path-connected

(even, locally homeomorphic to L2[0,1]) and not I1-connected.

Remark 8. In Proposition 5 the line Rg can be replaced by any closed linear sub-
~space L so that L N G is discrete. Then, the qutient group Go = G /L NG can
be identified with a subgroup of the Banach space Ey = E/L, and G — Gy is a

covering map. If G is locally connected and 1-connected, then 71 (Go) = LN G.

It is not difficult to see that any group H that is a (finite or infinite) direct sum
of Z can be obtained as H = L N L% for some closed linear subspace L of L2[0,1].

Consequently, we have

Corollary 9. Let H be a group that is a direct sum of Z. There exists a line-free,
closed subgroup G of a Hilbert space E such that G is locally homeomorphic to E,

and m1(G) = H.
3. SUBGROUPS THAT ARE LC? BuT NoT LC!

Our aim is to recover the following Cauty’s [Ca] result

Theorem 10. There exists a,closed subgroup I' of a Hilbert space H such that I’

is locally path-connected and not locally 1-connected.

For a sequence of Hilbert spaces (Hp, || - [|l»), we let

®pHy = {f = (fa) € [[ Hn | D Ilfall2 < oo}.

The space H = @42 H,, when equipped with the norm

WA= /D Il
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is a Hilbert space; the space H is called the Hilbertian sum of H,. For a sequence

of additive groups G,, C H,, n > 1, we similarly let

©p2Gn = {f = (fr) € ®rHy | fn € Gy, for every n}.

It is clear that ©2 Gy, is an additive subgroup of H which is closed in H provided

each G, is closed in H,,.

Proof of Theorem 10. Consider our Hilbert space Ep, and the subgroup G from
Corollary 7. Let H be the Hilbertian sum of Ey = H,, n > 1. For n > 1, we let
G, = %Go C H,, = Ey. We finally let

I'=&,:G, C ®,2Ey = H.

To see that I is locally path-connected let V' be a neighborhood of 0 € Gy that is
path-connected within the ball By.(¢), for some &€ > 0. Then, e;vidently, ford >0
with By (8) C V', Byj.y(6) is path-connected within Byy.;;(c). |

Now, we will show that IT' is not locally 1-connected. Let ¢ : S — Gy be a
nonextendable element of 71 (Gy) such that max ||¢(¢)|| < 1. Then, for every n, the
map 2 : S' — G, is nonextendable in G,,. It follows that, for no n, By(%) is

1-connected. [

Remark 11. Not only that the ball By.;;; (%) is not simply connected, but it contains

loops that are not extendable in the whole I'. Consequently, I" is not semi-simply

connected.

It is possible to adjust the use of Hilbertian sum to construct a closed subgroup
I' that is LC? and not LC! in an arbitrary infinite-dimensional Banach space E
‘provided every infinite-dimensional Banach space contains a closed subgroup that
is locally connected and not simply connected. As observed previously, the latter
is doable if every infinite-dimensional Banach space contains a nontrivial, line-free,

closed subgroup G that is locally connected and simply connected.

Question 1. Does every infinite-dimensional separable Banach space F contain a

nontrivial, line-free, locally connected and simply connected, closed subgroup G?

Obviously the method presented above is not applicable for construction groups

that are LC! and not LCZ2.
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Question 2. Does there exist an additive, closed subgroup in a Hilbert space that

is LC! and not LC??

REFERENCES

[Ca] R. Cauty, Un ezemple de sous-groupe additif de I’espace de Hilbert, Collog. Math. (to ap-
pear).

[Do] T. Dobrowolski, On extending mappings into nonlocally conver linear metric spaces, Proc.
Amer. Math. Soc. 93 (1985), 555 — 560.

[Gr] J. Grabowski, Homotopically non-trivial additive subgroups of Hilbert spaces, preprint.

DEPARTMENT OF MATHEMATICS, PITTSBURG STATE UNIVERSITY, PITTSBURG, KS 66762

INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, UL. SNIADECKICH 8, 00-950

WARSZAWA, POLAND :
E-mail address: tdobrowo@mail.pittstate.edu

56



A counterexample to a question by Chapman and Siebenmann

A counterexample to a question by
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Abstract

We describe a locally compact polyhedron X with the property that Xx[ -1,11% is Z~
compactifiable but X is not. This answers a question first posed by Chapman and

Siebenmann in 1976.

This note outlines the main result of [Gu]. The interested reader should consult that
paper for a more complete exposition.

A closed subset A of a compact ANR X is a Z-set if either of the following is satisfied:

e There is a homotopy H:XxI— X with Hg=idy and H,(X)nA=@ for all 1> 0.

» For every open set U of X, U\A\hookrightarrow U is a homotopy equivalence.

Let Y be a noncompact ANR. A Z-compactification of Y is a compact ANR ["Y] containing
Y as an open subset and having the property that [*Y]-Y is a Z-set in ["Y]. In this case
we call ["Y]-Y a Z=boundary for Y and denote it 0 .

Note. Y may admit many different Z-boundaries, hence 9 Y is not well defined unless the

Z-compactification is specified.
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We now review some important examples of Z-compactifications.

Example 1 Let M” be a compact n-manifold with boundary. Then IM’, is a Z-set in M, so
M’ is a Z-compactification of int(M") with d (int(M")=oM".

Example 2 Let Y be a locally compact CAT(0) ANR and /et S_(0) denote the visual sphere
of ¥ from some point O € Y. Then ¥ admits a Z-compactification with S_(0) as the Z-

boundary.

Example 3 [Bestvina-Mess]Let I” be a word hyperbolic group, and let AT) be a
‘contractible Rips complex for &. Then P(T) may be Z-compactified to [“(P(T) )J-P(T) wdr,
where dI" is the Gromov boundary of I'. See [BM].

Example 4 /Bestvina/Suppose K is a finite K(G,1) where G is either a CAT(0) or word
hyperbolic group. If & is word hyperbolic, let 06 be the (unigue) Gromov boundary of 6,
otherwise, let dG be an arbitrary CAT(0) boundary for &. Then, the universal cover
[K\tilde] admits a Z-compactification with Z-boundary equal to 6. See [Be].

Let Q=[ -1,1] ™ denote the Hilbert cube. A separable metric space, X, is a Hilbert cube
manifold if each point has a neighborhood homeomorphic to an open subset of Q.

Example 5 In 1976 Chapman and Siebenmann [CS] gave necessary and sufficient
conditions for a Hilbert cube manifold to be Z-compactifiable. This was probably the
first place where Z-compactifications were explicitly studied. In particular, they proved:
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Theorem 1 [Chapman and Siebenmann, 1976 ]A Hilbert cube manifold X admits a Z-
compactification iff each of the following is satisfied. | )

a) X is inward tame at infinity.
b) o, (X) e \underleftarrowlim{ [K\tilde]z (X\A) | A c X compact} /s zero.

ct (X)e | \under‘/‘eﬁarr'aw//m]{ Whr (X1A) / A c X compact} is zero.

Near the end of their paper, Chapman and Siebenmann observe that the notion of inward
tameness and the definitions of 6_ and t_ can also be applied to locally compact ANRs

and that a Z-compactifiable ANR will necessarily satisfy a)-c). The key to these
observations is a theorem by R.D. Edwards [Ed] which guarantees that if X is a locally
compact ANR then XxQ is a Hilbert cube manifold. Chapman and Siebenmann then pose

the following:

Question: If alocally compact ANR, X, satisfies a)-c), must it be Z-compactifiable?

Equivalent Question: If X is a locally compact ANR and XxQ is Z-compactifiable, must X
be Z-compactifiable?

These questions were later included in Open Problems in Infinite Dimensional Topology-an
appendix to Chapman's CBMS Lecture Notes, and in the 1979 and 1990 updates to that

~ list (See [Ch], [6e] and [We].). The following provides a negative answer to Thg above
questions.

Proposition 2 There exists a non-Z- -compactfiable locally compact 2-dimensional
polyhedron X such that XxQ admits a Z-compactification.

The construction of X is not difficult and will be given below. Our proof that X satisfies
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the desired properties is quite complicated and reader is referred to [Gu].

Construction of X:

 Let 5! S! be the degree 1 map which wraps the unit circle around itself twice
counterclockwise and then once back in the clockwise direction. Let K denote the mapping

cylinder of © and L.L < K denote the domain and range ends of K, respecﬁvefy.

Let { K} _,” be a disjoint collection of copiés of K and let L’i,Li' < K. be the corresponding
copies of L and L'. For each i, let hi:Li'—> L,,; be a homeomorphism. Our example X is
obtained by gluing the K;'s together via the h;'s: more precisely, X=(u,_,”K.) \diagup{ x ~

hi(x) foreach X e Li' and i=1,2,3,...}.

Questions:
The following problems remain open.

1. (from the Infinite Dimensional Topology List)If Y is a locally compact polyhedron,
when does Y admit a Z-compactification? (In other words, what additional
conditions must be added to those of Chapman and Siebenmann in order to ensure

Z-compactifiability?)

2. Are Chapman and Siebenmann's conditions sufficient if Y is a finite dimensional
open manifold?

3. If Jis afinite K(r,1), does its universal cover, [T\tilde] satisfy any (or all) of
Chapman and Siebenmann's conditions? Is [JT\tilde] Z-compactifiable? What if J is
a closed aspherical manifold?
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Problem Session
1. Are all the boundaries of a Coxeter group cell-like equivalent?

2. Let X be a resolvable, generalized 4-manifold. What additional property would ensure
that X is a manifold?

It is known that if Y is a 3-manifold that satisfies the spherical simplical approximation
property (maps of 2-spheres into Y can be approximated by maps whose images are ho-
motopically tame), then ¥ x R is resolvable. Conjecture: ¥ x R is a 4-manifold.

3. Let n be a non-negative integer. A set X C R? is an n-point set if |[X (L| = n for
all lines L € H. A set X C R? is a partial n-point set if | X (L] < n for all lines L € H.
It is known that 2-point sets have dimension 0, n-point sets can have dimension 1 for
n > 4, and 3-point sets cannot contain non-trivial subcontinua. What can be said about
the dimension of 3-pint sets? It is also know that if a partial 2-point set has dimension 1,
the it must contain an arc. Is this true for n-point sets for n > 27 ‘

4. In S3, let ¢ denote the filed of planes orthogonal to the fibers of a Hopf' fibration. Look
at the flows of S that preserve £. If K is a fibered knot in S3, is it possible to isotop K in
53 so that the Hopf fibers become transverse to some such flow?

5. Do there exist finitely presented groups, I'1,I'e, such that I'y 2 I'p, I} = I's and
Iy 2T, and T'; /T is cyclic of order d; (i = 1,2) with dy,ds relatively prime? If so, can

I'; be chosen to be the fundamental group of a finite, spherical complex?



