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NOTES ON ENDS OF HYPERBOLIC 3-MANIFOLDS

MIiIcHAEL H. FREEDMAN
VYACHESLAV S. KRUSHKAL

Lecture 1. The central theme of these notes is a question of Marden [M]: Do all hyperbolic
3-manifolds with finitely-generated fundamental group have product ends?

An end is said to have a product structure (or to be tame) if it is homeomorphic to
(0 end) x Ry. Marden’s question may be reformulated as follows: Is every hyperbolic
3-manifold M with finitely-generated fundamental group homeomorphic to the interior of
a compact 3-manifold?

By work of Canary [C], the affirmative answer to Marden’s question for a finitely-
generated Kleinian group G =2 w1 (M) implies Ahlfors’ conjecture [A] for G: The limit set
A is either the whole 2-sphere at infinity or has Lebesgue measure zero. .

Note that hyperbolic 3-manifolds with finitely-generated fundamental group have finitely
many ends. (This is not true in general for dimensions greater than three.) To prove this.
recall

Scott core theorem [S]. Let M be a hyperbolic 3-manifold with finitely-generated fun-
damental group. Then there exists a compact, codimension zero submanifold C of M such
that the inclusion map C — M induces an isomorphism of fundamental groups.

In particular, m1(M) is finitely presented, and Hy(M;Z) = Hy(m(M);Z) is finitely
generated. Let (H. i'f (M) denote the homology of locally-finite chains on M. By Poincaré
duality Hi'f ‘(M) = H?(M) is also finitely generated. Considering lines exiting through
various ends of M shows that k ends of M provide (k — 1) linearly independent elements
of H i'f (M), hence M has finitely many ends.

The classes of groups for which Marden’s conjecture has been verified are:

(1) Fuchsian groups (2-dimensional case): G C PSL(2,R) C PSL(2,C).
A fundamental domain for the action of G on H® (Poincaré model) is an “apple
core”, bounded by a finite number of totally geodesic planes orthogonal to the
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standard H? c H3. It is easy to visualize a product structure on H3/G:

FIGURE 1.1

(2) Quasi-Fuchsian groups. The limit sets of these groups are quasi-circles; fundamen-
tal domains have more bites taken out of the “apple core” but are still finite-sided
convex polyhedra.

(3) Certain limits of geometrically-finite groups analyzed by Thurston [Th].

(4) Indecomposable groups (Bonahon [B]). Recall that group G is called indecompos-
able if G # Z, and G = A * B implies one of the groups A and B is trivial.

Notice that if 1 (M) is indecomposable, Scott core C' of M has a special feature: M — C
is a homotopy product (8C) X R;. To prove this, first observe that 9C is incompressible in
C. We may assume, using induction, that M —C is connected. Suppose the homomorphism
induced by inclusion 71(8C) — m1(C) is not injective. By the loop theorem and Dehn’s
lemma there exists an embedded disk (D, D) C (C,9C) with 0D essential in dC. The disk
D cannot be separating, since it would provide a free decomposition of 71 (C) = m1(M). In
the non-separating case, since m1(M) % Z, we can-take a band sum of two parallel copies
of D to get a separating disk D’ C C with 9D’ still essential in 9C. This contradicts the
assumption that 71 (8C) — 71(C) is not injective. '

By Seifert-van Kampen’s theorem 71 (M) is the pushout:

m(0C) —— m(C)

d g
m(M~C) —— m (M)

Since « is injective and [ is an isomorphism, ~ is also an isomorphism. This shows that

M — C is a homotopy product (0C) x Ry.
This is not necessarily the case when m; (M) is decomposable. For example, let M be
a genus two handlebody. Then both the standard wedge of two circles and a knotted one
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FIGURE 1.2

The idea of Thurston and Bonahon in the indecomposable case—to find a sequence of
pleated surfaces, homeomorphic to 9C, exiting the end of M—does not work in the de-
composable case for a knotted core as in the example above. One would like to find a

“natural” geometric core to avoid this problem.
We will now state two geometric reformulations of the condition that the ends of M are

tame.
Fix a finitely-generated Kleinian group G = 71 (M) and let O denote the orbit G(z) of

a point = € H3.
Theorem 1.1. [F] The following two conditions are equivalent:
(a) For any r there exists a (sufficiently large) R such that every arc in

(H® \ N.(0),dN,(0)) can be deformed, relative to its ends, into
(Ng(O) \ N,.(0),0N,(0)), where N, denotes the neighborhood of radius r.

(b) All ends of M are tame.

To understand condition (a), note that for a simple closed curve K in S3, knottedness
is the failure of the relative fundamental group m1(S® \ K,d) to be trivial. ;From this
perspective the negation of (a) means that the orbit of G is coarsely knotted at all size

scales.

' FiGgure 1.3

Before giving the proof of Theorem 1.1, we recall
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Tucker’s Theorem. [T] Let M be a hyperbolic 3-manifold with finitely-generated funda-
mental group. Then all ends of M are tame if and only if 7 (M \ K) is finitely generated
for all compact submanifolds K C M.

Proof of Theorem 1.1. Let T be the image of z in M = H3/G. Pick a basepoint
p € (M \ N.(z)) and fix a preimage p € O(N-(O)) of p. The fundamental group
m1(M \ N.(Z),p) may be interpreted as classes of paths in the universal cover, start-
ing at p and ending at various lifts of p. The multiplication is given by composition of
paths, using covering translations. By Tucker’s theorem M has product ends if and only
if (M \ N.(Z)) is finitely generated for all r. This is equivalent to finding a set of
generators in the universal cover within a bounded distance from N.(0). O

Another sufficient condition for the existence of a product structure is the following
“Elder Sibling Property”.

Consider the case when the domain of discontinuity g is non-empty. Let z € Qg and
let h C H® be a horoball based at z. Consider the orbit G (h) in the upper-half space model
where z is the point at infinity. Each horoball in the orbit meets only finitely many of its
G-translates, and for h sufficiently large the union of the orbit UG(h) is path-connected.

1.2. We say that G satisfies the Elder Sibling Property (ESP) if there exists a horoball
h based at z € Q¢ such that in the upper-half space model with z the point at infinity,
each horoball in G(h) of finite (Euclidean) size meets a larger or infinite one.

///u/////

FIGURE 1.4

Let C denote H? \ (UG(hR)).

Theorem 1.3. [ F| Suppose G = w1 (M) satisfies ESP. Then w1(C, 0C) is trivial, and all
ends of M are tame. '

The idea of the proof is to use Tucker’s theorem with the image of A in M thought
of as an almost compact set. In fact, h touches S2, at a point of discontinuity where its
behavior is well understood.



Sketch of the proof. Consider the Morse function on C, given by the height in the upper-
half space model. There are six types of critical points that may occur on dC—each one
has one of three Morse indices 0, 1, 2 and one of two signs -+ or —, according to whether the
interior of C lies above or below AC at the critical point. It follows from the geometry of
C, that points of index (+,2) do not occur. The only possibility for 7,(C,dC) to be non-
trivial is that there are critical points of index (+,0), which introduce at these respective
height levels new components of C, which are then connected in a non-trivial way at points
of index (—,1). This possibility is eliminated by the ESP assumption, since each (+,0)
point is canceled by a corresponding saddle point. O



Lecture 2. A new exztension of the Kneser-Haken finiteness principle to manifolds with
boundary.

Let G = m,(M) be a free finitely-generated Kleinian group, for example the free group |

on two generators. Let z,y be a free basis of G. Similarly to representing an essential
element of a fundamental group by a least-length geodesic, the chosen basis of G may be
represented by a least length web (wedge of two circles) W. Let W C H? denote the
preimage of W in the universal cover. '

Lemma 2.1. 7 (H2 < ﬁ;) 18 a free group.

Proof. Let = be a vertex of W, and let vy, ..., v4 denote the unit tangent vectors at x to the

4
four edges of W containing z. It follows from the choice of W that Z v; = 0 —otherwise
a first order variation would reduce the length of W. =

Fix a point p € H? and let r denote the (hyperbolic) radius function on H2 centered at
p- The restriction 7|3 cannot have a local maximum at an interior point of an edge since
W is a least length web, and it does not have one at a vertex by the “balanced” condition
discussed above. It follows that the presentation of my(H® \. W) associated to r has no

relations. O

FIGURE 2.1

2.2. Examples of open 3-manifolds with free fundamental group on two generators may
be built using an analogue of Whitehead’s construction [Wh|. Let (Hz); < (Hz)i+1 be an

6



inclusion of a genus two handlebody into the interior of another one, which is homotopic
but not isotopic to the identity map.

FIGURE 2.2

o0
Let M denote the infinite nested union U (Hg);. For Marden’s conjecture to hold, these

.manifolds should not admit a hyperbohc structule This can be proved in many cases by

finding a closed incompressible surface in H3 ~ W, showing that my (H® ~ W’) is not free.
A technique for finding incompressible surfaces is described below. (See Theorem 2.6.)

It turns out that this method does not always work, since many 3-manifolds have locally
free but not free fundamental group, and hence they do not contain incompressible surfaces.
Recall that a group G is called locally free if every finitely-generated subgroup of G is free.

2.3. Example of a locally free but not free group. Let N be a thickening in R3 of the
following infinite 2-complex:

FIGURE 2.3



m1(IN) is locally free, since the union of a finite number of consequent fundamental
domains has free fundamental group, and these are joined along incompressible annuli.
m1(IV) is not free, since the loop v bounds in N an infinite half-grope, showing that
[v] € (m1(N)),, —the w-term of the lower-central series. 7 represents a non-trivial element
of w1 (N), since a null-homotopy would lie in a compact piece of N; on the other hand, the
w-term of free groups is trivial.

Question 2.4. Give a general geometric method for showing that a fundamental group
is not free.

Lemma 2.5. Let M be an irreducible non-compact 3-manifold without boundary. The
following conditions are equivalent:

(1) w1 (M) is locally free.

(2) M contains no closed incompressible surface.

(3) M is exhausted by handlebodies.

We will now describe a technique for finding closed incompressible surfaces in non-
compact 3-manifolds.

Theorem 2.6. [F-F| Let C be a curve in the solid torus M = D? x S which is homotopic
-but not isotopic to the core {0} x S* of M, and let C C D? x R denote its preimage in the
universal cover. Then (D? x R) \ C contains a closed incompressible surface.

Ficure 2.4

In this case, for a genus one handlebody, the existence of a hyperbolic structure is not an
issue, but this is a good test case for finding incompressible surfaces.

Proof of Theorem 2.6. Let M, denote the union of n consequent fundamental domains
in D? x R, with C cut out. Notice that a surface which is incompressible in M, is also
incompressible in D? x R \ C since 71 (M,) injects into 71(D? x R 5’) as a factor in
the free product with amalgamation. Let ¥, denote the boundary of M,, —a genus three
surface, pushed slightly into the interior of Af,. It will be shown that M, is not a genus
three handlebody for sufficiently large n. This will prove that ¥, does not compress to a
2-sphere and will complete the proof of Theorem 2.6. [



Note that the argument given below gives n exponential in the complexity of the curve
C in M. An easier argument was later found by C. Gordon and by A. Reid-D. Cooper-D.
Long. :

Let T denote the twice-punctured torus shown in FIGURE 2.4 with 8T C (D? x R)~ C.
T and its translates provide (n+ 1) non-parallel incompressible surfaces in M,,. If M, was
a genus three handlebody, this would give a contradiction for large n with the bounded
case of Kneser-Haken finiteness theorem. (See Theorem 2.7 below.) 0

Recall the Kneser-Haken finiteness principle for a closed 3-manifold M: There exists an
integer ¢(M) which bounds from above the number of disjoint closed non-parallel incom-
pressible surfaces in M. The idea of the proof is the observation that the intersection of
a collection S of surfaces in normal form with each 3-simplex A in a triangulation of M
provides at most six non-product regions of A \ S (FIGURE 2.5). The product regions of
various tetrahedra glue up, modulo the homological correction term, to (surfaces) x I.

This proof does not extend to the bounded case in the absence of the boundary-
incompressibility assumption on surfaces: S N A may contain tunnels providing an un-
controlled number of non-product regions. (FIGURE 2.6.)

FiGuRreE 2.5 FIGURE 2.6

W. Sherman [Sh] exhibited arbitrarily many non-parallel incompressible surfaces in
(genus two surface) x I. His example has the property that the complexity of surfaces
increases with their number.

Theorem 2.7. [F-F| Let M be a compact 3-manifold with boundary and b an integer
greater than zero. There is a constant c(M,b) such that if S1,..., Sk, k > ¢, is a collection
of incompressible surfaces such that all Betti numbers, b1(S;) < b, 1 < i < k, and no S;,
1 < i <k, is a boundary-parallel annulus or a boundary-parallel disk, then at least twq
members of S; and S; are parallel.

Remarks. 1. The bound in the closed case is roughly 6 - (number of tetrahedra in
a triangulation of M), while in the bounded case Theorem 2.7 gives the bound which is

exponential in the complexity of the data.



2. The proof of Theorem 2.6 does not apply to handlebodies of genus greater that one.
The difference is that a free group with more than one generator has exponential growth,
and the number of fundamental domains in the ball of radius R in the universal cover is
comparable with the genus of the bounding surface.
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Lecture 3. Before formulating a topological approach to the product-end conjecture, we
first recall the observation (essentially contained in [C]) that in order to detect a wild end
of a hyperbolic 3-manifold it suffices to check the infinite-generation condition in Tucker’s
theorem for just one of the “algebraically disk-busting” geodesics:

Lemma 3.1. Let v be a simple closed geodesic in an open hyperbolic 3-manifold M satis-
fying

(1) 7] =0€ Hi(M;Z,),

(2) no conjugate of v lies in a factor of a non-trivial free product m, (M) = AxB.
If M has a wild end, then (M \ 7) is infinitely generated.

Remarks. Note that the set of algebraically disk-busting (that is, satisfying condition
(2) above) geodesics has full measure in the set of all geodesics ([K], [C]). If a geodesic
is not simple, then the arguments below apply to any C !_perturbation of 7.

The algebraically disk-busting condition for a curve 7 in a compact 3-manifold N is

equivalent to the condition that v meets every essential disk in N.

Proof of Lemma 3.1. Suppose 7r1(M \7) is finitely generated. We will show that the 2-fold
branched cover M | of M with the branching locus 7 has finitely-generated indecomposable

fundamental group. By a theorem of Gromov and Thurston [G-Th] M " then admits a
metric of pinched negative curvature, and Bonahon’s proof [B] extends to this setting to

show that M ' has product ends. Since branched coverings preserve the structure of ends,

the proof of Lemma 3.1 will be complete once we show that 771(]\/1 ) is finitely generated

and indecomposable.
By the relative Scott core theorem [Mc] there is a compact core C C M \ N(v) with
ON(v) C C, where N(v) denotes a closed tubular neighborhood of C. By assumption (1)

~ bounds a surface X i in M and M | is constructed by gluing two copies of M~ N(Z) to

obtain a double cover M - of M~ N () and then regluing back N (7). Cores are functorial

under these operations:
cl o— M

]

52 ]«-\;‘-[«2

| |
C —— M~ N(y)

Now the problem is reduced to the compact setting, and as'in [C] the equivariant Dehn'’s
Lemma and Sphere Theorem, combined with the assumptions (1), (2) on <, show that

m(C 7) = wl(ﬁ 7) is indecomposable. [
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Topological Conjecture 3.2. Let M be an open 3-manifold with finitely-generated fun-
damental group and with the universal cover M = R3, and let v C M be a simple closed
curve with m1(M \ «) infinitely generated. Then (ZT/f , () 2 (R3, standard countable
collection of lines) where 7 : M — M is the covering projection.

A model for the standard collection above is given by the vertical lines in R?® passing
through points of the integral lattice in a horizontal plane.

This topological conjecture implies Marden’s and Ahlfors’ conjectures, since for M hy-
perbolic the preimage in H? of a simple closed geodesic -y is standard by Morse theory.

Some evidence for the conjecture is provided by the fact that while in the higher-
dimensional case there are various restrictions that one may impose on an end, such as
m1-stability at infinity or vanishing of Kp-obstruction, the known conditions in dimension
three that restrict wildness already imply the existence of a product structure.

a

3.3. Various examples of wild ends may be produced by using Whitehead’s construction
[Wh]. (See also [S-T].)

Let M = UTi where T; = S! x D? and the embedding T; < Tj;; is shown in
1=1

FiGcure 3.1.

o:\‘

Ficurek 3.1

This 3-manifold has the properties that w1 (M) = Z and the universal cover M = R3, but
M 2 S' x R?. Let v denote the core curve of 7;. An algorithm for drawing the preimage
of v in the universal cover is given in FIGURE 3.2. .
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3 fundamental domains of f‘l

/_/f“i\/_\/_\

L

— —
5 fundamental domains of T} and fg

FIGURE 3.2

Let T; denote the preimage of T; in M. One starts by drawing three fundamental domains
of T. The second step is to draw five fundamental domains of T, and extend the existing
picture for T 1 by one (rather stretched) domain to the left and to the right inside Ts. The
next step is seven fundamental domains of 7. 3 and an extension of fg and then ﬁ to seven
domains, each inside T3.... Note that each step of the algorithm does not change the
result of the previous step, hence providing an exhausting picture for the universal cover
M. Tt follows that m (R® \ 7) is infinitely generated, and the conjecture is true in this
example.

In some cases the fact that a collection of lines in R3 is not standard may be detected,
as in Lecture 2, by finding an incompressible surface in the complement, showing that the
fundamental group of the complement is not free. However, there is again a possibility of
a locally free but not free group.

Example 3.4. Let M be the infinite-nested union of genus two handlebodies,
o .

M = U(Hz)i’ where the inclusion (H3); < (Hz)i+1 is shown in FIGURE 3.3.

1=1

FIGURE 3.3
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The map of fundamental groups Z * Z — Z * Z induced by inclusion sends the first factor
isomorphically onto the first factor, and the second factor to the identity element, hence
71 (M) = Z. Let v denote a curve representing the sum of the two standard generators of

m1((Hz)1).
By M. Brown’s criterion of exhaustion by balls [Br| the universal cover M is R3. The

complement of %4 in M may be represented as a nested union of handlebodies, hence by
Lemma 2.5, 7 ( M~ ) is locally free. The fact that it is not a free group may be established
in this example by a rather special argument: by Alexander duality its Abelianization is
isomorphic to the integers.

14
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Hyperbolic Dehn Surgery and
Convergence of Kleinian Groups

Timothy D. Comar

Let N be a compact, orientable three-manifold with boundary containing
finitely many tori. One may obtain new three-manifolds from N by gluing
solid tori to the boundary tori of N. This process is called Dehn filling. If N
admits a hyperbolic structure and the boundary of N consists entirely of tori,
then Thurston’s Hyperbolic Dehn Surgery Theorem [14, 3] states that most
manifolds obtained from N by Dehn filling admit hyperbolic structures.
Thurston’s theorem also implies that any finite volume hyperbolic three-
manifold is the geometric limit of a sequence of closed hyperbolic three-
manifolds.

We generalize Thurston’s theorem to the case where the boundary of
the initial manifold N may contain non-toroidal components in addition
to the tori. We assume that M is a geometrically finite hyperbolic three-
manifold without rank one cusps that is homeomorphic to the interior of N.
If the boundary of NV contains non-toroidal components, M will have infinite
volume. We show that most Dehn fillings of N admit hyperbolic structures
that are geometrically near M. We use this theorem to develop a general
recipe for constructing a convergent sequence {p, : I' — PSL(2,C)} of
discrete, faithful geometrically finite representations of a group I' such that
the algebraic and geometric limit groups are geometrically finite and that
the algebraic limit group is a proper subgroup of the geometric limit group.

We now recall some basic definitions that are used in the discussion of

our results.

Definition 1 A Kleinian group T is a nontrivial, discrete subgroup of
PSL(2,C) = Isom™(H3), where PSL(2,C) the group of 2 X 2 matrices
with complex coefficients and determinant 1 modulo the equivalence relation
A~ —A.

The Riemann sphere S2 = CU {oo} is the conformal boundary of hy-
perbolic space. Elements of PSL(2, C) act conformally on S2, as Mdbius
transformations and on H? by isometries. The action of a Kleinian group I'
on S2 partitions SZ, into two sets, (I") and A(T'). The set Q(T"), which is
called the domain of discontinuity, is the open région of S% on which I" acts
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properly discontinuously, and A(T"), called the limit set, is the complement
of Q(T') in 52

Our approach to studying Kleinian groups is primarily through three-
dimensional hyperbolic geometry. We say that a compact, orientable three- -
manifold N is hyperbolizable, if there is a faithful representation

p:m(N)— PSL(2,C)

onto a torsion-free Kleinian group p(m1(N)) = I such that ¢nt(N) is home-
omorphic to H3/T. Let M = H?/T. We introduce a submanifold C(M)
of M called the convex core. The convex core C(M) care the important
topological and geometric properties of M. For example, M is homeomor-
phic to the interior of a regular neighborhood of C(M). Moreover, C(M) is
smallest convex submanifold of M, which is homotopy equivalent to M. We
define the convex core as follows. Let C(A(T')) be the convex hull of A(T")
in H3 U S2.. Then C(M) is defined by C(M) = (C(A(T")) N H?)/T. The
Kleinian group I is to be geometrically finite if the regular neighborhood of
C(M) of radius of 1 in M has finite volume.

We now describe the following topologies on spaces of Kleinian groups.
Let G be a finitely generated group. The algebraic topology on the repre-
sentation space Hom(G,PSL(2, C)) is the compact-open topology on this
space. We say that a sequence {I'y} of Kleinian groups converges geometri-
cally to a Kleinian group I' if the following conditions hold:

1. If v € T, then there is a sequence v, € I'n, converging to ~.

2. If {T',} is a subsequence of {I'x} and v, € I'n, converges to v, then
veT.

If {T',} is a sequence of torsion-free Kleinian groups converging geometrically
to a torsion-free Kleinian group I', the sequence {H3?/I',} of hyperbolic
three-manifolds converges geometrically to H? /T" in the sense that, as n —
oo, larger and larger (compact) portions of H®/T', are closer and closer
to being isometric to portions of H3/T' (see [2]). A sequence {pp : G —
PSL(2,C)} of representations converges strongly to p : G — PSL(2, C) if
it converges algebraically to p and the sequence of image groups {pn(G)}
converges geometrically to p(G).

Dehn filling is the process of gluing solid tori to toroidal boundary com-
ponents of a three-manifold. Let N be a compact, oriented, differentiable
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three-manifold whose boundary AN contains & pairwise disjoint tori 7;, for
1 <i < k. On each torus T;, choose a meridian-longitude basis (m;,[;) for
71(T;). Assume that m; and [; are represented by simple closed curves, also
denoted by m; and [;, which meet transversely in a single point such that
T; — (m; Ul;) is homeomorphic to an open disc. Let V = 51 x D? be a
standard solid torus with meridian m = {z} x 8D?. Define

P, ={(p,q) € ZxZ| ged(p,q) =1} U {00},

where ged(p, q) denotes the greatest common divisor of the integers p and g.
The three-manifold N(ds, da, ..., dx) is obtained from N by Dehn filling with
coefficients dy, ds, . ..,dy € P if whenever d; = (p;, g;), then a copy of V is
glued to along T} via an orientation reversing homeomorphism g; : 0V — T;
such that g (m) = pym; + gl; and whenever d; = 0o, then the torus 7; is

removed.
Our main result is the following:

Theorem 1 Let N be a compact, orientable three-manifold with incom-
pressible tori T;, 1 < © < k, contained in ON. Let p : m(N) = T C
PSL(2, C) be an isomorphism onto a geometrically finite Kleinian group I
such that int(N) is homeomorphic to M = H®/T'. Furthermore, assume
that each parabolic element of p(mi(.N)) is conjugate into one of the rank
two parabolic subgroups p(m1(T;)), 1 < i < k. Then the following statements

hold.

1. There is a neighborhood U of (<. >, ..., 00) in (R2U{oo})* such that
if d is contained in U N'P¥, there is a representation ¢(d) : m (N) —
PSL(2, C), whose image is a geometrically finite Kleinian group and
‘whose mazimal parabolic subgroups are conjugate to one of the rank
two subgroups ¢(d)(m1(Ti)), where di = oo. Moreover, there is an
orientation preserving homeomorphism hyy @ int(N(d)) — M(d) =
H3/¢(m1(N)) such that (hoa) ° Jda)e = &(d), where jq : int(N) —
N(d) is the natural inclusion map.

2. If{dn} is a sequence of elements in (P.)¥ converging to (00, 00,.. ., 00),

then there is a sequence {o(dn) : 7,(N) — PSL(2,C)} converging

strongly to p.

This result can be used to construct examples of sequences of represen-
tations of geometrically finite groups with specified properties. A special
case of this construction is stated below as Theorem 2. Theorem 1 has also
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been used by Anderson and Canary [1] to construct examples of sequences
of Kleinian groups in which the quotient manifold of the algebraic limit
group is not homeomorphic to any manifold in the corresponding sequence
of quotient manifolds. We recall that a homotopically non-trivial, simple
closed curve in a 3-manifold is said to be primitive if it is not homotopic to
a multiple of any other simple closed curve.

Theorem 2 Let N be a compact, orientable, hyperbolizable three-manifold
with nonempty boundary ON such that ON contains no toroidal boundary
components. Let 6 be a primitive, simple, boundary parallel curve contained
in int(N). Then there exists a sequence

{pn : 7Tl(N') - PSL(2, C)}

of discrete faithful representations such that

1. the complete hyperbolic manifold H3/py(m1(N)) is homeomorphic to
int(N),- for all n, -

2. the sequence {pn(m1(N))} converges geometrically to a Kleinian group
T such that H3/T is homeomorphic to int(N — 6), and

3. the sequence {pn} converges algebraically to a representation p such

that
H?3/p(m1(N)) is homeomorphic to int(N).

This theorem enables us to construct sequences where the algebraic limit
groups are properly contained in the geometric limit groups. Such exam-
ples have been studied in particular cases by Jorgensen [7], Thurston [14],
Jorgensen and Marden [8], Kerckhoff and Thurston [9], Ohshika [13], Mar-
den [11], and Hejhal [6]. Bonahon and Otal [4] have explicitly constructed
examples of geometrically infinite hyperbolic three-manifolds with arbitrar-
ily short geodesics. Implicit in their arguments is a similar construction of
examples of sequences of representations of Kleinian groups with differing
algebraic and geometric limits. We also obtain a generalization of Theorem
2 in which § is allowed to be the disjoint union of finitely many curves.
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Finding the Unknot in Polynomial Time

Charles Delman, Eastern Illinois University

This project is joint research - in progress - with Keith Wolcott in pursuit of a fast
and implementable algorithm to recognize the unknot from a diagram. All knots are in
53, although extension of our techniques to other manifolds may be possible. Extension
to links may also be possible.

Let’s begin with a bit of history. An (theoretical) algorithm for distinguishing knots
by means of their normal spanning surfaces was developed by Haken. Unfortunately, it is
not implementable. The first step in the algorithm is to triangulate the knot complement.
Furthermore, the process of then determining all surfaces in normal position requires ex-
ponential time. It is also worth recalling that attempts to solve this problem by purely
two-dimensional means - e.g. Reidemeister moves - seem doomed to failure, as it seems
that intermediate stages must always lead to increasingly complex diagrams in some cases.
and no means for systematically changing one diagram into another has been found.

We propose an algorithmic method with the following desirable properties:

o Only diagram is needed as input - no triangulation
¢ Procedure uses fast, easily implemented graph-theoretic methods
& Algorithm requires only low-degree polynomial time

At present, we are considering the several versions of such an algorithm which we
believe, based on the evidence of examples, will give the correct answer in most cases wloen
implemented. On the theoretical side, we hope to refine the procedure to the point where
we can prove it always works.

Let K be a knot. Our algorithm is based on simplifying the spanning surface. 5.
given by Seifert’s algorithm. If 57 is incompressible, the diagram represents a genuine
knot. If it is compressible, we compress it and continue the process with the new surface.
S5. Since the genus of the spanning surface decreases after each compression, this process
must terminate. The key, of course, is to efficiently find compressions of a spanning surface.

We will denote the complement of an open regular neighborhood of S; by Af;. We
initially take advantage of the fact that Seifert’s surface is unknotted: M is a handlebody.
(Its boundary is divided by the knot into two surfaces, both homeomorphic to S7. which
we will refer to as opposite faces.) Finding a properly embedded disk in M; which miisses
the knot is easy. We first cut along a complete disk system to form a ball. The knot will
then be represented by the edges of a graph whose vertices are copies of the disks «long
which we have cut. A compressing disk, if it exists, can be efficiently found by searching
for cut vertices of this graph and using them to choose a new complete disk system which
reduces the valence of the graph. Eventually, a compressing disk will be revealed as « pair
of free vertices.

My is constructed by first compressing M; and then attaching a two handle along the
curve on the opposite face which corresponds-to the boundary of the compressing disk.
The resulting manifold is a standard handlebody with attached 2-handle. (The fact that
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the 1-skeleton is standard follows from the fact that a regular neighborhood of Ss is a
handlebody.) In general, M;,% > 2, is a standard handlebody with attached 2-handles. At
each step, if OM; \ K is compressible in M;, the compressing disk may be isotoped into
the 1-skeleton after suitable handle slides, and M;4; constructed as above. The crucial
problem, on which we are currently engaged, is to algorithmically identify a compressing
disk in a handlebody with attached 2-handles and perform the necessary handle slides.
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Simplicial 2-complexes in R*
Abstract
Vyacheslav Krushkal

In 1933 van Kampen introduced an obstruction o(K) € H%'/‘Q(K*; Z) to piecewise-
linear embeddability of an n-dimensional simplicial complex K into R?. The cohomol-
ogy in question is Z/2-equivariant cohomology where Z /2 acts on the deleted product
K* = K x K — A of a complex K by exchanging the factors of K* and acts on the
coefficients by multiplication with (—1)". Roughly the obstruction is defined by taking
any P.L. immersion of K into R?™ and counting the algebraic intersection numbers of
the images of disjoint top-dimensional simplices of K.

For n # 2 the vanishing of van Kampen’s obstruction provides a necessary and suf-
ficient condition for the P.L. embeddability of an n-complex K™ into R?. This result
for n = 1 follows from the Kuratowski subgraph condition, and for n > 3 was proved by
Shapiro and Wu using Whitney trick (see also [2] for a modern exposition of this theo-
rem.) In a joint paper with M. Freedman and P. Teichner [2] a family of 2-dimensional.
simplicial complexes was constructed for which the obstruction is trivial but which do
not admit an embedding into R*.

This result raised the question of finding higher obstructions to P.L. embeddability of
~ 2-complexes in R* which would be defined when van Kampen’s obstruction vanishes. In

fact, in the simplest relative case - for (D? U D? S' 11 S') - van Kampen’s obstruction
coincides with the linking number which generalizes to Milnor’s [i-invariants for links,
providing evidence for the existence of higher van Kampen’s obstructions.

In order to describe these higher obstructions, I will first give a reformulation of
van Kampen’s obstruction in terms of configuration spaces. A necessary condition for
the existence of an embedding K" — R?" is the existence of a Zy-equivariant map
Kx K—A — R x R?™— A. Tt follows easily from definitions that the obstruction to

existence of this map coincides with van Kampen’s obstruction o(K) € H%’}Z(K x K —

A; a1 (S™7H).

If o(K) vanishes one may ask for n = 2 whether there is an Ss-equivariant map
K x K x K — As — R* x R* x R* — A; where Az denotes the “big” diagonal of
the triple product. The vanishing assumption on o(K) implies that (rationally) the only
obstruction 03(K) to the existence of this map lies in Hg, (K X K X K —Ag; ws(R* x R* X
R*— A3)). Inductively one defines the obstruction o, (K) of order m to the existence
of an Sp-equivariant map of symmetric m-products, provided the obstructions of order
less than m vanish. It follows from obstruction theory that om(K) is not in general well
defined and depends on the map of the 3-skeleton of K X ... X K — A, however for the
examples [2] mentioned above the set on(K) does not contain zero and hence detects
their non-embeddability into R*. It follows from the description of the homotopy type
of configuration spaces [1] that the obstructions om(K) have an additional structure:
they may be computed as Massey products of certain “basic” 3-dimensional cohomology
classes of K X ... x K — Ap,.

An alternative approach to defining higher obstructions for 2-complexes may be taken
by considering their 4-dimensional thickenings.
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Proper Knots in Thickened Surfaces

Abstract

he real line into an open 3-manifold. Two such knots are

A proper knot is a proper embedding of t
y. In [CS2], Churchard and Spring raised the

equivalent if they are connected by a proper isotop
. question of the existance of inequivalent proper knots which run between the opposite ends of a

manifold of the type F x R! where F is a closed surface which is not S2. In this note we sketch a
proof that all such proper knots are equivalent via a proper topological isotopy. The details appear
in [N4] which has been submitted for publication in a journal. The classification of such kinds of
proper knots via a smooth or piecewise linear isotopies remains an open question.

Ollie Nanyes 25



1 Introduction

1.1 Background

Recall that a map f : X ~Yis proper if for all compact ¢ c Y, fY(C) is compact
in X. Proper knot theory, introduced by Churchard and Spring in [CS1], deals with the
proper embeddings of the real line into non-compact three manifolds. Two proper knots are
equivalent if they are connected via a proper isotopy. Because the knots are non-compact,
the isotopy need not be ambient, éven when we are working in the smooth category. - For
example, it was shown in [CS1] that all smooth proper knots in R® are equivalent in the
smooth proper isotopy category.

In [CS2], classification theorems for proper knots in the smooth category were investi-
gated. It was shown that all smooth proper knots which run from a 52 end to another end
which has a suitable product structure (say, a closed surface end or a “ladder end”) can be
smoothly properly isotoped to a proper knot which meets at least one collar $? x * “near”
the 52 end. Hence a classification theorem for smooth (and therefore p. 1) proper knots
in S? x RY was obtained. Also, it was no.ted that it was unknown if there were any proper
knots running between the opposite ends of F? x R which were not (smoothly) equivalent
to a “product line” * x R%. (where F? is a closed surface that i not S?). It follows from
Proposition 2.2 of [CS2] that if such a non trivial proper knot existed it would have to be a
proper knot that met each level surface F2? X 1 transversely in at least three points. It was

pointed out by the author in [N1] and [N2] that the existence of non trivial proper knots
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connecting the opposite ends of the infinite cylinder D? x R' was unknown.

In this paper it is shown that, up to topological proper 1sotopy (and of course, orientation
of the proper knots), all topological proper knots running between the opposite ends of
D? x R! are equivalent and that the D? x R! result implies that all “opposite end connecting”
piecewise linear proper knotsin F? x R! are equivalent via a topological proper isotopy (where

F? is now a compact orientable p. 1. surface, with or without boundary).

1.2 Sketch of Proof of the Main Theorem

| Theorem 1.1 If K is the image of a piecewise linear (p. L. )proper knot that runs between the
opposite ends of F2 x R then there is a topological proper isotopy which connects K toa
proper knot wh.ose image is of the form % X (—oco,00). In other words, up to orientation, all
p. l. proper knots running between the ends of F2 x R' are topologically properly equivalent.

Sketéh of the proof. The idea is as follows: we start by showing that all proper knots that
run between the opposite ends of D? x R! ai'e equifalent via a topological proper isotopy. -
Figures 1 and 2 show how the proof goes. Note that there is no requirement for the initia.l.
proper embedding to meet any tameness condition and that the isotopy is not necessairly
smooth or p. 1., even when the proper knot is smooth or p. 1.

Next, we show that all piecewise linear proper knotsin F2 x R! which connect the opposite
ends are topological equivalent to “fiber” proper knot * x R'. Let K be the image of an
arbitrary piecewise linear proper knot f that runs between the opposite el.]dS. We start by
properly isotoping f to a proper knot f; whose image K’ is in a kind of bridge position (see
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[S] and figure 3): K’ consists of a locally finite collection of vertical segments of the form
% X [a,b] and of p. 1. arcs which lie on level surfaces F? x s {(a,b,s € R, * € F?).

We then construct, on a piece by piece basis, a properly embedded D? X R'which contains
K' and which intersects at least one level F transversely m a meridional disk. f; is now
isotoped within this D? x R to a new proper knot f; whose image K" can be thought of as
being the center line 0 X (—o0,00) C D? x R'. But K hits a level surf;ace F? x t transversely
in one point. It t:hen follows from Proposition 2.2 of [CS2] that f; is equivalent to a fiber
proper knét whose image is * X R' (one merely uses the product structure of the two ends

to comb f; along the collar lines of the respective ends). See [N4] for details.

1.3 Questions

The question remains as to whether every proper knot that runs between the ends of M is
p. L. equivalent to a trivial proper knot. This work does show however that any invariant

which detects inequivalence of p. 1. proper knots must take the p. 1. structure of the isotopy

into account.
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On cxtensions of co-dimension onc immersions

Christian Pappas

Abstract

Let f : M — W be a co-dimension one immersion of orientable
manifolds, where M is closed. An extension of f is an immersion
F: N — W, where N is a manifold whose boundary 9N is identified
with M, such that the restriction F|ON = f : M — W. We con-
struct all of the extensions of f, giving necessary and sufficient condi-
tions for existence, as well as an understanding of the non-uniqueness;
and describe the CW structure and diffeomorphism type of each.

Let M be a smooth, orientable connected closed m-manifold; W a smooth,
orientable, connected (m + 1)-manifold; and f: M — W a smooth immer-
sion with transverse intersections. An extension of f consists of a compact
orientable (m + 1)-manifold N (the extending manifold), whose boundary
is identified with M, together with an immersion F' : N — W such that
Floy = f: M — W. As f(M) is two-sided, an extension lies locally to
one side, called its direction. We will fix a normal vectorfield v, and consider
extensions whose direction agrees with that of a given normal vectorfield v
on f(M). Two extensions are equivalent if they differ by precomposition
with a diffeomorphism of the extending manifolds. It is a general fact that if
there is an immersion of a manifold M into W that extends, then there exists
immersions of M which have exactly k extensions for any natural number
k. We describe below all of the inequivalent extensions of an immersion f
(Theorem 2), as well as the CW structure and diffeomorphism type of each
(Theorem 1). Ones of the same grading (see below) have the same Euler
characteristic. In particular, extensions (with the same grading) of a circle
in an orientable surface are diffeomorphic. '

A necessary condition for f to extend is that [f(M)] =0 € Hn(W,Z), the
mth homology group of W this will be assumed throughout. Let A; denote

33



the bounded components of W “f(M), which we call rooms. The multiplicity
of A;, m;, is the number of connect components of F' ~1(A;). The grading of
F is the minimum of the multiplicities m; over all rooms A;. This can be
regarded as the number of (cut up) copies-of W contained in NN. If W is
non-compact all extensions have grading 0.

The topology of an extending manifold, N, can be computed from f (M)
and W as follows. Let h be a Morse function on W. The critical points of
h will be called ambient points. Now & can be locally perturbed so that it
restricts to a Morse function, h’, on f(M) (i.e. hfis Morse on M). But
note that its restriction, A", to F(N) is not a Morse function. Regardless.
one can still obtain an analogous theory. A critical point, ¢, of h' = h|f(M)
will be called attaching .(non-attaching) if the normal vector at ¢ points in
the (opposite) direction of the gradient flow.

Theorem 1 Let M be a connected closed orientable m-manifold, W a con-
nected orientable (m+1)-manifold. Let f : M — W be an immersion. Fuir
a normal vectorfield v on f(M). Then all extensions of f in the direction
v have a CW structure whose cells correspond to the ambient points (with
multiplicities, which only depends on the grading) and the attaching points.
The dimension of the cell equaling the index of the critical point.

If M is disconnected then the same statement holds as long as the extend-
ing manifold, IV, is connected. The non-attaching points essentially prescribe
the gluing maps.

To construct extensions of the immersion f, we sweep across W and
build them up. We only need to consider the topological and intersection set
changes, refering to the critical points of h, A’ = h|f(M) and h restricted to
the double points, triple points, ... of the intersection locus of f(M). The
following describes exactly which critical points pose a possible obstruction
(most do not), and a local condition for crossing them.

Let z € f(M); let P be a neighborhood of z in F(IV). Two points a and
b of f(M) contained in P are matched by F'if there is an arc <y joining their
pre-images in NV such that F(y) C P.

Theorem 2 Let M be a connected closed orientable m-manifold, W a con-
nected orientable (m + 1)-manifold. Assume [f(M)] = 0 € Hn(W,Z). Let
f: M — W be an immersion, and v a normal vectorfield on f(M). As one
sweeps across the level sets, one only needs to consider the following.
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The obstructions to constructing an extension are:

1. O-handles of the intersection locus. One can be crossed (in a unique
way) if and only if the sheets of f(M) containing it are not matched.

2. Non-attaching points of indez 1. One can be crossed (in a unique way)
if and only if points of the descending I-handles are matched.

The following can always be crossed. but perhaps in more than one way,
yielding inequivalent extensions. '

1. Non-attaching points of index 0. The number of ways to cross one
equals the multiplicity of the room. that lies below it.

2. Ambient points of index 1. The number of ways to cross one equals the
number of ways to pair off the sheets meeting the descending 1-handle,
which is m(c)! (where m(c) is the multiplicity of the critical point).
Note that these may lead to redundancies. ‘

" Eliashberg proved the remarkable fact that given two 3-manifolds N; and
N, with the same boundary F, that there exists an immersion f:F— R?
which extends to both N; and N, and generalizations of this.

The outstanding questions of extensions involve “relating N; and N via
f(S?)”: When are N; and N, diffeomorphic? When do they have the same
Betti numbers? ... The author gave obstrictions to constructing a diffeomor-
phism between extensions of 5?2 in R®: and believes that anyone wishing to
carry extensions further should begin by constructing and studying concrete
examples of non-diffeomorphic extensions in order to enhance their intuition.
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KNOTS, LINKS AND REPRESENTATION SHIFTS

Daniel S Silver
Susan G. Williams

This paper is a summary of a 2-part talk presented by the authors at
the Thirteenth Annual Western Workshop on Geometric Topology held
in June 1996 at The Colorado College, Colorado Springs, CO. Most of
the details can be found in [SiWi 1], [SiWi 2] and [SiWi 3].

Introduction. The group m1(S% — k) of a knot k contains an extraordinary amount
of information. From combined results of W. Whitten [Wh] and M. Culler, C. McA.
Gordon, J. Luecke and P.B. Shalen [CuGoLuSh] it is known that there are at most two
distinct unoriented prime knots with isomorphic groups. Unfortunately, knot groups are
generally difficult to use. Knot groups are usually described by presentations, and there is
no practical algorithm to decide whether or not two knot groups are isomorphic. '

In 1928 J.W. Alexander used homomorphisms (representations) of knot groups onto
better understood groups in order to obtain topological invariants. Since then knot group
representations have been used effectively by many others. The representations of a given
knot group into a fixed finite group have the additional attraction that they are finite in
number and so can be tabulated. R. Riley began such a program in [Ri].

We take a new approach, examining the representations of the commutator subgroup
K = [m1(8% — k), m1(5% — k)] into a fixed finite group X. Although Hom(K,X) is often
infinite — in fact, uncountable — it has a rich structure that we can understand via symbolic
dynamics. In this dynamical system the representations of the knot group m1(S% — k)
appear (by restricting their domains) as special periodic points. However, the system
contains other periodic points and often nonperiodic points, information that can be used
to understand more about the structure of the knot exterior and its various covering spaces.

The techniques, all algorithmic, apply equally well to links.

1. Representation shifts. Although here we emphasize applications to knot theory, the
methods we describe apply in a wide variety of situations.

Definition. [Sil] An augmented group system (AGS) is a triple G = (G, X, ) consisting
of a finitely presented group G, an epimorphism x : G — Z, and a distinguished element
z € G such that x(z) = 1.

Two augmented group systems (G1, x1, z1) and (G2, X2, T2) are equivalent if there
exists an isomorphism f : G; — G such that f(z1) = z2 and x1 = x2 o f. Equivalent

augmented group systems are regarded as the same.

1991 Mathematics Subject Classication. Primary 57Q45; Sécondary 54H20, 20E06,
20F05. ‘
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We can associate an AGS Gy to any oriented knot k as follows. Let N(k) = k x D?

be a tubular neighborhood of k. The closure of § 3 — N(k) is the exterior of k, and we will
denote it by X (k). Let G be the fundamental group 1 (X (k), *), where the basepoint is
contained in the boundary 8X(k), and let z € G be the class of a meridian m C 90X (k)
with orientation induced by that of k. Let x be the abelianization homomorphlsm that
maps z to 1. The uniqueness up to isotopy of tubular neighborhoods ensures that Ok is
~ well defined.
An AGS G; can be associated to any oriented link [ = {; U...Ulq by the same general
" procedure as above. We let z be the class of a meridian of the component [;. Since the
abelianzation of G = m1(S3 — 1, *) is a free abelian group of rank d, there are many choices
for x when the link has more than one component. A natural choice for x is the “total
linking number homomorphism” that maps the class of every oriented meridian to 1.

Definition. [SiWil] Let G = (G, x, z) be an AGS, and let K be the kernel of x. Assume
that ¥ is any finite group. The representation shift ®x(G) is the set of representations
p: K — % together with the mapping o : ®5(G) — ®5(G) defined by

(ozp)(a) = p(z~az) Va € K.

The mapping o is a bijection with inverse o,-1. In fact, if we define the topology on
@5 (G) with basis

Ngl,...,gn(p) = {pl | pl(gz) = Io(gl)a 1= 17 v 7”}5

where p € ®5(G) and g1, ...,gn € K, then o, becomes a homeomorphism. Consequently,
the pair (®5(G),05) is a topological dynamical system (topological space + homeomor-
phism). We recall that two dynamical systems (®1, o1) and (P2, 02) are topologically
conjugate if there exists a homeomorphism h : ®; — ®; such that o, 0 h = hoo;. Topo-
logically conjugate dynamical systems are regarded as the same.

The main result of [SiWil] is that the topological dynamical system (®x(G),0x)
has the structure of a shift of finite type, a special sort of dynamical system that can be
completely described by a finite graph I'. The representations p correspond to the bi-
infinite paths in T'. Rather than repeat the proof of this result, we illustrate the algorithm

for finding T

Example. Consider the AGS associated to the knot 53 in figure 1. The Wirtinger al-
gorithm [BuZi], [Ro] together with some obvious Tietze transformations produces the

following presentation for the group G of the knot.

G=(z,a|z 'z -a"? z7ax - 720" %2?).
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The Reidemeister-Schreier method [LySc] gives us a presentation for K:
K ={a; | a?+1ai_2ai+1a;f2)

Here a; = zaz’ and the index 4 ranges over the integers. J.C. Hausmann and M.
Kervaire have termed such a presentation finite Z-dynamic [HaKe]. We will think of the
relator a? 105 zai“a; +22 as a word 7(a;,a;11,a;12). Notice that each relator is gotten from
r(ao, a1, az) by “shifting” the subscripts of the generators involved.

Figure 1

A representation p : K — X is a function p defined on the set {a;} such that
r(p(as), p(ait1), p(ait2)) is trivial for all i. When X is the cyclic group Z/3, for exam-
ple, this condition reduces to p(a;42) = 2p(a,) modulo 3. The sequence

... 10201020120 ...

describes the representation p : K — Z/3 mapping ag to 0, a1 to 2, etc. The sequence

describing o, (p) is simply
.10201020120 ...

Moreover, every representation p : K — Z/3 can be found from the directed graph I’ in
figure 2. Any vertex can be regarded as an assignment of values for ap and aj, while the
vertex that follows is an assignment for a; and a, etc. The representation shift ®7/3(Gs,)
has exactly nine elements. Notice that the trivial representation, corresponding to the
constant sequence of zeroes, is isolated in the space & /3(Gs,).

(0,1) —>(1,0) (2,1) —3(1,1)

(0,00 D

(2,0) €—(0,2) (2,2) —(1,2)

Figure 2



Theorem. [SiWi3] Let G be any AGS and ¥ a finite abelian group. Then the represen-
tation shift ®x(G) is finite if and only if the trivial representation is isolated. This will be
the case whenever GG has infinite cyclic abelianization.

The proof of the theorem makes use of a powerful structure theorem for Markov subgroups,
shifts of finite type that are also abelian groups, proved by of B.P. Kitchens [Ki]. The
theorem can also be proved using algebraic topological techniques of [Mi].

When Z/3 is replaced by the symmetric group Sy in the above example, the represen-
tation shift becomes uncountably infinite. Figure 3 contains a detail of the graph describing
it. In figure 3 we see two circuits with a common vertex, and hence uncountably many
bi-infinite paths. It follows that K contains uncountably many subgroups of index less
than or equal to 4. -Since the representation shift with ¥ = S3 can be shown to be finite,
K contains uncountably many subgroups of index equal to 4. Further analysis using these
techniques shows that K contains uncountably many subgroups of any index exceeding 3.

o (@23.aA.3E) —> (13)2,4)(1,2,4)

((DA1.2.3)) — ((1.2,3).(1) _ ((1,2,9),(1))

[ -

((1,32),(1) €= (1)(1,3.2) (1)(1,4,2)

N /

((1,3)(2.,4),(1,3,2)) <— ((1,4,2)(1,3)(2.,9))
Figure 3

2. Periodic points. Assume that G = (G, x, z) is an AGS and ®x(G) is an associated
representation shift for some finite group ¥. Although the graph I' that describes ®5(G)
is not unique, it does contain invariants of ®5(G), which are necessarily invariants of G.

Definition. A representation p € ®x(G) is periodic if o7p = p for some positive integer 7.

In this case, p has period r.
The representations of period r correspond to the closed paths in I' having length .

Example. A knot k C §3 is fibered if the projection ON(k) = k x S! — S! extends to
a locally trivial fibration X (k) — S!. By a theorem of J. Stallings (see Theorem 5.1 of
[BuZi], for example) a knot % is fibered if and only if the commutator subgroup K of its
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group is finitely generated (and free). In this case, the representation shift ®x(Gy) is finite
for all finite groups ¥, and so every representation p : K — X is periodic.

Figure 4 displays the graph describing ®z/3(G3, ), the representation shift of the trefoil
31. The representation shift ®z/3(Gs,) of the figure eight knot 4, is identical to ®z,3(Gs,)
(see figure 2). Notice that each representation shift contains nine elements. However,
®7,/3(Gs, ) contains two points of period 2 and six of period 6 while ®z/3 (G4, ) contains eight
points of period 4. Since representation shifts with different numbers of periodic points for
the same period clearly cannot be topologically conjugate, ®z/3(Gs,) # ®z/3(04,)-

(0,1) —>(1,1) —>(1,0)

0,0 (1,222, N
(2,0) 66— (2,2)6—(0,2)
Figure 4

The calculations above show that the trefoil and figure eight knots are different. How-
ever, they reveal much more. That there are two representations of period 2 in ®z,3(G3,)
other than the trivial one is a consequence of the well-known fact that a trefoil knot diagram
can be nontrivially tricolored in exactly six ways [CrFo], [Pr]; the absence of nontrivial
period 2 representations in ®z,3(Gy,) indicates that the figure eight knot diagram can be
tricolored only monochromatically. In general, the number of period 2 points of @z, (G;)
for any oriented link [ tells us how a diagram for [ can be n-colored. The periodic points of
period greater than 2 correspond to “generalized n-colorings.” Details appear in [SiWi2].

Another invariant of ®5(G) that can be calculated from the graph I' is topological
entropy. The topological entropy of ®x(G) is equal to the logarithm of the spectral radius
of the adjacency matrix of I'. We will denote the topological entropy by hs(G). It depends
only on the AGS G and target group X. In a sense, hx(G) is a measure of the average
amount of information gained by taking one step in I'. In the case of the AGS G; associated
to an oriented link /, the topological entropy is a numerical invariant of .

In [Lo], [Si2] entropy invariants for knots were defined using Nielson-Thurston the-
ory for surface homeomorphisms. The entropy invariants above are quite different. The
invariants in [Si2] are nonzero for most fibered knots. However, if & is any fibered knot,
then ®x(G) is finite and so hx(Gx) = O for every finite group ¥. These new invariants
seem to detect nonfibered knots. In fact, we make the following conjecture.

Conjecture. If k£ is a nonfibered knot, then hx(Gy) > 0 for some finite group X.

If the conjecture is true, then it would follow that the commutator subgroup K of the
group of any nonfibered knot has uncountably many subgroups of index r whenever r is

sufficiently large, a conclusion that we saw in the case of the knot 5.
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Figure 5

X - Yy
X9 Y

Example. Consider the 3-component link [ = 63 as it appears in figure 5 with Wirtinger
generators indicated. The group G of the link has presentation

(T, 1, ¥ Y1, 2, 21 | Y12 = 2y, 212 = T2, T1Y = YT, T1Y1 = YT1, 2Y1 = Y121)-

Using the first three relators we eliminate the generators z;, y; and z;, obtaining

(z, y, z | oy tayz " tyz 7y, zyzTlzz ey L),

The elements 7'y and z7!2 vanish under the augmentation homomorphism y. We use
Tietze transformations to replace y and z by za and zb (introducing new generators a and
b). We can then rewrite the presentation for G as ‘

(z, a, b, | a™%b-zab taz™!, ab™? .z ba"'bz).

Let a; and b; denote z*ax® and z~*bz?, respectively. By the Reidemeister-Schreier method
the following is a presentation for the kernel K of x: '

o2 -1 —2 1
K = (a;, b; | a;5biv1a:b; "ai, aib; “biy1a,1biy1).

First we will determine ®z/5(G;). Any representation p : K — Z/2 factors through
Hom(K®® ®z Z/2, Z/2), where K®® denotes the abelianization of K. We can get a
presentation for K*° ®z Z/2 from that of K by allowing all of the generators to commute
and by reducing exponents of relators modulo 2. The resulting presentation, expressed in
additive notiation, is

(@i, bi | biy1 = b, aip1 = ag).
Clearly, any homomorphism p : K — Z/2 is completely determined by the values p(a)
and p(bg). The represen\tation shift ®z/,(G) has exactly’élb elements, each a fixed point -

under o,. The topological entropy hz/2(G;) is zero.
Replacing Z/2 by Z/3 results in a very different representation shift. Consider rhe

presentation for K2° ®z Z/3:

(asy b; | ai — aiv1 + by — big1)
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The second relator does not appear because it is redundant. Selecting any fixed value
for by, we can define a representation p : K — Z/3 by assigning arbitrary values for
the a;’s; the corresponding values of b;, ¢ # 0, are uniquely determined. It follows that
®z/3(G1) is a Cartesian product of three full shifts on the symbols of Z/3. (A full shift on
a finite alphabet A consists of all sequences (), a; € A, together with the shift mapping
o: (o) — (a}), where o = a;11.) In this case the topological entropy hz/3(G1) is log 3.

Let G = (G, x,x) be an AGS and let ¥ be any finite group. By a theorem of [SiWil]
the topological entropy of a representation shift ®5(G) does not depend on the choice of
distinguished generator z. Hence in the above example, the class z of the meridian of
the first component of the link can be replaced by any element that maps to 1 under Y,
and the resulting topological entropy will be unchanged. On the other hand, since G2P is
free abelian of rank 3 there are infinitely many choices for x other than the total linking
number homomorphism that we employed. Altering x can change the entropy.

3. Other applications and directions for knots and links. In [SiWi3] we proved
that for any knot k and finite group X, the points of period r in ®5(Gx) are in one-to-
one correspondence with representations of wf()z'r), where X, denotes the r-fold branched -
cyclic cover of k. Consequently, information, such as the following about the branched
cyclic covers of k, is encoded in the symbolic dynamics of the representation shifts.

Theorem. [SiWi3] For any finite group X, the order of Hom(m X, %) satisfies a linear

recurrence relation.

Corollary. [SiWi3] (also proved by W.H. Stevens [St]) For any oriented knot £ and finite
abelian group X, there is a positive integer N such that '

Hi(Xrin; B) = Hi(X3 %)
as A/(z" — 1)-modules, where A = Z[z,z~1]).

The representation shift techniques used to prove the corollary provide an elementary
algorithm for computing the period N. Moreover, they can be used to extend the conclusion
of the theorem to orinted links. Details can be found in [SiWi3].

We conclude with a brief discussion of work in progress. Let [ = l; U... Ul be an
oriented link with group G = m1(S% —[). Instead of choosing a homomorphism of G onto
the integers, let 4 : G — Z? be the abelianization homomorphism that sends oriented
meridians to the standard basis. Let K denote the kernel of y. For any finite abelian
group X, the set Hom(K,X), which is the same as Hom(K?P,%) admits d commuting
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automorphisms oy, , ..., 0z, corresponding to the various meridians of the link. The set
of representations can be given a topology similar to that of a representation shift so that
it becomes a Z9%-shift of finite type (see [LiMa]). Although Hom(K,X) cannot in general
be described by a graph, its elements still have an appealing combinatorial description.
Representations p : K — X correspond to labelings of the lattice Z% by a finite alphabet
A(= X") that satisfy a finite number of translation-invariant local conditions.

>p

Figure 6

Example. Consider the 2-component link 52 oriented as as shown in figure 6. The

abelianized kernel K2 has presentation
(&ij | &ij — Eir1,j — Eija1 + Eit1,541)

where the indices i, j range over the integers. In this example the alphabet is simply X.
Representations p : K — X correspond to X-labelings of the lattice Z? such that in any
1 x 1 square the sum of the lower-left and upper-right labels is equal to the sum of the
remaining two labels. Here is a particular representation p: K — Z /3.

...01210 ...
..20102 ...
... 12021 ...
...01210 ...
.12021 ...
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Here is the representation 05,02, (p).

.01210 ...
...20102.
...12021 ...
...01210 ...

12021 ...

Numerical invariants such as directional entropy can be computed for such dynamical
systems. Also interesting are the directions in which the Z°%-shift, when restricted, is
ezpansive. The latter are related to the geometric invariant of R. Bieri, B.H. Neumann
and R. Strebel [BiNeSt]. We will discuss these topics in a forthcoming paper.
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Reidemecister Moves on
1-manifolds in R x D?

Bobby Neal Winters
December 19, 1996

Summary

Let L; and Ly be 1-manifolds that are proper and properly embedded in
R x D2. Let J = [—1,1] be the closed interval and let p: R x D?* = R x J
be a projection map. '

We say that L; and Ly are equivalent if there is an isotopy h: : X — X
with ho = 1X and hl(Ll) - Lz.

Let T ={... <ty <t <t <...} CR. Foreveryi € Z, let D;
be a closed disk in (t;,t41) X J C R x J. Suppose that C = {C;;|i €
Z and 1 < j < n;} is a set of disks such that C;; C D; —0D; for 1 < j < n;
where n; € N for every i € Z. Suppose that, for every i € Z, p(Lg) N
([tiytiv1] X J) is obtained from p(L1) N ([ti, tiy1] X J) by Reidemeister moves
and each Reidemeister move is contained in C; ; for some 1 < ¢ < n;. Then
we say that Lg is obtained from L; by a generalized countable Reidemeister
move (GCR-move).

We say that L; is GCR-equivalent to Lg if p(Ls) is obtained from p(L,)
by a finite number of GCR-moves and isotopies of R x J. Note that GCR-
equivalence is an equivalence relation.

Main Theorem 1 Let L, and L, be I-manifolds that are proper in R x D?.
Then Ly is GCR-equivalent to Ly iff Ly is equivalent to L.

AA




A simple closed curve which does not link any line

Troy L. Goodsell and David G. Wright
Brigham Young University

Introduction

In this note we show the construction of a simple closed curve in R® which does not link any line. By
not linking any line we mean that it contracts in the complement of any line which misses the curve. The
strategy will be to show that any line which misses the curve also misses a 3-ball containing the curve. From
this it follows that the curve contracts in the complement of that line.

Opaque Cantor Sets

Before we construct our main example we will first consider the concept of opaque Cantor sets in the
plane. This will motivate some of our methods. By opaque Cantor sets we mean Cantor sets which cannot
be separated by a straight line. Another way to view this is that the projection of the Cantor set in any
direction in the plane is an interval. This motivates the term opaque.

One way to construct such a Cantor set is the following. We start out by constructlng the first step of
the standard middle third Cantor set in the plane namely C x I NI x C, where C is the standard middle
third Cantor set. This is sometimes called Cantor’s Tartan. The first two stages are depicted below.

Figure 1

Now at each stage of the construction we throw in four additional squares as shown in Figure 2. This
still gives a Cantor set but the additional squares prevents lines from separating the Cantor set.

Figure 2

This method is not satisfactory for it requires the introduction of extra sets to gives us opaqueness, or
informally to plug the gaps so that lines cannot pass through the gaps.
A more satisfying method is the following where we adjust the shape of the gaps themselves to prevent

lines from passing through and separating.

Figure 3
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To begin this construction we take a disk and remove the interior of a smaller disk, called a core, to get
an annulus. We then make jagged cuts to form gaps to break the annulus up into disks. We then repeat the
process with each of these disks. )

To be more precise on making these jagged cuts we consider radial lines through the annulus correspond-
ing to where we want to make the cuts. We take three points on the portion of each of the line segments
in the annulus. We then place these points in general position. Now no line segment can pass through each
of the three points. Connect the new points with line segments and carefully thicken up these new line
segments slightly to get the gaps through which no line can pass.

General position of points is what made this construction work. We will generalize such arguments for
our main example.

Another feature of this construction that will have a very important analog in our main example is that
any line that misses the Cantor set also misses the cores at each stage of the construction. This method
prevents lines from passing through the core.

Construction of Main Example

Now for the construction of our main example. We will first briefly discuss how to construct our simple
closed curve. Then we will come back and carefully discuss two of the points of the construction that will
show that our curve has the desired properties. ,

We start with a solid torus 7p. We then take a small collar of the boundary in Ty. We will call the
closure of the complement of this collar the core of the first stage and will denote it by T}.

We now coil another thin solid torus around this core lying in the collar. This torus will wrap around
only once longitudinally in Ty and many times meridionally. We want to also make sure that adjacent coils
" do not touch. We call this new solid torus T;. We take a small collar in T1 and create a core T as before.
Repeat this process.

This gives us a nested sequence of solid tori. Let J = NT;. Then J is our simple closed curve. The fact
that it is a simple closed curve follows from the fact that it is the intersection of a nested sequence of tori
whose cross section diameters are going to Z€10, and they wrap only once longitudinally about the previous
stage.

Now we need to discuss the two additional properties of the construction that we need to make the
argument work.

Property 1: Both the first torus Ty and its core T§ do not link any line. A

By a solid torus not linking any line we mean that any line which misses the torus also misses a three
ball containing the torus. We can do this as illustrated below where the convex hull of the torus is the
desired three ball. We also want to do this so that the core, T3, also does not link any line.

=

Figure 4

Property 2: Any line that misses 7; also misses the core, T]_, of the previous stage for all <. Even more
strongly we will show that any line that misses T} also misses T]_,;
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We will refer to this informally as T; protecting the core T/_; from lines. This"is the more delicate of
the two properties.

Once we have this we will be done. To see that this finishes the argument note that if a line L misses
J then it misses T; for some i since the tori are nested. Then by Property 2 if L misses T; it misses T;_;.
So J is homotopic to a curve in T}_; which misses L. By an abuse of notation we will refer to this curve as
J also. The strong version of property 2 then shows that L misses T}_, also. So once again we get a curve
homotopic to J which we will also denote by J which lies in T}_,. Repeating this argument we get that L
misses T, and J is homotopic to a curve in T§. But by our construction of Tg we can take the convex hull of
T} to get a three ball missing L and containing J. From this it is clear that J contracts in the complement
of L as desired.

Now we need to show how to establish Property 2. We will show how to do this for the first stage and
the others will follow similarly. Take the solid Ty and its collar as discussed in Property 1. Take a simple
closed curve that wraps around the boundary of T once longitudinally and many times meridionally as

shown below.

o

LT Y

Figure 5.

We will use this as a guide to start to construct the gap between the coils of the desired solid torus 717.
Cross this simple closed curve with an interval to get an annulus, A, in the collar. If we thickened up this
annulus and took the complement of it in the collar we would have a-solid torus. We want to first discuss
how to vary the shape of this annulus so that the gap will have the desired property that no straight lines
may pass through it so as to satisfy Propery 2.

To do this we will use the following lemma:

Lemma: Given a complex in R? there exists a map which moves points less than any given € such that
any line in R® can intersect at most four of the 1-simplices of the complex. '

. This is a special case of what is known as Strong General Position. In its full generality strong general
position gives conditions on the number of simplices of certain dimensions that a hyperplane can intersect.
This was introduced by Berkowitz and Roy in [1].

To use this result we place five concentric simple closed curves in A; and incorporate these into a
triangulation of A;. We then place the resulting complex in strong general position. Now no line can pass
through the annulus to its core for any line that meets the outer curve the annulus meets at least four edges
of the triangulation before it meets the inner curve of the annulus. Thus the line cannot meet the inner
curve of the annulus as claimed. ' .

Now thicken up the annulus slightly so that no line can pass through the thickened version. We then
take the complement of this thickened annulus in the collar. This gives us our solid torus 77 which satisfies
Property 2. Repeat this argument to construct the rest of the tori.

References
[1] H.W. Berkowitz and P. Roy, General Position and Algebraic Independence, Lecture Notes in Math.

no. 438, (1974), 9-15.
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Problem Session .

1. (Dijkstra) If h : X — Y is a hereditary shape equivalence of complete spaces, do
there exist compactifications C and D of X and Y respectively such that h extends to a
hereditary shape equivalence h: C — D? What about cell-like instead of heredltary shape

equivalence?

2. (Dijkstra) Do there exist dimension-raising hereditary shape equivalences other than
. from ind = w to ind = w + 17 In particular, does there exist a countable A such that for

every a < w1, there is a hereditary shape equivalence from ind = A to nd > o?

Notes: (Dijkstra):

This problem is connected to the question of whether countable dimensionality is conserved
under hereditary shape equivalences.

3. (M. Bestvina and R. Edwards) Does there exist a non-identity map f:R™— R™ such

that:
i) For all ¢ > 1, dist(f9,iden) <1, and

1) There exists g1 < g2 < --- such that
dist (f9% ,iden) — 0 as k — oo ?

Notes: (EdWardé)

Even the special case where f is a homeomorphism is open. Also, the question could, of
course, be asked with R™ replaced by an arbitrary manifold M (and in (i), 1 replaced by
¢ = ¢(M)). However, the question could is morally local, and so the case M = R" serves

as tvhe model.

The question is motivated by the Hilbert-Smith Conjecture. Namely, if it fails, e.g., if there
is an effective action on R™ by a p-adic integer (Cantor) group with orbits of uniformly
bounded diameter, then for f : R” — R” one would take the action by any non-zero group
element (with appropriate rescaling to achieve the bound of 1, if necessary).

An interesting special case is where f is periodic (and bounded-close to the identity), solved
by Newman. This was extended to the case where f is pointwise periodic, by Montgomery.

4. (Silver) We recall that a group is hopfian if it is not isomorphic to a proper quotient
group. Also, a group is residually finite if the intersection of its normal subgroups of finite

index is trivial.
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Assume that K is both finitely generated and residually finite. A well-known theorem of
A. Mal’cev states that K is hopfian. Another result, due to G. Baumslag, asserts that
Aut(K), the automorphism group of K, is residually finite. The proofs of both results
require that K be finitely generated only to be certain that the number of subgroups of K

having a fixed finite index is finite.

Let K be the commutator subgroup of any classical knot group. It is known that
K is residually finite. However, K can contain uncountably many subgroups of the same
finite index. (This happens, for example, in the case of the knot 52 Possibly it happens

whenever the knot is nonfibered.) We ask:

(i). Is K hopfian? (This question has been asked by W. Whitten and . Gonzalez-Acuna.)

(ii). Is Aut(K) residually finite?

5. (Guilbault) Let M™ be a one-ended manifold without boundary.

(i) If M™ is inward tame, must 71 be semistable at co ?
(ii) Suppose N™ is a closed, aspherical manifold.
a. Must N be inward tame?

b. Must V™ be semistable at co?

5. (Daverman) Is there a closed aspherical manifold with non-Hopfian fundamental group’

6. (Ancel)

a. Let A be the Fox Artin arc in S® pictured here. Is m; (53 — A) indecomposable?
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b. Are there infinitely (uncountably) many wild arcs A1, A, Az, - in S® such that
1 (53 - Az) 7—4 T (53 e AJ‘) for 2 ;éjr’

c. Specifically, let B be the wild arc in the solid torus 7" pictured below. Suppose k; :
T — 82 is a knotted embedding such that m; (3'3 — ei(T)) £ ] (53 — ej(T)) for i # j. Is
71 (5% = ex(B) # 1 (5° — e5(B)) for i # 17 |
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