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Talks by J. W. Cannc;n *
at the 1997 workshop in Geometric Topology

Talk 1: Dehn’s Algorithm

Coworkers on this project are Michael Shapiro, Oliver Goodwin, Robert Gilman, and Brian

Bowditch.

Max Dehn defined the fundamental problems in combinatorial group theory, namely, the
word problem, the conjugacy problem, and the isomorphism problem; and he solved each
of these problems for the fundamental groups of the closed surfaces. His solution to the
word problem for the surfaces of negative curvature involved what has come to be known
as the Dehn algorithm: scan the word for the majority of either the fundamental relator or
a trivial relator, replace it by its complementary minority; iterate until no such shortening
operation is possible; then the word represents the identity in the group if and only if the

reduced representative is the empty word.

In the late 1970’s, the author showed that a version of Dehn’s algorithm is valid for all
negatively curved groups: suppose G is negatively curved (that is, Gromov word hyper-
bolic); then there is an integer IV such that every nonempty word representing the identity

in G can be shortened by means of some relator of length < V.

In the early 1980’s, it was discovered (Gromov, Gersten, Short) that a group G is negatively
curved if and only if it admits a Dehn’s algorithm in the sense explained in the previous
paragraph. |

The author and his coworkers consider the following slightly more general problem. Build a
computing machine that applies the Dehn algorithm in the sense of replacing long subwords
of a certain class by shorter words, with a word declared as trivial if and only if the process

results in the empty word. For what class of groups can the word problem be so solved?

'The most obvious and immediate answer is the class of negatively curved groups, with
proof suggested by the paragraphs above which recounted the history of the problem.v

This obvious answer is false for a subtle reason. In the historical algorithm, one is required

* This research was supported in part by an NSF research grant.



to repiace subwords of group relators by complementary subwords. The machine, on the
other hand, is allowed to step outside of the group and to use virtual relators, relators
in some bigger graph which need not be the Cayley graph and whose edges need not be

labelled by generators of the group in question.

One thereby gets an immediate expansion of the class of groups simply by considering
the subgroups of those groups whose word problem is so solvable. Since negatively curved
groups often contain subgroups which are not negatively curved, one immediately sees that

the desired class of groups is larger than the class of negatively curved groups.

Are there even more groups in the class? Free Abelian groups of rank > 1 embed in no
negatively curved group. The authors show that these groups admit such an algorithm.
The proof is essentially a logarithm proof. It acts in one sheet of a Baumslag Solitar group

graph. Similar proofs work with other virtually nilpotent groups.

Since the talk was given, Shapiro has reported the following: “We have an interesting
negative result on Dehn’s algorithms in groups. Roughly it says that if a group contains two
infinite commuting sets A and B and one of them has exponential (even superpolynomial)
growth, then the group does not have a Dehn’s algorithm. In particular, this says exactly
which of the 8 geometries do not admit Dehn’s algorithms, likewise no graph manifold

with a (non nil) Seifert fibered piece has a Dehn’s algorithm.”

The exact nature of the class of groups admitting a Dehn algorithm remains unresolved.



Talk 2: Flattening an Orange Peel into the Plane

Here is a famous open problem: Suppose C is a polyhedral convex body in Euclidean
3-dimensional space. Is it possible to cut the boundary of C along finitely many straight
line segments in such a way that the boundary remains connected and can be flattened

out in the plane without self-overlapping?

Hyam Rubinstein and the author have begun to study a related problem. Suppose that
S is a polyhedral, tiled 2-sphere. Cut S into polyhedral disks by cutting along edges.
Under what conditions is it possible to then develop these pieces into the plane in such a
way that the intrinsic conformal structure of the surface is not distorted too terribly? In
particular, at least locally, nearby pieces should stay nearby; individual pieces should not

be too distorted; both sides of the same cut should stay relatively close to one another;
(ete.?).

The problem is essentially that of a Riemann mapping problem, performed combinatorially.
The hope is to apply results to the problem of showing that a negatively curved group

with 2-sphere at infinity is Kleinian.

The problem looks difficult.



Talk 3: The combinatorial structure of the Hawaiian earring group.

Interesting related work is being developed by Bogley, Sieradski, and Zastrow. The earliest

work on the Hawaiian earring group was published by Higman and Griffiths.

Greg Conner and the author are trying to understand the fundamental groups of those
spaces whose groups do not naturally yield to analysis by covering space theory. The
simplest of those spaces is the Hawaiian earring: the planar compact metric wedge of

a null sequence of circles. The most famous classical results about this group are the

following:
(1) The group is uncountable and is not free.

(2) Two copies of the cone over the Hawaiian earring can be wedged together in such a way

that the wedge is not contractible (has uncountable fundamental group and first homology

group).

The authors give a description by means of transfinite words on a countable alphabet. The
description generalizes naturally to that of what the authors call a big free group. Group
elements of a big free group are represented by transfinite words on a given alphabet of
arbitrary cardinality. The big free groups are groups with additional structure, namely,
an additional infinite multiplicative structure. The big free groups are a generalization of
the finitely generated free groups. Each group element is represented by a unique reduced

transfinite word.

The big free groups can also be described as fundamental groups of generalized Hawaiian
earrings, provided that the fundamental group is suitably .generalized to allow loops based
not on the standard circle but on generalized circles of arbitrary size. The authors define
the generalized Hawaiian earrings, the big fundamental group, and show that the big free
group of arbitrary cardinality C' is the big fundamental group of the generalized Hawaiian

earring with C loops.

Finally, the authors extend the theory to study the fundamental groups of other compli-
cated 1-dimensional spaces such as the Sierpinski curve and Menger curve. Again elements

are represented by generalized words, there is a unique reduced representative for each el-



ement,b and there is a cancellation theory which parallels the case of the big free group but

involves R. L. Moore’s theorem on cellular upper semicontinuous decompositions of the
plane.

The work currently appears in three preprints in preparation.



THE FUNDAMENTAL GROUPS OF
ONE-DIMENSIONAL SPACES VIA ELEMENTARY
TOPOLOGY.

G.R. CONNER

ABSTRACT. This article is meant to describe a talk given at Ore-
gon State University as part of the Western Workshop in Geometric
Topology during the summer of 1997. All of the work described
herein is joint with J.W. Cannon.

1. INTRODUCTION

First I would like to point out others who have worked in this area in
a somewhat chronological order: G. Higman, H.B. Griffiths, J.W. Mor-
gan together with I. Morrison, and B. deSmit all worked in the area of
proving that the fundamental group of the Hawaiian earring is not a free
group([Hi, Gri, MM, dS]), while A. Zastrow, A.J. Sieradski, and W.A.
Bogley have studied fundamental groups of one-dimensional spaces
and generalizations([Z4, S, BS1]). This article describes one facet of
the work contained in a series of three papers([CC1],[CC2],[CC3]) au-
thored by the the current author and J.W. Cannon. Cannon described
many other facets in his series of talks given at this conference.

FIGURE 1. Hawaiian Earring

Let H denote the Hawaiian earring — the union of planar circles ¢;
of radius 1/7 for each natural number ¢, each tangent to the z-axis at
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the origin, 0. A well-known example in topology, H is compact, and
one-dimensional, however its fundamental group is uncountable and
not a free group. It is relatively easy to see why the Hawaiian earring
group, G = m;(H), is uncountable.

Why is it that G is not free? It is not for the obvious reasons that
first come to mind. Since G locally free (each of its finitely generated
subgroups is free), G has no relations in the classical sense. The reason
that G is not free is that it is too “big” to have a have a free basis.
More precisely, any generating set for G must contain “extraneous”
generators. To see this, first note that, since G is not free, any generat-
ing set for G must satisfy some nontrivial relation among finitely many
of the generators. However, since G is locally free, these finitely many
generators generate a free subgroup of G and thus any such relation
can only define a relation among elements of a free group.

2. FUNDAMENTAL GROUPS OF ONE—DIMENSIONAL SPACES

How does one prove that 7;(H) is not free? There are several meth-
ods, but here we will discuss the one that most easily generalizes. The
next result appears in [CC1].

Theorem 2.1. If & : G — A is a homomorphism to a free-abelian
group then ¢(G) has finite rank.

Assuming, for the moment, that the theorem is true we can now show
that G is not free. Clearly, G cannot be free of infinite rank since if it
were, it would have an infinite rank free abelian quotient contradicting
Theorem 2.1. However, G cannot be free of finite rank since it has
uncountably many elements.

One might ask: “What property of H makes its fundamental con-
tradict the intuitive notion that one-dimensional spaces should have
free fundamental groups?” The answer is that the classical tools which
are used to study the fundamental groups of one-dimensional spaces
require the space in question to have certain local finiteness properties
before they yield useful information. For instance, the fundamental
group of H cannot be studied by considering its action on its universal
cover, since H does not have a universal cover ! Furthermore, applying
the Siefert-van Kampen theorem to H in in the same manner which we
apply it to prove that the fundamental group of a graph is free, reveals,
in this case, only that G = G * Z.

There are many of examples of topologically important one-dimensional
spaces whose fundamental groups which are not well-understood (at
least by us). Examples include the Sierpinski curve, S ‘and the Menger
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curve, M. It is surprising that no portion of the following conjecture
(to our knowledge) has been solved.

Conjecture 2.1.1. No two of the following four groups m,(S), 7, (M),
m(H), m(H Vo H) are isomorphic.

Definition 2.2. We say that the topological space X is semilocally
simply connected at x if there is a neighborhood U, of z so that the
image of m (U, z) in m1(X, z) is trivial. Furthermore we say that X
is semilocally simply connected if it is semilocally simply connected
at each of its points. We recall from elementary covering space theory

‘that a path connected Hausdorff space has a universal cover if and only

if it is semilocally simply connected. Informally, a space is semilocally
simply connected if “small” loops are contractible in the whole space.

The following appears in [CC2].

Theorem 2.3. If X is a connected, locally path connected, one-dimensional,

second countable metric space then the following are equivalent:

1. m(X) is free.

2. m(X) is countable.

3. X s locally simply connected.
4. X admits a universal cover.

It is obvious that neither the Sierpinski nor the Menger curve is
semilocally simply connected, thus their fundamental groups are both

uncountable and not free.
We will now discuss one of the main tools used in proving this the-

orem. We need a definition first.

Definition 2.4 (Infinitely Divisible). If A is a nonidentity element of
the group H, we say that h is infinitely divisible if there are infinitely
many integers e for which there is an element A, of H so that h = (he)®.

Theorem 2.5. Let X be a topological space, let f : w(X,zo) — L be
a homomorphism to the group L, Uy D Uy D --- be a countable local
basis for X at xy, and P; be the image of the natuml map of w(Us, zg)
into m(X,zo). Then

1. If L is countable then the sequence f(P1) D f(P,) D --- is even-
tually constant.

2. If L 15 abelian with no infinitely divisible elements then .y f(P;) =
{0}

3. If L is countable abelian with no infinitely divisible elements then
f(B) ={0L} for somei € N.
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Later on we will give a proof of the second part of the theorem.
Assuming Theorem 2.5 we can now give a proof of Theorem 2.1.

Proof of Theorem 2.1. Suppose f : G — A is a homomorphism from
the Hawaiian earring group to free abelian group. With out loss of
generality, we may assume f is surjective, and that A has countably
infinite rank. Now for each j, let U; be an open neighborhood of
0 in H which contains all but the outermost j circles ¢;. Since free
abelian groups have infinitely divisible elements we may apply part 3
of Theorem 2.5 to obtain that f(P;) = 04 for some ¢. Thus ker f > P;.

Since G/P; is a free group of rank ¢ by the Seifert-van Kampen
theorem, any free abelian factor group of G/P; has finite rank. Thus,
A = G/ ker(f) has finite rank.

Another insightful question one might ask is, “What special property
of one-dimensional spaces is used to prove the results Theorem 2.37”

Definition 2.6 (Homotopically Hausdorff). We say that the topolog-
ical space X is homotopically Hausdorff at the point o € X if for every
g € m(X, o) — {1} there is an open neighborhood of z which contains
no path representing g. We say that X is homotopically Hausdorff if
X is homotopically Hausdorff at z, for every zy € X.

The notation homotopically Hausdorff is motivated by the fact that
the space of homotopy classes of based paths Q(X, zy) of a space X
based at zy € X is Hausdorff if and only if X is homotopically Haus-
dorff.

The fact that one-dimensional spaces are homotopically Hausdorff
follows immediately from the following lemma which appears in [CC2].

Lemma 2.7. If X is a one-dimensional topological space and p is a
closed path in X based at zo then p is homotopic to a unique (up to
reparameterization) closed path based at zo which is either constant (if
p 1s null-homotopic) or has no proper null-homotopic subpaths. Fur-
thermore, the image of the homotopy can be chosen to be contained in

the image of p.

Possibly the most convincing way to convince oneself that being
homotopically Hausdorff is a desirable property is to consider a space
which does not have this property.

Ezample 2.7.1 (The doubled cone over the Hawaiian earring). Consider
C = Hx[0,1]/H x {1}, the cone over the Hawaiian Earring. Let 0, the
basepoint of C, be the point ((0,0),0). Then the doubled cone over the
Hawaiian earring is the space D = C V, C, in other WOI'dS two copies
of the cone C glued together at the basepoint. ‘ -
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FIGURE 2. The doubled cone over the Hawaiian earring

We now mention a number of results from [CC1]. Note that C is
contractible. However D is not contractible since its fundamental group
is uncountable! If we were to attach the two copies of 0 with an arc
rather than identifying them, the resulting space would be contractible.
D is particularly misbehaved since there is one loop (namely going
around the first copy of ¢; then the second, then the first copy of ¢
then the second, etc) which is homotopic into any neighborhood of
the basepoint and yet is not nullhomotopic. Thus, this space is not
homotopically Hausdorff. Note that both copies of each of these circles
¢; is nullhomotopic. Thus, the fundamental group of D is carried by
(infinite) products of curves whose homotopy classes are all trivial. We
normally call a group which generated by products of one particular
element as a cyclic group. Thus one could describe the fundamental
group of D as an uncountable cyclic group generated by the identity
element! It it evident from Theorem 2.5 that the fundamental group
of D has no nontrivial countable free abelian factor groups and thus
this group cannot embed in an inverse limit of finite rank free groups.

We propose the following conjecture.

Conjecture 2.7.2. The fundamental group of a connected, locally
path connected space which is not homotopically Hausdorff is uncount-
able.

We now mention another result from [CC2].

Theorem 2.8. If X is a compact, connected, locally path connected ,
metric space which is homotopically Hausdor[f then the following are
equivalent:

1. m(X) is countable

10
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2. m(X) is finitely generated
3. w(X) is finitely presented
4. X has a universal cover.

Another interesting result which appears in [CC2] is

Theorem 2.9. Let X be a compact, one-dimensional, connected met-
ric space, and £o € X. Then m (X, 2o) embeds in an inverse limit of
finite rank free groups.

Corollary 2.10. The group m1(X, 2o) ¢s locally free, residually free,
and residually finite.

[BS1]

BS2]
[cci]

[CC2]

[S]
[21]

(22]
(23]

(24]

REFERENCES

W.A. Bogley, A.J. Sieradski, Weighted Combinatorial Group Theory
and Homotopy in Metric Complezes, preprint.

W.A. Bogley, A.J. Sieradski, Universal Path Spaces, preprint.

J.W. Cannon, G.R. Conner, The Combinatorial Structure of the
Hawaiian Earring Group, preprint Brigham Young University (1997).
J.W. Cannon, G.R. Conner, The Big Fundamental Group, Big Hawai-
ian Earrings and the Big Free Groups, preprint Brigham Young Uni-
versity (1997).

J.W. Cannon, G.R. Conner, The Fundamental Groups of One-
dimensional Spaces, preprint Brigham Young University (1997).

B. deSmit, The fundamental group of the Hawaiian earring is not
free., Internat. J. Algebra Comput. 2, no. 1, 33-37 (1992).

H.B. Griffiths, Infinite Products of Semi-groups and Local Connectiv-
ity, Proc. London Math. Soc. (3), 455-456 (1956).

G. Higman, Unrestricted Free Products, and Varieties of Topological
Groups, Journ. London Math. Soc. 27, 73-81 (1952).

J.W. Morgan, I. Morrison, A Van Kampen Theorem for Weak Joins,
Proc. London Math. Soc, 53, #3, 562-576 (1986).

R.L. Moore, Concerning upper semi-continuous collections of con-
tinua, Trans. Amer. Math. Soc. 27 (1925), 416-428.

A.J. Sieradski, OMEGA-GROUPS: Group Theory for Wild Topology,
preprint.

A. Zastrow, All subsets of R* are K (m,1), preprint.

A. Zastrow, The Non-abelian Specker-Group is free, preprint.

A. Zastrow, Construction of an infinitely generated group that is not
a free product of surface groups and abelian groups but which acts
freely on an R-tree, to appear Proc. R. Soc. Edinb.

A. Zastrow, The second van-Kampen theorem for topological spaces,

- Topology and its Applications 59 (1994), 201-232.

MATH DEPARTMENT, BRIGHAM YOUNG UNIVERSITY, PROVO, UT. 84602
E-mail address: conner@math.byu.edu

11



CAUTY’S CLASS OF COMPACTA DETERMINED
BY HOMOLOGY, AND APPLICATIONS

TADEUSZ DOBROWOLSKI

1. INTRODUCTION

Let (@, s) be a pair consisting of the Hilbert cube Q = [0,1]* and its pseudo-interior
s =(0,1). In [Cay], R. Cauty makes use of compacta in @ whose complements satisfy
certain homological properties. It occured to us that those general properties might find
some other applications so that it is reasonable to formally distinguish a class of compacta
satisfying those properties. The class we are going to describe is meant to be topological;
hence, if an element A C Q beldngs to the class (that is, has certain properties with respect
to the pair (Q, s)), and h is a homeomorphism of (@, s) onto (Q’,s’) then h(4) belongs to
the class (that is, has the same properties with respect to (Q',s")).

1.1. Definition. A class of compacta C(Q) of Q will be called a Cauty class if
(i) @ €C(Q);
(1) if A €C(Q), then AN s is dense in 4;

(ii) if A € C(Q) and P C @ is a subcube with (int P)N A4 # (), then AN P contains an
element of C(P);

(iv) if (@, s) is of the form (@1 x Q2,51 X s2) and 4 € C(Q) with (Vz € Q1) A, C Q,
then (3z¢ € Q1 \ s1) such that A;, contains an element of C(Q,);

(v) if A€ C(Q) and A;, Ay C A are compacta such that A = A; U A,, then 4; N A,

contains an element of C(Q).

By a subcube P of Q@ we mean a set of the form [ay,b1] % - - - x [a;, 5] x [0,1] x[0,1] x--- C
Q, where aj < b;, 1 < j < 1. The symbol A; appearing in (iv) denotes ({z} x Q2) N A4; we
identify {z} x @, with Q2.

12 Typeset by AAS-TEX



TADEUSZ DOBROWOLSKI

1.9. Remark. Condition (v) is equivalent to

(v") if A € C(Q) and B C A is a compactum such that A\ B is disconnected, then B contains
an element of C(Q).

Let A C Q be a compactum. Following Cauty [Caz|, we say that A is an irreducible
barrier for a nontrivial element a € Hpo(Q\A), n > 0, if for every compactum B C 4, «
as an element of H,(Q\B) is trivial. (Here, H,(X) denote the singular homology groups
reduced at n = 0 so that Ho(X) = 0 iff X is path connected.)

Combining [Ca, Lemmas 2-4] we obtain

1.3. Theorem. The class

HLG = {A C Q| (3n > 0) (A is an irreducible barrier for some a € H,(Q\4))} U{Q}
is Cauty. O
2. APPLICATIONS

In this section we present an abstraction on the main result of Cauty [Cas].

Let L be a subset of a metric space X. Suppose that there are sigma-closed sets
EMcXwithECLCM,andlet M = U‘le M}, where each M} is a closed subset of
X. '

2.1. Definition. A map ¢ : Z — Mj, is locally decomposable if for every z there exist
an open neighborhood V of z and maps 7, 1 < j <k, defined on V such that

(d;) for every z € V, %(2z) € L iff /(z) € L, 1 < j < n; and

(d2) if C C V'is connected, %?(C) N E = 0, and ¢/(C)N L # 0 for some j, then -

$I(C) < L.
We say that v is decomposed through (#!,...,%%). |
Our abstraction on Cauty’s main result [Ca;] reads as follows. Below A“ denotes the

countable product of 4, and W(Q, s) = {(z;) € Q¥ | z; € s for finitely many ¢}.

2.2. Theorem. There does not exist a map ¢ = (p;) : Q¥ — X* with
TN (LY) =W(Q,s)

13
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50 tha;ﬁ each map ¢;|p; (M) is locally decomposable.

Let T be a counatble infinite set. Every filter F' on T determines a function space which
can be identified with cp = {f € RT | (Ve > 0)(3A € F)(Vt € A)(|f(t)] <€)} C R7, where
RT is considered with the product topology. Let sp = {f € RT | (34 € F)(Vt € A =
0)}. Cauty [Cas] has shown that, for an arbitrary filter F' contructed in [LvMP], there are
sets E and M = o, Mi, E C sp C M, as postulated at the beginning of this section so

that any map ¥ : Z — M} is locally decomposable. Hence, we obtain
2.3. Corollary. There does not exist amap ¢ : Q¥ — (RT)* with e Hse) =W(Q,s). O

This version of 2.2 allowed Cauty to refute a conjecture that the Borel type of cp

determines its topological type because it was known that if the conjecture held, then

there would exist a map ¢ : Q¥ — (RT)¥ with ¢»~1(s%) = W(Q, s).

Let X be a Banach space and C' C X a linearly independent Cantor set. Write F' =
span(A) and M = span(C). In [Ca;,] Cauty was able to show to represent M = [Jio, My
in such a way that any map % : Z — M} was locally decomposable (the decomposition is

trivial, that is, such 1 satisfies 2.1(dy)). Hence, in this case, 2.2 takes the following form

2.4. Corollary. There does not exist a map ¢ : Q¥ — X“ with o~ !((span(4)¥) =
W(Q,s). O

In a similar way as above, this result allowed Cauty [Ca;] to conclude that the Borel
type of (span(A))“ does not determine its topological type. Actually Cauty’s proof of 2.4

(see [Caq]) does not involve a class described in 1.1.

3. PROOF OF THEOREM 2.2

Following closely the argument of Cauty [Ca,], let us present a sketch of the proof of
2.2.

Let Q¥ = Qo x Q1 X Qg X -+~ D 89 X 81 X 83 X ---, where (Qr,s,) =(Q,s), r > 0. For
a point (yo;yl,...,yrp) €EQo x Q1 x - xXQr,, welet y™» = (yo,---,Yr, ), and

QP =Q™)={y"} xQry41 X Qry42 x--- D ¥ =s(y™) = s(Q7),

14
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where ’s(P) always stands for the psuedo-interior of P.
Suppose that ¢ does exist. Inductively, we will find sequences of integers {rp}s2, with
1<rg<r;<ry<---, points yr € @Qr, r >0, and sets A, C Q7 such that
(1) 4p € C(QP);
(2) Ap C Ay (let A = Q¥);
(3) ¢p(A4p) C L; and
(4) yr, € Qr,\5r,.
Once this is done, we see that the point y = (yo,y1,...) € ﬂ;il Ap; hence, by (3),
©(y) € L. However, (4) yields y € Q¥\W(Q, s), a contradiction.

Inductive Construction:

1% The case p = 0. Use the facts that s C W(Q,s), L C M, s* has the Baire property,
and that s is dense in @Q“ to find an integer k; > 0 and a nonempty open set V' C Q%
with ©o(V) C My,. There exists an integer ¢o > 0 and points y, € Q,\s, 0 < r < g such
that Q(y*) C V. Since ooV is locally decomposable, we can assume that on Q(y?°) the
map ¢ decomposes through (¢g,¢3,- - -, ¥g°) so that the requirements of 2.1 hold. Select,
if possible, points y, € Qr, to < r < t1, with ¢}(Q(y")) C L. If possible, continue in this

manner selecting points y» € Qr, t1 <1 <tn, (o <t <tz < -+ < tn,), so that
P} (Q(y")) C L for 1< j < ng.

Finally let ro = tn, + 1, and set Ag = Q° and y,, € Q,\5,, to be arbitrary. By the
linearity of L and 2.1(d;), condition (3) holds.

If the above is not doable, we arrive to a situation that either the selection on the stage

J = 1 is impossible to make, or there exists jg, 1 < 75 < ng so that
@) @(Q(*%)) C L, 1< < jo, and
(ii) with t = t;,—1, for no choice in yii1,...,vs € Q, ©°(Q(y*)) C L.

If the above happens, consider y* (with ¢ = ¢, if the selection on stage j = 1 was

impossible). Let
Q' =Q") >s' =3(Q) and ¢} =*|Q".
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In o%der to obtain Ag and r¢ in this case, we first find B; € C(P;), where P; D Pj_; D
-+ D Py = Q' is a sequence of subcubes such that ¢}(B;) C L (which can be viewed as a
counterpart of i (Q(y%)) C L above).

Since E C L, by (ii), intg/(pp) *(E) = 0. Since C = Q'\(p}y) 1(E) is a Gs-set, it
follows that C N s’ # 0.

Claim 1. C is disconnected.

Proof. If C' were connected, ¢q(C) would be also connected. For a point z € C N s’ C
W(Q,s), vo(z) € L, and consequently ¢g(z) € L by 2.1(d;). Since ¢(C)NE = 0§, by
2.1(d2), ¢p(C) C L. Finally, ©4(Q") = ©5(C)U pu(Q'\C) C LU E C L, which contradicts
Gi). O

Since C is dense in ', we obtain
Claim 2. There are compacta A1, Ay C Q' such that B=A4; N4, CQ'\C. O

Since B C Q'\C, it follows that ©?°(B) = @4(B) C E C L. Moreover, by 1.1(v), we
can assume that B € C(Q') (because @' € C(Q')). So, the initial step is done: Py = Q’,
and By = B.

Claim 3. Writing ¢} = I°|B,, there exists a subcube P, C P, and a compactum

B, C By with 99;(31) C L and By € C(P])

Proof. If intg,(¢}) (L) # 0, then ¢} (U1 N By) C L for some open set U; C P,. Pick a
subcube P; C Uj so that (int P;)NBy # 0. Let By = BoNP,. we have B; C By, and hence
w1(B1) C L. Since By € C(Fy), by 1.1(iii), we additionally can require that B; € C(P;).
Assume intp,(}) (L) = 0. We let P, = Py. From 1.1(ii), we infer that By N s(Py) is
dense in Bg; moreover, by our assumption, intp,(¢}) *(E) = 0. Using the same argument
as the one proceeding Claim 1 and Claim 1 itself, we conclude that C' = Bg\(¢}) (E)
is disconnected. Using the fact that C is dense in By and applying Claim 2, we find
compact A;,A; C Bg such that By = A; N4y C (¢})"Y(E). Summarizing, we have

goé"“(Bl) = ¢}(B1) C E C L, and we additionally can require that B; € C(P;) by an

application of 1.1(v). O
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Applying inductively Claim 3 [ = ng — jo times, we arrive to a subcube P; C Q(y?) and
a compactum B; € C(P;) such that gag(Bl) C L,1<j < ng. Represent

‘ P]:{yt}xRt+1 X"'XR'ro—l XQ.,.O ero+1 X ooee

where R, is a subcube of Q,,t+1<s <rg—1andry > 1.

Claim 4. There are yii1,...,Yro—1 € @ and yr, € Q\s such that By N Q(y™) contains
Ay €C(Q%), Q° = Q(y™), that satisfies (1)-(4).

Proof. Let Q1 = {y!} xRey1 -+ X Rrg—1XQry D51 =8(Q1) and Q2 = Qro41XQro42X-+- D
sy = 5(Q2). Recall that forz € @1 and A C Q1 X @2, Az = ({}xQ2)NA. Our assumption
(ii) implies that, for no z € Q1, {z} x Q2 C (Bi); because gog(Bl) CLforalll <j<ng.
According to 1.1(iv), there exists zo € Q1\s(Q1) such that (B;);, contains an element of

C(Q2). It is clear that y™ = z¢ is as required. U

This concludes the first step of induction. In the text which follows we will show how

this first step can be adjusted for the case of p = 1.

20 The case p = 1. Consider Q° = Q(y™) D s* = s(Q°), and Ao € C(Q°). By 1.1(ii),
AgNs® is dense in Ag. Use the facts that s° C W(Q,s), L C M, p1(W(Q,s)) C L, AgNs°
has the Baire property, and that s° is dense in Q° to find an integer £ > 1 and a nonempty
open set V C Q° with ¢1(V N 4g) C My. Let Py be a subcube of Q° such that P, C V
with (int Py) N Ag # 0. We can assume that ¢y decomposes through (Pl 02, 07")
as desribed in 2.1.

First we take the case where Ay = Q°. There exists an integer to > ro and yr € Q- \sr,
ro < 1 < to such that Q(y') C P,. Start a selection process in order to find ¥y € Q,,
to < r < tn, =t so that %(Q(yt)) CL,1<j<n; Ifthisis doable, let r; = ¢+ 1
and 4; = Q' = Q(y'™!), where yr, € Q\s is arbitrary. Otherwise, such a selection is
impossible, and there exists jo, 1 < jo < ny so that

(@) #l(Q(y%)) C L, 1<j <jo,and
(ii) with ¢ = tj,—1, for no choice in Yt+1:---,Yu € Q, 99{°(Q(y")) C L.
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This same argument as in 1° shows that there exists a subcube P, C Q(y?) and a com-
pactum B; € C(P;) such that c,o{(Bz) C L,1 < j <ny. Now, an application of Claim 4
easily yields A; € C(Q'), where Q! = Q(y™) for some 1 > ry.

Suppose now that 4g C Q°. By 1.1(iii), there exists By € C(F), By C Ag N Py. We

have

PD = {yTO} X WT0+1 X Wro+2 NEEE x'[/Vto X I/Vto+1 X e

where W; is a subcube of Q, for s > ro + 1, and Wy = Q, for s > 5 (to > ro). Applying
Claim 3 n; times, beginning with Py D By and the map ¢}|By, we arrive to a subcube
P,, C Py, and a compactum By, € C(P,,) with c,o{(Bnl) CL,1 <35 <ny. The subcube

is of the form

Pn1 :{yro}XRro+1 X-”Xer_l XQT']_ Xoeee

where R, is a subcube of Wy, 1o +1 < s < r; —1 and r; > rg. Now an application
of Claim 4 provides Yry41,---,Yr—1 € @, yr, € Q\s, and A; € C(Q') that satisfies
(1)-(4), where Q! = Q(y™). (We are elligible to apply Claim 4 because for no z €
{y™} X Rpg41 X -+ X Rr 21 X Qry, {2} X Qry X Qry41 X -+ C (B, )z; this follows from
condition (ii) of 1° and from the inclusions (Bp,)s C (Bo)z C (Ao)z). This concludes the

case of p = 1. It is clear now, how one can make an inductive step. 0O

4. THE CLASS OF WILD COMPACTA

We think that it would be interesting to exhibit some more Cauty classes. It is likely
that such classes can be determined by replacing in 1.3 homology means by homotopy
ones. One possibility is to consider the class of wild sets, which can be thought as a class
transversal to that consisting of Z-sets.

Recall that a compactum A C @ is a Z-set if for every nonempty open set (equivalently,
for every open subcube) U C @, U\A — U is a homotopy equivalence. Write Z(Q) for
the class of Z-sets in (). A compactum A will be refered to as wild, written 4 € W(Q),
if A¢ Z(Q). The class W(Q) may give rise to a Cauty class; a motivation for this comes

from the following reformulation of a result by Wong [Wo] which resembles 1.1(iv).
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4.1. Proposition. Let (Q,s) be of the form (Q1 x Q2,51 X s2). If A € W(Q) and, for
every ¢ € (), then there exists o € Q1 \s; such that Ay, € W(Q2).

Evidently the class W(Q) does not have the localization property of 1.1(iii). Therefore
it is reasonable to consider the following class W,(Q) of strong wild sets. A compactum

A € W,(Q) if, for every subcube P C Q with (int P)N A 0, ANP € W(P).

Question 1. Is W,(Q) a Cauty class?

It is not difficult to verify that for 4 € W,(Q), AN S is dense in A; hence, 1.1(ii)
is satisfied. This together with 4.1 shows that an affimative answer to Question 1 will

follow from affirmative answers to the following questions (we think that these questions

are interesting in their own).
Question 2. Does every A € W(Q) contain an element B € W,(Q)?

Question 3. Let A € W,(Q) and let B be a compactum which disconnects A. Is B €
w(Q)?

It seems that another possibility of obtaining a Cauty class is to replace the class HLG of
1.3 by the class of HTP defined anlogously as HLG but with the use of irreducible barriers
w/r to homotopy. A compactum A C @ is an irreducible barrier (w/r to homotopy) for
a € m(Q\A), a # 0, if for every compactum B C A the element « is trivial in 7,(Q\B).
It is not clear to us whether the class HTP satisfles (iii) and (iv) of 1.1. It can be easily
checked that 1.1(i1) holds for the class HTP. The following fact yields 1.1(v).

4.2. Proposition. Let A C @ be an irreducible barrier for 0 # a € w,(Q\A) and
A1, A2 C A be compacta with A; U Ay = A. Then m4+1(Q\(A1 N A2)) # 0.

Proof. We will only take the case n = 0. Represent a by points z and y lying in different
components of Q\A Since A; does not disconnect (), there is a path 1 in Q\ A; joining z
and y. Similarly, there is a path ;2 joining z in y in Q\ A>. The paths 71 and —v; determine
a l-chain c. Using the Mayer-Vietoris exact sequence for the pair (Q\ A1, Q\A>), we infer
that ¢ is not a boundary of any 2-chain in Q\(4;1 N A42). Consequently, the obvious natural

map S! — Q\(4; N Ay) determined by c¢ is not null homotopic in Q\(41 NA4y). O
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Homogeneity of Boundaries of Right Angled
Coxeter Groups having Manifold Nerves*

Hanspeter Fischer

June 1997

Abstract

Given a right angled Coxeter group I' we form the Vinberg-Davis complex A.
This contractible complex supports a CAT(0) metric such that T acts geometrically
on A. The space of geodesic rays in 4, emanating from a fixed base point, is called
the visual boundary of I'. We will show that this boundary is homogeneous if the
nerve N of I' is a connected closed orientable PL-manifold. This will be done by
showing that the boundary is homeomorphic to the Jakobsche space X (|N|, {IN})-

1. DEFINITIONS AND NOTATION

Let V be a finite set and m : V x V — {0} U{1,2,3,4,---} a function with the property
that m(u,v) = 1 if and only if v = v and m(u,v) = m(v,u) for all u,v € V. Then
the group T' = (V' | (uwv)™**) = 1 for all u,v € V) defined in terms of generators and
relators is called a Cozeter group. The pair (T, V) is called a Cozeter system. If moreover
m(u,v) € {00,1,2} for all u,v € V then (T, V) is called right angled. Let us fix a right
angled Coxeter system (T, V). ,

We call the abstract simplicial complex N(I',V) = {0 # S C V' | (S) is finite} the nerve
of I' (where (S) is the subgroup of I' generated by S) and metrize its geometric realization
|| as a piecewise spherical all right complex (i.e. each simplex is given the angle metric of
its corresponding standard simplex : the convex hull of standard basis vectors in Euclidean
space.) The resulting path length metric on |N| will be denoted by o.

The Vinberg-Davis complez A [D1] is built as follows: The cone Q = zo * |N'| is the
fundamental chamber with panels {Q, = |star(v, N')| | v € V} in its base (N’ denotes the
first barycentric subdivision of N.) We give I the discrete topology and put 4 =T x Q ] ~
with (g,z) ~ (h,y) & z =y and g7*h € (v |z € Q,). Note that A is contractible [D1,
Corollary 10.3].

Next, we cubify the complex A: Let ¢ € N. We identify |zo0’| with the cube [0,1]7 as
follows. The cone point z, corresponds to 0 and the barycenter of a face {viy, vigy -, Vi }
of o to e;, +e;, +---+e;, where e, ey, - - - is the standard basis for Euclidean space. The

*Part of author’s current thesis project under supervision of Fredric D. Ancel.
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cubical complex @ and subsequently the complex A are then given the induced path length
metric.

Since N is a flag complex (i.e. N contains all finite sets all whose proper subsets belong
to V), this turns 4 into a CAT(0) geodesic space, cf. [G, pp. 120-122], [D2, §3] and
[ADG]. Now, T' acts geometrically on A, that is, properly discontinuously by isometries
with compact quotient Q. v

For z,y € A we denote the unique geodesic from z to y by [z,y]. As usual the length
of an element g € T is the minimal number of generators from V needed to express g. The
visual boundary of T is defined to be

bdy T = lim (Mo & M, &My & M2 -..) | where

My = bdy | J{9Q | length(g) < k} and

Tk : Mk —_— Mk—l
T > [z,70] N My_;.

This definition of bdy T is equivalent to taking the inverse limit of concentric metric
spheres and geodesic retraction (i.e. the space of geodesic rays emanating from a fixed base
point with the compact open topology), which in turn is independent of the choice of base
point [Dr, Appendix].

2. HOMOGENEITY OF THE BOUNDARY

A topological space X is called p-homogeneousif given any two collections {z1, 29, ,2,}
and {y1,¥2,"--,y,} of p distinct points in X there is a homeomorphism A : X — X such
that 2(z;) = y; for all i. We shall need the following two results:

THEOREM 1. [J] Let Lo & [, & [, & Lz & ... be an inverse sequence of connected closed
orientable manifolds and Dy finite collections of disjoint collared disks in Ly such that

(a) each Ly is a connected sum of finitely many copies of Ly,
(b) each apyy is a homeomorphism over the set Li \ {int D | D € D},

(c) each aif,(D) (D € Dy) is homeomorphic to a copy of Lo with the interior of a
collared disk removed,

(d) {ajr100j420---0(D) | D € D;,i > 7} is null and dense in L; for all 7
(¢) ajr10ajp20--0a;(D)Nbdy D' = for all D € D;,D' € Dj,i > j.

Then
l@(LD?—‘-Ll ﬂLzﬁiLgﬁi---)

is p-homogeneous for every positive integer p and depends on Lo only.t

1This space is denoted by X (Lo, {Lo}) in [J]. Note also, that we did not state Jakobsche’s result in its
full generality.
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THEOREM 2. [B, Theorem 2] For every two finite sequences
t
XoE XN BEXNLE X B X ad X & X E X, 8. X, B x, % x,,
of maps between compact metric spaces there is a positive real number
0(51752, Crty Sk, lg,- - » L, tk'i-l)

such that whenever two inverse sequences

oy (s3] a3 [+ 7} ﬂl ﬂ2 33 ﬁ&

LEVEY,EY S amd AR Ey By b

have the property that d(og, Br) < a(al,ag,---,ak_l,ﬁl,ﬂg,---,ﬂk_l,ﬁk) for all k > 2,
then .
@(n&n&n&znﬂ---)gl@(ybﬁn f’_zyz(ﬁ_a}gf_*...)_

THEOREM 3. If a right angled Cozeter group has a nerve which is a connected closed
orientable PL-manifold, then it has a boundary which is p-homogeneous for every positive

integer p.

SKETCH OF PROOF.

For g € T we put
A(g) = {9Q. | length(gu) < length(g)}.

Then each A(g) is a PL-disk and
My = Mi—1# a){g|N| | length(g) = k}

(the connected sum Mi-17 4(01)91| N [# 4(0) 92| N |3 - - - 7 A(g.)9s| V| which is independent of
the order in which we list the elements {9 €T | length(g) = k} = {91,92,---,95}) [D1].
The inverse sequence M, & M, & M, & M; & ... satisfies all but two conditions of
Theorem 1: The collections {A(g) | length(g) = k}, being the natural candidates for the
Dy’s, are not disjoint and, worse yet, condition (e) does not hold in the simplest of examples
(e.g. when V = {v1,v3,vs,v4} and T = (V [v}=1,(vv;)? =1 for all i % j mod 2). Then
A is just Euclidean 2-space, tessellated by squares. Obviously, condition (e) is violated -

heavily. See fisure below.
y g ) Ao
15 .

Qu, . ‘ A2 gnx,

——— IN ‘ ,—-J‘-;-fﬁ:; .

T S e

/ 1
k3 X[ 9, 0, X.," - ;@ } A{‘\JQ
’0: 'U;
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We solve this problem by adjusting the inverse system enough to meet all the above
conditions, but not so much as to actually change its limit. For g € '\ {1} and 0 < n <
€ < m we define:

Py = [9Z0, zo]Ng|N|

B (9,¢) = {z € gIN| | a(p,,z) < ¢}
B(g,€) = {z € g|N|| a(py, ) < €}
Clg,€) = gzox{z € gIN| | a(p,, z) = €}
D(g,e;n) = (B(g,€) U C(g,€))\ B (g,7).
Recall that o was the path length metric on [N|. Each B(g,¢€),C(g,¢€) and D(g,€,7m) can
be approximated by disks. For simplicity, let us assume that they are disks. “Also, with €

sufficiently close to 7, A(g) C int B(g, €).
The idea, now, is to factor the bonding maps through manifolds of the form

M1 (ex-1) = Mi1# a0) {B(9, €6-1) U C(g, €x—1) | length(g) = k}

with appropriately chosen €;_;’s:

Mlﬁ—l(ek—l)

VAN
Mk-1 — Mk

All maps in this diagram are geodesic retractions. It can be shown that

Mi_i(ek-1) — M,y
T — [I,Io]an_l

are near-homeomorphisms. So, in the inverse sequence
Moi——— Mé(éo) — M1 — M{(El) — M2 e,

whose limit is bdy I', we can inductively change every other map to a nearby homeomor-
phism f; and leave the remaining maps geodesic retractions g;. If this is done carefully
enough, Theorem 2 guarantees that the limit does not change: ‘

M, <& Mi(eo) & M, S M!(ey) <2~ M, g

On the other hand, there is enough flexibility in choosing €, and 7y to arrange for condi-
tion (e) of Theorem 1 to hold for the sequence

Mo(eo) #22 M (er) £ My(eg) 205 ...
and the collection of disks Dy = {D(g, ex, 7z) | length(g) = k}. Note that, because
{z € gIN| | gzo € [z, 2]} = g|N|\ B (g,7) [DJ, Lemma 2d.1],

we can pinpoint the location of these disks. Finally, as all the above sequences have
homeomorphic limits, the result follows.
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REMARK. Any compact PL-manifold is a nerve of some right angled Coxeter group. In
fact, if NV is a finite abstract simplicial flag complex (e.g. a barycentric subdivision of a finite
complex) with vertex set V, then ' = (V | v? = (w)?=1forallv €V and {u,v} € N) is
a right angled Coxeter system whose nerve is N [D1, Lemma 11.3].
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Excerpts from
Properties of convergence groups and spaces

Eric M. Freden

The 20 minute talk given in Corvallis summarized various group theoretic conse-
quences of a convergence group action; these are included in section 3 of the cited paper.
The entire text appears in the AMS journal Conformal Geometry and Dynamics, volume
1, (1997), pp. 13-23, with web address

http://www.ams.org/ecgd /home-1997.html
The following excerpt comes from the introduction of the above paper.

Introduction

Two generalizations of Mobius groups were introduced in 1986. Gromov defined the
geometric notion of negatively curved (word hyperbolic) groups and spaces [Gr]. At the
same time, Gehring and Martin gave a simple topological condition (the convergence prop-
erty) that all Mébius groups obey [GM1]. While the former sub Jject has seen great activity
in recent years, the so-called convergence groups have only recently assumed a prominent
role. That negatively curved groups display convergence properties is found in [B1] [F]
[MS] [T1] [W]. More recently, Bowditch has shown a partial converse [B2].

The aim of this paper is to illustrate the considerable restrictions that accompany the
convergence action of a (nonelementary) group G on a compact Hausdorff space X. Under
mild hypotheses, the limit set of G must be metrizable with cardinality 2%°. There is some
control on the type and number of normal subgroups. Endomorphisms of G with finite
kernel are automorphisms. There is a class of finitely generated convergence groups with
solvable word problem.
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PROJECTIONS OF COMPACTA

TrOY L. GOODSELL AND DaviD G. WRIGHT

Pittsburg State University and Brigham Young University

INTRODUCTION

This note deals with imitating convex n-dimensional compacta in R™ with lower dimensional compactum.
By imitating we mean finding a lower dimensional set that has the same projections in every direction. This
is a major topic in the first authors dissertation. This note establishes the restrictions on the dimension that
a subset may have if it is to imitate an n-simplex in R™. We will also state the general case for arbitrary
convex n-dimensional compacta. This general result is established in the dissertation with some expanded
results to appear elsewhere.

DEFINITIONS

We say that two subsets X and Y of R™ have the same projection in the direction of a line I if and only
if every line that is parallel to ! which intersects X also intersects Y and vice versa. We can generalize
this definition by using j-dimensional planes, denoted j-planes, rather than just lines. That is, we say that
the two subsets X and Y of R™ have the same j-projection in the direction of a j-plane H if and only if
every j-plane that is parallel to H that intersects X also intersects ¥~ and vice versa. By two j-planes being
parallel we mean that one is a translate of the other.

IMITATING SIMPLICES

Theorem. There exists an i-dimensional subset C of the n-simplex, A,, that has the same j-projections
as A, ifand only ifi+j>n—1.

Proof. To show the necessity portion of the proof we will show that the set C' must contain the 7 — i—1
skeleton of An. Then it would follow that the dimension i of C is greater than or equal to 7 — j—1forit
contains a subset of that dimension. Consequently we have i +j > n — 1.

Let p be a point of the n — j — 1-skeleton of A,,. Let I be a linear homeomorphism that sends A, to the
standard n-simplex with vertices e, ..., €, and which sends the k-face containing p to the k-simplex spanned
by ey, ...,ex+1. Let H' be the (n— k — 1)-plane containing /2(p) which is parallel to the subspace spanned by
€k+2, - €n. The plane H' meets the standard simplex only in h(p) so H = h~1(H') is an n— j— 1-plane that
hits p and misses the rest of A,. Consequently p must be in the set C if C is to have the same j-projections
as An. Since p was an arbitrary point of the n — j — 1-skeleton the entire 7 — j — l-skeleton of A, must be
in C as claimed.

To prove sufficiency we will show how to construct an i-dimensional set that has the same Jj-pojections as
A where i =n —k — 1. To do this we will first prove the following lemma.

Typeset by AAS-TEX
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Lemma. For a given n we can find an (n-2)-dimensional subset C of A,, that has the same projections in
every direction as A,,.

Proof of Lemma. Take a line segment from the barycenter of A,, to each of the barycenters of the (n — 1)-
faces of Ap,. Call the union of these line segments Y. Notice that no three of the endpoints or vertices of Y
are collinear since we are using barycenters. Consequently we can take a small regular neighborhood N of
Y such that a line meets A, if and only if it meets Ap — N. This guarantees that A, and A,, — N have
the same projections in every direction. This is the first stage of our construction. We continue by taking
a triangulation of A, —Y and repeating the above process to each of the n-simplices in this triangulation.
If we repeat this process ad infinitum in such a manner that the mesh of the triangulations tends to zero
and take the intersection we get an (n — 2)-dimensional subset of A,. To see this notice that each stage
retracts onto the (n — 2)-skeleton of the previous stage and that these retractions get small, in the sense that
points are moved less, the farther we go in stages. Also, by construction, any line that hits A, also hits the
intersections of these sets. So this intersection is our desired set. Notice that it contains the (n — 2)-skeleton

as required.

Now that we have this Lemma established we can finish the proof of the Theorem. To do this we will show

how to construct an i-dimensional subset M} of A, such that every j-plane that intersects A, intersects
- ME. :

We begin this construction by taking the % + 2 simplices of A,, and noting that these lie in (7 +2)-planes.
We apply the Lemma to each of these simplices. This gives an i-dimensional subset that has the same
projections as the original simplex. By this we mean projections by lines lying in the corresponding (i +2)-
plane. Doing this for all of the i + 2 simplices gives us an i-dimensional subset of A, that contains the
i-skeleton of A,. Call this M.

To show that A, and M} have the j-projections we need to show that every j-plane that intersects A,
also intersects M. So let J be a J-plane that intersects A,,. If J meets the i-skeleton of A,, we are done for
this skeleton lies in ME. In fact if J intersects the (¢4 2)-skeleton we are also done. To see this, assume that
J intersects the (i + 2)-skeleton in a point z of an (i + 2)-simplex. Consider the (¢ + 2)-plane determined
by this simplex. Since by assumption i 4+ j = n — 1 we know that the intersection of J and the plane is at
least a line because j + 7+ 2 > n. So we have a line in J that lies in the (i + 2)-plane and intersects the
(¢ + 2)-simplex in the point z. But by the proof of the Lemma this line must also hit M.

So we will be done if we can show that every j-plane that intersects A,, must intersect the (i+2)-skeleton
of A,. '

Assume that J is a j-plane that intersects A,. Let z be a point in the intersection. Assume 2 is in a
k-simplex. As noted above if £ < i + 2 we are done. So assume k > i + 2. We claim that J must also
hit the boundary of the k-simplex. To see this note that j + & > Jj+1%-+2 > n. But this means that the
intersection of J with the corresponding k-plane is at least a line. But a line in a k-plane which intersects
the interior of a k-simplex in the plane must also hit the boundary of the k-simplex. Thus J must also hit a
(k — 1)-simplex or, in other words, J must intersect the (k — 1)-skeleton of A,. If k— 1 = i + 2 then we are
done. If not then £ — 1 > i+ 2 and we repeat the same argument. We do this until we see that J intersects
the (7 + 2)-skeleton and we are done.

What we have shown is that any j-plane that intersects A, intersects the (2 + 2)-skeleton and thus
intersects the i-dimensional set M:. This finishes the proof of the theorem.

IMITATING CONVEX COMPACTA

The main idea of the above section was to show that a set of a certain dimension, namely the n — j — 1-
skeleton, must be in any subset of A, that imitates A,. This gives a lower bound on the dimension of
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imitating sets. We then showed how to finish constructing the imitating set in such a manner that the
dimension was not raised.
The idea for the general case is similar but the details must be generalized. Instead of showing that the
skeleton of the simplex must be in the imitating set we can show that faces of the convex n-dimensional
compactum must be in the imitating set. That is we have the following result.

Theorem. If K is a convex compactum of dimension n in R* and C is a compact subset of K that has the
same j-projections in every direction as K then the dimension of C is greater than or equal to n-j-1.
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Covers of Aspherical Manifolds with Geometric Fundamental Groups

FrREDRIC D. ANCEL CraAlG R. GUILBAULT
September 1, 1997

ABSTRACT. In this note we describe results which imply that closed
aspherical n-manifolds (n > 4) having isomorphic fundamental groups which
are either word hyperbolic or CAT(0) have homeomorphic universal covers.
This may be viewed as progress towards a weak version of the Borel Conjecture.

1. INTRODUCTION
One of the most famous open problems in geometric topology is the following:

The Borel Conjecture. If P and Q are closed aspherical manifolds with isomorphic
fundamental groups, then they are homeomorphic.

Since a solution to the Borel Conjecture has been so illusive, we suggest the
following.

A Weak Borel Conjectﬁre. If P and @ are closed aspherical manifolds with
isomorphic fundamental groups, then their universal covers are homeomorphic.

In this note we describe results which imply some special cases of the latter con-
jecture. In particular, we have:

Theorem 1. Let P* and Q™ be closed aspherical n-manifolds (n > 4) with isomor-
phic fundamental groups. If this group is word hyperbolic or CAT(0), then P" and
Q" have homeomorphic universal covers. '

This result is obtained by combining results from geometric group theory (see
Lemma 3) with the following: :

Theorem 2. Suppose M™ and N™ are contractible open n-manifolds (n > 4) which
admit Z-compactifications having homeomorphic Z-boundaries. Then M™ and N™
are homeomorphic. :

Definitions of the above terminology and descriptions of the relevant geometric
group theory are contained in Section 2. A quick sketch of the proof of Theorem 2 is
given in Section 3. For a thorough presentation of this work the reader should consult
[AG]. |
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- 2. DEFINITIONS AND EXAMPLES

A closed subset A of a compact ANR X is a Z-set if any of the following equivalent
conditions is satisfied:

. TherelsahomotopyH X XTI — X with Hy = idx and Hy(X)N A = @ for all

t>0.

e For every € > 0 there is an e-homotopy K : X x I — X with Ky = idx and
Ki(X) c X\A

e For every € > 0 there is a map f : X — X which is e-close to the identity with
f(X) c X\A.

e For every open set U of X, U\A — U is a homotopy equivalence.

Let Y be a noncompact ANR. A Z-compactification of Y is a compact ANR Y
containing Y as an open subset and having the property that Y —Y is a Z-set in
Y. Inthiscase wecal ¥ — Y a 2 -boundary for Y and denote it 8zY. Note that
Y may admit many different Z-boundaries, hence 8zY is not well defined unless the
Z-compactification is specified. -

For our purposes, the key facts from geometric g:roup theory may be summa-
rized in the following result borrowed from [Be] (see Lemma 1.4). A more thorough
development including other useful references may be found in Section 3 of [AG].

Lemma 3. Let P be an aspherical manifold with word hyperbolic or CAT(0) funda-
mental group. Then the universal cover of P admits a Z-compactification. Moreover,
. If Q is another aspherical manifold having fundamental group isomorphic to that of
P, then the universal coverings of P and Q admit Z-compactifications with homeo-
morphic Z-boundaries.

3. SKETCH OF THE PROOF OF THEOREM 2
The first major ingredient in the proof of Theorem 2 is a gluing theorem which is
interesting in its own right.

Theorem 4. Let M " and N* be Z-compactifications of open n-manifolds (n > 4)

and h : GZM n 6ZN " be a homeomorplusm Then M» Us N™ is an n-manifold. If
M" and N* are contractible, then M Up N7 =~ §m,

The proof of the above result is rather technical. The idea is to show that M\"Uhﬁ?‘
is a resolvable ANR homology manifold which satisfies the disjoint disks property. It
then follows from Edwards’ Cell-Like Approximation Theorem that M™ Up Niisa
manifold.
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The last part of Theorem 4 is obtained by an application of the high dimensional
Poincaré Conjecture. _ .

To prove Theorem 2, identify M™ U, N* with S" viewed | as the boundary of
an {n -+ 1)-ball, B**!; let Z denote the common copy of 9z M™ = 9z N™ in S™;
and let W™+ = B"*\ Z (see Figure 1). Using properties of Z-sets, one may show
that (W1, M™ N™) is a proper h~cobordism. Next, using the algebraic machinery
developed in [Si] and [CS] it can be shown that the inclusion M™ < W™ is an
(infinite) simple homotopy equivalence. An application of Siebenmamn’s proper s-
cobordism theorem then guarantees that W=+! ~ M™ x [0,1], completing the proof.

B n+1

Figure 1.
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Suspensions and Spheres

by
James P. Henderson

Given an n-sphere S”, it is well known that for each pair of distinct points x and y
-in S”, there is a compact space L(x,y) such that S" is homeomorphic to the suspension of
L(x,y), with the suspension points being sent to x and y. While L(x,y) can be chosen to be
an (n-1)-sphere in each case, L(x,y) need not even be a manifold as shown by the Double
Suspension Theorem. R.J. Daverman asked whether the converse of this property of
spheres holds: B

Question: If X is a finite dimensional compact metric space containing at least two points
with the property that for each distinct pair of points x and y in X, there is a compact
metric space L(x,y) such that X is homeomorphic to XL(x,y), with the suspension points
corresponding to x and y, must X be homeomorphic to S" for some n?

The first observation to be made is that X must be homogeneous. For given any
two points in X, there is a homeomorphism taking XL(x,y) to itself, interchanging the
suspension points. This then gives the desired homeomorphism of X onto itself taking x
toy. Also note that X will be locally cone-like, with each suspension point having a cone
neighborhood.

A second point regards L(x,y). Ifthis set is in fact empty for any pair of distinct
points x and y, then it follows that X must be S°.

If L(x,y) is not empty but finite, then in fact X be S'. Away from the suspension
points, neighborhoods of points will look like cones over a two point set, with
homogeneity then forcing L(x,y) to consist of two points. It then follows that X will be
homeomorphic to S,

The remaining possibility is that L(x,y) must be infinite for each pair of distinct
points. In this case, we’ll add the assumption that for some pair x, y that L(x,y) is a
polyhedron. It then follows from homogeneity that X must be a manifold. Since X is
homeomorphic to the suspension of L(x,y), X is also a polyhedron. Take a point p in the
interior of a top dimensional simplex o in a triangulation of X. It now follows that all
points of X will have a neighborhood homeomorphic to R" as does p.

We now can conclude that L(x,y) must be a generalized (n-1)-manifold since
TL(x,y)-{x,y} is homeomorphic to L(x,y) X R', an open subset of the n-manifold X. By
considering an open neighborhood of the point x with the structure of an open cone over
L(x,y), it is possible to show that in fact L(x,y) and S™ have the same homotopy type.
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Using this information, it is relatively straightforward to see that X is a simply
connected manifold with the same homology as S”. Hence for n=4, it follows from the
Poincare conjecture that X must in fact be homeomorphic to S™.

On the other hand, for n=2 or n=3, we can use the fact that L(x,y) must be not
just a generalized (n-1) manifold, but an actual (n-1) manifold and hence S or S%. Thus it
follows that X will be either S* or S>

The question that remains regards whether the polyhedral hypothesis can be
dropped. The space X has been shown to be locally cone-like and homogeneous. If one
can show that in fact X has a CS stratification [ 2 ], then the homogeneity will force X to
be a manifold, and the program can proceed as above. However, Handel [ 1 ] has given
an example of a locally cone-like space which does not have the desired stratification.
Thus we are led to the following conjecture:

Conjecture: If a finite dimensional metric space X is locally cone-like and homogeneous,
then it must have a CS stratification, and hence be a manifold.

As was pointed out after this presentation in Oregon, an example providing a
counterexample to this conjecture would also show that the Bing-Borsuk conjecture that a
homogeneous ANR must be a manifold would also be false.
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A Relative Identity Property for Two-Complex Pairs

Michael P. Hitchman
University of Oregon

L. Setting

Suppose X is the two-complex modeled on the group presentation

P =<x:r>,and we add 2-cells to X (i.e., relators to P) to obtain the two-
complex ¥ modeled on Q = <x:r, s>. Then the fundamental group of Xis
the group presented by P, call it G. Similarly, m;(¥)is the group presented by
0, callit H. Notice that the inclusion of Xinto Y induces a surjection of
fundamental groups whose kernel is L, the normal subgroup of G generated
by the set of words s.

The relative identity property for such a pair of two-complexes (¥,X)
determines a strong relationship between the 2nd homotopy groups of both
spaces. We define this identity property via spherical pictures.

Spherical pictures, defined over a group presentation, are combinatorial
descriptions of maps from the 2-sphere into the two-complex associated to the
presentation. It is well-known that any element of =, can be represented by a
spherical picture. ’

Example 1: Consider the two-complex pair
P=<a,b:[ab]>andQ=<a,b:[ab],a3>.
Following our notation X is the torus, and Y is the torus with an additional
2-cell glued on to the 1-skeleton according to the relator s = a3. As the torus,
mp(X)is trivial. However, m,(Y)is generated (as ZH-module) by 2 elements,
represented by the pictures: (nwste « = Y_a‘\ﬂ)

0 2
A spray on a picture is a sequence of transverse paths {y;} connecting the
global basepoint of the picture to the basepoint of each interior disk A;. The

path to disk 4;, 7;, determines a word, ;, in the ambient free group
according to the arcs traversed along its route.
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Now, suppose P is a spherical picture defined on the presentation
Q=<x:1,8>

Given a spray on P, each disk A; gets three important labels:

LeEruyUs
Ei=i1
w; € F(x)

Moreover, the words ®; determine elements of the group H, #;, that are
independent of the choice of spray. A spray is used to map a picture (which
represents an element of 7;) to an element of the second chain group of the
universal cover.

Example 1 (cont):
The spray below allows us to compute the homological image of P, in

C, (V) = ZHc? ® ZHc?

2
(1+a+ QZ)CZ" + (\3—065

Definition: The pair (Q,P) (or (¥,X)) has the identity property if every
spherical picture over Q has a pairing of its s-disks (i <> j) such that:
I; =Ij; & # Ej; hl =hJ

In other words, the disks in any pair have the same relator label, but opposite
sign, and the words associated to their respective paths from the global
basepoint determine the same element of H.

Remarks:

1. This definition is a combinatorial description of asking the following
composition to be trivial:

m(Y) = Gy (V) = @ ZHc? @ @ ZHc? — @ ZHc?

rer SES Ses
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where the first map is the standard injection of 7, into the second chain
group of the universal cover, a free ZH-module with basis in 1-1
correspondence with the relators of Q. The second map is projection onto the
s-coordinates. The identity property asks that all elements of 7,(Y) be
homologically trivial, modulo the r 2-cells.

2. This identity property first arose in a paper of Mike Dyer's in which he
outlined a possible strategy for the construction of a counterexample to
Whitehead's Asphericity Conjecture. Using this property, Dyer translates
homotopic requirements of Howie's infinite counterexample construction to
homological requirements for such a construction.

Examples:

2. The pair of Example 1 does not have the identity property. Since m,(Y) is
generated by the two pictures shown, it is true that any spherical picture over
O has a pairing of its s-disks satisfying the first two conditions of the
definition. The third condition fails, however.

3. If the inclusion induced map on 7, is surjective then (¥,X) has the
identity property. Indeed, any spherical picture over Q is equivalent to one
without s-disks in view of surjectivity. Thus, a pairing of the s-disks must
exist. For instance, (¥,X) has the identity property if Y is aspherical.

4. If Xis the one-skeleton of ¥ , then we recover the (absolute) identity
property which detects asphericity of a two-complex:

(7,YD) has the identity property <Y has the identity property
, < Y is aspherical.

Looking for non-trivial examples, the following group-theoretic
characterization of the identity property proves useful.

Theorem (MPH): Let P =<x:r>, Q =<x:r,5> and Z = <x:s>. Let R be the
normal subgroup of F(x) generated by the set r, and S be the normal
subgroup of F(x)generated by s. Then (Q,P) has the identity property if and
only if

LMy (Z) = 7y (Y) is trivial and RN S < [S,RS].
Example 5: Let P = <x: [u,v]" >, and s = {u,v} (assume n> 1).

Here R =<<[uyv]">>pand § = <<u,v>>g. Thus Rc S and R c[S,S5] from
which the group-theoretic condition of the theorem holds. If we choose u
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and v carefully (e..g, let Z = <x: u,v> be any two-relator aspherical
presentation), then (Q,P) has the identity property.

We note that 0 # m, (X)—O——> 7o (Y) if n 22, a necessary initial condition in
Dyer's counterexample construction. Admittedly, though, this example is not
delicate enough as the new space Y is not Cockcroft.

Closing Remarks:

Examples of two-complex pairs with the identity property have been hard to
come by. A good portion of my thesis has been devoted to a weakened
version of this property, a generalized identity property. This generalized
identity property is defined via a presentation of the "relative" relation
module associated to the pair (Y,X). It turns out that this generalized version
is analogous to the weakening of asphericity (m, trivial) to combinatorial
asphericity (7, generated by dipoles) in the absolute setting. Indeed, we
recover combinatorial asphericity from the generalized identity property with
the case that Xis the one-skeleton of Y. In my thesis, notions of relative
dipoles and relative combinatorial asphericity are developed.
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FINITE-VOLUME HYPERBOLIC
4-MANIFOLDS AND THEIR ENDS

DUBRAVKO IVANSIC

University of Oklahoma

Recall that the Poincaré upper half-space model of hyperbolic n-space is H* =
24 ... 2 2
{(z1,-+->Tn-1,t) € R™ |t > 0} with the metric given by ds? = doit +f:”‘1+dt .

The boundary at infinity of a set S C H™ is the set of all points in OH™ = R™1U{co}
that are in the (Euclidean) closure of S. In the upper-half-space model hyperbolic
hyperplanes are either Euclidean half-spheres or Euclidean half-planes orthogonal
to OH™ and they are uniquely determined by their own boundaries at infinity, which
are Euclidean (n — 2)-spheres or (n — 2)-planes in R™*1U {co}. We will say that
the hyperplane is based, respectively, on a sphere or a plane. (In our case n = 4, so
the hyperplanes will be based on 2-spheres and 2-planes in R3.) :

A hyperbolic n-manifold H* /G is the quotient of H™ by the action of a discrete
torsion-free group G C Isom(H™). Similarly, a Euclidean n-manifold is the quotient
of R™ by a discrete group of isometries of R™.

It is known (see [A]) that a complete, hyperbolic, geometrically finite n-manifold
has finitely many ends. If the manifold has finite volume, then all of the ends are
standard cusp ends, that is, they are of the form E X [0,00), where E is a closed
flat manifold.

We construct a hyperbolic 4-manifold by means of side-pairings of a hyperbolic
4-polyhedron P. Qur P is the intersection of the half-space determined by hyper-
planes based on the planes bounding the rectangular box R = [—2,2] x [-2,2] x
[-21/2,2v/2] C R® and on the 30 spheres depicted in Figure 1. The uppper part of
Figure 1 shows the intersections of these spheres with the five parallel planes that
contain their centers. These are the five planes with constant z-coordinates —2v/2,
—v/2, 0, v/2, 21/2 going from left to right. All spheres are of radius V2. For the
spheres we choose the half-spaces whose boundary at infinity is unbounded in R3,
for the planes the half-spaces so that the intersection of their boundaries at infinity
is the rectangular box R. The polyhedron P is defined as the intersection of those

half-spaces.

Next, two side-pairings, ®; and @3, are defined on the polyhedron P. (See [I1]
for the exact isometries pairing of the sides.) The sides that are paired are labeled
S and $’ in Figure 1. The sides of the rectangular box are paired by translations.
By checking the conditions of Poincaré’s polyhedron theorem (see [E-P] and [R])

This note summarizes some of the results from the author’s PhD thesis. I would like to thank
my advisor, Dr. Boris Apanasov, for many helpful conversations and suggestions concerning these

results. 39
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FIGURE 2. Side-pairings ®; (top) and ®; (bottom)

we see that by identifying the sides of P that are paired, we arrive at noncompact
hyperbolic manifolds M; and M. They have 7 and 8 ends, respectively. Each end
corresponds to an equivalence class under the side-pairing of vertices at infinity.
The vertices at infinity and their equivalence classes are depicted in Figure 2.

Now form a polyhedron @ from n copies of P: attach the second P by identifying
its side based on z = —/2 to the side of the first P based on z = /2, attach the
third P to the second one in the same manner and so on. In R3, the boxes with
their spheres are simply strung linearly together in the z-direction. Define a side-
pairing on the polyhedron Q by choosing either the side-pairing ®; or ®2 on each
copy of P. (There are many ways in which this can be done.) The side z = -2
of the first P and the side z = v/2 of the n-th P are paired by translation.

It turns out (Poincaré’s polyhedron theorem again) that every of the side-pairings
on Q defined above yields a hyperbolic manifold. One can show that it is obtained
from n copies of either M; or M> by cutting each along an embedded totally
geodesic submanifold and gluing each of the resulting two boundary components to
a boundary component of another cut-open My or M. (We are stringing together
n copies of cut-open M; or M,’s, each with two boundary components, in a circular
fashion.) If k copies of P had the pairing ®; and n —k copies of P had the pairing
&, defined on them, it may be seen that the resulting manifold has 4 +4n — k ends.
We have complete freedom of choice for k so we can get manifolds with anywhere
from 4 -+ 3n to 4 + 4n ends. Clearly, no two of those can be homeomorphic so we
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FIGURE 2. Cycles of ideal vertices for ®; (top) and @ (bottom). In
both cases, the vertex oo is labeled by 1

Theorem 1. Given any number N, there exist more than N nonhomeomorphic,
noncompact, complete, hyperbolic 4-manifolds of finite volume that share the same
fundamental polyhedron in H*. In particular, they have the same volume.

The last statement relates to a theorem of Wang (see [W]) that says that for every
constant ¢ > 0 there are only finitely many complete nonhomeomorphic hyperbolic
n-manifolds with volume < ¢, where n > 4. We just showed, for n = 4, that there
is no bound on the number of manifolds with the same volume.

For n = 3 the set of volumes is a well-ordered (infinite) set, but still only finitely
many manifolds may have the same volume. The number of manifolds with the
same volume is again unbounded, as follows from theorems analogous to theorem
1 that have been established by Wielenberg (see [Wil]) for the noncompact case,
and by Apanasov and Gutsul ([A-G]) for the compact one.

A by-product of the above construction is

Theorem 2. The set of all volumes of hyperbolic 4-manifolds contains the even
multiples of 4% /3.

This comes from the Gauss-Bonnet formula for hyperbolic 4-manifolds, Vol(M) =
472 /3 - x(M), where x(M ) denotes the Euler characteristic of M. One shows
that x(M;) = x(M2) = 2, so Vol(P) = Vol(M:1) = 2- 4% /3, which implies that
Vol(Q) = 2n - 472 /3. Hence, the volume of any of the manifolds constructed from

Q is also 2n - 472 /3. 4l
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A stiong_er result, that the set of volumes is the positive integral multiples of
472 /3 was obtained in [R-T}, but the proof there was not constructive.

We now turn our attention to the ends of noncompact hyperbolic manifolds.

For a 3-dimensional manifold M, the ends are of form E X [0,00) where E is
either a torus or a Klein bottle. Each of these is an S-bundle over the circle, so
E x [0, 00) may be thought of as a punctured disc bundle over a circle. Hence, each
end of M may be seen as a complement of a circle inside a solid torus or a ”"solid
Klein bottle”. Then M U {circles} is a compact manifold, so M is a complement
of some link inside a compact 3-manifold N. (Many examples are known where
N = §3 (see [Wi2] or [T]), and it is also known that almost all such N’s can be
given a hyperbolic structure (see [T]). :

We want to adress the same problem for noncompact hyperbolic 4-manifolds M:
When can M be embedded as a complement of a 2-dimensional manifold B tamely
contained in some compact 4-manifold N7

It turns out, if such an embedding is possible, for every end E x [0,00) of M we
must have that F is a circle bundle over B. Now we have the following

Theorem 3. Let E be a compact flat n-manifold, E = R™/G, where G is a discrete
subgroup of IsomR™. Then E is an S*-bundle over some base manifold B if and
only if there ezists an element f € G so that

(i) (f) is a normal subgroup of G
(ii) For every g € G, g € (f) implies g € (f). (Note that this is equivalent to
G/ (f) being torsion-free.

Applying this criterion to the ten (see [Wo] or [H-W]) 3-dimensional Euclidean
manifolds, we find out that there are six that are S'-bundles over a manifold B,
and four that are not (all the nonorientable ones are S'-bundles). A result of
Niemershiem ([N]) asserts that for every Euclidean 3-manifold E, one can find a
finite-volume hyperbolic 4-manifold M so that E x [0,00) is an end of M. This
coupled with the observation just before the theorem tells us that there exist non-
compact hyperbolic 4-manifolds that cannot be embedded as a complement of a
surface inside a compact 4-manifold.

On the positive side, however, there is a theorem from [A-F| asserting that every
hyperbolic n-manifold is finitely covered by a hyperbolic n-manifold all of whose
ends are of the simplest form, 7! x [0, c0), where 7"7! is the (n — 1)-torus.
Since "1 x [0,c0) = T™2 x S x [0, 60) = T™ 2 x (punctured disc), the covering
manifold is a complement of (n — 2)-tori inside some compact n-manifold. This
works in particular for n = 4.

For those hyperbolic 4-manifolds all of whose ends are among the desirable six
ends, we can show that the surface B must be a Euclidean surface, i.e. B is either
a torus or a Klein bottle.

These considerations generalize to almost all higher-dimensional hyperbolic man- -
ifolds: if a hyperbolic n-manifold M is a complement of a codimension-2 manifold
B inside some compact n-manifold N, then the Euclidean manifolds appearing in
the ends of M must be S'-bundles and B must itself be a Euclidean manifold.
There is one dimension, 5, for which the p4r200fs do not go through.



FINITE-VOLUME HYPERBOLIC 4-MANIFOLDS AND THEIR ENDS

More details on previous results may be found in [I1] and [I2]. Both preprints
can be obtained from the author and [I1] is also available on the Web,

[Wi2]

http://www.msri.org/ MSRI-preprints /online/1997-052.html.
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K(7r,1)S COMING FROM THE OUTER SPACE
Sava Krstié

(Matematicki Institut Belgrade and Oregon State University)

Any selected list of most important discrete groups in mathematics would certainly
include Aut(F}), the automorphism groups of finitely generated free groups. Moreover,
many members of the same list are in close relationship with Aut(F,). First, GL,(Z),
being the automorphism group of a free abelian group, is an analogue and a quotient of
Aut(Fy). Some other members of our imaginary list occur as stabilizers of various objects
associated with the action of Aut(Fy) on Fy,. (Note that in the case of GL,(Z), there is not
much to say about stabilizers.) Here are some examples, in which we assume {a;,...,an}
is a basis of F}, and (w) denotes the conjugacy class of an element w of F},.

(1) Braid groups B, and pure braid groups P,:

By = Stab{(a1),...,(an)} N Stab{a; - - an}
P, = Stab{ay --- an} N Stad{(a1)}--- N Stab{(a,)}

(2) The string group G, (group of motions of n circles in the 3-space) and the pure string
group Ch:
Gn = Stab{(a1),(art),... (an), (a;1)}
Cr = Stab{(a1)} N ---N Stab{(an)}

(3) Mapping class groups of orientable surfaces. In the simplest case when the surface
has genus n/2 and one puncture, its maping class group is the quotient of the group

Stab{[ay,az] - - [an—1,an]}

modulo its infinite cyclic center.

The above characterizations are quite useful because many facts about the groups
in question can be obtained by generalizing and refining the methods used for Aut(Fy,).
In particular, the Outer Space of Culler and Vogtmann [3] is a rich source of interesting
spaces on which the stabilizers act in a most desirable way. Let us denote by X, the
Culler-Vogtmann complex, a spine of the Outer Space. It is contractible, and Aut(F},)
acts simplicially on it with finite vertex stabilizers and finite quotient.

Theorem. Let H be the intersection of finitely many subgroups of Aut(F;,), each of which
is the stabilizer of a finite set of (a) elements of Fy, (b) conjugacy classes in F,, or (c)
finitely generated subgroups of F,,. Then there is a contractible subcomplex Xz of X, on

which H acts with finite stabilizers and finite quotient.

This generalization, at least in the case when H is the stabilizer of a finite set of
elements, has already been noticed in [3]. Cohomological information directly implied by
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the theorem (type VFL, bounds on virtual cohomological dimension) has already been
known for braid and mapping class groups. The purpose of my talk is to indicate that in
some cases it is possible and worthwhile to study X g in greater detail in order to obtain

more cohomological information about stabilizers.

Firstly, the subcomplex Xg is not uniquely determined, and the existence of the best
representative is not clear in general. Sometimes, however, concrete work does lead to a
natural and efficient X . We-can show, for example, that for all groups mentioned in (1)-
(3) above, the dimension of Xy equals ved(H). In the case of mapping class groups, Xg
turns out to be the same as the complex of curve systems studied by Harer [4]. When H is
a braid group, our complex Xy gives an (n — 1)-dimensional Eilenberg-MacLane complex
H\Xpg for B, whose combinatorics can be (but has not been!) studied in detail.

Particularly interesting is the case of string groups. For H = C,, we obtain an
Eilenberg-MacLane complex K, = H\Xy with a toric structure.

Theorem. K, is covered by a finite family of tori which is closed under intersection.

Not many groups are there which have a K (7, 1) with this property. We wander if
the property implies quadratic isoperimetric inequality, presently unknown for Cfp.

The family of tori for K, can be described in full detail, so that we can compute the
cohomology ring of Ch,.

Theorem. (a) The cohomology ring H*(Cy) is generated by 1-dimensional classes {ij,
~ and all relations among these generators are consequences of the relations

& =0, &€ =0, &jikur + &€k + Erjir = 0.

(b) Each H(C,,) is free abelian, with basis in bijection with the set of rooted forests with
q edges and n vertices. (c) The Poincaré series of C, is the polynomial (14 nt)*L,

Part (a) was conjectured, and proved for n < 3, by Brownstein and Lee [2]. Note the
striking similarity with Arnol’d’s presentation of the cohomology ring of the pure braid

groups [1].
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On suspensions of noncontractible compacta of
trivial shape

In 1904 Poincaré constructed the first example of a homological 3-sphere
with a nontrivial fundamental group. The complement of an open 3-ball in this
space is a n acyclic finite noncontractible polyhedron P. It follows by the Mayer-
Vietoris sequence and the van Kampen theorem that the suspension ©P of this
polyhedron is an acyclic space with the trivial fundamental group. It follows by
the Hurewicz theorem that the suspension £ P has all homotopy groups trivial
and is hence a contractible space. Complex P is an acyclic noncontractible
compactum. Every cell-like space is acyclic in Cech cohomology and every
contractible compactum

is clearly cell-like. So there is a natural question: Does there exist a non-
contractible cell-like compactum whose suspension is contractible? (Bestvina-
Edwards, Problem D28 in van Mill-Reed Open Problems in Topology). Related
- to this open problem we have proved (in a joint paper with U. H. Karimov)
the following result: There exists a noncontractible cohomologically locally con-
nected (clc) 2-dimensional compact metric space X of trivial shape whose re-
duced suspension is an absolute retract.
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A finiteness theorem
for planes in 3-manifolds
of finite genus at infinity

Bobby Neal Winters
Pittsburg State University
Pittsburg, Kansas

September 23, 1997

Summary

A map f: X — Y is said to be properif f~!(K) is compact for every K
compact in Y. :

Let M be a 3-manifold. A plane in M is a 2-submanifold that is home-
ormorphic to R%. Let P be a plane in M. We say that P is nontrivial in
M

1. if PN K is compact for every compact K C M and

2. if there is a compact Kp C M such that there is no proper map
H:P x[0,1] - M with H(P,0) =1p and H(P,1) N Kp = 0.

A 3-manifold M is said to be of finite genus at infinity if there is a
non-negative integer g such that if X' C M is compact there is a compact 3-
manifold Mg with K C Myx —0Mpg such that 8My if a connected 2-manifold
of genus g. We say that g is the genus of M if g is the smallest integer with
this property.

Let N be a noncompact 3-manifold such that for every compact K C N
there is a closed 3-ball Bg such that K C Int By and Bx NP is a single
disk for each component P of dN. Then we call N a nearnode.
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The manifold R? x I is an example of a nearnode, but is by no means
the only one.

Nearnodes are interesting because, in spite of the fact that they are con-
tractible, they can contain a large number of nontrivial planes.

Theorem 1 There is a nearnode N such that ON has two components and
N contains a family F of planes such that every element of F is nontrivial
in N, no two elements of F intersect, no two elements of F are parallel, and
F has the cardinality of the Cantor set.

This result illustrates that one cannot hope for a finiteness theorem for
planes that is just a naive restatement of the Haken-Kneser Finiteness The-
orem. However, we can obtain the following result:

Theorem 2 Suppose that M is a noncompact, irreducible, orientiable con-
nected 3-manifold that has one end and is of genus g > 2 at infinity. Let
U be a 3-manifold in M such that the inclusion map from U into M is
proper and such that OU is the disjoint union of a finite number of planes.
If #(0U) > 2g — 2, then at least one component N of U is a nearnode such
that ON has two components.
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Open Problems

J. Cannon

1. Is there a Dehn algorithm in the extended sense for every 3-manifold fundamental
group?

2. Is the fundamental group of the Hawaiian Earing the same as the fundamental group
of the union of two Hawaiian Earrings attached at opposite endpoints of an arc? Is
the fundamental group of the Siepinski carpet the same as the fundamental group of

the Siepinski curve?

3. Let C be a convex polyhedron in E3. Can the boundary of C be cut into a single disc
that can be laid down in the plane without self overlapping?

R. Daverman

1. Let N? be a closed orientable hyperbolic three manifold. let f : N — N be such that
f(m1(V)) has finite index in 71 (V). Does f have degree not equal to 0 imply that f
is a homotopy equivalence?

2. Suppose p : M™ — X is a cell-like map defined on an n-manifold M with empty
boundary, and € > 0. Does there exist a UV* mapg: X — M, k= {”—;31 J, such that
po g is within € of the identity on X7

Dusan Repovs

X is Cantor homogeneous if for each pair of Cantor sets in X, there is a homeomorphism
of X that takes one of the Cantor Sets onto the other. Hanna Patkowska studied this in
dimensions one and two. Is there a 3-dimensional compact metric space X such that X is

Cantor homogeneous? Such an example can’t be LC?.

F. Ancel
If I' is a CAT(0) Coxeter group with a manifold nerve, does I’ have a unique boundary?

S. Bleiler

Given a two generator link of unknots that has a 2 generator presentation with one generator
represetnted by a meridian, does this imply htat the link is 2-bridge? Note that if the link
has H-genus 2, the answer is yes. If the answer is yes, then for satellites, 2gerators implies

H-genus 2.

Y. Sternfeld ,
Let H=/yandlet B={z € H||z| <1} and S={z € H | |z|| =1}

1. Is there a homeomorphism f from B onto S such that both f and f~! are Lipschitz
functions?

2. Equivalently, is B Lipschitz homogeneous?
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