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MILWAUKEE LECTURES ON CHARACTERISTIC
CLASSES AND SINGULAR SPACES

Shmuel Weinberger
University of Pennsylvania

These notes are based on four talks I gave at the University of
Wisconsin at Milwaukee during the summer of 1995. I have added
little to the original oral presentation, and have also cut some
discussions a bit. The first lecture was a quick run through of
mainly pre-1970 ideas on characteristic classes. The middle two
were devoted to some topological applications of intersection
homology that stem from a deep connection between self dual
sheaves, elliptic operators, surgery theory and intersection
homology. Unfortunately, space did not permit me to develop these
connections more fully. The parts unrelated to singular spaces! are,
in any case, now documented in the Novikov conjecture literature.
The last lecture was an introduction to the beautiful ideas related
to toric varieties and their connections to lattice points and convex
polytopes. This field has been very active recently, from points of
view related to algebraic geometry, symplectic geometry, and pure
combinatorics. I am not familiar with this literature and have
certainly slighted them. Nonetheless, I felt that it was worthwhile
to give a glimpse of some of this material to a group of topologists.
I hope that these rough notes stimulate people to read the many
more complete references, and perhaps to begin thinking about these
ideas for themselves.

[ would like to thank Ric Ancel and Craig Guilbault for their
hospitality and excellent organization, the conference participants
for putting up with a lot of material being thrust upon them too
quickly and too superficially, and finally Sylvain Cappell and Julius
Shaneson for explaining their beautiful work to me.

IThe cases of manifolds with boundary, Zn manifolds, and orbifolds are now being
explicated.



Milwaukee Lectures on Characteristic Classes

LECTURE ONE: Classical themes.

Nowadays there are characteristic classes for many different
kinds of structures. There are characteristic classes associated to
oriented and unoriented real complex or quaternionic vector bundles,
PL block bundles, topological bundles, spherical fibrations,
equivariant versions of these, for foliations, and fiber bundles.
There are cohomology characteristic classes and homology
Characteristic classes, and they can live in an ordinary theory or a
~ generalized (co)homology theory, or even a (co)sheaf )co(-homology
theory. Indeed, almost all meaning has been leached out of this
noun: what one does is assign an element of some group to some
situation -- hopefully in a reasonably computable way and hopefully
by some process that measures something interesting about the

situation.

The characteristic classes that we will care about are
generalizations to singular spaces of classes that were first defined
in smooth situations, and usually by reference to the tangent bundle.
Much of this lecture is just a review of book [MS].

A prototypical class is the EULER CLASS e(E) € HN(X) defined for
oriented n-dimensional vector bundles over X. It can be defined as
the primary obstruction to finding a section of € over X -- if X is a
manifold, it is Poincare dual to the set of zeroes of a generic vector
field. (Transversality shows that this cycle is well definad.)
Another definition comes from looking at the map in the Gysin
sequence associated to the sphere bundle obtained (up to homotopy)
by removing the O-section. One can verify that it satisfies the
following conditions that in fact characterize it:

(I) e is natural: e(f*(%)) = f*e(¥)
(1) e(@Txn) = e(T)xe(n)
(iii) e(v) =1, where v is the normal bundle of CP! < CPZ.

Condition (i) alone restricts e enormously. Since every bundle
is the pullback of the universal bundie over the Grassmanian (=
BU(N)), (i) implies that we are just talking about the cohomology of

Grassmanians.
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Already one sees that homology characteristic classes
necessarily have a different flavor, since it is unlikely that the
method of the universal example applies to them.

Note also that we could think of cohomology operations are
just cohomology characteristic classes of cohomology classes -- an
almost useless observation.

Condition (II) tells us what e is for a sum of line bundles. A
general splitting principle asserts that cohomology (and K-theory)
characteristic classes are determined by what they are for sums of
line bundles: indeed, one merely has to verify that H*(Gn) »— H*(G1
x ..x G1), which can be done in a number of ways, and (iii) is a
normalization sufficient to determine e(universal line bundle).

It is trivial to see that these axioms directly imply that e
vanishes if € has a nowhere vanishing section. (Hint: deduce e(E®n)
= e(%)e(n) from the other axioms.)

A final definition can be given using the Pfaffian of the
curvature for a connection on the bundle €. The details of this need
not concern us. The power of characteristic classes come from the
variety of definitions for certain of these classes, which underscore
relations between different concepts and lead to effective
computability of these invariants.

The classes of most interest to us are the Pontrjagin classes
for an oriented vector bundie, and, in the last Tecture, the Chern
classes of a complex bundle. Indeed, as the Pontrjagin classes can
be defined as the Chern classes of the complexification, Togically we
need only define the latter. (However, when we move on to PL
manifolds which do not have vector bundles tangent to them, we will

need some other idea.)

The CHERN CLASSES ci(E) e H21(X), i>0, satisfy a similar set of
axioms:

(0) Letc=1+2cCj

(I) ¢ is natural: c(f*(¥)) = f*c(E)

(11)  c(Exm) = c(E)xc(n)

(ii1) c1(») = 1, where v is the normal bundle of CP! < CP2,
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In fact, considering oriented 2-plane bundles = complex .line
bundles as principal ST bundles and the isomorphism BS! = K(Z,2)
one can easily see that c¢1 defines an isomorphism between complex

line bundles over X under ® and H2(X : 7).

A great deal of the beauty of the subject comes from the

isomorphism H*(BU(n)) = Z[cq, c2, ... cnl. This will play little role
for us. A consequence is that cj = 0 for i> dim(€) and cj = e for i =
dim(€). Naturality, these formulae, and STABILITY (the fact that
c(E®e) = c(¥) if € is trivial -- a statement false for e) also
Characterize the Chern classes. And finally, there is a curvature
definition of these classes.

Rather than give axioms for PONTRJAGIN CLASSES, we will settle
for the definition:

pi(E) = c2i(E®RC) e HA(X).

There are a number of ways in which these classes can be used.
One way is to distinguish manifolds via the Pontrjagin classes of
their tangent bundles. This is strong enough to distinguish some
high dimensional lens spaces from one another; by considering
sphere bundles over S4 (produced by clutching using, say, SO(3) =
RP3) and using the finiteness of the stable homotopy groups of
spheres to see that there are only finitely many homotopy types
among these, one finds infinitely many manifolds homotopy
equivalent to S4xSN distinguished by p1. We will return to this

theme in lecture 3.

Another type of application is to proving non-embedding and
non-immersion results. This makes use of the vanishing above twice
the dimension of the bundle (the 2 comes from complexification). If
something embeds in low codimension then one has a low
dimensional normal bundle. One can compute what the
Characteristic classes of the normal bundle must be using naturality
and the product formula, so one might get obstructions in this

manner.

-This type of application does not generalize as widely. When
we generalize rational Pontrjagin classes to PL bundles, it turns out
that 3-dimensional bundles can have characteristic classes in
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arbitrarily high dimensions. For instance, rationally, BPLg =
K(Z,4)xBSO, where the K(Z,4) is the Euler class. (It is also true that
BPL3 = K(Z,4)xBSO rationally, except that the homotopical term has
a more unusual interpretation.) :

The connection between characteristic classes and the
cohomology of classifying spaces is the central point in the
calculation of bordism groups (and that is one of the original
motivations for considering characteristic classes with values in
generalized cohomology theories). One of the main results of Thom
is the following isomorphism of rings:

Ox ® @ = Q[CP2, CP4, ..1= Qlp1, p2, ..]*

where Qx is the oriented bordism ring, graded by dimension, and an
upper = denotes dual. I should probably make explicit the dualization
implicit in the graded setting when we form quantities like Qlp1, p2,

..JI* In dimension 4 we have the homomorphism p1, in 8 we have two

homomorphisms p12 and p2, in 12, there are p13, p1p2, and p3.
These polynomials in Pontrjagin classes which end up homogeneously
graded are called Pontrjagin numbers, and are obstructions to
bordism. Thom's result asserts that rationally they are the only
obstructions. (The proof is well worth reading in Thom's original
paper, where, for instance, transversality is developed in order to
reduce calculations of bordism to stable homotopy theory, and where
those calculations are done. The above formula follows from the
Thom isomorphism theorem, Serre's work on rational homotopy
groups of spheres and the calculation H*(BSO ; @) = Qlp1, p2, ..]
which follows from the result on the unitary group mentioned
before.)

One important consequence of Thom's theorem is a formula of
Hirzebruch (proven, he asserts, the day he saw Thom's Comptes
Rendus note announcing the results on cobordism in the Fine Hall

library). For this, let M4K be a smooth oriented manifold. Then
HZ2K(M) has a symmetric bilinear nonsingular inner product given by
cup product:

U H2K(M) ® H2K(M) —s H4AK(M) = @ (by the orientation)
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(Symmetry is because 2k is even, and non-singularity is part
of Poincare duality.) Such quadratic forms can be diagonalized, and
SIGN(M) is the signature of the quadratic form, i.e. the difference
between the number of positive eigenvalues and the number of
negative ones. In light of the calculation of bordism groups, the
following "axioms” characterize signature:

(i) signature is bordism invariant
(11) sign (MUN) = sign(M) + sign(N)
(111) sign(Mx=N) = sign(M)sign(N)
(iv) sign(CP21) = 1.

(i) follows by consideration of the image in HZ2K of any
manifold bounding M™; it will be self annihilating for U and by
Poincare duality it is of half the dimension of H2K(M). (ii) and (iii)
are straightforward cohomology calculations and the quadratic form
arising in (iv) is just (1).

(1) and (i1) alone imply that in each dimension we can find a
Pontrjagin number that equals the signature. Hirzebruch's formula is
a systematic description. Let

L=1+L1+Lp+.. LjeH4M™M)

be associated to the power series Vz/tanh(¥z) by formally
imagining that the complexified tangent bundle of M is expressed as
a sum of line bundles and one then computes the product of the
expressions vz/tanh(¥z) in these line bundles. Reorganize the
product as a power series in symmetric functions of the line bundles
and write these symmetric functions as Chern classes. We have

sign(M) = <L(M), [M]>  (Hirzebruch Signature Theorem = HST)

Here are the first few of the L's:

L1 =1/3p1

Lo = 1/45(7p2-p12)

L3 =1/945(62p3 - 13p2p1 + 2p13)

La =1/14175(381p4 -71p3p1 - 19p22 + 22p2p12 - 3p14)
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The Bernoulli numbers which enter the power series expansion
of Yz/tanh(v'z) thus enter topology through this formula. Number
theorists, at least since the time of Kummer, have paid close
attention to the numerator and denominators of these numbers, and
for some purposes we must as well. We will also see in lecture 4
that these numbers must enter in characteristic class formulae
because they are closely related to the Euler MacLaurin summation
formula where such numbers also arise.

Milnor's detection of exotic spheres came from the 7 appearing
in the numerator of L2. Since Pontrjagin classes are integral
cohomology classes, one deduces that for a 3-connected smooth 8-
manifold which is parallelizable outside of a point, the signature
must be divisible by 7. Building a 3-connected 8 manifold by
‘plumbing” according to a unimodular quadratic form of signature 8
produces a homotopy /-sphere on the boundary which cannot be
smoothly standard, for if it were, one could glue in a final disk and
obtain a 3-connected smooth 8-manifold paralielizable outside of 2
point and signature 8.

There are a number of comments we should make regarding
HST. The first is an important consequence: Signature is
multiplicative for finite coverings (since the right hand side is). It
is interesting an important that this is not true simply as a
consequence of Poincare duality. (It though does turn out to be true
for topological manifolds, unlike the integrality consequence
discussed above.)

One way to see this is by writing down explicit 4-dimensional
Poincare complexes (starting from quadratic forms over Z[Zp] for
which multiplicativity does not hold, e.g. the 1x1 form (1) and doing
an analogue of Whitehead's construction of simply connected 4-
dimensional Poincare spaces with arbitrary unimodular quadratic
form as its intersection pairing). There are other ways that come up
naturally —-- although their verifications are either quite tricky or
require theorems (e.g. the Atiyah-Bott fixed point formula, the
Atiyah-Singer G-signature theorem, or the Atiyah-Patodi-Singer
index theorem for manifolds with boundary -- we'll have more to say
about. these Tater). If one takes cobordant lens spaces, which are
cobordant over manifolds with isomorphic 1711 (One can use bordism
theory to see when this happens; homotopy equivalent three
dimensional lens spaces have this property). Then glue the ends

7
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together by a homotopy equivalence. If this homotopy equivalence
were homotopic to a homeomorphism, then this Poincare space would
be homotopy equivalent to a manifold. Nonmultiplicativity of
signature sometimes obstructs this.

In fact, an extension of the multiplicativity of the signature
always shows that the Poincare space is not homotopy equivalent to
a manifold, and that therefore non-isometric lens spaces are always
nonhomeomorphic.

If 6 xM— M is an orientation preserving action, then we can
consider the quadratic form as a quadratic form with isometry.
When we diagonalize the form, the positive and negative definite
parts are preserved by the group action, and therefore we obtain a
virtual representation

G-SIGN(M) e RO(G).
Equivalently, for geG, we can take the difference of the traces

of g acting on the positive definite and negative definite pieces of
H2K. This gives a notion of sieN(g, M) & IR.

PROPOSITION: If the action of G on M is free, then G-sign(M) is a
multiple of the regular representation; equivalently, for g=e,
sign(g,M) = 0. (sign(e,M) = sign(M).)

The relation between the two halves of the proposition is
given by elementary representation theory. The relation to
multiplicativity of the signature follows form the following fairly
elementary proposition:

PROPOSITION: If G acts orientation preservingly on M, then M/G
satisfies rational Poincare duality. sign(M/G) = 1/[G| Zsign(g,M)

The proposition is proven using cobordism invariance of G-
signature, and the isomorphism Qx(BG)®Q = Qx(*)®Q (thinking of
bordism as a homology theory by looking at cobordism classes of
manifolds with maps into a given space) which holds true because
all the group homology for a finite group is finite. Qx(BG) can be
thought of a bordism of manifolds with free G-action, and the image
of Qx(*) can be thought of those manifolds of the form GxN with
action just on the first coordinate. For these manifolds either
version of the proposition is obvious.
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For the Poincare spaces we discussed it turns out that G-
sign(M) is not a multiple of the regular representation.

Exercise: Show that these lens spaces are not even h-cobordant.
Deduce that lens spaces do not become isomorphic after crossing
with a circle. What about higher tori? (See lecture two.)

The work of Atiyah and Singer on indices of elliptic operators
gave a proof of HST and these consequences that did not rely on
bordism -- although it did rely on substantial analysis and K-theory
(especially Bott periodicity) as a key topological tool. I cannot go
that far afield to explain this circle of ideas, but Tet me just
mention one consequence of this:

ATIYAH-SINGER G—-SIGNATURE THEOREM: sign(g, M) can be computed
by an explicit formula of the form <x(v)UL(F), [F]> where x(v) is
some explicit characteristic class of the equivariant normal bundle,
and F is the fixed point set of the element g.

COROLLARY: If M9 = &, then sign(g,M) = O.

which is a bit more refined than what we got out of HST. Later on
we will return to a purely topological point of view on this corollary
-- one which shows that it is true under much weaker conditions
than smoothness. (I do not know if continuity of the action alone is

enough.)

If MY consists of isolated points, then the equivariant normal
bundle at such a point is given by the differential dg acting on the
tangent space at that point. To make the theorem more concrete, let

me add the addendum:

ADDENDUM: The local contribution to sign(g, M) at a fixed point p
is given by ((-1)N/2)/p - = Ticot(1rjai/2p), where the ai are the
Jo
rotation numbers of the action of g on the tangent space, and j runs
over the odd numbers from 1 to 2p-1.

The difference of these numbers is the g-signature of the
Poincare space constructed above, which can be used to distinguish
any pair of lens spaces (this is the Franz independence lemma).
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In Tecture 4 we will need some algebro-geometric analogs of
these theorems, the Hirzebruch Reimann-Roch theorem and Atiyah-
Singer’'s equivariant generalization of it, but we need not discuss
these here. Instead, let us go back to topology, and give our first
extension of characteristic classes to a class of spaces that are
somewhat rore singular than smooth manifolds (the original domain
of definitizi of these classes).

METHOD OF THOM-MILNOR-ROCHLIN: We will extend the definition
of L-classes (and therefore rational Pontrjagin classes) to PL
rational homology manifolds. As a corollary, Pontrjagin classes are
rationally PL invariants, not just smooth invariants. (Of course this
is true topologically as well by a celebrated theorem of Novikov, but

that is a much deeper fact.)

We will need a basic result of Serre: 0Odd spheres are
rationally Eilenberg Mac-Lane spaces. (This fact was also used by
Thom in the course of his calculation of bordism.)

The basic point is the following formula that holds for F a
submanifold with trivial normal bundle in M:

sign(F) = <L(M), [F]>

This formula is a consequence of the HST applied to F and the
fact that since the normal bundle of F is trivial LIM)F = L(F). Now,
we can inversely define L(M) by insisting that the above formula be
true for all closed sub-homology-manifolds with trivial normal
bundle in MxEuclidean space. The point is that there are exactly
enough sub-homology-manifolds with trivial normal bundle to fill
rational homology in odd codimension by Serre's result (the
submanifold is the transverse inverse image of a point in the Tift of
the dual cohomology class to a sphere), and by crossing with a
suitable Euclidean space, every dimension can be take to be odd
codimension! This is well defined by bordism invariance of

signature.

Note: We have taken the Hirzebruch signature formula and
made it into a tautology. It is not too difficult to change our
definition from one involving manifolds to one involving PL block

bundles and get our classes to lie in H*(BPL). Since we worked
rationally none of the subtle divisibility arguments we discussed

above hold.

10
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Now let us turn to the bit of more integral characteristic class -
theory that is available for PL and Top. Indeed, in the next lecture,
we will see that even for certain singular spaces, there are
“integral” characteristic classes, which are homology classes rather
than cohomology.

This method was invented by Sullivan who applied it to
construct a class A(M) e KOpn(M)®Z[1/2] for PL (Q@-homology-)
manifolds, whose Pontrjagin character? is the Poincare dual of the
L-class. A similar method gives information at 2 (see [MS])

It is true, and we will sketch some of the technology
necessary in the next lecture, that these classes can be defined for
ANR Q-homology manifolds, but they tend not to be orientations,
even for Z-homology manifolds. This means that their Pontrjagin
characters will often not define po = 1. Indeed, po defined this way
is Quinn's obstruction to resolving homology manifolds. (By
definition, and simple naturality properties (with respect to open
inclusions) these invariants do not change under CE maps.)

Embed M in some Euclidean space with codimension 4r and
regular: neighborhood (N, oN). We shall describe an element of
KO4(N, aN) which corresponds under (Spanier-Whitehead) duality
(cf. [SpD to A(M). Sullivan proves a "Connor-Floyd type theorem”
that shows that KO™(X) can be identified with Qx(X)®Q(%x)Z where
Qx(X) is mod 4 graded and Z is viewed as a module over Q(x) by
signature. In light of this it is only necessary to give a pair of
homomorphisms: ' ‘

Q(N, oN).— Z
Q(N, oN; Q/Z[1/2]) — Q/Z[1/2]
with good module properties with respect to taking products with
closed oriented smooth manifolds, i.e. the homomorphism multiplies
by the signature. For the first map, one takes a bordism class in (N,

2The Pontrjagin character is the Chern character of the complexification. The

Chern character is defined as ZeXi where the xj are line bundles making up the
given complex bundle, and the end result is reexpressed in terms of Chern classes
by replacing the k-th symmetric function in the x's by ck (as we did before in

defining L-classes).

11
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oN).and takes the intersection with X and computes the signature.
The second map goes the same way using "Zy-MANIFOLDS" (manifolds
obtained by gluing n-tuples of boundary components together from
some manifold with boundary) to represeht the bordism with

coefficients and taking mod n signatures of such spaces. (Note that
Q/Z[1/2] is the direct 1imit of Zp for odd n.) A little effort shows

that these signatures are well defined, and this combination of
homomorphisms gives us our class.

Remark: The reason we had to use Zpn manifolds was because a

cohomology class is not determined by its values on all cycles. The
values on torsion cycles as well, though is enough to pin it down. A
similar point, dealt with differently, arises in Atiyah's definition of
a Kx class associated to an arbitrary elliptic operator on M.

The idea in brief is this: For each elliptic operator D on a
compact smooth manifold M, not only is there an index (= dim ker D -
dim ker D*) e Z, but one can "twist” the operator by an arbitrary
bundie over M. This gives one an element of Hom(K*(M) : Z).

Unfortunately, in general Kx(M) = Hom(K*(M) : Z). Atiyah then
notices that one has more: For each family of elliptic operators on M
parametrised by any auxiliary space X one gets an index bundle in
K(X). Thus, one can redo the construction to get a nice universal (in
X) construction in Hom(K*(XxM) : K*(X)). This is enough to give the
desired element of K-theorys3,

Remark: A Zp manifold approach could probably be developed

using subsequent work of Freed and Melrose, simplified by Higson.
Subsequent work of Brown, Dcuglas, and Fillmore, and Kasparov
shows that K-homology can be viewed as being a cycle theory based
essentially on generalized elliptic operators. (Blackadar's book in
the references is a good source for this.) If one associates to M its
signature operator, then one guesses a relation between the
signature operator class of Atiyah and Sullivan's class. The reader
can consult [KM, PRW] for some more information.

3 One can set X = the Spanier-Whitehead dual of M and look at the image of a
suitable Bott element in K(M x DM) in K(DM) to get the element in K-homology.

12
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The Sullivan approach makes the following PROJECTION FORMULA
quite transparent:

PROPOSITION: If- f:M —s N is a fiber bundle (or PL block bundle)
with no monodromy, then fxA(M) = sign(f~1(p))*A(N).

The reader should try to rewrite this in terms of Pontrjagin
classes!

The proof is kind of obvious. After unwinding all the
definitions, all that this formula is asserting is that sign(f=1(C)) =
sign(f~1(p))*sign(C), i.e. multiplicativity of signature in fiber (or
block) bundles. This is known to be true for bundles that have no
monodromy.

In general, if there is monodromy, one knows there is a
correction to the multiplicativity of signature (see [Atiyah 2]). This
can be promoted to give the correction term for the projection
formula.

To give a typical application of the projection formula, which
foreshadows ideas to play a role in lecture four, we will sketch
prove the following:

THEOREM [W]: Suppose S! acts on a manifold M with fixed set
F=2. Let ©: M —>B1T be ana map. Then

Px(LIM) N [MD = pxix(L(F) N [F]) € Hx(BTT; Q).

where the right hand side involves an implicit summation over all
components of F tat have dimension = dim(M) mod 4.

We shall use a construction that has been named the BUBBLE
QUOTIENT. M//S is by definition M where all points on orbits that are
€ away from the fixed set are identified with each other. If the
fixed set were empty, this would be the usual quotient; in general
one obtains a stratified space with a stratum that looks like a
"bubble” around the fixed set.

The mapping cylinder of the map M —— M™M//S provides a

cobordism in the sense of Q-homology manifolds between M and the
bubble around F. The bubble is a bundle over F with fiber a Q-

13
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homology CPM where n is half the codimension. The projection
formula proves the result for x = 0.

To prove the result in general one has to study the cobordism
produced and check that one can still pair it with arbitrary elements
of H*(BTT ; Q). Here is where F=& and rational coefficients enter. (A
similar argument appears in [BHI.)

Remark: The L-class is the only genus for which the projection
formula is true for arbitrary bundles with connected structural
group. However, if the structural group is also finite dimensional
then there are also elliptic genera that have this property.
Presumably, there is a generalization of the theorem to elliptic
genera. For the A genus the corresponding result is that of [BH].

References4 for Lecture One:

Atiyah 1, Global theory of elliptic operators, Proc. Int. Conf. on
Functional Analysis, University of Tokyo Press (1969) 21-30

Atiyah 2, The signature of fiber bundles, in Global Analysis: papers
in honor of K.Kodaira, U. of Tokyo Press and Princeton University

Press, 73 84.

Atiyah and Bott, A Lefshetz fixed point formula for elliptic
complexes, II: applications, Annals of Math 88 (1968) 451-491

Atilyah and Singer, The Index of Elliptic Operators, I III,IV,V Annals
of Math 87 (1968) 484-530 546-604 93 (1971) 119-138 139-149.

Blackadar, K-THEORY OF OPERATOR ALGEBRAS, Springer Verlag

Browder and Hsiang, G-actions and the fundamental group, Inven. Math
65 (1982) 411-424

Hirzebruch, TOPOLOGICAL METHODS IN ALGEBRAIC GEOMETRY, Springer
Verlag, 1978 translation of 1962 German edition.

4These references include the main ideas referred to here, but do not suffice for
all the stray comments. Some of those will be covered in later lectures.
Conversely, in later lectures I will not repeat references already given here.
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NUMBER THEORY, Publish or Perish press, 1974
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cycles in surgery theory, Ann of Math 99 (1974) 384-463.

Pederson, Roe, and Weinberger, On the homotopy invariance of the
boundedly controlled signature of a manifold over an open cone, Proc
1993 Oberwolfach conference, Novikov Conjectures, Index theorems
and Rigidity, vol 2 Cambridge University Press 1995, pp. 285-300

Sullivan, Geometric Topology Seminar Notes, Princeton 1965

Thom, Quelques proprietes globales des varietes differentiables,
Commentarii 28 (1954) 17-86.

Weinberger, Group actions and higher signatures II Comm. Pure
Applied Math 40 (1987) 179-187.
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LECTURE TWO: Intersection homology.

Many of the spaces that arise naturally in mathematics, while
not themselves manifolds, are in fact manifolds with singularities
or even stratified spaces. A STRATIFIED SPACE is a space X with a
filtration X = XnDXn-12Xn-2...2X-1=& such that the "PURE STRATA",
i.e. subspaces of the form Xj-Xi-1 are manifolds. It is also
important to prescribe the way in which the strata are put together:
one can (det quite bizarre spaces by taking one point
compactifications of manifolds. Many possibilities are discussed in
the literature, but for our current purposes, we need not be precise.
Sufficient for us would be that the spaces are polyhedra, and PL
homogenous to the extent that any two points in the same component
of a pure stratum can be moved to one another by a PL isotopy. More
precisely, we find the context of Quinn's manifoldS homotopically
stratified spaces most suitable.

Examples abound. Manifolds with boundary are examples with
two strata. Quotients of smooth or PL group actions are other
examples: in the PL case the strata might not just be the fixed sets
of various subgroups, unless one makes an additional hypothesis,
like local linearity. Manifolds with distinguished submanifolds can
be viewed as stratified spaces: there is no requirement that the
stratification be topologically intrinsic to the space.

Each example of stratified space suggests its own problems.
It turns out that there is a general characteristic class of stratified
spaces that seems to be an optimal extension of L-classes (see
[W1]). However, it usually does not live in a conventional homology
or cohomology group. It lives in a "spectral cosheaf homology" group.
In the next lecture we will discuss an example of this theory
(although not all the relevant machinery). What tends to happen is
that for stratified spaces having some sensible origin the cosheaf
homology group also has a natural interpretation, and the
characteristic class measures something basic and interesting,

In this lecture I would like to discuss intersection homology
and some of its topological applications. (There have been many
more applications to algebraic geometry and representation theory,
see MacPherson's ICM talk for an older survey.) Intersection

SActually, even more convenient would be to assume that the pure strata are ANR
homology manifolds
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homology provides us with a way of making certain nonmanifolds
satisfy a variant of Poincare duality -- at some cost. Part of the
cost is that the duality is not between homology groups. It is
between intersection homology groups, which are not, say, homotopy
invariant. On the other hand, they have many other wonderful
properties that make them computable in cases of interest, and one
can make a convincing case that they are the correct generalization
of homology to singular algebraic varieties (see [ D).

In any case, the idea is that because one gains Poincare duality
for a larger class of spaces, one can mimic the Thom-Milnor-Rochlin
idea from the previous lecture and define homology L-classes (and
more) for these spaces. These classes, although defined using
intersection homology, live in ordinary homology.

Now, ordinary homology is, of course, the homology of the
chain complex built up out of all PL chains on X. If one only allows
chains that are transverse to the singular set of X, i.e. that intersect
any stratum of the singular set in a subset of the codimension of
that stratum, then McCrory showed that, under mild hypotheses®, one
obtains a complex that computes the cohomology of X in the dual
dimension. In a manifold, there is no difficulty in moving all chains
to be transverse, and the identification of these groups is Poincare
duality. The failure, then, of Poincare duality is then related to the
difficulty in making chains transverse to the stratification. G

To circumvent this, Goresky and MacPherson suggested
considering subchain complexes with cycles being somehow
restricted in their intersections with the lower strata. One might
for these, have enough transversality to get a good duality. Define a
PERVERSITY function to be a non-decreasing function p:{2,3,..n} — N
such that p(2) = 0 and p(n+1) < p(n)+1. There are two extreme
perversities, the ZERO PERVERSITY O(c) =0, and the TOTAL PERVERSITY t(c)
= Cc-2. Perversities m and n are dual if m+n=t.

A k-chain will be said to be P-TRANSVERSE if its intersection
with the codimension ¢ stratum of X has dimension < k-c+p(c) (and
similarly for its algebraic boundary). Closed k-chains modulo
boundaries as usual form a homology group, denoted IHP(X). Notice

6X is a normal oriented pseudomanifold. Pseudomanifold means that the singular
set is of codimension at least two and is nowhere dense and normality means that
the 1ink of any simplex of codimension at least two is connected.
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that "totally perverse” IH is ordinary homology, and the "totally non-
perverse” IH is cohomology. The usual Kronecker duality between

these is a special case of the following:

THEOREM ([GM]) IH(X) is a topological invariant, independent of
the choice of stratification. If we take field coefficients, IF, then
the intersection homology groups in dual dimensions with dual
perversities are paired perfectly by taking intersections of chains.

More explicitly, chains of complementary dimensions with
compliementary perversities can be isotoped slightly to intersect in
a finite number of points, whose number counted with sign e FF is
well defined, yielding a pairing IHKP®IH14 — F when k+1=n, p+qg=t.
Furthermore, this gives an isomorphism IHgP — Hom(IH;9 ,IF).

COROLLARY: If X has only even codimensional strata, then the
middle intersection homology groups (with IF coefficients) have a
‘Poincare” self duality.

By middle, we mean the perversity (0, 0, 1, 1,2, 2 ..). It is
halfway between O and t. The dual perversity to the middie
perversity only differs from it in on odd codimensional strata, which
in the corollary we have posited not to occur.

If we write an intersection homology group without specifying
its perversity, then we will always mean with middle perversity.

Remark: It is not true that any X with even codimensional
singularities has a Z self duality. The case of isolated
singularities is instructive (for seeing this, as well as many other
things about IH). Below some dimension (determined by the
perversity) chains and their boundaries are not allowed to touch the
singular points, so that the homology is ordinary homology (with
compact supports) of the complement. In high dimensions (again
determined by the perversity), everything will be allowed through
the singular points, so that one obtains the ordinary homology of the
space = locally finite homology (=rel & homology) of the (closed)
complement of the singularities. In the critical dimension, one has
chains in the complement with coboundaries allowed to extend
through the singular set, which can be described as the image of an
ordinary group into a relative one.
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Remark: Cheeger had also been simultaneously and
independently led to the conclusion that pseudo-manifolds with even
codimensional singularities had a self dual homology associated to
them. He gave such polyhedra piecewise flat metrics and then
considered L2 differential forms on the resulting incomplete
manifold. The % operator gave a suitable duality. A beautiful
implication of this is that IH satisfies a Kunneth formuila.
Somewhat later Goresky and MacPherson proved the conjecture made
by Sullivan that these two theories are the same. (There is an
interesting recent paper of Youssin discussing the connection

between LP cohomology and IH for other perversities.)

More careful analysis (performed by Cheeger in his original
paper and by Goresky's student Siegel in his thesis) enables one to
see a larger class of spaces, the WITT SPACES that have a self dual
intersection homology. One allows there to be some odd
codimensional strata, but demands that for these, their middle
dimensional middle perversity IH vanish. If you think about it, you'll
see that the open cone on such a space (thought of as having a new
type of isolated singularity) satisfies Poincare duality. (I am really
itching to introduce sheaves here, but we'll delay that for a while.)
These are then the IH analogs of homology manifolds in the usual
theory: they are the spaces which have self duality for a local

reason.
THEOREM: Witt spaces have self dual IH,

Combining the isolated point discussion above with Kunneth
(even just for one factor Euclidean space, which is MUCH MUCH
simpler) one gets a proof of the theorem.

Returning to the theme of the previous lecture, one sees that
closed Witt spaces have a signature. (It is natural to use the Q-
structure on intersection homology to put the signature in W(Q)
where, as computed in the book of Milnor and Husemoller, there is
more information than just the usual signature. This reflects the
fact that the duality cannot be made nonsingular over Z, as we
already remarked.) In fact, with the obvious notion of Witt space
with 9, signature is cobordism invariant.

In fact, we have the following remarkable theorem of Siegel:
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THEOREM: Signature is the only cobordism invariant of Witt spaces.
More precisely, QiWitl = 0 unless i = 0 mod 4. QuiWitt = w(q)
unless i = 0 when it is Z.

By the way, this theorem is proven entirely geometrically. In
odd dimension it is obvious. The cone on an odd dimensional Witt
space provides a nullcobodism for that Witt space. The idea is to do
some Kind of "surgery on middle dimensional cycles” to obtain a
cobordism to a Witt space with no middle dimensional homology. So
that one can then cone off that space.

Later work of Goresky and Pardon gave cobordism calculations
for other classes of singular spaces, with either more refined
signatures being definable or other characteristic numbers arising.

In any case, for Witt spaces one can repeat Sullivan's
definition of a KO characteristic class. The theorem then has the

following corollary:

COROLLARY: A: QiWItt(x)®Z[1/2] ——s KOi(X)®Z[1/2] is an
isomorphism |

It is a natural transformation between homology theories
which is an isomorphism for X = point.

One immediate application of this is a disproof of the integral
Hodge conjecture. Recall that the Hodge conjecture describes which
homology classes in a smooth algebraic variety (over C) can be
expressed in terms of algebraic cycles. Essentially the only
condition is the obvious one suggested by Hodge theory: the dual
cohomology class must be of type (p,p) in the Hodge decomposition
on the cohomology of any Kahler manifold.

Integrally this cannot be the case, as first argued analytically
by Atiyah and Hirzebruch, because the homology class represented by
the cycle must have a refinement in KO homology, since all varieties
are Witt spaces. Since this needn't be true integrally, the

conjecture fails”.

7Even simpler disproofs follow from resolution of singularities.
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A less immediate application8 concerns the invariant of
ATIYAH-PATODI-SINGER, which we must first review. The basic
problem that APS were interested in solving was: how can one
analytically get a formula for the signature of a manifold with a7
For simplicity assume W, oW is a Riemannian manifold with
Riemannian collared boundary. We want a formula of the sort:

sign(W) = [w L dVol + 7

The integral makes sense because the L form can be prescribed
in terms of the curvature. Since signature for manifolds with
boundary is not multiplicative in covers there is no local expression
that one can integrate to give a formula for which 7 = 0. In fact, on
reflection ? only depends on aW, not on W itself because sign(VUW)
= sign(V) + sign(W)® (see the analogous discussion of lens spaces in
lecture 1).

Theorem (Atiyah-Patodi-Singer index theorem). Let B be the self
adjoint operator on even forms on a manifold V21=1 given by By =
i1(=1)1* T(%d-d*)p. One can compute ? above, assuming that O is not
an eigenvalue of B, from n(0) where

ns) = sign\)/rs

where the sum is taken over all the eigenvaluesy (which are
necessarily real).

One can now consider n(0) as an invariant of a Riemannian
manifold which is not necessarily a boundary. More interestingly,
APS observed that as a consequence of their index theorem, there are
combinations of n's for slightly varying operators which are
differential topological invariants!O: i.e. independent of the metric.

8This application has been subsequently treated by Higson and by Farber and Levine
(in different cases) without using singular spaces. Nonetheless, I hope that the
original treatment sketched here at least confirms philosophically the contention
that it is valuable to enlarge one's perspective to include singular spaces when
studying invariants of smooth manifolds.

9Using cobordism invariance of intersection signature for Witt spaces give a proof
of this (Novikov) additivity property of signature.

101n fact with a bit more work, they are topological invariants.
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Let p: m1(V) —> U(n) be a unitary representation that
describes a flat bundle. We can twist the signature operator by p,
and get an invariant

Ne(V) =1(0) = 1/n+np(0)

Since signp(VxID) = n-sign(VxI) = 0, by putting 3 suitable
metric on the cylinder one checks that the APS-invariant Np(V) is a
smooth invariant. It is not a homotopy invariant: indeed, one can
distinguish lens spaces using it.

On the other hand, Walter Neumann showed that Tp(V) is a
homotopy invariant when the fundamental group of V is free abelian.
He even gave a homotopy invariant formula for it. It seems
conceivable that it is always a homotopy invariant for manifolds
with torsion free fundamental group.

On the other hand, simple bordism arguments show that for
finite groups this difference must be rational. Let me now sketch
the proof of the following theorem:

THEOREM . If V and V' are homotopy equivalent then for any
representation p, Np(V) - Np(V) e Q.

Remark: This theorem is in some sense an analogue of Cheeger and
Gromov's conjecture on rationality of geometric signatures for
complete manifolds with finite volume and bounded geometry
(proven in some cases by Rong). It and its proof are (in grosso mode)
somewhat analogous to Reznikov's proof of Bloch's conjecture.

The idea of the proof is this. If V and V' were cobordant by a
cobordism W whose fundamental group was isomorphic to T1(V),
then the APS theorem would show that Np(V) - Tp(V') = sign(w) -
1/n-signp(W) which is certainly rational. (In fact, if 77 is torsion
free than one can hope that the latter is 0 .)

Unfortunately, this need not be true even if V is simply
connected. However, [V] e Witt(BTr) has a chance of being rationally
= homotopy invariant. Indeed, after Siegel's thesis, this is a
restatement of the Novikov conjecture. Cheeger's work would then
enable us to perform the above argument using a Witt cobordism in

place of a manifold.
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Despite all the progress, the Novikov conjecture is not known
for all groups, but it is known for enough of them. An argument
using the real algebraic variety structure on Hom(1r:U(n)) shows that
every representation can be deformed to one with real algebraic
entries. Farber and Levine computed how 1 changes as one moves
along a curve in this variety by an explicit homotopy invariant
formula. So, by a deformation argument (that follows from the
Tarski-Seidenberg theorem) for our problem one can suppose that
the image of the representation, and for all practical purposes T, is
a subgroup of GLp(Q@)

For finitely generated subgroups of GLn(Q) we do know the
Novikov conjecturel!l. The reason is that the current technology
knows how to make good use of nonpositive curvature conditions.
F.g. subgroups of are discretely embedded in GLp(R) x ...x GLn(Zp)
(where Zp denotes the p-adics) for a suitable finite set of primes.
This gives a proper discontinuous action on a product of a Hadamard
manifold and Euclidean Bruhat-Tits buildings, i.e. on a product of
metric spaces of nonpositive curvature.

To explain this in more detail would take us rather far afield.
However, it is worth noting that the same ideas that control the
values of the APS invariant can be used to define a variant of them,
"HIGHER APS INVARIANTS" or "HIGHER pP-INVARIANTS", useful for
distinguishing certain homotopy equivalent manifolds. (We have in
mind examples like aspherical manifolds crossed with lens spaces.
If they have vanishing Euler characteristic and signature then the
usual Reidemeister torsion and APS invariant proofs won't work.
But, in lecture 1, we saw that at least a circle doesn't make non

isometric lens spaces isomorphic.)

Suppose that 1 is of the form I'xA, where A is finite and
suppose that VN is acyclic with respect to AL where A is the
augmentation ideal of QA. (An example to have in mind is a manifold
of the form XxY where 11X =1 and 1T1Y = A and the group A acts
trivially on the homology of the universal cover of Y (i.e. Y is a
simple space in the sense of Milnor's article on Whitehead torsion.)

ITHere the analogy to Reznikov is a bit forced. Whereas we view Novikov as a
weak rigidity result proven by the techniques of [FW1,2] or from a different point
of view [KS], Reznikov uses the harmonic map techniques that have been also quite
successful in proving differential geometric rigidity theorems.
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The aim is to define an invariant of V which is an element of
Ln+1(AT)/ Ln+1(IN®Q, which can be seen to be quite large for
groups for which the Novikov conjecture is known. (e.g. for A = Zp
one would get, at least, a number of copies, rationally of Kn+1(BI')=

Kn+1(BmM®Q.)

To do this, we need to assume the Novikov conjecture anyway.
The idea is this. Assuming the Novikov conjecture and using Siegel's
theorem, [V] in QWITL(B7) can be thought of as a signature.
However, the acyclicity assumption implies that V and its A cover
have the same QT homotopy type!2, which would violate the
multiplicativity of [ ] in QWItt(Bm) unless [V] = 0, which it
therefore must be.

Now, once we have a Witt coboundary with coefficients in Q1T,
we would like to take its signature, etc. Unfortunately, for
nontrivial fundamental groups there is no theory of signature for
manifolds with boundary. However, by hypothesis, from the point of
view of AT the boundary is acyclic. So one does get an element of
Ln+1(AT) -- at least assuming that one can assign algebraic
Poincare complexes to Witt spaces, for arbitrary Q-algebras. This
follows from the material on sheaves I've left to the appendix.
Finally one has to get rid of the indeterminacy in the nullcobordism,
which is why one has the quotient Ln+1(AT)/ Ln+ 1(IN®Q.

Remark: One nice theoretical application of these higher-APS type
invariants came up in joint work with Alex Nabutovsky: even for
manifolds with a given homotopy equivalence between them, one
cannot decide whether or not they are (PL, say) homeomorphic.

Remark: John Lott has shown that for groups of polynomial growth
the higher APS type invariants defined here can be defined
analytically and extend to other elliptic operators. One does not
know this more generally (although I would hope that a more K-
theoretic approach should exist that would work more easily,
although less in the spirit of spectral n invariants).

Appendix: Sheaves

120ne of the things one must verify is that the Novikov conjecture for homotopy
equivalence implies it for rational equivalence, but it does because of an algebraic
localization theorem of Ranicki.
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The introduction of sheaf theoretic techniques into
intersection homology is very useful. We implicitly used it in
describing why Witt spaces should have Poincare duality. The
‘Deligne construction” of the intersection chain complex applies
equally well in characteristic p where our usual geometric models
make no sense. Goresky and MacPherson used this and axiomatic
characterizations of IC as computational tools enabling proofs of
Kunneth and Lefshetz hyperplane section theorems. Finally, IC is an
important example of a self dual sheaf, the aggregate of which up to
a suitable cobordism relation give a model of Hx( ; L) which is also
equivalent to the normal invariants in surgery (away from 2) and
also equivalent to Witt space bordism., and away from 2, elliptic
operators!3,

The derived category forms the appropriate language for the
sheaf theoretic construction of IC. Two bounded complexes of
sheaves C and D are equivalent in the DERIVED CATEGORY if there is a
third complex E with maps C— E «— D which are QUASIISOMORPHISMS,
that is, which induce homotopy equivalences on every stalk. A
morphism in the derived category is represented by a morphism of
complexes of sheaves up to a quasiisomorphism. In the derived
category, it is often convenient to replace complexes of sheaves by
injective resolutions, so that the homological algebra becomes
nicer. The topologist might find it useful to think about the
analogous homotopy category of spaces "over X", i.e. equipped with
maps to X.

A very important complex of sheaves, Dy, was introduced by
Verdier. The DUALISING COMPLEX has the property that its stalk
cohomology at x is the Tocal cohomology of X at X, HI(X,X-x) and is
used roughly to change homology to cohomology. (In fact, Dy is
equivalent to the local singular chain complex, for an open U we get
Cp(X,X—U).) Global cohomology of X with coefficients in the dualising
complex is ordinary homology. If E is in the derived category, we
define DE = Hom(E : D) and it is called the DUAL OF E. Verdier duality
has a 1ot in common with Spanier-whitehead duality, just performed
more locally. (The reader familiar with Zeeman's dihomology will no
doubt feel a sense of deja vu.)

13 with a suitable real structure.
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A map f:X — Y induces several functors on derived categories.
We can take the derived functors of push forward and pullback Rfx
and Rf*, and we can take analogous proper analogs Rfj and Rfl. These
latter have nice descriptions in terms of dualising: Rfj = DRfxD. For

proper maps, Rfx = Rfj and for closed inclusions Rf* = Rf!, bput in
general these notions disagree. VERDIER DUALITY asserts that always

Rf<RHom(A,Rf'B) = RHom(RfA, B).

Verdier duality implies that the induced pairing of hypercohomology
groups HI(A)®HT(DA) —s HO(Dy) —s F is perfect.

It is quite feasible to do homological algebra in the derived
Category; indeed it is built for that. The reader should realize that
it is not an abelian category, so that one cannot take kernels and
cokernels. What replaces this is the DISTINGUISHED TRIANGLE. It is the
obvious extension of the situation one gets by considering a mapping
cone, where one gets in addition to the usual degree O maps of
complexes a degree one map from the cone to the domain of the map.

The final ingredient in the construction is the collection of
TRUNCATIONS of complexes.

= AN if n<p-1
(TSpA)n = ker dN if n=p
=0 if n=p+1,

There is a similar definition for COTRUNCATION. Furthermore, one can
truncate over a closed subset by sheafification of the result of
truncating only on the open sets that touch the closed set. All of
these constructions pass to the derived category.

THEOREM ([GM1 II]) Let X be a stratified space and let Ux = X-Xk be a
filtration by open sets, and ik the inclusion Ugx — Uk+1. Let

P = T<p(n)-nRin* ... T<p(2)-nRio*Ex-s [n].

The final [n] is a shift by n. Then this is quasiisomorphic to ICP(X).

The proof, in the spirit of Eilenberg and Steenrod, is axiomatic.
There are various axiomatizations of intersection homology with the
following ingredients: constructibility, normalization (IF on the
nonsingular part, ie. the analogue of the dimension axiom), a lower
bound axiom for the vanishing of homology, an upper bound axiom,
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and finally one has some choice. One can assume an attaching axiom
that tells how the pieces are connected. Alternatively, one can use
support and cosupport conditions restricting the dimensions of
pieces with high dimensional local homology and cohomology.

I will not explain how one proves these uniqueness theorems in
detail. Roughly speaking, one does obstruction theory in the derived
category. The basic lemma for producing maps is the following:

LEMMA [GMTII]: Suppose that «: A — C and 3: B —» C are morphisms

in the derived category, that HI(A) = 0 for i = k+1, and that B is 2
cohomology isomorphism for i <Kk, then « has a unique 11ft A — B.

The proof is not that hard and resembles in an algebraic
language the proof of the analogous results for extending maps
between spaces with Tow dimensional cofibers to spaces with highly
connected fibers.

The duality of IHP and IHY9 is now deduced by verifying the g
axioms for the dual of ICP.

The sheaf-theoretic construction of the Poincare duality in IH
emphasizes the significance of self duality of IH on the sheaf level.
I would like to continue the development by explaining how to
associate a characteristic class to any self dual sheaf, so that the
L-classes obtained via the Cheeger-Goresky-MacPherson procedures
are equal to the (Pontrjagin character of a K-homology) class

associated to the IC sheaf.

I should remark that my account is based on the Comptes
Rendus note [CSWI], which also deals with equivariant sheaves. Steve
Hutt, though, has given a very elegant self contained account of the
nonequivariant theory (he calls these "Poincare sheaves”) in a

forthcoming paper.

Definition: A sheaf E on X is SELF DUAL if there is the following data:
A quasiisomorphism ¢:E —> DE, a homotopy from ¢ to D¢
(identifying DDE with E), @ homotopy of this homotopy to its dual,
etc.
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Remark: If the field IF has characteristic =2, then one just needs a
homotopy from ¢ to D¢. We will assume for simplicity that we are

in this case.

It X is a Witt space then IC(X) is self dual. The higher
coherencies are produced using the obstruction theory lemma,

PROPOSITION: There is a functor from self dual IF sheaves on X —s
‘controlled homotopy equivalence classes of controlled algebraic
Poincare IF complexes on X", whose Witt group is according to Quinn
and Yamasaki = Hx(X ; L(IF)).

COROLLARY: One can associate a symmetric signature of a Witt space
in L*(Fmr). It has all of the usual cobordism invariance properties.

We had already invoked this at the end of lecture 2. This
discussion also implies the topological invariance of the L-classes
and A classes produced by IH methods generalizing Novikov's
theorem.. (Even more punch comes from the equivariant case, see my
book for more discussion.)

We will be discussing controlled topology in more detail in the
next lecture.
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LECTURE THREE: Application to classification problems

In Tecture one we discussed various sorts of applications of
characteristic classes in the nonsingular case: to embedding, to
cobordism, and to classification. Now we will turn to
classification, but will also indirectly shed light (or darkness) on
embedding. (Of course, some amount of cobordism was discussed in

the previous lecture.)

Our model theorem is the main result of Browder-Novikov
theory which asserts that the closed manifolds homotopy equivalent
to a given simply connected M are in a finite to one correspondence
with @H41(M ;Q). Other than the relation imposed by the Hirzebruch
signature formula a “"lattice” in ®H41(M ;@) is realized by such
manifolds. (We had seen a bit of this, ad hoc, in the first lecture

when we constructed homotopy S4xSNs.)

Of course, as we have already seen, the non-simply connected
case is more complicated and invariants not determined by
characteristic classes can be infinitely varied within a (simple)
homotopy type. A formally complete answer is given by surgery
theory -- or better surgery theory tells one how to reduce the
general classification problem to problems just involving the
fundamental group.

In any case, back to simply connected manifolds. In the PL and
Topological categories, there is a nicer theorem due to Sullivan.
First a bit of notation:

S(M) = {(N,f)| f:N — M is a homotopy class of homotopy
equivalence.} / (PL) homeomorphism

S(M) is called the structure set of M. It turns out that S(M) has
a group structure which is useful but not critical in understanding
Sullivan’s result.

iR

THEOREM!S: If MM is simply connected, n>4, then S(M)
KOOM®zZ[1/2] = KOn(M®Z[1/2].

'S There is a slight lie here as a computation with spheres shows. One can be off
by a Z. This is accounted for by ANR homology manifolds by [BFMW]. Otherwise,
one has to be slightly more careful in the statement to guarantee that one only
obtains manifolds in the structure set S.
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The cohomological version compares well with the Browder-
Novikov theorem (via the Pontrjagin character), but the homological
one is more suitable to generalization. (The "Poincare” duality
implicit in the theorem is implemented by A(M) constructed in
lecture one; it is an orientation class.) The reduction in K-theory is
a reflection of the Hirzebruch formula -- which boils down to the
whole (away from 2) surgery obstruction. Lij(e) = KOj(point). The
surgery exact sequence, with this identification, is the exact
sequence of the pair (M, point).

There are versions for manifolds with boundary: both rel @ and
not rel o. If one works rel o then one knows that the difference
between the Pontrjagin classes is canonically trivialized (by the
given homeomorphism) on the boundary, so the classification
involves KOO(M, aM)®z[1/2] = KOn(M)®Z[1/2]. For the not rel d
classification, there is no boundary condition on the tangent bundle,
so one obtains KOO(M)®Z[1/2] = KOn(M, aM)®Z[1/2]. For years I
have tried to propagandize for the notation S(M, aM) to stand for the
not rel o structures, because it fits better with both the
homological notation and the surgery obstruction theory. One
recognizes within the parentheses all of the things one gets to
change within a structure. Alas, the ingrained habit of reading pairs
as rel coming from first year homology theory is too strong and
people always seem to get confused if I try too hard.

Our main goal in this lecture is to sketch the following
theorem of Cappell and mine:

THEOREM: Let X be a stratified space with all strata and links of
strata simply connected and with all strata of even codimension.
Then there is an isomorphism

= ® KOowVv)® zZ[1/2]
V a closed stratum
of X

S(X)

The isomorphism is implemented by the Goresky-MacPherson
class discussed in the last section. Elements of S(X) are stratified
spaces with stratified maps to X that are homotopy equivalences in
the stratified category. A statified map is one that preserves OPEN
strata. In various problems one might want to deal with more
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general maps and homotopy equivalences. In that case one has to do
some work: this special problem seems to have a coherent answer.
Hopefully whatever other stratified problem one is confronted with
can be related to it.

Very evidently, this theorem has applications to circle and
torus actions. I will not make these explicit here.

wWhen X is a closed manifold this is Sullivan's theorem. And, as
for Sullivan's theorem there are non-simply connected
generalizations. It is relatively straightforward to obtain the
version where the strata are allowed be non-simply connected;
allowing this in 1inks changes the story much more extremely. After

all for orbifolds this has the effect of replacing KO by KOG where
the latter is a reflection of the fundamental group of the links of the
lower strata in the top one. All of this is discussed in my book.

Another point worth making is that the closed strata that
occur in the theorem are not necessarily manifolds. Consequently,
the fact that KO-homology enters is not cosmetic as it might seem
in Sullivan's formulation of the classification theorem. Indeed
there, one feels like the cohomological formulation is more natural.
(Indeeder: for smooth surgery there is no homological formulation
so that the surgery exact sequence becomes a sequence of groups and
homomorphisms, as it is in Top. There, the cohomological
formulation involving a mysterious infinite loopspace F/0 is all that
we have.) By the time we move on to stratified spaces, we are
forced calculationally, rather than just by reasons of mathematical

naturality, to homology.

One can weaken the condition of X having only even
codimensional strata to being Witt with all strata witt. (One can
even get a theorem without that, if one works rel the non-witt

strata.)

However, one cannot dispense with some such condition.
Consider the case of manifolds with boundary. The answer predicted
by the theorem would involve KO(W) x KO(aW) which conflicts with
what we know to be the case KO(W, aW). Of course both of these
"answers” fit into exact sequences with KO(W) and KO(aW) being the
other terms, which is not accidental, and to which the reader might
want to return at the end of this lecture.
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Another interesting case to think about is S(W, V) where V is a
locally flat submanifold of W, i.e. the space we are concerned with
is W, but we have stratified it with an extra stratum. The theorem
gives S(W, V) = S(V) x S(W) if the codimension of V is at least three.
(Actually, as stated the theorem gives this away from the prime 2,
but the same reasoning gives a more refined theorem that includes
this statement at 2.) This is equivalent to a classical theorem of
Browder, Casson, Haefliger, Sullivan, and wall, (BCHSW) and can be
found in Wall's book. It impiies that an embedding of V in W (in
codimension greater than 2) determines a well-defined isotopy class
of embeddings of any manifold homotopy equivalent to V into any
manifold homotopy equivalent to W.

In any case it points out the failure of the rational
characteristic classes extended to PL or Top to prevent embeddings.
Consider W = 52n*4 and V = SNxSN, where n is a multiple of 4. S(V)
= 72 detected by a Pontrjagin class. None of the nontrivial elements
(if n is large) can embed in W smoothly since the normal bundle is
not big enough to account for such a high Pontrjagin class, but the PL
embeddings are there.

We can view the theorem above on stratified spaces as being
the combination of two statements, each of which extend special

cases of the theorem.

Claim 1 (Decomposition): Let X be a stratified space with all links
of strata simply connected and with all strata Witt spaces. Then

there is an isomorphism

= @& SV, relsing(V)® Z[1/2]
V a closed stratum
of X.

S(X)

Claim 2 (Rel sing calculation): Let X be a stratified space with the
links of its singular set in the top stratum simply connected, and
with simply connected top stratum, then

S(X, rel sing(X)) = KOx(X) ® Z[1/2]

For those who know surgery theory, even without the simnle
connectivity of the stratum, the (integral) result is that S(X, rel
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sing(X)) is the fiber of the assembly map Hx(X ; L(e)) — Lx(111(top
stratum of X)) (i.e. fits into a homological surgery exact sequence).

Amazingly enough, all of the detailed geometry of the
singularities an the like is irrelevant to the calculation: just the
abstract homotopy type of the space (assuming the condition of
simply connected Tinks).

We will explain Claim 2 first.

Let us see first what's involved when X has a single isolated
singularity. This singularity has the form cM for an appropriate
simply connected manifolds M (In the PL case this is by definition;
for Top this follows from the theorem of Browder-Livesay-Levine,
generalized by Siebenmann in his thesis that puts well defined
boundaries on open manifolds with tame simply connected ends.) Let
W be the "closed complement” of the singular point.

S(X rel sing) = S(W not rel M) = KOx(W, M) ® Z[1/2]
= KOx(X, rel point) ® Z[1/2]. = KOx(X) ® Z[1/2]

If there are several components of fixed point the calculation
is similar. One has to keep track of the "reductions” in the K-theory.
Recall these were due to simply connected surgery obstructions:
when W has a single boundary component, the K theory is not
reduced. (There is no homotopy invariant bordism invariant
signature of manifolds with boundary.) When there are several,
these boundaries can have signatures, which are subject to only a
single relation: the sum of their signatures is zero. This ends up in
changing the guessed answer from KOx(X, rel all the singular points)
to KOx(X) (all but one of the boundary components, so to speak, still

leave a K(pt) around).

Note that if we did not have simply connected links then there
would be an obstruction arising from Siebenmann’s thesis and one
would have a divergence between Top and PL (not due to the Kirby-
Siebenmann obstruction). [Of course, we would also have to use non-
simply connected surgery as. well, but that would only affect the
answer: not the method of analysis.]

The rest of the proof requires with dealing with the case of
just a single positive dimensional singular stratum, and then
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inducting on the number of these. So let us assume that there is
just one singular stratum, a manifold we call 3.

There are three related ways to do this (the benefit of waiting
to explain proofs):

i) Do the PL case and compare.
1) Directly do the analogous geometry in Top
i11) Use "controlled surgery”

Let me explain the last first, since it's quickest, and then the
first since it's the most intuitive.

One can lecture forever about controlled topology. There are
many variants: The most familiar are controlied or e-controlled,
bounded control, and continuous control at =. In all cases one has an
old fashioned geometrical problem, say a homotopy equivalence
between spaces one want to make into a homeomorphism or an open
manifold one wants to put a boundary on or an h-cobordism one
wants a product structure on. However, one assumes some extra
data here, which one wants to require of the solutions, as well, and
that is the "control”. One has a control space Z with maps of all of
the initial data into Z, which one wants to "almost preserve” when
solving the problem. One does not insist that the map to Z be
preserved on the nose: that is "fibered topology” and a different
story entirely. One allows the fibers over nearby points to
intermingle (or maybe points a uniformly bounded distance apart --
interesting for noncompact metric spaces) or something like that.
For discussions, see the beginning sections of Quinn's papers,
Chapter nine of my book, or Ferry's forthcoming CBMS lectures on .

homology manifolds.

Since 2 is an ANR we have a map X-2 —s ¢'2 (where ¢'S denotes
the open cone on Z). The idea is to set up an isomorphism

S(Xrel3) = SC(X-3 1 ¢'3). (%)

The control here is over c'X. The whole difficulty is getting
control here as one goes to oo, since one can always rescale the cone.
The structure at e reflects the fact that the map X'-2 — X-3 given
by a stratified homotopy equivalence rel 2 is not just a proper
homotopy equivalence: it extends continuously when one glues X on.
This is the "continuously controlled at =" variant. It turns out that
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any version of control would work for setting up this isomorphism
—-- but now that the continuously controlled version is available it is
the most efficient for this problem.

Now one invokes the surgery exact sequence!l®:

SC(X-2 1 ¢'2)®Z[1/2] = Fiber (KOy(X-Z) — KOx(c'Z)) ®Z[1/2]

KOx(X) ®7z[1/2]

IR

We have used the identification of the controlled surgery group
with Hx(c'Z; L(e)) and the latter with KOx(c'Z)) away from 2, in the
first line. One also has to verify that the surgery obstruction map is
the boundary map in the long exact sequence of a pair!7, but this is
also quite easy from general machinery. (By the way, (1) it's easy to
jimmy this argument to get the correct integral calculation and (2)
one only uses the fact that 2 is a finite dimensional ANR, not a
stratification of 2 for this argument. However, for not rel 2
classification, one seems to need 2 to be somewhat nice to even say
what spaces the Z"s arising in the structure set should be allowed

to run over.)

Also, one should relate the element of KOx(X) in Witt cases
with the A-class of the previous lecture. This is also not that hard
and follows from tracing carefully through the definitions.

Now let us turn to approach i) and begin by working in the PL
category. (Inverting 2, we don't have to worry about the Kirby-
Siebenmann obstruction.) One drawback with this approach is that
in PL one has to work with codimension at least 6 because of low
dimensional topology difficulties: If M and M are smooth 4-
manifolds the cones ¢'™M and c'™M" are PL equivalent iff M and M are
diffeomorphic. Moreover, crossing both of these spaces by any other
space (to increase dimension) will not produce any new PL
isomorphisms. Links are well defined. So really one should work

16 Following Quinn's thesis, I am always viewing surgery exact sequences
"geometrically” i.e. as statements that certain spaces whose homotopy groups we
are interested in is the fiber a surgery obstruction map between a space of normal
invariants and a surgery space. Similarly, homology groups are homotopy groups of
appropriate spaces (e.g. the geometric realization of the singular chain complex).
In practice all of these statements boil down to long exact sequences.

17 For noncompact spaces our homology is always locally finite or Borel-Moore
homology. Thus, KOy (X-2) = KOx(X,Z) = KOx(X/Z).
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with PL pretending that Tow dimensions behave as if surgery held for
them, and then compare Top to that thing.

But we'll still oversimplify and assume we're genuinely PL and
just that the codimension of X in X is high. Now the analog of the
isomorphism (%) is the following more complicated description of
S(X'rel ) (recall the notation: W is the closed complement of = and
M is its boundary; M can be viewed as a block bundle over 3 with
fiber L, the Tink of a top simplex):

S(X rel 2) = elements of S(W not rel M) together with a 1ift of
the o element in S(M) to the space of sections of a block

bundie T(E(SLIE). (%)

The element of S(W not rel M) is obvious enough. What is this
block bundle and associated section of it? In less fancy words, we
are saying that the structure on W must be given on M the structure
of a block bundle over Z. A block bundle over X can be thought of as
being given over each simplex A of I by a manifold homotopy
equivalent to AxZ (or better to 1~ 1(A), where T is a projection
corresponding to the original given block bundle structure on M over
%), i.e. an element of S(AxZ). This is exactly a simplex in the A-set
description of S(L); in other words what one has specifically is a A-
section of the block bundle over Z, which over a simplex A is S(11~

1(A)) (= Maps(A: S(L)) noncanonically), as advertised.

Now the point of blocked surgery (see [Q1, BLR, CW2]) is that
blocked structures can be studied just as effectively as ordinary
structures. Basically one has (always using K-theory for away from
2 integrally correct L-functors because of our desire to express our
final answers in terms susceptible to re]atmg to a prlom

invariants):

T(E(S(LIZ). = TE(KOLNE). — T(E(KO(point)L3).

Now T(E(KO(L)XZ) = KO(M). (A vector bundle over a bundle is a
compatible family of vector bundles over the fibers -- which can be
expressed as a section of bundle of collections of vector bundles.)

We can also identify
T(E(KOT(pointZ) 2 KOTI(Z) = KOg+1(Z) = KOx-1(Z).
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What does this correspond to? Recall the projection formula
from lecture one:

Proposition: If f:M —s Z is a PL block bundle with no
monodromy!8 and fiber L, then fxA(M) = sign(L)*A(Z).

In other words, the we know what happens to the A class on
the outside in KOx(X-Z) when we take o and push it down to KOx-
1(Z) -- it is identified with sign(L)*A(Z). Therefore, if we lTook at
the difference A(X) - A(X') for stratified homotopy equivalent
spaces rel 3, we have the vanishing in KOx-1(Z). Thus, we have an
element of KOx(X). We lose a KO(point) since we started with a
structure on M, so the signature (i.e. push forward of A to KO(pt)) is
the same for M' and M automatically, i.e. not as a consequence of the
block structure.

With this approach, one then must do a careful induction up the
strata, even to get the PL result. One has to be careful with the
formulations because we do not yet have a formula for the
pushforward of A to the base of a "stratified block bundle”. One just
needs though some homotopy invariance properties of such a
formula, which are quite easy to get. On the other hand, in the next
lecture we will see that when the base and all fibers are even
codimensional spaces, there is a formula, due to Cappell and

Shaneson.)

The topological result follows from the PL result because one
can see that the end of X-2 over X is a "surjective tame end with a
trivial "local fundamental group”, so that one can put a controlied
boundary on X-Z, and on the inverse image of each A of X in that
controlled 3, giving a block structure on that 8. (See Quinn, also
Anderson-Hsiang for an earlier more direct but less conceptual

approach.)

Finally, we come to approach ii). This is based on the theory of
"manifold approximate fibrations”, extensively studied by Chapman,
Hughes, and Hughes, Taylor, and Williams.

18 The deviation of this formulas correctness in the presence of monodromy can be
worked out and does not contribute here. In any case, if we assume the pure strata
are simply connected, then there is no monodromy.
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A map ¢ M — N is a MAF if M and N are manifolds and the
homotopy lifting property for maps of polyhedra into N almost holds:
i.e. holds up to arbitrarily small deviation. Thus a CE map is a good
example of a MAF. The main result is that MAFs can be classified in
terms of sections of a bundle associated to the tangent bundle of
structures on a "local germ”. (¢~!(any open ball) is the same, and is
the “local germ”.) This result is a far reaching generalization of
Siebenmann’s theorem that a CE map between manifolds is
approximable by homeomorphisms. These structures can be studied
by surgery theoretic methods (especially stably).

The way the MAF theory enters is via the following result:

THEOREM (Teardrop neighborhood theorem [HTWW]): Every
neighborhood of X in a manifold homotopically stratified space
contains a smaller neighborhood that can be given a well-defined
structure of a MAF over ZxIR.

In other words Germ neighborhoods including X «— MAFs over
ZxIR. In the smooth setting one even has a fiber bundle over IxRR.
The tubular neighborhood maps to X by projection and to R by
distance to X ("radial distance”). The theorem says that in general
one can do the same thing, but not with all points having the same
inverse image (fiber bundle) but with all little open balls having the
same inverse image (approximate fibration).

The map from MAF's over ZxIR to neighborhoods goes by gluing
2 onto a MAF: the MAF is the deleted neighborhood of Z. (The
teardrops are visible in a picture of convergent sequences of points
in a topology for the union MAF U Z: One sees Z cry.)

This result gives a pretty geometrical picture of the
neighborhoods and can be used to recover all sorts of classification
results by using MAF classification (which is more in the spirit of
Anderson and Hsiang). This is somewhat more clumsy than approach
i), but has some advantages. Probably the most important virtue is
that this analysis is correct at the space level, i.e. for parametrised
families of neighborhoods, etc. and can be used for studying spaces
of homeomorphisms of stratified spaces.

Bruce Hughes has extended all of this to a stratified teardrop
neighborhood theorem and has developed a theory of SMAF's with
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some nice applications to stratified space theory such as a very
general local contractibility of homeomorphism spaces theorem.

This is all I want to say about claim 2 (the rel sing
classification theorem). Now I'll just say a couple of words about
claim 1 (the decomposition theorem). .

As before, Tet us just think about the 2 stratum case and also
assume we are PL. A little reflection on (%) makes us realize that
we should try to study the problem of "base change”

Problem: Suppose one has M —s 2 a block bundle and a homotopy
equivalence f:2 — 2. Can one homotop the composite M — 3 —3'
to a block bundle map.

We want to show that under our Wittness conditions this is
always possible and that moreover there is a 1-1 correspondence
with the block structures over 2 and those over 2.

Again, the projection formula gives an obstruction which
blocked surgery implies is the only one (assuming no monodromy and
simple connectivity!® of L). According to the projection formula
sign(L)A(Z) can be computed from A(M), and if the composite were
homotopic to a block bundle map, so would sign(L)A(Z'). In other
words, a necessary condition for base change is that

sign(L)A(Z") = sign(L)f=A(Z)

Now, if we are in the Witt case then L is either odd
dimensional or, if L is even dimensional, there is no middle
dimensional homology. In other words, sign(L) is canonically 0. IH
allows one to extend this argument over an induction.

Actually, once one has IH, and the A-classes, it is not hard to
argue more directly. One can always filter S(X) in terms of strata
and get relative terms isomorphic to S(V rel sing (V)). This can be
formalized as a spectral sequence. Essentially having the A classes
defined to begin with gives a map S(X) —s S(V rel sing(V)) for each
closed stratum. This gives a collapse of the relevant spectral

sequence and a calculation of the E* term, e.g. S(X).

19 The rep]écement theorems for group actions due to Cappell and me are the
results of cases of base change with non-simply connected fiber.
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Final Remark: It turns out that for general stratified space X there
is a characteristic class living in an appropriate cosheaf homology
group H(X ; LBQ) where LBQ is a cosheaf of surgery spectra locally
generalizing the groups of Browder and Quinn. In terms of these
there is a nice surgery theory, etc. Once one has all these, the main
result of this lecture could be phrased as a calculation (away from
2) of LBQ of 2 space with even codimensional strata and simply

connected links.

On the other hand, proving the general result ends up using the
geometry that we had to do for this particular case anyway.
Formally deducing the theorem from the general machinery would
have been very efficient, but would have obscured all of the ideas.
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LECTURE FOUR: Toric Varieties and Lattice Point Problems

The motivating problems in this work are extremely concrete.
They concern lattice points inside convex lattice polytopes. That is,
we take a finite set of lattice points in ZN < RN and consider its
convex hull K.

One question we can care about is the number of Tattice points
inside of K. Our obvious first approximation is vol(K). This is.not
quite correct even in one dimension: #{veZ |a<v <b}=b-a+ 1. In
two dimensions, we have

PICK'S THEOREM: The number of lattice points inside a planar
convex lattice polyhedron K = Area(K) + 1/2 "Perimeter” + 1, where
the "length” of an edge is 1 Tess than the number of lattice points on

that edge.

In higher dimensions, one wants explicit formulae. In
dimension three one would expect there to be contributions from
faces and edges. The contribution of an edge can very well involve
the angte of the faces coming out of it... although nothing like that
arose in Pick’'s theorem.

A general theorem of Erhart asserts that if r e N then the
number of lattice points in rK is a polynomial pk(r). He also
conjectured (and MacDonald proved) that the number in the interior
of rK is (=1)Pp(-r). This turns out to be a simple consequence of
Serre duality.. In any case, we call p the ERHART POLYNOMIAL of K, and
we would Tike to compute its coefficients.

Another, deeper problem is to find a formula for summing the
values of a function f over the lattice points in K. This is of
interest even in the case of an interval, and the nontrivial answer is
the famous EULER-MACLAURIN FORMULA (valid at least for polynomials):

b b oo
STV = f(x) + 1/2[f(@a)+f(D)] + = (-1Bpr/rilf(r=1)(h) - £(r=1)(a) )
a a 2

where Br is the r-th Bernoulli number. In other words the

deviation of the integral to be the sum is given by n explicit infinite
order partial differential operator evaluated on the boundary faces.
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A couple of years ago, by now, Cappell and Shaneson, building
on the work of many other mathematicians, especially algebraic
geometers, answered these questions. In this lecture, I would like
to sketch or motivate some of the ideas that entered this work.
Because of the place that this area occupies, as we shall see, at the
crossroads of combinatorics, algebraic geometry, symplectic
geometry, and topology, it is clear that many more beautiful
theorems remain to be proved.

I should point out before beginning that there are several fine
expository accounts of algebraic geometric views of this general
subject (Danilov, Oda, Fulton) and a recent nice symplectic book by
Guillemin. There will necessarily be some overlap with these
accounts, but I will also skip over many things that are covered
there. I apologize both to those whose work [ am slighting (or worse)
and to those who in getting their first acquaintance in this very
brief lecture will be misled by getting much too small a glimpse at
the area. '

The first large step in the solution of this problem is to
associate to each polytope a projective variety whose Todd class
encodes the Erhart polynemial. Thus we introduce the heroes of this

story, the TORIC VARIETIES.

Topologically the picture is quite simple. The space X(K) is of

the form TxK/~. Each face F of K is defined by a hyperplane in ZN,
i.e. by a primitive integer vector vfF-w < C. We have a circle

IRVF/ZVF inside of T. Identify points in TxF (t,f) ~ (t'f") if f=f" and
t~1t' e RVF/ZVF. Points on codimension two faces will have
identifications along T2s, etc. It is easy to see that this is a
manifold outside a set of codimension at most 4, i.e. that the
codimension one faces correspond to nonsingular points in the toric
variety.

Note that the fixed set of any subtorus is another toric variety.
The fixed sets for the whole group correspond exactly to the
vertices. Thus, the number of vertices = X(toric variety).

Clearly an interval in IR corresponds to S2. A square or
rectangle in the plane then corresponds to S2xS2. An isosceles
triangle gives CPZ; indeed an n-simplex gives CPN. On the other
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hand, your random polygon in the plane gives a nonmanifold (actually
an orbifold).

The order of the local fundamental group at the isolated
singularities (which must correspond to vertices) is simply det(vF,
VE') = # (Z2/<VF, VF'>) as one sees by playing around with the local
picture. In general to get a manifold it is necessary and sufficient
that each vertex lies on exactly n faces, and the associated

primitive vectors generate ZN. Guilleman calls such polytopes
DELZANT because of Delzant's theorem below.

[t is not too hard to see all of these spaces as algebraic
varieties (and hence as symplectic spaces, whatever that would
mean in the singular case) by an explicit gluing construction: 1
leave it to the reader to guess how this goes or to check with
Danilov, Oda, or Fulton. (Hint: you only need monomials to glue
coordinate charts together. As another hint: Explicitly work out the
case of CP2)) These form a nice explicit class of interesting spaces
where one should be able to compute everything one ever wants. For
instance, it is a worthwhile exercise to compute the cohomology
algebra of X(K).

The algebraic geometric view allows us to consider such
objects as holomorphic Tine bundies, their holomorphic sections, and
the whole Riemann-Roch game. In the symplectic view, where one
has a symplectic manifold with a symplectic automorphism group,
there is the apparatus of moment maps, geometric quantization, etc.
And, needless to say these ideas have been known to interact with

each other.

Remark: Actually, for many purposes it is best to work in the dual
lattice, and associate toric varieties to somewhat more general
objects known as fans. In the algebraic case the "torus” (C*)N acts.
In the simplectic case, the torus action is Hamiltonian. Although not
strictly speaking necessary, I should mention a few words about
torus actions in symplectic geometry.

If (M, w) is a symplectic manifold, and G acts symplectically,
one can try to build an equivariant map M —s Lie alg(G)*, where G
acts on the dual lie algebra by the coadjoint action. The map should
have the property that for any one parameter subgroup of G, when
you Took in TM at the tangent vector to the curve and se w to get a
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dual one form that should integrate up to an additive constant to the
map. This is always possible by a theorem of Marsden and Weinstein
if G is semisimple, and for G a torus if HI(X) = 0. (One needs this for
integrals to be path independent.) The map is called the MOMENT MAP.

Note that if T is a torus, the coadjoint action is trivial, so the
moment map actually factors through M/T. (This corresponds to the
idea in basic physics that, viewing phase space as a symplectic
manifold, symmetries give rise to conservation laws. The moment
map in the case of translational symmetry gives momentum in R3,
while for rotational symmetry one is led to angular momentum. The
moment map tells you about what quantities are preserved.)

The CONVEXITY THEOREM of Atiyah and Guillemin-Sternberg
asserts that the image of the moment map for a Hamiltonian torus
action on a compact symplectic manifold is necessarily convex.

Note that because of the moment map, the smallest

dimensional symplectic action of TN must be on a 2n-manifold.
DELZANT'S THEOREM is that the image of the moment map on a smooth
symplectic manifold is always a Delzant polytope. The action is
necessarily symplecteomorphic to the action constructed directly
from the polytope as above. In any case, we are interested in the
singular toric varieties as well.

The connection between lattice points and toric varieties
comes via sections of certain holomorphic line bundles. The Key
point to have in mind is that associated to codimension one
subvariaties (called DIVISORS, in algebraic geometrize) one has a
complex line bundle. (We topologists know that any codimension two
oriented submanifold is the transverse inverse image of CPN~T in
CPN for a suitable map into CPN for n large, by the Pontrjagin-Thom
construction, and those homotopy classes correspond to complex line
bundles. This is a more precise version of this.) Again most
elementary algebraic geometry books will explain this: see e.g.
Griffiths and Harris.

The divisors in our toric variety that interest up correspond to
the faces. Each face in the polytope gives us a line bundle OF over
the toric variety X(K). If we look at the polytope defined by the
equations {x| x-VF < kf} we can some polytope somewhat related to
K. The theorem of, I believe, Danilov and Khovanskii, is
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THEOREM: The number of lattice points inside of {><| X *VF < KF}
is the number of holomorphic sections of ® OFKF over X(K).

Essentially a basis for the holomorphic sections can be
specified in terms of sections vanishing at appropriate lattice
points.

Now the Hirzebruch Riemann-Roch theorem?© computes the
holomorphic Euler characteristic
S(=1)Kdim HK(X(K);® OFKF) = Td U ch(® OfKF)
X(K)

By definition, HO is the holomorphic sections, what we are
interested. General algebraic geometry informs us that for kg's all
large the higher cohomology groups vanish. But actually in this case,
the other terms drop out automatically.

Corollary: # (ZN N {x| x:VvF < kf}) is a polynomial in the kF's.

This strengthens Erhart's theorem mentioned above. One also
sees that computing the Erhart polynomial is essentially equivalent
to computing the Todd class of X(K). One can also give a
sophisticated proof of Pick's theorem along these lines.

Hirzebruch's classic book tells us a certain amount about the
connection between L-classes and Todd classes in the smooth case,
and Cappell and Shaneson are definitely inspired by his formulae.
Much of their work was devoted to the L-class side. We will turn to
some of their ideas in a moment.

However, first as an amusing interlude, et me mention a very
nice theorem of Khovanski which gives a solution to the lattice and
Euler-MacLaurin problem for the case of smooth toric varieties (for
which the Todd class can also be computed inductively quite easily:
the faces correspond to subtoric varieties with controlled normal
bundles (see [F1, pp109-110] for instance)). One almost sees a

Todd class before one's very eyes.

20 This theorem was the main result of Hirzebruch's book. He proved the
signature theorem along the way to proving this. There are other subsequent more
perspicacious proofs by Grothendieck (the birth of K-theory) and also using the
Atiyah-Singer index theorem.
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THEOREM: Let K be a Delzant polytope. Let Kn be the polytope
obtained by moving all of the faces outwards by h (h is a vector with
one component for each face). If f is a polynomial, then we have

> f(n) = T(d3/3n)f f(x),
nekKnzn Kn

evaluated at h = O, where T = x/(1-e7X) is applied to each d/3hj in
turn, and though of as an infinite crder differential operator.

T 1s of course reminiscent of a Todd class, and the entry of the
faces makes sense as they are the relevant divisors. If the
dimension is one, this is the usual Euler-MacLaurin formula. It is a
nice calculus exercise to see that this boils down to a sum of
infinite order differential operators integrated over the faces of K
(including K itself as the "dominant terms").

The theorem is proven first for another class of test functions
besides the polynomials. One first verifies the theorem for the

interval (-e=, n] and the test function of the form e~3aX, Here both
sides can be computed explicitly. Differentiating both sides with
respect to a, gets one polynomials. The functional equation T(-x) =
e™XT(x) and Taylor's theorem f(x+1) = ed/dXf(x) gives one intervals
of the form [n, =), and therefore all intervals. From there one used
products and changes of variables to get half spaces and quarter
spaces, etc. In a Delzant polytope, locally all the faces are faces of
a cube by an element of SLpn(Z), which one uses to finish the
argument. Details can be found in Guillemin's book.

The Cappell-Shaneson approach to the Todd class problem is
based on the idea that it is not so hard to get a formula in the
smooth case, so that one can get the formula in general by using a
resolution of singularities by a smooth toric variety. If one has
suitable projection formulae and has guessed the formula, one can
verify it by going downwards. As I understand it, they are not using
an explicit resolution of singularities and computing from it. That
can sometimes be done, see the work of Pommersheim (which
represented a very substantial three dimensional calculation, with
interesting connections to number theory, etc.) What they do is
obtain projection formulae for L-classes and a number of other
algebraic geometric invariants, and play these off one another.
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The way they approach integration formulae is to consider
families of toric varieties over a given one. To integrate a
monomial over something, over each point in the polytope place a
parallelpiped with appropriate sides whose lattice point count is the
given monomial. These "assemble” to another higher dimensional
lattice polytope, which they can analyze. However, probably there is
another approach where one is computing an “equivariant Todd
class"?land a generalized Riemann-Roch theorem would give the
Tesult by analysis similar to that in the lattice point count problem.

Before getting to the projection formula in general, let's
consider the case of a map ¢: M — X with one non-regular point, i.e.
one has a single point * in X in the complement of which ¢ is a fiber
pundie. Write M =M1 UM2 where M1 lies over a neighborhood of
and M2 Ties over the complement of %. By Novikov additivity, sign(M)
= sign(M1) + sign(M2). Note sign(M1) = sign(M1/d) where the latter
is thought of as a Witt space and can be thought of a local invariant
of ¢ at the singular point *. (Note, it is not ¢~ 1(x) for your typical
- nice maps.) If signature were multiplicative for fiber bundles over
manifolds with boundary, then one would obtain:

sign(M2) = sign(F) - sign(X - %) = sign(F)sign(X).
and finally, the formula:
sign(M) = sign(F)sign(X) + sign(¢e~T(St(x))/3)sign(*),

where St(x) = star of (%) = regular neighborhood. This formula can
easily be generalized to the case where Im ¢ is just a submanifold S:

sign(M) = sign(F)sign(X) + sign(¢~T(St(%))/3)sign(S)

In other words, one looks at the "normal bundle” to the Tower
stratum, and takes the inverse image of a generic fiber, and then
makes that into a Witt space, and takes its signature.

The Cappell-Shaneson projection formula asserts that this is
correct if one has a stratified map between even codimensional

21 this is strongly suggested by comparing the algebra in Shaneson's ICM talk with
the calculations if equivariant homology of simplicial toric varieties in [GKM]
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spaces and there is "no monodromy over strata”. Note, that as above,
the strata involved in the map are more refined than the strata
involved in the space.

One subtlety is that it is not true that signature is
multiplicative for fiber bundles over manifolds with boundary. The
unit tangent bundle of S2 is cobordant to the disjoint union of two
Hopf bundles. One can see that the signature of this cobordism is
necessarily i (with suitable orientation conventions), which is not
sign(S1)sign(Some 3-manifold). However, a very small part of their
theorem asserts that this is correct when everything is even
dimensional?2z,

Note that the case of one stratum reduces to the case of a
point and inductive arguments if one collapses the boundary of a
regular neighborhood of S to a point.

Ultimately their theorem asserts:

THEOREM: Suppose ¢: X — Y is a stratified map between stratified
spaces with even codimensional strata23 and for which all the open
strata are simply connected?4 then

sign(X) = sign(F) - sign(Y) + > sign(e~ T(St(V))/3) - sign(V)
\

where St(V) is the Star of a vertex in a subdivision the top simplex
of the open dense stratum in V. V runs over the closed strata of X.

The proof uses intersection homology and algebraic variants of
cobordism ideas. Note also in the Cappell-Shaneson formula the key
correction terms sign(e~1(St(V))/d) - L(V) are exactly what came up
when we studied "bubble cobordisms"” in lecture one. As before, a
formula about signatures implies one about L-classes:

22 1f one turns this example into a stratified map there will be a codimension
three stratum. The target is still Witt, but not even codimension,

23 They assume these are Whitney stratified, but one can get by with a lot less, if
one studies their proofs. On the other hand, this suffices for, say, algebraic maps.
24Actually nc monodromy is sufficient. If there is monodromy, one can correct for
it, as in Atiyah's work on nonmultiplicativity of signature.
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P=(L(X)) = sign(F) - L(Y) + > sign(e~1(St(V))/3) - L(V)
vV

in Hx(Y). Also, one can jazz this up to study other signature related
invariants, because everything is true at the level of Witt classes of
self dual complexes of sheaves.

Remark: This formula is somewhat reminiscent of the
decomposition theorem of Beilinson Bernstein and Deligne for
algebraic maps. That theorem asserts that the push forward of IH
decomposes into a sum over strata of IH's with coefficients in
things that Took a lot like fibers. BBD has very significant
implications for calculations of homology, etc. (See [GM] for some
examples) One can prove from their work a similar formula @x(L(X))
= sign(F) - L(Y) + Z I(V,) - L(V) but t is not clear what the invariant
I(V,p) is. We will soon give the more algebraic geometric version of
the above decomposition formula.

Just for fun, I'd Tike to point out that one can combine the
Cappeli-Shaneson formula with the bubble quotient idea, and get an
interesting formula for signature.

PROPOSITION [CSW]: Let X be a space with even codimension strata

and suppose S acts nicely on X, then the fixed point set is a Witt
space2> If all monodromies of X are unipotent, the same holds true
for the fixed set. In this case, there is a formula: sign(X) =
2aF - sign(F), where af is a local multiplier depending on the action

near a generic point on the fixed point set.

In fact, aF is the signature of the local bubble. (The
monodromy is said to be unipotent if the characteristic polynomial
of all elements are (t-1)N. Unipotence works better for inductive
arguments than does trivial monodromy, because a "S-lemma" is true
for unipotence, but not for triviality.)

One can use this to redo some of the calculations of signatures
of singular hypersurfaces in [CS1].

237t actually is a space with a "rational stratification” with even codimensional
strata. The typical problem is that one can obtain rational homology manifolds as
fixed sets for circle actions on manifolds.
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N

More concretely, if we take the toric variety associated to a
polygon in the plane, then for almost any S! the fixed set consists of
exactly the vertices. The af's are all +1. We leave to the reader the
following interpretation of these signs: If you pick a direction
corresponding to a good circle, it'll be transverse to all the faces.
One can check that for exactly two vertices will these lines cross
through one face and out the other. (It'11 be a different pair of
vertices for a different toric variety.) This means that we get 2 +'s
and (n-2) -'s, and the signature is then 4-n which agrees (at least in
the Delzant case for which it is asserted, but correct as well for the
case "simplicial” polytopes, i.e. those which satisfy the face-vertex
condition in Delzant, but lack the determinant condition -- these
correspond to orbifolds) with the formula in Oda p. 132. Indeed, one
gets in this way a strange identity for simplicial convex polytopes
of any dimension.

NIce as the decomposition formula is, it has the disadvantage
that the terms in it, things like St(V))/9, do not have any algebraic
meaning. The way around this it to use a basic idea from
intersection theory, called deformation to the normal cone, a
construction which has been described as the algebraic geometers
substitute for the tubular neighborhood theorem. I recommend
Fulton's CBMS lectures [F2, p 13] for a quick account.

Let L(V) = L(V) - > sign(P(V,W)) L(W) be a modified L-class.
w<V

THEOREM: If T X — Y is an algebraic map, then assuming some
monodromy hypotheses, we have:

fxL(X) = sign(FIL(Y) + > (sign(Py ) - sign(F)sign(Py v)) L(W)

where Py r denotes the general fiber for the projectivised cone for

f=1(V) upstairs (mapping to V) and Pv,y is the corresponding fiber
for V downstairs, and F is the generic fiber of the map.

Moreover, the same is true for other characteristic classes
associated to invariants other than signature. These include
MacPherson's total Chern class, the Baum-Fulton-MacPherson Todd
class. The idea is to use deformation to the normal cone to replace

cobordisms.
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AS an exercise, under some hypothesis about how the normal
cone resembles the neighborhood of the subvariety (assumptions
which are, in general, false) prove the above formula for Euler
characteristic. It is a general "Radon-Hurwitz" formula.

The key formula that Cappell and Shaneson deduce from the
interplay between these formulae (together with known facts, like
the algebraic genus of any toric variety is 1) vis a vis toric
varieties is that T(X(K))26 = ZL(X(E)) where E<K. This formula, in
the smooth case, is in Hirzebruch, can now be used to reduce the
calculation of Todd classes to L-classes in general2’,

As a last hint for how to do the L-class calculations, let me
remind you that everything is known in the smooth case. Supl[pose
that K is a simplicial toric variety, then the singularities of X(K)
are orbifold singularities and one can approach caiculations of L-
classes from the point of view of the G-signature theorem as in
Hirzebruch-Zagier. In other words, one really studies the group
action on a (locally defined, at least) branched cover, branched along
faces where the "Delzant minor determinant” is not 1. For the
nonsimplicial toric varieties, the story is yet more complicated...

As for the explicit formulae that are obtained this way, I refer
the reader to the papers [CS 2,3, Sh]. It seems reasonable to hope
that both the specific calculations for toric varieties and the
general method of calculating characteristic classes will have many
applications in the future.
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On the cohomological dimensions of Coxeter groups
A.N.Dranishnikov

Abstract. We give an explicit formula for the virtual cohomological dimension of Coxeter

group vedrl' in terms of cohomological properties of corresponding panel complex X .
Math. Subj. Class. Primary: 20F32, 55M10, 57S30 Secondary: 16A60, 20J05,
51K10, 54E45

1. INTRODUCTION

Let V be a finite set and let I C V x V be a symmetric subset. The group I' given by
the following presentation

(Vo2 =1,(0w)™>) =1 Vv eV Y(v,w) € I;0 < m(v,w) = m(w,v) € Z)

is called the Coxeter group. The group I' together with its presentation is called Coxeter
system (I', V). Let F be the set of all non-empty subsets of V that generate a finite subgroup
of I'. Then F is a partially ordered set (poset) by inclusion. Then [6] F is isomorphic to
the poset of simplices of some simplicial complex K = K(T', V).

If an Eilenberg MacLane complex K(T',1) of a group T' is finite then the cohomological
dimension ¢drI' of the group I' with respect to an abelian group F' can be defined as a
maximal number n such that H?(X;F) # 0, where X is the universal cover of K(T,1).
According to the theorem of Serre if edrI’ < oo for a subgroup I' of the finite index of a
group G then the number c¢drI’ does not depend on a choice of I'. That number is called
the virtual cohomological dimension of G with respect to F' and is denoted by vedgT.

For every Coxeter group I' Bestvina has constructed a finite polyhedron B(T', F) such
that vedpl' = dimB(T, F) for sufficiently good F' [1]. Using his result we give a formula
for vedpT' for Coxeter groups in terms of cohomologies of Davis’ panel complex. As a
consequence we obtain that the logarithmic law ved(T'; X I';) = vedl'y + vedl's generally
does not hold for Coxeter groups. Nevertheless the logarithmic law holds if I'; = I';. So
this behavior of vcd is analogous to that of the covering dimension dim for ANR-compacta

[3]-

2. THE LOCAL COHOMOLOGICAL DIMENSION OF SIMPLICIAL
COMPLEX AND THE FORMULA FOR vedpl

Let K be a simplicial complex. We recall that the collection of all simplices in K contain-
ing a given vertex v forms a complex St(v, K) called the star of v in K and the collection of
~all simplices in St(v, K) do not containing v forms a complex Lk(v, K), called the link of v in
K. We denote by 8K the first barycentric subdivision of K. For every simplex o C K we
define the normal star nst(o, K) of o in K as a subcomplex of the star St(v(c), 1K) of the
barycenter v(o) of the simplex o in B K consisting of those simplices § whose intersection
with B1o consists of v(o). The normal link nlk(o, K) of o in K is the boundary of nst(o, K)
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i.e. the subcomplex of nst(o, K) consisting of all simplices having empty intersection with
(o). '

We are going to use the same symbol for a simplicial complex and for its geometric
realization.

Definition. The local cohomological dimension of a simplicial complex K with respect to
a coefficient group G is

ledgK = maz,cx{m | H™(nst(o, K),nlk(c,K); G) # 0}.

The global cohomological dimension [7] of a simplicial complex K over G is cdgK =
maz{m | H™(K; G) # 0}. Note that H™((nst(s, K), nlk(c, K)); G) = H™ (nlk(c, K); G)
and hence ledgK = mazoex{m | H™ *(nlk(c,K); G) # 0}.

These dimensions can differ from each other. For example, if K is a triangulation of
the join RP? x RP? of the projective plane with itself, generated by some triangulation on
R P2, then its dimensions over the integers and the rationals are cdzK = lcdzK = 5 and
lecdgK =4 and cdg = 0.

THEOREM 1. For every abelian group G and every finite-dimensional simplicial complex K
there is the inequality ledg K > cdgK. '

We denote by CK the cone over a simplicial complex K with the natural triangulation.

THEOREM 2. For every Coxeter group I' defined by a Coxeter system (T, V) there is the
equality vedrI' = ledpCK where K = K(T',V) and F is an additive group of field or the

group of integers.

Every r-dimensional complex K has a filtration Lo C Ly C ... C L, = K where L; =
Udimo=r—i nst(o, K). By induction we define the filtration Ly C L} C ... C L. = B(K, F)
for a given abelian group F. We define polyhedra L’ together with projections p; : L: — L;
such that p; is an extension of p;—; for every i. Define L] = L and py = id. Assume
that pi—y : Li_; — L;—; is defined. For every (r — i)-simplex ¢ we consider A(d‘) =
p;i21(nlk(o,K)). Let C(o) be an F-acyclic polyhedron containing A(c) and of the least
possible dimension. We attach C(c) to L)_, along A(c) and extend the map p;_; over
C(o) such that the image of C (o) — A(c) lies in nst(c, K) — nlk(c, K). Do that for all ¢ to
obtain p; : LT — L;. The resulting space L, is Bestvina’s complex B(K, F) of a complex K
with respect to a group F.

Note that the map p = p, : B(K,F) — K has the property that the preimage of every
normal star nst(o, K) is F-acyclic.

THEOREMS3 [1]. For every Coxeter group I defined by a Coxeter system (T, V') the following
equality holds vedrT' = dimB(CK (T, V); F) if F is a field or the group of integers.

PROPOSITION 1. For every simplex ¢ C K, H*(nlk(c, K); F) = H*(p~!(nlk(c, K); F) for
alln. ;
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PROOF: First, we define by induction the notion of a star-subcomplex N of K. The
empty set is a star-subcomplex. A union of some normal stars of (r — 7)-dimensional
simplices nst(o, K) form a star-subcomplex of K if all pair wise intersections of that nor-
mal stars are star-subcomplexes. Induction, the Mayer-Vietoris sequence and the fact that
H*(p~(nst(o,K); F) = 0 imply H*(N;F) = H*(p~!(N); F) for all n and for every star-
subcomplex N C K. This argument is well-known and sometimes is called the combinatorial
Vietoris-Begle theorem.

PROPOSITION 2. dimB(K,F) = lcdpK

PRrOOF: Let ledpK = n. Hence H* !(nlk(o,K); F) # 0 for some simplex o in K. By
Proposition 1 we have H*~}(p~!(nlk(o, K)); F') # 0. Therefore, H*}(A(c); F) # 0. Then
by the construction C(o) is at least n-dimensional. Hence dimB(K, F) > n.

Now let dimB(K,F) = n. then by the construction of B(K, F) there exist a simplex
o C K with H*'(A(¢); F) # 0. Then by Proposition 1, H* 1(nlk(c,K); F) # 0 and
hence ledp K > n.

Now the proof of Theorem 2 follows by Proposition 2 and Theorem 3.

PrROOF OF THEOREM 1: Assume that ¢cdpK = n. Consider Bestvina’s complex p :
B(K,F) — K. Proposition 1 implies that H*(B(K, F'); F) # 0 and, hence, dimB(K, F) >
n. Proposition 2 implies the proof.

PROPOSITION 3. Let CK be a cone over K then ledpCK = maz{ledpK,cdrK + 1}.

PROOF: For every simplex 0 C K C CK the normal link nlk(s, CK) is homeomorphic to
the cone over the normal link nlk(o, K) and, hence, is cohomologicaly trivial. The normal
link of the cone vertex v is K. The normal link of any other simplex ¢ containing v is
homeomorphic to nlk(d, K) for some simplex 4. If edr K < lcdpK then ledrCK = ledrK
by the above and hence the formula is true. If 7 = ¢dp K > ledpK then ledpCK =141

and the formula is true again.

3. APPLICATIONS OF THE FORMULA FOR vcdpl

THEOREM 4. An every Coxeter group I' has the following properties:
a) vedgl’ < vedgl for any group G,
b) vedz, T' = vedqI' for almost all primes p,
c) there exists prime p such that vedg,I' = vedl’

PROOF: a) Let vedgl’ = n. By Theorem 2 there exists 0 C CK such that

H* 1(nlk(c,CK); Q) # 0. The Universal Coeficient Formula implies that the group
H™"Y(nlk(o,CK);Z) has a nontrivial rank. Hence, H"* !(nlk(c,CK);G) # 0 and there-
fore, ledgC K > n. Theorem 2 implies that vedgI’ > n.

b) Let again vedgl’ = n. Since we have only finitely many simplices § C CK and
finitely many m < dimC K, only finitely many prime numbers are involved in the torsions
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of H™(nlk(6,CK);Z). Hence for almost all prime p, H™(nlk(8,CK);Z,) = 0 for m > n.
-Therefore, ledz, CK < n. That together with a) proves b).
c) Let vedl' = r, then by Theorem 2 there is a simplex ¢/ C CK such that
H™Y(nlk(¢',CK);Z)) # 0. Hence by virtue of the Universal Coefficient Formula,
H™Y(nlk(c',CK);Z,) # 0. Hence, ledg, CK > r and hence, lcdz, CK = r. The The-
orem 2 implies that vedg, I' = vedT.

COROLLARY 1. The equality ved(T' x T') = 2vedI" holds for every Coxeter group.
COROLLARY 2. A Boltyanski’s compactum can not be the boundary of a Coxeter group.

PROOFS: Since the formula vedpI' x IV = vedpD +ved FI' holds for every field F, Theorem 6

b) implies the proof of Corollary 1. The characterizing property of Boltyanski’s compactum
B is dimB x B = 3 [4]. Then in view of the following theorem Corollary 2 follows.

THEOREM 5 (BESTVINA—MESS) [5]. Let OT' be the boundary of a Coxeter group T then
for every abelian group G, dimgOl' = vedgl® — 1.

We recall that a compactum X has the cohomological dimension dimgX < n if for every
closed subset A C X the relative Cech cohomology group A™+1(X, A; G) is trivial [3],[4].

COROLLARY 3 [2]. Every Pontryagin surface I, is the boundary of some right-angled
Coxeter group.

PROOF: Pontryagin surface II, is defined by the properties: dimgll, = dimg II, =1 for ¢
relatively prime with p and dimlIl, = 2. Hence dim(Il, x II;) = 3 if p and q are relatively
prime. If we take the Moore complex M(Z,, 1) with an arbitrary triangulation K then by
Theorem 2 vedpT = ledpCK for the Coxeter group I' generated by K. By Proposition 3
ledpCK = maz{lcdrK,cdrK + 1}. It is easy to see that ledp K = 2 for all F. Note that
cdpK =2 if F=Z, and cdpK =1 for F = Q,Z,. Hence vedpl =2 if F = Zg4 or Q and
vedl' = 3. Theorem 7 implies that the boundary 8T is a Pontryagin surface II,,.

We recall that the boundary of the Coxeter system (T, K) is the visual sphere at infinity
of CAT(0) cubical complex T associated with (T, K) [6].

Recently M. Davis found a formula for cohomology of Coxeter groups [8] and now the
formula for ved can be derived from his result.
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Transitivity in Negatively Curved Groups
Eric M Freden

ABSTRACT. Let G be a negatively curved group. This paper continues the classifica-
tion of limit points of G. A probability measure is constructed on the space at infinity and
with respect to this measure almost every point at infinity is shown to be line transitive.

Introduction

Let M™ be a closed riemannian n-manifold with all sectional curvatures —1. Then
71 (M™) is a discrete Mdbius group acting properly discontinuously on the universal cover
H*® and conformally on the boundary S®~. Since the action of m;(M™) is cocompact,
every z € S™~1 is a point of approximation (conical limit point) for m;(M?") (see 2.4.9 of
[Nicholls] for instance). Furthermore, I' (any Cayley graph for 7;(M™) ) is quasi-isometric
to H™ (see [Cannon]) and so 9T, the boundary at infinity of I, is homeomorphic to S*~1.
Therefore every = € OI' is a point of approximation.

Weakening the above hypotheses, assume M™ is any hyperbolic manifold. Let z €
S™~1 and suppose L C H" is an oriented hyperbolic line with z as one endpoint. If for any
b € H" there exists a sequence of distinct deck transformations {g,} C G = 71 (M™") such
that the images g, L come arbitrarily close to b, then z is called point transitive. If for any
oriented hyperbolic line L' there are distinct g, such that g,L — L' preserving orientation,
then z is line transitive or a Myrberg point. Clearly, every Myrberg point is also point
transitive, but the converse is false in general (see [Sheingorn]). Myrberg [Myrberg] first
showed that for n = 2 the set of line transitive points has full Lebesgue measure in the
boundary at infinity. More recently, Tukia has proved that in all dimensions the collection
of conical limit points that are not Myrberg points is a nullset for any conformal G measure
[Tukial.

Let G be any negatively curved (Gromov hyperbolic) group with Cayley graph I and
space at infinity OI'. In [Freden], the author showed that every z € 8T is a point of
approximation. In this paper, almost every =z € OI' is shown to be line transitive. The
strategy is based on an old idea due to Artin. In [Artin], Artin showed that the line
transitive points for the modular group SL(2,Z) are exactly those real numbers whose
continued fraction expansion contains each finite sequence of integers. The continued
fraction of a real number { can be obtained as the cutting sequence of a geodesic ray
R C H™ tending to £ (see 5.4 of [Series]). In the language of geometric group theory, a
cutting sequence for R corresponds to reading the label of an equivalent geodesic ray R’
in the Cayley graph for SL(2,Z). Since SL(2,Z) ~ Zx * Z3 is nearly a free group, cutting
sequences and labels of geodesic rays are very similar [Series].

The concept of a geodesic ray containing each finite geodesic subsegment is somewhat
similar to the idea of a normal number. Recall that a real number n is normal to base r
if each block By of k digits occurs with frequency ;lk— It is well known that almost all
real numbers are normal to every base (chapter 8 [Niven| or 9.3-9.13 in [HW]). Hedlund
and Morse generalized a similar concept to strings of symbols in their paper [HM]. Given
a finite set of generating symbols and certain concatenation rules they considered infinite
sequences containing a copy of every possible finite string of symbols. Such sequences were
labelled transitive. Yet a third related subject concerns Markov chains, see [Feller]. A
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state (symbol, outcome, event, etc) is persistent if with probability one, that state will
recur (infinitely often) within the chain. This paper links all of the above.

Example : Suppose F' = (a,b) is the free group of rank 2. Embed the associated Cayley
graph in H2. Each geodesic ray represents a unique point at infinity. Let w be a freely
reduced word of length % in the generators. Emulating the counting estimate of [Niven],
consider the ratio of the number of rays (from 0) of length nk containing w to the total
number of rays of length nk. As n — oo this ratio tends to 1. The conclusion is that with
respect to a certain natural (Cantor) measure, almost every ray contains w, and in fact
infinitely often. By a transitive ray, I mean a geodesic ray from 0 that contains every
finite geodesic word as a subpath. Theorem 1.4 below shows that any point represented
by such a ray is line transitive (the proof of theorem 1.4 in the case of a free group is much
simpler than what I have written). The set of all geodesic segments form a Markov chain
with four states: a,b,a™!,b71. A given state can be succeeded by any state other than its
inverse, with probability % In the language of [Feller], each state is aperiodic, persistent,
and has finite mean recurrence time, i.e. all states are ergodic.

In the case of a generic negatively curved G, relators (of perhaps arbitrarily long
length) destroy the Markov aspect and vastly complicate the counting process. Showing
that most points at infinity can be represented by an actual geodesic transitive ray seems
to be difficult in the general case; in fact it may not be true! The difficulty is avoided by

considering quasigeodesic rays.

. The full text of this paper has been published in Ann. Acad. Sci. Fenn. volume 21,
issue 1, pp. 133-150. It is available for electronic retrieval as a dvi or postscript file from
either of the following addresses:

http://geom.helsinki.fi/Annales/Anna.html
ftp://geom.helsinki.fi/pub/Annales/Vol21
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Circle Actions on Homotopy Complex Projective Planes

S. Kwasik and R. Schultz

One consequence of M. Freedman’s work on topological 4-dimensional surgery is that
every closed 4-manifold with the homotopy type of the complex projective plane CP? is
homeomorphic to either CP? or another manifold Ch that is often called the Chern man-
ifold. There are several ways of distinguishing these manifolds topologically. For example,
the generator of Hy(Ch;Z) ~ Z cannot be represented by a locally flat embedding of S?
and the standard inclusion $% ~ CP! C CP? implies the opposite conclusion for CP2.
Another difference is that the unitary group Us acts transitively on CP? by projective
colineations but Ch admits no transitive actions of compact Lie groups.

Although Ch has no transitive compact group of symmetries, it has a rich family of
finite symmetries. In particular, every odd order cyclic group acts nontrivially on Ch. On

the other hand, the main result of this work shows that Ch has no positive dimensional

compact Lie groups of symmetries.

THEOREM. Ch supports no nontrivial circle actions.

;

It is not known if Ch has any nontrivial involutions, but if such actions exist they
cannot be locally linear.

The approach to proving the theorem involves an analysis of arbitrary circle actions
on homotopy complex projective planes, and the proof uses an assortment of techniques
including cohomological fixed point theory, surgery theory, and the structure theory of
homotopy stratified sets that follows from the machinery of controlled topology.

Notational conventions. For the most part, the balance of this announcement deals

with a closed manifold M* that is homotopy equivalent to CP? and has a given nontrivial

circle action.
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If M* is a closed 4-manifold that is homotopy equivalent to CPZ, then it is well known
that cohomological fixed point theory implies that the fixed point set of a nontrivial circle
action on M* is either a set with three points or the disjoint union of a 2-sphere and a
point, in the latter case the fundamental class of the 2-sphere generates Hy(M;Z) =~ Z.
Both possibilities arise for circle actions formed by restricting the transitive Us action on
CP? to a circle subgroup (the so-called linear actions). A more detailed analysis shows
that every circle action on M* is equivariantly homotopy equivalent to a linear action on
CP2.

If the fixed point set of the circle action is the disjoint union of a point and a 2-
sphere, then the action is semifree; i.e., the action is free on the complement of the fixed
point set. The orbit space of a linear semifree action on CP? is homomorphic to the
disk D?*® such that the fixed point set projects to S? = 8D? and an interior point; for an
arbitrary semifree circle action on M as above, the picture is similar with D3 replaced by

a contractible generalized 3—nﬁanifold.

Proof of the theorem for semifree actions. Let M* be the orbit space of a given
semifree circle action on M as above, and form N* from M* by attaching a collar along
the boundary. One can then realize N* as the orbit space of a semifree circle action on
some generalized 4-manifold N* such that
(i) N* is equivariantly h-cobordant to M* in the category of generalized manifolds,
(ii) the generator of Hy(N*;Z) ~ Z is represented by a locally flat 2-sphere.

If N* and the h-cobordism were genuine topological manifolds, it would follows that
N*, M* and CP? were all homomorphic to each other. We circumvent this problem
by crossing the h-cobordism theorem with a 2-dimensional torus, applying Quinn’s work
on resolutions of generalized manifolds to show that the product with the torus are in
fact topological manifolds, and using surgery theory to show that crossing with the torus
did not introduce additional complications (e.g., one needs to know that Ch x T? is not

homomorphic to CP? x T? and stronger statements of this type). This disposes of the
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case when the fixed set consists of a point and a 2-sphere, so we shall assume henceforth
that the fixed point set consists of three points. |

As noted above, the circle action on M is equivariantly homotopy equivalent to a linear
model; for the sake of definiteness let V' be the 3-dimensional complex representation of
51 arising from the appropriate faithful homomorphism S* — Us, and let CP(V) denote
the associated linear S! action on CP2. It seems likely that M is in fact isovariantly
homotopy equivalent to CP(V'), but for our purpose it suffices to know that there is an
equivariant homotopy equivalence that is almost isovariant in an appropriate sense (work
of Dula and the second author discusses 1;he appropriate concept for smooth actions), and
it is a routine but tedious exercise to show that such equivalences exist.

Given an almost isovariant equivalence f : M — CP(V) as above, the balanced

product with S defines a nonequivariant homotopy equivalence
M xg SNt CP(V) x g1 S2NH!

for each positive integer N. If we view this as a representative for a surgery-theoretic

homotopy structure on the codomain, then we can compose its normal invariant in
[CP(V) x5 SN+ F/TOP]

with the map induced by the Sullivan class k; € H?(G/TOP;Z;) to obtain an invariant
ca(f,N) € H2(CP(V) xg1 SN+, Z,); if N = 1 we shall simply write co(f). It fol-
lows immediately that M is homeomorphic to CP? if the fiber restriction of cz(f, N) to
H2(CP(V);Z;3) ~ Z, is trivial and M is homeomorhic to Ch if the fiber restriction is

nonzero. Thus the proof of the theorem reduces to showing that cz(f) vanishes. Since the
map

p: CP(V) xz, S® = CP(V) xs: S°
determined by the inclusion of Z; in S* is injective in mod 2 cohomology, it also suffices
to show the weaker condition p*ca(f) = 0.
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The following result provides a crucial relationship between the algebraic localization

in equivariant cohomology and the behavior of the group action near the isolated fixed

points.

PROPOSITION. If y s a fized point of Zy on the S*-manifold CP(V) and j, is the
inclusion map from RP® = {y} xz, S to CP(V) xz, S3, then Jgp*ea(f) depends only
on the behavior of the Zy action near y. In particular, the restricted class vanishes if the

action s locally linear at y.

The proof of this result uses the almost isovariance properties of f and the obstruction-
theoretic observation that the restriction of f to a small neighborhood of y is essentially
unique up to Zj-almost isovariant homotopy. This result yields the following strong evi-

dence for the theorem:

COROLLARY. If the induced involution is locally linear at the nonisolated fized point

of the involution, then c2(f) = 0.

Here is a sketch of the argument: The proposition implies that j¥p*ca(f) = 0 for
some y in the 2-dimensional component of the fixed point set, and formal considerations
imply that j*p*ca(f) = 0 for all points z in this component.

By the preceding reductions this reduces the proof of the corollary to showing that
Jgp*ca(f) = 0 if y is an isolated fixed point of the involution. The proof of this is based
on a structure théorem for the local behavior of involutions on 4-manifolds near isolated
fixed points. Namely, there is a smooth homology 3-sphere ¥ with a free involution and
a Z, free, simply connected Z homology h-cobordism W from ¥ to itself such that
some neighborhood of the fixed point is equivariantly homeomorphic to the one point
compactification of the manifold X obtained from the disjoint union U W x {k} by
identifying 3+W x {k} with O_-W x {k+ 1}. A diagram chase shows that jrp*ca(f) is

equal to the normal invariant of the canonical degree map from /Z; to RP?, and since
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Y/Zy has the same mod 2 cohomology as RP3, it follows that the normal invariant is
trivial (i.e., the surgery map obstruction from [RP?, F/Top] to L%(Zs,) is bijective). This
completes the proof of the corollary. In fact, the argument yields more. If JgpTca(f) =0
for some point y in the 2-dimensional component of the involution’s fized point set, then
c2(f) = 0 and M is homeomorphic to CP? (the argument involving the isolated fixed

point required no assumption of local linearity).

It is well known that the behavior of the involution near the fixed points in the 2-
dimensional component can be highly irregular. The first step in dealing with this problem

is a stable version of the previous proposition.

EXTENSION OF PREVIOUS PROPOSITION. Let Q be a linear representation

of Zz. Then the class j;p*ca(f) depends only on the behavior of the stabilized involution

on M x § near (y,0).

This is essentially a formal consequence of standard formulas for normal invariants of
product maps where one factor is well behaved.

One specific consequence is that jyp*co(f) = 0 if the action is stably locally linear at
y; i.e., the associated involution on M x § is locally linear at (y,0). Such considerations
and the proof of the previous Corollary also show that jyp*c2(f) = 0 if the structure of the
product involution near (y,0) has the form R? X U, where U corresponds to an involution

on R* with an isolated fixed point, Therefore the main theorem will be a consequence of

the following result.

STABLE LOCAL STRUCTURE THEOREM. Let ) be a linear Zo representation
whose fized point set has codimension ezactly 2, and assume dimQ is sufficiently large
(e.g., dimQ > 6). Then the local behavior of the involution at (y,0) is equivalent to that

of R? x U, where U represents an involution on R* with an isolated fized point.

Here is a summary of the steps in the proof: The fixed point set of the original
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involution is a manifold, so one can apply the machinery of homotopy stratified sets to
the orbit space (CP(V) x Q)/Z, if the dimensions and codimensions of the fixed set
components for CP(V) x Q are sufficiently large. The assumptions on  turn out to
be adequate (among other things, this uses V. Klee’s result that the embedding of the
2-dimensional fixed set in CP (V) becomes locally flat in CP(V) x R2).

The teardrop construction of Hughes, Taylor, Weinberger and Williams shows that
the possibilities for neighbsrhood germs of (y,0) in (CP(V) x Q)/Z, are classified by
approximate fibrztions with homotopy fiber type given by RP?, and results of Chapman
~d Hughes show that such approximate fibrations can be described via surgery theory
as transfer invariant homotopy structures on some product manifold 7% x RP3. The
vanishing of Ko(Z[Z2]) and of K —i(Z[Z,]) for i > 0 combine to show that such structures
are given by products for tori with transfer invariant homotopy structures on S x RP?,
and Freedman’s work on 4-dimensional topological surgery shows that all such objects
are essentially given by universal coverings of the form U — {p}, where U represents an
involution on R* with a single fixed point p. The conclusion of the Stable Local Structure

Theorem is an immediate consequence of these considerations.
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Link Colorability, Covering Spaces and
Isotopy

Ollie Nanyes
June 1995

Abstract

In these notes we modify the concept of link diagram colorability and
branched cyclic covering spaces to the study of links under the piecewise
lLinear isotopy equivalence relation. We then show that all mod B colorings
of a link diagram (B an abelian group) are determined completely by the
“nullity corrected” Goeritz matrix developed by Traldi. A quotient space
techinque developed by Wada is used to calculate the first homology group
of the two fold branched covering space. These notes have been submitted

to a journal as a paper.

1. Introduction.

The mod-p colorability of a knot diagram (p usually taken to be a prime integer)
is a well known knot diagram (and therefore knot) invariant (e. g. [AND], [LIV],
[ADA]). Tt is often used to describe representations of the knot group onto dihedral
groups and to analyze the structure of the first homology of the two fold branched
covering space X of the knot complement (see [HAR], [PER]).

In this paper we extend the notion of mod p colorability of knot diagrams to
the notion of mod B colorability of link diagrams where B is taken to be an abelian
group. In the first section we give the basic definitions and background. We show
that a group B colors a link diagram if and only if there is a representation of
the link group onto a generalized dihedral group D which takes the Wirtinger
generators of the link group (meridional elements) onto the generator of the non-
normal (Z/2Z) factor of D (where D is viewed as a semi-direct product (Z/2Z)0B
where B is the abelian group). In the second section we apply colorings and
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branched covering spaces to study p. 1 link isotopy (which is an equivalence
relation which ignores local knotting, see [ROL1] and figure 1). In the third
section we show that all such B must be homomorphic images of H;(X ) and that
Hy(X ) indeed colors the diagram of the link group. It follows that the matrix M
which presents our possible coloring groups is equivalent via elementary operations
to a “corrected” Goeritz matrix (see [TRA]) of the link.

2. Definitions and Colorability.

2.1. Definitions.

We will work in the piecewise linear (p. l)category throughout this paper. A
link L will refer to a disjoint union of polygonal simple closed curves in the three
sphere S°. We say that two links L and L’ are equivalent if one can be deformed
by an ambient isotopy into the other We say that two links L and L' are isotopic

if there is a p. 1. isotopy H (]I Sty x [0,1] — S° such that the i image of Hy
i=1

is L and the image of H; is L’. Note that the isotopy need not necessarily be
locally fiat; see p. 64 [BIN] or Chapter 4 of [R-S], for a detailed definition of local
flatness. Figure 1 shows a non-locally flat p. 1. isotopy that cannot be realized by
an ambient isotopy. Note that the pictured isotopy is not smooth.

It follows from the work of Rolfsen [ROL1] that two links are isotopic if and
only if any two diagrams of the respective links can be deformed into one another
via the three Reidemeister moves (figure 2) and a fourth move R4 which is sug-
gested in figure 3. The idea behind move R4 is that one can replace the arc cut
off in the pictured disk by any other p. 1. arc with any number of crossings in it.
R4 shows the effect on D(L) of a cell replacement in which a local knot can either
be tied or deleted.

In this paper we will refer to the corrected Goeritz matrix H(L) of a link
L. We will give a brief description of how to obtain H(L) from D(L). A proof
that H(L) is an equivalence invariant of a link and that it provides a presentation
matnx for the two fold branched cyclic cover of the complement of I can be found

in [TRA].

Let D(L) be a diagram on the plane P S — {p} where p is some point on S
which misses D(L). Shade in the regions of P — D(L) in a “chessboard” fashion,
coloring the disjoint regions black and white alternately. We follow the convention
that the unbounded region is colored white. Now label the regions Y;,Y;...,Y,
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with the unbounded region being labeled as Y;. (Note that one can change the
shading scheme by deciding to remove a different point p from S.) To each crossing
¢ in D(L) we can assign an incidence number n{c) as shown in figure 4(a) and
a type number (figure 4(b)); the crossing is of type I if the white surface can be
oriented compatibly with the orientation of L (which may be chosen arbitrarily)
near c. If not, the crossing is of type II.

Nowiforz # j € {0,1,...,9} let gi; = — 3 n(c) , the sum taken over the set
of crossings ¢ incident on both Y; and Y;. For i € {0,1,...,q} let g;; =§' gi

I+t

The Goeritz matrix G(L) is then the matrix [g:;], 4,7 € {1,...¢} (0’th row and
column not included). G(L) presents the torsion invariants of the two fold cyclic
branched cover [KYL].

To obtain the “signature corrected” Goeritz matrix developed in [G-L] one
forms an integral diagonal matrix A(L) with one row and one column for each
type II crossing. One enters —7(c) in the corresponding diagonal place. Note that
if the white surface is orientable then A(L) is the empty matrix. This signature
correction will not enter into our discussion.

To obtain a “nullity correction” [TRA], one calculates a square 0 matrix B(L)
which is of size (8(L) — 1) x (B(L) — 1) where S(L) denotes the number of com-
ponents of the white surface. For connected white surfaces, §(L) is the empty
matrix. This nullity correction will be relevant to our discussion.

Finally, the corrected Goeritz matrix H(L) is formed by forming the block
matrix: ,

G(L) 0o o
0 AL) o
o 0 B(L)

A generalized dihedral group Dih{B) we mean the group

(1) {t, 8]t € Z;,b € B,tht = b7}

with the understanding that ¢ is not the identity in Z; (Z, = Z/nZ in this
paper) and B is a finitely generated abelian group. We will sometimes view
Dih(B) as a semidirect product Z,@ B with B <1 D:ih(B) (section 1.2 [WEI]). Note
that if B is a finitely generated abelian group that B can be uniquely represented
a8 23, D24, ®... D25, ®ZD...®Z where each d;|d;y;. By the ranki (B )(k > 1)
we mean the number of d; that £ divides plus the number of infinite cyclic factors.
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By ranko(B) we mean the number of infinite cyclic factors. Let rank(B) denote
the total number of cyclic factors in this representation of B.

The group of the link L is n;(S®— L) and a meridian of L will mean any element
of the group of L which is homotopic to a Wirtinger generator of the group of
L. By the n-fold branched cover of L we mean the standard n-fold cyclic covering
space of the complement of L obtained by splitting S° along a Seifert surface and
appropriately regluing n copies the surfaces together along the Seifert surface (see
either [B-Z], [KAU], [H-K], [ROL3] for details; note that these covering spaces are
called sirictly-cyclic in section 11 of [M-M]).

2.2. Coloring and Dihedral Representations.

Let D(L) be a link diagram with stands z;. A mod B coloring of D(L) is the
assignment to the z; elements b; € B such that: 1) every z; is assigned to exactly
one element b; of B, 2) at each crossing in which the elements b;, b;, bz appear (b;
being assigned to the overcrossing), the relation

(2) 2b; = b; + by

holds in B and 3) 0 € B appears somewhere and 4) the b; that appear on the
diagram generate B. Figure 5 shows the crossing coloring relation and figure
6 shows a colored link diagram. Note that B is completely determined by the
coloring of the bridges of D(L).

One can view colorings in another way ([AND], 3.4 of [LIV]): one can form
an integral coloring matriz M with columns corresponding to the strands z; and
rows corresponding to the crossings and the resulting coefficients of equation (2).
That is, if three different strands appear at a crossing, one enters a “2” in the
overcrossing (z;) column and —1 in the other two stand columns (z;, zz). If only
two strands appear at a crossing (as in the R1 diagram in figure 1) one enters
a “1” in the overcrossing column and a —1 in the column of the undercrossing
strand. In each case, one fills in the remaining columns with zeros. We then say
that B colors D(L} if B is a homomorphic image of the abelian group presented
by M ( Ch. 6, [JOH]).

Proposition 1. Colorability of a knot diagram is preserved by the
Reidemeister moves. |

Proof. Suggested by figure 2. O
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We can also make the following definition: by rank(L) we mean the largest
rank of all abelian groups B that color L. By rankz(L) we mean the largest
ranki(B) of all groups B that color L. Both ranks are finite as all possible groups
B are determined by the colorings of the bridges.

We now relate colorings to specific types of representations of the link group
onto dihedral groups. Note that if the ink group G represents onto a generalized
dihedral group Z, @ B via a homomorphism ¢ we can compose ¢ with the standard
projection £ : Z; @ B — Z, to obtain £ 0 ¢ : G — Z,. Call ¢ meridian preserving
if £ o  maps each meridian of the link group onto the generator of Z,.

Theorem 2. An abelian group B colors a link L if and only if there
is a meridian preserving representation of the group G of the link
onto Dih(B). ‘ ‘

Proof. See figure 7. If B colors L then get a homomorphism ¢ : G — Dik(B)
by setting @(z;) = tb;.

On the other hand suppose the homomorphism ¢ is given. Because ¢ is merid-
ian preserving, each Wirtinger generator of G maps to some element of the form
tb;. The Wirtinger relations at each crossing (figure 7) show that the b; satisfy the
color equation (1) at each crossing. Since the map is onto the b; must generate
B. O

The assumption that ¢ is meridian preserving is essential. For example, con-
sider the following link K (figure 8) studied by Kinoshita ([S-S]). As figure 8
suggests, the group of K represents onto Z; @ Z but it is easy to see that K is
only colored by homomorphic images of Z,.

We easily obtain the following Corollaries:

Corollary 3. Let L be a link with » components. Then rank;(L) = u — 1.

Corollary 4. Suppose there exists p mutually disjoint p. 1. 3-balls B} such
that L CUB? and LN B # @ forall : € {1,...p}. Then ranko(L) >k — 1.

3. Relation of Coloring and Branched Covering Spaces to
the Link Isotopy Equivalence Relation.

We will call an invariant Z a localized invariant if the following holds: if a locally
unknotted link L has property Z then every link isotopic to L also has property 7.
The following theorem shows that we can obtain localized invariants from group
representations (and hence colorings) and from cyclic branched covering spaces.
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Theorem 5. Let L be locally unknotted link and L’ any other link isotopic
to L. If the group G of L represents onto a group W then the group of L’
also represents onto W. The first homology group (integer coefficients)
of the k-th cyclic branched covering space of [ (denoted H, (X 1)) then

Hy(Xy,;) is a direct summand of H; (X 1)

Proof. Proof of the first assertion follows immediately.

To prove the second assertion we employ the Mayer-Vietoris exact sequence as
in 7.E.1of [ROL3]. Let X, denote the complement of L, X, denote the complement
of K which will be the local knot that changes L to L, X=XUX; (which is the
complement of L')and W is 8B%*~ L = X;NX; and X X,, and W the respective k-
fold cyclic coverings branched over L. Now examine the Mayer-Vietoris sequence
in reduced homology (integer coefficients):

oo —F Fl(ﬁ;) - E]_(X—l) @ F].(Xz) - ﬁl(j() -_— FO(W) -

Since W is the k-fold cover of a 2-sphere which is branched over two points,
W itself is a 2-sphere and hence H,(W) = 0. But HO(W) = 0 also and hence
Hi(X,) ® Hi(X,) — Hy(X) is an isomorphism. O

Example 6. Consider the link L,, which was studied by Milnor in [MIL]
and is pictured as L,, in figure 6. This figure shows that L,, has a
Z ® Z3 @ Zs coloring. Since the two component trivial link has color-
ings which are homomorphic images of Z and L,, is locally unknotted,
it follows that L,, is not (p. L. )} isotopic to the unlink. This gives an el-
ementary answer to the question on p. 305. of [MIL] for p. L. isotopies.
This question had been answered by Rolfsen by the development of the
localized Alexander Invariant in [ROL2].

The pictured coloring was obtained by a “trial and error process” as the col-
oring matrix in this case is very large. In the next section, we will show how to
obtain the coloring matrix via H(L), the corrected” Goeritz matrix discussed in

the previous section.

Example 7. Consider the generalized Whitehead Ly, link pictured in figure
" 9. Here let X denote the two fold branched cover. We calculate
Hl(X ) = Zsi by using a Goeritz matrix with the diagram shaded as
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shown in the figure. Since L is locally unknotted for all k it follows
immediately that the Ly are mutually distinct for all positive k£ (the &
invariants developed in [MIL] fail to detect this).

It should be pointed out that Holmes and Symthe [H-S] developed the concept
of F-isotopy and algebraic invariants of F-isotopy and showed that this family of
links were mutually distinct (even for negative values of k).

4. Relation of coloring groups to the Two Fold Cyclic
Branched Cover.

In this section we relate groups which color L to the two fold cyclic branched
covering space of the complement of L (the s-cyclic covering spaces mentioned
in [M-M]). We will employ the methods developed by Wada [WAD]. (Another
approach would be to use the techniques and results found in [H-K] (Hosokowa
polynomial), [M-M], or [SAK].) We then relate the coloring matrix to the Goeritz
matrix. Let X denote the complement of L, X the two fold cyclic branched
covering space and X,, the two fold unbranched covering space. G is the group of
L. Homology groups will have integer coefficients.

Theorem 8. The group B colors L if and only if B is a homomorplnc
image of H:(X).

Proof. Orient the components of L and derive a Wirtinger presentation for

G:

(3) {zo,z1,- . » | r1, 72, T}

where the relations r; are of the following type (figure 10) ziz; = zjz; for a
right handed crossing and z;z; = zz; for a left handed crossing. Consider the
group G given by

(4) {z6, %1, .- > Tn| 51,525, Sm}

where the relations s; correspond to the r; in (2) in the following way: z; =
2,27 z; for right handed crossings and z; = z;z; z; for left handed crossings.

Lemma 9. Gj is isomorphic to Z * m,(X).
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Proof of the Lemma. The proof can be found in section 5 of [WAD] and is
presented here for the convenience of the reader. Let * be the basepoint for m; (X)
and let p : X — X be the covering projection. Notice that for all Wirtinger
generators z;, (a meridional loop representing) z? lifts to a loop %; in X, which
pierces each copy of the lift of the splitiing Seﬂ'ert surface exactly once. Z; can
be thought of as being composed of two subarcs, z; and z;; which have the two
. points of p~1(*) as endpoints where the Z, action takes z; k t0 Zi k1.

Now consider the quotient space X, /p~(*). Note that m,(X,/p~1(*)) ~ Z *
71(X,). The z;0 and z;; now represent loop in X,/p~'(*) and the induced Z,
action permutes these loops, as before. Now each Wirtinger relation in (3) becomes
either Z;xZjk+1 = ZikTik41 OF TjkZiks1 = CkTips1 (K € Zo) in my(Xu/p~2(*))
depending upon the type of crossing. Therefore wl,(fu/p“l(*)) has the following
presentation: '

(8) {0k Z1ks - s Znpl Tips Toprs - T & € Za}

where the relations r_;-'k correspond 10 ZikTjks1 = TjkTik4r OF TikTiks1 =
T1%T;k+1 88 appropriate. To obtain m (X /p~(*)), which is isomorphic to Z#m; (X)
, one sews in a copy of L which in turn induces the relations: z;¢z;; = 1 for all
i. Adding these relations to (5) we then can eliminate the z;; as well as the r/ .
One can easily check that by substituting z for z;; in the relations ! {0 and then
relabeling z; as z; one obtains the group presentation (4).

We can now rewrite (4) by using an automorphism ® on the free group on n
generators which is defined by ®(z;) = z5'z; for 1 # 0 and ®(z,) = z,. It is easy
to see that ®(s;) = 1in G. We then get a new presentation for G :

(6) {z0, ®(z1), B(z2) ..., B(zn) | B(51),...,B(sm) }

In this presentation of G the free Z factor is generated by zo and the free
71(X) factor is generated by {&(z;) | 8(s;) }.

We are now ready to prove the Theorem. Suppose B colors L. We then have
a representation ¢ : G — 2, @ B where ¢(z;) — tb; (¢ and b; as defined in (1)).
With no loss of generality, we can assume that ¢(z,) = ¢. It follows that ¢ induces
amap ¢’ : Gg — Z; @ B by defining ¢’(z;) = ¢(z;). To see this consider a typical
Gy relation s; as in (4): if 2; = z;z7"z; we see that:

© @(25)¢ (a7 )¢ (z5) = thithith; = thsbi b, = thibt = th; = (=)
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as required. But if we take the representation of G as given by (6) we see
that ©'(zo) = t and that ¢'(®(z;)) = b; € B for 1 # 0. So the preimage of B is
generated by the ®(z;) and hence B is an abelian homomorphic image of 7; (X ). 1t
follows that B is a homomorphic image of m (X X)/[m1(X), m2(X)] which is H,(X).

We now show that H;(X) colors L. The abelianization map n : Gg — Z @
Hy(X) maps {®(z;)|®(s;) } onto H,(X). We now show that the n(®(z:)) colors L.
At a typical crossing we have the relation s; which is z; = z;z; " z; which implies
z5lz; = zp iz ‘zozy z; which is equivalent to ®(z;) = ®(z;)(®(zr))~ @ (z;)-
Applying 7 we get n(®(z:)) = n(®(z;))(7(®(z1)))"*n(®(z;)) which is equivalent
to (after switching multiplication to addition) n(®(z;)) = 7(®(z;)) — (M(®(=1))) +
n(®(z;)) = 2n(®(z;)) — (n(®(z:1))) which is the desired coloring crossing relation.
Because 1(®(z,)) = 0 and 7 is onto, it follows that H;(X) colors L. The Theorem

is proved.O

Tt follows from the previous theorem that a coloring matrix M presents H:(X)
as an abelian group and is therefore equivalent via elementary matrix row and
column operations (over the ring of integers) to the corrected Goeritz matrix

H(L). The following corollary is immediate:

Corollary 10. H(L) determines the groups which color L.
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Codimension two stratified actions on spheres

Monica Nicolau

(Announcement)

Recent developments in the theory of stratified spaces have brought about fundamental
new insight into the theory of group actions on manifolds [W2]. Many questions remain
unanswered however, and a central one is the codimension two strata problem. This paper
concerns codimension two stratifications of actions on spheres, and gives the solution to
the isovariant classification and existence of actions problems.

A codimension two stratification of S™ by homotopy spheres is a tower of length g of
embeddings

KfCK{*c-.-cKt=45"

where K; are homotopy spheres. A semifree or free Z,, action 7 on S™ preserves the
stratification {K} if K; are T-invariant subspaces with the fixed set ST C K. We consider
stratifications of arbitrary length ¢q. A stratification of S® will be called simple if all
consecutive knots (K7;7**?, KT%) are spherical simple knots, i.e. if the complements of
consecutive strata are homotopy circles through dimension [Z*Z=1] where [ | denotes
the greatest integer function. )

Our statements will treat at once the even and odd dimensional cases. These are
however quite different in nature, as is witnessed by the difference in the algebraic invariants
used in their classification.

Denote by A the ring of Laurent polynomials Z[t,t~1] and recall that a A-module
M is said to be of type K if M is finitely generated over A, and 1-t): M —- M isan
isomorphism. Let (4, i), be a pair: A4 an abelian group, and p: A® A — Q an e-symmetric
non-degenerate form, € = +1. A A-pair of parity € is a pair (@;t) = ((4,un);t) where t
defines a A-module structure on A whereby A is of type K, and such that u(ta @ tb) =
#(a ®b). An isomorphism ((4, p); t) = ((4’, i'); t’') of A-pairs is a A-module isomorphism
A = A’ which preserves the forms g and u’. By [F1] isotopy classes of simple knots
(S?"+1,K?™=1) | r > 3 are in one to one correspondence with isomorphism classes of
A-pairs (Q;t) of parity (—1)".

Let (A, B,a,l,1) be a quintet: A and B abelian groups, a : A® Zs — B a homo-
morphism, ! : T(A) ® T(A) — Q/Z, and ¥ : B® B — Z, e-symmetric forms, with [
non-degenerate, where T'(4) denotes the torsion subgroup. We further require:

1) 0-A®Z, =B £, Hom(A,Z3) —» 0 is exact where 8(b)(a) = (b ® (a®1)),
and

2)  the composition B -5 A - A®Zy -+ B s the (x2)-map, where 7 is the
projection, and «y is defined by (b ® a(ra)) = I(v(b) ® a).

A A-guintet of parity € is a pair (Q;t) = ((4, B, a,l,);t) where t defines A-module
structures on A and B, whereby A is of type K, a is a A-homomorphism, and I(ta ® tb) =
{a®b) , Y(ta®tb) = ¥(a®b). An isomorphism ((A4,B,a,l,9);t) = (A", B, o, ', 4"); ')
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of A-quintets is a pair of A-module isomorphisms A = A’ , B = B’ , which preserve
the forms ! and I’, ¥ and 1/, and commute with the homomorphisms a and o'. By [F2]
isotopy classes of simple knots (S?"*2, K?7) | r > 4, are in one to one correspondence with
isomorphism classes of A-quintets (Q;¢) of parity (—1)7*.

A A-pair (A-quintet) (Q;t) admits a Ap(m)-structure if Q admits a A = Z[s,s71]
structure (Q;s) such that (Q;s™) = (Q;t).

Theorem 1. (Existence of actions) Let {K;}_, be a codimension two simple stratification
of S™ by homotopy spheres. Let v be any semifree or free Z,, action on Ko. Then S™
admits a semifree or free Z, action T preserving {K;} and restricting to v, if and only if
each A-invariant (Q;,t;) of (K;, K;—1) admits a Ap(m)-structure (Qs, s;) with sT* =t;.

Remark: By taking v to be the trivial action, we see that some action always exists,
whenever the algebraic condition on the A-invariants is satisfied.

Proof outline: We consider pairs of consecutive strata k; = (K; , K;—1) , with A-invariant
(Q:i;ti) . We prove that for each k; , an action exists, with prescribed semifree Z,,, action
on the submanifold K;_; , if and only if (Q;;t;) admits a Ap(m)-structure (Q:;si) ,
(Qi;s™) = (Q;;t;)- This follows from consideration of the infinite cyclic cover of k; ,
together with proving that the quotient by an action 7 of the knot complement of k; is
again a knot complement, for a new knot k.. The A-invariant for &, is precisely (Q; ;s:) .
This construction mirrors the case where 7 acts on a knot (S, K') with restriction 7|k either
free or trivial [N1] [N2] [N3] [NS1] [NS2]. In our case the proof necessarily addresses the
more general situation where the restriction 7|x is any semifree action. o

The collection of A-invariants {(Q;;s:) |i=0,...,q } is called the derived A-invariant for
the stratified action 7. The knots k,, are called derived knots. Two derived A-invariants
are isomorphic {(Q;;s:) |1=0,...,¢} = {(Q};s!)|i=0,...,q } iffor all 7, (Q;;s;) =
(Qi;s)-

Theorem 2. (Isovariant classification) Let + be a semifree or free Z,, action on S™ pre-
serving stratification {K;}]_,. Then the isovariant isomorphism class of T is determined,
up to finite ambiguity, by the isomorphism class of the derived A-invariant, together with
the isomorphism class of the restriction 7|k, to the lowest stratum.

Remark: Notice in particular the case where K is precisely the fixed set of the action 7.
Then 7 is determined, up to finite ambiguity, by the derived A-invariant.

Proof outline: Let k; = (K;,K;_1), and let k,, be the derived knot. We prove that
the isotopy class of k,;, together with the isomorphism class of the restriction 7|x,_,,
determine up to finite ambiguity, the action 7 on K;. The isomorphism of actions is
constructed inductively, by building from the lowest stratum to the highest. The finite
ambiguity is determined by the rotation by 7 in the normal circle for the embedding
K, 1CK;. o

Let k = (5, K) be a knot, and 7 a free or semifree Z,, action on S, such that: (a) K is a
T-invariant subspace, and (b) the fixed set of 7 S™ C K. The we say that 7 is a quasifree
action on (S,K). We prove the following generalization of the unknotting theorem of
Sumners [S]:
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Unknotting Theorem. A knot (S,K) admits quasifree Z., actions for every m if and
only if it is the unknot.

Remark: We do not require that (S, K) be simple, or even 1-simple.

Proof outline: Let (S, K) be a knot which admits a quasifree Z,, action 7. We prove
that (S,K) must then admit another quasifree Z,, action v, where K is the fixed set
K = 5%, and where v and 7 coincide on the knot complement. The existence, for all m,
of quasifree Z,, actions v,,, where S¥= = K then forces (5, K) to be the unknot [S]. The
theorem follows. o

Examples

In [CW] examples of codimension two stratified actions are produced, for stratifications of

length 2:
Ko C KiC Ky = Sm

where (K1, Kp) is knotted, and (K2, K;) is the unknot. We produce codimension two
stratified actions of arbitrary length ¢:

’KQCKIC <o Kq_1CKq=Sn

where each (K11, K;) is knotted. We give here two classes of examples:

Odd dimensional spheres

Fix n > 3, and a collection {a; | 0 < i < n} of positive integers such that:
i)  a; are odd,
and
i)  a; are coprime (a;,a;) = 1.

Embed K21 KZ0F 45 the link of singularity for the polynomial:

. n -

; 2 : 2

fr(ZOa"'7zn,wl)"'1wT) = § :z?l + w.'i
=1

=0
Theorem 4. The sphere S?("+t9)~1 with stratification
KoCKiC --- K,y C K, = §ta)-1

admits stratified Z., actions if and only if m is odd, and (m,a;) = 1. Moreover all
Z., actions T, for the same m agree, up to isomorphism, on the complements of strata

K, — K,._;.

Remark: Algebraic knots are not in general spherical. The knots (K;y, K;) above are,
as can be séen from consideration of the Alexander polynomial.

We also consider questions about the compatibility of Z,, actions, raised by Weinberger
in [W1].
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Corollary 5. With the above stratification, S?t9)~1 admits a stratified action by an
infinite subgroup G of Q/Z.

Proof outline: Compatibility on the knot complements follows from the uniqueness state-
ment in Theorem 4. Compatibility on the normal bundle of the embedding K. 2ntn)-1 -
K, EJ(:;"H) 1 follows by choosing the generators ¢, of 7, to represent rotations by compatible
primitive m** roots of unity. Since (a) rotation by every primitive m*® root of unity,
together with (b) every free Z,, action on the complement, and (c) every semifree Z,,
action on the codimension two submanifold K, define an action 7,,, and since we may

choose all actions 7, to be the trivial action on Kp, the result follows.

Even dimensional spheres
Consider the stratification of §2(n+4)

K2 c K2 ¢ L ¢ K29 = g2(na) n>4

where (K, K;—1) is the knot with A-quintet ((Z,,0,0, %,O); —1). Here r; are odd, and
(di,r;) =1 (see [N3]).

Theorem 6. With the above stratification, Z,, acts if and only if m is odd. The action
on the complements of strata K; — K;_; is uniquely determined, up to isomorphism, by
m. Moreover, for every Z., action, the complements of strata in the quotient space are
homeomorphic to the complements of strata in the sphere S2("+9).

Remark: The last statement implies that the quotient space is made up of the comple-
ments of strata in $?(®+9) glued to one another with twists.

Corollary 7. With the above stratification, S?™*+%) admits a stratified action by an
infinite subgroup G of Q/Z.
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