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UWM CONFERENCE INTRODUCTION TO:
THE ESSENTIALITY OF p-ADIC CANTOR GROUP
CLASSIFYING SPACES, AND THE NONEXISTENCE OF
FREE CANTOR GROUP ACTIONS ON ENR’S

ROBERT D. EDWARDS [1999.06.08]

ABSTRACT. It is known that for any cantor group (:= a topological group homeomorphic to the
cantor set, i.e. an infinite second-countable profinite topological group), e.g. the p-adic integers,
there is a classifying space which classifies arbitrary free actions by the group. [Free actions
of cantor groups are more general than principal actions, i.e. locally trivial (= locally sliceable)
 free actions, for which e.g. the Milnor-join or the bar-construction principal bundle suffices.]
Furthermore, just like their principal-action counterparts, these free-action classifying spaces
have natural finite dimensional skeleta, which classify those free actions which in addition have
fnite dimensional quotient spaces. This paper shows (by analogy with the finite group case, if
you wish) that each of these n-skeleta is homotopically persistently n-dimensional, that is, cannot
be homotoped into a (substantially) lower dimensional subspace. (In the analogy with Z/2Z,
the corresponding (classical) fact is that real-projective n-space RP™ cannot be homotoped (in
say RP™) into any lower dimensional subspace, e.g. into RP”"'l.) In the case of the p-adic
integer group, this can be interpreted as saying that, although its classical (principal-action)
cohomological dimension is 1, its free-action cohomological dimension is infinite.
This result has consequernces with respect to the Hilbert-Smith Conjecture and its variations.

The primary immediate corollary is: There is no free action by any cantor group on any ENR
(= euclidean neighborhood retract; e.g. a manifold) (having finite dimensional orbit-quotient

space).

SETTING THE SCENE: THE MOTIVATION

This paper is motivated ’by the following [sweeping and profound, in my humble opinion!]

Free-Set Z-Set Conjecture [for Cantor-Group Actions on ENR’s]. Suppose that G X E — E
_is an action of a cantor group G on an ENR E. Then the free-set of the action is a homology-

Z-set in E.
Restricting attention to the free-action case leads to the
Conjellary. There is no free action by any cantor group on any ENE.

Proof. The maximal homology-Z-set (= “homology-Z-boundary”) of an ENR is a codense Gs
subset (that is, its complement is a dense F, subset). |
Alternative, equivalent restatements of the the two preceding assertions are given at the end
of this section. ,
Although weaker than the FSZS Conjecture, perhaps better known is the following
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ROBERT D. EDWARDS [1999.06.08]

Conjellary (The Hilbert-Smith Conjecture). Any compact subgroup of the home‘omofphz’ém
group of a connected manifold (or cell-complez) is a Lie group. Equivalently, no cantor group
(e.g. the p-adic integers) can act effectively on a connected manifold (or cell-complex).

Discussion. The FSZS Conjecture implies that the free set of any effective cantor group action
would have to be empty. Now one applies theorems of Montgomery and Newman [refs?] to
establish a {locally) uniform bound on orbit size, showing that in fact the action would have to
factor through that of a finite group. Incidentally, one can relax connected to allow finitely many
components. However, any cantor group acts effectively (but not freely!) on a countably-infinite

set.
Here are the relevant definitions, and some examples.

Definition. A cantor group is a topological group whose underlying space is (homeomorphic

to) the cantor set.

Such a group can be characterized as an infinite second-countable profinite group, since a
cantor group is an inverse limit (i.e. projective limit) of finite groups. (This assertion amounts
to/can be regarded as the 0-dimensional case of the fundamental Peter-Weyl Theorem, and is

- an enjoyable Exercise.)

Reminder. (Important!): Finite groups are. not cantor groups.

Ezamples of cantor groups:
1. Any countably-infinite product of (nontrivial) finite groups. In this regard, for products of
cyclic groups the notation Z%/gZ> is useful, where g = (¢1, g2, - - - ) is & given sequence of
oo
integers in Zss, and Z°/qZ® := X y—1 L/ G-
9. The p-adic integer group Z, := inv im(Z/pZ Z)p*L — ZJp°Z — ...) (often called the
~ p-adic integers, for short).
Cantor groups may be non-abelian (e.g. as in Example (1)), but, as we will see in time, the
issues of concern in this paper quickly reduce to the abelian case, and then to the p-adic integer
case. (But there’s no sense making these restrictions until we get there.)

Definition. A euclidean neighborhood retract (= ENR) is any space embeddable as a subset of
some euclidean space so as to be a retract of some neighborhood there.

Examples: Manifolds, finite-dimensional simplicial- and cell-complexes, the Mandelbrot set
(conjecturally), and many more. We recall that an ENR can be characterized as a locally

compact, locally connected finite dimensional separable metrizable space.

Definition. The free set of the action is {z € B} G — Gz is 1-to-1}, that is, the subset of E
upon which G acts freely. ’ »

Definition. A homology-Z-set in an ENR E is any subset of the (co)homological “boundary”
of E := those points of F which are (co)homologically invisible in E, i.e., points z € E for which
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E.g., for a manifold, the (maximal) homology-Z-boundary is the ordinary boundary. By way
of context and contrast, the (more common) notion of Z-set (= homotopy-Z-set) in an ENR
means any subset which is homotopically invisible, that is, a subset Z C E such that for any
open U C E, the inclusion U — Z < U is a homotopy-equivalence. (If we replace ‘hozﬁotopy’
here with ‘homology,’ we have a characterization of homology-Z-set. ) '

As suggested above, the Free—Set 7-set Conjecture is the proper form of (and stronger than)
the classical Hilbert-Smith Conjecture, regarding which the problem for 50+ years has been to
rule out effective actions on manifolds by the p-adic integers. '

Framples of cantor group actions on ENR’s.
1. To any cantor group G = invlim(G ;— Go ;7 Gs «...) is associated a contractible ENR,

(= ER) cantor fan CF(G) upon which G acts effectively, with the free set being the Z-set
endpoint-set. CF(G) is the inverse limit of the mapping telescope sequence of the ¢’s
(beginning say with the trivial homomorphism ¢1: Gy — Go := {1}), Wlth Z-endpoint-set
-7, which is a copy of G. See Figure (1) for the example where G = X 2 Z/KZ.

2. By appropriately ramifying the construction in (1), attaching feelers everywhere—densely
to feelers, one can enlarge the cantor fan to a ER cantor superfan CSF(G), in which the
free-Z-endpoint-set is a dense Gs-subset of CSF(G). (Exercise.)

3. Homology Z-set example: Let G be a cantor group as in (1), and let K be a finite acyclic
(but not-necessarily-¢ontractible) complex. Then the cantor fan CF(G) can be “blown-
up by K™ over each non-endpoint, obtaining CF(G, K) = (CF(G) x K V{{z} xKlz€
Zc} (decomposition-space notation), which is an interesting G-ER. (To get off the ground

wonderstanding it, recall that the suspension XK of K is contractible.)
To wrap up this introduction, we offer equivalent restatements of the two conjectures presented
at the beginning of this section, recasting them in a somewhat broader, more positive form.

Free-Set Z-Set Conjecture [for Locally Compact Topological Group Actions on ENR’s).
Suppose that G x E — E 1is an (arbitrary continuous) action of a locally compact topological -
group G on an ENR E Then the union of the non-locally-connected orbits is a homology-Z—set

in E, i.e., lies in the homology-Z-boundary of E.
Restricting attention to the free-action case leads to the

Conjellary. Suppose that G X E — E is a free action of a locally compact topological group G
on an ENR E. Then G is a Lie group.

These conjectures are related to their initial versions by using the amazing result (= the
“solution” of (the first half of) Hilbert’s 5th problem, recalled in more detail below), that a
locally compact topological group which is not locally connected (in particular, which is not a

Lie group) must contain a cantor subgroup. .
In this paper we address the central (initial) case for these conjectures/issues, namely the

free-action (cantor group) case.

DEPARTMENT OF MATHEMATICS, UCLA, Los ANGELES, CA 90095-1555



A 1-DIMENSIONAL MENGER CURVE IN STRONG
GENERAL POSITION

TROY L. GOODSELL

ABSTRACT. We show how to place a Menger Curve in strong gen-
eral position in the sense that there is a bound to the number of
times that a hyperplane can intersect it.

1. INTRODUCTION

In 1970 Berkowitz and Roy [1] introduced the theory of strong general
position for finite simplicial complexes. This was a generalization of
standard general position for simplicial complexes in that it provided
a bound on the number of simplexes that a hyperplane can intersect.
More specifically they stated the following theorem.

Theorem 1.1. If K is a compler and f : K — R™ is a semi-linear
map and € > 0, then there is a semi-linear map g : K — R™ such that
d(g(v), f(v)) < € for each vertez v of K, and for each hyperplane H in
R"™ with dimH < n and each m < n—dimH, the number = of pairwise
disjoint simplezes of K of dimension not ezceeding m whose images
under g intersect H satisfies the following inequality

n — dimH)(1 + dimH)
n—m — dimH ’

xs(

A proof of this theorem is given in [4] and several interesting appli-
cations appear in [3],[4],[6].

In this paper we will show how to generalize the techniques of strong
general position to handle Menger curves. That is we will construct a
1-dimensional Menger curve in B3 such that no line intersects the curve
more than 4 times. We will also generalize this to higher dimensional
Menger curves.

1991 Mathematics Subject Classification. Primary 57N35, 57N37, 57N75; Sec-
ondary 57N05, 57N12, 57N13, 57N15.

Key words and phrases. simplicial complexes, strong general position, Menger
curves.
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2. STRONG GENERAL POSITION

We will not go into the details of placing a simplicial complex in
strong general position. Such details can be found in [4]. In summary,
if all the coordinates of all the vertices of the complex are distinct and
form an algebraically independent set then the complex is in strong
general position. This means that it satisfies the bound given in The-
orem 1.1. The fact that a simplicial complex with countably many
vertices can be placed in strong general position by moving vertices
less than any given € and extending linearly to the rest of the complex
is proven in [5]. Another important result proven in [5] that we will
use is the following:

Theorem 2.1. If K is a simplicial complez in strong general position
in R* and H is a hyperplane, then there erists a § > 0 such that
the number z of & neighborhoods of disjoint simplezes of dimension
m < n — dimH that H can intersect satisfies
(n — dimH)(1 + dimH)
< - .
- n—m — dimH

3. MENGER CURVES

In this section we will show how to place Menger curves in strong
general position. For a good reference on Menger curves and their
properties see [2].

Let My denote a 3-simplex in R® and let M{ and M} denote its
zero and one skeletons respectively. Let M; denote the second derived
neighborhood of Mj. In general let M, denote the second derived
neighborhood of M} _,. Note that M,_; C M, for all n. Let M =
Ni2oM;. Then M is a Menger curve. Note that for any i we have
M C M; where M; is a regular neighborhood about the 1-skeleton of
the previous stage.

This is a standard construction of a Menger curve. What is impor-
tant in the construction is that at each stage we are building a regular
neighborhood of the 1-skeleton of the previous stage and that the di-
ameter of these regular neighborhoods is going to zero. Using second
derived neighborhoods is a standard method. But alternatively we
could have used finer barycentric subdivisions to construct arbitrarily
small regular neighborhoods at any stage.

We will now give a brief outline of our strategy to place Menger
curves in strong general position. Place the first stage in strong general
position. Apply Theorem 2.1 to get the § associated with this simplicial
complex. Use this 6 to determine how fine of barycentric subdivision
to use when building the regular neighborhood about the 1-skeleton
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for the next stage. Then build a map that places that stage in strong
general position without moving points outside of the § neighborhoods.
Repeat this process ad infinitum and compose the maps. We will show
that the image of the Menger curve under this map has the desired
property. :

We will now discuss the details of this construction. Assume M is
in strong general position and let € > 0 be given. Let M; denote the
second derived regular neighborhood about M}. Let €; = z.

We first construct a map f; : R® — R? that has the following prop-
erties:

fi(v) = v for all v € MY,

if v € M\ M{ then d(v, f1(v)) < €1,

f1 is linear on M;,

f1(M7) is in strong general position,

Jf1 moves no point in M; by more than %

for all v € M?, fi(v) is in the star of v relative to the simplicial
complex M,

f1 is fixed outside some neighborhood of M,

f1is a homeomorphism that can be realized by an ambient isotopy.

S Otk wio =

®© N

Since the simplicial complex fi(M;) is in strong general position we
can apply Theorem 2.1 to get a d; such that no line in R? can intersect
more than four é; neighborhoods about disjoint 1-simplexes of f; (M).
The purpose of the ¢ here, and throughout the rest of the construction,
is the following. We want to restrict the number of times a line can
intersect the image of the 1-skeleton of f;(M;) after we have finished
constructing all the maps. But subsequent maps subdivide and move
these 1-simplexes repeatedly. So we use the fact that not only is there
a restriction on the number of 1-simplexes in f;(M;) that a line can
intersect, there is also a restriction on the number of §; neighborhoods
about the 1-simplexes that a line can intersect. We will construct all
subsequent maps so that no points in these 1-simplexes are ever moved
out of the ¢, neighborhood of that simplex. We will repeat this at all
subsequent stages. In fact we will perform the construction such that
the entire Menger curve lies in the ¢ neighborhoods and stays in the &
neighborhoods. These are the crucial facts in our final argument that
the image of the Menger curve is in strong general position.

Let M, be a derived regular neighborhood about M} using a barycen-
tric subdivision chosen so finely that the mesh of the image of M, under
f1 is less than %. Let €3 be less than the diameters of all simplexes

in f1(Mz) and %. Note that €; is also less than §4’~ since it is smaller
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than the mesh of f;(M,). We now construct a map f, : R® — R3 that
satisfies the following properties:

fa(f1(v)) = fi(v) for all v € f1(MY),
if v e fi(M5) \ f1(MP) then d(v, f>(v)) < e
Jfo is linear on f; (M),
. fa(f1(M2)) is in strong general position,
f2 moves no point in f; (M) by more than 5
forallv € f1(M3), fo(v) is in the star of v relative to the simplicial
complex fi(Ms),
7. fo(f1(Mz)) lies within the union of the & neighborhoods about
the 1-simplexes in f; (M}),
8. If z is a point on a one simplex of f;(M;) then d(z, fo(z)) < a
9. f2 is fixed outside some neighborhood of f; (M),
10. f2 is a homeomorphism that can be realized by an ambient isotopy.

e N

Note that by property 7 there is still plenty of room within the
61 neighborhoods about f;(M7) to construct the rest of the Menger
curve and to keep its images under all subsequent maps within this
neighborhood.

Now the simplicial complex fo(f1(Ma)) is in strong general position
so there is a 0, associated to it by Theorem 2.1 such that no line can
hit more than four d; neighborhoods about 1-simplexes in fo(My).

In general let §,_; be the minimum of the § associated to fn-10---0
f1(Mp—1) and '5"7‘2 Choose M, to be a derived regular neighborhood
of M,}_l chosen so that the mesh of its image under f,_;o---o f; is less

than 5‘4‘—1. Let €, be less than the minimum of 6—"2-,:1 and the diameters

of all simplexes in f,_;0---0 f; (M) and thus less than 577‘1. Then
construct a map f, : R* — R? that has the following properties:

- fa(fam1 020 fi(0)) = fam10---0 fi(v) forallv € MP_,,

ifv € foo10 -0 fi(MI)\ fa—10- -0 f1(M2_,) then d(v, fo(v)) < €n,
fn is linear on f,_; 0---o0 fi(M,).

. Jn© fa—10---0 fi(M,) is in strong general position,

Jn moves no point of f,_;0---o f;(M,) by more than >
forallv € fo10---0 fi(M2), foo---o fi(v) is in the star of v
relative to the simplicial complex f,_;0---0 f; (M,),

7. fno---o fi(M,) lies within the union of §; neighborhoods about

I-simplexes of f;o---o fi(M}) foralli € {1,--- ,n — 1},
8. no point on a one simplex o € f;o--- o f;(M}) is moved out of a
¢; neighborhood of o by f,0---0 fiyy forallie {1,--- ,n— 1},

9. fn is fixed outside some neighborhood of f,_;0---o Jf1(My—1),

10. f, is a homeomorphism that can be realized by an ambient isotopy.

e N

10
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Define f : R* — R® to be the composite of the countable collection
of maps {f,}. Thatis f =---0 fao0---0 foo fi. Let M = 2, M,.
Then M is a Menger curve.

The map f has the following properties:

1. f moves no point of M more than e,

2. f is a homeomorphism that can be realized by an ambient isotopy,

3. f is fixed outside some neighborhood of M,

4. Ifz € U2, | ML |C f(M) and i is the first stage such that
z €| M} | and o, is the 1-simplex in M} containing z then f(z)
lies within a d¢;-neighborhood of f;o---o fi(o,),

5. for each index ¢, f(M) lies within the union of the §; neighbor-
hoods about f;o---o fi(M}).

We will now show that f(M), the image of the Menger curve, is
in strong general position in the sense that no line intersects f(M) in
more than four points. Assume that the line [ intersects f(M) in 5
points say z1,---,zs. For each ¢ either z; € f(| Un_o ML) or z; is
in the closure of this set. That is either z; is the image of a point
on a l-simplex of some stage or it is a limit point. If it is the image
of a point on a 1-simplex of say the jth stage then by property 4 of
f the point z; is within the d; neighborhood about that 1-simplex,
and similarly for all subsequent stages. If z; is a limit point then by
property 5 of the map f the point z; lies within a J; neighborhood of
some 1-simplex in fjo---o fi(M] 1). Thus in either case the points z;
lies within 4, nelghborhoods about 1-simplexes of a simplicial complex
which is in strong general position. By increasing the index j large
enough we can assume that these are d; neighborhoods about disjoint
1-simplexes. But this contradicts Theorem 2.1. Thus there can be at
most 4 points in the intersection of the line [ and f(M).

These same techniques can be applied in higher dimensions to form
k-dimensional Menger curves in R"™ such that the number of times
a hyperplane H can intersect the curve is < ("“Z’ff)f;;i}mm. More
details on these constructions can be found in [5]. '
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Hilbert’s fifth problem: a survey

By So6ren Illman

The following text was originally written for the Proceedings of the International Con-
ference on Mathematics and Applications, dedicated to the 90th Anniversary of
L.S. Pontryagin, Moscow, Russia, August 8-September 6, 1998, and it will appear in
those Proceedings.

Of the twenty-three mathematical problems that Hilbert posed at the Second Inter-
national Congress of Mathematicians in Paris 1900, see [10], the fifth problem is concerned
with Lie’s theory of transformation groups, and in a second latter part of the problem with
what Hilbert calls “infinite groups,” but which are not groups in the modern use of the
term. The questions in this second part of the fifth problem concern functional equations
and difference equations, and have for example connections with the work of N.H. Abel.
These questions lie completely outside the theory of transformation groups, and we shall
not discuss them here any further. We refer to [1] for the “state of the art,” in 1989, in
this area of research.

Recall that a topological transformation group consists of a topological group G, a
topological space X, and a continuous action of G on X, that is a continuous map

(1) :GxX =X, (9,2) — gz,

with the following two properties,
1) ex =z, for all z € X, where e is the identity element in G, and

2) g9(9'z) = (g9¢')z, for all g,¢' € G, and all z € X.

A topological group G is a Lie group if G is a real analytic manifold and the multipli-
cation : G X G = G, (g,9') = gg’, is a real analytic map. It then follows, by using the
real analytic implicit function theorem, that the map ¢:G — G, g~ g1, is real analytic.
In the case when G is a Lie group, X is a real analytic manifold, and the action @ of G
on X is real analytic, we have a real analytic transformation group.

Most of the natural examples of group actions in geometry and many other parts of
mathematics are real analytic group actions, i.e., real analytic transformation groups. We
suggest that a real analytic transformation group be called a Lie transformation group.

In his fifth problem Hilbert asks the following. Let G be a locally euclidean topological
group, and let M be a locally euclidean topological space, i.e., M is a topologlcal manifold,
and suppose that we are given a continuous action

(2) &:GxM-—->M
of G on M. Is it then always possible to choose the local coordinates in G and M in such

a way that the action @ becomes real analytic? In other words, is it possible to give the
topological manifolds G and M real analytic structures so that @ is real analytic?

13



In his discussion of the fifth problem Hilbert also expresses the possibility that some
assumption of differentiability is actually unavoidable for a positive answer to the question
in (2). Hilbert mentiones the theorem, announced by Lie [16] but first proved by F. Schur
[31], which says that any transitive C? transformation group can be made real analytic by
means of suitable coordinate changes. This result can be considered to be the origin of
Hilbert’s fifth problem, cf. [30, p. 177-178]. '

Let us first discuss the special case, of Hilbert’s question, where M = G. In this case
the question is whether we can give G a real analytic structure such that the multiplication

(3) pGExG— G

is real analytic. ‘
In this special case the answer to Hilbert’s question is always yes. This affirmative

answer is obtained by combining the result in Gleason [8], with the result in Montgomery-
Zippin [21], and we can express the combined result as follows.

Theorem 1. Every locally euclidean group is a Lie group.

We say that a topological group G does not have small subgroups if there exists a
neighborhood of the identity element which contains no other subgroup than the trivial
subgroup {e}. It is easy to see from the structure of one-parameter subgroups of a Lie
group that a Lie group does not have small subgroups, see [7, p. 193]. Gleason proves in
[8] that every finite-dimensional, locally compact, topological group G that does not have
small subgroups is a Lie group. In [21] Montgomery and Zippin prove, by inductively using
the above result of Gleason, that a locally connected, finite-dimensional, locally compact
topological group does not have small subgroups. Since a locally euclidean topological
group is clearly both locally connected, locally compact, and finite-dimensional, we see
that [8] and [21] together prove Theorem 1.

This affirmative result is often considered as the solution of Hilbert’s fifth problem,
but it should be noted that Hilbert’s question is more general and is concerned with
transformation groups, cf. also Montgomery [20, p. 185]. We refer to Montgomery [19,
p. 442-443] for some interesting speculation, made in 1950, concerning the possible answers
to Hilbert’s general question in (2). An authoritative and very good discussion of the state,
in 1955, of Hilbert’s fifth problem is given in Montgomery—Zippin [23, Section 2.15].

Before the general result in Theorem 1 was proved by Gleason, Montgomery and
Zippin, the result had been known in some special cases. It follows by von Neumann [24]
that Theorem 1 holds when G is compact. For commutative groups Theorem 1 was proved
by Pontryagin [29, Theorem 44].

Let us here also mention that it is preved in Pontryagin [29, Chapter IX] that each
C* group, k > 3, can be made into a real analytic group, i.e., into a Lie group. G. Birkhoff
[4] proved that each Cl-group can be made into a Lie group.

Let us now return to Hilbert’s general question whether it is possible to give G and M
- real analytic structures such that the group action in (2) becomes real analytic. We have
already seen above that a locally euclidean group G can always be given a real analytic
structure so that it becomes a Lie group, and moreover it follows by a well-known, very
basic, theorem for Lie groups, see e.g. [9, Theorem I1.2.6], that such a real analytic structure
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on G is strictly unique. Hence we can now assume that G is a Lie group, and that M is
a topological manifold on which G acts by a continuous action ® as in (2), and we are
asking if M can be given a real analytic structure such that ® becomes real analytic.

In [2] Bing constructs a continuous action of Z, on R3 that cannot be C” smooth for
any r > 1, and hence in particular it cannot be real analytic. If one in Bing’s example
instead considers the action to be on the one-point compactification S3 of R3, one obtains
a continuous action of Zs on $3, with the property that the fixed point set is a horned
sphere in S3. Montgomery-Zippin [22] modified the example of Bing to give an example
of a continuous action of the circle S* on R* that cannot be C” smooth for any r > 1, and
hence in particular it cannot be real analytic.

In both these examples, in [2] and [22], the action of the group Z; and S, respec-
tively, is not locally smooth, in the sense of [5, IV.1]. But there exist continuous locally
smooth group actions that cannot be made smooth, and hence not either real analytic. For
example, there exists a 12-dimensional, compact, smoothable manifold M, which admits a
locally smooth effective action of S, but which does not admit a non-trivial smooth action
of S' in any of the smooth structures on M, see Bredon [5, Corollary VI.9.6]. Thus we see
that the answer to the general question in (2) is no in the case of topological continuous
actions. One may in fact point out that the answer to the general question in (2) is no
even for the trivial group G = {e}, since there exist topological manifolds that do not have
any smooth structure, and hence also no real analytic structure. The first example of such
a manifold was given by Kervaire [14].

In Montgomery—Zippin [23, p. 70] the following easy example of a C°° smooth action
that cannot be real analytic is given. The group is the group of reals R, and it acts in the
plane by the map

®:R x R? - R?,

where (¢, re’?) = ei(") . rei®, for all t € R and all re?® € R2, r > 0 and v € R. Here
aR—-R |

is a C* function such that
a(z) =0, forall z < 1,

a(z) =1, for all z > 2.

Clearly @ is a C* map, and @ is an action of the group of reals R on R2 . Note that for

0 < r <1 we have that ' .
®(t,re'?) =re*?, for all t € R.

For r > 2 we have that
®(t,re*?) = e . re™, for all t € R.

Thus the action is the trivial action in the unit disk, and outside the cpen disk with radius

2 the action of R is by standard rotation in the plane.
This example of an action of R on R? can however not be real analytic, in any real
-analytic structure on R2. This is because the action is the trivial action in the open unit
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disk 1_0?2, and thus, if the action was real analytic it would have to be the trivial action in
the whole plane, which is not the case.

If G is a compact Lie group the above kind of phenomena cannot occur. Every C™
smooth action, 1 < r < oo, of a compact Lie group G on a, second countable, C" smooth
manifold can be made into a real analytic action, see Matumoto-Shiota [18, Theorem
1.3]. The technique of the proof here is the same as in Palais [27], and this in turn is an
equivariant version of Whitney’s proof [33] of the fact that every, second countable, C™
smooth manifold can be given a real analytic structure, compatible with given C™ smooth
structure, 1 < r < oo.

How about the general case with actions of an arbitrary Lie group G? We saw in
the elementary example above that there exist C* smooth actions that cannot be real °
analytic. However the following result holds, see Illman [12].

Theorem 2. Let G be a Lie group which acts on a C” manifold M by a C™ smooth Cartan
action, 1 < r < co. Then there exists a real analytic structure B on M, compatible with
the given C™ smooth structure on M, such that the action of G on Mg is real analytic.

In Theorem 2 the manifold M is not assumed to be second-countable, or even to be
paracompact, but we wish to stress that this great generality is not an essential point. The
main interest of Theorem 2 is, of course, in cases where M is second countable.

Recall that an action of G on M is said to be Cartan if each point  in M has a
compact neighborhood A such that the set

Gua={9€G|gAnA+#0p}

is a compact subset of G, see [26]. An action of G on M is proper if for every compact
subset A of M we have that the set G4 is compact. Thus every proper action is Cartan,
and Theorem 2 holds in particular for proper actions. There exist smooth actions of Lie
groups that are Cartan but not proper, such actions have non-Hausdorff orbit spaces.

In the case when G is a discrete group the proper actions are the properly discontinuous
actions, which have been the object of much research. ,

Theorem 2 answers Hilbert’s question concerning which group actions can be made
real analytic. Furthermore the answer is best possible since, as we have seen above, there
exist smooth, in fact C* smooth, non-Cartan actions of Lie groups that cannot be made
real analytic. ,

Concerning the proof of Theorem 2 let us here note that we are assuming that G is
an arbitrary Lie group, and hence G need not be a linear Lie group. (The first example of
a connected Lie group which is not a linear Lie group is given in Birkhoff [3].) Therefore
one cannot in general imbed the G-manifold M as a G-invariant subset of some finite-
dimensional linear representation space for G, and hence it is not possible to use some
equivariant version of Whitney’s method [33], as was done in [18], in the proof of Theorem
2. Instead we use a maximality argument, involving the use of Zorn’s lemma, for the global
part of the proof of Theorem 2. This argument is analogous to the one used by W. Koch
and D. Puppe in [15], in a non-equivariant situation. For the local technical part of the
proof, one first of all needs to use the well-known result that in a paracompact smooth
Cartan G-manifold there exists a smooth slice at each point, see Palais [26, Proposition
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2.2.2]. (This result is extended to the non-paracompact case in [12, Proposition 1. 3] but
as we already mentioned this generality is not a main issue.) An important role in the
technical part of the proof of Theorem 2 is played by the result on approximations of
smooth slices proved in [12, Lemma 6.1].

Let us here also use the opportunity to correct a mistake in [12]. Lemma 2.3 in [12]
is not correct as stated, and this was pointed out to me by Sarah Packman (a Graduate
Student at Berkeley) [25]. In the proof of [12, Lemma 2.3] I refer to Lemma 2.2.8 in Hirsch
[11], which is stated there only for the C" case, r < 0o, but by mistake I used it in the O
case, where it fails to hold. Since Lemma 2.3 of [12] is used in the proof of the main result
of [12], it is important to correct the mistake, and Sarah Packman also inquired how one
could do this.

The easiest and best way to correct the mistake in [12, Lemma 2.3] is simply to use
another topology on the C* function spaces. Instead of using the strong (also called the
Whitney) topology, defined in Hirsch [11, Section 2.1 and 2.4] and in Mather [17, Section
2], on the C* function spaces, one should use the topology defined in Cerf [6, Definition
1.4.3.1]. We name this topology the very-strong Whitney topology on C*°(M, N ), it is called
the ‘very strong topology’ in [28, p. 59]. The fact that Lemma 2.3 in [12] is valid for the
very-strong Whitney topology follows by [6, p. 273].

The very-strong Whitney topology ought in fact to be the natural choice for a topology
on C*°(M, N). It is the topology which gives the right means for expressing Whitney’s
result concerning approximation of C* maps by real analytic maps. We recall here that
the strong (or Whitney) topology on C*°(M, N), given in [11] and [17], is just the union
of all strong C" topologies on C*®°(M,N), where 1 < r < oo. Whitney’s result, see
[32, Lemma 6], concerning approximation of a C* map by a real analytic map involves
approximation of partial derivatives of increasingly high order as one approaches infinity,
- and this phenomenon is captured by the very-strong Whitney topology, but not by the
strong topology. ‘

The only other change required in [12], in order for the proof of the main result to
run exactly as in [12, Section 7], is that [12, Therem 2.1] should also be given using the
very-strong Whitney topology. Theorem 2.1 in [12] is the result by T. Matumoto and M.
Shiota [18, Theorem 1.2], which says that the set C% (M, N) of K-equivariant real analytic
maps is dense in CE (M, N). Here K denotes a compact Lie group, and Matumoto and
Shiota use the strong topology (they call it the Whitney topology), defined in [11] and [17].
It is not difficult to prove that [12, Theorem 2.1] also holds for the very-strong Whitney
topology, but this fact does not seem to appear in the present literature. Hence we give a
proof of it in [13], where we also give a more detailed discussion of the very-strong Whitney

topology and its basic properties.
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A UNIVERSAL SPACE BASED ON THE
SIERPINSKI TRIANGULAR CURVE

IvaN Ivan§ié AND UrR0S MILuTINOVIC

In this talk! we restrict ourselves to Cech-Lebesgue covering dimension and to the class
of metrizable spaces. The goal is to present a result which shows that the Sierpinski trian-
gular curve (known also as Sierpiriski gasket) is an object that can be used in constructing
an n-dimensional separable metric space, denoted L,(3) that is universal for separable
metrizable spaces of dimension < n, i.e. if X is a separable metric space of dimension < 7,
then X can be topologically embedded into L, (3).

In general, if C is a class of topological spaces, then Y is called universal for the class
CifY belongs to C, and if every X from C can be topologically embedded into Y. In our
result mentioned above, the class C is the class of all separable metric spaces of dimension
< n, but we shall give examples of universal spaces for many other classes. Let us point it
out that Sierpiriski was the originator of the theory of universal spaces. :

In this note we shall review both cases of n-dimensional universal spaces, separable
and nonseparable. A short history of creation of dimension theory can be found in the
introduction to [H-W]. [E] also contains many historical and bibliographic notes scattered
- throughout the book. We start from 1915 when W. Sierpiriski [S1] defined his triangular
curve which we denote X(3) (for reasons that will become clear later on) and proved
that (almost) every of its points is a ramification point. For our purposes, the following
description of Sierpifiski triangular curve is convenient (the usual description is in the
zy-plane).

Let o1, ¢2 and ¢3 be homotheties with coefficients 1/2 and centers e, e? and e, where
e!, e? and e® are the vertices of the standard 2-simplex % (see figure):

" [ @+n/2 ifj=i
($i(z)); = { zj/2 i j#i,
for all 4,5 € {1,2,3}.

If
. (3) = U onooen.(®),  A={1,23},
(Al,...,An)GA"

1Presented by the first author at the Sixteenth Annual Workshop in Geometric Topology, University
of Wisconsin-Milwaukee, June 10-12, 1999
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then the Sierpinski triangular curve is

%(3) =[] Za(3).

neN

From this description one sees that the points of ¥(3) which are not vertices of triangles
at any stage are uniquely presented by a sequence of indices of ¢’s with terms in the set
{1,2, 3}, i.e. in a set of cardinality 3. The points of ¥(3) which are vertices of triangles at
some stage (except the first) have two presentations and these presentations are related in
a particular way which will be described later. Such a description allows a generalization
to a set A of infinite cardinality 7 leading to a generalized Sierpinski curve which
we denote (7). The space X() is a subset of the Hilbert space £3(r) = {(zx) € R" |

in < oo} equipped with an inner-product-space structure. Consider “homotheties”

-~ XeA

@a : £2(T) = £5(7) defined analogously to above by

(za+1)/2 ifp= }"
(Oa(z))u = { Tu/2  Hp# A

for all A, p € A.
Let

Q’={($A)622(T) I Zz;\zlandOSzASL /\EA}
‘ A€A ~
The closure of o is called “the standard 7-simplex” and is denoted by X. This is also the
closed convex hull of the set of unit vectors e* in £2(7) (i.e. (€*), = dux). It can be easily
shown that
S=co={(za) €f(r)| Y zx<land0< 2y <1, A€ A},
A€A

In order to define 3(7) one considers, analogously to X(3), the sets
B ()= U  danoogn(®)

(A1 yeemyAn JEAT .
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and defines
5(r) =[] Zal).

neN

Besides %(3), W. Sierpinski [S2] defined in 1916 his well known square curve M?
(Sierpinski carpet) and proved that M? is universal for planar sets of dimension < 1.
In 1921 W. Sierpirski [S3] introduced dimension 0 and proved that the irrational numbers
and the Cantor set are universal for all 0-dimensional metric compacta. The next move in
this direction happened in 1926 when K. Menger [Mg-1] generalized Sierpiniski’s construc-
tion from R? to B3 and proved that M3 is universal for metric compacta of dimension < 1.
Menger also generalized the constructions of M. ? and M? to higher dimensions, introducing
compacta M™, n=1,...,m—1 (see, for example, [E] for the construction) and conjectur-
ing that M™ is universal for the class of compacta in R™ of dimension < n. These were
later named Menger compacta after him. Soon after Menger’s mentioned result, in 1931,
G. Nobeling [N5] discovered that the n-dimensional space N2"*' C R27+1 which consists
of all points in R?*+! that have at most n rational coordinates, is universal for all separable
metrizable spaces of dimension < n. So, at this point one compares statements related to
M? and N? and wonders whether M2"+! is universal for all separable metrizable spaces
of dimension < n? This was answered by S. Lefschetz [Lf] in 1931. We note that Menger’s
conjecture was proved in 1971 by M.A. Stanko [g], 45 years after it was posed. -

" Let us now turn to nonseparable finite-dimensional metrizable spaces. Let 7 be the

weight of the space X, 7 > Rg. Discovery of an n-dimensional universal nonseparable
metric space slowly followed the separable case and used infinite-dimensional spaces. In
1947, C.H. Dowker [D] proved that the Hilbert space £2(7) is universal for metrizable
spaces of weight 7. Hence, the question was around, are there m-dimensional universal
spaces like in the separable case? The next infinite-dimensional object along these lines
was discovered in 1957 by H.J. Kowalski [K] who introduced the so-called star space S(7)
and proved that a space of weight T is metrizable if and only if it can be embedded into
S(7)%, the countable product of star spaces. If we compare this result with Urysohn’s
metrization theorem, which in our context says that the Hilbert cube I Ro j5 a universal
space for all separable metrizable compacta, then we see that in both cases we have the
countable power of a 1-dimensional space and that the role of the segment I in the separable
case is played by the star space S(7) in the nonseparable case.

The star space S(7) is defined in the following way. Take an index set A of cardinality T.
Let {I, | A € A} be the family of unit segments I = [0, 1], indexed by A. The space S(7)
is obtained by identifying the O-points of the I)’s and introducing the following metric:

lz—y| ifA=p,
d([zx], lyu]) = { o + [yl i A #

The weight of S(7) is 7 and its dimension is one.

Finally, J. Nagata constructed two n-dimensional universal spaces for n-dimensional
metrizable spaces of weight 7. The first one [Ng-1] he found in the Hilbert space £2 (1) but
its description is complicated, while the second, which he discovered in 1963 [Ng-2], is a
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subset of Kowalski’s space S()®¢. Denote by K,(r) C S(r)™ the set of points in S(r)™
which have at most n nonzero rational coordinates. Then K,(7) is an n-dimensional
universal space for all metrizable spaces of weight < 7 and of dimension < n. Since both
of Nagata’s universal spaces are subsets of infinite-dimensional spaces he has asked [Ng-
3] whether infinite-dimensionality can be avoided? This was answered in the affirmative
by L.S. Lipscomb. In his dissertation of 1973 Lipscomb first solved the one-dimensional
case, published in [L1], and then solved the n-dimensional case in 1975. Let us describe
Lipscomb’s n-dimensional universal space, denoted by Ly (7).

0 1/9 29 13 23 79 89 1

e | A : P —
0.00222.. 0.02000.. 0.0222... 0.2000... 0.20222... 0.22000...

We start from an inspiring construction of the segment from the “middle third” repre-
sentation of the Cantor set. If we identify adjacent endpoints in the Cantor set we obtain
a space. homeomorphic to the unit segment. In the first step of this process, the points 1 /3
and 2/3 are identified, in the second the points 1/9 and 2/9, 7/9 and 8/9, see illustration.
Underneath those points are written their ternary representations without using the digit
1. One can see the rule that applies to representations of the identified points. First,
after some place, a digit becomes periodic (same digit repeats up to infinity); second, the
identified points have the same representation up to one step before the digits 0 and 2 are
interchanged and the periodicity occurs. L.S. Lipscomb has applied this process to gen-
eralized Baire’s 0-dimensional space of weight 7 > Rg and obtained a 1-dimensional space
J(7) which is then the main building block in building L (7). For the sake of completeness
we point out that generalized Baire’s 0-dimensional space N(A), 7 = |A[, is a countable
product of discrete spaces A, i.e. ' :

neN

and N(A) is a universal space for the class of O-dimensional metrizable spaces of weight
< 7. Now, in N(A) we identify points of the form ‘

)\1/\2/\3 cee /\j_lz\jp,jujuj e
)\1)\2/\3 ‘o Aj_.luj/\j/\jAj e

The obtained quotient space J(7) = N(A)/ ~ (see [L-1]) is metrizable, 1-dimensional and
has weight 7. The classes which are doubletons are called the rational points of J(r) and
the classes which are singletons are called the irrational points of J(r).

Now we can describe Lipscomb’s n-dimensional universal space Ln(7) for metrizable
spaces of weight < 7 and of dimension < n (see [L-2]). This is the following subset of the
(n + 1)-st power of J(7):

Ln(r) = {(z1, -+, Tn+1) € J(7)™F* | at most n coordinates are rational}.
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Denote by p: N(A) — J(r) the quotient map and define g : N(A) — X(7) by

q()\]_,...,An...)z n¢)\10”'°¢kn(2)’

neN

where ¢, are the above homotheties and ¥ C £(7) is the standard 7-simplex. Then it is
proved in [Mi] that J(7) and () are homeomorphic, in fact there is a homeomorphism
x : J(1) = Z(7) such that x op = ¢g. The points that come from doubletons are called the
rational points of X(7) and the others are called the irrational points. This way the space

La(R0) = {(z1,-- -, Tns1) € B(No)™ " | at most n coordinates are rational}

is universal for separable metrizable spaces of dimension < n.

Since the definition of both N(A) and Lipscomb’s equivalence relation on N(A) remain
meaningful even in the case when A is finite a natural question in the separable case was
raised: is it possible to replace L,(¥g) by Lx(k), k finite? The answer is yes if & > 3,
proved in [I-M]. If ¥ = 2 then J(2) is homeomorphic to [0,1] and this cannot be done
(e.g. L1(2) is a planar set). But if k = 3 then (via the homeomorphism mentioned above)
J(3) = %(3), the Sierpiriski triangular curve. The rational points of X(3) are all vertices
of triangles used in the constructing procedure except the vertices of the first triangle &
— all the other points are irrational. This also holds for any k > 3, since £(3) is naturally
contained in X(k), k > 3. Hence the space :

Ln(3) ={(z1,.. -, Tns1) € B(3)"*" | at most n coordinates are rational}

is a universal space for the class of éeparable metrizable spaces of dimension < n.
It seems to us that in this way the Sierpinski triangular curve has found a role in

dimension theory that it started to look for some 75 years ago.

Comment on the proof. The experience from proving that J(7) and X(7) are homeomorphic
gave geometric insight into L,(7) and a hint for proving the universality of L,(3). In
proving the universality of L, (3) we start from a partition of an n-dimensional space X
into n + 1 0-dimensional subspaces '

X=X1U"'UXn+1

and apply Lipscomb’s Lemma 4 of [L-2], getting slightly modified Lipscomb’s decomposi-
tions. Then in several steps we modify the decompositions in a way so that it is possible
to accomplish an indexing of modified decompositions yielding an embedding of X into
L,(3).
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ACYCLIC RESOLUTIONS OF METRIZABLE SPACES

LEONARD R. RUBIN AND PHILIP-J. SCHAPIRO

ABSTRACT. Recent work of Koyama and Yokoi shows that for any Bockstein group G, and
(metrizable) compactum X with dimg X < n, there exists a G-acyclic resolution 7 : Z — X
from a compactum Z with dimZ < n+ 1 and dimg Z < n. For arbitrary abelian groups
their research provides a resolution from a compactum Z with dimZ < n + 2 and with
dimg Z < n+1. This short exposition explains some of the history of the resolution theorems
and expresses a direction of research which would allow for resolution theorems in case X
comes from the class of arbitrary metrizable spaces instead of just compact metrizable spaces.

1. Introduction. Unless otherwise specified, -space..will mean metrizable space in this
article. Map will mean continuous function. »

The cohomological dimension of a space X over an ‘abelian group G, dimg X, [DD],
may be defined as follows. If X = {, then write dimgX < —-1. I X # 0 and nis a
nonnegative integer, then dimg X < n means that for every closed subset A of X and
every map f : A — K where K is a CW-complex of type K(G,n), there exists a map
F : X — K which is an extension of f. We define dimg X = oo if no such n exists;
otherwise, dimg X = min{n | dimg¢ X < n}. |

A proper, surjective map 7 : Z — X is called G-acyclic if each of its fibers 7!';1(3}) is
G-acyclic. This means that m* (7~ (z); @) = 0 for all z € X. One calls 7 cell-like if each
71(z) has the shape of a point [MS].

1.1. FACT. Every cell-like compactum is a continuum and 18 G-acyclic for all abelian

groups G. [

2. Background—Resolution Theorems.

In this subject, a resolution theorem usually means a proposition showing that for a
given space X which satisfies the property dimg X < n for some abelian group G, there
 exists a proper surjective map 7 : Z — X from a space Z with control on the dimension
dim Z, perhaps control on dimg Z, and such that the fibers of 7 are either G-acyclic or

Typeset by AAS-TEX
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are cell-like. Here we make a list of most of the known resolution theorems. The symbol

n will stand for an element of N.

2.1. Edwards-Walsh Theorem [Wa], 1981. For each compactum X with dimz X < n,

there ezists a compactum Z with dimZ < n and a cell-like map 7: Z — X.

2.2. Theorem [RS1], 1987. For each metrizable space X with dimz X < n, there ezists

a metrizable spice Z with dim Z < n and o cell-like map 7 : Z — X.

2.3. Theorem [Dr2], 1988. Let p be a prime and X be a metrizable compactum with

dimgz;, X < n. Then there ezists a metrizable compactum Z,dimZ <n, and a Z[p-acyclic

map 7: Z — X.

2.4. Theorem [MR], 1989. For each compact Hausdorff space X with dimz X < n,
there ezists a compact Hausdorff space Z with dim Z < n and a cell-like map 7 : Z — X: -

2.5. Theorem [KY1], 1994. If X is either a metrizable space or a Hausdorff compactium
and G € {Z,Z/p}, then there exzists a G-acyclic map 7w : Z — X where dimZ < n and Z

is either metrizable or compact Hausdorff, respectively.

2.6. Theorem [Dr3], 1996. If X is a metrizable compactum and dimg X < n, then there
ezists a metrizable compactum Z with dimZ <n+1 and a Q-acyclic map v : Z — X. If

n > 1, then we may also conclude that dimg Z < n.
Let us mention that in [ARS] one can find an alternate proof of 2.1.

3. Edwards—Walsh Complexes.

The first “Edwards-Walsh” complexes were constructed in [Wa]. Since that time, with
the exception of [ARS], their use was instrumental in getting resolution theorems. Given
an abelian group G and a simplicial complex L, an Edwards—Walsh resolution consists of
a CW-complex EW (an Edwards-Walsh complex) and a map f:EW— |L| which satisfies
a certain list of conditions, which one may ﬁﬁd’ in [DW], but in a more refined form in
[KY2]. Such resolutions provide a method for finding appropriate bonding maps for the
inverse systems needed to define the space Z and the resolving map 7 : Z — X for X with

the desired type of fibers and requisite dimension of Z.
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Initial work on the subject of these complexes was done in [DW]. But Koyama and

Yokoi [KY2] have found a problem in one of the main lemmas of [DW], which necessitated

some changes in one of the definitions in [DW].

4. Koyama—Yokoi Resolution Theorems.

Having changed the definition from [DW] in a suitable manner (conditions (EW1),(EW2)),
Koyama and Yokoi [KY2] have been able to prove the existence of Edwards—Walsh resolu-
tions for a certain important class of abelian groups and with respect to arbitrary simplicial
complexes. These have led to the theorems in [KY?2] which we are now going to state. For
the next, assume that X is a metrizable conipactum, G is an abelian group, n € N, and

dimg X < n. Also assume that p designates a prime number.

4.1. Koyama%Yokoi Theorems. -

(a) There ezists ¢ metrizable compactum Z with dim Z < n+2 and dimgZ <n+1
and a G-acyclic map w: Z — X.

(b) If G € {Q,Z), Z/p, Z/p™} (the so-called Bockstein groups), then there ezisis
a G-acyclic map w: Z — X where dimZ < n+1 and dimg Z < n.t

(c) If G is torsion free, then there exists a metrizable compactum Z with dimZ <
n+1 and dimgZ < n and ¢ G-acyclic map 7: 7 — X.

(d) If G is a torsion group, then there ezists o metrizable compactum Z with dim Z < -

n+1 and a G-acyclic ma.p'/rﬁZ—)X. O

5. Sums of Cyclic Groups.

There is a significant class (see [Fu], Ch. 3) of groups G which are canonical direct sums
(called decompositions) of cyclic groups, say @Gi with G; =Z or Z/ pf * for primes p; and
natural numbers k;. It can be shown ([RSZ])Ziflat the cohomological dimension types rel-
ative to such groups G can be placed in one-to-one, order-preserving correspondence with
the non-empty subsets of the set P of all primes (With»the inclusion of the set Z as gi'ea,t—

est element) under inclusion. For such a group G, let P(G) be {Z}, if Z is a summand of the

canonical decomposition; otherwise let P(G) be {p|Z/ p*is a summand for some value of k}.

1This result was obtained for Q in [Dr3], but the proof there is incorrect.
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If P(G") C P(G), then dime X < dimg X < dimz X < dim X for all metrizable spaces
X. Moreover, dimg X = dimz X or dimg X = sup{dimg/, X [p € P(G)}, respectively, in
the two cases described.

The authors have contemplated constructing n-dimensional acyclic resolutions for X
and such G’s by using induction to intersperselbonding maps for inverse sequences of com-
plexes, extending the techniques described in [RS1], [RS2]. Observe that such resolutions

are constructed in [RS2] by using the “replacement” groups: Z or P{Z/p|p € P(G)},

respectively, instead of G itself. This program for compact metrizable spaces had been

carried out in [Drl].

6. Replacement Groups.

The notion of constructing a resolution for a group G by using resolutions for “replace-
ment” groups was used by Koyama and Yokoi ([KY2]) to construct resolutions for metric
compacta relative to the group Zpe, which is the direct limit of the sequence of groups
Z/p* under bonding maps which are multiplication by p. Thus, if dimz,., X = n, then by
the Bockstein inequalities ([Ku]), dimz, X € {n,n + 1}. In the case that this dimension
is n + 1, they obtain an (n + 1)-dimensional resolution. They show that a resolution is
Zpes-acyclic if and only if it is Z /p-acyclic.

The authors in [KY] developed their method for creating resolutions of metric compacta
for groups satisfying conditions formulated by them and denoted by the symbol “(EW)”.
They use the ABockstein Inequalities and the Bockstein Basis Theorem to find suitable
replacement groups for G.

The Bockstein Basis Theorem states that there exists a “field of coeflicients”, say F,
where F = {Q,Z/p, Zpe, Zp) | p € P}. The basis 0(G) for a particular group G, a subset
of F,is determined as specified, e.g., in [Ku]. Finally dimg X = sup{dimg X | H € o(G)}.

7. Conditions (EW).

The conditions (EW) assert that there is a group homomorphism « : Z — G such that,

(1) a®idg:Z® G — G®G, and
(2) a* : Hom|[G,G] — Hom[Z, G]
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are isomorphisms (here o*(f) = f o &). Now the groups in the set {Q,Z/p, Z,), Zp)} for
p € P and P C P satisfy (EW), but, for example, Zp~ and Z @ Z /2 do not.

Koyama and Yokoi create by induction a ladder of inverse sequences:

EW(G', L;) — EW(G', Li)

e T

Ly — L;
gi—114
J,Gbi—l ld,i
K — K;
fie1

with im(K;, fi—1:) = X, im(L;i,g:—1:) = Z, and the G'-acyclic map 7 : Z — X. Here
the EW(G', L;) are Edwards-Walsh (combinatorial) resolutions for complexes L;, and G’

satisfies (EW). The diagram commutes only approximately.

8. Generalization to Metrizable Spaces. Our idea is to obtain as many of the previ-
ously stated results as we can where X is in the class of metrizable spaces, that is, it is not
restricted to the class of metrizable compacta. Some of the needed techniques for dealing
with the inverse sequences that arise in this area can be found in [MRS]. Others can be
found in certain preprints of Millspaugh—Rubin and of Rubin-Schapiro. Still others have
not yet been developed but should be attainable with some effort.

One of the barriers to an easy exténsion of the results is the fact that the Bockstein
Basis Theorem ([Ku]) is known not to hold true for arbitrary metrizable spaces ([DRS)).
Its application for metrizable compacta was much exploited in the work of [KY2]. It will
bé difficult to overcome its inﬁpplicability for arbitrary metrizable X as we proceed with

our ongoing research in this field.
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Spaces whose only finite sheeted
covers are themselves: A survey

Mathew Timm

Question. Which spaces M that have the property that whenever p : X— M is a finite
sheeted connected covering it follows that X is homeomorphic to M.

With a little reflection it becomes clear that there are two ways in which a space M can
satisfy this property: either, (1) M has no non-trivial finite sheeted covers, that is, whenever p :
X—M is a finite sheeted cover, it follows that the given covering projection p must be a
homeomorphism or (2) M has a k-fold connected cover p: X — M for some k > 2 and the
total space of every connected finite sheeted cover p : X —» M is such that X is homeomorphic
to M via a map that is perhaps distinct from p. '

Note that any simply connected X, or more generally any X that has a fundamental
group with no proper finite index subgroups, is an example of .a‘space satisfying the first
condition and spaces of the form T" = g S! and T" x X are spaces that have non-trivial

self-covers and satisfy the second condition. Thus, spaces that have the property that all their
finite sheeted covers have total space homeomorphic to the base space are quite abundant.

§1. Terminology and H-connected Spaces
In this paper, a space M will be a compact metric space in the metric topology, usually
with additional structure imposed on it. Unless it is specified to the contrary, it is assume that

all spaces are connected.

Definition 1.2. Let M be a connected metric space. Then M is trivially h-connected or H-
connected[Jungck, 1983], if whenever p: X — M is a finite-to-1 covering projection from the
connected metric space X onto M, it follows that p is a homeomorphism.

The reader is referred to the survey paper by Hea_th[l995_]. It is a good source of

information on what is known about the general question of when a compact connected metﬁc_

space can be either the domain or range of an exactly k-to-1 function that has up to ﬁnitély
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many discontinuities. It also contains a list of interesting open problems and its bibliography

is quite extensive.
For spaces with additional structure, in particular, manifolds, there are several

situations that appear to be related to the notion of H-connectedness. The reader is referred to
work by Daverman[1991,1993] and a sequence of papers from the late 80's through 1998 by,
among others, Wright[1992] and Meyers[1988,1999] for more of this related work.  This

collection of work generates two problems.
Problem 1.5. Is every closed H-connected n-manifold a codimension k fibrator.
Problem 1.6. Which H-connected 3-manifolds cannot non-trivially cover any 3-manifold.

It is well known, see, e.g., Jaco[1983, § V1], that the groups that can be a 3-manifold
group, that is, the fundamental group of a 3-manifold, must satisfy quite restrictive criteria.
Three such interesting-criteria that relate to the discussion at hand follow.

Theorem 1.12. The Scott-Shalen Theorem. If G is a finitely generated group that is a 3-
manifold group then G is finitely presented. ‘

Theorem 1.13. If G is a finitely generated abelian 3-manifold group then G is isomorphic to
oneof 1,Z,Z x Z,Z X Z X Z, Z X Zs3, or Z for some p > 2. v

A group G is residually finite if the intersection of all its finite index subgroups is 1.

Theorem 1.14.Hempel[1987,1.2] If G is the fundamental group of a compact 3-manifold
whose prime factors are either virtually Haken or have infinite cyclic fundamental group, then

G is residually finite.

It is conjectured that all compact 3-manifolds can be written as a connect sum in which
the prime factors are as stated in Theorem 1.14. As consequence of this conjecture and
Hempel's result, it is conjecture that all compact 3-manifolds have residually finite
fundamental group. Therefore, since the fundamental group of an H-connected n-manifold
has no proper finite index subgroups, an H-connected manifold M can have residually finite
fundamental group if and only if m;(M) = 1.  Thus, for 3-manifolds, the most interesting
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problem relating to H-connectedness is the existence problem. In the light of the preceding

we state the the existence problem as a conjecture.

Conjecture 1.15. There do not exist any non-simply connected compact H-connected 3-

manifolds.

§2. Spaces with a non-trivial self cover ,
For this section consider the more general situation where all that is assumed is that M

has at least one non-trivial self-cover p:M—M Say that |[p| =k > 2.

It is immediately clear that such an M has infinitely many finite-to-1 self coverings,
namely the (nk)-to-1 coverings (M, p") where the covering projection p”:M— M is the
composition of p with itself n times. Thus if M is a manifold or cell complex 71 (M) is infinite
and, in fact contains subgroups K, = m;(M) such that |m;(M):Ky| > n Accordingly, no
finite group can be the fundamental group of a manifold that non-trivially covers itself.

Examples of spaces that have at least one non-trivial self-cover include the Mobius
band M, the Klein bottle K, the n-tori T? = S! x ... x S! (for which all the finite sheeted
covers are self-covers) and the products M x T" and K x T™.

If M is a compact n-manifold then M is a closed (n — 1)-manifold with finitely many
components. Assume that p:M—M is a non-trivial self-cover with |p| =k > 2. Clearly,
OM is defined in terms of a local condition. Therefore, (p|JK): 9K — JK is also a k-fold
self-cover. The Classification Theorem for compact 2-manifolds, together with the fact that
the Euler characteristic of a space with a nontrivial self-cover must be 0, imply that the only
closed 2-manifolds that non-trivially cover themselves are the Kline bottle and the 2-torus.
So, if a compact 3-manifold non-trivially covers itself, its boundary is either empty or a finite
union of disjoint 2-tori and Klein bottles.

For compact 3-dimensional manifolds there are three theorems of Tollefson[1968]
giving a partial classification of those compact 3-manifolds that non-trivially cover
themselves. I think the first is particularly surprising and state it here. The notation P? is used

to denote real projective 3-space.

Theorem 2.2. A closed connected non-prime 3-manifold M non-trivially covers itself if and

only if M is homeomorphic to P3 # P2,
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§3. h-connected spaces and hc-groups , _
Definition 3.1. A connected space X is h-connected (note the lower case h) if whenever

p: M — X s a finite sheeted covering projection it follows that M is homeomorphic to-X. A
group G is an hc-group if every finite index subgroup of G is isomorphic to G. A space is
trivially h-connected if and only if it is H-connected. An hc-group is a trivially he-group if it
has no proper finite index subgroups.

Note that any h-connected complex has an hc-group as its fundamental group. As
there is an abundance of h-connected complexes, there is accordingly an abundance of non-
trivially h-connected spaces and hc-groups. The n-tori T™ provide the most readily available
infinite collection of h-connected spaces, and accordingly, m;(T™) :k _7_% 1Z provides an

~ infinite collection of hc-groups. It is also easy to see that for all n € N there are (n 4 4)-
manifolds that are non-trivially A-connected. For example, let G to be any non-trivial finitely
presented (necessarily infinite non-abelain) group with no proper finite index subgroups. Let
M be your favorite 4-manifold with m;(M) = G. Then, the spaces M x T" are, for all
n € NU {0}, non-trivially h-connected (n+4)-manifolds and so, their fundamental groups
mi(M x T") = G X k(__% 1Z) are ndn-hivially hc-groups that are non-abelian and possess

proper finite index subgroups. Finally note that if M is an h-connected manifold and N is a
trivially h-connected manifold then M x N is h-connected.

As of this date, the topology that has been developed for such spaces is very dependent
on the group theory of hc-groups. The main group theoretic results on hc-groups are those of
Robinson and Timm[1998]. The result with the most obvious topological consequences
follows. The finite residual of the group G is the normal subgroup

F=N{H:H<Gand |G:H| < c0}.
A group G is directly indecomposable if whenever G = HxK, it follows that H=1 or
K = 1. The notation Cg(G@') denotes the subgroup of G called the centralizer in G of G’ and is

defined by Cg(G') = {g€ G:gx =xgforallx € G’ }.
Fact 3.3. If G is a finitely generated abelian hc-group then G is free abelian.

Theorem 3.4. If G is a finitely generated hc-group then, G/G’ is free abelian, (G')' =G/, and
G is the finite residual of G.
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There are interesting consequences. First, if M is an h-connected manifold with
finitely generated 7, then H;(X, Z) —Ek 6% 1Z. Second, if H is a subgroup with finite index in

a finitely generated hc-group G, then G’ < H and H< G. Thus, there is the surprising result
that every finite index subgroup in a finitely presented hc-group has abelian quotient and
every finite sheeted covering of an h-connécted m-manifold with finitely generated
fundamental group is a regular abelian covering. Third, a finitely generated residually finite
hc-group is free abelian. Thus, an h-connected manifold with finitely generated residually
finite fundamental group has a finitely generated free abelian fundamental group.

Specializing to the case of compact non-trivially #-connected 3-manifolds we can say a
bit more. First, if M is a compact A-connected 3-manifold, we know its boundary is a disjoint |
union of finitely many 2-tori or Klein bottles and from Fact 3.3 that it has non-trivial first
homology. So, combining this with Theorem 3.4, H; (M) is free abelian and has a Z summand.
Therefore, M has n-to-1 self-covers for all n € Z. In particular, M has 2k-fold self-covers for
all k € N. As the even index covers of the Klein bottle are the 2-torus, this implies that OM is
a disjoint union of finitely many 2-tori. Second, since the only residually finite hc—group‘_s are
the free abelian ones, we are again forced to confront the Geometrization Conjecture and the

existence question.

Conjecture 3.7. There exist no finitely presented non-abelian non-trivially hc-groups that are
the fundamental group of a compact 3-manifold.

§4. h-connected 3-manifolds.

The results in this section are of the form "if G is an hc-group or M is an A-connected

3-manifold and some other reasonable condition holds, then G or 71 (M) is free abelian." They
indicate that it may be possible to prove that a finitely generated 3-manifold hc-group is free
abelian (or a trivially hc-group) in a manner that is independent of the Geometrization
Conjecture. : ‘
Reasonable group theoretic hypotheses to add are additional subgroup conditions, e.g.,
one could look for nilpotent or solvable finitely generated hc-groups. But, by Timm[1994] or
Robinson and Timm[1998], it is know that finitely generated nilpotent hc-groups are free _
abelian and, more generally by Robinson and Timm[1998] it is known that finitely generated
solvable hc-groups are free abelian.

For the topological considerations, we begin by looking at the usual places where one
begins to look for examples in 3-manifold topology: hyperbolic spaces and knot complements.
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First as an easy consequence of the Mostow Rigidity Theorem, e.g., Thurston[1982, 3.1] there

is the following result.

Fact4.1. IfMisa hyperbolic 3-manifold with finite volume and 71 (M) is an hc-group, then
M is trivially h-connected and so 71 (M) has no proper finite index subgroups.

Fact 4.2. If M is a knot complement of a tame knot K in S* and M is h-connected then K is
the trivial knot and so M is the solid torus S! x D?.

Proof. As a consequence of Bumns, Karrass, and Solitar[1987], knot complements have
residually finite fundamental group. By Theorem 3.4 above, G’ is the finite residual and so
m1(M) is free abelian and equal to H;(M). So mi(M) = Z. Therefore, by Dehn[1908], K is
trivial. (See also Kirby[1997, Problem 1.12].)

Fact 4.3.- If M is a Seifert fibered hA-connected 3-manifold then (M) is free abelian.

Fact 4.4. IfM is an irreducible h-connected 3-manifold and 71(M) has non-trivial center, then

m1(M) is free abelian.

The Frattini subgroup of a group G is the group F that is the intersection of all the
maximal subgroups of G. It is know, e.g. Allenby, et al[1979], that if M is an orientable,
compact, irreducible, sufficiently large 3-manifold then M must be a Seifert fibered 3-
manifold and so the Frattini subgroup of 7;1(M) is cyclic. So, by Fact 4.3, a non-trivially h-
connected (and so necessarily orientable) compact, irreducible, sufficiently large 3-manifold
would bave free abelian fundamental group. As free abelian groups have trivial Frattini
subgroups, this is a contradiction. So, we have the next fact. (See also Kirby[1997, Problem

3.33])

Fact 4.5. If M is a non-trivially h-connected, compact, irreducible, sufficiently large 3-
manifold then 7y (M) has trivial Frattini subgroup and, in fact, 7r;(M) is free abelian.

Facts 4.4 and 4.5 suggest two interesting versions of Problem 3.7 to investigate. One

or the other may be simpler to solve then the original problem.

37



Problem 4.6. Can it be shown that every non-trivially h-connected, irreducible, compact 3-

manifold M has a fundamental group with non-trivial center.

Problem 4.7. Do there exist any finitely presented hc-groups with non-trivial Frattini
subgroup.
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Problem Session

1. (Greg Conner) Suppose a Peano continuum X contains a sequence {1;}32, of ho-
motopically nontrivial loops with the property that each I; is homotopic to each
l;, and the [;’s converge to a point. Does it follow that 73 (X) is uncountable?

2. (Eric Swenson) Let X be a noncompact CAT(0) space and G a group acting
geometrically (properly discontinuously and compactly by isometries) on X.
(a) Does G have an element of infinite order?

(b) Can G contain an infinite torsion subgroup?

(The conjectures are: “yes” for (a), and “no” for (b).)
Background. Bridson and Hifliger have shown that there are finitely many
conjugacy classes of finite subgroups of G. Ballmann and Brin have shown that
the answer to (a) is “yes” if X is a 2-dimensional complex. It is also known that
the answer to (a) is “yes” if G fixes a point of 6X.

3. (Steve Ferry) If X is a 3-dimensional ANR homology manifold, is X x R? a
manifold? '

4. (Craig Guilbault) Let M be a one-ended open manifold. If M is inward tame
at infinity, must 7, be semistable (also called Mittag-Lefller) at infinity? Note.
M is inward tame at infinity if, for arbitrarily small neighborhoods N of infinity,
there exist homotopies H : N x I — N such that Hy = idy and H;(N) has

compact closure.

5. Let M be a closed aspherical manifold.
(a) (Guilbault) Must the universal cover of M be inward tame at infinity?.
(b) (Ferry) Must the universal cover of M x S* be controlled inward tame at

infinity?. ,

6. (Ric Ancel) Is there a CAT (0) group with precisely n distinct boundaries, where
1<n<2%? :

7. (Raymond Mess) See following page.
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Problem presented to the geometric topology conference by
Raymond Mess of UWM and MSC TECHNOLOGIES INC.

First I will give some definitions.

Definition-Solid- A solid is defined as a bounded, connected and
topology regular subset of Euclidean 3-space which is a 3-
dimensional manifold with boundary.

Definition-Topology Regular-A point is topology regular if it
equals closure of its interior, i.e. if A=k{int(A)}. |

The question is given any non-convex solid can it be decomposed
mto a finite set of convex solids which through boolean
combinations form the original non-convex solid.

- A typical algorithm is one such as developed by Yong Se Kim
currently at UWM and D. J. Wilde of Stanford . The algorithm
uses convex hulls and set difference to represent a non-convex
object by a boolean combination of convex components. It should
be noted that non-convergent cases (the object does not decompose
into a finite set of convex solids) exist for the present algorithms
that I have seen. Two good papers to introduce the topic are

A Convex Decomposition Using Convex Hulls and Local
Cause of Its Non-Convergence in the Journal of Mechanical
Design Sept 1992 by Wilde and Kim and Volumetric Feature
Recognition Using Convex Decomposition by Kim in Advances
in Feature Based Manufacturing , Elsevier 1994. |
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