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I. Nonpositively Curved Spaces.

The notion of “nonpositive curvature” (or more generally of “curvature bounded above
by a real number €” makes sense for a more general class of metric spaces than Riemannian
manifolds: one need only assume that any two points can be connected by a geodesic
segment. For such spaces, the concept of curvature bounded above by € can be defined
via comparison triangles and the so-called “C' AT'(¢)-inequality”. (This terminology is due
to Gromov.) This is explained in §1. In §2 we consider “piecewise constant curvature
polyhedra” and give a condition (in terms of links of vertices) for such a polyhedron to
have curvature bounded from above. The condition is that each link be CAT(1). In
§3 we discuss criteria for such a link to be CAT(1). The two conditions we are most
interested in are given in Gromov’s Lemma and Moussong’s Lemma. These give criteria
for piecewise spherical simplicial complexes (with sufficiently big simplices) to be CAT(1).
In §4 we discuss a conjecture of H. Hopf concerning the Euler characteristic of a closed,
nonpositively curved, even-dimensional manifold. Using the combinatorial version of the
Gauss-Bonnet Theorem this leads us to a conjecture concerning a number associated to a
piecewise spherical structure on an odd-dimensional sphere.

§1. The CAT(e¢)-inequality.

Given a smooth Riemannian manifold M one defines its “curvature tensor” and from
this its “sectional curvature”. The sectional curvature K of M is a real-valued function on
the set of all pairs (z, P) where z is a point in M and P is a tangent 2-plane at z. Given
a real number €, we say that “M has curvature < ¢’ and write K (M) < e if the sectional
curvature K is bounded above by e.

It has long been recognized that the condition that the curvature of M is bounded above
is equivalent to a condition which can be phrased purely in terms of the underlying metric
(i.e., in terms of the distance function) on M. In fact, there are several possible versions
of such a condition. We shall focus on one called the “CAT(e) condition” by Gromov.
(“CAT” stands for “Comparison” of “Alexandrov” and “Toponogov”). Once one has such
a condition one can define the notion of “curvature < €” for many “singular” metric spaces,
that is, for a more general class of metric spaces than Riemannian manifolds.

A good reference for this material is [GH].

We begin by stating the following Comparison Theorem of Alexandrov. A proof can be
found in the article of M. Troyanov in [GH].

Theorem 1.1. (Alexandrov). Let M be a simply connected, complete Riemannian man-
ifold and € a real number. Then K(M) < € if and only if each geodesic triangle in M (of
perimeter < 2w /+/€) satisfies the C AT (¢)-inequality.

A “geodesic triangle” in M means a configuration in M consisting of three points (the
“vertices”) and three (minimal) geodesic segments connecting them (the “edges”). The
term “CAT(e)” is explained below.

As e > 0,= 0, or < 0, let M2 stand for S? (the 2-sphere of constant curvature €) E2
(the Euclidean plane) or H2 (the hyperbolic plane of curvature €).

Let T be a geodesic triangle in M. A comparison triangle for T is a geodesic triangle
T* in M? with the same edge lengths as T". Choose a vertex z of T’ and a point y on the
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opposite edge. Let z* and y* denote the corresponding points in T*. (See Figure 1).

<

Figure 1

The C AT (e)-inequality is
d(z,y) < d*(z",y")

where d and d* denote distance in M and M2, respectively.

Remark. S? is the sphere of radius 1 /+/€. Since any geodesic triangle 7% C S?, must lie
in some hemisphere, we see that the perimeter of 7% can be no larger than 27/+/€ (the
circumference of the equator). So, when € > 0, the C AT'(¢)-inequality only makes sense

for triangles of perimeter < 27 /4/e.

Now let (X, d) be a metric space. A path a: [a,b] — X is a geodesic if it is an isometric
embedding, i.e., if d(a(t), a(s)) = |t — s| for all s,% in [a, b].

Definition 1.2. A metric space X is a geodesic space (or a “length space”) if an two
points can be connected by a geodesic segment.

We shall also assume that X is complete and locally compact. (The hypothesis of local

compactness could be replaced by local convexity.)
The notion of a geodesic triangle clearly makes sense in a geodesic space as does the

C AT (e)-inequality.

Definition 1.3. A geodesic space X is CAT(¢) if the C AT (¢)-inequality holds for all
geodesic triangles T' of perimeter < 27/4/€ and for all choices of vertex z and point y on
the opposite edge. (The condition that the perimeter be < 27/,/€ is interpreted to be
vacuous if € < 0.) X has curvature < €, written K(X) < ¢, if it satisfies CAT(¢) locally.

Remarks. (i) If € < ¢, then CAT(€’') implies CAT (¢) and K(X) < ¢ implies K(X) < e.
(ii) There is a completely analogous definition of curvature bounded from below: one
simply reverses the C AT (¢)-inequality. (See [ABN].)

Some consequences of C AT (e).
(i) There are no digons in X of perimeter < 27w /+/e. (A digon is a configuration consisting
of two distinct geodesic segments between points z and y.) The reason is that we could
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introduce a third vertex in the interior of one segment and obtain a triangle for which the
C AT (¢)-inequality clearly fails. As special cases of this principle, we have the following.

a) If X is CAT(1), then a geodesic between two points of distance <7 is unique.
b) If X is CAT(1), then there is no closed geodesic of length < 27. (A closed geodesic

is an isometric embedding of a circle.)
c) If X is CAT(0), then any two points are connected by a unique geodesic.

(i) If X is CAT(0), then the distance function d : X x X — [0,00] is convez. (In
general, a function ¢ : Y — R on a geodesic space Y is convez, if given any geodesic path
o : [a,b] — Y the function p o a : [a,b] — R is a convex function. In particular, X x X is
a geodesic space and the statement that d : X x X — [0, oo] is convex means that given
geodesic paths a : [a,b] — X and B : [c,d] — X the function (s,t) — d(a(s),B(t)) is a
convex function on [a, b] X [c,d].)

There is the following generalization of the Cartan-Hadamard Theorem for nonpositively
curved manifolds.

Proposition 1.4. If X is a geodesic space with convex distance function (e.g. if X is
CAT(0)), then X is contractible. ~

Proof. The convexity of the distance function implies that X has no digons. Hence, any
two points of X are connected by a unique geodesic. Choose a base point zo and define
the contraction H : X x I — X by contracting along the geodesic to zo. The proof that
H is continuous follows easily from the convexity of d.

Remark. Suppose K(X) < e. Then since CAT(€) holds locally, X is locally convex (i.e.,
in any sufficiently small open set, any two points are connected by a unique geodesic).
Therefore, X is locally contractible. In particular, any such X has a universal cover.

Theorem 1.5. Let e < 0. If X is a geodesic space with K(X) < ¢, then its universal
cover X is CAT(¢). (In particular, X is contractible.)

This theorem stated by Gromov in [G, p. 119] and proved in W. Ballman’s article in
[GH, p. 193]. (Quite possibly, it was known to Alexandrov.)

Remark. Theorem 1.5 is not true for € > 0. There is an analogous result for € > 0: the
hypothesis of simple connectivity is unimportant, but one needs to rule out the possibility
of closed geodesics of length < 27 /+/e. A version of this is stated as Lemma 3.1, below.

Corollary 1.6. If K(X) <0, then X is a K(m,1)-space (i.e., X is aspherical).

2. Piecewise constant curvature polyhedra. »
Let M™ stand for ST, E™ or H? as € is greater than, equal to, or less than 0, respectively.
A “half-space” in ST is a hemisphere; a “half-space” in E" or HY has its usual meaning.

Definition 2.1. A (convex) cell in M™ is a compact intersection of a finite number of
half-spaces. (When € > 0, one can also require that the cell does not contain a pair of

antipodal points.)
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Definition 2.2. An M, cell complez X is a cell complex formed by gluing together cells
in M via isometries of their faces. (e is fixed, n can vary.) If e = 0, X is called piecewise
Euclidean (abbreviated PE). If e = 1, X is piecewise spherical (abbreviated PS).

Example 2.3. The surface of a cube is a PE complex.

If X is an M, cell complex, then we can measure the length £ of a path in X: the
length of the portion of the path within a given cell is defined using arc length in M. The
intrinsic metric £ on X is defined as follows:

d(z,y) = inf{f(w)|a is a path from z to y}

(If X is not path connected, the d may take oo as a value.)

Does the intrinsic metric give X the structures of a geodesic space? The issue is whether
the infimum occurring in the definition of d can actually be realized by a minimal path. If
X is locally finite and if there is a § > 0 so that all closed 6-balls in X are compact (e.g.,
if X is a finite complex), then the Arzela-Ascoli Theorem implies that X is a complete
geodesic space.

Links. Suppose that o is an n-cell in M and that v is a vertex of 0. The Riemannian
metric on M gives an inner product on its tangent space T, (M) at v. The set of inward
pointing directions at v is subset of the unit sphere in T, (M[). In fact, this subset is a
spherical cell, which we denote by Lk(v, o). We think of it as a cell in S"~1, well-defined

up to isometry.

Lk(v,0)

: Figure 2
If X is an M.-complex and v is a vertex of X, then the link of v in X is defined by

Lk(v,X) = | ] Lk(v,0)

This is a PS cell complex. Thus, the link of a vertex in any M. cell complex has a natural
piecewise spherical structure.

Example 2.4. As in 2.3, let X be the surface of a cube and v, a vertex. Then the link
of v in each square is a circular arc of length 7/2; hence, the link of v in X is a circle of
length 37 /2.

In [G, p. 120] Gromov gave the following “infinitesimal” condition for deciding if a
piecewise constant curvature polyhedron has curvature bounded from above.
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Theorem 2.5. (Alexandrov, Gromov, Ballman) Suppose X is an M.-cell complex. Then
K(X) < ¢ if and only if for each vertex v, Lk(v,X) is CAT(1).

A proof of this can be found in Ballman’s article in [GH; p. 197]. The result must have
also been known to Alexandrov’s school, since they knew that an “M, cone” on a CAT(1)

space was C AT (e).

Example 2.6. A PS structure on a circle S is CAT(1) if and only if £(S) > 2m. Therefore,
a PFE structure on a surface has K < 0 if and only if at each vertex the sum of the angles
is > 27. For example, the surface of a cube does not have nonpositive curvature.

§3. The CAT(1) condition for links.
In order to use Theorem 2.5 we need to be able to decide when the link of a vertex

is CAT(1). So, suppose L is some PS cell complex. We need to be able to answer the
following.

Question. How do you tell if L is CAT(1)?

The following lemma gives an inductive procedure for studying this question.

Lemma 3.1. A PS complex L is CAT(1) if and only if
(i) K(L) <1, and
(ii) every closed geodesic in L has length > 2.

By Theorem 2.5, condition (i) can be checked by looking at links of vertices in L. Thus,
(ii) is the crucial condition.

We next would like to explain several situations in which we have a satisfactory answer
to our question. These will be grouped under the following headings:

a) Gromov’s Lemma

b) Moussong’s Lemma

c¢) Orthogonal joins

d) Spherical buildings

e) Polar duals of hyperbolic cells

f) Branched covers of round spheres
In these notes we will mostly be concerned with the first two headings, (and we will

confine ourselves to a few brief comments about the other four).

a) Gromov’s Lemma. Let " denote a regular n-cube in E™ and let v be a vertex of O".
Then Lk(v,") is the regular spherical (n — 1)-simplex A™~! spanned by the standard
basis ey, -+ , e, of R*. (So, A™7! is the intersection of S"~! with the positive “quadrant”
[0,00)™ in R™).
A spherical (n — 1)-simplex isometric to A"~! will be called an all right simplex.
An all right simplex is characterized by the fact that all its edge lengths are m/2.
Alternatively, it can be characterized by the fact that all its dihedral angles are 7 /2.

Definition 3.2. A PS simplicial cell complex is all right if each of its simplices is all right.
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Example 3.3. If X is a PE cubical complex, then each of its links is an all right simplicial
cell complex.

Definition 3.4. A simplicial complex K is a flag complex if any finite set of vertices,
which are pairwise joined by edges, span a simplex in K.

Combinatorialists use “clique complex” instead of “flag complex”. Alternative termi-
nology, which has been used elsewhere, is that K is “determined by its 1-skeleton”, or
K has “no empty simplices”, or K satisfies the “no A-condition”. (The last is Gromov’s
terminology). The term “flag complex” is taken from [Br].

Remark 3.5. Let V be a set with a symmetric, anti-reflexive, transitive relation (an “inci-
dence relation”). Let K be the abstract simplicial complex whose simplices are the finite
subsets of V' which are pairwise related. Then K is a flag complex. Conversely, given a
flag complex K, one defines a relation on its vertex set V by saying that two vertices are
related if they are joined by an edge. This relation gives back K as its associated complex.

Example 3.6. Let P be a poset. Then (if we make the order relation symmetric) and
take the associated simplicial complex, we get a flag complex. Its poset of simplices is
denoted by P’, and called the derived complex of P. The elements of P’ are finite chains

(vo < ++-<wg)in P.

Example 3.7. If P is the poset of cells in a cell complex, then P’ can be identified with
the posets of simplices in its barycentric subdivision. Thus, the barycentric subdivision of
any cell complez is a flag complex.

Example 3.8. If K is the boundary of an m-gon (i.e., K is a circle with m edges) then
K is a flag complex if and only if m > 3.

Lemma 3.9. (Gromov’s Lemma) Let L be an all right, PS simplicial complex. Then L
is CAT(1) if and only if it is a flag complex.

Corollary 3.10. (Berestovskii [Ber]) Any polyhedron has a PS structure which is
CAT(1).

Proof. Let L be a cell complex. By taking the barycentric subdivision we may assume
that L is a flag complex. Then give L a piecewise spherical structure by declaring each
simplex to be all right.

Corollary 3.11. Let X be a PE cubical complex. Then K(X) < 0 if and only if the link
of each vertex is a flag complex.

Application 3.12. (Hyperbolization). In [G] Gromov described several functorial proce-
dures for converting a cell complex J (usually a simplicial or cubical complex) into a PE
cubical complex H(J) with nonpositive curvature. (See also [DJ] and [CD2].) H(J) is
called a “hyperbolization” of J. Since H(J) is aspherical it cannot, in general, be homeo-
morphic to J. However, there is a natural surjection H(J) — J Also, H(J) should have the
same local structure as J in the following sense: the link of each “hyperbolized cell” is PL
homeomorphic to the link of the corresponding cell in J. Usually, the new link will be the
barycentric subdivision of the old one (or else the suspension of a barycentric subdivision
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of an old link). Thus, the new links will be flag complexes and Gromov’s Lemma can be
used to prove that H(J) is nonpositively curved. (A different argument is given in [DJ]]
and [G].)
The proof of Gromov’s Lemma is based on the following.

Sublemma 3.13. (|G, p.122]). Let v be a vertex in an all right, PS simplicial complex
and let B be the closed ball of radius 7/2 about v (i.e., B is the closed star of v). Let z,y
be points in OB (the sphere of radius 7/2 about v) and let v be a geodesic segment from
z to y such that v intersects the interior of B. Then £(y) > 7.

spherical 2-simplex

Figure 3

Proof. Let A be an all right simplex in B with one vertex at v and suppose that -y intersects
" the interior of A. Consider the union of all geodesic segment which start at v, pass through
a point in YNA and end on the face of A opposite to v. It is an isoceles spherical 2-simplex
with two edges of length 7/2. (Think of a spherical 2-simplex with one vertex at the north
pole and the other two on the equator.) Let {2 be the union of all these 2-simplices. Then
) can be “developed” onto the northern hemisphere of S2. If £(y) < m, then (2 is isometric
to a region of S? so that v maps to the north pole and z and y to points on the equator.
But if two points on the equator of S? are of distance < , then the geodesic between them
is a segment of the equator. This contradicts the hypothesis that the image of -y intersects

the open northern hemisphere.

Proof of Gromov’s Lemma. Let L be an all right, PS simplicial cell complex. First suppose
that L is not a flag complex. Then either L or the link of some simplex of L contains an
“empty” triangle. Such a triangle is a closed geodesic of length 37/2 (which is < 27).
Hence, L is not CAT'(1).

Conversely, suppose that L is a flag complex. Then the link of each vertex is also a flag
complex and by induction on dimension we may assume that K (L) < 1. Hence, it suffices
to show every closed geodesic in L has length > 2m. Suppose, to the contrary, that a is
a closed geodesic with £(a) < 2m. Let L' be the full subcomplex of L spanned by the set
of vertices v such that o N Star(v) # 0. (Here Star(v) denotes the open star of v.) By
Sublemma 3.13, a cannot intersect two disjoint open stars. Hence any two vertices of L’
must be connected by an edge. Since L is a flag complex, this implies L’ is an all right
simplex. But this is impossible since a simplex contains no closed geodesic.
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b) Moussong’s Lemma.

Definition 3.14. A spherical simplex has size > /2 if all of its edge lengths are > 7 /2.

Let L be a PS simplicial complex with simplices of size > /2.

Definition 3.15. L is a metric flag complex if given a set of vertices {vg, - ,vx}, which
are pairwise joined by edges, such that there exists a spherical k-simplex with these edge
lengths, then {vg, - - ,vx} spans a k-simplex in L.

Lemma 3.16. (Moussong’s Lemma) Let L be a PS simplicial complex with simplices of
size > 7/2. Then L is CAT(1) if and only if L is a metric flag complex.

This generalization of Gromov’s Lemma is the main technical result in the Ph.D. thesis
of G. Moussong [M]. Its proof is quite a bit more difficult than that of Gromov’s Lemma
and we will not try to explain it here. We will use it in the next chapter to show that a
certain PE complex associated to any Coxeter group is CAT(0).

Definition 3.17. A cell is simple if the link of each vertex is a simplex.

The edge lengths of such a simplex are interior angles in the 2-dimensional faces. Thus,
such a simplex has size > 7/2 if all such angles in the 2-cells are > 7 /2.

Corollary 3.18. Let X be a PE complex with simple cells and with 2-cells having nona-
cute angles. Then K (S) < 0 if and only if the link of each vertex is a metric flag complex.

c) Orthogonal joins. Suppose that o; C S** and o, C S*2 are spherical cells. Regard
Sk1 and S*2 as a pair of orthogonal great subspheres in Sk¥1+k2+1 ¢ RFi+1 x Rk2+1, Then
the orthogonal join o1 * o3 of o1 and oy is the union of all geodesic segments from o; to
oy in S*1tke+1 Tt is naturally a spherical cell of dimension equal to dim oy + dim oy + 1.
If Ly and Ly are PS cell complexes, then their orthogonal join L; * Ly is defined to be the
union of all cells o1 * o2 where o is a cell in Ly and o3 is a cell in L. It is naturally a P.S
cell complex, homeomorphic to the usual topological join of the underlying polyhedra.
The following result is proved in the Appendix of [CD1].

Proposition 3.19. If L; and Ly are CAT(1), PS cell complexes, then Ly Ly is CAT(1).

Remark 3.20. For example, taking Lo to be a point we see if Ly is CAT(1), then so is the
“spherical cone” on L;. Similarly, taking L, = S°, we see that the “spherical suspension”

of L; is CAT(1).
d) Spherical buildings. Tits has defined a certain remarkable class of simplicial com-

plexes called “buildings”, e.g., see [Br| and [R]. Associated to a building B there is a
Coxeter group W. (This will be defined in Chapter II.) The building B can be written as

a union of apartments A,
B =|]JA,

where each A, is isomorphic to the Coxeter complex for W. If W is a finite group, then this
Coxeter complex can naturally be thought of as a triangulation of S™, the round n-sphere,
for some n. The building is called spherical if its associated Coxeter group is finite (so that
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each apartment is a round sphere). Thus, a spherical building has a natural structure of a
PS simplicial complex.

The axioms for buildings imply that any two points in B lie in a common apartment.
Furthermore, (at least when B is spherical) the geodesic between them also lies in this
apartment. From this we can immediately deduce the following.

Theorem 3.21. Any spherical building is CAT(1).

Example 3.22. A generalized m-gon is a connected, bipartite graph of diameter m and
girth 2m. (A graph is bipartite if its vertices can be partitioned into two sets so that no two
vertices in different sets span an edge. The diameter of a graph is the maximum distance
between two vertices, its girth is the minimum length of a circuit.) A 1-dimensional
spherical building is the same thing as a generalized m-gon (m # oo). The pleceWISe
spherical structure is defined by declaring each edge to have length 7/m.

e) Polar duals of hyperbolic cells. Suppose that C™ is a convex n-cell in hyperbolic
n-space H". Let F be a face of codimension k£ in C™,k > 1. Choose a point z in the
relative interior of F' and consider the unit sphere S®~! in the tangent space T,H". The
set of outward-pointing unit normals to the codimension one faces which contain F' span
a spherical (k — 1)-cell in S"~! which we denote by or. (Roughly, o is the set of all
outward pointing unit normals at F.) The polar dual of C™ is defined as

pP(C™) =Jor.
F

It is a'PS cell complex, which, it is not difficult to see, is homeomorphic to $™~!. For
further details, see [CDA4].

Remark 8.23. (i) The same construction can be carried out in E™ or S™. For a cell in E”
its polar dual is a PS cell complex which is isometric to the round (n — 1)-sphere. For a
cell C™ in S™, its polar dual is just the boundary of the dual cell C*, where C* =
{z € S"|d(z,C™) > 7/2}. In all three cases, the cell structure on P (C") is comblnatorlcally
equivalent to the boundary to the dual polytope to C™.

(ii) If we use the quadratic form model for H", and C™ C H", then P(C™) is naturally
a subset of the unit pseudosphere, ST = {z € R"*|(z,z) = 1}, where (z,z) = —(z1)? +
(@2)? + -+ + (Tnt1).
Theorem 3.24. Suppose C™ is a convex cell in H™. Then P(C) is CAT(1).

When n = 2, P(C?) is a circle, the length of which is the sum of the exterior angles of
C?. By the Gauss-Bonnet Theorem, this sum is 27 + Area(C?). This completes the proof
for n = 2. When n = 3, the theorem is due to Rivin and Hodgsen [RH]. For n > 3, it

appears in [CD4].
Further Remarks 8.25. (i) A stronger result is actually true. The length of any closed
geodesic in P(C™) is strictly greater than 27. (As we saw, for n = 2, this follows from

the Gauss-Bonnet Theorem.) Furthermore, the same is true for the link of every cell in
P(C™) (since such a link is, in fact, the polar dual of some face of C™.) Sometimes I have
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defined a PS cell complex to be “large” if it is CAT'(1). Perhaps PS complexes satisfying
the above stronger condition should be “extra large”.

(ii) The definition of polar dual makes sense for any intersection of half-spaces in H"
(compact or not) and it is proved in [CD 4] that these polar duals are also CAT(1).

(iii) The main argument of [RH] is in the converse direction. They show that any PS
structure on S? which is extra large arises as the polar dual of a 3-cell in H® (unique up
to isometry). An analogous result, relating metrics with K > 1 on S? to convex surfaces
in E3 had been proved much earlier by Alexandrov.

(iv) My main interest in Theorem 3.24 is that it provides a method for constructing a
large number of examples of CAT (1), PS structures on S™~!, which are not covered by
Moussong’s Lemma. Moreover, if we deform a convex cell in H" we obtain a large family
of deformations of its polar dual through CAT'(1) structures.

f) Branched covers of round spheres. 3
Suppose that M™ is a smooth Riemannian manifold and that p : M™ — M"™ is a

branched covering by some other manifold M™.
Question. If M™ has sectional curvature < ¢, then when is K (M ") <e€?

We further suppose that the branching is locally modeled on R® — R™/G where G is
some finite linear group. (Since M™ is a manifold we must therefore have that R™/G is
homeomorphic to R™.)

The following two conditions are easily seen to be necessary for K (M) < e

() K(M) <e

(ii) locally, the closure of each stratum of the branched set is a convex subset of M.

Let x € M be a branch point and let S, be the unit sphere in T, M. There is an induced
finite sheeted branched cover S’m — S,. Since the branched set in S, must satisfy (ii), it
follows that the metric on S, (induced from the round metric on S,) is piecewise spherical.
We think to S as the “link” at a point Z € p~*(z). It turns out ([CD1, Theorem 5.3])
that together with (i) and (ii) the following condition is necessary and sufficient for K M)
to be <e:

(iii) S, is CAT(1), for all branch points z.

Therefore, the answer to our question is closely tied to the question of when the branched
cover of a round sphere is CAT'(1). A detailed study of this question is made in [CD 1J.

For example, suppose that G is a finite, noncyclic subgroup of SO(3) (so that G is
either dihedral or the group of orientation-preserving symmetries of a regular solid). Then
S2/G is homeomorphic to S? and §?2 — S2/G has three branch points. Choose three
points z1, T2 and z3 in the round 2-sphere S? and assign z; a branching order of m;, where
¥(1/m;) > 1. Let S? — S? be the corresponding |G|-fold branched cover. In [CD1] we

prove the following result.

Proposition 3.25. 52 is CAT(1) if and only if
(i) z1,x2, and z3 lie on a great circle in S%, but are not contained in any semi-circle,

and
(i) d(z;, z;) > 7/my, where (i, j, k) is some permutation of (1,2, 3).
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4. Euler characteristics and the Combinatorial Gauss-Bonnet Theorem.

Hopf’s Conjecture. Suppose M 2n js 4 closed Riemannian manifold, with K (M) < 0.
Then (—1)"x(M?") > 0. (Here x denotes the Euler characteristic.)

Remark 4.1. (i) There is an analogous version of this conjecture for nonnegative curvature:
the Euler characteristic should be nonnegative.

(ii) Thurston has conjectured that Hopf’s Conjecture should hold for any closed, as-
pherical 2n-manifold.

The reason for believing this is the Gauss-Bonnet Theorem (proved by Chern in dimen-
sions > 2). Recall that this is the following theorem.

Gauss-Bonnet Theorem.

x(M*) =/P

Here P is a certain 2n-form called the “Pfaffian” or the “Euler form”. This leads to the
following.

Question 4.2. Does K(M?") < 0 imply that (—1)"P > 07 (In other words, is (-1)"P
equal to the volume form multiplied by a nonnegative function?)

In dimension 2 the answer is, of course, yes, since P is then just the volume form times
the curvature. The answer is also yes in dimension 4. A proof is given by Chern in [C],
where the result is attributed to Milnor.

Hopf’s Conjecture holds in higher dimensions under the hypothesis that the “curvature
operator” is negative semi-definite (which is stronger than assuming that the sectional
curvature is nonpositive). This is actually easy to see. The curvature tensor can be viewed
as a self-adjoint (= symmetric) linear endomorphism R : A>T M — AT, M, called the
curvature operator. This is negative semi-definite if (Rv, v) < 0 for all v € AT, M. On
the other hand, the sectional curvature is < 0 if and only if (Rv,v) < 0 for all primitive 2-
vectors v (i.e., for v of the form e A f). If the eigenvalues of R are all < 0, then (-1)"P > 0.

On the other hand, in dimensions > 6, Geroch [Ge] showed in 1976 that the answer to
Question 4.2 is no. Geroch’s argument comes down to an example in linear algebra. He
writes down a symmetric matrix R : A2RS — AR® such that (Rv,v) < 0 or all primitive
2-vectors v and such that P = A3(R) > 0.

The following combinatorial version of the Gauss-Bonnet Theorem is a classical result.
A proof can be found in [CMS], where one can also find a convincing argument that it is
the correct analog of the smooth Gauss-Bonnet Theorem.

Theorem 4.3. Suppose X is a finite, PE cell complex. Then

x(X) =Y P(Lk(v,X).

Here P is a certain function which assigns a real number to any finite, P.S cell complex.
We define it below.
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Let o C S* be a spherical k-cell. Its dual cell ¢* is defined by ¢* = {z € S*|d(x, o) >
7/2}. Let a*(o) be the volume of ¢* normalized so that volume of S* is 1, i.e.,

</ _ vol(c*)
9(0) = Sol(5H)

If L is a finite, PS cell complex then P(L) is defined by

P(L)=1+) (-1)%metig*(0),

where the summation is over all cells ¢ in L.

Example 4.4. . Suppose that o is an all right k-simplex. Then o* is also an all right
k-simplex. Since S* is tessellated by 2¥+! copies of o* we see that a*(c) = (3)**!. Now
let L be an all right P.S simplicial complex and f; the number of i-simplices in L. Then

P(L) =1+ Z(u_;_)dima+1

The following conjecture asserts that the answer to the combinatorial version of Question
4.2 should always be yes.

Conjecture 4.5. Suppose that L*"~! is a PS cell complex homeomorphic to S**~1. If
L?"=1 js CAT(1), then (—=1)"P(L*"~1') > 0.

Thus, this conjecture implies Hopf’s Conjecture for PE manifolds.

If L is a flag complex, then, by Gromov’s Lemma and Example 4.4, we have the following
special case.

Conjecture 4.6. Suppose that L?>"~! is a flag complex which triangulates S>*~1. Then

(D1 + (=5 ) >0

So, this conjecture implies Hopf’s Conjecture for PE cubical complexes which are closed
manifolds. '

Remark 4.7. Conjecture 4.6 is analogous to the Lower Bound Theorem in the combinatorics
(a result concerning inequalities among the f; for simplicial polytopes). For example, the
Lower Bound Theorem of [W] asserts that for any simplicial complex L which triangulates
S3, we have f1 > 4fp — 10. Conjecture 4.6 asserts that, if, in addition, L is a flag complex,
then f; > 5fp — 16. Some evidence for these conjectures is provided by the following two
propositions. The first result follows from recent work of R. Stanley [St] as was observed

by Eric Babson.
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Proposition 4.8. Suppose that L?"~! is the barycentric subdivision of the boundary
complex of a convex 2n-cell (so that L is a flag complex). Then Conjecture 4.6 hold for L.

Proposition 4.9. Suppose that L?"~! is the polar dual of a convex cell C*™ in H". Then
Conjecture 4.5 holds for L.

This proposition follows from a formula of Hopf (predating the general Gauss-Bonnet
Theorem) which asserts the (—1)"P(L?*~1) is one-half the hyperbolic volume of C?"

(suitably normalized).
Further details about these conjectures and further evidence for them can be found in

[CD3].

Remark 4.10. A natural reaction to Conjecture 4.5 is that it might contradict Geroch’s
result. One could try to obtain such a contradiction as follows. Take a smooth Riemannian
manifold M?" whose curvature operator at a point z is as in Geroch’s result. Then try
to approximate M?™ near z by a PFE cell complex with nonpositive curvature. By the
main result of [CMS] the numbers P(L) for L a link in the complex, should approximate
the Pfaffian at z and hence, have the wrong sign. However, it is not clear that such a
approximation exists. Thus, we are led to ask the following.

Question 4.11. Suppose M is a Riemannian manifold with K (M) < 0 (we could even
assume the inequality is strict). Is M homeomorphic to a PE cell complex X with K(X) <

0?

For our conjectures to be correct, the answer should be no.
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IT Coxeter Groups.
Coxeter groups and Coxeter systems are defined in §5. Associated to a Coxeter system

there is a simplicial complex called its “nerve”. The basic result of §5 is Lemma 5.6,
which asserts that any finite polyhedron can occur as the nerve of some Coxeter system.
Eventually, this will be used to show that Coxeter groups provide a rich and very flexible
source of examples.

In §6 and §7 we discuss a beautiful, piecewise Euclidean cell complex ¥ which is naturally
associated to a Coxeter system (W, S). From the results of Chapter I, we get the important
result of Moussong (generalizing an earlier observation of Gromov), that ¥ is nonpositively
curved and hence, contractible (since it is simply connected).

In §8 we briefly discuss some important special cases of this construction.

§5. Coxeter systems.
Let S be a finite set.

Definition 5.1. A Cozeter matriz M = (mgy ) is an S x S symmetric matrix with entries
in NU {oo} such that
1 s ifs=4
Mgs' =

>2 ;ifs#s
Definition 5.2. Given a Coxeter matrix M, define a group W with presentation:
W = (S|(ss')™s =1,V¥(s,5') € § x 9)
W is called a Cozeter group.

If all the off-diagonal entries of M are 2 or oo, then W is called right-angled.

Coxeter groups are intimately connected to the theory of reflection groups. This con-
nection will not be emphasized in these notes. For now it should suffice to mention that
if a group W acts properly on a connected manifold and if W is generated by reflections
(where a reflection is an involution whose fixed point set separates the manifold), then W
is a Coxeter group (cf. [D1, Theorem 4.1]).

Given M, it is proved in Ch. V §4.3 of [B, pp. 91-92] that one can find a family (ps)secs
of linear reflections p, : R® — R so that p, o pss has order mg, for all (s,8') e Sx S.
It follows that the map s — ps extends to a representation p : W — GL(R®) called
the canonical representation. The existence of this representation immediately implies the
following;:

a) the natural map S — W is an injection (and henceforth, we shall identify S with its
image in W),

b) order (s) =2, for all s € S

¢) order (ss’) = mgy, for all (s,s') € S x S.

The pair (W, S) is called a Cozeter system.

Remark 5.8. It is proved in Ch. V §4.4 of [B, pp. 92-94] that the dual p* : W — G((R%)*)
is faithful and has discrete image. Moreover, as explained in §9, W acts properly on certain
open convex subset of (R¥)*. (These results are due to Tits.)

If T is a subset of S, then let W denote the subgroup of W generated by T
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Lemma 5.4. ([B, p. 20]) For any T C S, the pair (Wr,T) is a Coxeter system (i.e., its
Coxeter matrix is M|T).

Let (W, S) be a Coxeter system. We define a poset, denoted Sf(W, S) (or simply S')
by
ST ={T|T c S and Wr is finite}

It is partially ordered by inclusion. Consider S f— {0}. It is isomorphic to the poset of
simplices of an abstract simplicial complex which we shall denote by N(W,S) (or simply

N). N is called the nerve of (W, S).
In other words, the vertex set of NV is S and a subset T" of S spans a simplex if and only

if W is finite.
Example 5.5. If W is finite, then N is the simplex on S.

Which finite polyhedra occur as the nerve of some Coxeter system? The next two results
show that they all do.

Lemma 5.6. Let L be any flag complex. Then there is a right-angled Coxeter system
(W, S) with N(W, S) = L.
. Proof. Let S be the vertex set of L and define a Coxeter matrix (mss) by

1 ,ifs=4¢
meer =< 2, if {s,s’'} spans an edge in L

oo , otherwise

- If W is the associated right-angled Coxeter group, then N(W, S) = L.

In particular, since the barycentric subdivision of any (regular) cell complex is a flag
complex, we have the following corollary.

Corollary 5.7. For any finite polyhedron P, there is a right-angled Coxeter system (W, S)
with N(W, S) homeomorphic to P.

The main result of this chapter is the following theorem.

Theorem 5.8. (Gromov, Moussong) Associated to a Coxeter system (W, S) there is a
PE cell complex (W, S)(= X) with the following properties.
i) The poset of cells in X is
I w/wr.

TeSY

(ii) W acts by isometries on ¥ with finite stabilizers and with compact quotient.

(iii) Each cell in ¥ is simple (so that for each vertex v, Lk(v,X) is a simplicial cell
complex). In fact, this complex is just N(W, S).

(iv) ¥ is CAT(0).
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§6. Coxeter cells.
Throughout this section we suppose that W is finite.
In this case, we will show that ¥ can be identified as a convex cell in R” (n = Card (5)).

The dual of the canonical representation shows that W can be represented as an or-
thogonal linear reflection group on R™. They hyperplanes of reflection divide R™ into

“chambers”, each of which is a simplicial cone. (See p. 85 in [B].)
Choose a point z in the interior of some chamber. Define ¥ to be the convex hull of

Wz (the orbit of z). ¥ is called a Cozeter cell of type W.
The proof of the next lemma is an easy exercise.

Lemma 6.1. Suppose W is finite.
(i) The vertex set of the Coxeter cell & is Wx.
(ii) Each face F' of ¥ is the convex hull of a set of vertices of the form (wWr)x for some

T C S and some coset wWy of Wr. (So, F is a Coxeter cell of type Wr.)

(iii) The poset of faces of 3. is therefore,

11 w/wr.
TCS

(iv) X is simple cell. Lk(z,X) is the spherical (n — 1)-simplex spanned by the outward
pointing unit normals to the supporting hyperplanes of a chamber.

Remark 6.2. If x lies in a chamber with supporting hyperplanes indexed by S, then the
vertex set of Lk(z,X) is naturally identified with S. Moreover, the length of the edge
from s to s’ is m — m/mss. (In other words, the corresponding angle in a 2-cell in ¥ is
T — T/ Mssr.)

Example 6.3. (i) If W = Z/2, then ¥ is an interval.

(ii) If W = D,, (the dihedral group of order 2m), then ¥ is a 2m-gon.

(iii) If (W, S) is the direct product of two Coxeter systems (W7, S1) and (Ws, S2) (so that
W =W; x Wy and § = 51 [[S2), then £(W,S) = X(W1, S1) x X(Wa,Ss). In particular,
if W = (Z/2)", then ¥ is a n-dimensional box (= the product of n intervals).

(iv) If W = S,, the symmetric group on n letters, then ¥ is the (n — 1)-cell called the
permutahedron. The picture for n = 4 is given below.

Figure 4

Remark 6.4. By choosing z to be of distance 1 from each supporting hyperplane we can
normalize each Coxeter cell so that every edge length is 2.
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§7. The cell complex ¥ (in the case where W is infinite).

There is an obvious way to generalize the material of the previous section to the case
where W is infinite. The cell complex X is defined as follows. The vertex set of X is W.
Take a Coxeter cell of type Wy for each coset wWyp, T € SY. Identify the vertices of this
Coxeter cell with the elements of wWy. Identify two faces of two Coxeter cells if they have
the same set of vertices. This completes the definition of ¥ as a cell complex.

If we normalize each Coxeter cell as in Remark 6.4, then the faces of the cells are
identified isometrically and hence, ¥ has the structure of a PE cell complex.

Remark 7.1. Let XA : S — (0, 00) be a function. If, in the definition of each Coxeter cell, we
choose the point z to be of distance A(s) from the hyperplane corresponding to s, then the
Coxeter cells again fit together to give a PE structure on . We have arbitrarily chosen A

to be the constant function.

Remark 7.2. By construction, the poset

wst = 1] w/wr

TeSf

is the poset of cells in X. If P is any poset, then let P’ be its derived complex defined as
“in Example 3.8, (i.e., P’ is the poset of finite chains in P). P’ is the poset of simplices
in an abstract simplicial complex. Moreover, if P is the poset of cells in a (regular) cell
complex, then P’ is the poset of simplices in its barycentric subdivision. Applying these
remarks to the case at hand, we see that the barycentric subdivision ¥’ of ¥ is just the
geometric realization of (WS7)'. Alternatively, we could have defined ¥’ as the geometric
realization of (W&Y) and then remarked that the poset of chains which terminate in
wWr can naturally be identified with the set of simplices in the barycentric subdivision of
a Coxeter cell of type Wr. Hence, the cellulation of ¥ by Coxeter cells could be recovered

from Y’ by collecting together the appropriate simplices.

The link of a vertex. The group W acts isometrically on ¥ and freely and transitively
on its vertex set. Thus, there is an isometry of ¥ which takes any vertex onto the element
1 € W. What is Lk(1,X) (as a simplicial complex)? A cell contains the element 1 if and
only if it corresponds to some identity coset Wr. Hence, the poset of simplices in Lk(1,X)
is just ST — {0}, i.e.,

Lk(1,X) = N(W, S).

What is the induced PS structures on N? Two distinct vertices s and s’ of N are connected
by an edge esy if and only if msy # oo. By Remark 6.2, {(ess/) = m — m/mss (where
¢ stands for length). Since a spherical simplex is determined by its edge lengths this

determines PS structure on N.
A proof of the following lemma. can be found in [B, p.98].

Lemma 7.3. Let T be a subset of S. Consider the T' x T' matrix, css', where

Csst = cOS(T — T/ Mssr).
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Then Wiy is finite if any only if (css) is positive definite.

Proof. Consider the dual of the canonical representation of W into GL(n). Suppose Wr is
finite. Then we may assume that the image of this representation is contained in O(n). For
each s € T, let us; be the outward-pointing unit normal to the hyperplane corresponding
to s. Then (us - us) = (css) and hence, this matrix is positive definite since (ug)ser is
a basis for R". Conversely, suppose that (css/) is positive definite. Since the dual of the
canonical representation preserves the corresponding bilinear form, we get that the image
of this representation is contained in O(n). Since this representation is also discrete and
faithful, Wr is a discrete subgroup of O(n); hence, finite.

Corollary 7.4. N(W,S) is a metric flag complex.
We can now prove the main result.

Proof of Theorem 5.8. We have already demonstrated the required properties of ¥ except
for (iv). Thus, it suffices to prove that ¥ is CAT(0). First of all, it is easy to see that
Y is simply connected. (One argument is to observe that the 2-skeleton of ¥ is just the
universal cover of the 2-complex associated to standard presentation of W.) Hence, by
Theorem 1.5, it suffices to show K (%) < 0. The link of any vertex is isometric to N. By
Corollary 7.4 and Moussong’s Lemma (Lemma 3.16) N is CAT(1). Therefore, K(2) <0

(by Theorem 2.5).

Remark 7.5. Theorem 5.8 was proved by Gromov [G, pp. 131-132] in the special case
where W is right-angled. The general case was proved in [M]. The point is that in the
right-angled case ¥ is a cubical complex so we can use Gromov’s Lemma (Lemma 3.9)

rather than Moussong’s generalization of it.

§8. Applications.

a) Two dimensional complexes. Let L be a finite graph and m and integer > 2. Let
k be the girth of L (the length of the shortest circuit). If m = 2, then we assume & > 4.
Let S = Vert(L) (the vertex set of L) and define a Coxeter matrix by

1 ;ifs=4¢
— . 3 !
Mgy = ¢ m ; if{s, s’} spans an edge

oo ; otherwise.

Let W be the resulting Coxeter group. Our assumption implies that N(W,S) = L. Thus,
Y (W, S) is a CAT(0), PE 2-complex such that each 2-cell is a regular 2m-gon and such
that the link of each vertex is L.

Here the condition that L was CAT (1) was just that k(m — n/m) > 2 (which holds
provided k£ > 4 is m = 2).

We can give ¥ a piecewise hyperbolic (abbreviated PH) structure by declaring each
2-cell to be a small regular 2m-gon in H?. Since the angles of such a 2m-gon will be
slightly less than in the Euclidean case, we will be able to do this so that links are CAT(1)
provided that k(m — w/m) > 2m. This holds provided k >4 if m =2 and k > 3 if m = 3.
Thus, provided the condition holds, ¥ can be given a PH structure which is CAT(-1).
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These “regular” 2-complexes can be thought of as generalization of well known examples
of regular tessellations of E? and H2.

Nadia Benakli has made a detailed study of these 2-complexes in her thesis [Be]. For
example, she shows that the “visual sphere” (or “boundary” of the compactification of X
discussed in [DJ, §2b]) is usually a Menger curve. Benakli also has another construction of
such 2-complexes where the 2-cells are n-gons, with n odd, provided that there is a group
G of automorphisms of L such that L’/G is an interval (L’ is the barycentric subdivision.)

b) Word hyperbolic Coxeter groups. In [M] Moussong also analyzed when the idea of
the previous subsection of replacing the Euclidean Coxeter cells of ¥ by hyperbolic Coxeter
cells works in higher dimensions.

Consider the following condition (x) on a Coxeter system (W, .S).

() For any subset T of S neither of the following holds:
(1) W = Wy, x Wy, with both factors infinite,
(2) Wr is a Euclidean Coxeter group with Card (T') > 3.

Here a “Euclidean Coxeter group” means the Coxeter group of an orthogonal affine
reflection group on E™ with compact quotient. The “Coxeter diagrams” of these groups
are listed in [B, pp. 133 and 199].

Theorem 8.1. (Moussong) The following conditions are equivalent.
(i) (W, S) satisfies (*)
(ii) T can be given a PH, CAT(—1) structure,
(iii) W is word hyperbolic,
(iv) W does not contain a subgroup isomorphic to Z + Z.

To show (i) = (ii) one wants to replace the cells of ¥ by Coxeter cells in H". In order
for the links to remain C AT'(1), one needs to know that the length of every closed geodesic
in N(W,S) is strictly greater than 27 and that the same condition holds for the link of
each simplex in N(W, S). In his proof of Lemma 3.16, Moussong analyzed exactly when a
metric flag complex has closed geodesics of length equal to 27. In the case at hand, it was
only when conditions (1) and (2) of (%) hold. The implications (ii) = (iii) = (iv) = (i)
are all either well-known or obvious.

c) Buildings. As we mentioned in §3 d) associated to each building B there is a Coxeter
system (W, S) so that each “apartment” is isomorphic to a complex associated to (W, S).
Traditionally, this complex is the Coxeter complex (where each chamber is a simplex).
For general Coxeter groups, however, it seems more appropriate to use the barycentric
subdivision ¥’ of ¥. (In [CD5] w call this the “modified Coxeter complex”). This point
is made by Ronan in [R, p. 184]. The buildings which arise in nature (in algebra or
geometry) are usually of spherical or Euclidean type. This means that the Coxeter group
W is either finite or Euclidean. In the case where W is Euclidean and irreducible these
two definitions essentially agree.

In the general case let us agree that the correct definition of a building should be as
a simplicial complex such that each apartment is isomorphic to ¥’. Since, by Theorem
5.8, ¥/ can be given the structure of a CAT(0), PE cell complex, we get an induced PE
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structure on the building B. As explained in §3c) , the axioms for buildings imply this
structure is CAT'(0). Thus, we have shown the following result.

Theorem 8.2. Any building (correctly defined) has the structure of a PE simplicial
complex which is C AT(0).

d) The Eilenberg-Ganea Problem. Let I" be a torsion-free group. The cohomological
dimension of I' is denoted by cd(I"). The geometric dimension of ', denoted gd(T’), is the
smallest dimension of a K(I',1) complex.

The following result is proved in [EG] except for the case when cd(T") = 1 which follows
from subsequent work of Stallings.

Theorem 8.3. (Eilenberg-Ganea, Stallings)
(i) If cd(T') # 2, then cd(T") = gd(T).
(ii) If cd(T') = 2, then 2 < gd(T') < 3.

Problem. Does cd(I') = 2 imply gd(T') = 27

In [Bes], Bestvina computed the virtual cohomological dimension, denoted ved, of any
Coxeter group W. (By definition, the ved is the cohomological dimension of any torsion-
free subgroup of finite index.) Usually, ved(W) = dim X, but no always. For example, if
N(W, S) is an acyclic simplicial complex, then there is a W-stable subcomplex g C ¥’
(the barycentric subdivision of ¥) such that

(i) ¥ is acyclic, and

(ii) dim(¥Xp) =dim N = dim X — 1.

So, in this case, ved(W) < dim ¥ — 1. The subcomplex g consists of all those simplices
in ¥’ whose minimal vertex is not an element of W (i.e., the minimal vertex is not vertex
of a Coxeter cell).

Now, choose (W, S) so that N(W,S) is an acyclic 2-complex and so that 71 (N (W, S))
is not trivial. (For example, if NV is a given acyclic 2-dimensional flag complex, then W
could be the associated right-angled Coxeter group.) By the above remarks, ved(W) =

Conjecture 8.4. (Bestvina) Let W be as above and let " be a torsion-free subgroup of
finite index in W. Then gd(T") = 3.

Since W can be represented as a subgroup of some GL(n), such as subgroup I" always

exists (Selberg’s Lemma).
The reason for believing this conjecture is that it seems that N (a subcomplex of ¥)

should embed in the universal cover ET" of a K(I',1). On the other hand, if 71 (V) is not
trivial, then it should not be possible to embed it in any contractible 2-complex, since it
should not be possible to kill 71 (N) by adding the same number of 1 and 2 cells.

e) When is ¥ a manifold ? Since the link of every vertex in ¥ is isomorphic to N, this
question can be answered as follows.
Proposition 8.5.

(i) ¥ is a homology n-manifold if and only if N is a homology (n — 1)-manifold with the
homology of S™~1.
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(ii) For n > 5,3 is a topological n-manifold if and only if N is as in (i) and N is simply

connected.
(iii) ¥ is a PL n-manifold if and only if N is PL homeomorphic to S™ .

Statements (i) and (iii) are just restatements of the definitions. Statement (ii) follows
from the celebrated work of Cannon [Ca] and Edwards on the Double Suspension Theorem.
In particular, (ii) follows from a theorem of Edwards in [E], wich states that a polyhedral
homology n-manifold, n > 5, is a topological manifold if and only if the link of each vertex

is simply connected.
Let us begin by discussing some examples of (iii) when N is a PL triangulation of S™~!.

Example 8.6. (Lanner [L]). Suppose that N (W, S) is isomorphic to the boundary complex
of an n-simplex. Then n = Card (S) — 1, Wis infinite, and for every proper subset 1" of
S, the group Wr is finite. Such groups were classified in 1950 by Lanner: they are either
irreducible Euclidean reflection groups or hyperbolic reflection groups. In both cases a
fundamental chamber is an n-simplex. In the Euclidean case there are a few families in
each dimension n and a few exceptional cases in dimensions < 8. In the hyperbolic case,
in dimension 2, we have the hyperbolic triangle groups: these are the groups such that
Card (S) = 3 and the 3 entries p,q,r of the Coxeter matrix above the diagonal satisfy
(1/p)+(1/q) + (1/r) < 1. Furthermore, there are 9 hyperbolic examples in dimension 3, 5
more in dimension 4, and none in dimensions > 4. Complete lists can be found on pages

133 and 199 of [B].

Example 8.7. (Andreev [A]) Suppose that N is a triangulation of S? and that condition
(%) of subsection b) holds. Then Andreev proved that W can be realized (uniquely, up to
conjugation by an isometry) as a reflection group on H?. In fact, he shows that there is a
convex cell C® in H3, the polar dual of which is N. (Thus, the faces of C® corresponding
to s and s’ make a dihedral angle of w/mgss.) W is the group generated by reflections
across the faces of C3.

Example 8.8. ([T], [D2] and [CD2]). Suppose L is the boundary complex of a n-
dimensional octahedron (i.e., L is the n-fold join of S° with itself). Let W’ be a finite
Coxeter group of rank n. Use W’ to label the edges of one (n — 1)-simplex in L. Label the
other edges 2. This defines a Coxeter group W, with N(W, S) = L. Each chamber of W on
¥ is combinatorially equivalent to the cone on the dual cellulation of N, i.e., each chamber
is a combinatorial cube. If W’ = (Z/2)™, then each chamber actually is an n-cube.

In the case where W’ = S,,11, the symmetric group, the W-manifolds ¥ actually arise
in nature. For example, there is an obvious homomorphism W — W’ x (Z/2)™ with kernel
I'p. Tomei showed in [T}, the n-manifold ¥/T'g can be identified with the manifold of
all tridiagonal, symmetric (n + 1) x (n + 1) matrices with constant spectrum (of distinct
eigenvalues). This is also explained in [D2]. From a completely direction, it is shown in
[CD2] that for a certain torsion-free, finite-index, normal subgroup I'; of W,%/T'; can be
identified with Gromov’s “Moebius band” hyperbolization construction applied to bound-
ary of a (n+1)-cube, and that for a different subgroup I'z,3/T'; can be identified with the
“product with interval” hyperbolization construction applied to the boundary of a simple

regular (n + 1)-cell.
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Example 8.9. Let L be any flag complex which is a PL triangulation of S"~1, let (W, S)
be the corresponding right-angled Coxeter system with N = L.

Proposition 8.10. ([CD3, §6]). Let L be as above. Then there is a closed, PE cubical
manifold M™ with K(M™) < 0 such that the link of each vertex is isomorphic to L.

Proof. Let I' be any torsion-free, finite index subgroup of W, where W is as in Example
8.9. Set M™ = %/I.

Corollary 8.11. Hopf’s Conjecture (from §4) for PE cubical manifolds is equivalent to
Conjecture 4.6.

Proof. We saw in §4 that Conjecture 4.6 implied Hopf’s Conjecture for PE cubical mani-
folds. Let L be an arbitrary triangulation of $??~! by a flag complex and let M3 be as in
the previous proposition. By the Combinatorial Gauss-Bonnet Theorem (Theoremi 4.3),

x(M*™ =" P(L)
— W : T|P(L).

Hence, x(M?") and P(L) have the same sign.

f) Is ¥ homeomorphic to R*?

Proposition 8.12. (i) If N is a PL triangulation of S"~!, then ¥ is PL homeomorphic
to R"™.

(ii) If N is a PL homology sphere (i.e., N is a PL manifold) and 7 (N) is not trivial,
then % is not simply connected at infinity. (However, ¥ is not a manifold, rather it is only
a homology manifold.)

(iii) If N is a simply connected homology manifold with the homology of S™1, then,
for n > 5, ¥ is a contractible manifold and it may happen that ¥ is not simply connected
at infinity (and hence, not homeomorphic to R™).

Comments on the proof. (i) In [Sto], D. Stone proved that if M™ is a CAT(0), PE cell
complex and if the underlying cell structure is that of a PL manifold, then M™ is PL
homeomorphic to R”. (A different proof is given in [DJ].)

. (ii) It is proved in [D1] that the fundamental group at infinity of ¥ is the inverse limit
of free products of an increasing number of copies of 71 (N). (The “visual sphere” of ¥ the
inverse limit of connected sums of an increasing number of copies of N.)

(iii) Let A™~! be an acyclic PL manifold with boundary. Suppose that 71 (8A) — 71 (A)
is onto. Take a triangulation of A as a flag complex so that A is a subcomplex and a
flag complex. Let IV be the simplicial complex resulting from attaching the cone on JA.
Finally, let (W, S) be a Coxeter system with N(W,S) = N. Then m;(N) = 0, hence, as in
8.5 (iii), X is a topological n-manifold, provided n > 5. It is proved in [DJ, §5b] that if the
double of A along A is not simply connected, then X is not simply connected at infinity.

As a corollary of (iii) of the previous proposition we have the following result (which
answers a question of Gromov about whether such examples could exist).
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Corollary 8.13. ([DJ, p. 383]) There a Coxeter system (W, S) so that the corresponding
PFE polyhedron X is

(a) CAT(0),

(b) a topological n-manifold, n > 5, and

(¢) not homeomorphic to R™.

In [ADG] we show that a modified version of the ¥ in part (ii) of Proposition 8.12 can
be taken to be a topological manifold. The rough idea is to blow up the PL singularities
of X from isolated vertices into intervals. More precisely, we prove the following result.

Proposition 8.14. ([ADG]) Let L"~! be a PL homology sphere. Then there is a right-
angled Coxeter system (W, S), with N(W, S) = L, and a PE cubical complex ¥; with W
action such that (a) ¥; is CAT(0) and (b) ¥ is a topological n-manifold.

Idea of Proof. We can find a codimension-one homology sphere Lo C L such that 1) Lg
divides L into two pieces L1 and Ly (each of which is an acyclic manifold with boundary)
and 2) 71 (Lo) — m1(L;) is onto, for 1 = 1,2. Triangulate L as a flag complex so that Ly is a
full subcomplex and let (W, S) be the right-angled Coxeter system such that N(W, S) = L.
For ¢« = 1,2, let N; denote the union of L; with the cone over Ly. Then N; is simply
connected. In the construction of ¥ a fundamental chamber is essentially a cubical cone
over L. As explained in [ADG], to construct ¥;, one uses as a chamber the union of two
cubical cones: one over N; and the other over N;. These cones are glued together along
the cone on Ly. Such a chamber now has PL singularities along an interval which connects
the two cone points ¢; and cy. The link of ¢; is N;, which is simply connected; hence, by
Edwards’ Theorem [E], ¥; is a topological manifold.
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ITI. Artin Groups.

As explained in §9 any Coxeter group (finite or not) has a representation as a reflection
group on a real vector space. Take the complexification of this vector space. It contains a
certain convex open subset such that after deleting the reflection hyperplanes, we obtain
an open manifold M on which the Coxeter group W acts freely. The fundamental group
of M/W is the “Artin group” A associated to W. When W is finite, Deligne proved that
M/W is a K(A,1)-space. The conjecture that this should always be the case, is here
called the “Main Conjecture”. The purpose of this chapter is to outline some work on this
conjecture in [CD5] and [CD6].

Associated to the Artin group there is a cell complex ® (which is very similar to X). It
turns out (Corollary 12.2) that proving the Main Conjecture for W is equivalent to showing
® is contractible. The complex ® has a natural PFE structure, which we conjecture is always
CAT(0). We do not know how to prove this; however, in §13 we show that there is a (less
natural) cubical structure on ® and that in “most cases” it is CAT(0). Hence, the Main

Conjecture holds in most cases.

§9. Hyperplane Complements.

Let S, denote the symmetric group on n letters. It acts on R™ by permutation of
coordinates. In fact, this action is as an orthogonal reflection group: the reflections are
the transpositions (ij), 1 < ¢ < j < n, the corresponding reflection hyperplanes are the
H;; = {z € R"|z; = z;}. Complexifiying we get an action of S,, on C* = R" ® C such
that S, acts freely on :

M =C"—| J(H; ®C).

Thus, M/S, is the configuration space of unordered sets of n distinct points in C.
It is a classical fact that the fundamental group of M/S, is B,, the braid group on n
strands. The following result is also classical.

Theorem 9.1. (Fox-Neuwirth [FN])

1) M is a K(m,1) space, where m is PB,, the pure braid group (i.e., PB,, is the kernel
of B, — Sy).

2) M/S, is a K(m,1) space, for 7 = B,,.

Next suppose that W is a finite reflection group on R™ and that

M=C'—|JH,®C

where the union is over all reflections 7 in W (i.e., all conjugates of elements in S) and
where H,. is the hyperplane fixed by r. Arnold and Brieskorn asked if the analogous result
to Theorem 9.1 holds in this context. In [De], Deligne proved that this was indeed the

case.

Theorem 9.2. (Deligne [De]) Suppose that W is a finite reflection group. Then M/W is
a K(m,1) space, where  is the “Artin group” associated to W (as defined below).
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Artin groups. Suppose that (W,S) is a Coxeter system and that M = (mg) is the
associated Coxeter matrix. Introduce a new set of symbols X = {z;|s € S} one for each

element of s.

Notation. If m is an integer > 2, then let prod(z,y;m) denote the word: zyz---, where
there are a total of m in letters in a word.

Definition 9.3. The Artin group associated to (W, S) (or to M) is the group generated
by X and with relations:

pI‘Od(ZL‘s, Tst; mss’) = prOd(ws’, Ts; mss')
where (ss’) range over all elements of S x S such that s # s’ and mgy # oo.

Remark 9.4. If we add the relations (z5)? = 1, then the relation appearing in the previous
definition can be rewritten as (z sz, )™ss' = 1; hence, we recover the standard presentation
of W. Thus, if A is the Artin group associated to (W, S), we see that there is a canonical

surjection p : A — W which send z; to s.
Example 9.5. If W is S,,, then the associated Artin group is B,,.

It is natural to ask if Theorem 9.2 holds in the case where W is infinite. In order to
make sense of this question we first need to discuss what is meant by a “linear reflection
group” in the infinite case.

Linear reflection groups. Let V be a finite dimensional real vector space. A linear
reflection on V means a linear involution with fixed space a hyperplane.

Suppose that C' is a convex polyhedral cone in V' (Figure 5) and that S is a finite set
which indexes the set of codimension-one faces of C. Thus, (Cs)ses will be the family of
codimension-one faces of C. Let H, denote the linear hyperplane spanned by Cs.

Figure 5
For each s € S, choose a reflection p, with fixed subspace Hs;. Let W denote the
subgroup of GL(V') generated by {ps|s € S}.

Definition 9.6. W is a linear reflection group if wCNC =0 or all w € W,w # 1. (Here
C denotes the interior of C.)

Definition 9.7. Let 3
I = U wC
wCW

and let I denote the interior of I. T is called the Tits cone.
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Example 9.8. Consider the quadratic form model of H?: the hyperbolic plane is identified
with one sheet of a hyperboloid in R%*! (3-dimensional Minkowski space). An isometric
reflection on H? extends to a linear reflection on R%! preserving the indefinite quadratic
form. Now suppose that W is the reflection group on H? generated by the reflections across
the edges of a hyperbolic polygon with angles of the form 7/m. Then W can be regarded

as a linear reflection group on R%!. (See Figure 6.)

Figure 6
In this case the interior I of the Tits cone is just the interior of the light cone.

Theorem 9.10. (Vinberg [V]) Suppose that W C GL(V') is a linear reflection group with
fundamental polyhedral cone C. Put Cf = {z € C|W,, is finite}. Then

(i) (W, S) is a Coxeter system,

(ii) T is a convex cone,

(iii) K is W-stable and W acts properly on it,

(iv) INC = C7,

(v) the poset of face of C¥ is ST (where ST = {T C S|Wr is finite}.

Let W be as in Vinberg’s Theorem and consider the domain V 4+ il in V ® C (V +il
denotes the set of vectors whose imaginary part lies in I). Set

M= (V+il)—| J(H,®C)
The following is the main conjecture which we shall be concerned with in this chapter.

According to [Lek] it is due to Arnold, Pham and Thom.

Conjecture 9.11. (the “Main Conjecture”) M/W is a K(m, 1) space, where m1 = Ay,
the Artin group associated to (W, .S).

Some progress on this was made in the thesis of H. van der Lek [Lek], where the following
result is proved. (Another proof can be found in [CD5].)
Proposition 9.12. (van der Lek) m (M/W) = Aw.

The Main Conjecture can also be formulated in terms of the cell complex ¥ which was
introduced in the previous chapter in §7. In fact, in view of Theorem 9.10 (v), the following

lemma is not surprising.
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Lemma 9.13. ([CD5, §2]) There are W-isovariant homotopy equivalences:

I ~% and
V4il~IxI~YxX.

Set
=(ZTxX) Uz X X,

where X, denotes the subcomplex of ¥/ fixed by r. Then

Y/W ~ M/W.

Hence, we have the following

Conjecture 9.14. (reformulation of the Main Conjecture) Y/W is a K(Aw,1).

§10. The Salvetti complex.

In this section, which is independent of the last three sections of this chapter, we describe
a PE cell complex ¥ homotopy equivalent to M. The quotient space X /W is a finite CW
complex. Hence, when the Main Conjecture holds, ¥/W will be a K(Aw,1) space. The
complete details of this construction are given in [CD6].

In §5, we considered two posets:

SY = {T c S|Wr is finite}and

ws =[] w/wr.
TeSt

Here we consider a third poset W x Sf. The partial ordering on W x Sf is defined as
follows: (w,T) < (w',T") if and only if

HT<T

(ii) w™lw' € Wrv, and

(iii) for all ¢t € T, L(w™ ') < £(tw™ w’)
(where £ denotes word length in W). There is a natural projection 7 : W x &/ — WS/
defined by (w,T) — wWr. Conditions (i) and (ii) just mean that 7 is order-preserving.
Condition (iii) comes out of the proof of Proposition 10.1, below.

The quickest way to define ¥ is to first define its barycentric subdivision ¥'; it is the
geometric realization of the derived complex of W x Sf. One then observes that the union
of simplices with maximal vertex is (w,T) can be identified with a Coxeter cell of type

Wr.
If Z is a cell complex then P(Z) denotes the poset of cells in Z. For example, P(X) =

WS/,
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Proposition 10.1. (Salvetti [S] and [CD6]). There is a PE cell complex ¥ such that

(i) P(X) =W x ST,

(i) each cell of ¥ is a Coxeter cell,

(iii) W acts freely on X, ‘

(iv) X is W-equivariantly homotopy equivalent to M (or to Y') and hence, /W ~ M/W.
Sketch of Proof. First, for each (w,T) in W x Sf we will describe two open sets in Y.
Let U(,, ry denote the open star of the vertex corresponding to wWy in X'. Let Ul 1y
denote the intersection of the open “half spaces” in ¥’ which are bounded by the ¥, with
7 a reflection in wWrw™! and which contain the vertex w. (U(s, 1y 1s an open “sector”.)
We note that U(’:U’T) contains no point in U('w,T) with nontrivial isotropy group.

Consider ¥ = (¥ x ) — U(Z, x Z,). Let Ug, 1) = U(’w’T) X U(’I’U,T). One checks easily
that a) U,y C Y, b) {Upw,1)} is an open cover of Y, c) each nonempty intersection of
elements in this cover is contractible, and d) the nerve of this cover is 3’ (the geometric
realization of (W x &f)"). The proposition follows.

Remark. In [S] Salvetti carries out the above construction for arbitrary hyperplane com-
plements. The special case above is done in [CD6]. When W is the symmetric group, the
result was known earlier (for example, to J. Milgran, C. Squier, K. Tatsuoka and L. Paris).

The CW complex £/W has one cell of dimension Card (T) for each T € Sf. In
particular, when W is finite, &, /W is the CW complex formed by identifying faces of a
single Coxeter cell: the precise identifications can be worked out using conditions (i), (ii)
and (iii) in the definition of the partial order on W x S7.

Corollary 10.2. The Main Conjecture holds if and only if £/W is a K (Aw, 1) space.

Example 10.3. The Main Conjecture holds when W is finite. In particular, f)/ W is
a K(A,1) when A is a braid group. For example, when A = B, a K(Bs,1) can be
constructed by identifying edges of a hexagon in the following pattern:

b

a

Figure 7
Corollary 10.4. ([CD6]) Suppose the Main Conjecture holds for (W, S). Then
(i) cd(Aw) = dim ¥ = dim X.
(i) x(Aw) = x(5/W) =1 = x(N(W, 5)).
A naive idea for proving the Main Conjecture would be to show that K (i) < 0. This
actually works when W is right-angled (in [CD6]); however, it does not work in general.
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For example, when A = Bz, the link of a vertex in the complex in Example 10.3 is the

following graph.

Li(v,2)

Figure 8
Each edge length is 27 /3, but then the digons have length 47 /3 which is < 27.

§11. Complexes of groups.

Graphs of groups.
We begin by recalling some well-known results from the theory of graphs of groups (cf.

[Se]).

Let € be a graph, P(2) the poset of cells in 2 and P(2)°P the dual poset, thought of as
a category. A graph of groups over € is a functor G from P(£2)°P to the category of groups
and monomorphisms. Thus, to each vertex v of 2 we are given a group G(v) and similarly
a group G(e) for each edge e. Moreover, if v is a vertex of e, then there is a monomorphism
G(e) — G(v).

i From these data one can construct a group G, called the fundamental group of G and
denoted by 71(G). The basic result in the theory is the following.

Theorem 11.1. ([Se]). Given a graph of groups G over §Q, there exists a tree T with
G-action (G = m1(G)) so that the following hold.

(i) T/G=9Q

(ii) Suppose e is an edge of 2, v a vertex of e, € a lift of e to T and ¥ the corresponding
vertex of €. Then there is an isomorphism G5 = G(v) taking Gz onto the image of G(e).

One consequence of (ii) is that the natural map G(v) — w1(G) is injective (since it
is isomorphic to the inclusion G; C G). In the language of [H1] this means that G
is developable. The tree T is called the universal cover of G. It is unique up to G-
isomorphism. The other feature of a graph of groups is that this universal cover is not
only simply connected, it is contractible.

An important application of this theory is to the problem of gluing together various
K(m,1) spaces and then being able to decide if the result is also aspherical.

Definition 11.2. An aspherical realization of a graph of groups G is a CW complex B
and a map p : B — (' so that for each vertex v of 2, p~!(Star(v)) is a K(G(v),1). Here
“Star” refers to the open star of a vertex in the barycentric subdivision §¥'. (Actually, this
is only an approximation of the correct definition which can be found i [H2, §3.3 and 3.4].)

Remark 11.8. It is proved in [H2], in the more general context of complexes of groups,
that aspherical realizations exist and are unique up to homotopy.
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We will usually denote an aspherical realization of G by BG and call it the classifying
space of G. As a definition of 71(G) we could take the usual fundamental group of BG.
The following result is classical; its proof probably goes back to J. H. C. Whitehead.

Theorem 11.4. Let G be a graph of groups, BG an aspherical realization, and G = m1(G).
Then BG is a K(G,1).

Proof. Let EG be the universal cover of K(G,1). Consider the diagonal G-action on
EG x T. Projection on the second factor EG x T — T induces a map of quotient spaces

EG xg T — € which is clearly an aspherical realization. Hence, we can take BG =
EG xg T. On the other hand, the universal cover of EG xg T is EG x T which is

contractible.

Complexes of groups. Here we present a simplified version of the theory developed in
[H1] and [H2]. (For the applications we have in mind we do not need the most general
version of the theory.)

Definition 11.5. Let P be a poset. A simple complex of groups over P is a functor G
from P to the category of groups and monomorphisms.

Remark. In the general situation of [H2], P need not be a poset but only a “category
without loop”. More importantly, G need not be a functor. The appropriate triangular
diagrams relating compositions of morphisms need not commute on the nose but only up
to conjugation by some elements in the target group; furthermore, these elements must be

kept track of.

The concept of an “aspherical realization” is defined as before. Such an aspherical
realization is devoted by BG and called the classifying space of G. By definition, m1(G) =
71(BG). It can also be defined via generators and relations [H2, §12.8]. A complex of
groups need not be developable. Moreover, even if it is developable its universal cover

need not be contractible.

Example 11.6. Suppose P = P(A2)°P where A? is a 2-simplex. Define a complex of
groups G by the following picture.

Dq

Figure 9
where D,, denotes the dihedral groups of order 2m. Then 71(G) is a Coxeter group W
on three generators. G is developable. Assume that (1/7) + (1/q) + (1/r) > 1. Then W
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is finite. The universal cover of G is homeomorphic to S? (triangulated as the Coxeter
complex) and BG = EW Xxw S? which is not a K(W,1) (its universal cover is homotopy

equivalent to S?).

What is missing in higher dimensions is a hypothesis of nonpositive curvature (which
is automatic in the case of a graph of groups). The proof of the following basic result is
outlined by Haefliger in [H1] and the details are supplied in the thesis of B. Spieler [Sp].

Theorem 11.7. (Haefliger, Spieler) Let G be a complex of groups. Suppose that G admits
“a metric with K < 0”. Then

(i) G is developable,

(i) its universal cover is CAT(0) (and hence, contractible),

(iii) BG is a K(G, 1) space.

Remark. Suppose G is a complex of groups over a poset P. The hypothesis of nonpositive
curvature means that the geometric realization of P’ admits a PE “orbihedral structure”
with K < 0. In other words, the local models of a universal cover must be PE and CAT'(0).

Example 11.8. Suppose (W, S) is a Coxeter system and that S¥ is the poset defined in
§5. Define a simple complex of groups W over &7 to be the functor W(T') = Wyr. Then it
is easily seen that W is developable and that 71(W) = W. Moreover, its universal cover is
just the geometric realization of (WSY), i.e., it is ¥’ (the barycentric subdivision of X).
Moussong’s Theorem 5.8 shows that the natural PE structure on X’ is CAT(0), i.e., we
are in the situation of Theorem 11.7.

Example 11.9. Let A be the Artin group associated to (W, S). Let S/ be as above.
Define a simple complex of groups A over S to be the functor A(T) = Ar, where Ar
is the Artin group corresponding to (W, T) (Ar is an Artin group of “finite type”). It
follows easily that m; (A) = A. Moreover, it can be shown that for each T € S/, A7 — A
is injective, i.e., A is developable.
Consider the set,
AsT = [] A/Ar,
TeSf

partially ordered by inclusion. The geometric realization ® of the derived complex of ASY
will be called the modified Deligne complex. It will be our principal object of interest in the
remaining two sections. As is in the case of ¥/, it is easy to see that ® is simply connected
and therefore, that it is the universal cover of A.

§12. Reinterpretation of the Main Conjecture.
Recall that
Yz(ExZJ)—UETxE,.

Let X denote the geometric realization of (§f)'. Let 7 : Y/W — ¥//W = X be the map
induced by projection on the first factor.
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Proposition 12.1. ([CD6]). 7 : Y/W — X is an aspherical realization of A (from Exam-
ple 11.9).

Proof. Basically, this is just what Deligne’s Theorem (Theorem 9.2) tells us. Indeed, if T
is a vertex of X, then

7~ Y(Star(T)) = [(Star(1,T) x X — Uhyperplanes]/WT

which is homotopy equivalent the orbit space of the hyperplane complement for the finite
Coxeter group Wr. By Deligne’s result, this is a K(Ar,1). Thus, in the general situation,
Y/W is homotopy equivalent to B.A.

Corollary 12.2. The Main Conjecture holds for (W, S) if and only if @ is contractible.

Proof. We are using the form of the Main Conjecture in 9.14. By Proposition 12.1, Y/W
is homotopy equivalent to EA x 4 ®. Therefore, the universal cover of Y/W is contractible
if and only if ® is contractible.

® is “building-like”. As explained in §9, there is a natural epimorphism p : A—-W.
We can define a section ¢ : W — A of p as follows. Given w in W, write w = $1+-*8m
where 51 - - - 8, is a word of minimum length for w. Set p(w) = x5, ---Ts,, € A. It can
be shown that ¢ is well-defined (i.e., the value of ¢(w) does not depend on the choice of
minimal word). Of course, ¢ is not a homomorphism. The map ¢ induces a embedding of
posets WS — AS’ and therefore, a simplicial embedding X’ — ®. The translates of >/
by elements of A are the apartment-like subcomplexes. We have that

®=|Jax

a€A

and in this sense, ® is “building-like”. @ is not in fact a building: two points need to lie

in a common apartment.
Nevertheless, there is an obvious idea for trying to prove ® is contractible. Give ® a PE

structure by declaring each apartment-like complex to be isometric to Y with its natural
PE structure (described in §6 and §7). Then prove ® is CAT(0). To attack this we must

study links of vertices in ®.

The simplicial complexes 3 and ®. Suppose for the moment that W is a finite Coxeter
group. Let A be a simplex, the codimension-one faces of which are indexed by S: if s € S,
then A, denotes the corresponding face. Given z € A, put S(z) ={s€ S |z € Ag}. Define

Sw=(WxA)/ ~

where the equivalence relation ~ is defined by (w,z) ~ (w’,z’) if and only if z = 2’ and
wlw' € Wg(y). Xw is the usual Cozeter complex of W. Its poset of simplices is

(11 wywe)

T+#S
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It can be identified with the triangulation of the unit sphere in R™ where the (n — 1)
simplices are the intersection of S™~! with the translates of a fundamental simplicial cone.
In other words, if we identify A with a spherical simplex so that the dihedral angle along
As N Ay is m/mggr, then the induced PS structure on $w is that of a round sphere.

Similarly, define
Sy = (Ax A)/ ~
where ~ is defined by (a,z) ~ (a’,z’) if and only if z = ¢’ and a™'a’ € Ag;). The
simplicial complex &y is called the Deligne complez of (W, S ). (It was studied in [De].) In
particular, Deligne proved that ®y is homotopy equivalent to a wedge of (n — 1)-spheres
(where n — 1 = dim A).
As in the previous subsection,

q)W = U afjw
a€A

So, &y is spherical building-like. If we identify A with a spherical simplex as above, then
each apartment-like subcomplex aXw is isometric to a round sphere.

Links of vertices in ®. The vertices of ® correspond to elements of ASY, i.e., to cosets
of the form aAr,T € Sf. We classify these into three types.

Type 1. T = . In this case Lk(v,®) = N(W, S) (the same link as for a vertex of X).

Type 2. T is maximal in S7. In this case, Lk(v, ®) = @WT. (In the analogous case for 3’
the link would be a round sphere.)

Type 8. In the general case, Lk(v, @) is the orthogonal join of a link of a simplex in N (W, S)
and a link of type 2.

Thus, if we give ® its natural PE structure every link is of the form N(W,S) (which
is CAT(1) by Moussong’s Lemma and Cor. 7.4), or a Deligne complex associated to a
finite Coxeter group, or a join of these two types. Thus, ® will be CAT(0) provided the

following holds.

Conjecture 12.3. Let W be a finite Coxeter group. Then the Deligne complex dw with
its round metric is CAT(1).

Theorem 12.4. Conjecture 12.3 implies the Main Conjecture 9.11.

It follows from a lemma of [AS, p.210] that Conjecture 12.3 holds when W = D,,, the
dihedral group of order 2m. (The lemma asserts that ®p_, has no circuits of length < 2m).
This yields the following,.

Corollary 12.5. ([CD6]) The Main Conjecture holds whenever dim ® = 2.
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§13. A cubical structure on &.
A Coxeter cell of type Wt can be subdivided into combinatorial cubes, so that cubes

containing the barycenter of the cell correspond to the simplices of f]WT.

Figure 10
Given an arbitrary Coxeter system (W, S), we could give ¥'(W, S) a cubical structure by
declaring each such combinatorial cube to be regular Euclidean cube. As in the previous
section, there are three types of vertices to consider. For those of Type 2 (where T is
maximal), Lk(v,%’) is Sy, with its all right PS structure. By [Br, p. 29|, the Coxeter
complex of a finite Coxeter group is a flag complex; hence, by Gromov’s Lemma, the all
right structure on Sy, is CAT(1). Consider a vertex of Type 1 (where T = 0). The
link is N(W, S) with an all right PS structure. Hence, this link is CAT (1) if and only if
N(W,S) is a flag complex. Since the links of Type 3 are orthogonal joins of versions of
Type 1 and 2, we see that the cubical structure on ¥ is CAT(0) if and only if N(W,S) is

a flag complex.
In exactly the same way, we can put a cubical structure on ®. In the case of vertices of

Type 2, we have the following key lemma of [CD 5, Lemma 4.3.2].

Lemma 13.1. (CD6]) Let W be a finite Coxeter group. Then the Deligne complex &y
is a flag complex.

For vertices of Type 1 the link is again N(W,S). The conclusion is that the cubical
structure on ® is CAT'(0) exactly when the cubical structure on X is CAT(0).

Theorem 13.2. ([CD6]) The Main Conjecture is true when N(W, S) is a flag complex.

Remark 13.3. Taken together, Corollary 12.5 and Theorem 13.2 constitute a proof of the
Main Conjecture in most cases.

Remark 13.4. In [L], Lanner showed that N(Wr,T) is the boundary of a simplex (an
“empty simplex”in N(W,S)) if and only if Wy is a reflection group on either hyperbolic
space or Euclidean space with fundamental chamber a simplex. (See Example 8.6.) Hence,
N (W, S) is a flag complex if and only if for all subsets T of S, with Card (T') > 3, neither
of the following conditions hold:

a) Wr is an irreducible, affine Euclidean reflection group,

b) Wr is a hyperbolic reflection group with fundamental chamber a simplex.
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UNKNOTTING NUMBERS OF MINIMAL PROJECTIONS
OF SOME ALTERNATING RATIONAL KNOTS

DENNIS J. GARITY

Oregon State University

September 1994

Section 1. Introduction.
This paper contains of summary of results presented in a talk at the Western Workshop

in Geometric Topology held at Park City, Utah in June, 1994. These results were obtained
during the summer of 1992 and the summer of 1993 at the Research Experiences for
Undergraduates Program in Mathematics at Oregon State University. The results in this
paper represent joint work with James Bernhard, Cassandra McGee and Eva Wailes. These
results appear in more detail in the proceedings of the summer REU programs ([REU1],
[REU2] ).

In the early 1980s, Bleiler [Bl] and Nakanishi [Na| independently produced an example
of a knot whose unknotting number was not realized in a minimal projection. The example
was the knot (5, 1, 4) in Conway notation [Co]. The method of proof involved showing
that the ten crossing projection given by the Conway notation (5, 1, 4) was the mini-
mal projection and had unknotting number 3, whereas the alternate projection with 14
crossings given by the Conway notation (-2, —2, —2, —2, —2, 4) has unknotting number
2.

More recent results make it easier to determine when a given projection of a knot or
link is the minimal projection, and thus make it easier to analyze when gaps between the
unknotting number of a minimal projection of a knot or link and the actual unknotting
number of the knot or link occur. The needed definitions and background material are
presented in the next section. The new results from the past two summers are presented

in the third section.

Section 2. Definitions and Background Material.
We use the word link to represent a knot or link in R®. The unknotting number of a

projection of a link is the minimal number of crossing changes necessary to change the
link into the trivial link. The unknotting number of a link is the minimum, taken over all
projections of the link, of the unknotting number of the projections of that link.

Key words and phrases. Rational knots, unknotting number.
Research was supported in part by N.S.F. Grant DMS-9101515
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We use Conway notation [Co] to represent projections of rational knots and links. The
continued fraction associated with a link given by Conway notation (a1, az, ... ,@n) is

the continued fraction: )

1
On-1 + 1
az + —

ai

an +

A main result from [Co] is the following.

Theorem [Co].
If the continued fractions associated with two links given in Conway notation are the

same , then the links are equivalent.

The following result of Kauffman, Thistlethwaite, and Murasugi makes it easier to check

for minimal projections.

Theorem (see [Ka], [Mu]).
Any reduced alternating projection of a link is @ minimal projection.

It is easy to check that any link given in Conway notation by a sequence of length
at least two of all positive, or all negative integers is reduced alternating, and thus the
corresponding projection is minimal and the link is nontrivial.

The following result of Menasco and Thistlethwaite makes it possible to just check
the unknotting number of a single reduced alternating projection of a link to find the
unknotting number of minimal projections of that link.

Theorem [MT].
Any two reduced alternating projections of a link differ by a series of flypes, and so have

the same unknotting number.

Finally, the unknotting gap of a link is the difference between the unknotting number of
a minimal projection of the link and the actual unknotting number of the link. The strategy
for finding rational links with positive unknotting gap should now be clear. One analyzes
the unknotting number of links given in Conway notation by a sequence of all positive or
all negative numbers. The associated projection is necessarily minimal, and the result of
changes in various positions can be analyzed. If a sequence of changes results in a link that
has an alternate Conway expression involving all positive or all negative integers, then that
particular sequence of changes does not result in the trivial link. Analyzing all possible
changes gives the unknotting number of the minimal projection of the link. Finally, one
must determine if there are alternate projections that have a smaller unknotting number.
If one can find such a projection, then one has a proof that the given link has a positive
unknotting gap.

Much of the work involves finding a systematic procedure for analyzing all possible
changes, and finding a method for producing alternate projections with possibly lower

unknotting numbers.
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Section 3.Main results.

During the summer REU program in 1992, James Bernhard, working with the author,
generalized the examples of Bleiler and Nakanishi to produce an infinite class of knots with
unknotting gap at least one. This result has been published [Be]. The main result is the

following.

Theorem 1 [REU1].

The knots given in Conway notation by (2k + 1, 1, 2k), for k > 2, have unknotting
number of any minimal projection greater than k, and have a projection with unknotiing
number less than or equal to k. Thus each knot of this infinite class of knots has unknotting

gap greater than or equal to 1.

The proof of this result proceeded by induction, starting with the base case that Bleiler
and Nakanishi had already established. |

During the summer of 1993, Cassandra McGee, Eva Wailes and the author investigated
other rational knots and links given by Conway notation (a, b, ¢) and found other knots
and links with positive unknotting gap. The main results of the investigation are contained
in the following two theorems. Eva Wailes continued the investigation of knots of the form
(a, b, ¢) during the following year and has submitted a paper for publication containing
further results [Wa].

Theorem 2 [REU2].

The unknotting number of the minimal projection of the knot (2n+3, 2m+1, 2n+2),
for k> 1 and m > 0 is greater than 2n + 1 if n < m and s greater than n +m + 1 if
n > m. In addition, if n > m, the knot (2n + 3, 2m + 1, 2n + 2) has a nonminimal
projection with unknotting number < n+m+ 1. As a consequence, any knot of the form
(2n+3, 2m + 1, 2n + 2) with n > m has unknotting gap at least 1.

The proof of this theorem proceeded by a more complicated induction than the proof of
theorem 1 above. The nonminimal projections that were found to produce the unknotting
gap were variations on the nonminimal projections in theorem 1.

Theorem 3 [REU2).

The unknotting number of the two component link of the form (2k, 1, 2j), fork >3 > 2
18 k+ 7 — 1. These links have a nonminimal projection with unknotting number less than
or equal to k. As a consequence, the unknotting gap of these links is at least j — 1.

Section 4. Question.

The last theorem produced examples of two component links with arbitrarily large
unknotting gaps. By taking connected sums of knots with unknotting gap one, it is possible
to produce examples of non-prime knots with arbitrarily large unknotting gaps. The
question as to whether there are prime knots with unknotting gap greater than one remains

open.
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Some Theorems on Approximate Fibrations

In this note we present several theorems that help to recognize approximate fibrations
among certain type of proper piecewise linear(PL) maps between manifolds.

Definition (Approximate Fibration)

A surjective map P : E — B between metric ANR’s is called an approximate
fibration if for any given f : X — E and a homotopy G : X x I — B with Go =po f
and for any € > 0 there exists a lifted homotopy G : X x I — E such that G, = f and

po G and G are € -close.

Definition(N"™-type Map)

Let N™ be a closed, orientable, connected n-manifold. A proper map p:M ntk _, Bk
is said to be an N™-type map if p~1b ~ N™ for all b in B. Furthermore we say that p is
N7-like if p~1b collapses to a homotopy type of N™ for all b in B.

It is known that if an N™-like map p:M"™t* — BF is an approximate fibration, then
B is a k-manifolds.[D2] But there is an example of N™-type PL approximate fibration p:
M — B where B fails to be a manifold[D:private communication]. Our goal is to identify
closed, orientable, connected n-manifold N™ such that any N™-type PL map p: M — B
between PL manifolds is an approximate fibration. Our development is similar to the case
of N™-like PL map which is extensively investigated by R.J. Daverman.[D1,D2,D3]

Definition(h-fibrator)

A closed, orientable, connected n-manifold N™ is called a codimension-k h-fibrator
if any N™-type map p:M™+* — BF between manifolds is an approximate fibration. N™ is
called an h-fibrator if it is a codimension-j h-fibrator for all positive integer j.

Examples
S™ is a codimension-n h-fibrator but not a codimension-(n+1) h-fibrator. The torus
T2 = S1 x S is not a codimension-2 h-fibrator but 72 § T2 is an h-fibrator.

Fact If N is a codimension-k fibrator, then it is a codimension-j fibrator for all j < k-1.

In the PL setting we have two fundamental results concerning PL map and recognition
of approximate fibrations. D]

Codimension Reduction Lemma[D2]

Let p:M™t% — B* be a PL map. Then each b in B has a PL neighborhood S=b+L
in B such that p~1S is a regular neighborhood of p~1b in M and p~L = 8 p~1S is an
(n+k-1)-manifold.

We write L'=p~!L and §’=p~!S.
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Fundamental Recognition Theorem [D2]
A PL map p: M — B is an approximate fibration if and only if each v in B has a

stellar neighborhood S=vxL whose preimage collapses to p~1v via a map rip~1§ — p~lv
such that for all b in L, r|p~1b: p~1b — p~lv is a homotopy equivalence. Here r=D; where

D, is a strong deformation retraction of p~1S onto p~lv.

The following results and definitions are indispensable to establish our theorems .
Basic Lemma (Notation as in the Codimension Reduction Lemma)
For any N™-type map p:M™t* — B* k > 2, and for any v in B, the inclusion

j:L" — 8’ induces an epimorphism jy: w1 (L') — m1(S").

Homotopy Exact Sequence [D2,D3] ,[C]
For an approximate fibration p:E — B, there is a following homotopy exact sequence:

— mit1(B) — mi(p~'b) — m(M) — mi(B) —

‘Wang Exact Sequence [D3]
For an approximate fibration p:E — S™, there exists following exact sequences:
— HJ(E) — HI(F) — HI™™(F) — H/*(E) —
— H;(F) — H;(E) - Hj_m(F) — H;—1(F) —
Here F is a fiber of the map p.

Definition (Hopfian Manifold)

A closed, orientable, connected manifold N is called hopfian if every degree one map
f:N — N which induces an isomorphism on the fundamental group is a homotopy equiva-
lence.
Example Any closed, orientable, connected manifold with a finite fundamental group is
hopfian.

Also we say that a group G is hopfian if any epimorphism of G onto itself is an
isomorphism. So every finite group is hopfian as well as the infinite cyclic group.

Now we state several theorems concerning h-fibrators.

Theorem
Let N™ be a hopfian manifold with a hopfian fundamental group. Suppose N™ is a
codimension-(n+1) PL h-fibrator. Then N™ is a PL h-fibrator.

Note that we are assuming that the base space B is a manifold and the above theorem
without this assumption may not be true. A proof of above theorem uses an induction on
the codimensions utilizing homotopy exact sequence, Basic Lemma, Wang exact sequence.
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Theorem

Let N™ be a closed, orientable, connected, aspherical n-manifold with a hopfian fun-
damental group. Then N™ is a PL h-fibrator if it is a codimension-2 PL h-fibrator.

Theorem

Let N™ be a closed, orientable, connected, hopfian n-manifold with a hopfian funda-
mental group. Suppose H7(N)=0 for 0 < j < m and H™(N) is in the subring of H*(N),
generated by H™(N). Then N™ is a PL h-fibrator if it is a codimension-(m+1) PL h-
fibrator.

Theorem
The n-dimensional quarternionic projective space QP™ is a codimension-5 PL h-
fibrator. Hence it is a PL h-fibrator.

This work was done while I was at University of Tennessee under the supervision of
Prof. R. J. Daverman. I am thankful to him and Prof. Dennis Garity to provide the
arrangement and guidance.
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Some New Wild Embeddings of Codimension 1 Manifolds
by F. C. Tinsley (joint with R. J. Daverman)

Introduction:

During the 1950’s and 60’s a significant portion of geometric topology focused on the study
of embeddings of 52 in E3. Many examples were constructed in which the image of S 2
could not be bicollared. These were called wild embeddings.

One way of detecting wildness was to look locally at the fundamental group of the comple-
ment of the surface. For example, Figure 1 shows the wild part of the Alexander Horned
Sphere and a loop in the complement. The loop bounds homologically but not homo-
topically. Therefore, it represents a non-trivial element of the fundamental group of the
complement yet the first homology group of the complement is trivial. Homology the-
ory reveals that these local w1 groups are always perfect, ie, equal to their commutator

subgroups.

Figure 1

Naturally, topologists asked similar questions about embeddings of S™ in E"*! for n > 2.
Local homotopy and perfect groups are important in the same way as for n = 2. J. W,
Cannon gives a beautiful explication of this relationship in [Cal]. However, early examples
of wild embeddings in high dimensions mimicked constructions for n = 2.

In the early 1980’s R. J. Daverman ([Da]) constructed explicit examples of ” crumpled”
cobordisms (W, X", S™) for n > 4 where W —S™ 2 5" x [0,1), X" is a non-simplyconnected
homology sphere, S™ is wildly embedded in W, W is an acyclic mapping cylinder, and W
plus a collar attach to S™ is an (n + 1) — manifold. Because the fundamental group of the

Typeset by ApS-TEX
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W — S™ is finitely generated, these examples cannot occur in low dimensions.

The results of this work completely characterize wildness of the type alluded to in the
previous paragraph. All the examples are intrinsically high dimensional.

The Construction:

The basic construction uses the notion of a grope, due to J. W. Cannon. In [Cal] he
observes that an element, g, of a group G lies in a perfect subgroup of G if and only
if g is equal to a product of commutators each of which is again equal to a product of
commutators each of which is again equal to a product of commutators . . . ad infinitum.
Geometrically, a loop which bounds a disk-with-handles is a product of commutators. So,
any loop in a space which represents an element of the fundamental group of that space
bounds a singular disk-with-handles. Similarly, each handle curve itself bounds a singular
disk-with-handles . . . ad infinitum. In a high dimensional manifold, all these stages
can be embedded. Cannon called the resulting infinite 2-complex a grope, identified the
interior of a regular neighborhood of this object as a crumpled cube, showed how to replace
the interior of this crumpled cube by the interior of a cell, and showed how the two spaces

were related by an arc decomposition [Ca?).

We are indebted to John Walsh for the following strategy. Suppose M "™ is an n-manifold
(n > 5) with [I] € 71(M) in a perfect subgroup of m1(M). Properly embed a grope in
M x [0,1) with [ as its boundary and then replace the interior of a regular neighborhood
by the interior of the cell. Using end theory put an end on the resulting cobordism. Finally,
collapse out the arc decomposition.

The problem stems from the fact that in many cases the half-open arcs resulting from the
grope replacement cannot possibly converge to points at the end. As a result standard

decomposition theory cannot collapse out these arcs.

The solution is to add extra structure at the end. In particular, after making the grope
replacement, identify the new end as N x [0,1), the new cobordism as (W, M,N), and
”spin” about this new end. More precisely, consider

(W —N) x s N
where N is attached according to the spin topology
N x B2~ N x (0,1] ><51UN

In this setting, the wild codimension one manifold, W*, will correspond to

WXOUWXWUN
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Each half-open arc, o, from the replacement corresponds to a punctured disk, o x S, with
axSlﬂVV*:axOUaXW

We collapse the punctured disks a x S back to W* in two steps. First, collapse out the

tame half-open arcs a X (%) and a X (%’l) Finally, we identify an usc, shrinkable arc
decomposition transverse to W* where each decomposition element is close to one of the

original arcs pt X |=E X Z| or pt X |%, %+ | in the spin structure.
2 2 20 2

Figure 2 — a x S1

The Example:

Consider the group G = <y,t‘y = l:yt,ytz] > Note that [G,G] is perfect and [G,G] =

N cl<y,G>. Let G = 71 (M). Now, replace the interior of a regular neighborhood in
M % [0,1) of a grope bounded by a loop reprenting y by that of a cell. The end of this
manifold is homeomorphic to N x [0,1) where 71 (N) 2 Z with generator t. However, the
half open arcs resulting from the replacement cannot possibly converge to points so we
must use the above construction.

Main Results:

By working in a neighborhood of a 2 complex carrying G, the funcamental group of M,
we obtain the following general results.
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Theorem: Let G be a finitely presented group with perfect, normal subgroup P such that
P is finitely generated as a normal subgroup!. Let M™ be an n—manifold (n > 5) with
71 (M™) 2 G. Then there is a crumpled cobordism (W, M, N) with
(1) W-N>=M x[0,1) :
N wildly embedded in W
ker(ix) = P where i : M — W is inclusion
T (N)=2 G/P
the inclusion j : N — W a homotopy equivalence.

(2)
(3)
(4)
(5)

Corollary: Given (G, P) as in the theorem and n > 5 then there is a wild embedding
i:8™— S™ such that

(1) each component of S™*! — S™ is homeomorphic to E™**
(2) the local w1 — kernel of S7*1 — 5™ S§™*1 is isomorphic to P.

IFor all known pairs (G, P) with G finitely presented, P perfect, and P « G, P is finitely
generated as a normal subgroup. The existence of an example in which P is not finitely
generated as a normal subgroup appears to be an extremely difficult question.
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The Higson Compactification
and its Corona

by
James Keesling

University of Florida
Gainesville, FL 32611-8000

Introduction. LetX be a locally compact metric space. A proper
metric on X is a metric d having the property that all bounded closed
sets are compact. The Higson compactification of X is a Hausdorff
compactification X° characterized by the property that if f:X —[0,1]
is a continuous map, then f has a continuous -extension to X¢ if and
only if for every r>0, diam(f(B.(x))) >0 as x » e in X. A good
introduction to this compactification is given by Roe in [10]. This
compactification is used in the study of group graphs and
Riemannian manifolds as well as other locally compact metric spaces.
It has also been used to settle the Novikov conjecture for coarse (or
exotic) cohomology for hyperbolic metric spaces. There is hope to
settle this conjecture for more general spaces using the Higson
compactification. It is hoped that these results will help to provide a
framework to carry this out.

In this paper topological properties of the Higson
compactification and its corona are outlined. The results are
obtained by using homotopy properties of maps from X? to various
polyhedra. The techniques are reminiscent of those developed by
the author to study the Stone-Cech compactification [5], [6], and [7].
In [8] the author answered a question of Higson concerning the Cech
cohomology of this compactification. The question was posed in [10].

1. Basic Properties of the Higson Compactification. Here
are the basic definitions and basic results concerning the Higson
compactification and its corona. OQur approach is equivalent to [10].



Suppose that X is noncompact with d a proper metric. Let f:X—>Y be
a continuous function into a metric space Y with specific metric. = We
say that the function f satisfies (*) provided that

(*) lim diam(f (B,(x))) =0 Vr>0.

Property (*) means that for each r>0 and each £>0, there is a
compact set K=K,, in X such that for all x¢ K, diam(f(B,(x))) <€.
Recall the standard notation of [3] that C(X) (C'(X)) denotes the set of
all (bounded) real-valued continuous functions on X. C(X) and C'(X)
are rings under pointwise addition and multiplication with C"(X) a
subring of C(X). By analogy we define Cd(X)={f e C(X)| f satisfies (*)}
and Cy(X)={feC"(X)| f satisfies (¥)}.

With the supremum norm on C'(X), C,(X) is a closed subring of
C"(X) containing all the constant functions. Because the metric d on X
is proper, C,(X) generates the topology of X. It is well-known that
the compactifications of X are in one-to-one correspondence with the
closed subrings F of C'(X) which contain the constants and generate
the topology of X. One way to construct the compactification
associated with F is to let the points of the compactification be the

maximal ideals of the ring F with the hull-kernel topology with the
point x being identified with the maximal ideal M,={f eF|f(x)=0}.

The Higson compactification is the compactification associated
with the closed subring F=C,(X)cC'(X). It is characterized as the

compactification X¢ such that the real-valued continuous functions
on X that extend to X“ are precisely the ones in C;(X). In [8] we give

another characterization of X? which we repeat here.

Proposition 1. Suppose that X is noncompact and that d is a proper
metric on X. The Higson compactification X* is the unique
compactification of X such that if Y is any compact metric space
and f:X —Y is continuous, then f has a continuous extension to

X?® if and only if f has property (*).

51
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The Higson corona is simply the difference set, v,X=X?\X.

The letter d is used in the designation of the Higson compactification
and its corona to emphasize the dependence on the proper metric d.

2. One-Dimensional Cech Cohomology. In [8] it was shown
that the one-dimensional Cech cohomology is nontrivial for the
Higson compactification of any noncompact, connected X. The result
is given precisely in the following theorem.

Theorem 1. Suppose that X is a noncompact connnected metric
space and suppose that d is a proper metric on X. Then the
following exact sequence holds.

0-5C,X)>C(X)-»H' XY HYX)->0

It was also shown in [8] that the group Ca(X) C (%) is isomorphic
d

as a group to the additive group of real numbers R under the
hypotheses of Theorem 1. So, whenever X is a locally compact
noncompact connected metric space with proper metric d, the one-
dimensional Cech cohomology is nontrivial. It was conjectured that
if X was uniformly contractible in the metric d, then all Cech
cohomology groups would be trivial. Theorem 1 shows that this is

false.

3. Maps onto Tori. Here we sketch results we have obtained
concerning the Higson compactification and its corona using maps
onto tori. Let T" be the n-dimensional torus and let e:R*—T" be the
natural covering map with R" the universal covering space. Let
f:R* > R" be defined by f(xl,...,xu)=(\ﬂ;1—|,...,\/ﬂ). One can easily check

that f has property (*) for the usual Euclidean metric on R". The map
eof:R" - T" will also satisfy (*) for the usual metric on 7". Thus,
there will be an extension W:Fd—)T" of eof. This map may seem
innocent enough on its face, but there are serious implications. This
map is onto 7" and any map homotopic to it is also onto T". We say



53

that a map is homotopically onto when it is onto and each map
homotopic to it is also onto [5].

Theorem 2. The map eo f:E;d—>T" is homotopically onto. Also, this
map restricted to the corona, eo f:v,R"—>T", is also
homotopically onto.

Among the implications of this theorem is that the dimension
and the shape dimension of v,R" is greater than or equal to n.

The above theorem is the simplest application of maps onto
tori. There are much more general circumstances when one can
show that there is a map f:X — R" so that f has property (*) and has
the property that the consequent extension eof:X%— R" is
homotopically onto as well as eof:v,X - R*. If one has a continuum

K cv,X, then often one can construct a g:K—T" which is

homotopically onto. In [5] an analogous construction was used to
produce maps g:K —»T" which were homotopically onto whenever K is
a continuum in BX\X with X Lindeléf and dimK >n.

4. Maps of Subcontinua of v,X. The next theorem is

analogous to results that can be found in [6] concerning subcontinua
of BX\X. In some sense the one-dimensional Cech cohomology of
subcontinua of v,X completely determines these subcontinua.

Theorem 3. Let K be a subcontinuum of v,X and suppose that
f:K =Y has the property that f“:H'(Y)— H'\(K) is an
isomorphism. Then f is one-to-one. If f is also onto, then f is a
homeomorphism.

5. Closures of Subsets of v,X. The closures of subsets of v, X
are often the Stone-Cech compactifications of those subsets.

Theorem 4. Let A be a o-compact subset of v,X. Then the closure
of A in v,X is equivalent to the Stone-C ech compactification of
A, Cl,A=pA.
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This result is analogous to the theorem concerning the Stone-

Cech compactification that if A is a subset of fX\X with X and A
both Lindelof and with A closed in X UA, then CliA=pA.
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A Topological Characterization of
Finitely Generated Free Abelian Groups

Derek J. S. Robinson and Mathew Timm

1. Introduction.

The topological characterization of finitely generated free abelian groups that is reported here is
part of a longer and more detailed work by the authors[3]. The result reported in this note is part of a
general attempt to understand topological spaces that have the property that all of their finite sheeted
covering spaces have total space of the covering projection homeomorphic to the base space. The
interested reader should consult [3] as well as [4] and [5]. All of [3], [4], and [5] contain more extensive
bibliographies and motivations.

The second author originally became interested in these sorts of questions after reading Jungck[J]
where he investigated developed ':of connected first countable Hausdorff spaces whose only connected
finite sheeted covering spaces aré: the trivial cover‘s of the spaces by themselves. ~We thank Nigel
Boston. for the contact that led to this collaboratio. Bob Daverman is thanked for originally

suggesting the particular question whose answer is reported in this manuscript.

2. Definitions and elementary exaolplw.

Assume all topological spaces are connected and all groups are finitely generated (denoted f.g.).
Let M be a topological space. Then M is h-connected if and only if whenever p:X—M is a finite
sheeted connected covering it follows that X is homeomorphic to M via some homeomorphism. Based
on the correspondence between subgroups of the fundamental group of a connected manifold and finite
sheeted coverings of the manifold there is the corresponding group theoretic definition. A f.g. group G

is hc if and only if every finite index subgroup of G is isomorphic to ‘G. Note that an h-connected

manifold has he fundamental group.

Examples 2.1. The trivial group‘Gzl is hc. Any f.g. free abelian group is he. Any f.g group that has
no proper finite index subgroups is (trivially) hc. See for example the Higman groups in [1] or any f.g.
infinite simple group. G=Z X ... X Z X H where H is a f.g. group with no proper subgroups of finite
index is hc. Topological exampl_eé of h-connected spaces include any simply connected manifold, your
favorite n-manifold whose fundomental group is a finitely presented group that has no proper
subgroups of finite order, the n-tori Th=slx ... XS]‘, T8 x D™, where D™ is the m-disc, and

T2 X M where M has no proper finite sheeted covering spaces.
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2. A structure theorem for f.g. hc groups
Definition 2.1. Let G be a f.g. group. The finite residual is the (normal) subgroup of G given by

F= () {H:G/H is a finite group}.

Theorem 2.2. (A partial statement of a theorem in [3]) If G is a f.g., hc group with finite residual F
then G/F is f.g. free abelian.

The above theorem is only the part of a much more detailed result given in [3] that applies to the task

at hand. The result in [3] gives a very detailed description of the structure of hc groups.

3. A Topological consequence
Corollary 3.1. Let G be f.g. Then G is free abelian if and only if there is a compact, finite

dimensional, h-connected manifold M with fundamental group isomorphic to G that satisfies the

following condition on covering spaces:

' (*) There is a unique covering space q:X—M such that, given any finite sheeted covering space

p:N—M there is a covering projection 1:X—N such that g=por.

Proof. Clearly if G is f.g. free abelian of rank n then the n-torus T® satisfies the theorem. To prove
the converse' assume M is an h-connected manifold with 71(M)=G that satisfies (). If the finite
residual F of G is trivial we are clearly done since the space X is then the universal cover of M. So
assume that F is not trivial. Let q:Xp—M denote the (regular) covering space that corresponds to F.
By construction XF covers all of the finite sheeted covering spaces as is required in (x). However the
uniqueness requirement of () is not fulfilled since M has a universal covering space and Xp is not

simply connected. Contradiction. So F is trivial and we are done.

Question 3.2. In the light of Corollary 3.1 one wonders if, modulo the Poincare Conjecture, the only h-
connected 3-manifolds are S3, sl x D2, sl x S‘?', T2 x I, and T3? Note that there is an example of a
3-generator group G that is hc, has a proper subgroup of finite index, and is irreducible with respect to
direct product. See [3]. It is not finitely related so can’t be a 3-manifold group. These facts, and the
relationship of properties of the fundamental group of a 3-manifold to its topology, cause one to

wonder if there is any finitely presented hc group that is irreducible with respect to direct product.
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Stretching Rubberbands Inside Planar Domains

Paul Fabel
Department of Mathematics and Statistics
Mississippi State University
fabel@math.msstate.edu

Abstract

‘We develop a notion of “shortest” arc between a pair of points in a
closed topological planar disk.

Given a closed topological disk D C R? and distinct points {a,b} C 6D
there is not necessarily a closed arc in D of finite length which connects a to
b. However, we show that if F' consists of those points £ € D such that no
chord of D separates = and{a, b} then F is a closed arc in D which connects a
to 6. Furthermore F' is continuous in the data D, a,b, and all closed subarcs of
int(F') are uniquely of minimal length. We have thus obtained in the topological
category a natural extension of the notion of the shortest arc between two points
in a closed disk. .

Definition 1 Suppose D C R? is homeomorphic to the closed unit disk D.
The straight line segment [c,d)] is said to be a chord of D if {e,d} C 8D and
(¢, d) Cint(D).

Definition 2 If A C D and B C D then the chord [c,d] is said to separate A
and B if A and B are contained in different components of D \ [c,d).

Definition 3 To say that a collection of mutually homeomorphic subsets of the
plane is endowed with the uniform topology means that a sequence A, — A
iff there is a sequence of homeomorphisms hy, : R — R? such that h,(4,) = A

and h, undf id.

Definition 4 Let X denote the collection of all subsets of R? which are home-
omorphic to the closed unit disk. Let Y denote the collection of all subsets of
R? which are homeomorphic to the closed unit interval [0,1] C R'. We endow
X and Y with the uniform topology.

Definition 5 Let Z denote the subspace of X x R? x R? consisting of all triples
(D, a,b) such that a # b and {a,b} C D.



Theorem 1 If(D,a,b) € Z and F = {z € D | nochordof Dseparateszand{a,b}}
then

e Fis a closed arc with endpoints {a, b}.

e F admits a parameterization by arclength by exactly one of [0, 1], [0, o0],
or [—o0, ]

o If {c,d} C F\{a,b} and E is the unique closed subarc of F' with endpoints
{c,d}, then E has finite arclength | E ||, and the arclength || E || is
uniquely minimal over all arcs in D which contain {¢,d}

e F' is unique in the sense that F' is the only subset of D which enjoys the
preceding properties.

Theorem 2 The function F : Z — Y is continuous where
F(D,a,b) = {z € D | nochordof Dseparateszand{a,b}}.

Proof of Theorem 1 (sketch) . To verify that F' is indeed a closed arc let o
denote the closure of either component of 8D \ {a,b}. We will construct
a homeomorphism ¢ : @ — F as follows. Index the components o \
(@ F) and let a; denote the closure of some component of a \ (a N F).
We will map o; homeomorphically onto the closure of a corresponding
component, F;, of F'\ (a N F) via ¢;, a homeomorphism which fixes the
endpoints of o;. Finally we let ¢ = idonpU; ¢;. Continuity of ¢ will follow
from local connectivity of o, and the fact that diam(F;) < diam(a;). One
must also verify that ¢ is 1 — 1 and surjective. To see that F' admits a
parameterization by arclength one first verifies that F' \ {a, b} is locally
isometric to the boundary of a convex disk. Hence F'\{a,b} can be realized
locally as the graph of a convex function, and therefore F'\ {a, b} admits a
parameterization which is locally absolutely continuous. This also shows
that each closed subarc E C F\{a, b} has finite arclength. If the endpoints
of E are {c,d} then given any other arc 8 C D with endpoints {¢,d}, one
can construct a sequence of closed arcs G, such that G, — FE in the
Hausdorf metric, and such that | 8 [>] 51 ||, || Bn 12| Br+1 || and || Br ||
—|| E ||. This establishes the unique minimality of || E ||.

Proof of Theorem 2 (sketch) . Suppose (Dy,an,b,) — (D, a,b). To verify
that ¢(Dn, an,bn) — ¢(D,a,b), we first check convergence in the Haus-
dorf metric. We then verify that ¢(D,, an,byn) is uniformly locally con-
nected, and conclude that ¢(D,,, an, by) converges uniformly to ¢(D, a, b).
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Problem Session

(Daverman) Is there a hereditarily aspherical generalized n-manifold
(n>4)? X is hereditarily aspherical if for any open subset U of X,

ni(U) = 0 for i>l.

(Swenson) Suppose G acts by homeomorphisms on a dendrite (or R-tree) T.

a) Under what conditions is there a path metric on T such that G acts by

isometries? What if T = R and no closed interval of R is mapped to a

proper subset of itself?

b) Under what conditions is G a non-trivial free product?

(Plaut) Let G be a locally compact, locally connected, f irst countable
topological group. Put a Haar measure on G. Then L = L%G) is a Hilbert
space and G acts on L via isometries: g-F(x) = F( gwlx). Do there exist
functions F € L such that their orbits (with induced inner metric) have

curvature =K for some K?

(Wright) Let X be a contractible n-manifold which covers something
non-trivially. Determine conditions on the fundamental group at infinity
of X (such as finitely generated at infinity, stable at infinity, or
semi-stable at infinity) which imply that X is simply connected at

infinity.

(Guilbault) Under what conditions do the metric spheres in a CAT(0) space X
satisfy CAT(K) for some K when given the induced inner metric? Under what

conditions do they support any CAT(K) metric? In particular, what if X is

a manifold?

(suggested by Davis, orginally posed by Gromov in all dimensions) Must a
simply connected CAT(0) 4-manifold be homeomorphic to R*? Note. For n=<3, a
simply connected CAT(0) n-manifold is known to be homeomorphic to R". For

nz5, there are counterexamples. P. Thurston has given partial results for

n=4.

(attributed to Bruce Kleiner) Does the space of spaces of curvature bounded

above contain a dense set of manifold points?




